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I. INTRODUCTION

1.1 Big (spatial) data

L ocation information --- “Analytical superfood” that can and will, if used effectively and

appropriately, improve people’s lives across the globe.”
- UN-GGIM (2012)

It is said that 60-80 % of all data in the world has a spatial element (Franklin & Hane
1992) which illustrates the potentiality of spatial information. The fast growth of
utilization of GIS technologies in business and areas of planning and environmental
research as well as in education seems to confirm the statement of the United Nation’s
new committee of Global Geospatial Information Management (UN-GGIM): GIS
technologies and spatial information undoubtedly can, will and have improved people’s
lives across the globe.

Big data is another common term that is used in many contexts nowadays and also a
new research field has evolved to study and develop methods to analyze this data. The
use of the term big data has emerged since massive amount and variety of data is
collected continuously to databases by different devices and censors such as
smartphones, navigators, social media sites, satellites etc. Today we create so much data
that 90% of the data in the world has been created in the last two years alone (IBM
2013) and the produced mobile data is increasing at a rate of 600% a year (YLE 2013a).
The resources that these databases contain are larger than what we can currently take

advantage of and they provide countless opportunities for geographical research.

Spatial data is commonly combined with temporal information which enables to make
temporal examinations and possibly to form movement patterns. The utilization of GPS
(Global Positioning System) or Global Navigation Satellite System (GNSS) are
currently the most dominant techniques for obtaining information about movements
since many of our devices (like smartphones) have a GPS-receiver as a built-in feature.
However there are also a variety of other techniques other than GPS or GNSS that are
utilized for obtaining movement information such as Bluetooth for indoor tracking (e.g.
Delafontaine et al. 2012 & Versichele et al. 2012), video information systems for

obtaining for example the movements of players in team sports Moore et al. 2003) and



radio telemetry methods (VHF) for animal tracking (Lesage et al. 2004) to mention a

few.

A variety of tracking techniques are widely used also in practice especially related to
traffic applications. A variety of monitoring systems have been developed for recording,
managing and analyzing the information about the traffic based on different tracking
and analysis methods. These systems are used e.g. for traffic congestion detection in
urban areas (Krause & von Altrock 1996) and measuring the traffic volumes on the
freeways (Bickel et al. 2007) which enable better road network planning to prevent
traffic jams. Also specific public transportation map applications have been developed
for the use of citizens e.g. in Finland where it is possible to follow and obtain real-time
information about the movements and schedules of the trains (VR 2013) as well as
trams and metros in the Helsinki region (HRT 2013). This kind of real-time information
may provide time savings since the time used for waiting of means of transportation can
be minimized. These few examples illustrate how people can benefit from different

monitoring systems in their everyday life.

One of the most widely used monitoring system worldwide is Automatic Identification
System (AIS) that is required from all of the passenger ships and internationally
operating professional vessels that have gross tonnage larger than 300 tons. AIS is a
GPS-based system that automatically records the vessel’s location and other
information about the ship at specific time intervals and it can be followed by the ship
operators, by the authorities as well as by the normal people (see Live Ships Map 2013).
For this study a specific pilot monitoring system called Amazonian Riverboat
Observation System (AROS) was built (by the Accessibility Research Group (2013),
University of Helsinki) to collect movement data of the local river boats on the
departments of Loreto and Ucayali in Peruvian Amazon. The monitoring system is
basically a low-cost version of AlS i.e. it has seven GPS-devices which are connected to
the GPS-satellites that are installed on different riverboats and the devices send the
location information of the vessels with timestamps every 10 minutes. The monitoring
system was developed since AIS is not required from the river boat operators in
Peruvian Amazon and because of that - and the fact that the system is expensive - it has

not been used in Peruvian Amazon.



The pilot monitoring system AROS - as well as many of the other tracking systems -
provides a large database of spatio-temporally related data about the movements of the
targets. Data, however is not equivalent to knowledge which means that it is necessary
to harvest it from the data with specific techniques. Development of methods to derive
knowledge from the movement data is one of the main targets of this thesis.

