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We consider the problem of finding a reasonable logical characterization for the com-
plexity class PTIME in the class of all finite models. We approach this problem by
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Lω∞ω. More precisely, we show that it is not possible to characterize PTIME in such
a way. This result is obtained by constructing models A(G) and B(G) which are
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query q such that q(A(G)) 6= q(B(G)) for any appropriate finite graph G.
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1 Introduction

Computational complexity theory is a field of study interested in classifying compu-
tational problems with respect to time and space resources needed to solve them. It
is widely agreed that PTIME, the class of problems solvable with a Turing machine
running in polynomial time, consists of problems that are computationally feasible.
However, it is surprising how little is known about the fundamental properties of
PTIME. There is of course a vast list of problems known to be in PTIME, but the
common features of them have remained a mystery. Put differently, giving an exact
and general description of what kind of problems constitute PTIME has turned out
to be extremely difficult. This challenge leads us to consider a logician’s approach
to complexity theory.

Descriptive complexity theory aims to characterize complexity classes by means
of mathematical logic. This approach is more abstract than the one traditionally
used in complexity theory. However, this is not to be understood that one of the
frameworks is better than the other - they are merely interested in somewhat differ-
ent aspects of the topic. One can boldly assert that descriptive complexity theory
takes a step further than the traditional approach. It aims to describe complexity
classes instead of only studying their mutual relations. One is interested in logical
forms of problems of given complexity. Consequently, a new measure for complex-
ity emerges. A problem is as complex as is a logic needed to express the problem.
Thus the concept of computational complexity reduces to the notion of logical de-
finability. This gives an alternative way of explaining why a particular problem is
in some class as well as why some classes are in some extensional relation to each
other. The well-known result of Fagin [5] is a great example of such an explanation.
It states that the class of problems solvable in non-deterministic polynomial time,
NPTIME, consists exactly of the problems that can be expressed by sentences of
existential second-order logic. Many similar characterizations of important complex-
ity classes have been obtained after this pioneering result of Fagin. For instance,
LOGSPACE and PSPACE were characterized by Immerman [9] and Vardi [15],
respectively. Moreover, PTIME was characterized as properties definable in least
fixed-point logic, LFP , by the same researchers in the 1980’s, but only in the class
of ordered finite models [8, 15]. However, a general description for PTIME in the
class of finite models is still an open problem.

This thesis is about the problem of giving a general characterization for PTIME in
the class of all finite models. A possible approach is to add more expressive power
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to LFP . We adopt this strategy, although only indirectly. Finite variable logic
with infinitary connectives, Lω∞ω, is known to be at least as expressive as LFP ,
but not powerful enough to capture PTIME. Thus we enrich Lω∞ω with so-called
generalized quantifiers. They behave syntactically similarly as the classical ones, but
can express more complex properties such as "even number of", "at least five" etc.
As opposed to traditional quantifiers, we allow them to apply to several formulas as
well as bind several variables in a formula. We say that a quantifier is n-ary, if it
binds at most n variables in each formula it applies to. It seems a priori possible that
in the above fashion with a suitable collection of generalized quantifiers one could
construct the desired logic. However, some negative results have been obtained. In
[10], it was shown that the collection of all unary quantifiers does not yield a logic
strong enough to capture PTIME. The main theorem of this thesis, originally
published by Hella [7], generalizes the result in [10]. We show that for each n, it is
not possible to capture PTIME with a logic Lk∞ω(Qn), where Qn denotes the class
of all n-ary quantifiers.

The structure of this thesis is the following. Section 2 is devoted to defining a general
concept of a logic and some important concrete logics as instances of it. We need a
general and exact mathematical concept for a logic to be able to pose the question
"is there a logic for PTIME?" in the first place. On the other hand, the concrete
logics are needed to formulate the argument for the main theorem. In Section 3
we introduce generalized quantifiers by extending the concept of a quantifier until
reaching the so-called Lindström quantifiers, which were originally introduced by
Lindström [12]. In the next section we establish the link between computational
complexity and logical definability. Consequently, we have all the tools to give an
exact mathematical formulation for the question of existence of a reasonable logic
to capture PTIME.

In Section 5 we consider the expressive power of the finite variable infinitary logics
with n-ary quantifiers. We characterize Lk∞ω(Qn)-equivalence in two different ways.
Firstly, we show that a certain back-and-forth bijective extendability condition for
partial isomorphisms between finite modelsM and N guarantees the preservation
of Lk∞ω(Qn)-formulas. We then proceed to a game-theoretic approach. We define
an n-bijective k-pebble game and show that the existence of a winning strategy in
this game overM and N gives the same result.

In Section 6 we dwell into the core issues of this thesis. The challenge is to construct
models which are Lk∞ω(Qn)-equivalent, but can be distinguished with a PTIME-
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computable query. These models are constructed from a finite connected graph and
so-called building blocks. In Section 7 we introduce the game of k cops and a robber.
The desired equivalence is obtained with the help of this game. Afterwards, it is
shown that the structures built from the blocks can be separated with a PTIME

computable property.
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2 Logics

In this section we concentrate on various logics. We begin by introducing a general
concept of a logic and call it an abstract logic. The name abstract refers to the
fact that neither explicit syntactical rules for the construction of formulas nor their
semantics is given. The idea is most importantly to give a set of general conditions
so that all and only the concrete objects we are inclined to call logics satisfy them.
On the other hand, we need this broad concept of a logic when we later pose the
question about the existence of a reasonable logic describing the class of polynomial
time computable queries.

2.1 Abstract Logic

The definition for an abstract logic we shall contemplate on was originally given
by Kolaitis and Väänänen [10]. It is a refinement of the first formulation of an
abstract logic given by Lindström [13]. Their modified definition has two essential
new features. Most importantly, it allows to treat logics on any restricted classes
of structures. Hence we can not only explicitly restrict our attention to the class of
finite structures, but also any subclass of it. So in practise the uselfulness of this
fine-grained treatment of model classes is that we can clearly express when we are for
instance studying only ordered structures or arbitrary finite structures. The other
new feature of the modified version is that it states the set of variables of a logic
explicitly. Consequently, we can limit the number of variables naturally, when we are
paying our attention to k-variable fragments of some concrete logic. Before turning
to the definition of an abstract logic we point out that it is a genuine generalization
of any concrete logic we are interested in. Hence all the concrete logics we study are
abstract logics, differing only in the additional structural features they have. Thus
we will often speak only of logics without making a distinction between abstract and
concrete logics.

A vocabulary, denoted by greek letters τ, σ, ... is a set of constant symbols ci, relation
symbols Ri and function symbols fi. Each of these three types of symbols comes
with an arity, which is denoted by ar(...). As usually, arity is a function from the
set of symbols to natural numbers. The set of variables of a logic is denoted by V .

The set of τ -terms is defined recursively as follows:

(i) For all v ∈ V , v is a τ -term.
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(ii) For all ci ∈ τ , ci is a τ -term.

(iii) If t1, ..., tn are τ -terms and fi is an n-ary function symbol in τ , then fi(t1, ..., tn)

is a τ -term.

Fix a vocabulary τ = {ci, .., fi, ..., Ri, ...}. A τ -structure or a model is a sequence
M = 〈M, cMi , ..., f

M
i , ..., RMi , ...〉. The non-empty set M is called the universe or

domain ofM. On the other hand, cMi , fMi and RMi are the interpretations of ci, fi
and Ri in the structure M, respectively. Interpretations are defined in the usual
way. Furthermore, we denote by AssgnV,M the class of assignments of the elements
of V in the universe ofM. Thus elements of AssgnV,M are functions from V to M .

Definition 2.1.1. An abstract logic on a model class K is a tuple (L, T ,K,V ,�L)

such that the following conditions hold:

(1) T is a set of vocabularies.

(2) L is a function such that dom(L) = T and for all τ ∈ T , L[τ ] is a class. L[τ ] is
called the class of L-formulas of vocabulary τ .

(3) K is a function such that dom(K) = T and for all τ ∈ T , K[τ ] is a class of
τ -structures.

(4) V is a set of variable symbols.

(5) �L is a three-place relation of elements of K[τ ], L[τ ] and AssgnV,M, where τ ∈ T
andM∈ K[τ ].

(6) L is monotone i.e. if τ ⊆ σ, then L[τ ] ⊆ L[σ].

(7) IfM∈ K[τ ] andM �L,s ϕ, then ϕ ∈ L[τ ].

(8) Let M,N ∈ K[τ ], ϕ ∈ L[τ ] and s ∈ AssgnV,M. If M �L,s ϕ and π is an
isomorphism fromM to N , then

N �L,π(s) ϕ.

(9) Let τ ⊆ σ. If M ∈ K[σ], ϕ ∈ L[τ ], s ∈ AssgnV,M andM �L,s φ, then

M � τ �L,s ϕ.

(10) Let f : τ → σ be a bijection preserving types and arities of symbols (i.e.
mapping n-ary relation symbols to n-ary relation symbols etc.). For all ϕ ∈ L[τ ],
there is ϕf ∈ L[σ] such that for allM ∈ K[τ ] and all s ∈ AssgnV,M, it holds that
M �L,s ϕ ⇔ Mf �L,s ϕf . Here Mf is the L[σ]-structure we obtain by renaming
objects ofM according to f .
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From now on we abuse our notation slightly by referring to a particular logic with
the same symbol as in the first co-ordinate of the tuple in its definition. This abuse
is of course made only when it is clear from the context what logic we mean.

If a triple (M, ϕ, s) belongs to the relation �L, we write M �L,s ϕ and say that
M satisfies the L-formula ϕ with assingment s. Furthermore, if M �L,s ϕ for all
assingnments s ∈ AssgnV,M, we write M �L ϕ and say that M is a model of ϕ.
Logical consequence is defined in the usual way: If Ψ is a set of L-sentences, ϕ an
L-sentence and for all M ∈ K[τ ] such that M �L Ψ, it holds also that M �L ϕ,
we write Ψ �L ϕ and say that ϕ is a logical consequence of Ψ. If Ψ happens to be
empty, we write just �L ϕ and say that ϕ is valid. Finally, we sometimes omit the
subscript in �L when no risk of confusion arise.

Let us now fix a logic L = (L, T ,K,V ,�L) and make some observations on the
previous definition. It has essentially two parts. Conditions from (1) to (5) define
the basic notions, whereas the rest assert fundamental properties of them. The first
part defines the set of L-formulas and structures over τ , the set of variables and,
most importantly, the satisfaction relation �L.

Consider then conditions (6)-(10). The first one guarantees the syntactical property
that the set of formulas of a logic is closed under expansions of vocabularies. The
last four conditions from (7) to (10) are less technical and assert important meta-
logical properties of the truth predicate. Condition (7) states that the semantics
of a logic is defined only on formulas of that particular logic. In other words, (7)
rules out the possibility of asking what is the meaning of an expression that it is
not even well-formed syntactically. According to the last three conditions, the truth
predicate is preserved under isomorphisms, reducts and renaming. Thus truth of a
formula depends only on symbols appearing in it (reduct property). Furthermore,
truth does not depend on the names of objects (isomorphism property) and finally
it does not depend on the names of symbols, if their interpretations are modified
accordingly (renaming property).

As mentioned before, we shall in many cases be interested in restricting logics to
certain classes of structures. Denote by S the class of all structures and by F the
class of finite structures. By L/K we mean the logic obtained from L by requiring
that its models are in K. So for example L/F = (L, T ,F ,V ,�L) is the logic L
restricted to the class of finite structures.
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2.2 General Syntactical and Semantical Rules

Both of the concrete logics that we will study are abstract logics with some addi-
tional explicit syntactical and semantical rules. So before introducing the concrete
logics relevant for our later purposes, we define atomic formulas, connectives and
quantifiers as general concepts. Later we define the logics themselves with the help
of this extra step between abstract and concrete logics. In the next definition we
assume that the logic L is closed under all the syntactical operations that are defined.

Definition 2.2.1. Let L be a logic, τ a vocabulary, M a τ -model and t1, ..., tn

τ -terms.

Atomic [τ ]-formulas. The set of atomic [τ ]-formulas, Atom[τ ], is defined as follows:

(t1 = t2) ∈ Atom[τ ],

R(t1, ..., tn) ∈ Atom[τ ], for all R ∈ τ.

Their semantics is given as:

M �L,s (t1 = t2)⇔ s(t1) = s(t2),

M �L,s R(t1, ..., tn)⇔
(
s(t1), ..., s(tn)

)
∈ RM.

Negation. The negation of ϕ ∈ L[τ ] is the formula ¬ϕ and its semantics is given as:

M �L,s ¬ϕ⇔M 2L,s ϕ.

Conjunction. Let Ψ be an arbitrary collection of L[τ ]-formulas. Then
∧
ϕ∈Ψ ϕ is a

formula, and its semantics is given as

M �L,s
∧
ϕ∈Ψ

ϕ⇔M �L,s ϕ, for all ϕ ∈ Ψ.

Disjunction. Let Ψ be an arbitrary collection of L[τ ]-formulas. Then
∨
ϕ∈Ψ ϕ is a

formula, and its semantics is given as

M �L,s
∨
ϕ∈Ψ

ϕ⇔M �L,s ϕ, for some ϕ ∈ Ψ.

