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Abstract

My thesis consists of three essays on the industrial organization of pharmaceutical mar-

kets. In Chapter 1, I introduce the three essays and present the main results. In Chapter

2, I quantify how uncertainty a�ects medical decision-making by physicians. I estimate

a dynamic model of demand where physicians may learn about the e�ectiveness of drug

treatments from their prescription experiences. In the model, physicians may want experi-

ment new drugs for their patients to get information that is valuable for their future drug

choices. At the same time, risk aversion can make physicians reluctant to try less well-

known, but potentially superior products. Using a rich Finnish data on cholesterol drug

prescriptions, I study the roles of experimentation and learning in drug demand. I �nd

that the e�ectiveness of cholesterol drugs varies across patients which creates uncertainty

to medical decision-making. My results suggest that uncertainty and risk aversion create

substantial switching costs in drug demand. I also �nd that if physicians became more

willing to experiment with their treatment choices, the process of learning would improve

and the e�ciency of medical decision-making would increase.

In Chapter 3, I develop a framework for analyzing demand for experience goods where

agents can learn product quality both from their own experiences and from the past

behavior of their peers. I modify the standard theoretical models with social learning,

by allowing agents to make repeated choices. I focus on the medical decision-making of

physicians under uncertainty about the e�ectiveness of drug treatment. I ask whether in-

formation on the past choices of other physicians improves the e�ciency of drug choices.

My estimates from the Finnish market for cholesterol drugs suggest that treatment pat-

terns relying heavily on the past choices of other physicians can lead to over-prescribing.

I show that continuity of care - in the sense of a patient repeatedly consulting the same

doctor - is an e�cient policy to limit over-prescribing and to promote learning.

Finally, in Chapter 4, I explore how intellectual property rights change the competitive

environment and technology �ows between �rms. Traditionally, stronger patents have

been viewed to have an essential role in promoting innovation. Economic theory predicts

that longer patents may hinder rather than stimulate innovation by increasing competi-

tion during the patent period. The theory also suggests that broad patents increase the

costs of imitation and thus decrease competition. I test the relationship between patent

strength and competition during patent protection. I consider the Finnish markets for

pharmaceuticals that provide rich variation in both patent length and breadth across

innovations. I �nd that patent breadth, rather than length, prevents imitation. Patent

rights have no e�ect on the risk of parallel trade.
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Introduction
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"Life is short, and the Art long; the occasion �eeting; experience fallacious, and judgment

di�cult."

Hippocrates

1.1 Introduction

This thesis contains three empirical industrial organization (IO) studies on markets for

pharmaceuticals. Economists have long been concerned with the question on whether

medical care markets are di�erent from other markets. The question goes back to a

seminal paper by Arrow (1963) who explained that the speci�c feature of the medical care

markets is uncertainty. In this thesis, I show that uncertainty has important implications

on the e�ciency of health care provision.

Uncertainty is particularly present in every dimension of the clinical judgment by a physi-

cian, from doing a diagnosis, to deciding a laboratory test, interpreting the patient's

symptoms and to choosing a medical intervention. A disease involves often the complex,

abnormal conditions of physiological mechanisms that depend on various factors, such as

the patient's genotype, choices and environment. Quanti�able data and the physician's

personal experience help to understand the disease and to choose a medical interven-

tion. The data can be easily stored and transmitted between physicians through patient

records, whereas the personal knowledge may not be explicitly measurable. This knowl-

edge can be gathered during the course of the patient's therapy, by treating other patients

with similar diseases, discussing with colleagues, reading academic journals and receiving

information through advertisements.

To illustrate the signi�cance of uncertainty in medical care markets further, consider

cholesterol drugs called statins that are prescribed to millions of people globally to de-

crease the risk for cardiovascular events, such as heart attack and stroke. An extensive

medical literature has documented that the bene�ts and side-e�ects of statins vary be-

tween patients, for example, by their age and gender. The physician may not thus know

in advance the health e�ects of statins for a patient. Moreover, in the early 2000s, the

use of a statin called Cerivastatin was linked to fatal kidney failures and to 385 nonfatal

cases, most of whom required hospitalization. Given that Cerivastatin was estimated to

have 700,000 users in the United States at that time, many physicians were not be able

to fully anticipate the extent of serious adverse e�ects (Furberg and Pitt, 2001).

In this thesis, I consider the behavioral consequences of uncertainty. In economics, an
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experience good is a product or service where product characteristics are not known

in advance but may be learned through di�erent channels, such as consumption or the

behavior of other agents. Many situations �t into this category, such a choice between

restaurants, a �rm's decision on subcontractors and clinical trials where pharmaceutical

�rms aim to minimize patient deaths.

Let's �rst consider a single agent's decision between di�erent alternatives under uncer-

tainty about their quality. A theoretical workhorse is the multi-armed bandit problem

(e.g. Gittins, 1979, Bergemann and Välimäki, 2006). In the problem, a gambler is in

the front of slot machines, or "one-armed bandits". He decides which machines to play,

how many times to play each machine and in which order to play them. When a certain

machine is played, a random reward realizes from a distribution speci�c to that machine.

The gambler's objective is to maximize the expected sum of rewards taking into account

that her information will improve over time. In other applications, the slot machines can

be replaced by, for example, products, services or medical interventions.

In the bandit problem, the agent has a trade-o� between exploitation and exploration.

In exploitation, she makes a decision that provides the highest current utility given her

information, e.g. a physician prescribes a drug which clinical e�ectiveness for a patient

is fairly easy to predict in advance. In exploration, the agent gathers more information

about its quality by experimenting, e.g. the physician prescribes a new drug treatment

with highly uncertain clinical e�ectiveness. If the agent is risk averse, she can be unwilling

to try new, less well-known products, which decreases the price elasticity of demand. If

she nevertheless switches between products, she undergoes direct (current) welfare losses

but may bene�t from new information in the future. The second chapter of this thesis

quanti�es the roles of exploration and experimentation in demand for cholesterol drugs.

In the third chapter, I consider how the private experience of a physician and the past

choices of other doctors a�ect the process of learning and prescription choices. I show that

the long-term doctor-patient relationship can improve the process of learning about the

health e�ects of drug treatment and thereby increase the e�ciency of medical decision-

making. On the other hand, treatment patterns that rely heavily on the past choices of

other doctors may lead to over-prescribing and eventually lower health.

To explain these predictions, consider the following setup. Physicians make one-shot

decisions for the patient between two options, the drug treatment and the outside good

(non-medical treatments). The drug has either high or low quality. For example, the

drug can either improve patient health or produce serious side e�ects. The quality of the

outside good is normalized zero, i.e. it is between high and low quality. Before making her
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decision, the physician investigates the patient and privately observes the quality signal,

or health e�ects, of the drug and the patient's prescription history. The signal of the �rst

physician indicates that the drug is of high quality, so she chooses that. The second one

also receives a high signal on the drug and, by seeing the action of the �rst one, she �nds

out her signal. These two positive signals make the second physician even more optimistic

that the quality of the drug is high and so she chooses it. The third physician observes

a low quality signal on the drug but the past choices of others make her to choose the

drug treatment, and so forth. If quality is in reality high, observing the past choices of

other doctors improves the process of learning. If quality is low, the past choices of other

doctors increase the physician's optimism on quality and lead to over-prescribing. If the

physician-patient relationship was long-term, the physician would sooner or later �nd out

quality.1

Empirical observations from pharmaceutical markets are consistent with uncertainty and

learning. The literature has demonstrated that the markets are characterized by signi�-

cant �rst-mover advantages (Caves et al., 1991, Grabowski and Vernon, 1992, and Hollis,

2002) and persistence in demand that is driven by the physician's own experience and

the past choices of other doctors (e.g. Hellerstein, 1998, Nair et al., 2010, Coscelli and

Shum, 2004). When physicians are risk averse, they may continue to prescribe the brand

name drug, as they and other doctors have got used to do, instead of considering new

treatment alternatives. Correspondingly, patients who have used brand name drugs for

many years may not be willing to switch to generic products. The brand name �rm may

have an incentive to exploit locked-in physicians and patients by setting a high price for

its product. Consistent with this, empirical evidence suggests that brand name �rms are

often able to maintain high prices, or even raise them, in response to generic entry (e.g.

Frank and Salkever, 1992, 1997, Regan, 2008). Policy makers have widely tried to con-

trol for high drug expenses with price ceilings and guided the behavior of physicians and

patients with public insurance policies, such as reference pricing.

Uncertainty is also present in the development of new innovations. Firms may not know

well the commercial success of their new drugs but only few innovations reach even the

marketing authorization stage. It has been estimated that less than 1 % of compounds

survive from pre-clinical period to human testing and 22 % from clinical trials to the US

Food and Drug Administration (FDA) approval. As generic products are developed with

substantially lower costs and risks than new drugs (Grabowski, 2002), patents have been

often seen as the lifeblood of pharmaceutical innovation.

1See Chamley (2004) for the review of social learning models where agents learn by observing the past

choices of other agents.
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Pharmaceutical patents do not necessarily protect against competition for at least two rea-

sons. First, imperfect intellectual property rights allow �rms to invent around a patented

innovation. In particular, rivals may imitate an innovation with an analogy process patent

by inventing a (non-trivial) manufacturing processes that are not covered by the origi-

nal patent claims. Second, competitors may import a patented innovation from another

country without the permission of the intellectual property owner (e.g. Kyle, 2011).

Policy makers in the United States have been strengthening intellectual property rights

during the past few decades so that patents have become easier to enforce in court and

may be longer (Gallini, 2002). The rationale behind the reforms is that strong patents

provide higher rents for the incumbent on innovation and stimulate R&D. Both theoretical

and empirical evidence suggests that the e�ect of strong patent systems on innovation can

be ambiguous or even negative (Gallini, 2002, Hassan et al., 2009). An explanation is

that patent policy a�ects competition and technology transfer between �rms. A longer

patent may increase imitation (Takalo, 1998, Gallini, 1992, Kanniainen and Stenbacka,

2000) and parallel trade and thus may not much promote innovation. Broader patents

may discourage follow-on invention, such as the development of non-infringing duplicates

(Gallini, 1992). The fourth chapter takes the �rst step to test whether stronger patents

a�ect competition, i.e. imitation and parallel trade, during the patent period. I consider

the Finnish markets for pharmaceuticals that provide rich variation in both patent length

and breadth across innovations.

The focus of this thesis is on the role uncertainty in demand. The literature has developed

structural models in order to infer uncertainty from observed choices and to analyze the

welfare consequences of learning. This thesis makes no exception in that respect. In the

second section, I �rst discuss the bene�ts and drawbacks of structural modeling in general.

I then present the existing literature on traditional discrete choice demand models where

the product's quality is known by agents (e.g. physicians). After that, I discuss the

literature on demand for experience goods. At the end of the chapter, I introduce the

remainder of this thesis.

1.2 Structural demand models

The analysis of demand has a long tradition in empirical IO. Researchers have used

and developed demand models for several purposes. First, the parameters of a utility

function may be interesting. For example, a researcher may want to estimate uncertainty

associated with the health e�ects of drugs and the risk aversion coe�cient of physicians
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(Crawford and Shum, 2005, Chapters 2 and 3). Second, she may be want to study the

welfare e�ects of di�erent policies on demand, such as the provision of information on the

quality of the match between a patient and a drug treatment (Crawford and Shum, 2005,

Chapter 2), the length of the doctor-patient relationship (Chapter 3), mergers (Nevo,

2000), the introduction of new goods (Petrin, 2002), insurer policies (Dickstein, 2011) or

price regulation (Ericson and Starc, 2012). Third, demand analysis is often needed in

to estimate the price-cost markups of �rms (Berry, Levinsohn and Pakes, 1995, hereafter

BLP).

In this subsection, I present a sample of the background literature on structural demand

models. I begin by evaluating the bene�ts and limitations of structural econometric mod-

eling in general.2 I then discuss the traditional demand models where product qualities

are observed. This discussion helps to understand the main setup of my demand analysis

in Chapters 2 and 3. The traditional demand models are not, however, suitable for evalu-

ating the welfare consequences of uncertainty and learning that are present in markets for

pharmaceuticals. The second and third chapter of this thesis contribute to the literature

on demand for experience goods that I present at the end of this section.

1.2.1 Structural models

Structural econometrics uses econometric theory to produce statements about relation-

ships between endogenous variables y and exogenous variables (x, ω) that may be observ-

able (x) or unobservable (ω) to the agents of the theoretical model or the econometrician.

The relationships can be functions y = f(x, ω,Θ) or inequalities, e.g. y ≥ f(x, ω,Θ),

where Θ is a vector of parameters. Because econometric theory does not often provide

a reasonable description of the data, statistical assumptions about the distribution of

(y,x, ω) complete theoretical assumptions. These theoretical and statistical assumptions

are used to form predictions that are �tted to data. After estimating the parameters, a

structural model can be used to evaluate responses to counterfactual, or not-yet-observed,

policies.

Non-structural approaches in economics include studies on the description of data, such

as the measurement of the prevalence of diseases in patient population or using non-

parametric techniques to estimate a medical expenditure density. At the other side are

statistical models that are used to predict outcomes without using any economic theory

about underlying relationships. For example, a researcher may want to predict demand

2This section is based on Reiss and Wolak (2007).

6



for drugs with an autoregressive model based on the previous demand. Both of these

approaches are widely used in economics and statistics. In the middle between the struc-

tural and the "reduced-form" models are the "quasi structural" models that are only

loosely connected to economic theory. One example is a Heckman's (1979) sample selec-

tion model. The model has been used to analyze, for example, a patient's decision to visit

a doctor and the doctor's decision to choose treatment (see e.g. Jones, 2000).

Economic theory helps to formulate relationships between variables, to understand how

they are a�ected by changes in institutional conditions and to identify causal relationships.

Consider the following example where a researcher wants to evaluate the e�ects of new

drugs on competition between pharmaceutical �rms. Suppose that the researcher observes

the products' demand, prices and characteristics and variation in the number of �rms that

are active in the market. A descriptive model that uses very little economic theory, besides

specifying endogenous and exogenous variables, could predict how the market shares of

�rms change with the number of competitors. Without any other information on the

nature of competition and demand, it could be hard to justify assumptions that would

guarantee a causal relationship between the number of �rms and the market shares.

With theoretical and statistical assumptions, the researcher could specify supply and

demand for pharmaceuticals. She could then estimate the price elasticity of demand and

the price-cost margins of pharmaceutical �rms that are not directly observable in the

data. Finally, the researcher could evaluate how the welfare of patients and the pro�ts of

�rms change if some of the �rms would exit the market. The counterfactual experiment

can be performed without observing any changes in the number of �rms.

The process of structural modeling involves many choices. These choices may or may

not be credible from the viewpoint of statistical inference and knowledge on institutions

and economic theory. For example, a researcher may want to impose assumptions on

how marginal costs depend on product characteristics, whether �rms decide on prices

(Bertrand competition) or quantities (Cournot competition) and whether physicians are

risk-averse, myopic or forward-looking while making their treatment choices for patients.

Some of the assumptions may be tested with data. For example, the researcher may want

to test if physicians are risk-averse or wants to evaluate whether Cournot or Bertrand

competition provide a better �t to the data. Still, the functional form of a utility function

is frequently taken as given even though it a�ects statistical inference and interpretation.

A careful researcher should, when possible, experiment with di�erent assumptions.

A convincing structural model should also respect both economic theory and institutional

environment that generates data. To make this more concrete, suppose that price ceiling
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regulation truncates the drug price distribution in the supply-demand -analysis. Then the

consistent estimation of the e�ect of competitors on prices requires that this truncation

is taken into account. When price ceilings are binding, demand exceeds supply. For this

reason, an assumption on the equality of demand and supply does not hold (Reiss and

Wolak, 2007).

1.2.2 Traditional demand models

This section considers the traditional demand models where product characteristics are

observed by agents (e.g. physician or consumers) but not necessarily by the econometri-

cian. To understand the bene�ts of discrete choice models that I apply in the analysis

of demand for pharmaceuticals, I �rst discuss the neoclassical extensions of homogeneous

goods demand models.

Early work in IO considered the estimation of demand in an industry where products

are perfect substitutes (see e.g. Porter, 1983). The basic idea was to specify a system of

demand equations that depend on prices, exogenous market variables and demand shocks.

In the 1980s and the 1990s, researches became interested in demand for di�erentiated

products (see e.g. Bresnahan, 1981 and 1987). Instead of estimating a one industry level

demand equation, separate demand equations were often estimated for each product.

This approach created problems with the number of parameters that became often very

large without any restrictions. For example, if there were 100 drugs, the number of

estimated demand equations would be 100 and each of them would contain 100 price

elasticity coe�cients. The number of estimated parameters would be at least 10, 000

which requires large datasets and can cause computational challenges. One solution to

avoid "the curse of dimensionality" is to make parameter restrictions, such as to assume

that all cross-price elasticities are equal.3 Parameter restrictions are, however, often ad

hoc and a�ect price-cost markups in an undesirable manner.

A another solution is to relate the utility of an agent to a set of parameters and the

attributes of the chosen product and the agent. For example, the utility of a patient from

a drug treatment may depend on the patient's income, age and gender as well as on price,

strength, drug form (e.g. a tablet) and route of administration. Market demand can then

be aggregated from agent level choices. This approach avoids the curse of dimensionality

because the computation of price elasticities is based on a much smaller set of utility

parameters.

3See Reiss and Wolak (2007) for more extensive discussion about solutions to the curse of dimension-

ality.

8



The discrete choice literature goes back to 1970s and 1980s to the work of McFadden

(1973, 1981, 1982, 1984) who developed conditional multinomial logit models. These

models have received increased attention in empirical IO since the in�uential papers by

Berry (1994) and Berry, Levinsohn and Pakes (1995) (e.g. Ackerberg and Rysman, 2005,

Davis, 2000, Hendel, 1999, Nevo, 2000, Petrin, 2002).

To illustrate discrete choice demand models further, consider a physician who chooses

a drug treatment for her patient i among J alternatives. For simplicity, assume that

the physician is perfect agent for the patient, i.e. she maximizes the patient's utility.4

Suppose that the number of potential patients that may need drug treatment at time, or

prescription, t is Nt. The indirect utility of the patient for drug j, j ∈ {0, ..., J}, at time
(or market) t is

Uijt = U(Zjt, ωijt,Θ), (1.1)

where Zjt is a vector of covariates for the product at time t (including the price), ωijt is a

variable that varies by patients, products and time periods and Θ is a vector of parameters.

The alternative j = 0 denotes the outside good (e.g. non-medical treatments).

The physician chooses drug j at time t that maximizes the patient's utility,

j = argmaxk∈{0,...,J}U(Zkt, ωikt,Θ). (1.2)

Following the early work, assume that heterogeneity across patients arises only in prefer-

ence shocks and marginal valuations for characteristics are constant,

Uijt = Zjtβ + ωijt, (1.3)

where ωijt is the Type 1 extreme value distributed error term. This speci�cation implies

very restricted substitution patterns by assuming the independence of irrelevant alter-

natives (IIA). The assumption implies that the relative odds of choosing one alternative

over another do not depend on the presence or absence of other "irrelevant" alternatives.

For example, the relative probability of choosing between two cholesterol drugs does not

change if a new cholesterol drug is added as an additional possibility. The assumption

also implies that price elasticities are completely determined by prices and market shares,

not by how di�erent the products are (e.g. Berry, 1994).

4This assumptions allows me to drop the physician-index from the utility function. A demand model

can easily be extended to allow for variation across both physicians and patients (see Chapter 3).
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Random coe�cients for the characteristics are often used to get more realistic substitution

patterns. A vector of random coe�cients can, for example, depend on the patient's

demographics, Di, βi = β1 + Diβ2 + Σvi, where Σ is standard deviation and vi ∼ P (v).

For example, this speci�cation allows for patients with diabetes to bene�t more from

cholesterol drugs and to respond less to changes in prices than healthy patients do. The

indirect utility function is

Uijt = Zjtβi + θjt + εijt (1.4)

= Zjtβ1 + θjt︸ ︷︷ ︸
δjt

+Zjt(Diβ2 + Σvi) + εijt︸ ︷︷ ︸
ωijt

, (1.5)

where θjt is the alternative and time speci�c random coe�cient, δjt is the mean utility

and εijt is the preference shock. In the above expression, ωijt contains heterogeneity in

marginal utilities and the preference shock across patients. An alternative is a discrete

version of random coe�cients where βi ∈ {β1, ..., βK} and pk = P (βi = bk|Di). For

the estimation of these type of models with the simulated maximum likelihood or Gibbs

sampling, see Train (2009).

BLP extended the random coe�cient multinomial logit models by allowing for unobserved

(to the econometrician) product characteristics θjt to be correlated with the observed

characteristics, such as the price. They also assumed that neither the �rms nor the

econometrician observes ωijt in (5) but knows the distributions of the random coe�cients.

The expected demand for drug j at time t is a sum of purchasing probabilities,

qejt(δt,Θ) =
Nt∑
n=1

Eωijt
(U(δjt, ωijt,Θ) ≥ maxk 6=j{U(δkt, ωikt,Θ)}) (1.6)

=
Nt∑
i=1

P (The physician chooses drug j at time t for patient i), (1.7)

where Nt is the number of potential patients.

Let δt be a vector of mean utilities, sjt(δt,Θ) = qejt(δt,Θ)/Nt be predicted market shares

and Sjt be observed market shares. Because predicted market shares sjt(δt,Θ) = Sjt for

drugs depend on the mean utility vector δt, the mean utility vector can be recovered by

inverting the market shares, δt = s−1(St,Θ), where St is a vector of observed market

shares. In the logit model (3), the inversion can be done analytically by δjt = lnsjt −

10



lns0t, where s0t is the market share of the outside good (Berry, 1994). With the random

coe�cients, numerical methods can be used to compute the predicted market shares and

the inversion.

Several papers have generalized discrete choice demand models further. For example,

Ackerberg and Rysman (2005), Bajari and Benkard, (2001, 2005) have modi�ed the as-

sumptions of BLP on the functional form of the utility function or the distribution of

agent heterogeneity. In Gentzkow (2007), agents may choose multiple products, that can

be either substitutes or complements, at the same time. The traditional demand models

also assume that agents know product quality θjt. The assumption is not often realis-

tic in markets for pharmaceuticals. In these markets, the e�ectiveness and side e�ects

of drugs can di�er across patients which creates uncertainty to the physician's medical

decision-making. Next, I consider demand models that take into account uncertainty in

quality.

1.2.3 Demand models with unobserved quality

This section presents the literature on discrete choice demand models for experience goods.

In the models, an agent does not know in advance the quality of available options that

may be learning by consumption or by observing the past choices of other agents. In this

thesis, I focus on demand models with Bayesian learners.5

To describe the setup of the learning models, consider again a physician's (she) prescrip-

tion choice when she is a perfect agent for her patient (he). Assume that the physician

does not know in advance how sensitive the patient is for the e�ectiveness and side e�ects

of available drugs. Denote the quality of the match between product j and patient i by

θij.
6 The quality has the prior distribution F (θij,Z

q
ij1) that may depend on a vector of

observables at the beginning of the drug therapy, Zqij1.

While investigating the patient, the physician observes certain health e�ects associated

with the use of the prescribed drug. Let xijt = θij + σvijt, where σ is standard deviation

and vijt ∼ F (v), measure health e�ects, or signals, that are realized after the patient has

taken the drug in period t. Denote a set of the state variables by Sit. The set contains

preference shocks εijt, health e�ects xijt and characteristics Zijt that are observed by the

beginning of period t.

5For example, in macroeconomics there is the extensive literature on non-bayesian learning, see e.g.

Evans and Honkapohja (2011).
6In this thesis, I analyze the physician's learning about the patient-speci�c quality of drugs. For

learning about the average health e�ects of drugs across patients, θj , see e.g. Coscelli and Shum (2004).
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The physician maximizes the patient's discounted expected utility conditional on the state

variables. The value function for drug j at time t is

Uj(Sit) = E(u(xijt)|Sit) + Zijtβ + εijt + ρE[maxk∈{0,...,J}Uk(Si(t+1)|Sit, j)], (1.8)

where ρ is the discount factor and u(xijt) is a sub-utility function for health e�ects.

Conditional on the state variables, the �rst element of the value function is the expected

per-period utility for drug j and the second one is the continuation value given that drug

j was chosen.

The physician updates her beliefs about quality based on observed health e�ects, creating

dynamics to pharmaceutical demand. When health e�ects are normally distributed, the

updating process is simple because the posterior distribution of θij at the beginning of

period t, f(θij|{xijt′ , t′ < t}), is also normal (see DeGroot, 1970). Over time, more health
realize and the physician's belief about quality become more precise (see e.g. Chapters 2

and 3 and Crawford and Shum, 2005).

To simplify the problem further, several papers (e.g., Coscelli and Shum, 2004, Ching,

2009, Chernew et al., 2009) have assumed agents are myopic, i.e. the discount factor

equals zero. This assumptions abstracts away incentives to experiment with new, less well-

known products. Despite of the computational challenges, many papers have estimated

a dynamic demand model, starting from Erdem and Keane (1996) (e.g. Ackerberg, 2003,

Chan et al., 2006, Crawford and Shum, 2005, Ching, 2009, Dickstein, 2011, and Kim,

2010). The second chapter �ts into this literature and estimates the importance of learning

through experimentation in the Finnish market for cholesterol drugs.

The structural learning literature has typically assumed that agents learn from their own

experience or observe the signals of their predecessors perfectly. In many situations,

agents may infer quality by using their own experiences and the past choices of peers.

For example, physicians want to prescribe products that other doctors have previously

prescribed (see the Section 3 of this thesis), restaurants full of customers are thought

to sell high quality food, people want to be friends with those who are popular and an

unemployment period is often believed to reveal information to the employer about the

quality of the job applicant.

The literature on structural social learning models is still very limited, with a few excep-

tions (Cipriani and Guarino, 2012, Zhang, 2010, Knight and Schi�, 2010).7 Cipriani and

7To be more speci�c, Cipriani and Guarino (2012) investigate the herding behavior of investors, Zhang

(2010) analyzes kidney replacement decisions and Knight and Schi� (2010) consider elections.
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Guarino and Knight and Schi� assume that agents are myopic, whereas Zhang allows for

agents to be forward looking. The literature assumes that quality is constant across agents

who make once-in-a-lifetime decisions.8 Unlike the previous literature, I take into into ac-

count both private and social learning, by allowing for agents make repeated decisions,

and allow for heterogeneity in quality (Section 3).

