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Advanced low-cost wireless technologies have enabled a huge variety of real life applications in the

past years. Wireless sensor technologies have emerged in almost every application �eld imaginable.

Smartphones equipped with Internet connectivity and home electronics with networking capability

have made their way to everyday life. The Internet of Things (IoT) is a novel paradigm that

has risen to frame the idea of a large scale sensing ecosystem, in which all possible devices could

contribute. The de�nition of a thing in this context is very vague. It can be anything from passive

RFID tags on retail packaging to intelligent transducers observing the surrounding world. The

amount of connected devices in such a worldwide sensing network would be enormous. This is

ultimately challenging for the current Internet architecture which is several decades old and is

based on host-to-host connectivity.

The current Internet addresses content by location. It is based on point-to-point connections, which

eventually means that every connected device has to be uniquely addressable through a hostname or

an IP address. This paradigm was originally designed for sharing resources rather than data. Today

the majority of Internet usage consists of sharing data, which is not what it was originally designed

for. Various patchy improvements have come and gone, but a thorough architectural redesign is

required sooner or later. Information-Centric Networking (ICN) is a new networking paradigm

that addresses content by name instead of location. Its goal is to replace the current where with

what, since the location of most content on the Internet is irrelevant to the end user. Several ICN

architecture proposals have emerged from the research community, out of which Content-Centric

Networking (CCN) is the most signi�cant one in the context of this thesis.

We have come up with the idea of combining CCN with the concept of IoT. In this thesis we look at

di�erent ways on how to make use of the hierarchical CCN content naming, in-network caching and

other information-centric networking characteristics in a sensor environment. As a proof of concept

we implemented a presentation bridge for a home automation system that provides services to the

network through CCN.
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1 Introduction

Advanced low-cost wireless technologies have enabled a huge variety of real life

applications in the past years. Wireless technologies have emerged in almost every

application �eld imaginable. Any subject that requires surveillance, monitoring,

telemetry, or telecommand is a plausible target for wireless sensor applications.

Low-cost technologies has made these sensor networks a�ordable, and thus available

even for consumers. Home automation, theft alarm, surveillance, monitoring, and

other smart applications at a reasonable cost is something that attracts consumers.

Many of the sensor networks today are completely segregated and isolated. In

critical applications that is intentional and desired in terms of security and safety.

While on the other hand, many sensor networks could contribute, or bene�t from

being connected to a bigger ecosystem. Extensive connectivity of the sensor network

nodes is required in order to participate in a large ecosystem, which brings us to the

essence of this thesis.

A novel paradigm has risen to frame the idea of a large scale sensor ecosystem. It is

called the Internet of Things (IoT) [AIM10], in which the things stand for anything

that is connected to the Internet. Connecting a huge amount of various devices to

the Internet, however, challenges the current state of the worldwide network. We

see that there are two main challenges; connectivity and communication.

Connectivity backbone in today's Internet is the Internet Protocol (IP). The IP

paradigm dates back several decades and it was originally designed for sharing

resources rather than data. It is based on point-to-point connections, which even-

tually means that every connected device has to be uniquely addressable through

a hostname or an IP address. Connecting billions of devices this way requires an

equal amount of allocated IP addresses. The dominating IP address space, IPv4,

was depleted in 2011 [ICA11]. Its follower, IPv6, is making its breakthrough at a

relatively slow pace due to various technologies [DDWL11] that aim to extend the

lifetime of IPv4. While the current state of the IP architecture complies with most

of today's Internet usage needs, there are use cases in which a di�erent approach

could work better.
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Communication is another challenge we have to consider while dealing with a huge

amount of devices. It is important that the amount of data several billion devices can

produce is easily achievable in the network under any circumstances. Most current

communication protocols in IoT rely on point-to-point connections and are vulner-

able to link breakdowns. Many of them also use data storages and broker servers,

which introduce potential single point of failures, unless replicated su�ciently. Also,

we must not forget that hardly any of the current protocols are compatible with each

other. Protocol incompatibility drives the IoT concept towards a sparse bunch of

separate sensor networks.

We have come up with bringing Information Centric Networking [XVS+13] (ICN)

to the Internet of Things concept. ICN is a new networking paradigm which tries to

move device connectivity away from the point-to-point model familiar from IP. It is

currently in general a hot topic, and several implementations of ICN proposals have

emerged. One of them is Content-Centric Networking [JST+09] (CCN), which we

will look at in more detail later in this thesis. CCN in particular supports in-network

storage and transparent in-network caching, which we will prove both to be useful

in an IoT environment.

1.1 Problem de�nition

As mentioned earlier in the previous Chapter, we see that there are two main chal-

lenges regarding the current state of the Internet and the future vision of the IoT

concept. These two challenges are connectivity and communication. In this Chapter

we formulate the problem we see in the current situation. In order to make the prob-

lem statement as clear as possible we try to be very concise.

I. Connectivity

The dominating IP paradigm is all about point-to-point connections. We

don't see this as a feasible connectivity model for IoT because of the following

reasons:

• Each device has to be universally addressable from a limited address pool.

• Point-to-point connections rely heavily on OSI-model data link layer.
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II. Communication

Communication protocols rely heavily on the connectivity model below them,

which means that some of the problems listed here are re�ected from the con-

nectivity problems mentioned above. However, we see the following problems

with current communication protocols used in the IoT:

• Several similar competing protocols.

• Gateways and proxies requires for seamless interoperability between com-

peting protocols.

• Centralized data storages.

• No transparent in-network caching.

Some of these problems have already existing solutions. However, we don't see

that the solutions would have been successful, or actually solved the problem. We

will brie�y survey existing solutions in Chapter 4. Afterwards we will propose an

alternative solution our way.

1.2 Research goals

At the highest level, our goal is to �nd solutions to the things listed in Section 1.1.

We try to achieve this through implementing a functional communication protocol

for sensor networks on top of CCN. Our focus is more on the practical functionality

rather than theoretical limits and boundaries. Theory of course is taken into con-

sideration with all respect, but at this point we are more into showing how CCN

would work in IoT in practice. In Chapter 5 we present the implementation that we

created to achieve our goals.

To summarize, our goal is to show that a communication protocol for IoT is possible

to implement with the following features:

1. No point-to-point connections.

2. Transparent in-network caching.

3. In-network storage of sensor data.
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4. Reduced workload for the sensor devices.

5. High-level abstraction layer to access sensor devices.

1.3 Thesis outline

This thesis is structured in a logical way to provide the reader all the required

preliminary knowledge before going into technical discussion and implementation

details. In this Chapter we have introduced the topic of this thesis, pointed out

some issues with the current state of art and given some ideals or partial solutions

to the issues. In Chapter 2 we give an overview of the IoT. Chapter 3 gives an

introduction to the ICN paradigm. We take also a closer look at CCN and its open

source platform CCNx, which is a promising implementation of the ICN paradigm.

In Chapter 4 we discuss how to bene�t from the CCN paradigm in the �eld of

IoT. Chapter 5 explains the testbed implementation we did in order to see CCN in

action in a sensor environment. At the end of Chapter 5 we explain the experiment

methodology and evaluate its outcome. Finally, in Chapter 6 we conclude the topic

and give some �nal thoughts.

2 Internet of Things

The Internet of Things (IoT) [AIM10] is a novel concept of a large-scale wireless

sensing ecosystem. The de�nition of a thing in IoT is ambiguous. In a nutshell it

stands for something that produces or contributes information with some value to

the ecosystem. Practically speaking a thing can be anything that is equipped with

appropriate technology to make it part of the smart network. These things provide

endless opportunities for applications in various �elds, such as smart cities, -homes,

industry, health and transportation. Most of the required technology already exists

and harnessing of this great potential is in progress.