Existential quantification. If ϕ ∈ L and x ∈ VL, then the existential quantification
gives the formula ∃xϕ and its semantics is given as follows:

M �L,s ∃xϕ⇔M �L,s(a/x) ϕ, for some a ∈M.
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It is an elementary fact that implication, equivalence and the universal quantifier
can be defined by means of the connectives, negation and the existential quantifier.
Therefore we treat them as abbreviations and let them appear in formulas. We chose
to introduce conjunction and disjunction so that they allow both finite and infinite
amounts of formulas. In the infinite case, they can intuitively be grasped as universal
and existential quantifications with the exception that the domain of quantification
is a set of formulas instead of the elements of a structure. If a connective, say
conjunction, is applied to a finite set of formulas or to a set of only two formulas,
we write

∧
i≤n ϕi and ϕ ∧ ψ, respectively. We make a distinction between free and

bound occurrences of variables. An occurrence is free, if it is not in the scope of a
quantifier. On the other hand, an occurrence is bound if it is not free.

The set of free variables in an L[τ ]-formula ϕ, denoted by Free(ϕ) is defined as
follows:

(i) If ϕ is atomic, then all occurrences of variables in ϕ are free,

(ii) Free(¬ϕ) =Free(ϕ)

(iii) Free(ϕ ∧ ψ) =Free(ψ)∪Free(ψ)

(iv) Free(∃xiψ) =Free(ψ) \ {xi}.

When we want to point out explicitly the free variables of a formula, we use the
following notation. Let x̄ = (x1, ..., xn) and ȳ = (y1, ..., ym) be tuples of variables.
The notation ϕ(x1, ..., xn) means that at most the members of x̄ have free occurrences
in ϕ i.e. Free(ϕ) ⊆ {xi : 1 ≤ i ≤ n}. Furthermore, we sometimes divide the tuple
of free variables into two or more parts. In other words, if the variables of ϕ having
free occurrences belong to z̄ = (x̄, ȳ) we may write ϕ(x̄, ȳ) instead of ϕ(z̄). Suppose
ā = (a1, ..., am) is a tuple of elements of a structure and ϕ(x̄, ȳ) a formula. Then by
ϕ(x̄, ā) we mean a formula in which variables in ȳ are assigned the corresponding
values in ā. We use the notation 〈M, ā〉 � ϕ(x̄), if M satisfies ϕ(x̄) when the
variables in x̄ are assigned the values in ā. This notation is usually more convenient
than writing the modifications of assignment corresponding each free variable in the
subscript of the satisfaction relation.

It is often useful to think of formulas with free variables as definining relations on
the domain of a structure. If M is a τ -structure, ϕ(x̄, ȳ) ∈ L[τ ], then we write
ϕM(x̄, b̄) = {ā ∈ Mm : 〈M, ā〉 � ϕ(x̄, b̄)} for the relation defined by ϕ(x̄, ȳ) with
parameters b̄ in M . If the tuple b̄ is empty, then we speak of the relation defined by
ϕM(x̄) (without parameters).
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2.3 Concrete Logics

Unlike in (infinite) model theory, first-order logic has turned out to be far too weak
in expressive power for descriptive complexity theory and finite model theory in
general. Hence many extensions of first-order logic have been studied in this context.
In this subsection we define the concrete logics relevant for our topic. These two
logics are first-order logic and the infinitary k-variable logic. More specifically, they
serve as a basis for more complex logics we obtain later by introducing generalized
quantifiers.

Definition 2.3.1. First-order logic is the logic FO = (FO, T ,S,V∞,�FO) , where

- V∞ = {xi : i ∈ N}.

- FO[τ ], the set of first-order τ -formulas, is defined as the smallest set that satisfies
the following conditions:

(i) Atom[τ ] ⊆ FO[τ ],

(ii) If ϕ ∈ FO[τ ], then ¬ϕ ∈ FO[τ ],

(iii) If ϕ, ψ ∈ FO[τ ], then (ϕ ∧ ψ) ∈ FO[τ ],

(iv) If ϕ ∈ FO[τ ], then ∃xiϕ ∈ FO[τ ].

- �FO is defined inductively as in Definition 2.2.1.

From the definition of FO it follows that the number of conjunctions, disjunctions
and variables in a formula of FO[τ ] is always finite for any vocabulary τ . To have a
uniform notation among concrete logics we refer to FO occasionally as Lωω or Lωωω.
The same is not true for logics in general. By contrast, if a logic allows arbitrary
conjunctions and disjunctions, we write L∞ω. (In the last notation the ω refers to
the fact that only finitely long quantifier blocks are allowed). Suppose k ∈ N. By Lk

we mean the logic obtained from L with the following restriction: For any ϕ ∈ Lk[τ ],
at most k variables occur in ϕ. Moreover, for L we follow this notation and write
L = Lω = ∪k∈ωLk.

Definition 2.3.2. The infinitary k-variable logic, denoted by Lk∞ω, is the logic
(Lk∞ω, T ,S,Vk,�Lk∞ω

), where

- Vk ⊆ V∞ such that |Vk| = k.

- Lk∞ω[τ ] is defined as follows:

(1) Atomk[τ ] ⊆ Lk∞ω[τ ], where Atomk[τ ] ⊆ Atom[τ ] is such that for all ϕ ∈
Atomk[τ ], the variables of ϕ are in Vk,
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(2) If ϕ ∈ Lk∞ω[τ ], then ¬ϕ ∈ Lk∞ω[τ ],

(3) If ϕ ∈ Lk∞ω[τ ], then ∃xiϕ ∈ Lk∞ω[τ ] for all xi ∈ Vk,

(4) If Ψ ⊆ Lk∞ω[τ ], then
∧

Ψ ∈ Lk∞ω[τ ],

(5) If Ψ ⊆ Lk∞ω[τ ], then
∨

Ψ ∈ Lk∞ω[τ ].

- �Lk∞ω
is defined inductively as in Definition 2.2.1.

These are all the concrete logics relevant for us. At this point the reader may
wonder why have we omitted variants of fixed-point logics, which are logics of great
importance for descriptive complexity theory. There are a couple of reasons for
this. Firstly, it is a fact proved by Kolaitis and Vardi [11] that the finite variable
infinitary logic, Lω∞ω, is at least as expressive as least fixed-point-, partial fixed-point-
and inflationary fixed-point logics (for the definitions, see for instance Chapter 8 in
[4]). Hence any result concerning upper bound of expressive power of Lω∞ω holds
also for fixed-point logics. Furthermore, adding generalized quantifiers to these logics
does not change the situation. Thus our main result stating that PTIME cannot be
captured with k-variable logic enriched with a set of n-ary generalized quantifiers,
will immediately hold for fixed-point logics as well.
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3 Generalized Quantifiers

3.1 On the History of Generalized Quantifiers

During the first half of the twentieth century first-order logic was the logic. Its
model-theoretic properties like completeness, compactness and Löwenheim-Skolem
property became effective tools for logicians. However, these properties on the other
hand mean lack of expressive power in some respects. Many fundamental mathe-
matical concepts, such as infinity or being countably infinite cannot be expressed
due to the facts above. Having these difficulties in mind, Mostowski introduced
cardinality quantifiers in the late 1950’s [14]. Thus, in addition to classical quanti-
fiers, he added to FO quantifiers like "there are infinitely many" and "there exist
uncountably many". In such a way one can make minimal extensions to FO so that
sets of different cardinalities can be separated. About ten years later, Lindström
generalized this idea to so-called Lindström quantifiers [12]. This insightful idea led
to vast research on extensions of FO and the line of study became known as abstract
model theory. The purpose of this field is to study extended logics and their mutual
relations as well as to give abstract characterizations for logics (cf. [1]). For exam-
ple, Lindström himself proved that, among abstract logics, FO is the strongest logic
with respect to expressive power that has the compactness property and satisfies the
downward Löwenheim-Skolem theorem. Hence, any logic stronger than FO either
does not satisfy the compactness property or can separate some infinities from each
other.

So the study of generalized quantifiers began in the context of infinite models. Soon
after this researchers of finite model theory and theoretical computer science real-
ized their potential for their fields of study. However, the application of generalized
quantifiers emerged from different needs compared to the infinite context. Cardi-
nality quantifiers and most of the results on classical model theoretic properties are
either meaningless or trivial, when one is interested in finite models. Finite model
theory had problems of its own. First-order logic was realized to be far too weak,
since it does not have any mechanism for recursion. Thus for instance connectivity
of a graph is not expressible in FO in general. Fixpoint logics overcome this prob-
lem, but suffer from other deficits. For example queries concerning parities such as
"there is an even number of elements..." are inexpressible in them [3]. In 1980’s,
Immerman tried to solve this problem by adding counting quantifiers to fixed-point
logic. He conjectured, that this logic was the right one to capture all PTIME
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properties on finite structures [8]. But only three years later, Cai et al. showed that
this bold conjecture does not hold [2]. It was then a natural idea to try to enrich
the expressive power of fixed-point logic with more general quantifiers. However,
even fixed-point logic with all unary generalized quantifiers fails in this task (see
introduction). As a matter of fact, allowing arbitrary unary quantifiers instead of
only counting quantifiers does not give much. This is due to a result obtained by
Kolaitis and Väänänen, that for any k ∈ N, Lk∞ω with all counting quantifiers is
equivalent in expressive power with Lk∞ω augmented with all unary quantifiers [10].
This leads one to consider n-ary generalized quantifiers, which is the topic of this
thesis and therefore a natural point to end the historical considerations.

3.2 Lindström Quantifiers

We adopt a "bottom-up" approach to reach the general concept of a quantifier.
Starting from the classical quantifiers, we generalize them step-by-step and eventu-
ally end up with the notion of a Lindström quantifier. To generalize the familiar
quantifiers we need to somehow answer the question of what is a quantifier? A
plausible answer to this question has to in part explain what is the meaning of
quantifiers i.e. what they denote. We observe that the meaning of the two classical
quantifiers is most often given in somewhat indirect way. Often the truth conditions
for universal and existential quantifiers are given as:

M � ∀xϕ(x, b1..., bn)⇔ for all a ∈M, 〈M,a〉 � ϕ(x, b1, ..., bn),

M � ∃xϕ(x, b1..., bn)⇔ for some a ∈M, 〈M,a〉 � ϕ(x, b1, ..., bn).

For practical purposes these definitions are mostly sufficient, but they hardly de-
scribe what the quantifiers themselves denote. Recall that a formula with free vari-
ables defines a relation ϕM over M . In this particular case the relation is actually
a set, since classical quantifiers bind only one variable. Hence we can write the
previous truth definitions as

M � ∀xϕ(x, b1..., bn)⇔ ϕM(x, b1, ..., bn) = M,

M � ∃xϕ(x, b1..., bn)⇔ ϕM(x, b1, ..., bn) 6= ∅.

Thus we get natural denotations for the quantifiers. Let

∀M = {M} and ∃M = {A ⊆M : A 6= ∅}.
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Now we can write the former truth-conditions as

M � ∀xϕ(x, b1..., bn)⇔ ϕM(x, b1, ..., bn) ∈ ∀M

M � ∃xϕ(x, b1..., bn)⇔ ϕM(x, b1, ..., bn) ∈ ∃M.

This accomplishes the first step towards generalized quantifiers. As we have seen,
the two traditional quantifiers both denote certain set of subsets of M . With this
observation it becomes obvious how to generalize these notions. Let us just call
any set of subsets of M a quantifier. More specifically, let us call such a quantifier
simple and unary, since it binds one variable in one formula. We also say that such
a quantifier is of type 〈1〉. The intuition behind this notion is seen later. So far we
have worked in the context of some fixed structure. However, we want generalized
quantifiers to satisfy an isomorphism property.

Definition 3.2.1. A simple unary generalized quantifier Q is a class of {P}-structures,
which closed under isomorphisms, where P is a unary predicate symbol. More
formally, the closure under isomorphisms means that if M = 〈M,PM〉 ∈ Q,
N = 〈N,PN 〉 andM∼= N , then N ∈ Q.

Universal and existential quantifiers are indeed simple unary quantifiers. LetM be
a structure and R ⊆M . Here are some other examples as well:

Existential quantifier : ∃ = {〈M,R〉 : R 6= ∅}.

Universal quantifier : ∀ = {〈M,R〉 : R = M}.

Counting quantifiers : ∃i = {〈M,R〉 : |R| ≥ i}.

Even number of : EVEN = {〈M,R〉 : |R| is even}.

At least half : HALF = {〈M,R〉 : |R| ≥M/2}.

There are two obvious ways to generalize the quantifiers defined above. We can allow
the quantifier to bind more than one variable. This approach leads to simple n-ary
quantifiers, that is, quantifiers of type 〈n〉. They refer to sets of n-ary relations of
elements of a structure.

Definition 3.2.2. A simple n-ary generalized quantifier is a class of {P}-structures
that is closed under isomorphisms, where P is an n-ary relation symbol.

In addition to allowing a quantifier to bind n variables, we can let it apply to several
formulas. Hence we end up in quantifiers of type 〈n1, ..., nk〉. They refer to relations
of relations of elements of a structure.



14

Definition 3.2.3. Let (n1, ..., nk) ∈ Zk+. A Lindström quantifier of type 〈n1, ..., nk〉
is a class of τ -structures that is closed under isomorphisms, where τ = {R1, ..., Rk}
and Ri is ni-ary for 1 ≤ i ≤ k.