1.3 A summary of chapters

This section provides a summary of chapters. The second chapter presents a dynamic

model of demand for pharmaceuticals where a physician does not know ex-ante the av-

erage health e�ects of drug treatments for a patient. With the model, I investigate the

value of experimentation in the Finnish market for cholesterol drugs. In the third chapter,

I provide a structural model of demand for pharmaceuticals with learning from the physi-

cian's personal experience and the past choices of other doctors. With the counterfactual

experiments, I analyze how the length of the doctor-patient relationship a�ects learning

and the e�ciency of medical decision-making. In the �nal section, I ask whether stronger

patents prevent competition during patent protection.

1.3.1 Chapter 2: Experimentation and Learning in Pharmaceu-

tical Demand: Evidence from the Cholesterol Drug Market

Uncertainty and learning can have important behavioral implications on drug treatment

choices by a physician. The physician can have incentives to experiment with new prod-

ucts to get more information about the e�ectiveness of drugs. At the same time, uncer-

tainty and risk-aversion can make the physician reluctant to try new drug treatments for

the patient. The second chapter quanti�es the roles of learning and experimentation in

pharmaceutical demand. I estimate a structural model of medical decision-making under

uncertainty about the health e�ects of drug treatments for a particular patient. After tak-

ing the drug, the physician observes two health e�ects: the �rst e�ect a�ects the patient's

symptoms and the second one a�ects the probability that the drug therapy continues. If

the patient's therapy continues, this new information helps the physician to form more

precise predictions about the quality of the match between the patient and the drug. I

8In this case, a set of state variables, Sit, includes a (one) experience signal xit of agent i and the past

choices of other agents.
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focus on the Finnish market for cholesterol drugs. In this market, exit rates are high and

physicians are very unwilling to change the drug treatment of their patients.

The parameter estimates imply that much of the uncertainty regarding to health e�ects is

resolved after the �rst prescription. As physicians are estimated to be risk-averse, they are

unwilling to prescribe new treatment alternatives for their patients. My �ndings suggest

that if doctors became more willing to take risks in their treatment choices, the process

of learning would improve. I also show that if a physician does not learn, the patient's

welfare decreases and the quit rate from the drug therapy increases. These �ndings

indicate that information provision about the average health e�ects of drug treatments

should be promoted.

1.3.2 Chapter 3: Private Experience and Observational Learning

in Pharmaceutical Demand

Uncertainty about the quality of a product is present in many markets. Agents may

apply their own experiences and the past choices of their peers to re-evaluate how well

the product matches with their preferences. Somewhat surprisingly, previous work about

the roles of private and social learning in demand has remained very limited. In the

third chapter of this thesis, I consider these issues in medical decision-making under

uncertainty about the e�ects of drug treatment on patient health. I apply the standard

theoretical models with social learning (Chamley, 2004), by allowing for physicians to

take repeated choices. I test whether the long-term doctor-patient relationship is more

e�cient than providing information on the past choices of other doctors through patient

records. Policies that guarantee continuity of care are commonly used in primary care to

promote the process of learning and improve medical decision-making (e.g. Scott, 2000).

My data from the Finnish market for cholesterol drugs con�rms that prescriptions are

highly responsive to the length of the doctor-patient relationship. I explain this �nding

by showing that the number of interactions between the physician and the patient have

important implications on pharmaceutical demand. Speci�cally, I �nd that the long-term

treatment relationship promotes the process of learning and improves physician decision-

making. I demonstrate that treatment patterns relying on the past choices of other doctors

hinder learning and may lead to over-prescribing for a fraction of patients. This is so, since

an inexperienced physician becomes more optimistic about quality, or the average health

e�ects, if other doctors have prescribed the drug for the patient previously. Overall, my

�ndings suggest that providing information on the past choices of other doctors does not

compensate for the lack of the long-term relationship.
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1.3.3 Chapter 4: Do Stronger Patents Protect Against Competi-

tion? Evidence from the Pharmaceutical Industry

The main goals of the patent system is to stimulate innovation and to encourage �rms

to disclose their innovations. The system is often claimed to be ine�cient in achieving

these goals, in part because patents do not provide exclusive rights for the innovator.

Competitors are frequently inventing around patented innovations (Boldrin and Levine,

2005). In certain industries, such as software, music and pharmaceuticals, the resale of

goods between countries (so called parallel trade) may also arise without the authorization

of the owner of the intellectual property (Kyle, 2011). Over the past decades, policy

makers in the United States have been strengthening patent protection such that patents

have become longer for some innovations and easier to enforce in court (Gallini, 2002). The

rationale behind these reforms is that stronger patents increase the pro�ts of an innovator

and promote innovation. Economic theory predicts that longer patents may hinder rather

than stimulate innovation by increasing competition during the patent period. Broad

patents increase the costs of imitation and thus decrease competition. In the fourth

chapter, I test the theory on the relationship between patent strength and competition

during patent protection.9

I consider the Finnish markets for pharmaceuticals that provide rich variation in patent

length and breadth across innovations. With this variation, I analyze how the patent

rights of an incumbent innovation a�ect the risks of imitation and parallel trade. My

results suggest that patent breadth - measured by the number of claims - discourages

imitation. I �nd no evidence that patent length would increase the risk of imitation

during patent protection. The e�ects of both patent length and breadth on the rate of

parallel trade are also insigni�cant. These �ndings suggest that policy makers should

promote broader, rather than longer, patents if they aim to decrease imitation incentives

and to guarantee higher rents for the incumbent on its R&D e�orts. Still, further work is

required to understand the role of patents in a cumulative innovation process.

9See Grönqvist, 2009, for the e�ect of patent length on the private value of patents in Finland.
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Chapter 2

Experimentation and Learning in

Pharmaceutical Demand

Buyers do not necessarily observe the quality of products in advance but may learn them

through consumption. Such uncertainty creates incentives to experiment with new prod-

ucts to gain more information. At the same time, uncertainty makes risk-averse buyers

reluctant to try new, less well-known products. Still, traditional demand models ignore

uncertainty and learning. In this chapter, I estimate a dynamic model of demand for

cholesterol drugs that allows for learning through experimentation. The results suggest

the average health e�ects of cholesterol drugs are heterogeneous across patients which cre-

ates uncertainty to medical decision-making. My analysis also identi�es drugs that induce

higher exit rates from the cholesterol drug therapy. I �nd that uncertainty and risk aver-

sion make physicians unwilling to try new drug treatments for their patients. These results

suggest that if doctors became more willing to experiment with their treatment choices,

the process of learning would improve and the e�ciency of medical decision-making would

increase.

Keywords: learning, structural modeling, unobserved quality, demand, physician behavior
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2.1 Introduction

In markets for experience goods, agents may learn about the unknown quality of products

through experimentation. In each period, an agent chooses a product that best matches

with her preferences by knowing that her purchase will reveal new information about its

quality. Through repeated choices, information accumulates and uncertainty diminishes.

In many of these markets, the degree of risk version may have signi�cant implications on

behavior. One particularly interesting example is medical decision-making by physicians

about risky treatment alternatives for their patients. When the health e�ects of drugs are

uncertain, risk-aversion can signi�cantly increase the costs of uncertainty and slow down

the process of �nding the best treatment alternative for a patient.

In this chapter, I study the roles of experimentation and risk aversion in the drug choices

of physicians by using data from the Finnish market for cholesterol drugs called statins.

The market is particularly interesting for several reasons. First, an extensive medical

literature has shown that the health bene�ts and side e�ects of statins vary between

patients.1 This heterogeneity creates uncertainty about the e�ectiveness of the statin

therapy for a patient. Second, my data show that physicians are very unwilling to change

the drug treatments of their patients. I explain this �nding with risk aversion and learning

about the average health e�ects of cholesterol drugs. Third, potential improvements in the

patients' health are substantial, as statins is one of the world's largest selling drug groups.

Still, a third of patients in my data exit the drug therapy after the �rst prescription.

I develop my analysis as follows. A patient (she) comes to a physician (he) to seek a drug

treatment for her medical condition. The physician diagnoses �rst the (�xed) medical

condition of the patient. Conditional on the diagnosis, the physician chooses a cholesterol

drug under uncertainty about the average health e�ects, or match values, of available

drugs for this particular patient. After the patient has taken the drug, the physician

observes two health e�ects. The �rst one captures the e�ect of the drug on the patient's

symptoms (side e�ects). The second one measures how the drug treatment a�ects the

exit rate. The therapy may end, for example, because the short-term therapy decreased

the patient's total cholesterol under the desired level (5mmol/L) or lifestyle changes were

more e�ective than the prescribed drug in reducing the patient's risk for cardiovascular

events.2 If the therapy continues, the physician makes a prescription. The decision takes

into account the initial diagnosis and the physician's beliefs about match values that are

based on the observed health e�ects. These steps are repeated until the patient's drug

1See for example National Institute for Health and Clinical Excellence (2006).
2Crawford and Shum (2005) interpreted the exit probability as the probability of recovery.
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therapy ends.

Uncertainty and learning about the e�ectiveness of medical treatments have two important

implications on prescription behavior. Risk aversion makes the physician reluctant to

try a new treatment compared with a drug that has more certain, but possibly lower,

e�ectiveness.3 On the other hand, a forward-looking physician may have an incentive to

experiment with a new treatment to get information about its health e�ects. While the

former causes persistence, or "switching costs", in drug choices, the latter creates di�usion

in demand.

This chapter relates to the growing literature on demand for experience goods. A signi�-

cant portion of the existing literature has assumed that agents are myopic, i.e. their dis-

count factor is zero (Coscelli and Shum 2004, Chernew et al., 2008, Ching 2008, Narayanan

and Manchanda 2009). The assumption abstracts away incentives to experiment. A few

papers (e.g. Crawford and Shum, 2005, hereafter CS, Ackerberg, 2003, Ching, 2009, Dick-

stein, 2011, Kim, 2010) study the demand of forward-looking agents under uncertainty.

Finally, this paper is related to the literature that identi�es risk preferences from the

observed choices of myopic agents (e.g. Cohen and Einav, 2007, Chetty, 2006).

The �rst objective of this paper is to replicate the dynamic model of CS in the Finnish

market for cholesterol drugs. A di�erence between cholesterol drugs and anti-ulcer drugs

analyzed in CS is that cholesterol drugs are used as preventive treatments for cardiovas-

cular diseases whereas anti-ulcer drugs treat ulcers in the stomach and the upper part of

the small intestine. Second, after con�rming that the results are qualitatively similar with

CS, I perform counterfactuals that have been ignored in much of the existing literature

on demand for experience goods. First, I evaluate the implications of risk aversion on

demand and e�ciency. Risk aversion may create habit persistence, slow down the learn-

ing process and decrease incentives to experiment.4 Second, in order to understand the

role of experimentation in demand, I evaluate how treatment outcomes and costs change

when physicians become myopic.5 In this case, physicians do not take into account the

consequences of their treatment choices on the patients' future health.

The parameter estimates indicate that the average health e�ects of cholesterol drugs

3In practice, the risk aversion parameter captures factors that cause strong persistence in the prescrip-

tion choices of a physician for a patient. Besides risk aversion, these factors may include, for example,

time constraints and marketing e�orts directed at the physician.
4See Cohen and Einav (2007) for the implications of risk aversion for individual behavior and pricing

in insurance contracts.
5On the contrary, CS evaluated this issue with a policy experiment where the physician is restricted

to prescribe the �rst drug to his patient in every period until she is healed.
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are heterogeneous across patients, creating uncertainty to medical decision-making by a

physician. The results suggest that market leaders Simvastatin and Atorvastatin perform

reasonably well in the symptomatic dimension. My analysis, however, indicates that

the use of Simvastatin induces higher exit rates than the use of other cholesterol drugs.

Physicians learn fast as much of the uncertainty dissipates after the �rst prescription.

At this stage of the therapy, the physician observes how e�ectively the �rst prescription

decreased the patient's cholesterol levels and whether it caused any side e�ects.

The counterfactuals show that the provision of information about the average health

e�ects of drugs can signi�cantly increase the e�ciency of medical decision-making. Con-

sistent with high persistence in demand for cholesterol drugs, I �nd that risk aversion

makes physicians unwilling to experiment new, less well-known treatment alternatives for

their patients. The results also suggest that if physicians became more willing to take

risks in their treatment choices, the process of learning through experimentation would

improve and the welfare of a patient would increase.

The rest of this chapter is organized as follows. The second section presents the dataset

and descriptive results. Section 2.3 goes through the theoretical model. Section 2.4

presents the likelihood function and discusses identi�cation. Section 2.5 presents the

estimation results. Section 2.6 evaluates the �t of the model and shows �ndings from the

counterfactual experiments. The �nal section of this chapter concludes.

2.2 Market and data description

2.2.1 The Finnish cholesterol drug market

I study the prescriptions of physicians in the Finnish market for cholesterol drugs. Choles-

terol drugs are used to lower cholesterol levels in the blood by reducing the production

of cholesterol by the liver. Abnormal cholesterol levels, where the concentration of LDL-

cholesterol ("bad" cholesterol) is high and the concentration of HDL-cholesterol ("good"

cholesterol) is low, are one of the risk factors of cardiovascular diseases (CVD), such as

coronary heart disease, heart attack and stroke. High morbidity to cardiovascular diseases

has made cholesterol drugs as one of the world's largest selling drug groups.

I focus on the choices of physicians between di�erent active ingredients that are referred to

"drugs". Corresponding to the United States, 6 active ingredients are on the Finnish statin

market: Simvastatin (brand-name Zocor), Lovastatin (Mevacor), Pravastatin (Pravachol
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or Selektine), Fluvastatin (Lescol, Canef or Vastin), Atorvastatin (Lipitor) and Rosuvas-

tatin (Crestor).6 Active ingredients di�er to some extent in their e�ectiveness, side e�ects

and prices. Patients respond di�erently to statins which creates uncertainty about to

the e�ectiveness of statins for a patient (the Finnish current care for dyslipidemia, 2011,

Jousilahti, 2004).7 Some individuals may also have more side e�ects with a one statin

than another.8

A physician's statin treatment decision is based on the evaluation of the patient's risk

for CVDs. This evaluation is based on several factors, including the patient's gender,

age, blood pressure and cholesterol levels. In the model, the initial evaluation a�ects

the prior beliefs of a physician about the quality of the match between the patient and

cholesterol drugs.9 The choice of a cholesterol drug is based on the (expected) bene�ts and

adverse e�ects of cholesterol drugs. The main objective of cholesterol drug treatment is to

decrease the total cholesterol level below 5 mmol/L or LDL-cholesterol below 3 mmol/L.

If a cholesterol drug causes side e�ects for the patient, the physician decreases the dosage,

experiments with an another statin or ends the cholesterol drug therapy (the Finnish

current care for dyslipidemia, 2011). In the model, the physician observes health e�ects

associated with the use of a cholesterol drug. These e�ects a�ect the patient's current

utility from the drug (side e�ects) and the probability that the statin therapy ends.

The Pharmaceuticals Pricing Board, that is subordinated to the Ministry of Social A�airs

and Health in Finland, regulates drug prices with price ceilings. The regulation decreases

variation in drug prices across years. Price ceilings were likely to be binding for Flu-

vastatin, Atorvastatin and Rosuvastatin that remained under patent protection during

the whole observation period 2003 − 2006 and thus did not face �erce competition from

generics. In the empirical application, I assume that drug prices are constant over time

in order to reduce computational burden.10 Table 2.1 shows that the averages prices of

cholesterol drugs vary still across products. In my sample, that is described below, the

6Within the group of an active ingredient, statins di�er also in drug forms, package sizes, strengths

and prices. Besides these active ingredients, combination preparations of a statin and another active

ingredient are also in the market.
7For example, the statin therapy is useful for men, post menopausal women and patients who have

arterial disease or diabetes. The risk of side-e�ects can increase with genetic susceptibility and certain

drug interactions. Approximately 5% of patients have muscular symptoms (the Finnish current care for

dyslipidemia, 2011).
8See "Controlling Cholesterol with Statins" by U.S. Food and Drug Administration (2010).
9Lifestyle changes, including exercising and changes in diet, are often adequate for a low-risk patient.

However, patients are often unwilling to change their lifestyles (Johnston, 1999).
10This assumption implies that prices are not included in a set of state variables, which simpli�es the

computation of a dynamic demand model.
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average price of the oldest active ingredient, Simvastatin, was 85% lower than the average

price of the most expensive statin, Atorvastatin.

Table 2.1: Market and sample description

Active ingredient ATC1 Marketing Average cost3 Market share4

authorization

date2

Simvastatin C10AA01 1992/02 16.15 0.46

Lovastatin C10AA02 1988/06 47.85 0.01

Pravastatin C10AA03 1992/04 95.63 0.04

Fluvastatin C10AA04 1995/11 79.11 0.04

Atorvastatin C10AA05 1997/04 110.12 0.28

Rosuvastatin C10AA07 2003/03 83.23 0.18

Mean Std Min Max

Nbr of prescriptions 2.81 1.72 1.00 10.00

Di�erence between

prescriptions (months) 6.79 6.22 0 38

Nbr of di�erent drugs 1.26 0.48 1.00 3.00

Censoring indicator (1: yes, 0: no) 0.48 0.50 0.00 1.00

Non-rational expectations

indicator (1: yes, 0: no) 0.45 0.50 0.00 1.00

Individuals 1000

Observations 2812

1. The Anatomical Therapeutic Chemical (ATC) Classi�cation of an active ingredient.

2. The date of the �rst marketing authorization. Source: National Agency for Medicines.

3. An average over sample period.

4. Share/total prescriptions.

2.2.2 The dataset

I use a rich dataset of all purchased cholesterol drug prescriptions received by Finnish

patients between January 1 in 2003 and December 31 in 2006.11 The data contains the

date of the prescription and the characteristics of patients, their physicians and products.12

I follow CS to prepare the dataset for the empirical analysis. To simplify the theoretical

model, I remove patients with multiple statin prescriptions within the same day from the

11The data is provided by the Social Insurance Institution of Finland which is responsible for the

provision of public social security bene�ts to Finnish residents.
12The unit of observation in the data is the prescription of a patient.
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data. To avoid left censoring, I study "new" patients, who had their �rst prescription after

the �rst six month of the observation period, i.e. after June 2003. I de�ne a patient as

right-censored if his last prescription in the data was received during the last six months

of the observation period, i.e. during 7/2006 − 12/2006.13 For computational reasons, I

draw a random sample of 1000 patients and exclude other cholesterol drug prescriptions

than statins from the sample.14 In my sample, the total number of patients is 1000, the

number of observations is 2812 and the share of censored patients is 48% (Table 2.1).

The lower panel of Table 2.1 describes the drug therapy of patients in the sample. The

average di�erence between two prescriptions was 6.8 months.15 On average, patients

had 1.3 di�erent active ingredients and 2.8 prescriptions. Figure 2.1 shows that there is

signi�cant heterogeneity in the number of prescriptions across patients. The distribution

is very skewed to the left, as 29% of patients had only one prescription, 21% had two

prescriptions, 22% had three prescriptions and 29% had more than 4 prescriptions. The

results are fairly similar for non-censored patients.16

The empirical literature has found that physicians are often unwilling to prescribe new

treatments for their patients (e.g., Hellerstein, 1998, Coscelli, 2000, CS). The literature

has explained this persistence with uncertainty and learning about the health e�ects of

drugs. Consistent with this explanation, the probability to switch an active ingredient

from the previous prescription is only 0.15 in the sample (Table 2.2).

The switching of a drug may be caused by both experimentation and learning. The

incentive to experiment is the strongest at the beginning of the medical therapy when the

physician has the least information about the average health e�ects of di�erent drugs for

a single patient. Switching at a later stage of the therapy can be induced by learning,

especially if the patient has been using one drug for a long time.

I next investigate whether the data is consistent with learning and experimentation. Table

2.2 presents the probability of switching at di�erent phases of the drug therapy, condi-

tional on the total number of the patient's prescriptions. The results show that the

13If the censoring interval is too short, the exit rate is overrated and hence the estimation results may

be biased. This is particularly true for patients whose prescriptions are received at the end of the sample

period and who have more than two prescriptions.
14These excluded cholesterol drugs belong to the group of lipid modifying agents and have a market

share of 2.17% in my sample. In the future, my plan is to increase the sample size by reducing the number

of drugs through aggregation and perform robustness checks for the estimation results.
15Given the time di�erence, a 6 month censoring window may not be realistic. In the future, my plan

is increase the window.
16To be more speci�c, 36% of non-censored patients had only one prescription, 23% had two prescrip-

tions, 21% had three prescriptions and 20% had more than 4 prescriptions.
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Figure 2.1: Kernel densities for the total number of prescriptions for all patients (the

higher panel) and non-censored patients (the lower panel) in the sample

Table 2.2: The probability of switching from the previous prescription during the drug

therapy in the sample of patients

Prescription nbr/Treatment length1 2 3 4 ≥5 Total

2 0.122 0.119 0.188 0.122 0.133

3 0.179 0.188 0.098 0.155

4 0.234 0.140 0.182

≥5 0.176 0.176

Total 0.122 0.149 0.203 0.141 0.154

1. Total treatment length: the maximum number of the patient's prescriptions in the sample.

2. Patients with multiple prescriptions/physicians at some time point are excluded.
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probability of switching is the highest both at the beginning and at end of the patient's

drug therapy. The high switching probability at the beginning is consistent with experi-

mentation, whereas the high switching probability at the end is consistent with learning.

The results remain still very indicative without a structural model that isolates the roles

of uncertainty and learning in demand.

2.3 The theoretical model

This section describes the dynamic model of demand under uncertainty that I then esti-

mate. Consider a patient (she) who comes to the physician (he) to seek drug treatment

for her medical condition. First, the physician makes an initial diagnosis about his �xed

severity of illness, or type. The severity of illness a�ects both the symptomatic e�ects of

drugs and the exit rate from the drug therapy. Conditional on the diagnosis, the physician

evaluates the patient's risk for CVDs and side e�ects associated with drug treatments.

This evaluation a�ects the physician's prior beliefs about the e�ects of drugs on the pa-

tient's symptoms and exit rate. Based on his prior beliefs, the physician selects a drug

treatment that best matches the patient's medical condition.17

After the patient has taken the prescribed drug, she revisits the physician. The physician

observes two health e�ects. The �rst e�ect measures the e�ects of the drug on the patient's

symptoms. The second health e�ect captures the e�ect of the drug on the probability

that the therapy ends, such as how e�ectively the drug and the patient's life style changes

decreased her cholesterol levels. Then, if the patient's therapy does not end, the physician

makes a new treatment decision. This decision is based on the physician's beliefs regarding

the average health e�ects, or match values, of drugs, conditional on observed health e�ects.

Again, the patient takes the drug and revisits the physician who observes the health e�ects

of the drug. Conditional on the health e�ects that a�ect the exit rate, the patient's drug

therapy either ends or continues. These steps are repeated until the patient exits from the

therapy. During the course of the patient's therapy, the physician may learn the average

health e�ects of drugs from the patient's treatment history.

Following CS, I assume the physician maximizes solely the expected discounted utility of

the patient. In the model, all physicians have the same probability of choosing a drug

treatment for the patient. This assumption abstracts away potentially important agency

issues.18 The model also ignores the possibility of physician speci�c e�ects. Such e�ects

17I follow CS and consider patients who have received at least one drug prescription.
18See for example Iizuka (2007) and (2011) for the empirical analysis of agency issues in the pharma-

31



can arise for example if the personal experience of a physician a�ects prescription behavior

(see Chapter 3). The main focus of this paper is on learning by a physician about the

quality of the match between a particular patient and di�erent drugs. As most of the

cholesterol drugs have been on the Finnish market for almost two decades (see Table 2.1),

learning across patients is not likely to have a big role in my application.19

Next, I present the details of the dynamic demand model. I begin by de�ning the sever-

ity of illness. Then, I present the physician's decision-making problem for a patient.

After that I de�ne health e�ects, go through the learning process and present the exit

probability and the set of state variables. Finally, I provide the physician's value function.

The severity of illness

Assume that the patient comes to seek a drug treatment for her medical condition for the

�rst time. First, she is randomly matched to a physician who makes an initial diagnosis

about her �xed severity of illness, or type. The probability that the patient is of type k,

k = 1, ..., K, is given by pk such that
∑K

k=1 pk = 1. Illness types capture heterogeneity

in the medical conditions of patients, such as lifestyle patterns or the amount of LDL

cholesterol in blood, that a�ects the distributions of health e�ects. The illness type is

observed by a physician but not by the econometrician. In my empirical application, I

assume that k = 2.20

A drug treatment choice

Conditional on the illness severity type k of patient j, the per-period utility function of

the physician (or the patient) is assumed have a constant absolute risk aversion sub-utility

function for the symptomatic e�ect of the product n at time t, xjknt.
21 I assume that the

current utility is linear in the price, pn, and the Type I extreme value distributed error

term, ejknt. To be more precise, I consider the following per-period utility function for

the patient22

ceutical market.
19For learning across patients, see Coscelli and Shum (2004) and Kim (2010).
20In CS, the number of types is 4. My plan evaluate the robustness of results to the number of types.
21As all physicians of the patient are alike, the physician-index does not enter the utility function.
22I also make a conditional independence assumption p(z′, e′|z, e, n, θ) = p(z′|z, n, θ2)p(e′|θ3), where z′

are the other random state variables than e. The assumption is commonly made in the dynamic discrete

choice literature (see e.g. Aguirregabiria and Mira, 2010). Note that the transition probability for the
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ujknt = −e−r·xjknt − α · pn + ejknt, (2.1)

where r > 0 is the degree of risk aversion and α is the price coe�cient.

The physician makes the drug treatment choice among di�erent active ingredients n, n ∈
{1, ..., N}, such that the chosen product maximizes the present discounted utility of the

patient. This implies that the outside option is not in the physician's choice set.23 Instead,

I follow CS and assume that the probability that the patient's therapy ends evolves

endogenously with the physician's prescriptions. The prescription is made conditional

on a set of state variables at time t, Sjkt, that is speci�ed below. The Markovian decision

problem of the physician is

V (Sjkt) = maxn{E
[
u(xjknt, pn, ejknt) +

β(1− wjkt)E
[
V (Sjk(t+1))|xjknt, yjknt, n

]
|Sjkt

]
,∀n}

= maxn{V jknt + ejnkt,∀n}, (2.2)

where wjkt is the indicator variable that takes value 1 if patient j exits from the drug

therapy after period t, β is the discount factor and V jknt = V
k
(Sjnt) is the choice speci�c

value function. The expectation in (2)-(3) is taken over two health e�ects, xjknt and yjknt.

Whereas xjknt captures the e�ects of the drug on the patient's symptoms, yjknt a�ects the

probability that the patient exits from drug the drug therapy. Because health e�ects are

observed after the patient has taken drug n but before period t + 1, the expectation of

the value function at t+ 1 is conditional on xjknt and yjknt.