The original idea [Ash09] behind IoT emerged from the thought that most of the

information moving on the Internet is produced by human beings. People in general

observe real life things and generate content based on the observations. However,
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human beings have limited time, accuracy and attention, and thus they are not very

good at feeding information to the Internet. This statement is quite harsh if we

consider content like photographs, music, video, and other kinds of information that

requires creativity characteristic to human beings. On the other hand, several other

kinds of information related to real life things need no creativity. Information that is

easy to achieve, present, and reason by today's technology is much more e�ectively

produced by sensors of di�erent kinds.

In [AIM10], Atzori et al. divide the entire IoT paradigm into three di�erent visions;

things-, Internet- and semantic-oriented visions. These visions are driven by di�erent

communities that focus on opportunities they have interest in the entire IoT �eld.

Since the IoT as a concept is very wide, this division is very useful in helping readers

understand the overview through smaller portions. Figure 1 illustrates this three-

way division.

Figure 1: A simpli�ed diagram showing the division of IoT by Atzori et al. [AIM10].

Instead of discussing overlapping visions in a Venn diagram, we divide and represent

IoT as a stack of layers. Since the intersection of 'Things visions' and 'Semantic vi-

sions' is empty, there is no need to visualize IoT the way it is visualized in Figure 1.

The intersection will also always stay empty because a connectivity layer is required
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between the things and the semantics. In other words, they are not directly con-

nected by anything, nor will they be. Therefore we feel that a stack representation

of IoT is more constructive and easier to approach. We also split the 'Internet vi-

sions' into two sections, since we see that it consists of two clearly distinct parts.

Our stack division is illustrated in Figure 2. Its terminology and idea is based on

the work by Atzori et al. In the rest of this Chapter we will approach each of the

layers individually starting from the bottom layer.

Figure 2: Internet of Things paradigm illustrated as a stack.

2.1 Things layer

In IoT things are the content producers. They can be seen as the leaf nodes gath-

ering data from all edges of the network. Alternatively they can be considered as

the interface between the real world and network. As the de�nition of a thing is

ambiguous we provide some examples and use cases for things in this Chapter.

Things in IoT can be either active or passive. A good example of passive things

are items equipped with Radio-frequency identi�cation (RFID) tags. RFID tags are

cheap and the technology is mature and well established. Passive RFID tags do

not need any power source. They operate with the power supplied by the readers

electromagnetic �eld (EMF). The tag starts to emit its data when it is exposed

to a EMF. Data is written onto the tag in the same manner but with a speci�c

signaling frequency. A common passive RFID tag can store data up to 96 bits and
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their range is limited to a couple of meters due to the limited powering harvesting

through EMF.

Food supply chains have adopted the usage of passive RFID tags [KRS+09]. E�ective

handling and inventory management of products is crucial when it comes to spoiling

goods. Food crates and pallets have been equipped with RFID tags to reduce human

interaction and make the supply chain more e�cient. Tags attached to food pallets

can also log the environment in simple ways, such as long periods in warm conditions

or freezing. Nanotechnology has even made it possible to produce small RFID tags

that can be attached to the food itself [TBY+12]. These edible tags change their

output based on surface changes of the product it is attached to. Optimizing the

supply chain is a way to cut down food waste [MM05], which is a continuously

growing global problem.

Another �eld where RFID tags have been widely adopted is retail market. RFID tags

on product packaging may some day even replace the conventional IAN barcodes on

items [Wyl06]. Remotely identi�able tags on products allow inventory monitoring

in real time, which combined with a smart inventory system could save compa-

nies from out-of-stock situations and help in keeping the inventory size as small as

possible [MM05]. Tags in retail product packaging allows also automatic payment

through smart shopping carts [Rou06]. Such carts may come with an onboard com-

puter that monitors what the customer has in cart and reports it at checkout to the

cashier, which might instead of a human be just an automated paying machine.

As RFID tags are inexpensive they can be applied to almost anything; vehicles,

commercial goods, food packaging or even animals for identi�cation purposes. All

of these real life things can be considered as things in the IoT in case their RFID

data can be automatically read and submitted to serve a larger ecosystem.

Active things are another category of leaf nodes in the IoT. These can be generalized

as sensor devices that observe the surrounding world. As we can not put RFID tags

on the weather and read its state for example, we need various kinds of sensors to

measure parameters such and temperature, humidity, wind, and so on. Wireless

sensors in most cases rely on the same RFID technology, but in contrast to passive

tags, active devices are power source equipped and they are capable of transmitting
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data on their own through the RFID tag.

In the simplest scenario an active RFID node transmits its data, and within range

there is a coupled counterpart that picks up the signal. The maximum distance

for this kind of device-to-device communication varies widely because of utilized

technology, application speci�c antennas, transmission power, location and other

environmental conditions. The maximum device-to-device distance in most wireless

RF-based sensor technologies is usually between 10 to 100 meters. Longer dis-

tances can be achieved through several advanced Wireless Sensor Network (WSN)

technologies that support di�erent network topologies and are capable of multihop

routing within the WSN. Many of the a�ordable and RF-based WSN technologies

have similar characteristics since they comply to a common standard such as IEEE

802.15.4 [CGH+02].

Private WSNs is the most common way to add things to the Internet. ZigBee [Far08]

is probably the most widely adopted commercially available WSN technology. Its

cost and power e�ciency makes it popular in home automation and other private

sensors environments. It is also based on the IEEE 802.15.4 standard. ZigBee

was created through the collaboration of a HomeRF spin-o� company and IEEE

802 workgroup. Its focus in design is primarily on simplicity, low cost and power

e�ciency.

In most applications ZigBee operates on a sub-gigahertz frequency. Depending on

the continent regulations, it operates either on 868 or 915 MHz band. Its speci�ca-

tion allows also operation on the already quite crowded 2.4 GHz frequency. That is,

however, quite frivolous in many cases because of a higher power consumption and

an unnecessarily high data rate of 250 kb/s. With the commonly used sub-gigahertz

frequencies ZigBee is capable of reaching data rates from 20 to 40 kb/s.

ZigBee network topology is a mesh with one central coordinator node. Due to the

nature of a mesh network where intermediate nodes can pass messages further, the

coverage of a ZigBee network can be enormous. Size limiting factors are namely

only node addressing and single hop length. The transmission distance between two

nodes can be up to 100 meters open air, but a more realistic value taking environment

variables and power e�cient transmission powers into consideration lies somewhere
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between 10 to 20 meters [Far08]. If node density is not an issue in a large sensor

�eld, then addressing might put a theoretical cap on the networks geographical size.

One coordinator node in a ZigBee network is capable of addressing up to 216 − 1

sensor nodes. If that amount is still not su�cient, then multiple coordinators can

be linked to create an even larger network. However, in such a setup, there would

be multiple meshes next to each other instead of only one mesh. In a large mesh

transmission delay would in most cases not be a problem, since idle ZigBee nodes

can wake up in down to 15 ms.

Another trivial example of an active thing is people. Most of us carry a personal

mobile smartphone that is connected to a mobile network and is capable of providing

data such as location for example. Because of personal and privacy reasons this raises

doubts whether or not it is safe and smart to report your own location. However,

many social applications already today provide such features. With location aware

social applications people can be considered as things in the Internet.

2.2 Connectivity layer

In order to make the things described in Section 2.1 contribute to IoT they require

some connectivity. This is ultimately challenging since the amount of connected

devices is growing rapidly. According to an estimate [Eri11] there will be over 50

billion devices connected to the Internet by year 2020. In a network of that size it

is crucial that device connectivity is scalable and robust.

The estimate of 50 billion devices is divided among all sorts of devices, such as per-

sonal computers, smartphones, tablets, audio equipment, televisions, various sensors

and even vehicles. Some of these devices by nature have a static location and they

can be connected to the infrastructure network through WiFi or cabling, while mo-

bile devices have connectivity through IP based technologies such as LTE. Address-

ing of these devices should neither be a problem since the next generation Internet

protocol, IPv6 [DH98], is capable of addressing up to 2128− 1 devices. To give some

perspective to the numbers, IPv6 has an address pool of roughly 6.8∗1027 times the

estimated 50 billion devices.
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Connecting various sensor devices as things to the Internet is challenging. Many of

the WSN technologies that have emerged during the last decade, including ZigBee,

have implemented their own protocol stack upwards from the data link layer. Reason

for this is most likely the fact that physical layer standards suitable for sensor devices

exist, but reckoned network layer standards tailored for sensor communication have

not existed. Until recently a strong candidate has emerged.