We have now established the general notion of a quantifier. For convenience we
will occasionally speak merely of quantifiers, when we actually mean Lindström
quantifiers. Let X, Y ⊆M . Here are some additional examples of quantifiers:

Härtig quantifier : I = {〈M,X, Y 〉 : |X| = |Y |},

Rescher quantifier : MORE = {〈M,X, Y 〉 : |X| > |Y |},

which are both of type 〈1, 1〉. An example of a quantifier of type 〈n, n〉 is the
quantifier In, which is defined as:

In = {〈M,Xn, Y n〉 : |Xn| = |Y n|}.

3.3 Quantifiers and Logics

In practise we use generalized quantifiers to enrich the expressive power of a logic.
We now introduce a new syntactical rule that allows us to add quantifiers to logics.
This new rule can be seen as a generalization of the rule for existential quantification
in Definition 2.2.1. We use the notation L(Q) for a logic obtained by adding a
quantifier Q to some logic L.

Definition 3.3.1. Let L be a logic, τ a vocabulary and x̄ = (x̄1, ..., x̄k) a tu-
ple of tuples of distinct variables such that |x̄i| = ni for 1 ≤ i ≤ k. If Q is
a generalized quantifier of type 〈n1, ..., nk〉 and ϕ1(x̄1), ..., ϕk(x̄k) ∈ L(Q)[τ ], then
Qx̄(ϕ1(x̄1), ..., ϕk(x̄k)) ∈ L(Q)[τ ].

We adjust the notions of free and bound variables according to this new rule. Con-
sider the notations of the above definition and suppose x ∈ x̄i. All free occurrences
of x in ϕi become bound by Q. Note, however, that x can still remain free in some
ϕj, j 6= i.

Definition 3.3.2. Let ϕ(ȳ) = Qx̄(ϕ1(x̄1, ȳ1), ...., ϕk(x̄k, ȳk) ∈ L(Q)[τ ]. The seman-
tics of ϕ is defined as:

〈M, b̄〉 � ϕ(ȳ)⇔ 〈M,ϕM1 (x̄1, b̄1), ..., ϕMk (x̄k, b̄k)〉 ∈ Q.

We can also add several quantifiers or even infinite set of quantifiers to logics. If
Q = {Qi : i ∈ I} is a set of quantifiers, then by L(Q) we mean the logic obtained
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from L by adding the quantifiers in Q to L. We denote by Qn the class of all
quantifiers of arity at most n.

In general one uses quantifiers to enrich the expressive power of a logic. But how
are different quantifiers related to each other? For instance, it seems intuitive that
the quantifier "At least half", when added to FO, adds more expressive power than
"exactly half", since the latter can be expressed as:

Exactly half (P )⇔ (At least half (P ) ∧ At least half ¬(P )).

In such a case it seems that the other quantifier is at least as strong in expressive
power as the other. Note, however, that this mutual relation of them depends on
the logic, in which they are added to (above we needed the notions of negation
and conjunction). The following definition gives a tool for comparing the expressive
power of different quantifiers.

Definition 3.3.3. Let Q be a set of quantifiers and Q a quantifier with vocabulary
τ . We say that Q is L-definable in terms of quantifiers Q, if there is a sentence
ϕ ∈ L(Q)[τ ] such that for any τ -modelM it holds that

M � ϕ⇔M ∈ Q.

A more general definition of how to compare the expressive power of different logics
is exposed in the next section.
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4 Descriptive Complexity Theory

4.1 Identifying Logics and Complexity Classes

In this section we study the connection between logical definability and computa-
tional complexity. It is assumed that the reader has some prerequisites of elemen-
tary concepts in complexity theory. More specifically, the reader is expected to
have familiarity with Turing machines and basic complexity classes PTIME and
NPTIME, as well as how to treat finite structures as inputs of Turing machines.

It is rather straightforward to represent an ordered finite structure by a string, which
serves as an input for a Turing machine. However, the same is not true for a finite
structure in general. In order to represent an unordered model by a string, we need
to impose some ordering on it. Thus a finite model can have different representations
as strings. On the other hand, a Turing machine should output the same answer
regardless of the chosen representation. There is, however, a way to overcome this
difficulty. Informally speaking, one requires that, although the Turing machine uses
the chosen ordering, the outcome of the computation is not allowed to depend on
the specific choice of the ordering. For a precise treatment of the topics considered
above, we instruct to look at Chapter 7 in [4].

From now on we can treat complexity classes such as PTIME as collections of
queries on finite structures. We establish a link between computational queries and
logics. Our goal is to identify queries as formulas and, more generally, complexity
classes as logics. With this approach it becomes possible to relate the expressive
power of logics to complexity classes. We begin by recognizing queries as formulas
and vice versa. This trick requires a formal description of a query.

Definition 4.1.1. Let τ be a vocabulary,M and N τ -structures and k ∈ Z+. Let
q be a function such that M 7→ q(M), where q(M) ∈ P(Mk). If it holds for all
M,N and π : M ∼= N , that π : 〈M, q(M)〉 ∼= 〈N, q(N )〉, then we say that q is a
k-ary query on τ -structures.

Intuitively k-ary queries are functions that take a structure M of some fixed vo-
cabulary τ as argument and evaluate which k-tuples of M satisfy the property that
the query asks for. The above requirement concerning the isomorphism π is there
to guarantee that a query outputs the same answer for isomorphic structures. We
can extend the definition of k-ary queries also to 0-ary queries. Instead of giving
the k-tuples of domain of a structure that have some property, these queries ask if
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a given structure itself satisfies some property or not.

Definition 4.1.2. Let τ be a vocabulary and M and N τ -structures. A boolean
query on τ -structures is a function q : Str(τ) → {0, 1} such that q(M) = q(N ), if
M and N are isomorphic.

As before, also a boolean query has to give the same answer for isomorphic struc-
tures. Of course the converse does not hold in general; two non-isomorphic structures
may both satisfy the property that query is about. Boolean queries are the most
interesting queries for us, since they describe properties of the structure itself as a
whole. They divide classes of structures of some vocabulary τ into two parts: those
which have the property that the query is about and those which do not. There-
fore we can identify a boolean query on τ as {M : q(M) = 1}; the subclass of
τ -structures whose elements satisfy the query.

Definition 4.1.3. Let L be a logic, τ a vocabulary and q a k-ary query on τ -
structures. We say that q is definable in L, if there is ϕ(x1, ..., xk) ∈ L[τ ] such
that q(M) = ϕM(x1, ..., xk) for any τ -structure M. Moreover, a boolean query is
definable in L, if there is a sentence ϕ ∈ L[τ ] such that q(M) = 1 exactly when
M � ϕ.

With the help of the previous definition it is possible to compare a logic to a complex-
ity class. More specifically, we can state upper and lower bounds for the expressive
power of a logic. Let L be a logic and X some complexity class such that there is
q ∈ X, which is not definable in L. Therefore L is not strong enough to capture
X. Similarly if a query is definable in L, but does not belong to X, we conclude
that L is too strong for X. There is still an obvious problem, if we want to obtain
more positive result. Assume we have shown that every query of some complexity
class is definable in a logic. We then know that the logic is powerful enough for the
complexity class, but how to decide, if it is too powerful or not? We have to be able
to convert the formulas of the logic to queries.

Suppose ϕ(x̄) ∈ L[τ ] and define qϕ(M) = ϕM(x̄). Now qϕ is a query, since by
Definition 2.1.1, the satisfaction relation of a logic is invariant under isomorphisms.
Thus every formula ϕ determines a canonical query qϕ. On the other hand, definition
4.1.3 gave us a way to convert a query to a formula of an appropriate logic. Therefore
we are able to compare logics and complexity classes in both directions. Obviously if
ϕ has k free variables, qϕ is k-ary, whereas sentences correspond to boolean queries.
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Since formulas determine canonical queries, we are able to identify formulas as
queries. In the following definitions we take advantage of this observation. Next
we define a concept related to the expressive power of a logic.

Definition 4.1.4. Let L be a logic and M and N τ -structures. M and N are
L-equivalent, denoted by M ≡L N , if and only if for every boolean query that is
definable in L, it holds that q(M) = q(N ). Similarly, if ā ∈ Mk and b̄ ∈ Bk, we
write 〈M, ā〉 ≡L 〈N , b̄〉 if and only if ā ∈ qϕ(M)⇔ b̄ ∈ qϕ(N ) for every ϕ ∈ L[τ ].

The previous definition gives an obvious way to recognize deficits in expressive power
of a logic. Take two finite structures of the same vocabulary that are non-isomorphic.
If they are, however, L-equivalent for some logic L, then we know that the distinctive
features of the structures cannot be expressed in L. This observation will play a key
role in our main result. We can also compare the expressive powers of logics with
each other.

Definition 4.1.5. Let L and L′ be logics on some class of structures K. We say
that L is at most as expressive as L′ over K, denoted by L ≤K L′, if all queries q
that are definable in L are definable in L′. Furthermore, if L ≤K L′ and L′ ≤K L,
we write L ≡K L′ and say that L and L′ are equivalent in expressive power over K.

Initially we defined generalized quantifiers as model classes, which are closed under
isomorphisms. When it comes to computational complexity, generalized quanti-
fiers can also be naturally identified as queries. Suppose Q is a quantifier of type
〈n1, ..., nk〉 and ϕ(ȳ) = Qx̄(ϕ1(x̄1, ȳ1), ...., ϕk(x̄k, ȳk)) ∈ L[τ ]. Moreover, let qQ be
the boolean query corresponding to Q i.e. given a finite modelM and the relations
defined by ϕ1, ..., ϕk, the query qQ evaluates whether the model formed from the re-
lations is in Q or not. Consequently, we can extend the truth definition of formulas
with quantifiers (in definition 3.3.2) to

〈M, b̄〉 � ϕ(ȳ)⇔ 〈M,ϕM1 (x̄1, b̄1), ..., ϕMk (x̄k, b̄k)〉 ∈ Q⇔ qQ(M′) = 1,

whereM′ = 〈M,ϕM1 (x̄1, b̄1), ..., ϕMk (x̄k, b̄k)〉.

We have now developed fully the framework concerning the identification of com-
plexity classes and logics. Firstly, we observed that any formula of any logic gives
rise to a canonical query. Moreover, we defined what it means that a given query is
definable in a logic. Hence we can think of the expressive power of a logic as exactly
the queries definable in it. This observation immediately gave us a way of comparing
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the expressive power of logics with each other. Furthermore, in a similar fashion we
can compare logics with complexity classes, which are nothing but classes of queries.
When a logic is equivalent in expressive power with some complexity class, we use a
more natural vocabulary and say that the logic captures some particular complexity
class.

4.2 Can PTIME Be Captured Effectively?

Let us now concentrate on a very interesting open problem in descriptive complexity
theory. It is not known whether PTIME can be captured by a logic in the class F in
a reasonable way. Such a characterization should not only be for ordered structures,
but for all finite structures. Furthermore, it should be effective. By effective we
mean certain restrictions on the computational hardness of satisfaction relation as
well as the construction of formulas. Many weaker results have been obtained in
some particular subclasses of F . Most importantly, PTIME has been characterized
in the class of all ordered structures [8, 15]. However, the presence of a linear order
plays a crucial part in their proofs. In the spirit of the last subsection we define the
logic of PTIME-properties.

Definition 4.2.1. The logic of PTIME-properties on finite structures is the ab-
stract logic PT IME = (PT IME , T ,F ,V∞,�PT IME), where

- PT IME [τ ] contains those queries q on finite τ -structures that are PTIME-
computable.

- �PT IME is defined asM �PT IME q ⇔ q(M) = 1.

The question of characterizing PTIME without any effectiveness condition is non-
sensical. We could answer this question affirmatively by stating that the logic
PT IME succeeds in it. But this answer is of course insufficient, since we would not
know anything concrete about the syntax or the semantics of the proposed logic, let
alone any effective descriptions of them. These observations among others motivated
Gurevich to formulate the question of capturing PTIME in an exact mathematical
way. In order to do so, we introduce the concept of a Gurevich logic [6].

Definition 4.2.2. Let τ be a finite vocabulary. We say that L is a Gurevich logic,
if it satisfies the following conditions:

(i) L[τ ] is recursive.
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(ii) There is an effective procedure, which assigns to any ϕ ∈ L a Turing machine Tϕ
and a polynomial P such that Tϕ, given some finite structureM as input, computes
the query qϕ(M) in time t ≤ P (|M |).

We can now state the interesting question about finding a reasonable characteriza-
tion of PTIME as:

Problem 4.2.3. Is there a Gurevich logic L such that L ≡ PT IME?

An answer, no matter positive or negative, to this question would be a major result
in descriptive complexity theory. Gurevich himself conjectured, that the answer is
negative [6]. As a matter of fact, such negative result would imply that PTIME 6=
NPTIME (see [4], pp.291-292).
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5 Expressive Power of Lk∞ω(Qn)

Ehrenfeucht-Fraïsse games remain a useful tool also in the model theory of finite
structures. It is well known that the expressive power of infinitary k-variable logics
Lk∞ω can be characterized by certain k-pebble games. A similar characterization is
possible for the corresponding logics enriched with any set of n-ary quantifiers. In
[10] Kolaitis and Väänänen introduce pebble games that extend the basic game by
adding extra rules for the additional quantifiers. Thus they obtain a game-theoretic
way to decide whether two finite structures are Lk∞ω(Q)-equivalent. However, we
will use the n-bijective k-pebble game introduced in [7]. The game is a bit more
abstract, but the price is worth paying in order to cover all quantifiers in one game.
We will first define back-and-forth systems of partial isomorphisms and afterwards
show that a partial function preserves the truth of Lk∞ω(Qn) if and only if it belongs
to this system. Then we show that the similar result can be obtained with the
mentioned game-theoretic formulation.