Health e�ects

After the patient has taken drug n at the end of period t, the physician observes health

e�ects that a�ect her symptoms and exit rate from the drug therapy,

xjknt = µjkn + σexe
x
jknt, where µjkn ∼ N(µ

kn
, σ2) (2.3)

and

yjknt = νjkn + σeye
y
jknt, where νjkn ∼ N(νkn, τ

2) (2.4)

states depends on the previous history via the most recent values of the state variables.
23In Section 2.3, I include the outside option to the physician's choice set.
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where exjknt and e
y
jknt are N(0, 1) distributed independent random variables.

Note that the match value means can vary between patient types and drugs. The variances

of the match values are assumed to be constants.24 For computational reasons, I follow

CS and assume that health e�ects are uncorrelated, i.e. cov(xjknt, yjknt) = 0.25 This

assumption implies that experimenting with one cholesterol drug does not change the

physician's view about another, possibly similar cholesterol drug. In my application, the

assumption may not hold for at least two reasons: �rst, side e�ects can a�ect both the

patient's symptoms and his exit rate from the drug therapy. Second, cholesterol drugs

do not have signi�cant clinical di�erences in reducing cardiovascular (National Institute

for Health and Clinical Excellence, 2006). Thereby correlated learning can be relevant.

Assuming zero correlation between health e�ects may bias results.

Conditional on realized health e�ects, the physician updates his beliefs about the unob-

served match values, µjkn and νjkn. The posterior beliefs for the mean and variance of

the symptomatic match value, µ
kn

and σ2, are (similarly for νkn and τ 2)

µjknt =


σ2
exµjkn(t−1)+σ

2
jn(t−1)

xjknt

σ2
ex+σ

2
jn(t−1)

if drug n is taken at time t,

µjkn(t−1) otherwise,
(2.5)

σ2
jnt =

{
σ2
exσ

2
n

σ2
ex+ljn(t−1)σ

2
n
if drug n is taken at time t,

σ2
jn(t−1) otherwise,

(2.6)

where ljnt the number of times patient j has tried the drug n up to (and including) time

t.

When the number of prescriptions ljnt increases and information on the average health

e�ects accumulates, the variances of the posterior distributions decrease towards zero and

the physician learns the distributions of the match values.

I assume that the physician has rational expectations about other drugs besides Rosuvas-

tatin that have been long on the market. The assumption implies that the physician knows

the prior distributions of drugs, i.e. µjkn1 = µ
kn
, νjkn1 = νkn, σ

2
jn1 = σ2

n and τ 2jn1 = τ 2.

The rational expectations assumption may not be true for Rosuvastatin that has been

24I have also experimented with the model where the variance of the symptomatic match value was

allowed to di�er across products, i.e. σ2
n. The results suggested that the variance estimates were almost

the same for all products. Therefore, I assume in the empirical part of this chapter that σ2 is a constant

across products. In the future, my plan is to decrease the number of products through aggregation and

allow for σ2
n to vary across products.

25For correlated learning, see Dickstein (2011).
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marketed since the beginning of the sample period (17.6.2003). For this reason, I assume

that the physician did not know the prior distribution of the symptomatic e�ects of Ro-

suvastatin26 if his patient had her �rst prescription before 2005 (i.e. 7/2003− 12/2004).27

Thus, physicians may have common, non-correct predictions for the distributions of the

match values for Rosuvastatin during the �rst years. By allowing for non-rational expec-

tations, I control for the possibility that physicians may learn about the average health

e�ects of Rosuvastatin across patients by reading medical journals and attending confer-

ences.

The exit probability

Assume that the patient has taken drug n and she revisit the physician at the end of

period t. While investigating the patient, the physician observes health e�ects, yjknt, that

are associated with the use of the drug and a�ect the patient's exit rate from the drug

therapy. Conditional on these health e�ects and the patient's exit rate at the previous

prescription, I assume that the exit rate of patient i with type k at the end of period t is

hjkt =

hjk(t−1)

1−hjk(t−1)
+ djntyjknt

1 +
hjk(t−1)

1−hjk(t−1)
+ djntyjknt

, (2.7)

where djnt is the indicator variable that takes value 1 if the patient takes drug n at time

t and hjk0 = θk is the initial value of the exit rate. For hjkt ∈ [0, 1), the higher the

health e�ects, yjknt, are, the more likely the patient exits from the therapy at time t.28

Correspondingly, the higher the previous exit probability, hjk(t−1), is, the higher the cor-

responding period-t probability is.

A set of state variables

A set of state variables for patient j at time t, Sjkt, consists of the exit rate, hjkt, and the

following drug speci�c variables: the number of prescriptions, ljnt, the posterior means,

26In the empirical application, a non-rational expectation about the exit match value was very impre-

cisely estimated. Therefore, I allow non-rational expectations only for symptomatic e�ects.
27In 2005 − 2006, I assume that the physician has rational expectations about Rosuvastatin. In my

sample, physicians had non-rational expectations for 45% of patients.
28As noted by CS, very large and negative values of yjknt lead to negative values of hjkt. In this case,

hjkt is no longer a valid probability. However, the simulations of the model did not produce any negative

values of hjkt.
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µjknt and νjknt, and the preference shocks, ejknt, for drugs n, n = 1, ..., N .

The value function

By using the law of iterated expectations and the moment generating function of the

normal distribution, the value function of the physician can be expressed as

V (Sjkt) =maxn{−e−rµjknt+
1
2
r2(σ2

jnt+σ
2
ex) − αpn + ejknt+ (2.8)

βE
[
(1− hjkt(hjk(t−1), yjknt))E[V (Sjk(t+1))|xjknt, yjknt, n]|Sjkt)

]
}. (2.9)

When the risk-averse physician is choosing a new treatment for the patient, he faces a

trade-o� between having a low present utility caused by the "risk-premium" 1
2
r2(σ2

jnt+σ
2
ex)

and the option value that contains new information through health e�ects xjknt and yjknt

that are realized after the patient has taken drug n. The more risk aversive the physician

is, the more the risk-premium decreases the probability of choosing drug n. Moreover,

learning about the average symptomatic e�ects of the drug for the patient, µjkn, decreases

the variance of the posterior distribution σ2
jnt and the risk premium. For this reason,

learning increases the probability of choosing drug n again.

Because the optimization problem has a stationary Markovian structure, only the values

of current state variables in Sjk a�ect the expectation of the physician about the future.

The value function can thereby be expressed as

V (Sjk) = maxn{E
[
u(xjkn, pn, ejkn) +

β(1− hjk)E
[
V (S ′jk)|xjkn, yjkn, n

]
|Sjk

]
,∀n}, (2.10)

where S ′jk is a set of state variables in the next period.

To decrease the dimensionality of the state space, I take the expectation of the value

function in (10) over preference shocks, ejk1, ..., ejkN (see e.g. Aguirregabiria and Mira,

2010, Rust, 1987)

E(V (Sjk)) = γ + log(
N∑
n=1

exp(V
k
(Sjk))), (2.11)
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where γ = 0.5772 is Euler's constant. I follow CS and adapt a method by Keane and

Wolpin (1994) to approximate the expected value function.29

2.4 The econometric model

In this section, I describe the simulated log-likelihood function and discuss identi�cation.

I use the following data to compute the simulated likelihood function: the vector of

indicator variables, dj1t, ..., djNt where dj1t equals 1 if the patient takes drug n in period

t, the number of the patient's prescriptions for drug n by time t, ljnt, the average price of

the drug, pn, the indicator for whether the drug therapy of the patient is censored at the

end of the observation period, cj, and the length of the cholesterol drug therapy, Tj.

The likelihood function contribution of (non-censored) patient i includes probabilities

for chosen drugs in each period, 1, ..., Ti, and the probabilities that the drug therapy is

continued up to period Ti and ended at the end of period Ti,

Lncj =
K∑
k

pkE[

Tj−1∏
t

(
(
∏
n

λ
djnt

jknt)(1− hjkt)
)
(
∏
n

λ
djnTj

jnTjk
)︸ ︷︷ ︸

Continue the therapy of patient i with type k up to Ti

hjkt], (2.12)

where λjknt =
e
V jknt∑N

n′=1 e
V jn′tk

is the choice probability for drug n at time t. The expectation

in (12) is taken over health e�ects xjnkt and yjnkt and preference shocks ejknt
30 that

are unobserved to the econometrician. As patient types k are also unobserved to the

econometrician, their e�ects on the likelihood contribution must be averaged out.

The likelihood contribution of a censored patient is otherwise the same as (12), except

that her exit from the drug therapy is not observed,

Lcj =
K∑
k

pkE
[ Tj−1∏

t

(
(
∏
n

λ
djnt

jknt)(1− hjkt)
)∏

n

λ
djnTj

jnTjk

]
. (2.13)

Because the computation of the likelihood function would require integration over the

distribution with a very high dimension and the choice probabilities do not have a closed

29The basic idea of the method is to solve the dynamic programming problem recursively at a subset

of state space points and approximate in other points by using interpolation. See CS and Keane and

Wolpin (1994) for details.
30These error terms are needed to compute the predicted choices of physicians for their patient.
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form solution, the likelihood function is approximated with Monte Carlo integration. The

simulated likelihood contribution of a non-censored patient is calculated by replacing the

expectation with an average over S simulations,

Lnc,sj =
1

S

S∑
s=1

K∑
k=1

pk
[ Tj−1∏

t

(
(
∏
n

(λsjknt)
djnt)(1− hsjkt)

)]
(
∏
n

(λsjnTjk)
djnTj )hsjkt (2.14)

and similarly for a censored patient.

The simulated log-likelihood function is given by

lnLN,s(θ) =
N∑
j=1

[(1− cj)lnLnc,sj (θ) + cjlnL
c,s
j (θ)]. (2.15)

To get the simulated version of the likelihood function, I �rst draw the signals and pref-

erence shocks of a patient for all products, conditional on her severity of illness. Next,

I compute choice speci�c value functions for each simulation, product and illness type.

Then, I calculate the simulated counterpart of the value function at time t = 1, update the

beliefs by using the simulated signals and the updating formulas presented in equations

(2.7)-(2.8) and compute the simulated exit rate. I repeat these steps for all periods when

the patient received a prescription. I estimate the model using 10 simulations for each

patient31. Because the number of simulation is small, the MSL estimator is inconsistent.32

The results must thus be interpreted with caution.

Identi�cation

Variation in drug choices with the number of prescriptions across patients help to iden-

tify the model parameters. Initial prescriptions identify the prior means of symptomatic

match values, µ
kn
, because the physician has not yet observed any symptomatic e�ects.

Prescriptions in the early vs. the late stages of the treatment, or learning, identify the

variance of symptomatic match values, σ2
n. Because risk aversive physicians are more

reluctant to switch a drug treatment, persistence in drug choices identi�es the risk aver-

sion coe�cient, r. Changes in prescription with the number of times the physician has

31My plan is to increase the number of simulations. CS estimated the model by using 30 simulations.
32This is because the simulated likelihood contribution of individual i lnf̂i is biased for lnfi even if f̂i

is unbiased for fi (see e.g. Cameron and Trivedi, 2005).
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prescribed the drug n, ljnt, identi�es the variance of symptomatic health e�ects, σ2
ex.

33

I normalize the price of the cheapest drug, Simvastatin, to zero to identify the price

coe�cient α.

I then consider variation that identi�es the parameters of health e�ects that a�ect the

exit rate from the drug therapy. The law of iterated expectations implies that the exit

rate conditional on the state variables is

E(hjkt|Sjkt) = EνjknEyjknt|νjkn
[ hjk(t−1)

1−hjk(t−1)
+ djntyjknt

1 +
hjk(t−1)

1−hjk(t−1)
+ djntyjknt

|Sjkt
]
, (2.16)

where the �rst expectation is taken over the mean of health e�ects that a�ect the exit rate,

νjkn, and the second one is taken over health e�ects conditional on the mean, yjknt|νjkn.
Because the e�ect of yjknt on the exit rate varies with the number of prescriptions and is

di�erent across patients, the mean and variance of the exit match value, νkn and τ
2, and

the variance of yjknt conditional on νjkn, σ
2
ey, are identi�ed. The parameter of the initial

exit rate, θk, is identi�ed because it a�ects the exit rate in the previous period, hjk(t−1).

2.5 Estimation results

Table 2.3 describes the estimation results of the dynamic matching model. The �rst panel

presents the estimates of initial exit and type probabilities, hjk1 and pk for types k = 1

(line 1) and k = 2 (line 2). The second panel contains the means and the variance of the

symptomatic match values for drugs n, n = 1, ..., 6 (rows), and patient types k, k = 1, 2

(columns), i.e. µ
kn

and σ2. Analogously, the third panel includes the means and the

variance of the exit match values for drugs n, n = 1, ..., 6 (rows), and patient types k,

k = 1, 2 (columns), i.e. νkn and τ 2. Recall that due to the non-rational expectations of

the physician, the mean symptomatic match value of Rosuvastatin is allowed to be dif-

ferent from the true match value mean if the �rst prescription was taken before 1.1.2005.

The fourth panel presents the variances of the symptomatic and exit rate health e�ects

conditional on the match values, i.e. σ2
ex and σ

2
ey. The �fth panel contains price and risk

aversion coe�cients, α and r. I follow CS and �x the discount rate to 0.95.

33Prescription choices change because the posterior beliefs for the mean and variance of the symptomatic

match value, µ
kn

and σ2, change with the number of prescription for drugs n (see (5)− (6)).
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Table 2.3: Estimates from the dynamic demand model in the sample of patients

Est. Std.err. Est. Std.err Mean,

over types

Exit prob. hj1k Type prob. pk

θ1 (Type 1) 0.493 0.037 0.614 0.039

θ2 (Type 2) 0.494 0.037 0.386

Symptomatic match values, Type 1 Type 2

µjkn

Means:

Simvastatin µ
1k

0.782 0.578 0.011 0.003 0.485

Lovastatin µ
2k

-0.013 0.016 -0.014 0.021 -0.014

Pravastatin µ
3k

-0.012 0.033 0.017 0.032 -0.001

Fluvastatin µ
4k

0.005 0.005 0.009 0.001 0.007

Atorvastatin µ
5k

0.067 0.073 -0.012 0.001 0.037

Rosuvastatin:

rational expect. µ
6k

-0.111 0.187 0.007 0.025 -0.066

non-rational expect. µj61k 0.008 0.001 -0.023 0.000 -0.004

Variance σ2 3.416 1.351

Exit match values, Type 1 Type 2

νjkn

Means:

Simvastatin ν1k 0.046 0.183 0.000 0.001 0.028

Lovastatin ν2k -0.001 0.005 0.001 0.007 0.000

Pravastatin ν3k 0.001 0.011 0.001 0.010 0.001

Fluvastatin ν4k -0.001 0.002 -0.002 0.000 -0.001

Atorvastatin ν5k 0.001 0.023 0.000 0.000 0.001

Rosuvastatin ν6k -0.008 0.059 0.005 0.008 -0.003

Variance τ2 0.999 1.556

Signal variance

Symptomatic signal σ2
ex 0.975 0.725

Exit signal σ2
ey 1.633 3.568

Price coe�cient, α 0.126 0.021

Risk-aversion parameter, r 0.975 0.713

Discount factor, β 0.95

Number of individuals 1000

Draws/individual 10

Log likelihood function 5244
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Discussion

The estimation results for the distribution of patient types provides evidence on hetero-

geneity in the severity of illness across patients with high cholesterol. Recall that the

illness type captures factors observed by the physician but not by the econometrician

that a�ect the distributions of health e�ects. The �rst set of parameters in Table 2.3

shows that type 1 and 2 patients have an equal changes of exit at the beginning of the

drug therapy. The exit rate hjkt can still di�er across patients, depending on observed

health e�ects and the physician's drug choices. I also �nd that patients are of type 1 with

probability 0.61 and of type 2 with probability 0.39.

The second set of parameters in Table 2.3 provides evidence on heterogeneity in the

distributions of health e�ects across patient types. The results suggest that the means

of symptomatic match values, µ
1k
, ..., µ

6k
, di�er between patient types but most of the

means are somewhat imprecisely estimated. The rank of drugs based on the mean of

symptomatic match values is (1,5,4,3,2,6)34 for type 1 patients and (3,1,4,6,5,2) for type 2

patients. On average, the cheapest drug Simvastatin (drug 1) performs the best for type

1 patients and Pravastatin (drug 3) for type 2 patients. Patients of type 1 have the worst

match on average with Rosuvastatin (drug 5) and type 2 patients with Lovastatin (drug

2). The estimated prior means of Rosuvastatin under non-rational expectations indicate

that physicians were initially too optimistic about the average symptomatic e�ects of Ro-

suvastatin for type 1 patients and too pessimistic for type 2 patients. On average, patients

have the best symptomatic match with Simvastatin and the worst with Lovastatin.

In Figure 2.2, I illustrate heterogeneity in the symptomatic match value distributions

further. When a patient is of type 1, the e�ciency of Rosuvastatin is much worse than

that of other statins. For type 2 patients, the distributions of the match values overlap

much more than for type 1 patients. The standard deviation estimate of symptomatic

health e�ects is large (3.42) compared with the estimates of the mean symptomatic match

values for both patient types (−0.11−0.78). Heterogeneity in symptomatic health e�ects

implies that physicians face substantial uncertainty about the symptomatic e�ects of

cholesterol drugs for their patients. Because the match values values are not known to

physicians at the beginning of therapy, learning may signi�cantly help physicians to �nd

the best drug treatments for their patients.

34Active ingredients: 1: Simvastatin, 2: Lovastatin, 3: Pravastatin, 4: Fluvastatin, 5: Atorvastatin, 6:

Rosuvastatin

41



−5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

−5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

Figure 2.2: Symptomatic match value distributions for Types 1 (higher �gure) and 2 (lower

�gure): Simvastatin (-), Lovastatin (�), Pravastatin (:), Fluvastatin (-.), Atorvastatin (-

.*), Rosuvastatin (-.x). in the sample of patients

The third set in Table 2.3 presents the estimates for the type-speci�c distributions of
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match values that a�ect exit rates. The results show that the average exit match val-

ues, ν1k, ..., ν6k, are again heterogeneous across patient types. The rank of drugs in this

dimension is (1,5,3,4,2,6) for type 1 patients and (6,2,3,5,1,4) for type 2 patients where

higher ranks indicate higher exit rates. On average, patients using Simvastatin have the

highest and patients using Rosuvastatin have the lowest exit rates from the cholesterol

drug therapy.

The estimates for variances σ2
ex and σ

2
ey are large (0.98 and 1.63, respectively) compared

with the estimates of average health e�ects. This may suggest that the physician faces

signi�cant uncertainty about health e�ects even after learning the patient and drug spe-

ci�c match values. Variances σ2
ex and σ2

ey are, however, imprecisely estimated (standard

deviations 0.73 and 3.57) which prevents from making any stronger conclusions.

The �nal set of parameters contains price and risk aversion coe�cients. Physicians are

estimated to be insensitive to changes in the prices of cholesterol drugs since the point

estimate of the price coe�cient, α, is only 0.13. My �ndings also indicate that physicians

are risk averse: the point estimate of the risk aversion coe�cient, r, is 0.98 with a standard

deviation of 0.71. In the next section, I will show that risk aversion and uncertainty about

the health e�ects of cholesterol drugs decrease the incentives of physicians to experiment

with new treatments.

Overall, the estimation results indicate that the market leader Simvastatin has relatively

good symptomatic e�ciency compared with the other statins. Atorvastatin has the second

market highest share and it performs reasonably well in both the symptomatic and exit

rate dimension. The health e�ects of Rosuvastatin, that has a market share of 15% in the

sample, di�er between patient types. My results also show that the health e�ects of the

cholesterol drugs are heterogeneous across patients. These �ndings are consistent with

the results of CS from the Italian anti-ulcer market.

2.6 Model �t and counterfactual experiments

In this section, I analyze the roles of learning and experimentation in demand for choles-

terol drugs. To do this, I perform several counterfactual policy simulations and evaluate

how they a�ect the patient's expected discounted utility, the length and costs of the drug

therapy, experimentation incentives and the market shares of the drugs measured.35 First,

I replicate the policy experiments performed by CS. To be more precise, I investigate what

35I measure the market share of a drug by its prescription share of total prescriptions.
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happens if a physician knew the match values of a patient with drug treatments.36 With-

out uncertainty, the physician has higher incentives to prescribe new, less well-known

drug treatments for the patient. Second, I force the physician to prescribe the �rst active

ingredient for the patient every period during the drug therapy. In this experiment, the

physician is not allowed switch to an another drug after learning the match quality of the

�rst drug.

To understand in-depth the consequences of learning and experimentation in the market

for statins, I perform the following new counterfactuals. First, I make the physician myopic

(the discount factor equals zero) in his choices. This experiment removes experimentation

incentives because the physician does not take into account the consequences of his actions

on the patient's future health. Next, I analyze how risk aversion a�ects incentives to

experiment. To do this, I decrease the risk aversion coe�cient from 0.98 to 0.50. This

experiment decreases switching costs caused by uncertainty and increases incentives to

experiment. Finally, I consider the implications of the policy that prevents learning

on pharmaceutical demand. This experiment corresponds to the situation where the

physician does not investigate the patient and decides on a new prescription based on his

prior knowledge. The results are compared to the raw data and the baseline case implied

by the estimated parameters. To perform the counterfactuals, I simulate the sequences

of treatments for 5000 patients and use the prior means of Rosuvastatin under rational

expectations.

I begin by investigating the speed of learning by a physician about the average health

e�ects of cholesterol drugs for his patient. Figures 2.3 and 2.4 present the evolution of the

posterior means and variances when the number of prescriptions for each drug increases

by one every period. The results suggest that uncertainty regarding to the average health

e�ects decreases fast. The posterior variance of the symptomatic match value drops 44%

and the posterior variance of the exit match value drops 28% after the �rst health e�ects

have realized.37 The diminishing of uncertainty slows down after the �rst prescription.

36Speci�cally, I set the variances of posteriors, σ2
jnt and τ

2
jnt, to zero. Recall that there is still hetero-

geneity among patients in the exit rate and symptomatic e�ects xjknt and yjknt because the variances of

health e�ects are non-zero.
37Even though this e�ect is substantial, CS found that in the anti-ulcer market, the posterior variance

of the symptomatic match value decreased over 70% after a single prescription.
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every period, an average over patients, products and types in the sample
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Figure 2.4: Di�erences between posterior means and true match values, µjknt − µjkn and

νjknt − νjkn, when ljnt increases by one every period, an average over patients, products

and types in the sample

Before analyzing the consequences of the policy experiments on demand for cholesterol

drugs, I �rst assess how well the structural model �ts data. The results in Table 2.4

suggest that the predicted outcomes are somewhat similar with those that are observed

in data (Table 2.4).38 The average length of the statin therapy is 2.8 prescriptions in

the data whereas the one predicted by the model is 2. The predicted number of di�erent

drugs taken during the therapy is the same (1.3) as in the data. The predicted costs of

the therapy relative to the average cost of Simvastatin is, however, much smaller than

the observed total costs of the therapy in the sample. The di�erence arises because the

market shares of expensive drugs, Atorvastatin and Rosuvastatin are underestimated and

the market share of the cheap drug, Lovastatin is overestimated. The results must thus

be interpreted with this caveat.

38In the future, my plan is to evaluate how the �t of the model could be improved.
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Table 2.4: Counterfactual experiments and model �t in the sample of patients

Model Data Baseline Complete Use the Myopic Risk aversion No learning3

info2 �rst drug r=1/2

Average

discounted utility -1.380 3.195 -4.687 -3.857 2.699 -8.869

Treatment length 2.812 1.972 1.975 1.972 1.972 1.973 1.972

Total costs (eur)4 152.305 49.299 70.482 43.235 49.222 75.582 42.954

Di�erent drugs 1.257 1.256 1.597 1.000 1.254 1.600 1.347

Market share5

Simvastatin 0.532 0.600 0.419 0.646 0.600 0.376 0.651

Lovastatin 0.003 0.108 0.174 0.099 0.108 0.188 0.092

Pravastatin 0.026 0.074 0.097 0.066 0.073 0.104 0.065

Fluvastatin 0.051 0.090 0.120 0.077 0.089 0.129 0.077

Atorvastatin 0.243 0.055 0.081 0.045 0.055 0.086 0.043

Rosuvastatin 0.145 0.074 0.109 0.068 0.074 0.118 0.072

1 Number of simulated individuals=5000. The sample of 1000 patients is described in Section 2.2 of this

chapter.
2 Complete information: σ2

jnt and τ
2
jnt are set to zero.

3 No learning: physicians do not receive signals about the match values of the patient.
4 Total costs (eur), the price normalized with the price of Simvastatin
5 Market share: the share of prescriptions for a product from the total number of prescriptions.

The results from the counterfactual experiment with complete information suggest that

uncertainty has substantial e�ects on treatment outcomes and costs (Table 2.4). When

there is no uncertainty about the patient's average health e�ects, the expected discounted

utility is higher than in the baseline case. The average treatment length (2 prescriptions)

does not change from the baseline. The physician is more willing to prescribe di�erent

drugs when there is no uncertainty. To be more speci�c, the average number of di�erent

drugs is 1.6 under complete information and 1.3 in the baseline. The market share of

the cheapest drugs, Simvastatin and Lovastatin, decreases 16% from the baseline.39 As a

result, the total costs of the statin therapy (relative to the average cost of Simvastatin)

are 43% higher under the complete information scenario than in the estimated baseline.

In the second counterfactual experiment, the physician is forced to prescribe the �rst

drug to the patient every period during the drug therapy. This policy rules out exper-

imentation but lets the physician to learn from realized health e�ects. Unsurprisingly,

the expected discounted utility decreases because the physician cannot switch to a bet-

39This happens because removing uncertainty decreases the risk-premium and increases the role of

idiosyncratic preference shocks ejknt in the utility function, making market shares more evenly distributed.
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ter treatment alternative after getting more information about the quality of the �rst

drug. Still, market shares, total costs and treatment length do not change much from the

estimated benchmark.

In the next experiment, I investigate the signi�cance of experimentation by making the

physician myopic. The results are similar with the previous experiment. Even though

the expected per-period utility of the patient is smaller than in the baseline, treatment

outcomes, costs and market shares remain almost the same as in the estimated benchmark

case. These results suggest that the disutility caused by uncertainty a�ects the medication

choices of the physician more than the information gains of experimentation. This indi-

cates that experimentation incentives do not matter much in the market for cholesterol

drugs.

Then, I decrease the risk aversion parameter from 0.98 to 0.50. When the physician be-

comes less risk averse, the number of di�erent drugs increases 27%, the process of learning

improves and the patient's expected welfare increases from the estimated baseline scenario.

Even though the drug therapy length does not change, the total costs of the statin therapy

increase by 53%. To explain this, the lower risk aversion coe�cient decreases the relative

di�erences in sub-utilities −e−rµnk
+ r2

2
(σ2

n+σ
2
ex) between drugs and thus preference shocks

ejknt a�ect prescriptions more.