The ideal in a worldwide sensor network would be to take the dominating Internet

protocol (IP) all the way to the sensors without having intermediate translation

layers or gateways. IPv6 over Low power Wireless Personal Area Networks [Mul07]

(6LoWPAN) is a protocol especially designed for such scenarios. It is designed

to take IP to the very edge of the network, including low power devices. How

6LoWPAN does this is that it carries IPv6 datagrams over IEEE 802.15.4 based

networks, including ZigBee. Originally it was aimed to be an adaption layer to be

able to transport IPv6 headers over any kind of medium. It has since evolved into

mainly constrained and low power networks and was also warmly welcomed [SB11]

by the Internet of Things.

6LoWPAN is a standard by the Internet Engineering Task Force (IETF). Design

focus of the protocol is to be small. The conventional IP stack is not particularly

big, but 6LoWPAN is even smaller. Its code size is even less than corresponding

protocol stack code of ZigBee. Despite that, it is capable of addressing orders of

magnitude larger networks � up to 264 nodes. It even requires less RAM from the

hardware for running the protocol. Even though it requires less of everything than

similar protocols on top of the IEEE 802.15.4, 6LoWPAN uses well known UDP and

TCP datagrams for messaging.

How 6LoWPAN manages to be so lightweight is through implementing stacked head-

ers familiar from IPv6. Many packet based protocols, including IPv4 and ZigBee,

uses one monolithic static size header. IPv6, as well as 6LoWPAN implements sev-

eral types of headers to be used for di�erent types of messaging. 6LoWPAN de�nes

four types of headers: dispatch header, mesh header, fragmentation header, and the

compression header. The trick with stacked headers is to send only the headers that

are required. If for example the node is in a non-mesh network, it does not send a
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mesh header. Or if its datagram is so small that it requires no fragmentation, the

fragmentation header is left out. Only the payload carrying dispatch header and a

compressed IPv6 header are the bare minimum to send in a trivial case.

One essential, and truly valuable, feature to keep in mind regarding 6LoWPAN

is that it does not require any dedicated or proprietary hardware. No dedicated

gateways, proxies or translation layers are required because 6LoWPAN datagrams

are compatible with the existing Internet routers. This meets the requirements in

the ideal of a worldwide sensor network where network addressing is �at and the

same protocol is used on every edge.

2.3 Application protocol layer

As soon as the things have connectivity their data is ready to be propagated into

the network. Various protocols exist for this purpose. Some of these protocols

require at least UDP/IP connectivity from the sensors, while other are capable of

communicating directly with the MAC layer of a IEEE 802.15.4 stack. There are

also some technologies, such as ZigBee, have implemented their own protocol. The

ZigBee protocol stack communicates straight with the 802.15.4 layer, but they are

migrating currently to operate over 6LoWPAN [Stu09].

Next, we give a brief introduction to three technology independent application proto-

cols designed for small data transmission from constrained networks, such as WSNs.

CoAP

Constrained Application Protocol [SHB13] (CoAP) is a widely adopted protocol

in delivering sensor data over the infrastructure network. Its design goals

are in simplicity and low overhead in order to make it suitable for resource

constrained devices, such as low-power sensors. It has been designed to be so

small and modest in terms of hardware, that it can be taken all the way to

the sensor device with minimal calculation power. An operating system, such

as TinyOS, and some sort of IP connectivity, 6LoWPAN or regular IPv6 for

example, are required in order to make the sensor collaborate independently. In

such scenarios a dedicated gateway is not necessary, which makes it a reckoned
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protocol for distant and scattered singleton sensors.

CoAP is a HTTP counterpart, which means that it is possible to adapt on

almost any UDP capable device. Due to an intentional HTTP impersonating

design, it also integrates by default with the current Web. In addition to regu-

lar HTTP, CoAP implements some extra features, such as multicast, tailored

speci�cally for sensor environments.

MqTT-S

Message queue Telemetry Transport for sensor networks [HTSC08] (MqTT-

S) is another widely adopted protocol in the IoT �eld. It is a data centric

publish/subscribe system that uses servers as message brokers for collecting,

storing and distributing data. In a publish/subscribe model the sensor nodes,

or the responsive sensor gateway assigns a topic for the sensor data. This

data is then forwarded over IP to a message broker which stores it and looks

up in a database for clients that have subscribed to data published under

the corresponding topic. The broker server then pushes the data to all those

entities that have issued a subscription to that speci�c data.

MqTT, from which MqTT-S is derived, is a in fact a messaging protocol used

by several popular instant messengers. MqTT-S is based on same principles,

but it has been designed extend connectivity beyond IP networks and to be

more sparing in constrained M2M communication [SCT]. MqTT-S is capable

of communicating directly with a IEEE 802.15.4 MAC layer.

STMP

Sensor data Transmission and Management Protocol [AF11] (STMP) is a

transport framework designed for sensor data delivery. Sensor networks utilize

various transport layer protocols for data dissemination, such as UDP, TCP,

RTP [SCFJ03] and ATCP [LS01]. SMTP has taken this into consideration

in its design by being �exible and capable to choosing the correct and most

suitable protocol for the sensors. It is also designed to have minimal overhead

since the targeted devices are in many cases power and network constrained.

Similarly to MqTT-S, STMP uses �xed services in the infrastructure network

to collect data. These points are referred to as fusion points. Sensor devices
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registered themselves to these fusion points by some transport protocol they

support. End-user applications then connect through the fusion points to the

sensor devices. This way the fusion point has all responsibility over trying to

keep a reliable connection to the sensor, while the client only has to maintain

a connection to the fusion point.

In addition to technology independent transport level data dissemination protocols

for sensors, there are several technology speci�c and monolithic bottom-to-top stacks

that support various application layer features. Probably the most notable one of

this kind is DASH7 [Nor09] with their open source stack called OpenTag.

2.4 Semantic layer

The topmost layer in our IoT stack is the semantic layer. It is the highest ab-

straction level of IoT, which in the common case is also the layer that implements

various interfaces for end-users. The essence of the semantic layer is to hide sensor

accessing details from the user and provide some user-friendly application that use

the underlying sensor networks. Services on the semantic layer can be considered

as consumers of the information gathered by the content producers, or things, as we

call them.

Real life applications that use sensor readings or triggers and control actuator de-

vices need to be abstracted to the end-user in order to be e�ective and convenient

to use. Something as simple as automatic lights at home can be complicated to con-

�gure without service abstraction for creating pro�les that connect motion sensors

with light triggers. Such services implement an application programming interface

(API) to the sensors and actuators, which end-user oriented applications can use for

simpli�ed access to things.

Semantic layer applications usually follow a service-oriented architecture (SOA).

How the underlying network of things is divided into service units depends heavily

on the application. In other words, a service unit can either be a single device or a

large set of things. There are several ways to implement service-oriented applications.

One common way is to follow existing architecture styles, such as Representational
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state transfer [FT02] (REST), which is an abstraction architecture for the Web.

Its goal is to simplify remote access to resources, such as sensor devices. REST

uses primarily HTTP as its application level transport protocol. It has even been

de�ned in the context of HTTP, but despite that it does not require HTTP. Any

protocol that provides a su�cient set of messaging methods is enough to provide the

building blocks for a REST API. With the help of a REST API access to sensors can

be simpli�ed. Figure 3 illustrates a common scenario where a client uses a sensor

device through a REST API without having to know anything about how to access

the sensor on the protocol level.

Figure 3: Client accessing a sensor through REST.

Another essential �eld of interest on the semantic layer is presentation of data.