5.1 Back-and-Forth Systems of Partial Isomorphisms

From now on we assume all structures are finite and relational i.e. their vocabularies
consist of relation symbols only.

Definition 5.1.1. Let L be a logic and M and N τ -structures. We say that a
partial function p : M → N is a partial L[τ ]-embedding (or just L-embedding, if
τ is clear from the context), if p is injective and for any tuple ā ∈ dom(p) and any
ϕ ∈ L[τ ] it holds that

〈M, ā〉 � ϕ(x̄)⇔ 〈N , p(ā)〉 � ϕ(x̄).

Furthermore, we say that p is a partial isomorphism, if the same is true for all
ϕ ∈ Atom[τ ].

Denote by Partk(M,N ) the set of all partial isomorphisms p from M to N such
that |p| ≤ k. Similarly, we write simply Embk(M,N ) for the set of all partial
Lk∞ω(Qn)-embeddings of size at most k. In order to draw a distinction between
embeddings of the two logics of interest, we write EmbkFO(N ,M) for the set of
partial FO(Qn)-embeddings. It follows straightforwardly from the definitions that

Embk(M,N ) ⊆ EmbkFO(M,N ) ⊆ Partk(M,N ).
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Also the converse is actually true for the first inclusion and this result is obtained
later. Intuitively this is clear, because if there was p ∈ EmbkFO(M,N ) \ Embk(M,N ),
an Lk∞ω(Qn)-formula that is not preserved should contain infinitary connectives.
However, then by proceeding inductively we would find a subformula which is not
preserved and belongs to FOk, a contradiction. When it comes to the latter in-
clusion the converse does not hold in general. We do not even need any exotic
quantifiers to show it, as is seen in the next simple example.

Example 5.1.2. There are τ -structuresM,N and k ∈ Z+ such that Partk(M,N ) *
EmbkFO(M,N ).

Proof. Let τ = {<} and M = ({0, 1, 2}, <M), where <M is the natural ordering.
Let p ∈ Part2(M,M) be such that p(0) = 0 and p(1) = 2. Furthermore, let

ϕ(x1, x2) = ∃x3(x1 < x3) ∧ (x3 < x2).

The formula ϕ gives us the desired result, since it holds that

〈M, 0, 1〉 2 ϕ(x1, x2), but 〈M, p(0), p(1)〉 � ϕ(x1, x2).

So the set Partk(M,N ) may contain partial isomorphisms which are not embed-
dings. The reason for this is the fact that the models can differ outside the domain
of the partial isomorphism. Therefore the truth of a quantified formula may not
be preserved, since the witnessing elements can be found outside the domain of p,
where it is possible that the models look very different. We can overcome this prob-
lem by requiring that the partial isomorphisms are extendable in a suitable way to
dom(M)\dom(p). It is well known what this means in practise for the logic Lk∞ω.
One can either construct a back-and-forth system of partial isomorphisms of size at
most k or use a k-pebble game between structures M and N . These approaches
yield equivalent conditions. Our job is to generalize these ideas in order to find a
criterion so that the partial isomorphisms preserve the truth also for formulas con-
taining arbitrary n-ary quantifiers. We start with the generalization of the former
approach.

Definition 5.1.3. The sequence of canonical k-variable n-bijective back-and-forth
sets, (Ikm(M,N ))m∈ω, is defined by recursion on m as follows:

(i) Ik0 (M,N ) = Partk(M,N ),
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(ii) Ikm+1(M,N ) = {p ∈ Ikm(M,N ) : there is a nice bijection fp : M → N}.

Let X ⊆ Partk(M,N ) and p ∈ X. A bijection fp is nice (for the set X), if it holds
that

(p � C) ∪ (fp � D) ∈ X,

whenever C ⊆ dom(p), D ⊆ M , |D| ≤ n and |C ∪ D| ≤ k. Moreover, if for
every p ∈ X there is a nice bijection, we say that X satisfies the bijective extension
condition.

The canonical k-variable n-bijective back-and-forth system betweenM and N , de-
noted by Ik(M,N ), is defined as the intersection

⋂
m∈ω I

k
m(M,N ). The next lemma

shows that the system satisfies the bijective extension condition.

Lemma 5.1.4. Ik(M,N ) is the largest subset of Partk(M,N ), which satisfies the
bijective extension condition.

Proof. SinceM and N are finite, there are only finitely many partial isomorphisms
between them. Moreover, by Definition 5.1.3

Partk(M,N ) ⊇ Ikm(M,N ) ⊇ Ikm+1(M,N ),

for all m ∈ N. Hence there is l ∈ N such that

Ikl (M,N ) = Ik(M,N ),

because otherwise we would have an infinite descending chain of natural numbers.
By the construction of the canonical back-and-forth sets, Ikl (M,N ) satisfies the
bijective extension condition. Furthermore, if

Ik(M,N ) ⊂ X ⊆ Partk(M,N ),

then there is p ∈ X for which there is no nice bijection and therefore X does not
satisfy the bijective extension condition.

In the next two lemmas we prove inclusions which together show that the bijec-
tive extension condition is the right one to pick out precisely the largest subset of
Partk(M,N ), which has the property that its elements preserve the truth of all
formulas of infinitary k-variable logics with n-ary quantifiers.

Lemma 5.1.5. Ik(M,N ) ⊆ Embk(M,N ).
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Proof. We prove by induction on the structure of Lk∞ω(Qn)-formulas that every
p ∈ Ik(M,N ) is an Lk∞ω(Qn)-embedding. Let p ∈ Ik(M,N ). The initial step is
clear, because if ϕ ∈ Atom and p ∈ Ik(M,N ), then

〈M, ā〉 � ϕ(x̄)⇔ 〈N , p(ā)〉 � ϕ(x̄),

because Ik(M,N ) ⊆ Partk(M,N ). The induction steps for negation and con-
nectives are rather trivial. Thus only the case regarding conjunctions is treated
explicitly. Let Ψ be a collection of Lk∞ω(Qn)-formulas and suppose

〈M, ā〉 �
∧
ϕ∈Ψ

ϕ.

By definition, 〈M, ā〉 � ϕ(x̄) for any ϕ ∈ Ψ. The induction assumption implies that
〈N , p(ā)〉 � ϕ(x̄) and hence

〈N , ā〉 �
∧
ϕ∈Ψ

ϕ.

The last step concerning quantifiers is a bit more involved. Suppose Q ∈ Qn is of
type 〈n1, ..., nl〉 and

ϕ(ȳ) = Qx̄(ϕ1(x̄1, ȳ1), ...., ϕl(x̄l, ȳl),

where ȳ = (ȳ1, ..., ȳl). Let b̄ = (b̄1, ..., b̄l) be a tuple of elements of dom(p), such that
the length of b̄i is the same as the length of ȳi for every i, 1 ≤ i ≤ l. It holds that
p ∈ Ik(M,N ), which satisfies the bijective extension condition. Hence there is a
nice bijection fp : M → N . Since Q is at most n-ary, for all i and āi ∈Mni it holds
that |āi| ≤ n. Furthermore, ϕ is a formula of the k-variable logic and therefore
|b̄i ∪ āi| ≤ |x̄i ∪ ȳi| ≤ k, for all i. These observations guarantee that

(p � b̄i) ∪ (fp � āi) ∈ Ik(M,N ).

The induction assumption implies that for each i it holds that

〈M, āi, b̄i〉 � ϕi(x̄i, ȳi)⇔ 〈N , fp(āi), p(b̄i)〉 � ϕi(x̄i, ȳi).

Consequently we get an isomorphism

f :
(
M,ϕM1 (x̄1, b̄1), ..., ϕMl (x̄l, b̄l)

) ∼= (N,ϕN1 (x̄1, p(b̄1)), ..., ϕNl (x̄l, p(b̄l))
)
.

Since Q is closed under isomorphisms, it holds that

〈M, b̄〉 � ϕ(ȳ) if and only if 〈N , p(b̄)〉 � ϕ(ȳ).
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The previous lemma tells us that all the partial isomorphisms in Ik(M,N ) pre-
serve the truth of Lk∞ω(Qn)-formulas. It also holds that any partial isomorphism
preserving the truth of FOk(Qn)-formulas belongs to Ik(M,N ).

Lemma 5.1.6. EmbkFO(M,N ) ⊆ Ik(M,N ).

Proof. Recall that the canonical back-and-forth system is defined as

Ik(M,N ) =
⋂
m∈ω

Ikm(M,N ).

Hence it is enough to show that for all m ∈ N it holds that

EmbkFO(M,N ) ⊆ Ikm(M,N ).

We prove this by induction on m. For the initial step, suppose m = 0. By def-
inition Ik0 (M,N ) = Partk(M,N ) and therefore any p ∈ EmbkFO(M,N ) is also
in Ik0 (M,N ), because every FO-embedding is in particular a partial isomorphism.
Suppose that the claim holds for m. Towards a contradiction, assume there is

p ∈ EmbkFO(M,N ) \ Ikm+1(M,N ).

Let b̄ be a tuple that contains every element of dom(p) exactly once. By assumption,
there is no nice bijection fp and thus for any bijection f : M → N we can find b̄f , a
subtuple of b̄ and āf ∈M l, l ≤ n, such that

(p � b̄f ) ∪ (f � āf ) /∈ Ikm(M,N ).

By induction assumption EmbkFO(M,N ) ⊆ Ikm(M,N ). Hence

(p � b̄f ) ∪ (f � āf ) /∈ EmbkFO(M,N ),

and therefore there is an FOk(Qn)-formula ϕf (x̄f , ȳf ) such that

〈M, b̄f , āf〉 � ϕf (x̄f , ȳf ),

but
〈N , p(b̄f ), f(āf )〉 2 ϕf (x̄f , ȳf ).

SinceM andN are finite, we can list all the bijections fromM toN as (f1, ..., fr), r ∈
N. We know that for some s, 1 ≤ s ≤ r, it holds that fs = f . This means that

〈M,ϕMf1 (x̄f1 , b̄f1), ..., ϕ
M
fr (x̄fr , b̄fr)〉 � 〈N,ϕNf1(x̄f1 , p(b̄f1)), ..., ϕ

N
fr(x̄f1 , p(b̄fr))〉.



26

Let Q be a quantifier containing the structure 〈M,ϕMf1 (x̄f1 , b̄f1), ..., ϕ
M
fr

(x̄fr , b̄fr)〉,
but not 〈N,ϕNf1(x̄f1 , p(b̄f1)), ..., ϕ

N
fr

(x̄f1 , p(b̄fr))〉. For each s, it holds that

|x̄fs| = |āfs| ≤ n.

We conclude that Q is n-ary, and consequently

ϕ(ȳf1 , ..., ȳfr) = Qx̄(ϕf1(x̄f1 , ȳf1), ...., ϕfr(x̄fr , ȳfr)

is an FOk(Qn)-formula, for which

〈M, b̄〉 � ϕ(ȳ), but 〈N , p(b̄)〉 2 ϕ(ȳ),

which contradicts the assumption that p ∈ EmbkFO(M,N ).

We are now ready to gather the results obtained so far together. We get a char-
acterization for equivalence with respect to infinitary k-variable logics with n-ary
quantifiers.

Theorem 5.1.7. Let ā be a tuple of elements of M with length at most k and
p : M → N a partial function such that dom(p) = ā. The following conditions are
equivalent:

(i) p ∈ Ik(M,N )

(ii) 〈M, ā〉 ≡Lk∞ω(Qn) 〈N , p(ā)〉

(iii) 〈M, ā〉 ≡FOk(Qn) 〈N , p(ā)〉.

Proof. From lemmas 5.1.5 and 5.1.6 we obtain that

Ik(M,N ) ⊆ Embk(M,N ) and EmbkFO(M,N ) ⊆ Ik(M,N ).

We observe that the inclusion Embk(M,N ) ⊆ EmbkFO(M,N ) holds, since every
FOk[τ ]-formula is also Lk∞ω(Qn)[τ ]-formula and thus any Lk∞ω(Qn)-embedding is
especially an FO(Qn)-embedding. Consequently, it holds that

Ik(M,N ) = Embk(M,N ) = EmbkFO(M,N ).

It follows immediately that the conditions (i), (ii) and (iii) are equivalent.
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5.2 The k-Pebble n-Bijective Game BP k
n (M, ā,N , b̄)

The previous characterization is based on particular back-and-forth sets of partial
isomorphisms. We can, however, get a similar result with a game theoretic approach.
It is well known that in the absence of generalized quantifiers, k-pebble games can be
used to characterize equivalence with respect to k-variable logics. We next generalize
those games to n-bijective k-pebble games and show that they are appropriate for
the k-variable logics with n-ary quantifiers. Those games are based heavily on the
result characterizing the equivalence of k-variable logics with generalized quantifiers
using the back-and-forth systems Ik(M,N ).