In the last simulation experiment, the physician does not observe health e�ects and thus

he cannot learn. The expected discounted utility decreases because the variance of the

symptomatic match value does not decrease over time. The market share of Simvastatin

increases slightly because it has relatively good performance for both patient types. The

total costs of the statin therapy and the average therapy length remain almost the same

as in the benchmark case.

Then, I study in detail how incentives to experiment vary across policy experiments. Fig-

ure 2.5 presents the simulated probability of switching a drug treatment from the previous

prescription, conditional on the number of prescriptions.40 As suggested by Table 2.3, the

probability of switching is higher in the experiment without learning than in the bench-

mark case. This is because uncertainty and learning make risk-averse buyers reluctant

to try new, less well-known products. When the physician is myopic, the probability of

switching is almost the same than in the baseline scenario.

40Note that the sample of patients varies with the prescription number.
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Figure 2.5: The probability of switching an active ingredient from the previous prescrip-

tion, an average over patients, products and types in the sample

Finally, Figure 2.6 presents the market share of the market leader and the cheapest drug,

Simvastatin, in di�erent policy experiments. The results suggest that the average market

share decreases over the course of the therapy. This may happen since those patients

who are on the statin therapy long have the worst symptomatic match with Simvastatin.

When the number of prescriptions is high, the estimated market share does not di�er

much from the market share of the policy with complete information since physicians have

probably learned the average health e�ects of Simvastatin. The probability of prescribing

Simvastatin is the highest, around 60%, in the experiment without learning.
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Figure 2.6: The market share of Simvastatin in each period, an average over patients,

products and types in the sample

Overall, my results suggest that promoting in the process of learning can signi�cantly

improve medical decision-making. This �nding implies that policy makers should provide

information about the health e�ects of drugs. Consistent with high persistence in demand

for cholesterol drugs, I �nd that physicians are not willing to experiment with new, less

well-known treatment alternatives. If physicians became less risk averse, their learning

would improve and the welfare of a patient would increase. To achieve these goals, one

might imagine that treatment recommendations could encourage doctors to more risks in

their treatment choices.

2.7 Conclusions

I analyzed the role of experimentation in demand for pharmaceuticals. I estimated a

dynamic matching model of medical decision-making that incorporates uncertainty and

learning about the average health e�ects of pharmaceuticals. After the patient has used a

drug, the physician observes how the drug treatment a�ected both the patient's symptoms

and the probability of ending the drug therapy. The structural model was estimated using

rich data from the Finnish market for cholesterol drugs.
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The parameter estimates implied that patients respond di�erently to cholesterol drug

treatments. I also found that physicians are risk averse and face substantial uncertainty

about the health e�ects of statins. These �ndings suggested that information and learning

may have signi�cant value in this market. The counterfactuals showed that the provision

of information on the average health e�ects of drug treatments increases the patient's

welfare from the estimated benchmark case. I also found that uncertainty a�ects medical

decision-making more than the information gains of experimentation. If doctors became

willing to take more risks in their treatment choices, the process of learning would improve.

A key assumptions of the model is that physicians are identical. In the next chapter, I

analyze how physician's own experience of a patient and learning from past choices of

other doctors a�ect her behavior.
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Chapter 3

Private Experience and Observational

Learning in Pharmaceutical Demand

I quantify the roles of the physician's own experience and the past choices of other doctors

in pharmaceutical demand. I develop a model of medical decision-making under uncer-

tainty about the quality of the match between the patient and the drug treatment. Unlike

previous demand models, I take into account both private and social learning, and allow

heterogeneity in quality across patients. I test whether information on the past choices of

other physicians improves drug choices. Using rich data from the market for cholesterol

drugs, I show that treatment patterns relying heavily on the past choices of other doctors

can lead to demand beyond the e�cient level. My results suggest that continuity of care,

where a patient repeatedly consulting the same doctor, is an e�cient policy to limit such

behavior.

Keywords: social and private learning, structural modeling, unobserved quality, asym-

metric information, demand, information di�usion, physician behavior
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3.1 Introduction

Agents may use their own experiences and the past choices of their peers to learn about

the quality of a product. Yet there is very little previous work quantifying whether

private learning and observing the behavior of other agents help to reduce uncertainty

around choices. In this chapter, I explore these issues in pharmaceutical demand under

uncertainty about the e�ects of the drug treatment on patient health. I will show that

that treatment patterns relying heavily on the past choices of other doctors can lead to

over-prescribing in terms of welfare. I analyze whether continuity of care - in the sense

of a patient repeatedly consulting the same doctor - is an e�cient policy to limit such

behavior. The policy is commonly used in primary care to promote the process of learning

and improve medical decision-making:

However, there are other aspects to the doctor-patient relationship that have im-

portant implications on e�ciency. The distinctive feature of general practice agency

is that the doctor-patient relationship is usually long-term and more likely to be

characterized by repeated transactions [...] In general practice repeated transactions

are also potentially bene�cial because the GP becomes more aware of the context of

the patients' health problems, and has more information about the patients' medical

history, social circumstances, values and preferences.

Anthony Scott (2000), Handbook of Health Economics

I develop a model of medical decision-making under uncertainty about the quality of the

match between the patient and the drug treatment. I modify the standard theoretical

models with social learning (Chamley, 2004, Bikhchandani, Hirshleifer and Welch, 1992),

by allowing agents to learn product quality from their own experiences. I ask whether

continuity of care is preferable to providing information on the past behavior of other

doctors through patient records. I focus on the Finnish market for cholesterol drugs that

are used to decrease the risk for cardiovascular diseases. Bene�ts from improvements in

the drug treatment of hyper-cholesterolemia (high cholesterol) can be substantial, as heart

disease and stroke alone are among the most widespread and costly diseases. Still, many

doctors claim that cholesterol drugs are prescribed to low-risk patients beyond the level

of clinical e�ectiveness.1

Empirical evidence shows that private experience and peer e�ects have important roles

in demand for pharmaceuticals. First, the extensive literature in medicine and economics

1See e.g. Franklin (2011), Adams (2011), Joelving (2011), BBC (2011).
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(see e.g. Weiss and Blustein, 1996, Scott, 2000, King et al., 2008) has documented the pos-

itive relationship between continuity of care and treatment outcomes. My data con�rms

that prescriptions are highly responsive to changes in the length of the doctor-patient

relationship.2 Second, prescription behavior by inexperienced physicians is signi�cantly

a�ected by the choices of prominent physicians, or "opinion leaders" (Nair et al., 2010). In

my data, the previous choices of peers a�ect prescribing behavior especially if a physician

does not have much own experience of the patient.

To model these �ndings, I develop my analysis as follows. I consider a physician's (she)

decision to continue the patient's (he) drug therapy in primary care where physicians may

change.3 The physician does not know ex-ante the e�cacy and side e�ects of cholesterol

drugs (referred as the "drug") for a patient. I analyze the physician's attempt to learn

the quality match between the patient and the drug from her own experience and the past

choices of other doctors. At the beginning, the physician evaluates the patient's risk for

cardiovascular diseases based on his observed characteristics, such as gender and age. This

evaluation forms the prior belief of physicians on the average health e�ects, or quality,

of the cholesterol drug for the patient. In the follow-up, a physician performs diagnostic

procedures and medical tests to evaluate whether the drug a�ected the patient's abnormal

cholesterol levels and caused side e�ects. While interpreting her �ndings, the physician

privately observes the health e�ects of cholesterol drugs that a�ect her personal opinion

(private belief) on quality. Simultaneously, she looks at patient records to see the past

choices of other doctors. With this information, the physician forms the public belief

on quality. The physician takes into account her own opinion, the patient's prescription

history and the prior belief when she decides on the continuation of the patient's therapy.

The model helps to understand whether continuity of care can improve the e�ciency of

drug choices. When only one physician is treating a patient, the physician becomes over

time more familiar with the patient's disease and her perceptions on the distribution of

health e�ects become more precise. She may thus learn whether the drug is on average

good or bad for the patient which improves her medical decision-making. If physicians

change frequently, the process of learning slows down and becomes heavily dependent on

the past choices of other doctors. An inexperienced physician may belief that the drug

treatment must perform well for the patient who has used the drug for many years. This

2Speci�cally, I consider the choices of physicians working in the Finnish public primary care. In this

market, the physicians of a patient change frequently for exogenous reasons, such as due to the shortage

of physician labor. See section 3.2.1 for details.
3The model can be extended to allow multiple inside goods. This is very straightforward if the health

e�ects of only one drug group, say patented products, are uncertain.
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optimism on quality leads to over-prescribing when the drug is of low quality.

A vast majority of the literature on demand for experience goods assumes that agents can

only learn the quality of a product from their own experience (e.g. Crawford and Shum,

2005, Kim, 2010, Dickstein, 2011, Chan and Hamilton, 2006, Chernew et al. 2008) or that

all information is public (e.g. Ackerberg, 2003, Ching, 2009). A few recent papers also

look at the social learning of an agent who makes a once-in-a-lifetime decision (Cipriani

and Guarino, 2012, Knight and Schi�, 2010, Zhang, 2010). My main contribution is that

I take into account both private and social learning in demand, allowing agents to receive

multiple experience signals. With my framework, I can analyze how the own consumption

experiences of an agent interact with information received from the past choices of peers

in her learning process.4 Furthermore, because private and social learning may induce

divergent beliefs about quality, a demand model should capture them both in order to

produce reliable estimates on product quality and on the e�ects of policy experiments

on choices.5 Finally, unlike the previous work on social learning, I allow heterogeneity

(among patients) in quality.

I �nd that the average health e�ects of the cholesterol drug treatment are heterogeneous

across patients. Particularly, the quality of the match is on average high for 72% of pa-

tients and low for the remainder. The estimates also imply that most of the uncertainty

associated with quality vanishes when the patient has used the cholesterol drug treat-

ment once. Even if quality was known, uncertainty regarding to health e�ects remains

signi�cant. These results have implications on e�ciency.

The counterfactual experiments suggest that information on the patient's prescription

history does not compensate for the lack of the long-term treatment relationship. If the

patient had only one physician, the physician learns fast and better health outcomes

realize. If quality is high (low), the long-term doctor-patient relationship increases (de-

creases) demand for cholesterol drugs. Information on the past choices of other doctors

for a patient promotes learning about high quality, but not as e�ciently as continuity of

care. If quality is low, observing the patient's prescription history increases demand over

the level of e�cient prescribing.

4Traditional private and social learning models are special cases of my framework.
5If there is private information unobserved by the econometrician, but all information is assumed to

be public, quality estimates become biased. Speci�cally, when quality is in reality high, quality estimate

is downwards biased because private information slows down learning and decreases the probability of

choosing the product. Low quality estimate is, on the other hand, upwards biased because social learning

makes agents too optimistic about quality which increases the probability of choosing the product.
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The rest of the chapter is organized as follows. Section 3.2 describes the dataset and

provides descriptive evidence on the e�ects of physician's own experience and the past

choices of other doctors on medical decision-making. Section 3.3 goes through the struc-

tural model and Section 3.4 discusses estimation and identi�cation. Section 3.5 presents

estimation results, the �t of the model and the results from the counterfactual experi-

ments. Section 3.6 concludes.

3.2 Market and data description

3.2.1 Cholesterol drug markets

Cardiovascular diseases (CVD), such as heart attacks, stroke and high blood pressure,

a�ect millions of people globally. Heart disease and stroke alone are among the most

common and costly health problems in Europe and the United States.6 Patients who

have experienced CVDs have to deal with high medical expenditures, lost wages and

lower productivity.

I analyze the Finnish market for cholesterol drugs that are used to decrease the risk for

cardiovascular events. I focus on statins (HMG-CoA reductase inhibitors) that is the most

popular group of cholesterol drugs globally.7 Statins decrease high serum LDL-cholesterol

("bad" cholesterol) and increase HDL-cholesterol ("good" cholesterol) by inhibiting an

enzyme in the liver that has an important role in the production of cholesterol.8 High

morbidity to CVDs and a large volume of diagnoses of dyslipidemia, i.e. an abnormal

amount of lipids, such as cholesterol and fat, in the blood, have made cholesterol drugs

one of the world's largest selling drug groups.

Corresponding to the United States, the following active ingredients are on the Finnish

statin market: Atorvastatin (Lipitor and Torvast), Fluvastatin (Lescol), Lovastatin (Meva-

cor, Altocor, Altoprev), Pravastatin (Pravachol, Selektine, Lipostat), Rosuvastatin (Crestor)

6Around 12% of adults su�ered from heart disease in 2009 − 2010 in the United States (National

Center for Health Statistics, 2011). Every year, there are around 152 000 strokes in the UK (British

Heart Foundation, 2013).
7See e.g. Herper, M. (2010) "Why You May Need Cholesterol Drugs", Forbes, and U.S. Food and

Drug Administration (FDA), 2010.
8When cholesterol levels are too high, cholesterol can grow on the walls of blood vessels transporting

blood from the heart to other body parts. Over time, these blood vessels can be blocked, preventing the

heart from getting enough blood.See e.g. "What is cholesterol?" by the National Heart, Lung and Blood

Institute that is a division of the National Institutes of Health in the USA.
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and Simvastatin (Zocor, Lipex).9 I focus on a physician's decision to continue the pa-

tient's statin therapy for several reasons. First, uncertainty is probably the highest in the

health e�ects of statins in general. Second, clinical di�erences between statins in reducing

cardiovascular events have been claimed to be small (National Institute for Health and

Clinical Excellence, 2006) and thus it is quite natural to consider statins as a one group. I

thereby ignore important questions regarding to a physician's or patient's choice between

branded and generic products (see e.g. Scott-Morton, 1999, Ching, 2010a and 2010b) and

between di�erent active ingredients (see Crawford and Shum, 2005).10

A treatment decision by a physician is based on the bene�ts and adverse e�ects of statins.

The statin therapy is initiated if the patient has a high risk for CVDs. The evaluation

of the risk is based on several factors, including the patient's gender, age, blood pressure

and cholesterol levels. In my model, the initial evaluation is captured by the physician's

prior belief on the average health e�ect of cholesterol drugs for a particular patient. In

the follow-up of the drug therapy, a physician evaluates the realization of the treatment

goals and sustains the patient's treatment motivation. The main goal of cholesterol drug

treatment is to decrease the total cholesterol level below 5 mmol/L (LDL-cholesterol below

3 mmol/L). If the patient experiences side e�ects, the physician decreases the dosage,

experiments with an another statin or suspends the cholesterol drug therapy (the Finnish

current care for dyslipidemia, 2011).11 As patients respond di�erently to statins (the

Finnish current care for dyslipidemia, 2011, Jousilahti, 2004), a physician may not know

the e�cacy and side e�ects for a single patient.12 I take the uncertainty into account and

9Within the group of an active ingredient, statins di�er also in the form of drugs, package sizes,

strengths and prices. I do not consider a combination preparations of a statin and an another active

ingredient.
10I also assume that the physician decides to end the patient's medical treatment. In practice, the �nal

decision to end the therapy can be done either by the physician or the patient or both.
11Lifestyle changes, including exercising and changes in diet, are often adequate for a low-risk patient.

However, patients are often unwilling to change their lifestyles, even after having a signi�cant shock

in their life. Perhaps 45% of smokers stop smoking after a myocardial infarction which is between 2

or 4 times of the success rate of antismoking clinics. Results are not as good for other cardiovascular

risk factors related lifestyle, such as physical exercise or diet. Patients can become even less active after

infarction. There is also some evidence that changes in self-reported fat intake in one year after infarction

can be small. (Johnston, 1999)
12For example, statins are reported being useful for men, post menopausal women and patients who

have arterial disease or diabetes. It has also been shown that statins decrease by 15% the mortality rate

of patients who were 60 years and older and initially clinically asymptomatic. Genetic susceptibility and

certain drug interactions can increase the risk of side e�ects. For example, approximately 5% of patients

have been reported su�ering muscular symptoms and an increase in the activity of serum muscular

enzymes appears for 0.5 − 2.0% of statin users, even though its clinical signi�cance is often uncertain.
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let the physician to learn the average health e�ects of statins by observing realized health

e�ects and the patient's past statin prescriptions.

Cholesterol drugs are also particularly interesting as there is no consensus on an appropri-

ate level of cholesterol drug prescribing. Some doctors have claimed that there is a little

evidence that statins reduce the CVDs of low-risk individuals. Doctors supporting the

use of statins have said that they have prevented heart attacks and other CVDs.13 In my

model, physicians disagree on the health e�ects of statins, depending on their personal

experience of the patient.

Two features of the Finnish market simplify my empirical analysis. The �rst is that a

choice of a physician by a patient was very restricted in public primary care. During

the observation period, the patient was not allowed to choose the health center. Within

the health center, the patient's family physician was (exogenously) determined based on

the patient's residential area (Finnish Medical Association, FMA, 2007).14 However, due

to the shortage of physician labor, patients were not often treated by their own family

physicians.15 I assume that a physician is exogenously determined for the patient in

primary care.16

The second feature is that two characteristics of the Finnish statin market decrease vari-

ation in drug prices over time. First, drugs are subject to price cap regulation by the

Pharmaceuticals Pricing Board that is subordinated to the Ministry of Social A�airs and

Health in Finland. Second, the patents of Fluvastatin, Atorvastatin and Rosuvastatin

remained e�ective during the whole observation period 2003 − 2006. As patent protec-

tion limits competition, it is likely that the prices ceilings of the patented products were

binding. In the empirical analysis, I follow much of the previous learning literature (e.g.

Crawford and Shum, 2005) and assume that the drug prices are exogenous. The assump-

tion simpli�es the construction of the structural model as prices do not adjust with the

(The Finnish current care for dyslipidemia, 2011)
13See e.g. Adams (2011), Joelving (2011), BBC (2011).
14Family physician practices are widely adopted in many countries. For example in the USA, The

American Academy of Family Physicians (AAFP) is one of the largest national medical organizations.

See AAFP, http://www.aafp.org.
15For example in 2006, 9% of the appointments in health centers had a shortfall of physicians and

almost the same share of working-age physicians were absent from their permanent jobs. In 46% of

these cases, this was caused by staying abroad (FMA, 2006c). It has been estimated that 90% of family

physicians treat other than their own patients every week (see FMA, 2005, 2006a, 2006c, 2007).
16To be more speci�c, I assume that the probability of getting a certain physician does not depend

on the statin treatment or the health of the patient. This probability is needed to recover the choice

probability for the outside good.
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observed behavior of physicians.17

3.2.2 Information transmission between physicians

In the model, I assume that a physician has personal experience about the patient-speci�c

quality of the drug treatment. As MD Epstein (1999) illustrates in the Journal of the

American Medical Association: "Clinical judgment is based on both explicit and tacit

knowledge. Medical decision-making, however, is often presented only as a conscious

application to the patient's problem of explicitly de�ned rules and objectively veri�able

data. [...] Seasoned practitioners also apply to their practice a large body of knowledge,

skills, values, and experiences that are not explicitly stated by or known to them. [...]

While explicit elements of practice are taught formally, tacit elements are usually learned

during observation and practice." In this section, I evaluate the validity of the assumption

on private information further by discussing the information content of patient records

and communication between physicians.

Patient records

A patient record documents and transfers information on a single patient's medication

between physician. If all relevant information for medical decision-making is available

in the record, a physician does not have any private information of the patient. To see

whether this is the case, I next consider the information content of patient records.

The focus of patient records is on the patient's medical condition and medication.18 To

see what type of information is stored in patient records, consider an example of a patient

record for a dispensary admission in Appendix B. The patient record provides a compact

description of the patient's health status and the plan, the goal and the follow-up of the

treatment. It also includes the name of the physician, the list of current medication and

a brief justi�cation for starting a medical treatment. In general, patient records may also

17In the �nancial market application of Cipriani and Guarino (2012), bid and ask prices (prices at

which a trader can buy and sell) are endogenous because they re�ect public information containing the

history of trades and prices.
18Patient records regarding to medication include entries about the need of pharmacotherapy and

medical foundations, a prescription and given medical treatment, including the name, quantity, form,

dosage, dosage form, the date and time of issue of a drug and the name of the physician who has given

or prescribed the drug (The Ministry of Social A�airs and Health, 2005).
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contain information on whether medication is permanent and reasons for a physician's

decision to end the patient's drug therapy.19

Patient records do not perfectly transfer all relevant information for medical decision-

making between physicians. The case example demonstrates that the continuation of drug

therapy is not justi�ed (Appendix B). According to an interviewed specialist, this is a very

common practice, at least in routine cases. Records do not include physician-speci�c fac-

tors, such as the physician's own preferences for medication and information on whether

her medical decision-making is based on medical literature, advertising and treatment

recommendations. The physician's accumulated knowledge of the patient's preferences,

values and circumstances is rarely recorded (see Guthrie et al., 2008). The specialist also

claimed that a narrative text format complicates the interpretation of records that may

impede information transmission. The registering of information takes the physician's

time that may decrease her incentives to record all relevant information.

Communication

I evaluate next whether all relevant information for medical decision-making is transfered

through communication. A physician who cares about her patient may want to consult her

colleagues before deciding on the continuation of the treatment. Because communication

is time-consuming, consultation does not probably happen in routine cases. On the other

hand, the patient, who wants to get as good medical treatment as possible, may want

to communicate all relevant information to her physicians. It is, however, unlikely that

medical decision-making by physicians is exclusively based on information received from

the patient (see e.g. Epstein, 1999).

The theoretical cheap-talk20 literature (see for example Crawford and Sobel, 1982, Ol-

szewski, 2004) has shown that the truthful information revelation of a consultant (a

sender, here: other physicians or a patient) to a decision maker (a receiver, here: a physi-

cian) is only one of many possible outcomes, even if there is no disagreement between

participants. If the preferences of the consultant are even slightly misalligned with the

preferences of the decision maker, there is some information loss in all equilibria (Craw-

19Essential information in electronic patient documents are reported in the following guidebook and

its updated versions (in Finnish): "Opas Ydintietojen, otsikoiden ja näkymien toteuttaminen sähköisessä

potilaskertomuksessa", version 1.1, 28.2.2006.
20In a typical cheap-talk game, the sender may, often costlessly, convey her private information through

messages to the receiver. The receiver then takes an action that together with sender's signal a�ects the

payo�s of both players.
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ford and Sobel, 1982). If the consultation e�ort of the physician is unobserved to the

patient, incentives for consultation may not be high.

Finally, if all physicians of a patient share the same information, they should have the

same probability of choosing the medical treatment. As it turns out in the next section,

this is not the case.

3.2.3 Data

Sample selection

I use a rich dataset of all purchased cholesterol drug prescriptions in Finland from January

1 in 2003 to December 31 in 2006. The data is provided by the Social Insurance Institution

of Finland which is responsible for the provision of public social security bene�ts to Finnish

residents. The data identi�es patients, their physicians and cholesterol drugs.21

I prepare my data for the empirical analysis in the following steps. First, to follow

patients from the beginning of cholesterol drug therapy and to avoid left-censoring, I

focus on "new" patients who did not have any prescriptions during the �rst 6 months of

the observation period i.e., before July 2003.22 Second, I ignore patients with multiple

prescriptions or physicians within a day to simplify the analysis further. Third, I consider

patients whose physicians are primarily working in public health centers. Ideally, I would

like to concentrate on patients who have only used the services of public health centers but

unfortunately the data does not include this information. As a proportion of physicians

work for both the public and the private sectors23, some patients in the sample may have

used private health care services. Fourth, I concentrate on patients who belong to the

working-age (15-64 years) population because the data does not allow me to distinguish

the death of a patient from the ending of the statin treatment. Finally, for computational

reasons, I draw a random sample of 10000 patients from the sample of new working-age

patients whose physicians are working in primary care.

21Other characteristics than the primary job of a physician (public health center/public hospital/other)

received from the survey conducted by the Finnish Medical Association (FMA) are from the registers of

the Social Insurance Institution of Finland. The response rate of the yearly survey has been very high.

For example, in 2006, the response rate of physicians who received the survey was 80% (FMA, 2006c).
22This six months' time window has been also used by Crawford and Shum (2005).
23In 2006, 19.6% of physicians, who were primarily working in health centers, had a sideline job (FMA,

2006c).
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Descriptive evidence

In this section, I provide the descriptive analysis of the sample. The results in Table

3.1 demonstrate that the sample consists of very heterogeneous patients. Most of the

patients in my sample were relatively old at the time of the last prescription (an average

51 years) and almost half of the patients were men. The number of diagnosis varies24

in substantially around its mean (0.7).25 A signi�cant portion of patients (55%) were

censored in the sample i.e., they had their last prescription within the last six months of

the observation period.

24The number of diagnosis is observed if the patient was on sick-leave.
25Information on the number of diagnosis is observed if a patient received sickness bene�ts from the

Social Insurance Institution of Finland.
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Table 3.1: Descriptive statistics for the sample of patients1

Mean Std.Dev. Only non-censored At the time

patients of the last

prescription

Patient characteristics

Age 55.03 7.20 No Yes

Gender (1: male, 0: female) 0.49 0.50 No Yes

Nbr of diagnosis 0.73 1.31 No Yes

Censoring indicator (1: yes, 0: no) 0.52 0.50 No Yes

Patient's medical treatment

Treatment ending (1: yes, 0: no) 0.34 0.47 Yes No

Nbr of prescriptions 1.93 1.17 Yes Yes

Nbr of physicians 1.28 0.58 Yes Yes

Prescriptions of a current physician 1.676 1.072 No No

Visit a physician specialized in

internal diseases 0.01 0.09 No No

Visit a non-specialized physician 0.69 0.46 No No

Total number of

physician's prescriptions 1.65 1.07 No No

Physician change (1: yes, 0: no)2 0.33 0.47 No No

Active ingredient change

(1: yes, 0: no)2 0.17 0.38 No No

Price, eur 46.32 49.16 No No

Number of observations 22 021

1 The relevant population consists of new working-age patients who have used statins and

the services of public health centers. The size of the random sample is 10 000 patients.
2 Note that here the number of prescriptions is at least 2 because the change in the value of

the variable from the previous prescription is computed by using the di�erence between its

current and lagged value.

Following Crawford and Shum (2005), I assume that the drug therapy of a non-censored

patient ends after the last prescription in the data. If the patient is censored, the end of

the therapy is not observed. If the censoring interval is too short, the estimation results

may be biased. This is particularly true if the patient's drug treatment is prescribed at

the end of the observation period and he has more than two prescriptions.26 Dickstein

26As a robustness check, I used a one-year censoring interval and de�ned a patient to be "new" if

he did not have prescriptions during the �rst year. Then, the probability that the patient is censored
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(2011) used an alternative approach where the treatment episode of a patient ends at the

last prescription if there was a gap of 90 days within the treatment history. A patient

appearing in the data again after the gap is then treated as a new patient.