Large amounts of sensor data require some sort of visualization or representation in

order to be easily understandable. Large and complex sensor �elds for monitoring

phenomenon like tra�c, weather conditions and natural disasters produce lots of

raw data. In order to make data directly useful for a human observer it has to be

parsed for events of interest. This is achieved through semantic applications that

process the data and draw conclusions based on it.
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3 Information-Centric Networking

The design foundations of the current Internet architecture dates back several decades.

Originally the motivation for networking was sharing of scarce and expensive re-

sources, such as card punchers or mainframe computers. At that time the network's

task was purely to deliver packets between two endpoints, which resulted in com-

munication that was host-to-host by nature. This connection-centric paradigm met

the requirements of networking at that time, and since then it has been generally

acknowledged and growing continuously.

Roughly four decades later the Internet has evolved into something that was im-

possible to anticipate in its early days. Today connected hosts are more than the

originally plentiful address pool can handle [ICA11]. The amount of hosted data

is hard to estimate, but one thing for sure is that it is still continuously growing.

Internet connectivity is being expanded to a wider scope of devices, such as smart-

phones, televisions, audio equipment and even vehicles. The worldwide network has

grown enormously in every aspect, but the networking paradigm is still based on

the original design.

During the evolution of today's Internet the common usage model has changed

dramatically. Concepts like content distribution, mobility and security, which are

probably the most desired properties today, were unknown in the early days. Var-

ious patches and protocols have been addressed to add lacking functionality to the

Internet, but many of them have turned out to only complicate the overall archi-

tecture, and therefore sooner or later vanished from the network [Han06]. While

the old fashioned Internet design struggles to keep up with the demands of today,

a new networking paradigm, information-centric networking [XVS+13] (ICN), has

emerged from the research community.

In the current Internet content is addressed by hostnames and paths. A hostname,

which after resolving refers to an IP address, belongs to a device in the network.

Therefore it is eventually pointing to a location. This architecture enforced strong

coupling between data and location is in most cases unnecessary since the data does

not have to be coupled to the location. ICN's primary purpose is to break this

coupling through addressing data by its name rather than location.
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Early publish/subscribe [EFGK03] systems in the 1990s can be considered as the

�rst steps towards an information-centric networking model. Such systems are based

on the notion of topics or subjects, that clients can either publish or subscribe to.

While equivalents to these actions play a signi�cant role in today's ICN approaches,

the design of recent ICN implementations goes much deeper into network transport

and routing mechanisms. Early publish/subscribe systems were purely application

level implementations running on top of conventional IP.

In the recent years several di�erent proposals of ICN architectures have been pre-

sented. The research communities' interest in ICN has increased after a much at-

tention gathered Google Tech Talk [Jac06] held in 2006. The �rst complete ICN

architecture, data-oriented network architecture [KCC+07] (DONA), which revolu-

tionized the content addressing by replacing hierarchical URLs with �at names, was

introduced in 2007. Since then other notable ICN architectures, such as Named Data

Networking [NDN] (NDN), Publish Subscribe Internet Technology [PUR] (PURSUIT,

follower of PSIRP), Network of Information [Net] (NetInf), Content Mediator ar-

chitecture for Content-aware Networks [COM] (COMET) and Convergence [CON]

have been introduced.

3.1 ICN fundamentals

Several di�erent Information-Centric Networking (ICN) architectures have emerged

during the last decade. Most of them, however, share same principles and char-

acteristics. All of them have a common goal in trying to provide an alternative

networking paradigm that would ful�ll the requirements of today's Internet more

e�ectively. In other words, and as the name claims, they all focus on moving the In-

ternet away from the current connection-centric, or �client-server�, model to a more

suitable information-centric Future Internet [PPJ11]. In this Chapter we will look

at design commonalities in di�erent ICN architectures.

The basic building block in every ICN architecture is content addressing by its

name. Current ICN architectures implement this in di�erent ways. Some, such as

DONA and PURSUIT, use a �at naming scheme for content. Information addressed

with �at names must globally unique, which leads to non-human readable names.
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However, unique names are self-certifying, because each name can point to only one

unique data object. Therefore, the name of a data container can be used to verify

that the integrity of the actual payload. A �at naming space has also advantages

in mobility, since clients are unable to move from one domain to another due to the

absence of the whole concept of domains.

In terms of scalability a �at naming space does not cope very well. Due to the

lack of hierarchy, a �at namespace requires costly content resolution mechanisms

for routing [XVS+13]. A hierarchical naming scheme provides a location-identity

binding, which can be used to de�ne routes for certain content in the network.

While this binding is bene�cial in scalability, it must be noted that de�ning the

network topology should only be done on a su�ciently high level. After all, it

basically is about binding locations to identities, which has been identi�ed as one

of the de�ciencies in today's Internet architecture.

Name resolution is an open question in ICN. Majority of the ICN proposals, such as

DONA, PURSUIT, NetInf and COMET, are based on separate resolution services

in the network. Despite the fact that each one of them play a similar role in the net-

work, they have been given di�erent names; Resolution Handler (RH), Rendezvous

Node (RN), Name Resolution System (NRS) and Content Resolution System (CRS)

respectively. Separate resolution services deployed in the network resemble an aw-

ful lot the current DNS system, which has also been pointed out as a de�ciency in

today's Internet. In contrast, NDN and Convergence implement name resolution

as an embedded feature in network routers. NDN does name resolution on each

router on every object that it gets a request for. Content routers check their own

cache initially on every incoming interest. If the router is capable of providing the

requested data, it sends the data to the requester. If the content router does not

have the data, it performs longest pre�x matching on the hierarchical name, and

sends it accordingly to the next router. Convergence implements a similar resolu-

tion scheme, but in addition to NDN's scheme Convergence has a fallback option of

querying a separate resolution service.

Transparent caching of information is fundamental in ICN. A huge share of the

information moving in the current Internet is being retransmitted from its original
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host over and over again. In an ICN architecture where location has no value

regarding the information, this kind of content awareness combined with caching

could reduce the amount of tra�c signi�cantly. Caching and content awareness has a

key property in information-centricness. All of the aforementioned ICN architecture

proposals implement native on-path caching. On-path caching is an opportunistic

caching strategy, where each router located on the designated data path caches

everything that passes it. If there is a subsequent request for the same data crossing

that path before the cached copy expires, the request can be satis�ed with the cached

copy without propagating the request any further.

Mobility is increasingly gaining more attention since Internet connectivity is making

its way to all kinds of mobile devices. In the current connection-centric Internet

mobility has been a primary shortcoming, since a connection hand-o� is practically

just shutting down one link and opening another one. Applications using a link

hardly know how to react while disconnecting, and the outcome is many times no

more than a humble apology to the user. This is a problem of stateful connections,

such as TCP/IP. In contrast, ICN architectures use stateless connections. In case

a client faces a connection hand-o� by moving to another physical location, a new

connection is likely to be established as soon as possible. If the spontaneous hand-o�

interrupted the transmission of an information block, a request for that same block

should be reissued via the new link. Due to the stateless connections there is no

handshake overhead by the protocol. Additionally, since the user cannot move long

distances at once, probably only to an adjacent domain, the content he received only

half-ways relies very likely on a geographically nearby router. ICN provides natively

su�cient ways to handle receiver mobility. However, sender mobility is still an open

question.

Trust and security is an open issue in ICN. In the current Internet architecture many

trust and security models are based on authenticated hosts. In other words, data

can be trusted if it comes from a source that can be proven to be legitimate. In an

ICN architecture this kind of entity based trust cannot exist since valid information

is designed to come from anyone. Therefore, security in ICN must be embedded into

the information objects. This has been implemented in most of the aforementioned

ICN architectures. However, security still remains as an open question.
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3.2 CCN

The Content Centric Networking [JST+09] (CCN) architecture is a ICN implemen-

tation from Palo Alto research center (PARC). CCN is continuation to the afore-

mentioned NDN architecture, which principles were initially presented in a Google

Tech talk [Jac06]. The CCN project was chosen to be one of the supported projects

by Future Internet Architecture program (FIA). FIA's purpose is to fund research

projects regarding all kinds of design proposals for the future Internet. Four ICN ar-

chitectures were chosen, including CCN as one of them. Recently CCN has gained a

lot of interest since it is being actively developed and is a promising pioneering ICN

implementation. The open source implementation of CCN is called CCNx [CCN].