The game is played between two players known as player I and player II. The latter
claims that two given models, M and N , are equivalent whereas player I tries to
refute the claim. The game starts from a partial isomorphism p between models and
player II tries to find a nice bijection to extend p . Player II answers to this move
by giving a subset of the domain of the partial isomorphism and a subset of M with
size restrictions based on the amount of variables allowed and the maximum arity
of quantifiers. Player I wins the game, if he succeeds in finding the subsets so that
a new partial function determined by player’s choises is not a partial isomorphism,
and otherwise the game continues with player II’s next move and so on. If player I
does not win the game in finite number of moves, player II is the winner.

Intuitively one can think of the two players labeling elements of the models by
placing pebbles on them. This is the reason for the name adopted. When player II
chooses a bijection, she pairs every element of M with some element of N . Then
player I chooses the two subsets to indicate which pebbles are kept on the "board"
and all other pebbles are removed. If the two substructures determined by pebbles
on the board are non-isomorphic, player I wins. The maximum number of pebbles
held on the table corresponds to the number of variables allowed and the number
of these pebbles outside the domain of the previous partial isomorphism is limited
by the maximum arity of quantifiers. One can think that the number of pebbles
held on the table is restricted by player I’s limited ability to recall what was the
pair of each element in the other structure. Complexity theoretically this intuition
corresponds to restrictions in space (or memory) resources. We next define the game
more rigorously.

Definition 5.2.1. The n-bijective k-pebble game, denoted by BP k
n (M, ā,N , b̄), is

the following two-player game.
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- The initial history of the game is the partial function p0 determined by tuples
ā ∈M l and b̄ ∈ N l, l ≤ k, i.e. p0 = {(a1, b1), ..., (al, bl)}.

- On round i ≥ 1, player II chooses a bijection fi : M → N and player I answers
this move by picking sets Ci ⊆ dom(pi) and Di ⊆ M such that |Ci ∪ Di| ≤ k and
Di ≤ n. These choices determine a new partial function pi = (pi−1 � Ci)∪ (fi � Di).

- If pi is not a partial isomorphism, then player I wins the game. Otherwise the
game proceeds to round i+ 1.

- If there is no i ∈ N such that player I wins the game on round i, then player II
wins the game.

It is now possible to establish a link between n-bijective k-pebble game and the
back-and-forth system Ik(M,N ) of partial isomorphisms.

Lemma 5.2.2. Player II has a winning strategy in BP k
n (M, ā,N , b̄) if and only if

p0 ∈ Ik(M,N ).

Proof. Suppose player II has a winning strategy σ in BP k
n (M, ā,N , b̄). On every

round i, i ∈ ω, she can find a bijection fi according to σ such that pi ∈ Partk(M,N ).
Play of the game in which player II follows σ creates a sequence Pi of sets of partial
isomorphisms each containing p0, where the sets Pi are defined recursively as

P0 = {p0} and Pi+1 = Pi ∪ {pi+1}.

We observe that
⋂
i∈ω Pi = {p0}. Now p0 ∈ {p0} and {p0} satisfies the bijective

extension condition. By lemma 5.1.4, {p0} ⊆ Ik(M,N ) and hence p0 ∈ Ik(M,N ).
For the other direction, assume p0 ∈ Ik(M,N ). Consider the following inductively
defined strategy σ of player II: At round 1, she chooses a nice bijection f1 (which
is possible, since p0 ∈ Ik(M,N )) and hence no matter what player I chooses for C1

and D1, the function p1 belongs to Ik(M,N ). At round j, player II plays similarly,
which is possible by the induction assumption. Thus for all i ∈ ω, pi belongs to
Ik(M,N ) ⊆ Partk(M,N ) and σ is a winning strategy for player II.

This lemma gives straightforwardly an alternative characterization for Lk∞ω(Qn)-
equivalence.

Theorem 5.2.3. The following conditions are equivalent:

(i) Player II has a winning strategy in BP k
n (M, ā,N , b̄),
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(ii) 〈M, ā〉 ≡Lk∞ω(Qn) 〈N , p(ā)〉,

(iii) 〈M, ā〉 ≡FOk(Qn) 〈N , p(ā)〉.

Proof. The result follows immediately from Theorem 5.1.7 and Lemma 5.2.2.

Note that we did not need the determinacy of the game BP k
n (M, ā,N , b̄) in the proof

of the above theorem. However, the game is indeed determined and we need this
fact later. This result would follow from the Gale-Stewart theorem, which asserts
that every two-player ω-closed game is determined. (A game G is ω-closed, if player
II wins every play of G, in which she has not lost already at some round i ∈ ω).
However, a weaker result suffices, essentially because the structures we consider are
finite. This feature allows us to define a modified version of BP k

n (M, ā,N , b̄), which
is a game of finite length, but equivalent with the original game with respect to
existences of winning strategies.

Definition 5.2.4. The finite n-bijective k-pebble game, FBP k
n (M, ā,N , b̄), is de-

fined exactly as BP k
n (M, ā,N , b̄), except that the winning condition for player II

is:

- Let i < j. If
(pi−1, fi, Ci, Di) = (pj−1, fj, Cj, Dj),

then player II wins the game.

So player I cannot respond to player II’s similar move exactly the same way he did
at some point earlier. Intuitively the idea is that if player I has a winning strategy in
the original game, then he has a winning strategy in which no repetetition of game
positions is allowed. Moreover, since M and N are finite, there are only finitely
many different quadruples (pi−1, fi, Ci, Di). Hence FBP k

n (M, ā,N , b̄) is a game of
finite length.

Lemma 5.2.5. (i) Player I has a winning strategy in BP k
n (M, ā,N , b̄) if and only

if he has a winning strategy in FBP k
n (M, ā,N , b̄)

(ii) Player II has a winning strategy in BP k
n (M, ā,N , b̄) if and only if she has a

winning strategy in FBP k
n (M, ā,N , b̄)

Proof. Suppose I has a winning strategy σ in BP k
n (M, ā,N , b̄). Without loss of

generality, assume that some play of the game BP k
n (M, ā,N , b̄), in which σ is fol-

lowed, contains a repetition of game positions (otherwise σ gives a winning strategy
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in FBP k
n (M, ā,N , b̄)). Put differently, assume for some i < j it holds that

(pi−1, fi, Ci, Di) = (pj−1, fj, Cj, Dj).

But this means that the partial isomorphisms pi, ..., pj of rounds i, ..., j form a loop -
if both players act on rounds j+1, ..., j+j− (i−1) as they did on rounds i, ..., j and
so on, then the game continues infinitely long and II wins, a contradiction. Thus
at some round r > j, σ has to tell I to act differently in order to escape from the
loop. More precisely,

σ((pr−1, fr)) = (Cr, Dr) 6= (Cl, Dl),

where
(pr−1, fr) = (pl−1, fl)

and i ≤ l ≤ j. Indeed, it may happen that (pr−1, fr, Cr, Dr) is also some repetition
of already faced game position, but then I can in a similar way find his way out of
this new loop. By iterating this method, player I finds a strategy, which contains no
repetions and leads to some p that is not a partial isomorphism. The other direction
is trivial, since a winning strategy in FBP k

n (M, ā,N , b̄) is automatically a winning
strategy in BP k

n (M, ā,N , b̄).

(ii) Suppose player II has a winning strategy σ in BP k
n (M, ā,N , b̄) i.e. she can make

the game last infinitely long. There are only finitely many quadruples (pi−1, fi, Ci, Di)

and hence on some round i > j it holds that

(pi−1, fi, Ci, Di) = (pj−1, fj, Cj, Dj),

therefore σ gives her a winning strategy in FBP k
n (M, ā,N , b̄). For the converse,

assume II has a winning strategy σ in FBP k
n (M, ā,N , b̄). Whatever actions I

chooses, player II can make the game last until

(pi−1, fi, Ci, Di) = (pj−1, fj, Cj, Dj)

for some rounds i and j, i < j. In other words, she can in every situation choose
bijections that induce partial isomorphisms regardless of how I acts until the game
returns to some previously encountered situation. It is clear that she can make the
play last infinitely long by repeating these loops over and over again.

Lemma 5.2.6 (Zermelo’s theorem). Every finite two-player game with perfect in-
formation is determined.
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Corollary 5.2.7. The game BP k
n (M, ā,N , b̄) is determined.

Proof. The corollary follows instantly from lemmas 5.2.5 and 5.2.6.

Theorem 5.2.8. Let τ be a vocabulary andM, N τ -structures. Then the following
conditions hold:

(i) An l-ary query q on τ -structures is definable in Lk∞ω(Qn) ⇔ If ā ∈ q(M) and
b̄ /∈ q(N ), then Player I has a winning strategy in BP k

n (M, ā,N , b̄),

(ii) A boolean query is definable in Lk∞ω(Qn)⇔ If q(M) 6= q(N ), then player I has
a winning strategy in BP k

n (M,N ).

Proof. (i) Assume q is definable in Lk∞ω(Qn) and ā ∈ q(M), but b̄ /∈ q(N ). There
is an Lk∞ω(Qn)-formula ϕ(x̄) such that

〈M, ā〉 � ϕ(x̄), but 〈N , b̄〉 2 ϕ(x̄).

Therefore it is not the case that

〈M, ā〉 ≡Lk∞ω(Qn) 〈N , p(ā)〉.

By theorem 5.2.3 player II does not have a winning strategy in BP k
n (M, ā,N , b̄)

and hence by corollary 5.2.7 player I has a winning strategy.

Suppose then I has a winning strategy in BP k
n (M, ā,N , b̄) for any τ -structuresM

and N and tuples ā and b̄ such that ā ∈ q(M), b̄ /∈ q(N ). Since II does not have a
winning strategy, for all pairs of 2-tuples (M, ā) and (N , b̄), there is an Lk∞ω(Qn)-
formula ϕM,ā,N ,b̄(x̄) so that

〈M, ā〉 � ϕM,ā,N ,b̄(x̄), but 〈N , b̄〉 2 ϕM,ā,N ,b̄(x̄).

Let (Ai)i∈ω = ((Mi, āi))i∈ω be a sequence containing up to isomorphism all the
pairs (M, ā) such that ā ∈ q(M). Similarly, define (Bj)j∈ω = ((Nj, b̄j))i∈ω as the
sequence that contains up to isomorphism all the pairs (N , b̄) such that b̄ /∈ q(N ).
Now the concatenation of them, (Ai)i∈ω _ (Bj)j∈ω, is a countable list containing all
such pairs thatM is a finite τ -structure and ā ∈M l.

Claim.
ψ(x̄) =

∨
i∈ω

∧
j∈ω

ϕAi,Bj
(x̄) defines q.

Proof of claim. It is enough to show that q(M) = ψM(x̄) for any τ -structure
M. Suppose first that ā ∈ M l is in q(M). Now (M, ā) is isomorphic with some
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(M′, ā′) ∈ (Ai)i∈ω and thus it holds that

〈M, ā〉 � ϕAi,Bj
(x̄)

for some i ∈ ω and for all j ∈ ω. Therefore we have that 〈M, ā〉 � ψ(x̄), which
means that ā ∈ ψM(x̄).

For the other direction, assume ā ∈ ψM(x̄). Thus it holds that 〈M, ā〉 � ψ(x̄),

which implies that
〈M, ā〉 � ϕAi,Bj

(x̄)

for some i ∈ ω and all j ∈ ω. By definition, āi ∈ q(Mi), and hence for all j ∈ ω it
holds that

〈Mi, āi〉 � ϕAi,Bj
(x̄).

We conclude that 〈M, ā〉 /∈ (Bi)i∈ω, because there is no formula ϕAi,Bj
(x̄), which

would distinguish 〈M, ā〉 from 〈Mi, āi〉. This implies that 〈M, ā〉 is isomorphic with
some (M′, ā′) ∈ (Ai)i∈ω, which means that ā ∈ q(M) as desired.

The case b ∈ N l such that b̄ is not in q(N ) is proved similarly.

(ii) The proof is similar to (i).
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6 Construction of Models A(G) and B(G)

Our goal is to show that for each n ∈ N, there are PTIME computable boolean
queries which are not definable in Lω∞ω(Qn). Note that we can always find the
maximum arity n ∈ ω, if we consider a finite set of quantifiers. Thus the main result
of the thesis will imply that in particular PTIME cannot be captured with a logic
of the form Lω∞ω(Q), where Q is a finite set of quantifiers. To obtain the main result
we will construct two non-isomorphic models which are Lk∞ω(Qn)-equivalent, but
are distinquishable with a PTIME query. The models used for the counterexample
were originally published in [7].

Intuitively these witnessing models will be built from a large amount of basic building
blocks, which are glued together with a binary relation. The idea is that the building
blocks are designed so that player II can choose bijections inside the blocks quite
freely and still maintain a winning strategy in BP k

n (M, ā,N , b̄). The binary relation
holding between the blocks is then chosen suitably so that at least some of the
winning strategies remain for II, but still so that the distinctive feature of the models
can be computed in polynomial time. We start the first subsection by constructing
the building blocks.

6.1 Building Blocks

There are two different kinds of building blocks, which are either models of the form
B+ = 〈B,R+〉 or B− = 〈B,R−〉. The domain B of these blocks is always a set
having 2n+2 elements. The relations R+ and R− are n+1-ary and they are defined
in the following. We first look at the common features of all building blocks.