The cholesterol drug therapies of non-censored patients in the sample were on average

relatively short, approximately 2 prescriptions (Table 3.1). The probability that the pa-

tient's therapy ends at any stage of therapy is 0.34. The average number of physicians per

patient was 1.3 and the total number of prescriptions received from a particular physician

was 1.65. Most of the patients (70%) were treated by a non-specialized physician. The

average price of a prescription was 41 eur.

Table 3.2 presents the distribution of the total number of prescriptions and physicians

at the time of the (non-censored) patient's last prescription. Most of the non-censored

patients (52%) had only one prescription and 80% of the patients were in a permanent

physician-patient relationship. Even though the distributions of the total number of

prescriptions and physicians are skewed to the right, 48% of non-censored patients had

more than one prescription and 20% were treated by more than one physician.

Table 3.2: The percentage share of non-censored patients in the sample conditional on

the total number of prescriptions and physicians at the last prescription

Physicians

Prescriptions 1 2 3- Total

1 51.91 . . 51.91

2 18.55 8.37 . 26.93

3 6.77 4.80 1.45 13.02

4- 3.13 2.95 2.07 8.15

Total 80.36 16.12 3.52 100.00

I consider next the incidence of a physician change in the sample of patients. Table 3.1

illustrated that the breakdown of the physician-patient relationship was very common.

The probability that the patient's physician changes from the previous prescription was

33%. A high standard deviation also indicates signi�cant diversity among patients in the

incidence of a physician change.

Then, I analyze how the number of interactions between a physician and a patient a�ects

prescriptions. I consider �rst how the probability of continuing the (non-censored) pa-

tient's statin therapy depends on the lagged number of physicians (Figure 3.1). I �nd that

was somewhat higher (0.73) than with the original censoring interval. The probability that the patient's

treatment ends was 0.40 which is fairly close to the corresponding probability with other de�nition (0.34).
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the continuation probability is 50% for patients who have only one physician, i.e. who

do not have any physician switches. The choice probability decreases to 42% for patients

having two physicians and further to 33% for patient with three physicians.

1 2 3 4−
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of physicians

P
ro

ba
bi

lit
y 

of
 th

er
ap

y 
co

nt
in

ua
tio

n

Figure 3.1: The probability of treatment continuation and its 95% con�dence intervals by

the number of physicians for non-censored patients, sample averages

I investigate next whether the decreasing pattern between the choice probability and the

number of physicians is driven by the phase of the patient's therapy. To see if this is

the case, I estimate the following linear probability model for the continuation of the

(non-censored) patient's statin therapy,

ait = α +Xi(t−1)β + eit, t > 1,

where ait is an indicator variable that gets value 1 if the statin therapy of patient i

is continued at time, or prescription, t and 0 otherwise27, Xi(t−1) is a vector of lagged

explanatory variables and eit is the error term.

The results presented in Table 3.3 suggest that the continuation probability increases by

13% when the number of previous physicians increases by one. The lagged length of the

27To be more precise, ait = 0 only once when the patient's statin therapy ends.
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doctor-patient relationship has an opposite e�ect on the continuation probability. These

�ndings may suggest that physicians do not share the same information about the health

e�ects of the cholesterol drug treatment for a patient.

Table 3.3: Descriptive regressions for the probability of therapy continuation in the sample

of non-censored patients

Variable1 Model (1) Model (2)

Constant 0.672*** 0.704***

(0.167) (0.169)

Own experience:

prescriptions/current physician -0.126***

(0.013)

Nbr of physicians 0.129***

(0.017)

Prescription nbr -0.156*** -0.046***

(0.008) (0.010)

Gender 0.0288** 0.0277*

(0.0109) (0.0109)

Age 0.000 0.000

(0.001) (0.001)

Nbr of diagnosis 0.006 0.006

(0.004) (0.004)

Cost, eur 0.000*** 0.000***

(0.000) (0.000)

Reimbursement -0.000*** -0.000***

(0.000) (0.000)

Fixed e�ects:

physician, ATC-code, hospital district yes yes

N 10031 10031

adj. R2 0.093 0.100

1 Explanatory variables are lagged by a one prescription.
2 Variables are for cholesterol drug prescriptions.
2 Standard errors in parentheses.
3 * p < 0.05, ** p < 0.01, *** p < 0.001.

To get further evidence on peer e�ects and the role of private experience in demand, Table

3.4 illustrates how medical spending in the sample depends on the length of the physician-

patient relationship, after controlling for observed characteristics. When the number of
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physicians increases by one, the total costs of the therapy at any stage decreases by 7

euros which is 15% of the average costs of statins in the sample. Table 3.4 also shows that

the more the physician has experience of the patient, the less the previous choices of peers

- measured by the number of cholesterol drug prescriptions provided by other doctors to

a single patient - a�ect an average medical spending at any phase of the therapy.28 When

the physicians of a patient change frequently relative to the stage of the drug therapy,

the e�ect of physician's own experience on the total costs becomes small. These results

are consistent with "asymmetric peer e�ects" where inexperienced physicians rely on

experienced doctors to decrease uncertainty around their prescription decisions (see e.g.

Nair et al., 2010). Still, the �ndings remain very indicative without putting any structure

in the model that helps to isolate the e�ects of personal experience and social learning on

medical decision-making.

28I measure the physician's own experience with the number of interactions with the patient.
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Table 3.4: Descriptive regressions for treatment costs in the sample of patients
Explained variable Total cost, Total cost, Cost, Total cost,

eur1 eur eur1

Constant -92.48*** -102.5*** 12.52*** -168.2***

(17.54) (18.04) (2.173) (23.10)

Nbr of physicians -7.106*

(3.312)

Own experience:

prescriptions/current physician 60.63*** 0.549*** 23.25***

(2.952) (0.119) (5.537)

Other physicians' experience:

prescriptions/previous physicians 60.20*** 0.572***

(4.542) (0.152)

Own experience*others' experience -3.718 -0.126**

(3.499) (0.044)

Physicians/prescriptions 86.71***

(13.73)

Own experience*

physicians/prescriptions -31.65*

(12.88)

Nbr of prescriptions 57.93*** 55.60***

(3.014) (4.182)

Reimbursement 0.028*** 0.028*** 0.019*** 0.029***

(0.001) (0.001) (0.000) (0.001)

Prescription date 0.002*** 0.002*** -0.000*** 0.002***

(0.000) (0.000) (0.000) (0.000)

Min prescription date -0.002*** -0.002*** -0.000 -0.002***

(0.000) (0.000) (0.000) (0.000)

Age, years 0.020 0.018 -0.015 0.035

(0.092) (0.092) (0.009) (0.091)

Gender 1.722 1.775 0.165 1.499

(1.531) (1.513) (0.149) (1.486)

Nbr of diagnosis -0.0260 -0.0343 -0.151** -0.0927

(0.479) (0.489) (0.059) (0.463)

Fixed e�ects:

physician, ATC-code, hospital district yes yes yes yes

N 22183 22183 22183 22183

adj. R2 0.715 0.716 0.974 0.723

1 Total (cumulative) costs at a given stage of the therapy.
2 Variables are for cholesterol drug prescriptions.
2 Standard errors in parentheses.
3 * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.3 A theoretical model of pharmaceutical demand

3.3.1 Overview

In this section, I present a structural model of medical decision-making with private

experience and observational learning. In each period during the drug therapy, the patient

(he) is randomly matched to a physician (she). After an initial treatment choice, the

physician investigates the patient and gets private information about the quality of the

match between the patient and the drug treatment. During the course of the patient's

therapy, the physician may learn quality from from her own experience and the previous

choices of other doctors for this particular patient.29

Consider patient i who comes for the �rst time to a public health center to seek drug

treatment for her medical condition. After entrance, a physician is randomly assigned

to the patient. As the sensitivity of patients to cholesterol drugs di�er, the physician

does not know ex-ante the average health e�ects, or quality, of the drug treatment for

this particular patient. To form the prior belief on quality, the physician evaluates the

patient's risk for CVDs based on the patient's observed characteristics. The physician

takes the prior belief and her privately observed idiosyncratic preferences into account

when she decides whether to initiate the cholesterol drug therapy.

In the follow-up of the drug therapy at time (or prescription number) t, patient i comes

again to the health center where he is randomly matched physician l. First, the physi-

cian performs a diagnostic procedure, physical examination and tests for the patient to

privately evaluate the e�cacy and side e�ects of the drug treatment. This evaluation

is modeled by an experience signal xilt. Simultaneously, she looks at patient records to

see how long the patient has been using the drug. Conditional on the prior, the past

choices of other doctors indexed by l1, ..., lt−1, hit = {ail11, ..., ailt−1(t−1)}, and all private

experience signals that the physician has received during the course of the patient's drug

therapy up to and including time t, she updates her belief about its quality.

Recall that in previous social learning models (Cipriani and Guarino, 2012, Knight and

Schi�, 2010, Zhang, 2010) agents can receive only one experience signal. Based on this

posterior belief and her private preference shocks for the drug treatment and the outside

good, vil1t and vil0t respectively, the physician makes a decision on the continuation of the

29A relatively easy extension of the model is to enrich the choice set of physicians that could include

other medical treatment alternatives, such as non-patented products, with the known (to physicians) but

possibly random quality. An extension that allows several inside goods with uncertain qualities comes at

the cost of computation.
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patient's therapy. Further decisions follow until any physician decides to end the drug

therapy. The timing of events is summarized by Figure 3.2.

t           t+1

Match to a physician l Observe x
ilt
,h

it
,v

ilt
A treatment choice

Time

Figure 3.2: The timing of events in period t during the follow-up of the therapy: 1.) a

patient is �rst matched to a physician, 2.) the physician observes a new signal xilt and

the past choices of other doctors hit and private idiosyncratic preference shocks, vil1t and

vil0t, 3.) the physician makes a treatment choice on all her private signals received up to

and including time t, public information hit and private preference shocks.

In the long-term treatment relationship, the physician learns about the average health

e�ects of the drug treatment from her own experience. If the relationship breaks down,

a physician attempts to infer quality from the past choices of other doctors. The less the

physician has own experience of the patient, the more the past choices of peers a�ect her

prescription behavior. If the patient has used the drug treatment long, an inexperienced

physician may perceive that the drug must be e�ective. When the drug is of high quality,

observing the past choices of other doctors improves learning. On contrary, the optimism

on quality leads to over-prescribing when the drug is of low quality.

To keep the model tractable and to avoid the salient computational burden, I assume

that a physician maximizes her expected per-period utility. The assumption of myopic

behavior is often made in the structural learning literature (e.g. Coscelli and Shum, 2004,

Ching, 2009, Chernew et al., 2008) and it abstracts away incentives to experiment with

the drug treatment to get new information about quality in the next period (see e.g.

Crawford and Shum, 2005).30

Following e.g. Crawford and Shum (2005) and Dickstein (2011), the model does not take

into account learning across patients.31 This type of learning could be incorporated to the

30My future plan is to estimate a dynamic version of the model.
31For learning across patients, see Kim (2010) and Coscelli and Shum (2004). Note also that Crawford
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model by using the entry of a new active ingredient, Rosuvastatin. This extension comes

again with the cost of computation and tractability because physicians and the econome-

trician have to keep track on the posteriors of all doctors. Because many cholesterol drugs

have been on the market since the end of the 1980s or the early 1990s, learning about the

distribution of health e�ects across patients does not probably have a signi�cant role in

my application.

In the following sections, I present the model in detail. I �rst formulate a deterministic

process governing the assignment of a physician for a patient.32 Because the physician is

not forward-looking in her treatment continuation choices, the assignment, or matching,

probability does not a�ect her behavior. Then, I describe a therapy continuation choice

under uncertainty and the information structure, including the distribution of signals

(health e�ects) and the patient-speci�c quality. Finally, I derive the posterior belief

of the physician about quality, conditional on her private experience and the patient's

prescription history.

3.3.2 The theoretical model

Physician and patient matching

In each period until the therapy ends, patient i is assigned to a physician. The physician is

either "new" i.e., she does not have the previous treatment relationship with the patient,

or is any of the previously drawn "old" physicians 1, ..., Nit. The number of old physicians

at time t + 1 increases by one, Ni(t+1) = Nit + 1, if the new physician treats the patient

at time t, and otherwise it remains unchanged, Ni(t+1) = Nit.

I assume that the patient is assigned to the new physician with probability κi and to

the old physician with probability (1 − κit) × 1
Nit

. This speci�cation implies that each

old physician is randomly selected for the patient from the pool of the previously drawn

physicians with the same probability 1
Nit

.33

I assume the following functional form for the matching probability of patient i:

and Shum (2005) allow the possibility of non-rational expectations, because in their model physicians'

prior beliefs for one particular drug, Omeprazole, can evolve over time, which captures common changes

in priors, for example, due to advertising. However, posteriors may also vary through a di�erent type of

mechanism, namely based on the previous medication decisions of a particular physician or other doctors.
32The assignment probability is used to recover the probability of the outside good (see Section 4.1).
33Note that only 3.5% of patients had more than 2 physicians in my data (see Table 3.2).
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κi = Pi(dit = 1) =
eyi

1 + eyi
. (3.1)

In the above expression, yi is N(θy, σ2
y)- distributed patient level random coe�cient. The

variance of the random coe�cient, σ2
y, measures the magnitude of heterogeneity in match-

ing probabilities across patients. The heterogeneity is potentially important because the

probability of a physician change can di�er between patients, for example, by residential

area.

A therapy continuation choice under uncertainty

Assume that physician l is drawn for patient i at time t. The physician decides whether

to continue the drug therapy of patient i, ailt = 1, or end the therapy for good, ailt = 0,

conditional on her information at that time, Iilt. In the perfect Bayesian equilibrium, the

physician chooses to continue the medical therapy if the expected utility from the medical

treatment exceeds the utility from the outside option (the non-purchase option),

ailt = 1⇔ E(uil1t|Iilt) ≥ uil0t. (3.2)

I assume that the per-period utility received from the medical treatment, uil1t, depends

on the quality signal, or health e�ects, xilt, and a vector of control variables, Zil1t. The

controls include, for example, the (average) price of statins, observed patient level char-

acteristics and the time trend capturing general market level changes over time due to

advertising. These controls are observed by both physicians and the econometrician. Be-

cause patient records do not contain information on preference shocks, I assume that the

physician's idiosyncratic, Type 1 extreme value distributed tastes for the drug treatment

and the outside option, vil1t and vil0t, are her private information. Following the previous

literature (e.g. Crawford and Shum, 2005), I assume a Constant Absolute Risk Aversion

(CARA) sub-utility speci�cation for the health e�ects. To be more speci�c, I consider

the following utility function,

u(xilt,Zil1t, vil1t) = −e−r·xilt + Zil1tα + vil1t, (3.3)

where r > 0 is the risk aversion coe�cient.

I assume that the utility of the outside good for the physician l of patient i at time t,

uil0t, is a function of a vector of observed characteristics, Zil0t, and the physician's private

preference shock, vil0t,
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u(Zil0t, vil0t) = Zil0tβ + vil0t. (3.4)

To ensure identi�cation in the discrete choice model, I make a typical restriction that the

constant of the outside option is zero. Recall that the utility of the outside good varies

with the patient's observed characteristics (see Chan and Hamilton, 2006, for a similar

approach). For example, cholesterol drugs prevent coronary events in the long-run after

the patient's drug therapy has ended.34 I control this with the number of prescriptions.

Health e�ects

The quality of the match between the patient and the drug treatment (referred as "qual-

ity"), θi, is without loss of generality either high θ1 or low θ0 with prior probabili-

ties pi(θ1) and 1 − pi(θ1), respectively.
35 The variance of random quality, Var(θi) =

E(θ2i ) − (E(θi))
2 = pi(1 − pi)(θ21 + θ20 − 2θ1θ0), measures prior uncertainty regarding to

quality. The prior is uninformative when it equals 1/2.

The prior probability is common knowledge for physicians but it may vary across patients,

depending on the patient's observed characteristics. I assume that each physician has the

following prior belief that the treatment has high quality for patient i:

pi(θ1) =
eγ0+Zpi γ1

1 + eγ0+Zpi γ1
, (3.5)

where Zpi is a vector of patient level characteristics at the time of the �rst prescription.

In the follow-up of the patient's drug therapy at time t > 1, the physician observes

an experience signal, or health e�ects associated with the use of cholesterol drugs. I

assume that health e�ects are independent and normally distributed conditional on the

true quality,

xilt|θi ∼ N(θi, σ
2), (3.6)

34The literature has explained this with the stabilization of existing plaque and the slowing of the

progression of coronary artery disease (Ford et al., 2007).
35The model could be generalized to allow a continuous quality level but the computation of the

posterior probability for quality θ conditional on information at time t It, f(θ|It), becomes more di�cult

than in the binary case as it would involve integration over quality levels θ.
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where σ2 measures uncertainty regarding to health e�ects. The distributions of signals and

priors are common knowledge and θ1, θ0, σ
2, γ0 and γ1 are parameters to be estimated.

36

Because prior beliefs are heterogeneous across patients, the unconditional (mixture) den-

sity of health e�ects, f(xilt), depends on the observed characteristics of the patient. This

means that the sensitivity of patients on the e�cacy and side e�ects of statins may di�er

for example by their gender and age, as the medical literature suggests (see Section 3.1).

A physician's information set

Because signals are private information to physicians, a physician's information set for the

patient at time t, Iθilt, includes her own private experience of the patient and the previous

therapy continuation choices of other physicians. Formally, Iθilt = xilt ∪ hit \ {ailt′ , t′ < t}
where xilt is the set of signals that physician l has received up to (and including) time t and

hit \ {ailt′ , t′ < t} is the patient's prescription history, hit = {ail11, ..., ailt−1(t−1)}, without
the physician l's actions, {ailt′ , t′ < t}. Because the preference shocks of physician l are
her private information, the �nal information set of physician l at time t for patient i is

given by Iilt = Iθilt ∪ vilt where vilt is the set of preference shocks that physician l has

received up to (and including) time t.

The expected utility

The expected utility of physician l associated with the continuation of the drug therapy

for patient i conditional on her information at time t, Iilt, can be written as:

E(uil1t|Iilt) = Eθi|IEx|θi,I(−e−rxilt) + Zil1tα + vil1t

= Eθi|I(−e−rθi+
1
2
r2σ2

) + Zil1tα + vil1t

= −λilte−rθ1+
1
2
r2σ2 − (1− λilt)e−rθ0+

1
2
r2σ2

+ Zil1tα + vil1t. (3.7)

λilt = Pr(θ1|Iilt) is the posterior probability that quality is high. The �rst equality follows
from the law of iterated expectations and the second one from the moment generating

function of the normal distribution.

The expected utility of the risk averse physician decreases with uncertainty about the e�ect

of the drug therapy on the patient's health, σ2. The risk aversion parameter increases the

36The model could be extended to allow unobserved heterogeneity. In this case, the mean and variance

of a signal can di�er depending on the type of the patient that is observed by his physicians.
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expected utility through quality parameters θ1 and θ0 and decreases it through the risk

premium 1
2
r2σ2. Clearly, the latter e�ect starts to dominate when either σ2 or the risk

aversion parameter r is large enough, namely r > 2θk
σ2 , k ∈ {0, 1}.

Public and private beliefs

In this section, I describe how the physician updates her beliefs about the quality of the

drug treatment. I �nd that the posterior belief about quality, λilt, is a function of the

prior and the physician's private and public beliefs. The private belief is the probability

of quality, conditional on physician's accumulated private experience of the patient, xilt.

The public belief is the probability of quality, conditional on the past choices of other

doctors. I show that the private experience a�ects the private belief through a sum of

signals. It turns out that this property decreases the computational burden of the model

substantially. Even though the physician does not observe the private information of

other doctors, she tries to infer quality from their past therapy continuation choices.

The posterior belief

Let Pi(θ1|xilt) denote the private belief of physician l that quality is high for patient

i at time t conditional on her private experience xilt. I denote by qilt = P (θ1|l, hit)
the corresponding public belief that is conditional on the previous therapy continuation

decisions of other physicians l′ 6= l.

Conditional on health e�ects xilt and the past choices of other doctors for patient i,

physician l updates her beliefs about the quality of the treatment for patient i using

Bayes' rule and the iid nature of the health e�ects,

λilt = Pi(θ1|l, hit,xilt)

=
P (hit|l, θ1)f(xilt|θ1)pi(θ1)

P (hit|l, θ1)f(xilt|θ1)pi(θ1) + P (hit|l, θ0)f(xilt|θ0)pi(θ0)
. (3.8)

In the above expression, P (hit|l, θ) is the probability of other doctors' treatment continu-
ation choices for the patient and f(xilt|θ) is the probability of health e�ects, conditional

on the true quality of the drug, θ ∈ {θ0, θ1}.
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The posterior can be linked to the prior, private and public beliefs as follows:

λilt =
qiltf(xilt|θ1)

qiltf(xilt|θ1) + (1− qilt)f(xilt|θ0)

=
qiltPi(θ1|xilt)/pi(θ1)

qiltPi(θ1|xilt)/pi(θ1) + (1− qilt)Pi(θ0|xilt)/pi(θ0)
, (3.9)

where the �rst equality follows from (8). To see this, multiply and divide (8) by 1/P (l, hit)

and note that qilt = Pi(hit|l,θ1)pi(θ1)
P (l,hit)

where P (l, hit) is the probability of the public medication

history of the patient without the physician l's actions. The second equality in (9) follows

from the �rst one by dividing and multiplying the �rst equality by 1/f(xilt) and by

observing that f(xilt|θ)
f(xilt)

= P (θ|xilt)
p(θ)

for θ ∈ {θ0, θ1}.

The posterior belief is determined by the prior, pi(θ1), and private and public beliefs,

Pi(θ1|xilt) and qilt. When the public (private) belief is uninformative (equals 1/2), the

posterior belief depends only on the private (public) and prior beliefs. When the physician

puts weight only on her prior and private experience, the model corresponds to a tradi-

tional structural learning model where agents learn only from their private experience

(see e.g. Coscelli and Shum, 2004, Crawford and Shum, 2005, Ackerberg, 2003). Recall

also that the posterior is an increasing function of private and public beliefs. Hence the

higher these beliefs are, the more con�dent the physician becomes that the quality of the

medical treatment is high.

The last step is to derive the evolution of private and public beliefs.

The private belief

First, I describe how the physician learns from her private experience. Assume that

the physician has seen the patient S times in the follow-up of the therapy and has ob-

served health xil1, ..., xilS. Denote by f(xil1, ..., xilS|θ) the joint probability of health e�ects
xil1, ..., xilS conditional on θ for θ ∈ {θ0, θ1}. By using the normality and independence of

health e�ects, the physician updates her private belief about θ1 for patient i according to

Bayes' rule:
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Pi(θ1|xil1, ..., xilS) =
f(xil1, ..., xilS|θ1)pi(θ1)

f(xil1, ..., xilS|θ1)pi(θ1) + f(xil1, ..., xilS|θ0)pi(θ0)

=

∏S
s=1

1
σ
√
2π
e−

(xils−θ1)
2

2σ2 pi(θ1)∏S
s=1

1
σ
√
2π
e−

(xils−θ1)2

2σ2 pi(θ1) +
∏S

s=1
1

σ
√
2π
e−

(xils−θ0)2

2σ2 pi(θ0)

=
1

1 + e
∑S
s=1

−(xils−θ0)2+(xils−θ1)2

2σ2
pi(θ0)
pi(θ1)

=
1

1 + e
1

2σ2
(−2(θ1−θ0)XilS+S(θ21−θ20)) pi(θ0)

pi(θ1)

. (3.10)

The posterior37 depends on signals xil1, ..., xilS only through their sum XilS =
∑S

s=1 xils,

which is also normally distributed given the true quality,

XilS|θi ∼ N(Sθi, Sσ
2). (3.11)

The result generalizes to continuous, normally distributed quality, θi ∼ N(θ, σ2).

A physician learns the true quality through her own experience when the number of signals

is large enough. Assume that quality is high.38 In this case, the joint probability for signals

converges to zero more slowly than the corresponding probability for low quality. To see

this, examine the denominator in (10) that can be rewritten as

1 + e
1

2σ2
(−S(θ1−θ0)2−2(θ1−θ0)σ

∑S
s=1 eils)

pi(θ0)

pi(θ1)
(3.12)

when xils = θ1 + σeils for eils ∼ N(0, 1). Because the expected value of eils is zero, the

denominator approaches one when the number of signals S increases.

At the patient population level, the weights of the exponential terms increase when the

priors of patients, pi(θ1), ∀i, decrease. This delays private learning about high quality and
increases variation in private posteriors across patients. Note also that for high enough

signal realizations i.e., XilS >
S((θ1)2−(θ0)2

2(θ1−θ0) , the private posterior decreases with the uncer-

tainty parameter σ2, making physicians less likely to continue the drug therapy.

37Note that this is a valid probability distribution as the posterior of signals given the true state is

restricted between zero and one.
38Private learning on low quality is analogous.
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The public belief

Next, I consider the social learning of the physician from the past choices of other doctors.

After observing the action of physician −l, ai−lt, the physician l (and all other physicians

except physician −l) updates her posterior belief about high quality by using the following
Bayes formula:

qil(t+1) =
P (ai−lt|hit, θ1)qilt

P (ai−lt|hit, θ1)qilt + P (ai−lt|hit, θ0)(1− qilt)
. (3.13)

The public posterior belief at time t + 1 is determined by the (conditional) choice prob-

abilities for high and low qualities and the public belief of physician l at time t. Given

that the public beliefs correspond to priors at the beginning of the therapy, qil1 = pi(θ1),

the �nal step is to compute the probability of a physician −l's choice, conditional on the

patient's prescription history and true quality, Pr(ai−lt|hit, θ) for θ ∈ {θ0, θ1}. This is

done in two steps.

First assume that physician l observes the physician −l's signals, but not her preference
shocks. Let's de�ne a threshold for the di�erence of private valuations vi−l0t − vi−l1t for
which physician −l is indi�erent between the continuation and ending of the drug therapy,

Wi−l1t −Wi−l0t = vi−l0t − vi−l1t,

where Wi−l1t = E(ui−l1t|Ii−lt) − vi−l1t is the expected mean utility of the treatment and

Wi−l0t = ui−l0t − vi−l0t is the corresponding mean utility from the outside good.