CCN's primary task is replacing where with what in networking. As with most other

ICN architectures, CCN addresses content by name, rather than location. In CCN

this is achieved through elevating the so-called narrow waist of networking. Figure 4

illustrates the di�erence between current IP's and CCN's narrow waist. Elevating

the narrow waist of the Internet architecture to the content layer and introducing

a strategy layer between the content layer and the underlying network enables new

ways of moving data. The transport medium can be practically anything, ranging

from common IP to unreliable opportunistic networks, and even portable drives.

Figure 4: Current Internet architecture's networking stack (left) compared to the

elevated narrow waist stack introduced by CCN (right).

CCN uses hierarchical naming of content. Its naming scheme resemble much the

URL scheme of today's Internet. However, the big di�erence is that these names
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are not pointing to locations. Valid names in CCN are in fact pre�xes that are

matched to existing content. As an example, a client requesting content by the

name ccnx:/foobar could be satis�ed by content that has been published by the

name ccnx:/foobar/index.html. Since requests for content are issued on a pre�x

basis, the content provider, in our case foobar, would decide over what content to

provide by default to a request with no further content description. After providing

the default content, index.html, our example client might �nd inside that object

a link to, say, ccnx:/foobar/login.html, which would address further content on

the site he is browsing. The same analogy applies to dynamic content that is split

into chunks and generated continuously, such as a live stream. A stream's handle

could be obtained by the pre�x ccnx:/foobar/video, which would provide the

most recent chunk of the stream. Successive chunk names could be deduced from

the received content, and by concatenating su�xes to the name pre�x describe the

whole chain of chunks, e.g. /_c1, /_c2, and so on.

Content in CCN is requested through issuing an InterestMessage (IM) describing

a name pre�x. IMs are satis�ed with content containers known as ContentObjects

(CO). Issued IMs are routed with a hop-by-hop basis through Content Routers (CR).

Content routers consist of three main data structures, FIB, PIT and CS. These data

structures are explained below.

Forwarding Information Base (FIB)

FIB is a data structure that contains forwarding information that is used

while routing IMs. Entries in the FIB are pairs of speci�ed name pre�xes and

outgoing faces. The CR does longest pre�x matching on incoming IMs, and

based on the outcome decides which outgoing face potentially leads to the

requested data.

Pending Interest Table (PIT)

PIT keeps track of every IM that have been forwarded by the CR. Each passing

IM leaves an entry in the PIT. These entries are used if the IM is eventually

satis�ed and the content has to �nd its way back to the original issuer of the

IM. PIT entries are analogous to breadcrumbs, which are used to keep track

of a traversed path.



22

Content Store (CS)

CS is the cache of a CR. By default every CR does caching through storing

passing COs in the CS. Every CR checks their CS on each incoming IM before

deciding whether to forward it or not. If the CR is capable of providing a

cached copy of the requested data it is prioritized over propagating the IM

further to the network.

In addition to the CS, CCN also provides repositories for persistent storage of con-

tent. These repositories can be separate services deployed in the network, or alter-

natively running within a content router. Content has a limited lifetime in routers.

COs can be generated with a lifetime parameter, FreshnessSeconds, which indicates

how long it will take for the content to become stale. If a CS' capacity is about

to get �lled, stale data is primarily purged from the CS. If the CS is about to get

�lled with non-stale data, fresh data is removed on a least-recently-used (LRU) or

least-frequently-used (LFU) basis. Therefore, there is no guarantee over how long

data will remain in the CS. CCN repositories are designated to provide long term

storage for content.

Security, as earlier mentioned in Section 3.1, has to be embedded within the content.

In CCN all public content is authenticated with digital signatures. Private content

on the other hand is encryptable with encryption keys, which the entities have

to exchange by themselves. In order to make public content authentication less

troublesome, ContentObjects have designated �elds for embedding a key within the

content or to carry a key locator that provides the authenticator a name by which

the correct key is retrievable. This public content authentication is purely syntactic,

since malicious content can be equipped with a key that authenticates the bad

content. In other words, content may be authenticatable, but that does not mean

its valid or trustworthy data. However, the key issuer can of course be validated

too. As earlier mentioned in Section 3.1, security in ICN architectures is still an

open question. A built-in authentication mechanism in CCN is a building block for

a robust way of authenticating data, which is yet to come.
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4 CCN in a sensor environment

This thesis work combines Content-Centric Networking (CCN) and the concept of

Internet of Things (IoT). In this Chapter we look at di�erent ways on how to

make use of the hierarchical CCN-content naming, in-network caching and other

information-centric networking characteristics in a sensor environment.

4.1 Motivation

Many of today's wireless sensor networks (WSN) are completely segregated and

isolated. In critical applications that is intentional and desired in terms of security

and safety. In contrast, many non-critical sensor networks could contribute, or

bene�t from being connected to a bigger ecosystem. Extensive connectivity of the

sensor network nodes is required in order to participate in a larger ecosystem, such as

the IoT introduced in Chapter 2. However, extensive connectivity is not that easily

achieved due to hardware limitations and several di�erent competing technologies.

Current WSNs are built using various di�erent technologies. These technologies

provide a wide selection of characteristics to suit almost any kind of sensor network.

Some WSN applications might �nd constrained and energy e�cient operation most

important, while some other sensing environment may depend on long distance

connectivity. Most of these technologies operate on protocol speci�c hardware due

to dedicated frequencies and sensing network topologies.

Due to the di�erences in sensor network hardware most of the technologies are incom-

patible with each other. There is a standard [43407] which aims at unifying sensor

to host communication. This standard covers all IEEE 1451.5 approved technolo-

gies, namely IEEE 802.11 [SCC13], IEEE 802.15.4 [CGH+02], Bluetooth [LDB03]

and ZigBee [Far08]. The standard speci�es communication over the air from the

Wireless Transducer Interface Module (WTIM) to the next Network-Capable Appli-

cation Processor (NCAP). It also speci�es communication between interconnected

NCAPs, but it does not take account to how the data should be further propagated

to the network from the NCAPs. This is intentional since the standard's scope is

only between the physical and transport layers.
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Standardizing and unifying sensor technologies is a step in the right direction to-

wards extensive connectivity of sensors. However, there is no standard that would

specify how sensor data should be handled on the application layer. Currently

there are several IoT-oriented protocols competing. Some of them are introduced in

Chapter 2.3.

Many of the IoT-oriented protocols, such as CoAP and REST, are HTTP counter-

parts. It means that they operate on top of an IP stack, which requires that each

contributing device has to be uniquely addressable through underlying IP mecha-

nisms. HTTP by speci�cation does not require a certain transport and network

protocol pair, but TCP/IP is by far the most commonly used. Due to old fash-

ioned principles of IP we may run into problems concerning scalability and address

allocation in some environments.

Probably the biggest concern right now is address allocation. According to an esti-

mate [Eri11] there will be over 50 billion devices connected to the Internet by year

2020. That is over 11 times more devices than the traditional IPv4 theoretically is

capable of providing unique addresses to. Due to sloppy allocation the available ad-

dresses are even less in practice. Therefore it is quite obvious that IPv4 is incapable

of providing connectivity to all potential devices.

As a solution to IPv4 address space shortage the next version, IPv6, has been

introduced. Even though IPv6 has been around since the late 1990s, it has not

seen a wide scale breakthrough in usage yet. Reason for its slow deployment is

explainable through Network Address Translation (NAT), a workaround to escape

the address shortage, and IPv6 tunneling through IPv4 networks, allowing the non-

interoperable IP versions work side by side. Statistics by Google [Goo] show that

their user activity over IPv6 reached a one percent share in November 2012.