Definition 6.1.1. A pre-building block is a {≺}-structure B = 〈B,≺B〉, where
B = {c1, ..., cn+1, d1, ..., dn+1} and the interpretation of the partial order ≺ is given
as

x ≺B y ⇔
(
(x = ci ∨ x = di) ∧ (y = cj ∨ y = dj)

)
, where 1 ≤ i < j ≤ n+ 1.

We use variables xi (or yi) to denote to the elements of B with index i. In other
words, either xi = ci or xi = di. The relation ≺ orders the elements of dom(B)

according to the natural ordering of their indices. If we consider elements xi and xj
with different indices i < j, it does not matter with respect to ≺ whether xi and xj
are c’s or d’s. However, the only reason that ≺ is not a linear ordering of B is that
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for any index i, ci and di are distinct elements, which are not comparable. With the
help of this ordering we can now define the two different sorts of building blocks.

Definition 6.1.2. Let B and ≺ be as in definition 6.1.1. Denote by P the set
{d1, ..., dn+1}, and let R+ and R− be (n + 1)-ary relation symbols. We say that
{≺, R+}-structures B+ = (B,R+) and {≺, R−}-structures B− = (B,R−) are build-
ing blocks, where the interpretations of R+ and R− are

(x1, ..., xn+1) ∈ R+ ⇔ x1 ≺ ... ≺ xn+1 and the cardinality of {i : xi ∈ P} is even,

(x1, ..., xn+1) ∈ R− ⇔ x1 ≺ ... ≺ xn+1 and the cardinality of {i : xi ∈ P} is odd.

Next we prove a lemma that characterizes the automorphisms of B+ and B− as
well as isomorphisms between them. We denote these sets of functions by Aut(B+),
Aut(B−) and Isom(B+,B−), respectively. Note that a necessary condition for a
function f : B → B to belong to any of these sets is that f is a bijection and
preserves the ordering ≺. In the following we see that in conjunction with a property
concerning the parity of exc(f), we get even a sufficient condition. Here exc(f) is
the number of how many c’s f maps to d’s i.e.

exc(f) = |{i ∈ {1, ..., n+ 1} : f(ci) = di}|.

Lemma 6.1.3. Let f : B → B be a bijection preserving ≺. The following conditions
hold:

(i) f ∈ Aut(B+)⇔ exc(f) is even,

(ii) f ∈ Aut(B−)⇔ exc(f) is even,

(iii) f ∈ Isom(B+,B−)⇔ exc(f) is odd.

Proof. (i) If f ∈ Aut(B+), then f preserves in particular the relation R+. Clearly
(c1, ..., cn+1) ∈ R+ and thus it holds that (f(c1), ..., f(cn+1)) ∈ R+. By the definition
of R+, |{i : f(ci) = di}| is even, which implies that exc(f) is even. For the converse,
suppose exc(f) is even. This means that for all tuples x̄ = (x1, ..., xn+1) ∈ Bn+1,
the cardinalities |{i : xi ∈ P}| and |{i : f(xi) ∈ P}| are either both even or both
odd. Hence x̄ ∈ R+ ⇔ f(x̄) ∈ R+. By assumption f preserves also ≺ and is a
bijection, which together imply that f ∈ Aut(B+). Proofs for (ii) and (iii) are,
mutatis mutandis, the same as for (i).

Observe that from conditions (i) and (ii) it follows that Aut(B+) = Aut(B−). More
importantly, the previous lemma gives us an insight on how the isomorphisms (and
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automorphisms) between building blocks look like. Consider any bijection f , which
preserves ≺. In the following we see that since exc(f) is all that matters, and f can
be extended from an arbitrary, small enough subset of B, to either an automorphism
or isomorphism of the whole structure. More specifically, any f and any set X ⊆ B

of size n induce an automorphism and an isomorphism, which both assign elements
inside X the same values as f does.

Proposition 6.1.4. Let f : B → B be a bijection preserving ≺ and X =

{x1, ..., xn} ⊆ B. Then there exists g ∈ Aut(B+) and h ∈ Isom(B+,B−) such
that f � X = g � X = h � X.

Proof. If exc(f) is even, then choose g = f . By Lemma 6.1.3, it holds that g ∈
Aut(B+). If exc(f) is odd, we modify f suitably to obtain g: Since |X| = n, there
is for some i, 1 ≤ i ≤ n+ 1, a pair {ci, di} ∈ B \X. Now let g be such that

g � (B \ {ci, di}) = f , but g(ci) 6= f(ci)

(which implies that also g(di) 6= f(di)). Now g has one more or one less points in
which it changes c to d and hence exc(g) is even, meaning that g ∈ Aut(B+). The
claim for h is proven in the same way, just choose h = f if exc(f) is odd, and do
the above modification otherwise.

6.2 Structures A(G) and B(G)

In this subsection we continue the construction of the models that are later proved
to be suitable for our purpose. We begin with a finite connected graph and add
extra structure to it with the help of the building blocks. Each vertex of the original
graph is replaced with a building block. Hence if the initial graph has m vertices,
the structure obtained has m(2n+2) elements. Furthermore, we will add some extra
relations to this structure. Let us now start the first phase of the construction.

Recall that a graph G = 〈G,EG〉 is connected, if for all u, v ∈ G there exists a path
from u to v. A path from u to v is a sequence v0...vm (here u = v0 and v = vm) of
elements of G such that (vi, vi+1) ∈ EG for all 0 ≤ i ≤ m−1. A vertex u has degree
n, if |{v ∈ G : (u, v) ∈ EG}| = n. Furthermore, a graph is of degree n if all of its
vertices have degree n. Suppose G is a graph of degree n. We associate to each vertex
u a coloring hu of its neighbours, where hu is a bijection from {v ∈ G : (u, v) ∈ EG}
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to {1, ..., n+ 1}. These colorings are independent of each other - for vertices u and
v, it is possible that hu(v) 6= hv(u).

We next define the structure obtained by replacing vertices with building blocks.

Definition 6.2.1. Let G be a finite connected graph of degree n + 1, n ≥ 2 and
S ⊆ G. Moreover, let B be the domain of a (pre-)building block B and hv some
colorings of neighbours of vertices of G. The structure

C(G, S) = 〈CG, RC(G,S), EC(G,S)〉

is defined as follows:

- CG = G×B, where |B| = 2n+ 2.

- RC(G,S) is an (n+ 1)-ary relation on CG such that(
(u, x1), ...., (u, xn+1

)
∈ RC(G,S) ⇔ either u /∈ S and (x1, ..., xn+1) ∈ R+ or u ∈ S

and (x1, ..., xn+1) ∈ R−, where R+ and R− are the relations of building blocks as in
definition 6.1.2,

- EC(G,S) is a binary relation on CG such that(
(u, xi), (v, xj)

)
∈ EC(G,S) ⇔ (u, v) ∈ EG, hu(v) = i and hv(u) = j, and either

xi = ci ∧ xj = cj or xi = di ∧ xj = dj.

C(G, S) is the structure promised in the beginning of this subsection. We point
out that it has (|G|(2n + 2)) elements and twice the number of edges compared
to G. More specifically, if there is an edge between u, v ∈ G and, say hu(v) = 1

and hv(u) = 2, then there are correspondingly the two edges ((u, c1), (v, c2)) and
((u, d1), (v, d2)) in C(G, S). The relation RC(G,S) labels the building blocks replacing
vertices so that for the vertices in S the building block is B− and for the vertices
outside S it is B+.

Lemma 6.2.2. Let G = 〈G,EG〉 be a finite connected graph of degree n + 1 and
S, T ⊆ G such that (S \ T ) ∪ (T \ S) = {u, v}, where u, v ∈ G and u 6= v. Then

C(G, S) ∼= C(G, T ).

Proof. Let {u, v} = (S \ T ) ∪ (T \ S). There exists a path u = v0, ..., vm+1 = v,
because G is connected. Note that each vertex vi, 1 ≤ i ≤ m, belong either to both
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S and T or to neither of them. This leads to the following observation. Suppose we
have an isomorphism

f : C(G, S) ∼= C(G, T )

such that f(w, x) = (w, y). We can define for each vertex w ∈ G a bijection
fw : B → B such that fw(x) = y. By Lemma 6.1.3 it must hold that for all vi,
exc(fvi) is even, whereas both exc(fu) and exc(fv) are odd. This is because f has
to, in particular, preserve the relation R. A natural candidate for f is hence such
a function that the corresponding fw exchanges two c and d components along the
path and only one in the end vertices u and v. Now define the bijection f as

f(w, x) =


(w, dj), if w = vi, x = cj, and j = hvi(vi+1) or j = hvi(vi−1)

(w, cj), if w = vi, x = dj, and j = hvi(vi+1) or j = hvi(vi−1)

(w, x), otherwise.

Moreover, let fw : B → B be such that

fw(x) = y ⇔ f(w, x) = (w, y)

for all w ∈ G and x ∈ B. Now by the argument above, fvi ∈ Aut(B+) = Aut(B−)

for each 1 ≤ i ≤ m and fu, fv ∈ Isom(B+,B−). Furthermore, fw is identity for the
rest of the vertices, and hence

x̄ ∈ RC(G,S) ⇔ f(x̄) ∈ RC(G,T )

for all x̄ ∈ Cn+1
G . Since f preserves also the edge relation E, it holds that

f : C(G, S) ∼= C(G, T ).

We can now use the above lemma to show that for a given graph G, there exists (up
to isomorphism) only two different structures C(G, S). Moreover, the isomorphism
type of C(G, S) is determined by the parity of S.

Lemma 6.2.3. C(G, S) ∼= C(G, T ) if and only if |S| and |T | are of the same parity.

Proof. Consider any S ⊆ G such that |S| ≥ 2 and let S ′ ⊆ S be such that |(S\S ′)| =
2. By the previous lemma, C(G, S) ∼= C(G, (S ′)). In other words, we can erase two
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elements from S and preserve the isomorphism type of it. Since S is finite, by
applying this trick multiple times, we eventually reach either C(G, ∅) or C(G, {u})
depending on the parity of S. If in the first place |S| < 2, then S is already
isomorphic to either C(G, ∅) or C(G, {u}). We conclude that if S and T are of
same parity, then C(G, S) and C(G, T ) are isomorphic. For the other direction,
and by the above argument, it is enough to show that C(G, ∅) and C(G, {u}) are
not isomorphic. Consider the reducts C(G, ∅)∗, C(G, {u})∗ of the models C(G, ∅),
C(G, {u}), in which the edge relation E is omitted, and suppose

f : C(G, {u})∗ → C(G, ∅)∗

is an isomorphism.

We show first that such an isomorphism cannot map two distinct elements of the
same building block to elements of different building blocks. More formally, we
show that there exist bijections g : G → G and fv : B → B such that f((v, x)) =

(g(v), fv(x)), where v ∈ G and x ∈ B are arbitrary. Towards a contradiction, assume
there are elements (v, x) and (v, y) such that

f((v, x)) = (u, x′) and f((v, y)) = (w, y′), where u 6= w.

Obviously, there are two possibilities. Either x and y have the same index, in
which case one of them is c element and one d element, or they have different
indices. Consider the latter option first. We can always construct an (n+ 1)-tuple,
which belongs to RC(G,{u}) and contains both elements (v, x) and (v, y). This is
true, because we can freely choose between (v, c) and (v, d) as the element(s) to be
included to the tuple, except that is has to contain (v, x) and (v, y). Since n+1 ≥ 3,
there is at least one c, d-pair with different index than x and y, and therefore we
can adjust the parity of the number of d elements in the tuple in order to make it
belong to RC(G,{u}) . Hence the relation R cannot be preserved, if (v, x) and (v, y)

are mapped into different building blocks.

Consider the alternative case then. Without loss of generality, assume x = ci and
y = di. It is enough to find two different (n + 1)-tuples s, t ∈ RC(G,{u}) such that s
contains (v, ci) and t contains (v, di), and there is at least one element (v, z), which
belongs to both s and t. It is easy to construct such s and t: If v 6= u, let s be such
that it contains only elements of the form (v, ck) and t be similar to s, except that
it contains one element (v, dl) instead of (v, cl), l 6= i. The case v = u is treated
similarly.
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So we can now assume that g : G → G and fv : B → B are bijections such that
f((v, x)) = (g(v), fv(x)). Since for all v 6= u it holds that v /∈ {u}, it must be the
case that fv is an automorphism of B+, since otherwise f is not an isomorphism.
On the other hand, fu is clearly an isomorphism B− → B+, since u ∈ {u}, but
u /∈ ∅. Now by Lemma 6.1.3,

∑
v∈G exc(fv) is odd. Now consider the original

models by expanding the models with the edge relation E. There exists some pair
((v1, x), (v2, y)) ∈ (G×B)2 for which it does not hold that

((v1, x), (v2, y)) ∈ EC(G,{u}) ⇔ ((v1, x), (v2, y)) ∈ EC(G,∅).

Consequently, f cannot be an isomorphism C(G, {u})→ C(G, ∅).

We conclude that for a given graph G there are essentially only two different struc-
tures C(G, S). It is natural to choose C(G, ∅) and C(G, {u}) to represent the two
isomorphism classes of structures C(G, S).