Conditional on her signals, the public belief and control variables, a physician's optimal

action is to continue the drug therapy if and only if the di�erence in private valuations

is less or equal to the threshold, vil0t − vil1t ≤ vil0t − vil1t. If physician l observes that

physician −l continued the therapy, she infers that the realization of the di�erence in

private valuations must have been less or equal to this threshold. The larger the threshold,

the larger the probability that the drug therapy is chosen.39

With the assumption on the distribution of vi−l0t−vi−l1t, the conditional choice probability
P (ai−lt|Xi−lt, hit) can be recovered from the thresholds vil0t − vil1t for all Xi−lt. Equiv-

alently, when private valuations are Type 1 extreme value distributed, the conditional

probability that physician −l chooses the drug therapy is

39See Goeree et al., 2005 for theoretical work with one private signal.
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P (ai−lt = 1|Xi−lt, hit) = P (E(ui−l1t|Iilt) ≥ ui−l0t|Xi−lt, hit)

=
eWi−l1t

eWi−l0t + eWi−l1t
. (3.14)

As physician l does not observe the physician −l's private experience, the second step is

to compute the choice probability, conditional on the patient's prescription history and

quality. The conditional choice probabilities for θ0 and θ1 are calculated by using the law

of iterated expectations,

P (ai−lt = 1|hit, θ) =

∫
eWi−l1t

eWi−l0t + eWi−l1t
dF (Xi−lt|θ) for θ ∈ {θ0, θ1}. (3.15)

where I average out the e�ect of the sum of signals on the physician's behavior. Without

the property that the private belief depends on signals through their sum, the computation

of the conditional choice probability would involve S integrals, instead of one. I compute

the choice probability numerically by using Simpson's method with 100 uniform grid

points.

When physician −l decides to continue the drug therapy of patient i, the public belief of

physician l at time t + 1, qil(t+1), increases from qilt and hence she becomes more opti-

mistic about quality. To see this, note �rst that the sum of signals Xi−lt is higher under

θ1 than θ0. The expected utility associated with the continuation of the drug therapy for

physician −l, E(ui−l1t|Ii−lt), is increasing with the posterior belief λi−lt. The higher the

sum of signals Xi−lt is, the more con�dent the physician becomes that quality is high i.e.,
∂λi−lt
∂Xi−lt

≥ 0. Therefore, P (ai−lt = 1|Xi−lt, hit) in (19)-(20) is at least as high when quality

is θ1 than θ0. Because F (Xi−lt|θ1) has �rst-order stochastic dominance over F (Xi−lt|θ0)
for θ1 > θ0, P (ai−lt = 1|hit, θ1) ≥ P (ai−lt = 1|hit, θ0). As a result, the public posterior of

physician l increases from the previous period i.e., qil(t+1) ≥ qilt.

3.4 The econometric model and identi�cation

In this section, I present the simulated likelihood function of the structural learning model

and discuss identi�cation. I use the following data to compute the simulated likelihood

function: 1.) the total number of physician visits for patient i, Ti, where the statin therapy

of patient i was continued in periods 1, ..., Ti − 1 and the outside option was chosen in
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period Ti if the patient is non-censored, 2.) the number of patient i's "old" physicians at

time t, Nit, 3.) an indicator variable if a previously chosen physician l is drawn for patient

i again among Nit old physicians, doldilt , 4.) a vector of control variables a�ecting utilities

received from the statin therapy and the outside good, Zilt, 5.) the censoring indicator,

ci, and 6.) the characteristics of patient i at the beginning of the therapy, Zpi , that a�ect

the prior probability.

3.4.1 The likelihood function

The likelihood contribution of censored patient i contains the following probabilities for

each period t ∈ {1, ..., Ti−1} and physician l ∈ {1, ..., Nit+1} who is drawn for the patient
at the beginning of period t: 1.) the probability that physician l is matched to patient i

and 2.) the probability that physician l chooses the statin therapy for patient i conditional

on the sum of signals and the patient's prescription history, pilt = Pr(ailt = 1|Xilt, hit).

Because health e�ects xilt, preference shocks vilkt, k ∈ {0, 1}, and random coe�cients

yi are unobserved by the econometrician, their e�ects to the likelihood contribution of

patient i must be integrated out.

The likelihood contribution of censored patient i is

Lci ≡ E(L̃ci) = E

Ti−1∏
t=1

Nit∏
l=1

[
1− κi
Nit

pil1t]
doldilt︸ ︷︷ ︸

a previously drawn doctor

[κipi(Nit+1)1t]
1−doldilt︸ ︷︷ ︸

a new doctor

, (3.16)

which consists of the likelihood contributions of the patient's previously drawn and new

doctors. For example, 1−κi
Nit

is the probability that old physician l is drawn for the patient

at the beginning of period t and pil1t is the probability that the treatment of patient i is

continued at time t by this physician l.

The data does not contain any information on the identity of the physician who decided

to end the therapy. To tackle this problem, I �rst form the joint probability that a

certain physician is drawn for the patient and the same physician chooses to end the drug

therapy. Then I sum these joint probabilities over the physicians of the patient to recover

the probability that any physician ends the therapy at time Ti.
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Formally, the likelihood contribution for the observed data of non-censored patient i is

Lnci = E(L̃ci · [
1− κi
NiTi

NiTi∑
l=1

pil0Ti + κipi(NiTi+1)0Ti ]), (3.17)

where 1−κi
NiTi

pil0Ti is the joint probability that an old physician l is drawn and she decides

to end the treatment and κipi(NiTi+1)0Ti is the corresponding joint probability for new

physician NiTi + 1.

Because expectations over signals in the likelihood function contributions are di�cult to

compute numerically, I use their simulated counterparts Lc,si and Lnc,si . For example, for

non-censored patients,

Lnc,si =
1

S

S∑
s=1

(L̃c,si · [
1− κsi
NiTi

NiTi∑
l=1

psil0Ti + κsip
s
i(NiTi+1)0Ti

]), (3.18)

where S is the number of simulations. To compute the simulated likelihood function

contribution for each patient, I draw S realization of random coe�cients ysi governing

physicians switching probabilities and Ti×S realizations of signals and preference shocks

to get choice probabilities for each period and patient.40

Finally, the simulated log-likelihood function is

logLs(θ) =
N∑
i=1

[cilogL
c,s
i (θ) + (1− ci)logLnc,si (θ)]. (3.19)

In general, simulation error increases the variance of the he maximum simulated likeli-

hood (MSL) θ̂MSL estimator compared to the maximum likelihood (ML) estimator. This

simulation error disappears asymptotically when the number of simulations increases at

a rate higher than
√
N . As the estimation of the model is computationally intensive, I

set the number of simulations per patients to ten.41 Obviously, simulation error may be

an issue when the number of simulations is small and therefore estimation results must

be interpreted with this caveat. To get appropriate standard errors, I use the standard

formula for the simulated estimate of the asymptotic variance which relies on the BHHH

estimate for the information matrix. I estimate the model by using the derivative free

simplex method (see e.g. Cameron and Trivedi, 2005).

40Note that only one physician makes a treatment choice each period and therefore in total Ti × S
simulations of signals and preference shocks are needed for each patient.

41For example, Crawford and Shum, 2006, had 30 simulations per patient. I plan to experiment with

the number of simulations to see how the results would change.
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3.4.2 Identi�cation

In this section, I brie�y consider the structural assumptions of the demand model and the

variation in the data that help identify the parameter vector Θ = (θ0, θ1, σ
2, γ0,γ1,α, θy, σ

2
y, η).

To a large extent, identi�cation relies on similar arguments that have been presented in

the previous literature on demand for experience goods (see e.g. Crawford and Shum,

2005).

Market shares at the beginning of the therapy identify the parameters of the prior dis-

tribution, γ0 and γ1, because the treatment choice of the physician is then governed by

her prior belief. Because the private learning of the physician decreases uncertainty as-

sociated with the quality of the medical treatment, choice probabilities at the end of the

long-term drug therapy identify parameters for unobserved quality, θ0 and θ1. This is

particularly true if the patient is in a long-term treatment relationship with his physician.

The identi�cation of quality parameters can be also seen from the expected utility of the

drug treatment (equation (3.7)). After �xing the parameters of the prior distribution,

γ0 and γ1, and the variance of signals, σ2, changes in the posterior belief λilt with the

number of prescriptions identify the quality parameters. Heterogeneity in the choices of

physicians both across patients and over time identify the standard deviation of signals.

Because quality has two possible values θ0 and θ1, it is not possible to separately identify

the quality parameters and the risk aversion coe�cient, r. I normalize the risk aversion

parameter to one which is close to the parameter estimate of Crawford and Shum (2005).42

3.5 Results

In this section, I present results from the estimation of the structural learning model and

describe the �t of the model. Because the risk of cardiovascular diseases increases with

age and is higher for men than for pre-menopausal women, I allow the prior probability to

depend the log of age at t = 1 and gender. The prior depends also on an indicator variable

for whether the patient was treated by an internal disease specialist at the time of the

�rst physician visit. It is likely that the patient, who used the services of the specialist,

is more severely ill and gains more from cholesterol drugs.

I allow the utilities associated with the statin treatment and the outside good to depend

on several observed variables. First, I let the utility from therapy continuation to depend

42An alternative is to interpret parameters θ and σ2 relative to risk aversion coe�cient r, e.g. θ̂1 = rθ1,

where θ̂1 is the estimated parameter.
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on for the average price of statins at time t. I also control for a time trend in months

since January 2003 because market level changes, such as advertising, might as well a�ect

the utility from statins. Because the patient's health might deteriorate when he becomes

older, I let the utility without cholesterol drugs to depend on age at time t. As cholesterol

drugs prevent coronary events in the long-run after the patient's drug therapy has ended,

I allow the outside good utility to vary with the number of prescriptions.43

Discussion of the results and the �t of the model

Table 3.5 presents the parameter estimates and their standard errors. The �rst set con-

tains the key parameters of the model: quality levels θ0 and θ1 and the standard deviation

of health e�ects, σ (see 3.6). Figure 3.3 presents the conditional and unconditional distri-

butions of signals, f(xilt|θ0), f(xilt|θ1) and f(xilt), for the estimated parameters and the

average of priors pi(θ1).

43Alternatively, the controls of the outside good could be included in a vector of inside good controls.
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Table 3.5: Parameter estimates for the learning model in the sample of patients

Parameter Estimate Std.Err.

Signal (xilt) parameters

Low quality (θ0) -0.220 0.001

High quality (θ1) 1.338 0.002

Std. Dev. (σ) 1.049 0.003

Prior parameters

Constant (γ0) -0.003 0.001

log(Age in years at t=1) 0.120 0.000

Gender 0.093 0.001

Visit an internal disease

specialist at t=1 (1: yes, 0: no) 0.067 0.443

Prior mean and std 0.717 0.012

Physician matching probability

Random coe�cient

Constant (θy) -0.049 0.001

Std. Dev. (σy) 1.057 0.004

Physician switching probability,

mean and average std 0.491 0.217

Control variables

Patient's deductible, eur -0.021 0.000

Time trend in months/10 -0.028 0.000

Outside good controls

Patient's age/10 years -0.089 0.000

Number of prescriptions/10 0.107 0.000

Number of observations 22 021

Number of patients 10 000

Number of simulations1 10

Simulated log-likelihood function 30 555

1 The number of simulations per patient and physician

visit.
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Figure 3.3: The conditional and mixture probability densities of signals, f(xilt|θ0),
f(xilt|θ1) and f(xilt), for estimated parameters and the average prior in the sample of

patients

The results demonstrate substantial uncertainty and heterogeneity among patients in

the quality and health e�ects of the statin treatment. The parameter estimate for high

quality θ1 (1.34) is in absolute terms over 6 times higher than the estimate of low quality,

θ0 (−0.22). The variance estimate of signals, σ2, implies that physicians face signi�cant

uncertainty about the health e�ects of statins even if quality was known. To be more

precise, the variance of signals is 5 times higher than the low quality estimate θ̂0 and 82%

of the value of the high quality estimate θ̂1.

Heterogeneity in health e�ects implies that information and learning may signi�cantly

improve medical decision-making by a physician. Without uncertainty about quality, the

incentives of the physician to continue the patient's therapy may be much higher when

quality is high rather than low. A high uncertainty in health e�ects decreases the expected

utility of a risk-averse physician, slows down her learning44 and diminishes her incentives

to continue the patient's statin therapy.

The second set of parameters in Table 3.5 includes estimates for the physician's prior

44This can be seen from the denominator of equation (3.15) in which iid physician l's shocks eils,

s ∈ {1, ..., S}, for patient i get more weight when standard deviation σ increases.
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belief that the quality of the statin treatment is high, pi(θ1). As expected, the physician

has a higher prior probability if her patient is older and male and thus has a higher risk

of CVDs compared with other patients. Quite intuitively, the prior belief is higher if the

patient has visited an internal disease specialist at the time of the �rst prescription.

Depending on the characteristics of patients, the prior probability varies across patients

from 65% to 75% and has a mean of 72% with a small standard deviation. At the

beginning of the therapy, the physician beliefs that quality is more likely to be high than

low. Because the average prior belief is fairly uninformative, the posterior belief of the

physician λilt is mostly determined by her private and public beliefs. This, coupled with

a relatively large variance of signals, σ2, implies that the learning of the physician from

her private experience may take some time.

Third, I report the parameters of the random coe�cient yi that a�ects the probability

that the patient is assigned for a new physician, κi. The set of parameters for the random

coe�cient includes the constant, θy, and the standard deviation, σy. The results suggest

that the estimated standard deviation σ̂y (1.06) is much higher than the estimated mean

θ̂y (−0.05). These �ndings imply that the probability of getting a new physician varies

substantially (0-99%) around its mean (49%). The (average) standard deviation of κi is

0.19 that is 32% of the estimated mean of κi. Heterogeneity in assignment probabilities

across patients can arise for several reasons, including di�erences between municipalities

in their ability to recruit permanent physician labour.

The �nal set of variables includes control variables a�ecting utilities associated with the

statin therapy and the outside option. The price of statins has a very small, negative

e�ect on the expected utility from the statin treatment. A physician can be insensitive

to changes in average prices because a signi�cant part of expenses is covered by the

national health insurance. Over time, the expected utility of the physician from the statin

treatment decreases. This may re�ect changes in advertising by pharmaceutical �rms over

a product's life cycle and other market level changes. Physicians whose patients are older,

and hence have a higher risk of having more severe diseases, are less likely to end the statin

therapy as their patients gain less from the outside alternative. The utility associated the

outside good increases with the number of prescriptions. This may happen because the

statin therapy is likely to have long-term e�ects on the patient's health even after the

statin therapy has ended.

Finally, I consider the model �t by comparing average predicted and observed choice prob-

abilities. For each physician-patient pair, I compute the predicted probability of choosing

the statin treatment, conditional on the sum of signals and the patient's prescription his-
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tory, P (ailt = 1|Xilt, hit). I then compare the corresponding observed choice probabilities

to these predicted probabilities, as presented in Figure 3.4. The model �ts the data rel-

atively well even though it slightly over-predicts the observed average choice probability

at the beginning of the treatment and under-predicts after that. At the aggregate level,

the model �ts the data reasonably well: the average observed probability of choosing

the statin therapy is 79% which is close to the predicted probability, 81%. The average

predicted probability of getting a new physician is lower (49%) than the corresponding

observed probability (60%).
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Figure 3.4: Di�erence between observed and predicted choice probabilities by the number

of prescriptions in the sample, an average over patients, physician visits and simulations

3.6 Counterfactual experiments

After estimating the parameters, I quantify the roles of private and observational learning

in medical decision-making. The main objective is to evaluate to the length of the doctor-

patient relationship a�ects the process of learning and the e�ciency of medical decision-

making. To be more speci�c, I evaluate whether the policy promoting continuity of care

is preferable to providing information on the past choices of other doctors.

I �rst investigate what happens if the patient had only one physician. In this case, the
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physician learns only from her private experience. Next, I investigate whether information

on the past choices of other doctors compensates for the lack of continuity of care. To

do this, I compare treatment outcomes and costs in the long-term treatment relationship

with the policy where the patient has a di�erent physician every period. A physician has

then a one-shot opportunity to investigate the patient to get information on the health

e�ects of cholesterol drugs but she observes the patient's treatment history. To understand

the role of peer e�ects in demand, I study how the behavior of the physician changes if

information on the past choices of other doctors was not available. In this experiment,

the physician has to rely only on her private experience and the prior belief. Finally, I

evaluate the consequences of the policy where the physician does not learn. In this case,

the physician decides about the continuation of the patient's therapy without investigating

him. I compare the results with the baseline scenario predicted by the estimated model.

To perform the policy experiments, I simulate 10 prescription paths for each patient in

the observed sample of 10 000 patients used in the estimation of the model.45

I begin by describing the development of posterior beliefs over time and dispersion among

patients under di�erent policy experiments. I then investigate how treatment adherence,

expected utilities and costs change when the length of the treatment relationship and

the amount of available information were changed. I measure adherence by the predicted

length of the drug therapy and the probability of choosing the statin therapy conditional

on the information of the physician, P (ailt = 1|Iθilt) (see Dickstein, 2011, for the similar

approach).

The speed of learning

Figure 3.5 describes the development of the average posterior belief over patients, physi-

cians and simulations, conditional on high quality. At the beginning of the therapy, a

physician is fairly pessimistic about the e�ect of the drug treatment on patient health

since the average prior for low quality is 28%. Most of the uncertainty regarding to qual-

ity vanishes after the �rst physician visit. At this stage of the therapy, the physician

has observed how well the �rst prescription decreased the patient's cholesterol levels and

whether any side e�ects realized. In the long-term treatment relationship, the physician

45When the number of predicted prescriptions is less than the observed one, I use the observed char-

acteristics of patients. Otherwise, I assume that patients come to seek treatment for high cholesterol

once a year. The time trend increases by 12 months, the patient's age by a one year and the number

of prescriptions by one in period t + 1 from the previous period t. An exception is the average price of

statins at time t which I replace with the average over time, products and patients.
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learns quality fast, by the eighth physician visit. In short-term relationships, physicians

become more optimistic on quality during the course of the patient's therapy, but learning

is slower than in the long-term relationship. The bottom half of Figure 3.5 presents the

standard deviation of posterior beliefs. At the �rst prescription, variation in posteriors

arises because prior beliefs are heterogeneous across patients. Re�ecting high variation

in health e�ects, the standard deviation increases to 0.2 at the second prescription. As

expected, learning diminishes the variances of the posteriors gradually.
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Figure 3.5: The mean (higher �gure) and variance (lower �gure) of the posterior belief

λilt = Pr(θ1|Iilt) given that true quality is high (θi = θ1) in the sample of patients

The top of Figure 3.6 illustrates the development of the average posterior when the patient-

speci�c quality is low. In this case, large di�erences in average posteriors between di�erent
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scenarios arise. In the long-term treatment relationship, the physician learns again fast. If

physicians change frequently, the average posterior starts to increase after a few prescrip-

tions. Again, the physician becomes more optimistic about quality when other doctors

have chosen the drug treatment for the patient previously. The bottom part of Figure

3.6 shows that heterogeneity in posteriors at the aggregate level is higher among patients

when quality is low rather than high. The standard deviation of posteriors are fairly

similar in the counterfactual experiments. In particular, a high variation in the posteriors

remains also in the permanent treatment relationship, even though the posterior belief is

decreasing over time.46

46Note that the exponential term in equation (3.10) is eS(θ0−θ1)
2−2(θ1−θ0)σ

∑S
s=1 eils if θi = θ0. When

2(θ1 − θ0)σ
∑S
s=1 eils is high relative to constant term S(θ0 − θ1)2, there can be much variation in the

posterior beliefs of physicians among patients.
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Figure 3.6: The mean (higher �gure) and variance (lower �gure) of the posterior belief

λilt = Pr(θ1|Iilt) given that true quality is low (θi = θ0) in the sample of patients

Overall, the results suggest that the long-term doctor-patient relationship promotes the

process of learning about quality. The physician becomes optimistic about quality when
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she observes the past choices of other doctors. When quality is high, information on the

prescription history improves learning, but not as e�ciently as the long-term relationship.

When quality is low, such information slows down learning. These results have implica-

tions on prescriptions, costs and e�ciency.

The length of the doctor-patient relationship

I �rst examine how the long-term doctor-patient relationship a�ects outcomes and costs.

Table 3.6 presents averages for the expected utility, the adherence of the treatment and

the total costs, conditional on quality. The results suggest that continuity of care pro-

motes learning and improves medical decision-making by a physician. Consider �rst the

patient with high quality of the match with cholesterol drugs. In this case, the long-term

physician-patient relationship leads to the highest expected utility and the treatment ad-

herence among evaluated experiments. Still, the treatment adherence and the total costs

increase only slightly from the estimated benchmark. When quality is low, I �nd that

continuity of care decreases treatment length by 5% and the total costs of the drug ther-

apy by 5% compared with the estimated benchmark. This is so, since the physician learns

fast that the treatment does not suit well for the patient.
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Table 3.6: Counterfactual simulations in the sample of patients

Outcome variable Baseline2 One Physician No public info, No public No learning5

physician3 change every info4 physician change

period

True quality: θ1:

Expected utility -2.612 -2.594 -2.624 -2.618 -2.632 -2.704

Expected utility,

≥ 5 prescriptions -2.791 -2.765 -2.808 -2.802 -2.824 -2.873

Treatment length 4.327 4.420 4.420 4.272 4.199 4.013

Probability of

statin therapy 0.770 0.774 0.766 0.766 0.763 0.751

Total cost/100 eur 2.883 2.945 2.844 2.846 2.797 2.674

True quality: θ0:

Expected utility -2.815 -2.844 -2.798 -2.823 -2.808 -2.692

Expected utility,

≥ 5 prescriptions -3.034 -3.104 -3.006 -3.056 -3.031 -2.865

Treatment length 3.406 3.243 3.503 3.361 3.439 3.967

Probability of

of statin therapy 0.706 0.692 0.715 0.703 0.710 0.748

Total cost/100 eur 2.270 2.160 2.335 2.240 2.292 2.644

1 These values are calculated by using the observed sample of 10 000 patients and 10 simulated prescription

sequences per patient.
2 The baseline scenario is predicted by the model estimates.
3 In this experiment, the physician-patient relationship is permanent.
4 Public information on the previous treatment continuation choices of other physicians is not available.
5 Learning is prevented and hence the posterior of physician l for patient i at time t, λilt, equals to the prior

belief pi(θ1).

I next investigate the consequences of the policy where a new physician treats the patient

in every period (Table 3.6). When the physician does not have much own experience

of the patient, she relies more on the past choices of other doctors. Consider �rst the

patient with high quality of the match with statins. In this case, continuity of care does

not much improve drug choices or change treatment outcomes compared to the policy

where treatment relationships are short-term but the prescription history is observed.

Consider then the patient with the low quality of the match in Table 3.6. In this case, the

length of the treatment relationship has more pronounced e�ect on treatment outcomes

and costs. This happens because social learning increases the optimism of the physician

about the quality and can lead to over-prescribing. The results show that the policy with

the short-term relationship increases the adherence by 3% and the total costs by 8% from
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the experiment with continuity of care. Table 3.6 demonstrates that the physician would

be slightly better-o�, in terms of e�ciency, without information on the prescription history

when physicians change frequently. Speci�cally, when treatment relationships are short-

term, providing information on the past choices of other doctors increases the adherence

by 1% and the total costs by 2% from the policy without such information. Again in

terms of e�ciency, even worse outcomes arise if learning is not possible.

The results have several policy implications. Continuity of care helps the physician to �nd

out sooner the health e�ects of the drug treatment. This reduces the costs of uncertainty

and improves her medical decision-making, as suggested by the existing reduced-form lit-

erature (Weiss and Blustein, 1996, Scott, 2000, King et al., 2008). The second conclusion

is that information on the patient's prescription history does not compensate for the lack

of the long-term treatment relationship. When the treatment suits well for the patient,

prescription records promote learning, but not as e�ciently as continuity of care. If a

physician does not have much own experience, treatment patterns based on the observed

medication history of the patient may hinder learning and lead to over-prescribing for a

fraction of patients.

3.7 Conclusions

I quanti�ed the roles of private experience and the past choices of other doctors in pharma-

ceutical demand. I constructed a structural model of demand for pharmaceuticals under

uncertainty about the quality of the match between the patient and the drug treatment. I

analyzed whether continuity of care is more e�cient than the policy where information on

the past choices of other doctors is observed but treatment relationships are short-term.

Using rich data from the market for cholesterol drugs, I found that prescriptions are highly

responsive to the length of the doctor-patient relationship. I illustrated that the number

of interactions between the physician and the patient have important implications on

pharmaceutical demand. My analysis suggested that treatment patterns relying heavily

on the past choices of other doctors may lead to over-prescribing for a fraction of patients,

in terms of e�ciency. I also showed that the long-term treatment relationship can limit

over-prescribing and improve medical decision-making.

The structural model can be extended to allow the other important features of the phar-

maceutical market. The �rst extension is to make physicians forward-looking in their

decision-making, creating incentives for experimentation to get more information. Sec-

ond, the model can be broadened to incorporate several inside goods. The framework
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can be also applied in other experience good markets, such as �nancial markets, where

traders are investing in assets with uncertain returns.
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A typical example of a patient story for one dispensary visit:

The reason of entry

A patient comes with the referral of physician X due to atrial �brillation

At issue a 65 years old retired gymnastics teacher. In an anamnesis 2003 acute coronary

thrombosis, angioplasty RCA. Discovered then also a decreasing diverticulum of an aorta

ad 50mm, controls in fall. In the Doppler-ultrasound-research of neck veins in 2005 was

discovered in left arteria carotis interna stenosis less 50%. Discovered year 2007 COPD.

The patient smoked over 30 years, quit 6 years ago. In a tolerance test 8/07, no coronary

ischaemia.

The patient has visited in the health center of X due to dizziness. Discovered elevated

blood pressure, irregular beat. Hear enzymes and other laboratory values normal, pro-

BNP over 500. Patient's medication at this moment Pravachol 20mg x 1, Linatil 20mg

x 1, Carvedilol 12.5mg x 2. Started Marevan due to atrial �brillation, aiming to do

cardioversion.

Today taken INR, only 1.3. Hence cardioversion cannot be done now. Pulse also fairly fast

80-90/min, RR-level 180-170/110-100. Carvedilol ad raised 25mg + 12.5mg. INR-controls

will continue in the side of outpatient treatment. Phone contact after a month.

Physician X
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Chapter 4

Do Stronger Patents Protect Against

Competition? Evidence from the

Pharmaceutical Industry

Policy makers have been strengthening intellectual property rights in several countries dur-

ing the past decades. The rationale behind these reforms is that stronger patents increase

the pro�ts of an innovator and promote R&D. Economic theory predicts that longer patents

may hinder rather than stimulate innovation by increasing competition during the patent

period. Broad patents, on the other hand, increase the costs of imitation and decrease

competition. I test the theory on the relationship between patent strength and compe-

tition during patent protection. I consider the Finnish markets for pharmaceuticals that

provide rich variation in both patent length and breadth across innovations. The results

suggest that patent breadth, rather than length, prevents imitation. Patent rights have no

e�ect on the risk of parallel trade.