Despite the fact that IPv6 would provide plenty of addresses for future devices and

its use is continuously growing, all connections would still be point-to-point. That

is not necessarily a bad thing, but in our solution we are looking at a di�erent

approach. Point-to-point connections work �ne when both entities are static and

singletons. If either of the entities are mobile we face a mobility problem. If, on the

other hand, the receiver entity is a set of individual recipients we have to either rely
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on multicast or deploy a message broker, proxy server or a gateway in the network.

Deploying extra services to the network is not the most elegant way to solve a one-

to-many problem. Message brokers and proxy servers introduce a single point of

failure (SPOF) in the network unless replicated to an adequate degree. Gateways

introduce a SPOF as well, but depending on the topology its downtime could make

the sensors behind it inaccessible as well. A demand for separate services deployed

in the network would break the seamless interoperability the sensors could otherwise

have.

Multicast, on the other hand, is not guaranteed to be supported in every network.

Besides that, multicast is sender driven. This would mean that every data object

would be necessary to send whether or not anyone would need it at that time. Also,

sensor data granularity would thus depend on transmission frequency of the sensor,

which could cause excessive power consumption of a low power sensor device.

We try to tackle these issues by presenting CCN as a possible transport protocol for

sensor data. Most importantly, CCN is designed to be independent from transport

and network layer protocols. Data in a content-centric network is addressed by

the actual content instead of where the data is hosted. Therefore interconnection

between CCN nodes does not rely on any addressing scheme from a network protocol,

such as IP. However, because CCN nodes are not yet widely deployed, it is capable

of operating on top of IP for the time being.

CCN also bene�ts from simultaneous connectivity models since it uses stateless

connections. It has weak demands on the data layer (OSI layer 2), which makes

it good for unreliable connectivity. In a worst case scenario data objects from a

sensor device could be transparently delivered to the network through opportunistic

network technologies, or any other CCN supported type of moving data.

With CCN there is no need for message broker servers or proxies. A message broker

server in general is needed when there has to be some centralized system that collects

data from the sources and delivers it to all the sinks with subscriptions to the data

in question. In CCN such message brokers are not needed because all the clients

can subscribe to any data they are eligible to get through issuing an InterestMessage

describing the data. Since content-centric networking does not address content by
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location, the data is either at the source node or located on a path leading to the

source. It might even be at some of our client's neighbors, in case it had retrieved

the same data object prior to our client.

An intermediate proxy is another way to enable client-to-sensor connections. There

are usually other motivational factors as well as simply enabling connections. Proxies

usually provide caching of data in order to reduce the workload of the data source.

A proxy may also be deployed if the data sources are in a private network which is

accessible only by the proxy from the outside. Caching is done by default on all CCN

enabled routers. In other words separate proxies are not needed in a CCN network,

since all the routers take care of the caching. In a private network scenario some

extra service is needed. A dedicated CCN repository outside the private network

gathering all data objects from the sensors would be one way to work around the

limited access network. On the other hand, if network addressing was �at there

would not be unintentional private networks accessible only through proxies or NAT

technologies.

In our approach we aim for a higher abstraction level in accessing services and

sensors, or so-called things in the Internet. This higher abstraction is achieved

through CCN's hierarchical and descriptive addressing of data. Another key interest

for bringing CCN to IoT is in-network storage and caching of content. Caching in

CCN is built in and it is done by default on every CCN-enabled router. Content-

centric networking suits our vision well, which we will explain and demonstrate in

the following chapters.

4.2 One-time data retrieval

In CCN data exchange is always pull-driven. Data transmission is initialized with

issuing an InterestMessage (IM) describing the wanted data. The IM is generated

based on the descriptive and hierarchical name of the requested data. It may also

contain additional bits of information describing the data. This issued IM is prop-

agated in the network according to the speci�ed routing strategy and each node's

Forwarding Information Base (FIB) entries. It is being passed around the network

until a node has data that satis�es the IM or its Interest Lifetime expires.
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While the IM advances in the network it leaves an entry in every CCN routers'

Pending Interest Table (PIT) that it passes. When an IM eventually reaches a node

that holds the requested data, the data is sent back the same route following PIT

entries left on the path. Intermediate routers does not only forward data but also

store a copy of the passing data. This is a built in feature in CCN to provide

transparent in-network caching.

Many low-powered sensor devices can bene�t from letting the network store and

further propagate sensor data. Consider a scenario in which n clients scattered

around a network are interested in sensor data d generated at a speci�c time t.

Let us denote this data object by d(t). Each one of the n clients generates an

IM that matches d(t). The IM's are dispatched approximately at the same time.

Due to network latency and other transport variables we cannot say which one

arrives �rst. One of them arrives �rst at the sensor or its closest responsible CCN-

enabled gateway. The �rst arriving IM, denoted by i0, is replied with a generated

ContentObject (CO) containing the requested data d(t). This newly generated CO

is delivered back to the issuer of i0 and the same path in reverse order following PIT

entries left on the path. On each router on the path a copy of d(t) is left to provide

the same data for possible future interests. If one of the remaining IM's (i1, ... , in)

happen to pass one of these routers they are satis�ed with the cached copy of d(t).

The FreshnessSeconds of d(t) should be set to match the measuring time granularity

of the sensor device. Some sensor devices report updated values only between a

Figure 5: Two clients are interested in data object d(t). Intermediate CCN router

provides a cached copy of d(t) in exchange to the second interest i1.
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speci�ed time interval of up to several minutes. In such cases it is unnecessary to

dispatch multiple instances of COs with exactly the same data. Figure 5 illustrates

one-time data retrieval from a sensor device.

4.3 Stored data retrieval

Caches, or Content Stores (CS) in CCN context, introduced by every CCN router are

not a persistent data store. There are no guarantees of how long a CO will stay in a

CCN cache. In order to store long-term and historical data in the network we have to

establish a CCN repository on some router. The repository can be con�gured to store

all COs that passes by it and satis�es criterias regarding the data we want to store.

If, for example, we want to store readings from ccnx:/alice/home/temperature, we

could de�ne every CO that matches that name pre�x to be taken into the repository.

An alternative way to push data into a repository is through issuing a Start Write

(SW) command from the sensor side to the repository. After a successful SW com-

mand the repository requests for data described in the SW. This way the sensor can

fully control all the data that it puts to the repository. It does not have to count on

that its COs pass the responsible repository.

Let us take an alkaline battery powered household-oriented temperature sensor for

example. Due to power saving behavior it might report its reading only every couple

of minutes. Instead of dispatching its data to the CCN network only on demand

Figure 6: Sensor node pushes its data to a CCN repository. Data is available at the

repository even if cached copies at the CCN router had expired.
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it could push the value of each measuring point to a repository. The repository

is capable of storing historical data and serving all incoming IMs targeted to the

sensor. Figure 6 illustrates a scenario where a repository is used to aggregate and

propagate sensor data.

Whichever way is utilized to propagate data into the repository, once it is there it is

persistent. Clients that request the stored data issue a normal IM and in return they

will get a matching CO from the repository. This leaves the sensor intact reducing

its workload.

4.4 Actuators

Remotely controllable things in the Internet provide telecommand features. Such

features require actuator commands to operate. An actuator command targeted to

a speci�c device contains information about which action to perform. For example,

possible actuator commands for a remotely controllable light bulb could be state

changes between on and o�, or a percentage to dim the light to.

As earlier mentioned, CCN is always pull oriented. Therefore, data containing the

wanted state cannot be pushed to the remotely controllable device. Instead we

can request for a certain state. Technically an actuator command is very similar

to the one-time data retrieval explained in Section 4.2. The actuator message is

constructed like any other IM. Instead of content this actuator IM shows interest in

certain action.

Consider a scenario where a client, Alice, wants to switch her lights on. Alice

generates an IM, which is addressed to the light switch. In order to make it

an actuator message, a pre�x describing the wanted action is appended to the

name. For example, Alice could generate an IM addressing content by the name

ccnx:/alice/light/on. Let r0 denote this IM. A CO satisfying r0 must not be

available in the network. Like any other IM, r0 is routed according to longest pre�x

matching and optional routing rules.