To make things simpler in the following, denote C(G, ∅) and C(G, {u}) as

〈A(G), RA(G), EA(G)〉 and 〈B(G), RB(G), EB(G)〉,

respectively. Next we add the final features to these models by adding a linear order
on the set of the vertices of G.

Definition 6.2.4. Let < be a binary relation symbol and <G some fixed linear
order on G with the least element u ∈ G. Structures A(G) and B(G) are acquired
from models C(G, ∅) and C(G, {u}) by expanding them with < as:

A(G) = 〈A(G), RA(G), EA(G), <A(G)〉,

B(G) = 〈B(G), RB(G), EB(G), <B(G)〉.

Here A(G) = B(G) = G×B. Moreover, the relation <A(G)=<B(G) is defined with
the help of <G and ≺ as

(v, x) <A(G) (w, y)⇔ v <G w ∨ (v = w ∧ x ≺ y).

Intuitively, the additional ordering <A(G) is a lexigographic ordering on G × B.
Given two elements from it, one first compares the first co-ordinates that are totally
ordered by <G. If the first components are the same, then one looks at second ones,
which are partially ordered by ≺. Thus it is clear that <A(G) is a partial order
and the only pairwisely incomparable elements are the ones of the form (v, ci) and
(v, di).
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7 Main Results

7.1 BP k
n (A(G), (B(G))

Structures A(G) and B(G) are finally the desired models that we will use in our
main result. We already know that they are non-isomorphic because of Lemma
6.2.3. Next we aim to show that there is a graph G so that A(G) and B(G) are
similar enough to be Lk∞ω(Qn)-equivalent.

A natural approach is to consider the n-bijective k-pebble game BP k
n (A(G), (B(G)).

Recall that by Theorem 5.2.3 it is enough to find a winning strategy of player II
in order to show the desired Lk∞ω(Qn)-equivalence. Thus we next focus on what
kind of bijections fi player II should play in a winning strategy. We proceed by
narrowing down the set of feasible bijections for II. A minimal requirement is that
the bijections fi should be such that player I cannot win the game on round i. Say
that a bijection is good, if this is the case. We start by looking at what conditions
relations E and < impose on the set of good bijections.

Let v, w ∈ G and x, y ∈ B. Since < is a linear order on G, player II should not
play on any round i a bijection fi : A(G)→ B(G) such that

fi(v, x) = (w, y), for some v 6= w.

In other words, fi should be the identity function idG with respect to the first co-
ordinate. This is the case, because otherwise I can respond by choosing Ci arbitrarily
and Di as

Di = {(v, x), (w, y)},

(by assumption n ≥ 2) where v, w ∈ G are such that v <G w, but fi(w) <G fi(v).
Thus, pi = (pi−1 � Ci)∪ (fi � Di) is not a partial isomorphism and I wins the game.
Given this observation, we can define for bijections fi, every v ∈ G and x ∈ B a
new bijection fi,v : B → B as the one satisfying the condition

fi(v, x) = (v, fi,v(x)).

We now know that a good bijection has to map each building block of A(G), which
is labeled with a vertex of G, onto the same building block in B(G).

Consider then the second co-ordinate of the argument of fi. Player II has to choose
a bijection, which preserves the partial order ≺. Hence, it is clear that a good
bijection cannot change the index of any xj, because otherwise it changes also the
index of some yl, j 6= l, and again, the ordering would be altered.
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Since n ≥ 2, II must indeed preserve also E on every round, because otherwise
player I wins by choosing Ci arbitrarily and Di as Di = {(v, x), (w, y)}, where (v, x)

and (w, y) are such that

((v, x), (w, y)) ∈ EA(G), but (fi(v, x), fi(w, y)) /∈ EB(G).

This gives rise to a question: Can a good bijection even change any cj to dj or
the other way round. Put differently, is it possible that fi(v, xj) = (v, yj), where
xj 6= yj? The answer is affirmative, at least if we consider only the preservation of
< and E, which we have shown to be necessary conditions for good bijections. Soon
we will see that actually fi has to make these exchanges in order to preserve R.
Before turning the focus to the preservation of the relation R, we summarize what
we know so far. Namely, fi has to satisfy the following condition on each round i of
BP k

n (A(G), (B(G)):

{fi(v, cj), fi(v, dj)} = {(v, cj), (v, dj)}.

This leads us to the constraints that the relation R imposes on fi’s or, more precisely,
when it should change xj to yj, xj 6= yj. Let u be the least element according to
<G ( i.e. the one distincting A(G) from B(G)).

Suppose (u, cj) ∈ dom(pi−1) for some 1 ≤ j ≤ n + 1 and consider round i in the
game BP k

n (A(G), (B(G)). Player II has to be careful with her move, since I can
respond to her move by including (u, cj) in Ci and choosing

Di = {(u, cl) : 1 ≤ l ≤ n+ 1, l 6= j}.

The danger for II is that then it is possible that pi violates relation R, because it
contains an (n + 1)-tuple ((u, c1), ..., (u, cn+1)). However, player II can cope with
the situation by ensuring that fi,u is an isomorphism B+ → B−. The reason for
this is the trivial fact that u ∈ {u}, but u /∈ ∅. Luckily there is a safe bet for II
- just choose fi so that exc(fi,u) is odd. Then by Lemma 6.1.3, fi,u is the desired
isomorphism and, of course, does not violate the previous condition of preservation
of indices of xj’s and most importantly, the relation R is preserved by fi.

The case (u, dj) ∈ dom(pi−1) for some 1 ≤ j ≤ n + 1 is treated similarly. Also
by a very similar argument we see that for v 6= u, v ∈ dom(pi−1), fi,v must be an
automorphism of B+.

There are no other relations in A(G) and B(G)), so we conclude that if player II
chooses a bijection fi according to the above constraints, then fi is a good bijection.
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However, this is not enough to give player II a winning strategy. Although player
II cannot lose on a round by playing a good bijection, it may very well happen that
she loses on some subsequent round due to a new position of the game. We now
turn the focus on this aspect and keep in mind that every bijection player II plays
has to at least be a good bijection.

7.2 A winning strategy for player II in BP k
n (A(G), (B(G))

A requirement for a victorious strategy of II in BP k
n (A(G), (B(G)) is that on each

round i ∈ ω, fi needs to be a good bijection. We can thus state our current challenge
as: given that fi is good, is there is a uniform way for player II to choose fi+1 so
that it is also a good bijection? A positive answer would yield a winning strategy
for her. We will see that there is indeed such a strategy, if the graph G satisfies
certain largeness condition. A more precise meaning of large in this context comes
as a by-product, when we consider the question of how to define fi+1 by means of
fi. Instead of immediately constructing a suitable graph, we begin by reflecting on
how II should play rationally. This in turn leads us to a condition the graph should
satisfy, so that II can play the way she should play.

We prove by induction on i, that if fi is a good bijection, then under certain circum-
stances player II can choose fi+1 so that it is also a good bijection. It is clear that
player II cannot start with a bijection f1 that would preserve the relation R every-
where, since in that case she would break the edge relation and lose immediately.
Thus she is forced to choose f1 so that for some v ∈ G, v 6= u,

f1,v /∈ Aut(B+) or f1,u /∈ Isom(B+,B−).

Consequently, there is no better choice for II than setting f1 = idG×B, so it is
natural to assume player II picks it. In this case, the "bad part" of f1 is fi,u,
the one corresponding to the building block labeled with u. Note also that this f1

is clearly a good bijection. So in the initial step of the induction player II sets
f1 = idG×B.

For the induction step, assume fi is a good bijection and the bad part of fi is fi,v,
for some i ∈ N and v ∈ G. The fact that fi is a good bijection implies that there
cannot be any elements of the form (v, cj) in dom(pi−1), since otherwise I can choose
Ci ⊆ dom(pi−1) so that (v, cj) ∈ Ci and, furthermore

Di = {(v, cl) : 1 ≤ l ≤ n+ 1, l 6= j}
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and win the game on round i. Thus if I chooses Di so that it does not contain
elements of the form (v, cj), then neither does dom(pi). In this case II can choose
fi+1 = fi and it remains a good bijection. (Note that we omitted case (v, dj).
However, it is treated similarly as (v, cj) above.)

Hence without loss of generality we can assume there is at least one (v, cj) in Di.
At this point player II has to be careful, since if she picks fi+1 such that

fi+1,v = fi,v,

then I wins the game. More specifically, I can choose Di+1 so that it contains the
rest n elements (v, cl), 1 ≤ l ≤ n + 1 and l 6= j, from block v. Then dom(pi+1)

contains an (n+ 1)-tuple ((v, c1), ..., (v, cn+1)) from the bad part of fi+1 and clearly
II loses.

However, II has a way out of this problem. There is at least one element (v, cr),
which is not in dom(pi) and thus cannot be chosen by I to Ci+1. Now by changing
the cr and dr components with each other in fi+1,v player II is no more in trouble:
exc(fi,v) is of different parity than exc(fi+1,v). This means that fi+1,v is not a bad
part of fi+1, because now

fi+1,v ∈ Aut(B+) (or fi+1,v ∈ Isom(B+,B−), if v = u).

Doing only this adjustment to fi+1 is not enough for II, because fi+1 would not
preserve the edge relation E. However, II can "move" the bad part away along a
path v = v0, ..., vs = v′ of G. Player II chooses fi+1 so that it changes the c and d
components with each other along the path. More formally, player II sets fi+1 to
be the bijection that satisfies

fi+1(w, x) = fi+1,w(x),

where fi+1,w is defined as:

fi+1,w(x) =


dj, if w = vi, fi,w(x) = cj, and j = hvl(vl+1) or j = hvl(vl−1),

cj, if w = vi, fi,w(x) = dj, and j = hvl(vl+1) or j = hvl(vl−1),

fi,w(x), otherwise.

Thus fi+1,w changes one c-element to d-element in the first and last block of the
path, whereas for the rest of the blocks along the path it makes two such changes.
Moreover, fi+1,vl , 0 ≤ l ≤ s − 1, is an automorphism for the blocks along the path
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and an isomorphism B+ → B− for the last block of the path, which is labeled by
v′. However, there are still two problems for player II. Firstly, suppose some of
the exchanged elements along the path, i.e. ones of the form (vl, x), 1 ≤ l ≤ s− 1,
for which fi+1,vl(x) 6= fi,vl(x), is in dom(pi) and call it (vr, xj). Now player I can
include (vr, xj) in Ci+1 and (vr+1, yt) in Di+1, where (vr+1, yt) is such that there is an
edge between (vr, xj) and (vr+1, yt). Clearly pi+1 cannot preserve the edge relation
E, since it makes a c, d-exchange for (vr+1, yt), but not for (vr, xj). The second
problem is that some element (v′, x) in the last block v′ may be in dom(pi). This
situation reminds one that we have already seen. The problem is that player I can
include certain n elements from v′ to Di+1 and (v′, x) to Ci+1 and thus violate the
preservation of the relation R.

The considerations above lead to the largeness condition for G. Assume the path
v = v0, ..., vs = v′ has the following property: No element (vl, x), 1 ≤ l ≤ s− 1, for
which fi+1,vl(x) 6= fi,vl(x) is in dom(pi) and no element (v′, x) from the last block is
in dom(pi). Put differently, neither any of the exchanged elements nor any element
from the last block belong to dom(pi). Now whatever choices I makes for Ci+1 and
Di+1, it holds that

pi+1 = (pi � Ci+1) ∪ (fi+1 � Di+1)

is a partial ismorphism. Hence we conlude that fi+1 is a good bijection.

The considerations above give us some hint of what kind of a graph G should be
in order to allow a winning strategy for player II in BP k

n (A(G), (B(G)). The
graph should be large enough so that player II can always move the bad part of a
bijection away along a path, for which elements of the path are not in the domain
of the partial isomorphism of the previous round. Of course the problem is hence to
construct an actual graph that has the desired property. We postpone this problem
for a while. Instead, we try to make the problem more intuitive by introducing
a new game. Then we prove that the existence of a winning strategy for player
II in this new game guarantees that she has a winning strategy also in the game
BP k

n (A(G), (B(G)). Afterwards it will be easier to construct the desired graph G

and show that player II has a winning strategy in this new game played on G.

7.3 The Game of k Cops and a Robber

We introduce a new game in which all the essential parts of the n-bijective k-pebble
game are included, but in a much more simpler and intuitive manner. The new
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game, called the game of k cops and a robber, is played on G using the graph as a
board. Player II moves the robber along paths of G and tries to escape from the
cops. Thus player II is identified as the robber in this new game. On the other
hand, player I is the chief police officer trying to catch the robber with his k cops
patrolling on the edges of G. He has two different kinds of cops. There are all
together k cops in his police forces, of which n cops belong to rapid deployment
forces. Cops in this special unit are able to move onto any edge of G after each
movement of the robber. The rest of the k cops are too busy eating doughnuts
to react on robber’s movement. Unfortunately, even cops of the rapid deployment
forces begin to eat doughnuts and lose their ability to move immediately after they
have moved to some edge of G. However, a doughnut eating cop can still catch
the robber, if he is at an edge adjacent to robber’s vertex. The chief police officer
can after each movement of the robber return at most n cops of the at most k cops
on G back to police station. Due to his strict discipline, all of these cops count as
members of rapid deployment forces.