Keywords: intellectual property rights, imitation, parallel trade, pharmaceuticals, inno-

vation
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4.1 Introduction

Several countries, including the United States, have been strengthening their intellectual

property rights during the past few decades (see e.g. Gallini, 2002). The economic

rationale for stronger patents is to provide inventors larger rewards from R&D and to

increase innovation incentives. The theoretical literature has challenged this view by

showing that longer patents can increase competition during the patent period and thus

decrease the pro�ts of an innovator (Gallini, 1992, Takalo, 1998). On the other hand,

an increase in patent breadth raises the costs of developing non-infringing duplicates and

thus decreases the entry incentives of competitors.1 In this chapter, I test empirically the

theory on the relationship between patent strength and competition during the patent

period.

I investigate markets for pharmaceuticals where competition during patent protection

can arise for at least two reasons. First, competitors (so called parallel traders) may

resale patented products between countries without the authorization of the owner of the

intellectual property (Kyle, 2007). Second, rivals may invent around patented innovations.

I consider the imitation of an analogy process patent where the competitor has invented

new manufacturing processes to produce the patented innovation.2

The pharmaceutical industry provides a good setup to analyze the economics e�ects of

stronger intellectual property rights, as patents have been viewed to have an essential role

in promoting pharmaceutical innovation (Grabowski, 2002, Gallini 2002). The process

of bringing a single new drug to the market - from its discovery to marketing approval

- involves substantial risks, is time-consuming and costs from around 500 million to 2

billion US dollars (DiMasi, 2003, Adams and Brantner, 2006 and 2010).3 Because generic

compounds are developed with substantially lower costs and risks than new drugs (see

Grabowski, 2002), it is not surprising that much of the pharmaceutical innovation does

not provide signi�cant increments on existing innovations.4

1It can be asked why a patent holder does not grant licenses to its competitors. Licensing may,

however, fail for several reasons, such as due to informational asymmetries between the patent holder

and the rival about the rival's current and potential future pro�ts (see Bessen and Manskin, 2009).
2Analogy process patents have been used often in countries where product patents for drugs are not

available (Domeij, 2000). Process patents are also used in other industries. For example, the share of

process patents on all patents in the manufacturing industry was around 24 − 30 in 1970s% (see e.g.

Cohen and Klepper, 1996).
3It has been estimated that less than 1% of compounds survive from pre-clinical period to human

testing and only 20% of the compounds entering clinical trials gain the US Food and Drug Administration

(FDA) approval (DiMasi, 1995).
4For example, the National Institute of Health Care Management reported that only 35% of new
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I speci�cally focus on the Finnish markets for pharmaceuticals. In these markets, the Sup-

plementary Protection Certi�cate (SPC) system provides rich variation in patent length

that is usually �xed to 20 years from the �ling date of the patent application. An SPC is

an intellectual property right that extends the period of exclusivity from zero to �ve years,

depending on the time needed to obtain marketing authorization.5 Using heterogeneity

in both patent length and breadth across innovations and data on the entry decisions

of �rms, I analyze how intellectual property rights a�ect the risks of parallel trade and

generic entry, or imitation.

A large theoretical literature has analyzed how intellectual property rights change the na-

ture of competition (Gallini, 1992 and 2002, Choi, 1998, Bessen and Maskin, 2009, Takalo,

1998). Still, this question has received surprisingly little attention in the empirical patent

literature. The previous work has estimated the e�ects of patent strength on innova-

tion (e.g. Hall and Ziedonis, 2001, Kortum and Lerner, 1999, Noel and Schankerman,

2006, Sakakibara and Branstetter, 2001, Bessen and Hunt, 2007, Baldwin et al., 2000,

Moser, 2005) and patenting (Lerner, 2002, Hall and Ziedonis, 2001). The literature has

also studied the importance of patent characteristics in the risk of it to be involved in in-

fringements and invalidity suits (Lanjouw and Schankerman, 2001, Lerner, 2010, Cremers,

2004). Even though there is a large empirical literature on the determinants of entry in

pharmaceutical markets (e.g. Morton, 2000, Kyle, 2006, Danzon et al., 2005), the e�ect

of patent rights on competition during the patent period has not been previously studied,

despite of its importance. If broader or longer patents do not prevent competition, welfare

gains from policies that improve patent strength may be very limited.

My results suggest that patent breadth - measured by the number of claims - prevents

imitation. To be more precise, the hazard rate of imitation decreases by 11− 13% when

the patent breadth of an incumbent innovation increases by one claim. I �nd no evidence

that patent length would increase the risk of imitation during patent protection. Patent

length and breadth have no e�ect on the rate of parallel trade.

The remainder of the chapter proceeds as follows. Section 4.2 describes the institutional

environment and the dataset. Section 4.3 presents the econometric model and discusses

the identi�cation assumptions. Section 4.5 goes through the estimation results. Section

products had new active ingredients and only 23% of those had su�cient clinical improvements over

existing products to get a priority rating from the agency. Only part of this non-drastic innovation is

imitation during the patent protection of an original innovation.
5In the US, the Drug Price Competition and Patent Term Restoration Act of 1984, commonly known

as the "Hatch-Waxman" Act, permits extensions similar with SPCs to compensate for market lost during

the drug approval process by the Food and Drug Administration (FDA).
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4.6 concludes.

4.2 The institutional environment and the dataset

This section presents the institutional environment and the data. In the empirical analysis,

I measure (maximum) patent length in two ways: number of years either from the patent

application date or from the date of grant of the patent. To understand how the patent

length from the applicate date is determined, I �rst discuss the patenting process in

Finland. The granting process at the Finnish patent o�ce (National Board of Patents and

Registration in Finland) is broadly speaking similar with the processes at the European

Patent O�ce (EPO) and the United States Patent and Trademark O�ce.6 Then, I present

the characteristics of patents and discuss brie�y entry regulation for pharmaceuticals.

Finally, I describe a sample of markets. A market is de�ned as an active ingredient (or

their combination) of a medical product that is protected by a patent.

4.2.1 The Finnish patent system

A patent owner has the right to exclude others from the commercial utilization of the in-

vention. To get the patent, �rms and individuals must prepare and submit an application

to the Finnish patent o�ce.

The patent application is published 18 months after the date of �ling or in the priority

date that is the date of �ling of the �rst application. Contrary to the practices of EPO,

certain identi�cation details, such as the name of the applicant, the application number

and the �ling date, are published in Finland immediately. Then, the applicant has 6

months to decide whether or not to pursue the application by requesting a substantive

examination. Alternatively, the applicant who has requested the examination previously

has to con�rm whether the application should proceed.

After requesting the examination, the patent o�ce examines whether the innovation meets

certain requirements and whether the patent can be granted. The most important re-

quirements are novelty and non-obviousness. Exclusive rights are not accorded to an old,

6For further information, see "How to apply for a European patent" by European Patent O�ce (2013)

and "Patents" by National Board of Patents and Registration in Finland (2013). Van Zeebroeck et al.

(2009), however, show that there are major di�erences across countries in patent drafting styles. Allison

and Lemley (2002) also argue that heterogeneity in patent system across countries has increased over

time.
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previously known technique. Besides being novel, the innovation has to di�er from known

innovations and this di�erence has to be so big that the idea is not obvious.

Patent length

In Europe, the maximum length of a general patent is 20 years from the actual date of

�ling an application.7 In order to keep the patent in force, renewal payments must be

paid (see National Board of Patents and Registration for details).

In European Union member countries, the supplementary protection certi�cate (SPC)

system provides an extension for a general patent. The SPC system was introduced

to compensate for the long time needed to obtain a marketing authorization. SPCs

are available for various pharmaceutical and plant protection products. A certi�cate

application can be made for any medical product which is protected by a basic patent in

a European Union member state and has received a marketing authorization in the same

member state. Minor changes to a medicinal product, such as use of a di�erent salt, an

excipient and a presentation, do not justify a new SPC.8

The maximum length of the SPC for the general patent depends on the time needed to

get the marketing authorization,

Max length SPCi = max{0,min{(MAEEA
i − APi)− 5 years, 5 years}} (4.1)

where MAEEA
i is the date of the 1st marketing authorization in the European Economic

Area for the active ingredient associated with patent i and APi is the application date of

the patent. SPC duration varies across innovations from zero to �ve years and hence the

maximum length of a patent varies from 20 to 25 years from the application date.9

In the empirical part, I measure patent length in two ways: with number of years either

starting from the �ling date of the patent application or from the date of grant of the

7In the United States, for utility patents �led since June 8, 1995, the maximum length of a general

patent is 20 years from the earliest �ling date of the application on which the patent was granted. For

patents �led prior to June 8, 1995, he maximum length is either 20 years from the earliest �ling date

or 17 years from the issue date, depending on which is longer (the United States Patent and Trademark

O�ce, 2012).
8See Case C-431/04, Proceedings initiated by Massachusetts Institute of Technology.
9The duration of the SPC can be extended to 5.5 years when the SPC relates to a human medicinal

product for which data from clinical trials conducted in accordance with an agreed Paediatric Investigation

Plan have been submitted.
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patent. The reason is that patent length since grant, rather than application, is likely to

have more signi�cant impact on competition during patent protection since uncertainty

about the scope and timing of patent rights is narrowed after the patent has been granted.

Incumbents may also create patent clusters containing several patents (e.g. for a process

or a reformulation) in order to extend patent protection. Then the patent associated with

the SPC, that is observed in the data, provides a lower bound for the patent length of

the medical product, including all its extensions.10

Claims

Patent claims are a part of the patent that de�ne the breadth of patent protection and

legal basis in technical terms. Innovators determine claims together with patent examin-

ers. The breadth of the claims may be broad or narrow. Narrow claims are typically more

speci�c about a particular element or a product than broad claims.11 Broad claims are

often more valuable than the narrow ones but they may be more di�cult to obtain and

to enforce because there can be other patents invalidating them. I follow Lerner (1994)

and use the number of claims as a proxy for patent breadth.12

Other patent characteristics

A patent has several other characteristics, besides its length and breadth. First, an

innovation can be patented in several countries. A set of patents in various countries for

a single invention is called a patent family. Because a patent is costly to obtain and to

keep in force, it is likely that the size of the patent family is higher for more valuable

10The anecdotal evidence from the quote of an originator company suggests that "Before end 80s:

Products mainly NCEs which where [were?] protected by the one patent- [...] Late 80s early 90s[...]

Expansion of the portfolio to cover lifecycle initiatives, to extend protection time for product and the

brea[d?]th of the protection trying to keep competition further away". (The preliminary report of Phar-

maceutical Sector Inquiry by European Commission.) Because the most of the innovations in the data

are relatively old (the average application year is 1991), this may not be a big concern.
11See e.g. Soonwoo Hong: "Claiming what counts in business: drafting patent claims with a clear

business purpose", the World Intellectual Property Organization.
12For example, Lanjouw and Schankerman (2001) suggested that the number of claims is an indicator

of the complexity and value of an innovation. The number of claims can, however, re�ect other factors

besides breadth, such as resource constraints, patent application drafting style and e�ort and uncertainty

about the value of an innovation (Allison and Lemley, 2002).
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innovations (Harho� et al., 2003, and Putnam, 1996). In the empirical part, I consider

the number of patent family members for an innovation.

Second, the International Patent Classi�cation (IPC) is a hierarchical patent classi�cation

system that is widely used to classify the technology of a patent. The highest hierarchical

level of the IPC correspond to very broad technical �elds (e.g. C denotes "Chemistry and

Metallurgy"). Sections are divided into classes (e.g. class C21 denotes the "Metallurgy of

iron"). Classes are again divided into more than 640 subclasses (e.g. class A21B denotes

"Bakers' ovens; Machines or equipment for baking") and further into main groups and

subgroups (the World Intellectual Property Organization). I follow Lerner (1994), Harho�

et al. (2003) and Lanjouw and Schankerman (2001) and use the number of the lowest

level IPC classi�cations as a proxy for patent scope.

Third, a priority country is the country of the �rst application. The priority right allows

the claimant to �le a subsequent application in another country for the same invention

with the date of �ling the �rst application. Because the priority country is most often

the country of an innovator, it can re�ect regional variation in the costs of innovation.13

I classify priority countries to Europe and non-Europe.

Fourth, a patent can cite previous patent documents. I consider the number of cited

documents that help to evaluate how much the patent relies on past innovations. The

number of backward citations may also correlate with the value of the patent (Hall et al.

2005, Harho� et al., 2003).14

Pharmaceutical analogy process patents

I consider analogy process patents that have been commonly used for pharmaceuticals in

many countries, where product patents have not been available.15 Claims for an analogy

process patent de�ne manufacturing processes for a chemical substance. For a patent to

be e�ective, the claims should include all feasible manufacturing processes. This may

be very costly and time consuming, and often competitors have been found new ways

to produce the drug. For example, competitors may have developed the new ways of

synthesis. More often, they have made only small modi�cations, such as another pH, to

existing innovations (Domeij, 2000).

13PutFME (1996) showed that priority country was the country of an innovator for 98% of US, 88%

of German and 84% of French inventors.
14In the future, my plan is to use forward citations that indicates how much an innovation has con-

tributed to the development of subsequent inventions (Lanjouw and Schankerman, 2001).
15In Finland, analogy process patents were granted for pharmaceuticals until the mid of 1990s.
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For example, in the Danish court case on an analogy process patent for the anti-ulcer

drug rantidine, the defendant's innovation had the same synthesis steps as in the original

claims. The defendant had used somewhat di�erent starting materials to create a process

that was not de�ned in the claims. Then it added an additional reaction step to create

the same �nal product, raniditine. Because the reaction step was new and unpredictable,

the Danish Supreme Court decided the case for the favor of the defendant (Domeij, 2000).

Data exclusivity and entry regulation

In European pharmaceutical markets, data exclusivity has been supplementing intellectual

property rights since 1994. During the data exclusivity period, an incumbent has exclusive

rights to utilize research results associated with its marketing authorization. A competitor

can still receive a marketing authorization on the basis of its own research results. Since

the end of 2005, the length of the data exclusivity in the EU has been 8 years, and

during the 10 years of marketing exclusivity, a generic product cannot be placed on

the market.16 For marketing authorizations submitted before the end of 2005, the data

exclusivity granted to the original marketing authorization holder was either 6 or 10 years

(6 in Finland) (European Commission, 2008). I control for changes in the data exclusivity

regulation with the time trend.

The entry of pharmaceuticals is strictly regulated all over the world and procedures pre-

ceding it are fairly similar in Finland as in the USA. In order to enter the market, a �rm

must receive a marketing authorization for its product from the Finnish National Agency

for Medicines (NAM) which corresponds to the FDA in the USA. To get a license for

parallel importation, an original product must have authorizations in both the source and

destination country. Parallel imported products must have the same chemical composi-

tions, dosage forms and strengths as the original product in both countries.

16Time for the protection starts when the �rst authorization is granted in the EU area.
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4.2.2 The dataset and patent characteristics

The dataset

The dataset is collected from several sources. I use the register data for pharmaceuticals

that is provided by the Finnish Medicine Agency (FMA). The data contains information

on the characteristics of a medical product such as its entry, exit and marketing autho-

rization approval dates, the Anatomical Therapeutic Chemical (ATC) classi�cation code

of the World Health Organization,17 and the indicator for whether the product is parallel

imported. The data include all active ingredients that had valid marketing authorizations

at some time point during 2003− 2006 and 2008. The data does not include information

on products that both entered and exited markets during 2007.18 I also use the dataset

of FME on drugs that are substitutable in the generic substitution system in 28.1.2009.19

The data contains information on the documentation type of a product, i.e. whether it

the product is an incumbent or a generic.

The data for the SPCs of pharmaceutical process patents applied before January 2009

was obtained from the National Board of Patents and Registration in Finland.20 The

dataset includes the patent's identi�cation number, application, granting and expiration

dates and the name of the patent holder. With the identi�cation number, I gathered

information on the patent family, the number of claims and cited patent documents from

Espacenet which is an international network of patent databases. I merged the patent

data to the FME data by the name of the active ingredient. A �rm who entered a market

during patent protection with a generic product was interpreted as an imitator.

If a �rm entered and exited a market before the FME data on substitutable drugs was

compiled or a product was not substitutable, information on the documentation type was

not available. I supplemented data on the documentation type by comparing the name

17The ATC Classi�cation System is used for the classi�cation of drugs. Di�erent levels of the code

indicate the following groups: 1.) 1st level: the anatomical main group, 2.) 2nd level: the therapeu-

tic main group, 3.) 3rd level: the therapeutic/pharmacological subgroup, 4.) 4th level: the chemi-

cal/therapeutic/pharmacological subgroup, 5.) 5th level: the chemical substance.
18Data for year 2007 was not available in the web page of FMA at the time of data collection in 2008.

The robustness analysis suggests that the results do not change if year 2007 is excluded from the sample.
19The generic substitution system was introduced in Finland on 1 April 2003. In the system, the

prescribed medicinal product is substituted in a pharmacy by the cheapest, or close to the cheapest,

generic alternative. Substitutable medicinal products contain the same quantity of the same active agent

and are biologically equivalent.
20Pharmaceutical patents without SPCs are not included in the dataset. Excluded patents include the

least valuable innovations which patents were not renewed.
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of the SPC holder with the name of the marketing authorization holder. If it was the

same, the marketing authorization holder was interpreted as the incumbent. If it was not,

I tried to �nd information on a possible license agreement between SPC and marketing

authorization holders from the U.S. Securities and Exchange Commission (SEC)21 �les,

the web pages of pharmaceutical �rms and Thomson Reuters Current Patent Gazettes.22

If a �rm entered a market before the expiration of a patent and information on an alter-

native patent was found, then the documentation type was denoted as an imitator. In

6% of markets, information on whether an entrant was an original innovator, a licensee

or an imitator was not available.23 In the empirical part, I analyze how long the incum-

bent's period of exclusivity is before either imitation or parallel importation or both occur.

Therefore, I had to exclude from the data those markets where a �rm with an unknown

identity entered a market before an imitator.

Before presenting evidence on the role of patent rights in early competition, I provide de-

scriptive statistics for the characteristics of innovations in Table 4.1. The average patent

length from its application was 23 years and from its grant only 16 years, indicating

long approval times. Importantly, patent length, measured either from the patent ap-

plication or grant date, varied between innovations. For example, the variance of the

average length from the application date was 13% of its mean. The number of claims

was on average 19, with a high standard deviation across markets. The average number

of patent family countries for a single innovation was 38, and the priority country of an

innovation was most often in Europe. On average, a patent cited on average 16 patent

documents and the mean number of inventors was 5. A second set of variables describe

the other characteristics of active ingredients. The results show that 33% of products

had restrictions in prescribing24 and the share of "drastic" innovations (the �rst innova-

tions in the chemical/therapeutic/pharmacological market)25 was 25% in the sample of

markets. Overall, the descriptive evidence illustrates that pharmaceutical innovations are

very heterogeneous.

21SEC is responsible for enforcing the federal securities laws and regulating the securities industry, the

nation's stock and options exchanges, and other electronic securities markets in the United States.
22Thomson Reuters is the world's leading source of intelligent information for businesses and profes-

sionals.
23Parallel importation is always observed in the data.
24For example, a specialized physician can prescribe certain drugs. See FMA for further details.
25This corresponds to the 4th level of the ATC code. Example: C10AA for HMG CoA reductase

inhibitors (statins).
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Table 4.1: Descriptive statistics for the sample of markets1

Variable Mean Std

Patent variables
2

Years from

- patent application to SPC expiration 22.710 2.891

- patent grant to SPC expiration 15.589 3.561

Claims 19.045 14.611

Patent family size 37.639 39.056

Priority area:

Europe (1: yes, 0: no) 0.529 0.501

International patent classi�cations 3.574 1.173

Cited documents 16.116 18.631

Inventors 5.465 4.023

Other characteristics

Restrictions in prescribing right 0.329 0.471

The �rst active ingredient in ATC4 (1: yes, 0: no) 0.252 0.435

The share of markets with

imitation:

- All markets 0.056 0.231

- Years from the grant of a patent:

shorter than the average 0.022 0.147

longer than the average 0.082 0.277

- Claims:

less than the average 0.077 0.268

more than the average 0.000 0.000

The share of markets with

parallel importation:

- All markets: 0.224 0.419

- Years from the grant of a patent:

shorter than the average 0.196 0.401

longer than the average 0.246 0.434

- Claims:

less than the average 0.256 0.439

more than the average 0.138 0.351

The share of markets with competition3 0.271 0.447

Nbr of markets 107

1 Summary statistics are measured in 2008 for those markets where

information on the number of claims is available.
2 The maximum within a patent family for the following variables:

international patent classi�cations, cited documents and the number

of inventors.
3 Competition: parallel importation or imitation.
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Table 4.1 demonstrates that early competition in the Finnish markets for pharmaceuticals

was very common. On average, the probability of imitation at any time point before patent

expiration was 0.06 and the probability of parallel trade was 0.22.26 The probability of

early competition, i.e. either imitation or parallel trade, was 0.27. This means that either

parallel trade or imitation but not both occurs in some markets.

Figure 4.1 illustrates how competition during the patent period shortens the e�ective

patent life, i.e. the incumbent's monopoly period during the patent period. In markets

with early competition, the e�ective patent life was on average very short (6.7 years), with

substantial variation around the mean. Without competition, the average number of years

since the entry of an incumbent to the expiration of a patent was 12 years. When only

non-censored markets were examined, the average of the e�ective patent life in markets

with competition was 8 years and without competition 11 years. The results suggest that

early competition shortens the period of exclusivity substantially.

Effective patent life
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Figure 4.1: E�ective patent life in years for markets with and without competition (entry

of an imitator or a parallel importer) in the sample of markets

I then investigate how the prevalence of early competition depends on the length of a

patent. The results of Table 4.1 suggest that the probability of early competition increases

with patent length, measured from the application date. When a patent was longer than

the average (referred as a "long patent"), 8% of markets had imitation and 25% parallel

26When also those markets that do not have information on the number of claims are included to the

sample, 9% of markets had imitation and 20% parallel importation.
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importation during the patent period. When the patent was shorter than the average, the

probability of imitation was only 0.02 and the probability of parallel importation 0.20.

When interpreting the results, it should be noted that the majority of markets (75%) were

censored, i.e. the patent protection of an original innovation was still e�ective at the end

of the observation period in 2008. When all 25 non-censored markets are analyzed, the

risk of parallel trade was 0.33 and does not depend on the length of a patent since its

grant. The probability of imitation remains to be much higher (0.13) in markets with a

long patent than in other markets (0.08). Overall, these descriptive results indicate that

an increase in patent length induces imitation during patent protection.

Finally, I examine how the number of claims a�ect the risks of imitation and parallel trade.

When the number of claims was more than the average ("broad" patent), the results of

Table 4.1 show that the rates of imitation and parallel trade during patent protection were

both much lower than for innovations with narrow patents. These results may suggest

that broad patents prevent competition during patent protection. The risk of parallel

trade was higher than than risk of imitation in markets with narrow patents. This might

indicate that parallel importers want to enter markets where the costs of imitation are

high. When non-censored markets were investigated, the risk of parallel trade is lower in

markets a high number of claims (0.29) than in markets where the number of claims is

less than the average (0.35). The risk of imitation in non-censored markets is relatively

similar between markets where the number of claims is less (0.10) or more (0.14) than the

average.

To conclude, the descriptive results demonstrate that imitation and parallel trade are

present in many pharmaceutical markets that are still under patent protection. The

e�ective patent life of an incumbent remains often very short. The results suggest that

the strengthening of patent rights decreases the risk of early competition and thus may

help the incumbent to appropriate rents from its innovation e�orts. Next, I use regression

analysis that controls for the observed heterogeneity between innovations.

4.3 The econometric model and its identi�cation

4.3.1 The econometric model

The setup of the econometric analysis is as follows. Each market i is at risk of experiencing

imitation (j = 1) and parallel trade (j = 2). Let tij be the number of years from

the entry of an incumbent to the jth event type (parallel importation or imitation) in
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market i. Denote by Tij the corresponding random variable that has the cumulative

distribution function P (tij) = P (Tij ≤ tij). If patent protection is e�ective at the end of

the observation period and competition has not yet occurred, the time of censoring tic is

observed instead.

The hazard function for the occurrence of an event of type j (imitation or parallel impor-

tation) in market i is

λj(tji|xjit) = lim∆tij→0
P [(tji ≤ Tji < tji + ∆tij)|Tij ≥ tji,xjit]

∆tij
, (4.2)

where xjit is a vector of covariates that can vary over markets and time and can be

di�erent for imitators and parallel importers. The numerator of the hazard function is

the conditional probability that the event occurs in the time interval [t, t + dt), given

that it has not occurred before, i.e. Tij ≥ tji. Dividing the denominator by the width

of the interval gives a rate of event occurrence per unit of time. When the width of the

interval goes to zero, the conditional probability becomes an hazard (instantaneous) rate

of occurrence for the event.

The hazard rate λj(tji|xjit) of the event type j (imitation or parallel importation) is

speci�ed as follows,

λj(tji|xjit) = λj0(t)eαjLengthi+γjClaimsi+x̃jitβj , (4.3)

where λj0(t) is the baseline hazard function, Lengthi is the patent length (either from the

application or grant date), Claimsi is the number of claims and x̃jit is a vector of control

variables for market i at time tij.

I �rst investigate imitation and parallel importation as independent events. This means

that I estimate separate Cox Proportional Hazard (CPH) models (3) for both event types.

The parameters of the CPH model for a given event are estimated by maximizing the

event-type speci�c partial likelihood function. The model is semi-parametric because the

estimation of the coe�cients of the explanatory variables does not require the simultane-

ous estimation of the baseline hazard function (see e.g. Cameron and Trivedi, 2005).

I then treat imitation and parallel trade as competing events and study how patent rights

a�ect the combined risk of early competition. In this case, time Tij is the e�ective patent

life. The occurrence of imitation eliminates the market from the risk of facing parallel

importation and the other way round. At most one complete duration for each market is
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thus observed and the other event type censored.27 As a market can face either imitation

or parallel importation, there are two records of the data for the market at any time during

the observation period until the entry of a competitor occurs. I estimate the strati�ed,

or the grouped, CPH model (2) where I allow for the e�ects of patent length and claims

to di�er between event types. I estimate the parameters of the model by maximizing the

partial likelihood that is a product of event type-speci�c partial likelihoods.

The model explains how the intellectual property rights of an incumbent innovation a�ect

the risks of imitation and parallel trade during patent protection.28 I am only interested

in whether there is competition during the patent period, not in the identities or the

number of competitors. Thus, the descriptive model is used instead of the structural

approach (see e.g. Berry, 1992). The non-structural approach has often been used in the

literature on pharmaceutical entry (e.g. Kyle, 2006, 2007, and Danzon et al., 2005) and

in the studies of patent litigation (e.g. Lanjouw and Schankerman, 2001).