Eventually r0 arrives at its destination. The longest pre�x match is achieved as

close as CCN is capable of going to the actuator device. It is now up to the device,
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in this example the light switch, to initially parse the last name component to see

which action is requested and to make sure that the issuer of r0 is eligible to perform

that action. In case both conditions are met the action can be carried out. Whether

the outcome of the action was a success or not, Alice must be informed about it.

According to the CCN protocol speci�cation [CCN] an IM must be satis�ed with a

CO, or else the IM is considered as unsuccessful. The actuator device now generates

some payload based on the outcome of the action, and wraps it in a CO and sends

it back to Alice in return for r0. We refer to this acknowledgment object as a(r0),

which technically is a CO. This example is illustrated in Figure 7.

One important thing to note regarding the acknowledgment object is that its Fresh-

nessSeconds must be set to zero. If it had a lifetime longer than zero, we would

break the invariant regarding actuator commands not having matching data present

in the network. In other words, we do not want to keep the acknowledgment objects

alive in the CCN caches.

Using CCN for actuators as explained here is contradictionary to the philosophy of

Information-Centric Networking (ICN). First of all, in case of a remotely controllable

device the location of the device usually matters signi�cantly. ICN tries to hide the

source of the data, while with an actuator command in question the physical location

of the source has to be unique, and in most cases also well known by the end user.

Secondly, actuator commands do not bene�t at all from in-network caching. In fact,

caching of COs, which are used as acknowledgment messages, would be harmful to

the operation. However, caching stale data is not harmful, but its persistency is not

guaranteed. Instead of providing a perfect solution, our goal is to give a practical

example of actuator commands over CCN as a proof on concept.

Figure 7: Client requests for an action. Successful execution of the request is ac-

knowledged with a a(ro) message.



31

5 Testbed implementation

In order to evaluate the bene�ts of CCN in a sensor environment we implemented

and established a testbed. The platform we used for the implementation is a home

automation system provided by There Corporation. The automation system sup-

ports wireless sensors for various purposes, such as temperature, humidity and en-

ergy consumption measuring. Our testbed was deployed in a greenhouse located on

the CS department roof. The greenhouse was originally founded for other research

matters, but for our purpose it was a convenient place to gather actual data and

possibly even attract public interest.

5.1 System overview

Backbone of our testbed implementation is a Linux-based router device called the

ThereGate [The]. It is a commercially available home automation system provided

by There Corporation. The ThereGate supports various wireless technologies, such

as Z-Wave and ZigBee. Additional technologies' support can be added through USB

and their corresponding drivers. Despite the variety of available technologies we will

discuss only Z-Wave in this thesis. Same principles can, however, be applied to any

technology.

The ThereGate uses DBus for internal communication between di�erent software

components, such as technology drivers and presentation bridges. A technology

driver provides an application programming interface to the physical sensor devices,

while a presentation bridge is an application interface to remote clients. Primary

remote access method to the ThereGate is through HTTP. Figure 8 illustrates how

machine-to-machine (M2M) connectivity is built between the network and the sensor

devices through the ThereGate.

5.2 CCN presentation bridge

Our testbed implements a new presentation bridge for the ThereGate. It commu-

nicates to the external network through CCN. We call it pb-ccnx. The default
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Figure 8: M2M connectivity through the ThereGate

HTTP presentation bridge works like any other HTTP client-server application;

data is requested with 'GET', and if successful response is given back with a '200

OK' header. In CCN data exchange is di�erent. Data is requested through issu-

ing an InterestMessage (IM) describing the data, which is satis�ed in return with a

ContentObject (CO) containing the actual payload. Chapter 3.2 explains Content-

Centric Networking more in detail.

On the ThereGate there is a CCN repository running for local storage of sensor data.

The repository is capable of storing historical data practically as much as needed.

Storage space is not a limiting factor as data containers are relatively small, and

storage is always extendable through USB mass storage. As well as with any other

data in a CCN repository, this data is also dispatchable to the external network if a

client happens to request a past reading, or even a serie of consecutive readings for

charts or diagrams.

5.2.1 Component description

The core of our CCN presentation bridge, pb-ccnx, is strongly coupled with CCN

and ThereCore. It is also coupled to the CCN repository implementation, but it

is not compulsory for pb-ccnx to operate. Both ccnd, daemon for CCN connec-

tivity, and ccnr, CCN repository, are available as a part of the CCNx open source

project [CCN]. ThereCore on the other hand is proprietary software owned by There

Corporation. ThereCore is the core software on the ThereGate that communicates

with the sensor hardware on the system. It provides a C API for all ThereCore

features for implementing new technology drivers, presentation bridges and other

application speci�c needs. Figure 9 illustrates how the components are connected
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Figure 9: Visualization of the interconnected components and data �ows.

to each other.

As �gure 9 shows, our work connects these two sides. We release pb-ccnx source with

this thesis, but it must be pointed out that it depends on ThereCore, and is most

de�nitely not going to work on any other system as it is. Further implementation

details on pb-ccnx are explained in Chapter 5.2.3.

An incoming IM can be treated in three di�erent ways depending on the use case.

The three use cases are explained below.

I. Interest for current reading

In this use case the client is interested in what the sensor reading is at the

moment. Names described in such IM are registered by threads launched

by pb-ccnx. There is a dedicated thread running for each sensor interface

provided by ThereCore. This responsible thread sends a signal on the DBus

requesting for the latest value. An example IM for this scenario could be

issued for a name like ccnx:/alice/home/temperature. The IM is eventu-

ally satis�ed with a CO generated and dispatched by the responsible thread.

Chapter 4.2 explains a detailed example scenario of this use case.

II. Interest for historical reading

Persistent data is stored in a CCN repository. Therefore, in this use case

the sensor speci�c handler thread is not responsible for generating, nor dis-

patching, the response CO. It is the repository's responsibility. Historical data

objects can not be stored with an overlapping name. Thus we append Unix
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timestamps to the content name in order to describe and granularize the data.

The timestamps are also used in retrieval of sensor reading from a longer time

span. Chapter 5.2.2 has a detailed description of the timestamp usage. An

example of such a use case is presented in Chapter 4.3.

III. Interest as an actuator

This is similar to use case I. The di�erence is that instead of retrieving a value

from the sensor device we request it to perform an action. The IM is issued

with a name describing the action, such as .../lights/on for example. It is

the handler thread's responsibility to signal the action request to the DBus,

wait for a signal about the outcome, and �nally satisfy the IM with a CO

that will inform the client regarding the outcome. A more detailed description

explained through an example can be read in Chapter 4.4.

There is also a fourth kind of scenario which di�ers in a fundamental way from

the three cases explained above. It is the scenario where the sensing device is the

trigger. As earlier mentioned CCN data exchange is always pull driven. Therefore,

the sensor is unable to push data to the network. As initializing data transfer in the

opposite direction is very contradictory with the whole concept of CCN, this has

been left outside the scope of this thesis work.

5.2.2 Messaging format

Sensor readings are wrapped as JSON objects in CO. We decided to use JSON for

data representation instead of XML because JSON is designed to be minimal and

portable [Cro06]. It has a slightly simpler syntax and causes less markup overhead

due to being a little more concise. The payload is wrapped into the CO as plain-

text. If the data would have to be encrypted, CCN provides native mechanisms for

encrypting the payload. Figure 10 shows an example JSON object carrying a tem-

perature reading. It also shows other vital members. Table 1 explains the di�erent

members in a pb-ccnx message.

As CCN names are pre�xes that match to content, we need to have a mechanism to

address chains of COs in order to retrieve sensor data from a time span. We did this
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Member Description

ts Contains a timestamp (ts) of the moment the current sensor reading

was taken in Unix time format.

prev Unix timestamp of the previous (prev) sensor reading.

data This member contains an array of objects wrapping attribute (attr)

and value (val) tuples. This is where the actual data travels. Objects

in this array can be multiple, in case the sensing device provides

various strongly related readings.