Definition 7.3.1. The game of k cops and a robber on a finite connected graph G,
denoted by CRk

n(G), where n is the number of cops in rapid deployment forces, is
defined as follows:

- In the initial history of the game there are no cops in play and the robber is on
vertex u (the least element of <G). On round 0, player I places at most n cops on
the edges of G.

- At the beginning of round i, i ≥ 1, there are r cops, r ≤ k, eating doughnuts on
the edges of G. Player II may move the robber along some path P of G such that
edges of P do not contain any cops. Afterwards, I calls s cops (0 ≤ s ≤ r) back to
the police station and places l cops, 0 ≤ l ≤ n, of the rapid deployment forces on
edges not already containing a cop. Moreover, I has to act so that (r − s) + l ≤ k.

- Player I wins the game, if at the end of some round i ∈ ω the robber is surrounded
by cops i.e. if all the edges adjacent to the vertex of the robber have a cop.

- Player II wins the game, if she does not lose it at some round i ∈ ω.

Now what is the analogy between CRk
n(G) and BP k

n (A(G), (B(G))? At round i, the
vertex v containing the robber marks the bad part fi,v of fi, whereas the movement
of robber along a path corresponds to moving the bad part away from the reach of
player I. On the other hand, the r−s cops eating doughnuts label the corresponding
vertices, which player I includes in Ci ⊆ dom(pi−1). The freshly added l members of
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rapid deployment forces correspond to vertices in Di. The restriction (r− s) + l ≤ k

comes from the fact that |(Ci ∪ Di)| ≤ k. Thus, if the robber can always escape
from the cops, it means that player II can always find a good bijection, which moves
the bad part away from the reach of player I. Based on this analogy, we get the
following obvious lemma.

Lemma 7.3.2. If player II has a winning strategy in CRk
n(G), then she has a

winning strategy in BP k
n (A(G), (B(G)).

Proof. Suppose player II has a winning strategy in CRk
n(G). Thus on any round

i ∈ ω, the robber can escape from the cops. Now suppose that the robber is on
vertex v at the beginning of round i. Since she can escape from the cops, there is a
path of G, which does not contain any cops and leads to a vertex v′. By assumption,
robber has an escape route also from v′ on round i+1 i.e. after I has moved at most
n cops and robber being on vertex v′. Without loss of generality, we may assume
that on round i of BP k

n (A(G), (B(G)) the bad part of fi is fi,v and fi is a good
bijection. Now II chooses fi+1 as in the illustration of winning strategy for her and
the path related to the definition of fi+1 is the escape path of the robber on round i.
Consequently, she moves the bad part to v′. Since robber has an escape route from
v′, the bijection fi+1 (with bad part fi+1,v) is also a good bijection.

7.4 Results

We begin by showing that for each k > n, there is a finite connected graph G of
degree n+1 so that structures A(G) and B(G) are Lk∞ω(Qn)-equivalent. This result
is achieved with the help of the game of k cops and a robber.

Lemma 7.4.1. For each k > n, there is a finite connected graph of degree n + 1

such that the robber has a winning strategy in CRk
n(G).

Proof. We construct the graph G from a collection H = 〈Hi, E
Hi〉0≤i≤m of smaller

graphs, which are assumed to be mutually distinct. Assume that for each i, Hi is
a connected graph of degree n, has m ≥ 2k + 2 elements and remains connected, if
less than n of its edges are removed. More specifically, let

Hi = {vij : 0 ≤ j ≤ m, j 6= i}.

Now let G = 〈G,EG〉 be defined as follows:
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G =
⋃

0≤i≤m

Hi,

and

EG =
⋃

0≤i≤m

EHi ∪ {(vij, vji) : 0 ≤ i, j ≤ m, i 6= j}.

Hence G is graph consisting of graphs Hi with all of their own edges and in addition
a single edge (vij, vji) connecting each Hi to Hj, i 6= j. Note that G is a connected
graph of degree n+1 and has m(m+1) elements (There are m+1 graphs in H each
having m elements). We show that player II has a winning strategy in CRk

n(G).
Let us say that a vertex vij is safe for the robber, if there are no cops adjacent to any
vertex in Hi or Hj. By the following combinatorial argument we see that there is
always a safe vertex for robber, because there are only k cops and m(m+1) vertices.

Player I can place a cop between essentially two different kinds of vertices. A cop
can be placed between two vertices in the same block Hi or between vertices vij and
vji of blocks Hi and Hj. In the former case, a cop can make (at most, if some of the
vertices are already in control of another cop) 2m vertices unsafe for the robber; all
the m vertices in Hi and all the m vertices of the form vji in the rest m blocks Hj,
j 6= i. However, the latter option is a better strategy for I (to be verified later). By
placing a cop between vij and vji, it makes at most

2m+ 2(m− 1)

vertices unsafe - all the 2m vertices in Hi and Hj as well as 2(m− 1) vertices of the
form vri and vrj in the rest

(m+ 1)− 2 = m− 1

blocks Hr, r 6= i, j. It is easy to calculate how many vertices I can make unsafe for
the robber with k cops by following this better strategy. As seen above, the first
cop on edge (vij, vji) makes

2m+ 2(m− 1)

vertices unsafe. Now it is clear that the best choice for the edge of the second cop is
(vrs, vsr), where i, j, r and s are all mutually different. This makes 2(m− 2) vertices
of the blocks Hr and Hs unsafe, since two vertices of both of the blocks were already
made unsafe by the first cop. Moreover, the second cop makes vertices of the form
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vpr and vps unsafe, and there are now 2(m− 3) such vertices, which are not already
made unsafe by the first cop. Eventually, by placing cops like this, all the k cops
make

k∑
l=1

2(m− 2(l − 1)) + 2(m− (2l − 1)) =
k∑
l=1

4m− 8l + 6

vertices unsafe. Given the restrictions for k and m, it holds that for each l, the lth

term in the sum is greater than 2m, which verifies that the chosen strategy for I
is indeed better than the strategy of placing cops "inside" blocks. Finally, an easy
calculation shows that there is always a safe vertex for the robber. The number of
unsafe vertices is given as:

k∑
l=1

4m−8l+6 = 4km+6k−8k(k + 1)

2
≤ −4(

m

2
−1)2+(

m

2
−1)(4m+2) = m2+m−6,

since k ≤ m
2
− 1. By assumption, there are m2 + m vertices in G. Thus there are

always six safe vertices for the robber.

Naturally the winning strategy for II is to put the robber on a safe vertex, say
vjl at the beginning of round i. Player I has only n cops in his rapid deployment
forces. This implies that after moving them, either (a) the chief police officer still
has less than n cops on the edges of Hj or otherwise (b) there are no cops adjacent
to vertices of Hl . Recall that there is a safe vertex for the robber in any game
position. Without loss of generality, assume vrs is a safe vertex in this new position.

Consider the alternative (a) first. By assumption, Hj is a graph of degree n, which
remains connected when less than n of its edges are removed. Hence there is a cop-
free path for the robber to any vertex inside the block Hj. In order to reach the new
safe vertex, the robber acts as follows. First she moves to vertex vjr ∈ Hj. Since
vrs ∈ Hr is safe, by definition, there are no cops adjacent to vertices of Hr. Hence
there is no cop on edge (vjr, vrj). Therefore she can use this edge as an escape route
leading to the block Hr. There are no cops between vertices of Hr, and thus she can
freely move from vrj to the vertex vrs.

Assume then that the option (b) holds i.e. after the movement of rapid deployment
forces, there are no cops adjacent to vertices of Hl. Thus, in particular, edges
(vjl, vlj) and (vlr, vrl) do not contain cops. But this gives the robber an escape route
from Hj to Hl, and finally, from Hl to Hr. As above, there are no cops between
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vertices of Hr, and therefore she can move to the vertex vrs.

We conclude that in any case, after the action of rapid deployment forces on round
i, II can move the robber to a new safe vertex on round i+ 1.

The previous lemma gives us the other part of the main result. However, we still
need to show that structures A(G) and B(G) differ from each other in some respect,
which is computable within a reasonable time constraint.

Lemma 7.4.2. There is a PTIME computable boolean query q such that
q(A(G)) 6= q(B(G)) for any finite connected graph G of degree n+ 1.

Proof. Structures A(G) and B(G) are non-isomorphic. Hence it is enough to show
that a boolean query q, for which

q(M) = 1⇔M∼= A(G)

for any finite connected graph of degree (n + 1) as well as some choice of ordering
<M and functions hu enumerating neighbours of vertices, is computable in PTIME.
Suppose we are given a finite structure M. First of all one has to check, if M is
isomorphic with A(G) or B(G) for some appropriate G. In other words, one checks
whetherM is even a structure C(G, S) for some G and S ⊆ G. This can be done
in polynomial time with respect to |dom(M)|. Of course, if M fails this test, we
assign q(M) = 0. OtherwiseM is isomorphic to either A(G) or B(G), so we may
assumeM = A(G) orM = B(G).

Let U ⊆ G × B be such that for all v ∈ G and 1 ≤ i ≤ n + 1, it contains one and
only one element of the form (v, xi), where xi = ci or xi = di. Moreover, suppose
membership of U is preserved by the edge relation E i.e. if

((v, xi), (v
′, yj)) ∈ EM,

then (
(v, xi) ∈ U ⇔ (v′, yj) ∈ U

)
.

The construction of such U takes only a polynomial time. The set U can be con-
structed for example by starting from the vertex u and arbitrarily choosing elements
(u, xi) to be included in U . Then for any neighbour v of u, it is determined whether
(v, ci) or (v, di) is put to U , where i = hu(v). Then one moves to the next vertex
according to the ordering <M and again, arbitrarily chooses those elements, which
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are not already in U . By continuing recursively, eventually one ends up with the
set U . Clearly this can be done in a way respecting the time constraint, since the
arbitrary choices one makes in the construction do not have any essential effect on
the outcome.

Now for each v ∈ G, U determines an (n+ 1)-tuple x̄v = (x1, ..., xn+1) ∈ Bn+1, such
that

x1 ≺ ... ≺ xn+1 and ((v, x1), ..., (v, xn+1)) ∈ U.

So U contains some (n+ 1)-tuple from each building block and the tuple has either
ci or di component from each index 1 ≤ i ≤ n + 1. Furthermore, the fact that U
preserves the edge relation leads to the following observation. Every time we added
an element of the form (v, c) to U , another element (w, c) became automatically
included to U . Hence U contains an even number of elements of the form (v, ci).
Similarly, U contains an even number of elements of the form (v, di). Let x̄V denote
a tuple, which is formed by concatenating all the tuples x̄v, v ∈ G. Now by the
above it holds that the number of c’s and the number of d’s in x̄V are both even.

Define S to be the set that contains all the vertices v ∈ G such that x̄v /∈ RM. This
set S can be constructed from the set U in polynomial time.

Recall thatM = A(G) orM = B(G) and assume first thatM = A(G). For all
v ∈ G, it holds that v /∈ ∅, and thus by definition, x̄v /∈ RM ⇔ x̄v ∈ R−. Hence S
contains all such v ∈ G that x̄v ∈ R−. Moreover, x̄v ∈ R− if and only if there is an
odd number of d elements in x̄v. This means that for each x̄v, for which v /∈ S, there
is an even number of d elements in x̄v. Now if erase all such tuples x̄v that v /∈ S
from the tuple x̄V , we get the tuple, which contains all such x̄v that v ∈ S. Now
consider the overall number of d elements in tuples x̄v, v ∈ S. We subtracted an
even number from an even number, and hence there is altogether an even number
of d elements in the tuples x̄v, v ∈ S. Any x̄v, v ∈ S, itself contains an odd number
of d elements, and therefore |S| has to be even.

Assume then thatM = B(G). In this case S contains all such v ∈ G, v 6= u, that
x̄v ∈ R−. The vertice u belongs to S, if x̄u ∈ R+, and otherwise u ∈ G \ S. Assume
first that u is in S. By the same argument as above, there is altogether an even
number of d elements in those x̄v that v ∈ S. Since u ∈ S, there is an even number
of d elements in x̄u. Thus there is an even number of vertices v, v 6= u, in S. By
assumption, also u is in S, and therefore |S| is odd. Suppose then that u is not in
S. Now x̄u ∈ R−, which means that x̄u contains an odd number of d elements. Now
erase from x̄V those tuples x̄v, v 6= u, for which v /∈ S. In this tuple obtained, there
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is an even number of d elements. Then erase x̄u from this tuple. By assumption on
u, we are then left with a tuple, which contains an odd number of d elements. But
this means that |S| is odd.

Therefore we have that
q(M) = 1⇔ |S| is even.

This accomplishes the proof, since the parity of |S| can be decided in polynomial
time.

We have now obtained all the necessary results to conclude this thesis with the main
theorem.

Theorem 7.4.3. PTIME cannot be captured with Lω∞ω(Qn).

Proof. It is enough to show that for each n ∈ N there is a PTIME computable
boolean query, which cannot be defined in the logic Lω∞ω(Qn). By Lemma 7.4.1,
for each n and k > n, there is a finite connected graph G of degree n + 1 such
that player II has a winning strategy in CRk

n(G). Applying Lemma 7.3.2, this
means that player II has a winning strategy in BP k

n (A(G), (B(G)). On the other
hand, by Lemma 7.4.2, there is a PTIME computable boolean query q such that
q(A(G)) 6= q(B(G)), and by Theorem 5.2.8, q is not definable in Lω∞ω(Qn).
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