4.3.2 Identi�cation

The empirical model has some strong assumptions. First, survival times are independent

across markets, event types and time periods. The independence assumption is analogous

with the assumption on the Independence of Irrelevant Alternatives (IIA) of the multi-

nomial logit model. As in that case, the violation of the independence assumption in the

data may bias the estimation of parameters.29 To correct for the market level correlation

and multiple events, I use the robust (sandwich) variance estimate (Cameron and Trivedi,

2005). The results must still be interpreted with caution.

I also make a common, but criticized, assumption that the transition time tij and the

censoring variable are independent (Putter et al., 2007). This means that the hazard of

censored markets can be represented by the hazard of markets that remain without com-

petition, after controlling for observed characteristics. The independence assumption may

be realistic when the end of the study period causes the censoring of observations. In the

competing risks framework, censoring can also be caused by the appearance of an event

(say, imitation), which prevents occurrence of the another event (parallel importation).

27In the data, there is one market where the entries of a parallel importer and an imitator occurs in

the same year. The Efron approximation is used to deal with the tie (Efron, 1977).
28This also means that imitation does not occur if an incumbent introduces a generic alternative during

patent protection through its subsidiary.
29As discussed by McFadden, Train and Tye (1981), the IIA property implies that error terms are

independent random variables.
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Even though the main event of interest is the �rst event, the other event is still competing.

To put it di�erently, for the time to imitation (parallel importation), all markets where

parallel importation (imitation) appeared �rst are censored. Under the independence as-

sumption, the entry of an imitator does not change the risk of parallel trade. Importantly,

the assumption implies that the e�ects of patent characteristics on the risk of imitation

are the same for markets that are still without competition as for markets where parallel

importation has occurred �rst. In practice, the independence assumption does not hold

if the entry of a parallel importer intensi�es competition and thus decreases the entry

incentives of an imitator.

I assume that the patent rights of the incumbent innovation do not correlate with the

decisions of early rivals to enter the Finnish market. The exogeneity assumption is not

realistic if patent rights are strongly correlated with the (unobserved) value of the innova-

tion across countries, �rms and years. The positive correlation can arise if the incumbent

negotiates a broader patent for the innovation that will produce higher expected pro�ts in

Finland. This pro�tability may increase the rival's incentives to enter the market during

patent protection which biases the e�ect of the patent breadth on early competition up-

wards. If the litigation risk increases with patent breadth, the value of the innovation can

be negatively correlated with the patent breadth. The e�ect of the patent breadth may

thus be downwards biased. Respectively, the e�ect of the patent length on competition

during the patent period can be either upwards or downwards biased. The negative cor-

relation between pro�tability and the patent length arises if the marketing authorization

process takes longer for the drug that produces serious adverse e�ects for patients. The

bias upwards arises if regulators and a drug �rm speed up the marketing authorization

procedure when the value of the innovation is high.

There are several reasons to believe that the endogeneity of the patent rights may not be

a serious issue. First, the incumbent may not be able to anticipate the pro�tability of its

innovation at the time when decisions about the patent's length and breadth are made.

This may happen if the value of the innovation is very uncertain.30 Second, the patent

breadth is likely to be determined by the technological and human capital (innovators)

advances of the innovative �rm. In the empirical model, the general level of technology

and human capital are controlled by the �rst publication year of the patent and the

time trend. Due to technological development and the long time di�erence between the

development of the original innovation and early competition, these advances may not

30There is the large literature on the role of uncertainty in the demand for pharmaceuticals. See e.g.

Crawford and Shum, 2005.
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a�ect the entry incentives of imitators and parallel importers.31 Third, the patent length

is also determined by several other factors that are not probably highly correlated with the

entry decisions of imitators and parallel importers to Finland, including 1.) legal deadlines

which account for roughly one month, 2.) the monitoring and control of regulators, 3.)

competition between regulatory agencies and 4.) the overall number of applications.

4.4 Estimation

This section presents the estimation results of the survival analysis in Table 4.2. The table

contains CPH models for imitation and parallel trade (models 1-4) and Cox competing

hazard (CCH) models for the hazard rate of early competition (models 5-6). The patent

length is measured in two ways: number of years either from the patent application date

(models 1,3,5) or from the date of grant (models 2,4,6) to the date of SPC expiration. In

the CPH models, I explain the number of years from the entry of an incumbent either to

patent expiration or to the speci�c event (imitation or parallel trade). In the CCH models,

I consider the incumbent's exclusivity period during patent protection, i.e. number of

years from the entry of an incumbent either to patent expiration or to early competition.

In the second subsection, I evaluate the robustness of the results.

31For this particular reason, Morton (2000) used years on patent as an instrument for brand advertising

before patent expiration in the analysis of its e�ect on generic entry.
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Table 4.2: Estimation results for Cox hazard models in the sample of markets
Imitation Imitation Parallel Parallel Competing Competing

importation importation risks risks

Model (1) (2) (3) (4) (5) (6)

Patent length (years),

from grant 0.156 0.059 0.211

(0.179) (0.063) (0.126)

from application 0.028 0.007 0.155

(0.190) (0.073) (0.183)

Claims -0.104∗ -0.106 -0.010 -0.005 -0.072∗ -0.086∗

(0.048) (0.065) (0.034) (0.036) (0.032) (0.034)

Interaction with

a parallel trade indicator

Patent length (years),

from application -0.109

(0.195)

from grant -0.133

(0.134)

Claims 0.047 0.055

(0.035) (0.035)

Year -0.206∗∗ -0.195∗∗ 0.069 0.059 -0.021 -0.015

(0.074) (0.075) (0.064) (0.066) (0.063) (0.063)

Publication year6 0.200∗ 0.206 0.027 0.026 0.011 0.012

(0.100) (0.135) (0.046) (0.044) (0.036) (0.036)

Patent family size 0.050 0.054 -0.004 -0.003 -0.002 -0.003

(0.028) (0.044) (0.012) (0.013) (0.011) (0.010)

Priority country in Europe (1: yes, 0: no) -2.459 -2.330 0.223 0.315 -0.242 -0.355

(2.011) (2.294) (0.478) (0.490) (0.397) (0.393)

Cited documents -0.009 0.002 -0.003 -0.002 0.004 0.002

(0.028) (0.025) (0.022) (0.022) (0.020) (0.020)

Nbr of inventors 0.166 0.170 0.009 0.009 0.060 0.056

(0.092) (0.113) (0.082) (0.077) (0.045) (0.045)

Nbr of international

patent classi�cations 0.282 0.359 0.184 0.163 0.229 0.230

(0.444) (0.635) (0.183) (0.185) (0.168) (0.166)

First in ATC4-group

(1: yes, 0: no) -0.542 -0.574 0.518 0.457 0.171 0.181

(1.730) (1.517) (0.467) (0.458) (0.424) (0.437)

Prescribing restriction (1: yes, 0: no) -1.029 -0.850 -1.446 -1.443 -1.314∗ -1.345∗

(1.360) (1.273) (0.809) (0.791) (0.640) (0.655)

AIC 48.041 47.619 208.937 208.209 245.846 248.184

R2 0.015 0.015 0.009 0.010 0.007 0.006

Max. R2 0.044 0.044 0.182 0.182 0.115 0.115

Num. events 5 5 24 24 29 29

Num. obs. 860 860 979 979 1912 1912

1 The e�ective patent life starts from the entry of an incumbent.
2 The value of the variable is its maximum number within the family of a patent.
3 In the competing risks model, separate baseline hazard functions are allowed for imitators and parallel importers.
4 Signi�cance starts for the P-value: P ≤ 0.10 (.), P≤ 0.05 (*), P ≤ 0.01 (**), P ≤ 0.001 (***).
5 Standard errors are clustered at an active ingredient level (ATC5).
6 Minimum within a patent family.
7 The number of international patent classi�cations.
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4.4.1 Discussion

The patent length

I �rst discuss the e�ects of the patent length on the risk of imitation. The results indi-

cate that both variables for patent length have economically signi�cant but statistically

imprecise e�ects on the hazard rate of imitation (models 1-2 in Table 4.2). I �nd that one

year increase in the patent length starting from the application increases the imitation

rate by 100× (e0.243− 1) = 28%. When the patent length from the grant increases by one

year, the rate of imitation increases by 35%.

There are several reasons why the patent length from its grant has a higher e�ect on

imitation than the length from the application date. First, the patent application is

not published immediately after the application. Thus it can take time until imitators

or parallel traders receive information about the innovation. Second, the length and

breadth of a patent are likely to be uncertain at the beginning of the patent grant process

(see e.g. Gans et al., 2008). Third, less valuable or novel innovations may have longer

application times. The e�ect of the patent length from the application date may thereby

be downwards biased.

The results of models 3-4 suggest that the e�ects of patent length variables on the rate of

parallel trade are both economically and statistically insigni�cant. For example, one year

increase in the patent length from the application increases the hazard rate of parallel

importation by 0.7%. The standard error of the patent length coe�cient is 10 times larger

than the estimated coe�cient. Corresponding to the previous results for imitation, the

point estimate for the e�ect of the patent length from the grant is somewhat higher, 6%,

but it is also statistically insigni�cant.

Coe�cient estimates of the CCR models (columns 5-6) show that one year increase in

the length of a patent from its application (grant) increases the hazard rate that the �rst

competitor is an imitator by 17% (23%), but the e�ect is not statistically signi�cant.

The explanation for why these e�ects are smaller than those from the CPH models for

imitation (columns 2-3) is that in many cases the �rst entrant is a parallel importer.

The e�ects of both patent length variables on the hazard rate of parallel trade are again

economically and statistically insigni�cant. Overall, these results suggest that a longer

patent may induce imitation but it does not a�ect the risk of parallel trade.
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The patent breadth

The parameter estimates for the number of claims provide important evidence on the

entry deterrence e�ect of the patent breadth on imitation. To be more precise, the yearly

hazard rate of imitation decreases by 11 − 13% when the number of claims increases by

one (models 1 and 2). This e�ect is also statistically signi�cant at the 5% signi�cance

level.

As expected, the number of claims does not seem to a�ect the rate of parallel importation

as its coe�cient estimates for models 3-4 are close to zero and imprecise. The results from

the competing risks models (models 5-6) suggest that the e�ects of the number of claims

on the risk that the �rst competitor in an imitator is smaller than the corresponding

e�ects in the models 1-2. Again, these results are driven by the observation that the �rst

entrant is more often a parallel importer than an imitator.

Other characteristics

The results for the year -variable suggest that the rate of imitation has decreased and

the rate of parallel trade has not change over years.32 The other characteristics of the

innovation do not change the risk of early competition. To be more speci�c, the coe�cient

estimates the patent family size are close to zero and do not di�er statistically signi�cantly

from zero.33 Correspondingly, the priority area does not a�ect the rates of imitation and

parallel importation. The point estimates of the number of cited documents suggest that

the number of cited documents and the number of inventors do not a�ect the rate of paral-

lel trade and are almost zero. Finally, the number of IPCs has a statistically insigni�cant

but positive e�ect on the rates of parallel trade and competition. For example, when the

number of IPCs increases by one, the hazard rate of imitation increases by 19− 25%.

The �nal set of variables measures the market size and cost factors that can a�ect pro�ts.

The results show that "drastic" innovations (the �rst product in an ATC4-group) are

less likely to be imitated but face more parallel trade. Even though the coe�cients

of the drastic innovation indicator have economically signi�cant magnitudes, they are

32To be more speci�c, the longer the time in years from the entry of an incumbent to the end of the

observation period is, the higher the rate of imitation is.
33The results should not be interpreted as causal e�ects because the patent family size over time is likely

to be endogenous. For example, competition during patent protection can decrease the expected pro�ts

of the incumbent and thereby decrease incentives to patent the original innovation in other countries.
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imprecisely estimated. The rate of early competition is lower for products that can not

be prescribed by all physicians than other products without such restrictions.

4.4.2 Robustness

In this subsection, I evaluate the robustness of the results concerning the e�ects of the

length and claims on the rates of imitation and parallel trade. First, in 34% of markets,

information on the number of claims is missing. If this sample selection to non-missing

and missing observations is not random, the estimation results can be biased. This is

particularly true if the information is missing for, say, less pro�table innovations. To

evaluate the importance of this, I study how the point estimates of both patent length

variables change when the number of claims is not controlled. The results in Table 4.3

suggest that one year increase in the length of a patent from grant (application) increases

the rate of imitation by 12% (10%) which is less than when claims are controlled. The

corresponding coe�cient estimate for the rate of parallel importation is 0.058 (0.041). The

point estimates of both patent length variables are statistically insigni�cant. Overall, the

results regarding to the e�ects of the patent length variables do not change much when

the number of claims is not controlled. This suggests that the missing observations of

claims do not bias the results.
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Table 4.3: Estimation results for Cox hazard models without claims in the sample of

markets
Imitation Imitation Parallel Parallel Competing Competing

importation importation risks risks

Patent length (years),

from grant 0.114 0.058 0.053

(0.069) (0.050) (0.080)

from application 0.094 0.041 -0.013

(0.077) (0.068) (0.069)

Interaction with

a parallel trade indicator

from grant 0.029

(0.086)

from application 0.095

(0.094)

Year -0.234∗ -0.239∗ 0.081 0.078 -0.035 -0.026

(0.104) (0.096) (0.058) (0.058) (0.058) (0.056)

Publication year6 0.044 0.036 0.000 -0.003 0.006 0.013

(0.061) (0.059) (0.025) (0.025) (0.022) (0.022)

Patent family size 0.007 0.006 -0.003 -0.003 0.002 0.002

(0.020) (0.020) (0.010) (0.010) (0.008) (0.008)

Priority country in Europe (1: yes, 0: no) -0.564 -0.594 0.035 0.015 -0.285 -0.243

(0.498) (0.492) (0.383) (0.383) (0.304) (0.304)

Cited documents -0.005 0.002 -0.008 -0.005 -0.005 -0.008

(0.021) (0.020) (0.018) (0.018) (0.016) (0.016)

Nbr of inventors 0.065 0.072 -0.035 -0.026 0.034 0.023

(0.069) (0.063) (0.084) (0.080) (0.048) (0.053)

Nbr of international

patent classi�cations -0.172 -0.173 0.253 0.273 0.077 0.061

(0.237) (0.253) (0.154) (0.153) (0.148) (0.138)

First in ATC4-group (1: yes, 0: no) -0.234 -0.250 0.300 0.298 0.079 0.082

(0.506) (0.510) (0.383) (0.372) (0.314) (0.317)

Prescribing restriction

(1: yes, 0: no) 0.174 0.099 -1.727∗ -1.734∗ -0.891 -0.860

(0.708) (0.709) (0.768) (0.757) (0.505) (0.513)

AIC 160.502 159.255 339.694 338.851 464.519 466.066

R2 0.006 0.007 0.008 0.008 0.003 0.002

Max. R2 0.084 0.084 0.180 0.180 0.130 0.130

Num. events 17 17 36 36 50 50

Num. obs. 1721 1721 1679 1679 3240 3240

1 The e�ective patent life starts from the entry of an incumbent.
2 The value of the variable is its maximum number within the family of a patent.
3 In the competing risks model, separate baseline hazard functions are allowed for imitators and parallel importers.
4 Signi�cance starts for the P-value: P ≤ 0.10 (.), P≤ 0.05 (*), P ≤ 0.01 (**), P ≤ 0.001 (***).
5 Standard errors are clustered at an active ingredient level (ATC5).
6 Minimum within a patent family.
7 The number of international patent classi�cations.

In 5% of analyzed market, a patent owner did not renew its SPC before the expiration

date. In these markets, the values of innovations are likely to be lower than in markets

where the maximum duration of SPCs were reached. Because the value of an innovation
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may be correlated with the entry incentives of imitators and parallel importers, both

patent length variables may be endogenous. When markets, where patent owners did not

renew their SPCs, were removed from the sample, the results did not change much (Table

4.4). These �ndings indicate that the bias caused by non-renewed SPCs may not be a

serious issue.
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Table 4.4: Estimation results for Cox hazard models, a SPC was not renewed in the

sample of markets
Imitation Imitation Parallel Parallel Competing Competing

importation importation risks risks

Patent length (years),

from grant 0.297 0.039 0.201

(0.249) (0.070) (0.133)

from application 0.222 -0.065 0.122

(0.342) (0.102) (0.218)

Claims -0.120∗ -0.134∗ -0.007 -0.013 -0.086∗∗ -0.072∗

(0.047) (0.054) (0.036) (0.034) (0.033) (0.031)

Interaction with

a parallel trade indicator

Patent length (years),

from application -0.147

(0.242)

from grant -0.144

(0.144)

Claims 0.053 0.045

(0.034) (0.034)

Year -0.199∗∗∗ -0.216∗ 0.055 0.067 -0.012 -0.022

(0.059) (0.088) (0.066) (0.062) (0.061) (0.063)

Publication year6 0.047 0.038 0.023 0.021 0.007 0.009

(0.063) (0.066) (0.044) (0.047) (0.037) (0.035)

Patent family size 0.008 0.001 -0.003 -0.003 -0.003 -0.002

(0.017) (0.021) (0.013) (0.013) (0.010) (0.011)

Priority country in Europe (1: yes, 0: no) -1.253 -1.394 0.292 0.214 -0.366 -0.263

(0.931) (0.855) (0.492) (0.486) (0.399) (0.398)

Cited documents 0.034 0.026 -0.003 -0.004 0.001 0.003

(0.026) (0.027) (0.022) (0.021) (0.019) (0.020)

Nbr of inventors 0.084 0.067 0.008 0.011 0.055 0.058

(0.068) (0.062) (0.077) (0.084) (0.045) (0.045)

Nbr of international

patent classi�cations 0.223 0.172 0.137 0.144 0.195 0.203

(0.418) (0.350) (0.188) (0.187) (0.167) (0.170)

First in ATC4-group

(1: yes, 0: no) -0.994 -0.970 0.427 0.485 0.147 0.139

(1.254) (1.361) (0.457) (0.460) (0.433) (0.424)

Prescribing restriction (1: yes, 0: no) -0.630 -0.730 -1.441 -1.402 -1.342∗ -1.327∗

(1.329) (1.396) (0.791) (0.816) (0.658) (0.642)

AIC 59.689 60.971 207.272 207.224 246.542 244.766

R2 0.013 0.011 0.009 0.009 0.006 0.007

Max. R2 0.050 0.050 0.187 0.187 0.119 0.119

Num. events 6 6 24 24 29 29

Num. obs. 977 977 936 936 1826 1826

1 The e�ective patent life starts from the entry of an incumbent.
2 The value of the variable is its maximum number within the family of a patent.
3 In the competing risks model, separate baseline hazard functions are allowed for imitators and parallel importers.
4 Signi�cance starts for the P-value: P ≤ 0.10 (.), P≤ 0.05 (*), P ≤ 0.01 (**), P ≤ 0.001 (***).
5 Standard errors are clustered at an active ingredient level (ATC5).
6 Minimum within a patent family.
7 The number of international patent classi�cations.
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As a �rm enters and exits the market in 2007 or before 2003, information regarding to it

is missing as the data combines entry information from the registers of years 2003− 2006

and 2008. For this reason, I �rst restrict the sample to contain years before 2007. Table

4.5 suggests that the results are again fairly similar with those presented in Table 4.2.34 I

next focus on markets where the incumbent's entry was from year 1990 onwards and take

into account observation before year 2007. The e�ects of the both patent length variables

on the rate of imitation become negative but remain statistically insigni�cant (Table 4.6).

To explain this, an entry of a competitor must have happened at the early stage of patent

protection because innovations in the subsample are fairly new. These �ndings suggest

that the results are fairly robust to the missing data due to sample selection.

34Small variation in the data does not allow for a further restriction that takes into account only those

markets where an incumbent entered a market from year 2003 onwards.
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Table 4.5: Estimation results for Cox hazard models, year≤ 2006 in the sample of markets
Imitation Imitation Parallel Parallel Competing Competing

importation importation

Patent length (years), risks risks

from grant 0.156 0.125 0.169

(0.179) (0.085) (0.133)

from application 0.028 0.128 0.122

(0.190) (0.120) (0.203)

Claims -0.104∗ -0.106 -0.028 -0.018 -0.071∗ -0.078∗∗

(0.048) (0.065) (0.031) (0.033) (0.028) (0.029)

Interaction with

a parallel trade indicator

Patent length (years),

from grant 0.016

(0.146)

from application 0.107

(0.242)

Claims 0.027 0.018

(0.031) (0.030)

Year -0.206∗∗ -0.195∗∗ 0.044 0.051 -0.067 -0.078

(0.074) (0.075) (0.080) (0.076) (0.066) (0.069)

Publication year6 0.200∗ 0.206 0.008 0.006 -0.007 0.000

(0.100) (0.135) (0.054) (0.052) (0.044) (0.045)

Patent family size 0.050 0.054 -0.026 -0.025 -0.014 -0.018

(0.028) (0.044) (0.018) (0.019) (0.014) (0.015)

Priority country in Europe (1: yes, 0: no) -2.459 -2.330 0.068 0.227 -0.592 -0.764

(2.011) (2.294) (0.506) (0.540) (0.449) (0.443)

Cited documents -0.009 0.002 0.016 0.018 0.021 0.017

(0.028) (0.025) (0.018) (0.017) (0.019) (0.022)

Nbr of inventors 0.166 0.170 0.017 0.022 0.093∗ 0.079∗

(0.092) (0.113) (0.097) (0.092) (0.037) (0.035)

Nbr of international

patent classi�cations 0.282 0.359 0.368 0.364 0.473∗ 0.448∗

(0.444) (0.635) (0.210) (0.222) (0.201) (0.192)

First in ATC4-group

(1: yes, 0: no) -0.542 -0.574 0.974 0.975∗ 0.572 0.537

(1.730) (1.517) (0.518) (0.494) (0.498) (0.506)

Prescribing restriction (1: yes, 0: no) -1.029 -0.850 -2.061∗ -2.021∗ -1.511∗ -1.572∗

(1.360) (1.273) (1.045) (1.020) (0.728) (0.738)

AIC 48.041 47.619 146.875 145.864 171.707 173.503

R2 0.015 0.015 0.018 0.019 0.013 0.012

Max. R2 0.044 0.044 0.154 0.154 0.097 0.097

Num. events 5 5 18 18 22 22

Num. obs. 860 860 838 838 1636 1636

1 The e�ective patent life starts from the entry of an incumbent.
2 The value of the variable is its maximum number within the family of a patent.
3 In the competing risks model, separate baseline hazard functions are allowed for imitators and parallel importers.
4 Signi�cance starts for the P-value: P ≤ 0.10 (.), P≤ 0.05 (*), P ≤ 0.01 (**), P ≤ 0.001 (***).
5 Standard errors are clustered at an active ingredient level (ATC5).
6 Minimum within a patent family.
7 The number of international patent classi�cations.
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Table 4.6: Estimation results for Cox hazard models, year≤ 2006, an incumbent's entry

in year≥ 1990 in the sample of markets
Imitation Imitation Parallel Parallel Competing Competing

importation importation

Patent length (years), risks risks

from grant -0.012 0.149 0.123

(0.125) (0.096) (0.137)

from application -0.286 0.198 0.055

(0.203) (0.152) (0.243)

Claims -0.237∗ -0.240 -0.049 -0.039 -0.080∗ -0.087∗

(0.112) (0.137) (0.033) (0.034) (0.033) (0.035)

Interaction with

a parallel trade indicator

Patent length (years),

from grant 0.049

(0.156)

from application 0.209

(0.297)

Claims 0.030 0.023

(0.033) (0.033)

Year -0.830∗ -0.872 0.019 0.012 -0.023 -0.020

(0.404) (0.501) (0.098) (0.109) (0.091) (0.080)

Publication year6 0.204∗ 0.186∗ 0.014 0.008 0.008 0.014

(0.101) (0.089) (0.054) (0.055) (0.044) (0.045)

Patent family size 0.015 0.000 -0.026 -0.027 -0.007 -0.010

(0.015) (0.019) (0.019) (0.020) (0.012) (0.012)

Priority country in Europe

(1: yes, 0: no) -3.505 -3.191 -0.314 -0.147 -0.767 -0.933

(2.492) (2.535) (0.503) (0.551) (0.517) (0.484)

Cited documents 0.066 0.078 0.017 0.019 0.020 0.018

(0.048) (0.058) (0.019) (0.016) (0.021) (0.025)

Nbr of inventors 0.163 0.142 0.060 0.071 0.066 0.052

(0.095) (0.090) (0.065) (0.067) (0.051) (0.048)

Nbr of international

patent classi�cations -0.866 -0.887 0.490∗ 0.479∗ 0.360 0.354

(0.475) (0.507) (0.224) (0.226) (0.203) (0.201)

First in ATC4-group

(1: yes, 0: no) -2.058∗∗ -2.073∗∗ 0.623 0.682 0.333 0.246

(0.768) (0.778) (0.557) (0.549) (0.532) (0.534)

Prescribing restriction (1: yes, 0: no) 2.232 2.258 -2.149 -2.061 -1.231 -1.311

(1.177) (1.319) (1.112) (1.085) (0.722) (0.760)

AIC 38.739 39.229 133.308 132.599 155.141 155.607

R2 0.015 0.015 0.018 0.019 0.009 0.009

Max. R2 0.036 0.036 0.151 0.151 0.091 0.091

Num. events 4 4 16 16 19 19

Num. obs. 791 791 764 764 1510 1510

1 The e�ective patent life starts from the entry of an incumbent.
2 The value of the variable is its maximum number within the family of a patent.
3 In the competing risks model, separate baseline hazard functions are allowed for imitators and parallel importers.
4 Signi�cance starts for the P-value: P ≤ 0.10 (.), P≤ 0.05 (*), P ≤ 0.01 (**), P ≤ 0.001 (***).
5 Standard errors are clustered at an active ingredient level (ATC5).
6 Minimum within a patent family.
7 The number of international patent classi�cations.
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4.5 Conclusions

I studied empirically whether the strengthening of the incumbent innovation's patent

rights prevents competition during patent protection. I considered two competing events

- imitation and parallel trade - that may decrease the pro�ts of the innovator on R&D

investments. I used data from the Finnish markets for pharmaceuticals that provides rich

variation in both patent breadth and length across innovations.

The results indicated that patent breadth prevents imitation but does not a�ect the rate

of parallel trade. The �rst conclusion is that patent policy makers should acknowledge

that rivals respond to changes in patent rights. The second implication of the results is

that patent breadth, rather than length, could be used to strengthen intellectual property

rights.

Further empirical work is required to understand the role of patent rights in competition

and ultimately in incentives to innovate. The next step could be estimate the welfare con-

sequences of increasing patent strength. It would be also interesting to study empirically

whether stronger patents delay follow-on innovation in general.
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