Table 1: JSON object member table

Figure 10: Sample JSON object containing a temperature reading.

by carrying the timestamp of the previously issued CO from the same data source.

The timestamp of the previous CO is then used as a su�x after the name registered

by the sensor in order to describe a CO from a certain time. This way after retrieving

one CO from a sensor, we can use the previous timestamps iteratively to aggregate

past COs just like a linked list. By default the registered name pre�x returns the

most recent CO. Figure 11 illustrates this linked list created by COs generated at

di�erent times.

5.2.3 Implementation details

Our presentation bridge implementation is written in ANSI C89. C was an obvi-

ous choice, because both CCNx and ThereCore are implemented in C. Both APIs

are therefore convenient to use respectively. In addition to standard GNU/Linux
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Figure 11: Linked list construction where previous link is carried within the payload.

libraries, our implementation depends on Posix thread support since it is heavily

threaded. Other dependencies, such as OpenSSL and DBus, are implied by CCNx

and ThereCore.

When pb-ccnx is initially launched it connects to the locally running CCN daemon,

ccnd. After successfully connecting to ccnd it registers a prede�ned CCN name

pre�x for the sensors it is going to serve. This name pre�x can also be considered as a

path name common to all the sensors this current pb-ccnx instance possesses. These

name pre�xes follow the CCN descriptive and hierarchical naming conventions. To

avoid confusion with terminology regarding CCN name pre�xes and DBus paths,

we will refer to the name pre�x shared by all local sensors as their namespace. As

an example, a valid namespace for a set of sensors could be ccnx:/alice/home.

Once pb-ccnx has registered its namespace it makes a DBus name request. A

name is required for every client operating on the DBus. For this purpose we use

com.there.pb-ccnx. Once pb-ccnx is connected to DBus, it queries for present

sensor devices. ThereCore represents sensor devices on three levels; P-, L- and I-

devices. We only care about I-devices for now. P-devices (physical) are used for

lowest level access to the actual device. L-device (logical) layer is on top of the

physical layer in case a single sensor device provides several di�erent measures. All

of these transducers providing readings can be seen as separate sensors with the

help of L-device mapping. I-devices is the highest abstraction level of representing

sensors. All present I-devices are iterated through and a thread is started within

pb-ccnx to serve the sensor. We refer to these threads as handler threads from now

on.

Each I-device has a human friendly name de�ned by the ThereGate con�guration
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Figure 12: Illustration of software component communication on a thread level.

software. This name is user de�nable for every sensor and it can be any alphanu-

meric string. Each sensor's human friendly name is fetched from the ThereCore via

DBus by pb-ccnx. Every handler thread registers then the top level namespace con-

catenated with its corresponding sensor name as its own name. As an example, the

thread might register a name like ccnx:/alice/home/temperature. After pb-ccnx

has iterated through all available I-devices, all of its sensor threads go into a stand

by state. In the stand by state each thread is waiting for IM matching the name it

earlier registered to.

In addition to the I-device speci�c handler threads pb-ccnx also runs a DBus mon-

itor thread that waits for updates from the sensor side. All data retrieved this way

is put into the repository, since there are no pending IMs for this data. Figure 12

shows a diagram of component connections on a thread-based communications level.

5.3 Experiment & evaluation

Our CCN presentation bridge was installed on a ThereGate that was coupled with

temperature, humidity and energy consumption meters. The experiment testbed

was deployed in a greenhouse established for other research purposes. Our CCN

presentation bridge was accessible from the infrastructure network, but since CCN
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routers are practically non-existent, we did not have any public interest in our sensor

readings. The data was available for the public, but since we did not advertise the

data anywhere, no CCN router could have located our content by other means than

IM �ooding through broadcast. The sensor data was not advertised since the nature

and maturity of our implementation is still experimental. Also because this thesis

work is a proof of concept rather than a �nished product.

In this thesis work we have given a proof of concept that sensor data dissemination

is possible over CCN. In addition to the proof of concept we stated explicitly some

research goals in Section 1.2, which we sum up in the rest of this Chapter.

1. No point-to-point connections

One of the basic architectural key points in Information-Centric Networking

(ICN) is the absence of host notion. Therefore, this goal can be considered as

achieved, since the communication paradigm in ICN is not based on host-to-

host connectivity.

2. Transparent in-network caching

On-path caching is done natively by all ICN architectures presented in Sec-

tion 3.1. The end user does not have to explicitly know anything about cached

copies, since the network is responsible of providing the most recent valid con-

tent. Therefore, this goal can be considered as achieved.

3. In-network storage of sensor data

For persistent storage of data CCN provides native support for repositories,

that can be used to store data. A repository does not exist by default any-

where, but it is supplied with the CCN basic distribution and it can be ran on

any router or CCN capable device. Therefore, this goal can be considered as

achieved.

4. Reduced workload for the sensor devices.

On-path caching can reduce the workload of a sensors device dramatically,

especially if the device attracts lots of interest. With the help of CCN nodes'

caching features, this goal can be considered as achieved, since the network is

capable of hosting content supplied by the sensor.
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5. Provide a high-level abstraction layer to access sensor devices

A key design feature in ICN architectures is content addressing through names.

Many architectures, CCN for example, provides hierarchical and human read-

able naming of content. Therefore, this goal can be considered as achieved

since the the CCN naming scheme can be used to create high-level abstraction

access to devices.

However, there are some notable drawbacks to take into account when considering

CCN for a sensor environment. The fatality of these drawbacks depend much on the

application. Our small scale testbed did not su�er notably from these drawbacks,

since the our router had constant power and it had �xed Internet connection.

I. Overhead

Generating IM and CO, and especially signing them, requires some processing

power. If compared to a simple HTTP variant, CCN wastes more resources in

dispatching content. Also, a CO is slightly larger due to signatures embedded

in the content for authentication purposes.

II. Moderate complexity

As the CCN protocol for transport is not as simple as HTTP, it requires some

computational capabilities. In our implementation CCNx was running on a

Linux based router device which has su�cient capabilities of simple cryptog-

raphy capabilities for content signing. Executing the current CCN protocol

stack on some less powerful devices, such as the simplest transducers with IP

connectivity, is highly unlikely to happen because of the constraints regarding

processing power.

6 Conclusions

Current Internet is undergoing some fundamental changes. The amount of connected

devices is increasing rapidly and the whole �eld of networking is changing. The

nature of connected devices is changing while more and more mobile devices, home

electronics, sensors and even vehicles are equipped with Internet connectivity. In
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Chapter 2 we presented the novel concept of the Internet of Things (IoT). In this

concept the Internet evolves into a large sensing ecosystem, where things have a

di�use de�nition of being practically anything that in�uences with the real life and

contributes to the IoT in order achieve common goals.

The increasing amount of connected devices is a major challenge to the current In-

ternet architecture. To address this challenge research communities have proposed

several Information-Centric Networking (ICN) architectures to replace the current

networking paradigm to some extent. In Chapter 3 we presented ICN architec-

ture fundamentals and one architecture implementation, Content-Centric Network-

ing (CCN), in further detail. The current Internet architecture addresses content

by location, which has lost much of its signi�cance since most of today's Internet

tra�c is by no means coupled to location. In other words, ICN architectures urge

to drive the communication paradigm from where to what, and address content by

name instead of location.

We came up with the idea of combining ICN with the concept of IoT. We see that

the IoT �eld could bene�t from several ICN native properties. In Chapter 4 we

introduce this combination, evaluate some bene�ts that could be achieved this way

and eventually present how CCN would work in a IoT application on a practical

level. As a proof of concept we implemented a CCN interface for a home automation

system, that supports various sensor devices. This implementation is was presented

in Chapter 5. In Section 1.2 we made some research goal statements. Whether we

achieved the goals or not was evaluated in Section 5.3.
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