1.2 From static points to spatio-temporal movement patterns

A vast amount of spatio-temporal data has become available with the fast development
of information technology and different monitoring systems over the last two decades.
Position-aware devices are one of the most dominant sources for collecting movement
data. Thus the analysis of the trajectories of moving point objects (MPO’s) has gained a
lot of interest in the scientific community during the recent years in the areas of
geographic information science (GIS), human—computer interaction (HCI), ecology,
biology, social and behavioral sciences (Dodge et al. 2009).

Spatio-temporal information that is derived from the tracking devices enable to build
movement patterns from the targets and to calculate measurable motion parameters (so
called global descriptors) such as speed, change of speed and the direction of
movement (Laube & Imfeld 2002). Since the mobility data covers both spatial and
temporal dimensions, it is possible to make queries that are related separately to space
or time, or related to combination of these dimensions. Analyses of such combination,
i.e. spatio-temporal data, enable to answer sophisticated questions like: “On which
direction was the target moving at a certain time”, “What was the average travel speed
of the target when travelled in selected area of interest?”, “Which place is most visited
by the targets at different times of the day?” or “Which place is the most suitable for a

hot-dog stand that draws the most attention at evening time?”

Numerous applications and techniques have been developed to analyze and track the
movements of variety of targets such as cars and other vehicles (e.g. Dodge et al. 2009;
Pelekis et al. 2012), players of sports (Iwase & Saito 2002; Moore et al. 2003; Laube
2005) and different animals ranging from whales to insects (e.g. Reynolds & Riley
2002; Gailey et al. 2007; Forester et al. 2009). The analysis of ship movements has not
gained as much of attention as other vehicles in the scientific community but there are at
least a couple of studies that have utilized AIS data for spatio-temporal analysis and

visualization (see Willems et al. 2009; Demsar & Virrantaus 2010).



Even though the current data sources provide plenty of spatio-temporal movement data,
and though it has more often been utilized for research recently, the majority of
geographic researchers, analysts and cartographers have long been struggling to adapt
the temporal aspects of data when dealing with spatial information. This fact has
frequently been addressed also in scientific literature (Laube 2005; Andrienko et al.
2010; Keim et al. 2010) and the need to change our thinking from spatial to spatio-
temporal has become a reality.

There are however reasons why the analysis of movement has not been particularly
popular among researchers. The analysis of movement data and other types of spatio-
temporal data can be challenging since exploring the data and deriving knowledge from
it has commonly been possible only with automated algorithms and programming your
own programs. The visualization of the data in a way that the results are understandable
is a considerable challenge but progress in these areas has happened recently to make
exploration of spatio-temporal data more user-friendly (an overview of these methods is
represented by Keim et al. 2010). The data itself also produces challenges since it can
be often heterogeneous, imprecise, incomplete and erroneous and the volume of data is

often significant.

For this study a specific tool called TRAT (Trajectory Reconstruction and Analysis
Tool) was programmed to manage the voluminous data and calculate different motion
parameters such as speed and direction of movement among other descriptive variables
which enable to examine the spatio-temporal movement patterns of the vessels in the

study area.

1.3 The study context
The Amazon River is the world’s largest river by discharge. It runs across the northern
South America originating from the Andes and entering the Atlantic Ocean in Brazil.
The riverine regions/departments of Loreto and Ucayali in the Peruvian Amazon offer
an exciting study area for a GIS-based transportation research. Almost all of the
transportation at the study area is based on ferries and boats since the road infrastructure
does not reach the Amazonian lowlands, thus making rivers the primary transportation

network for local economy and community (Abizaid 2005; Salonen et al. 2012a).



Mobility and accessibility are closely related concepts. Mobility is essentially a measure
of behavior whereas accessibility is a measure of potential (Hodge 1997). Basically
accessibility determines what we are free to do or where we are able to go by the means
of certain constraints (H&gerstrand 1970). An example of these constraints can be as
ordinary as available time to reach a specific location by the means of transportation
such as river boat. Accessibility therefore has an influence on our everyday decisions

e.g. when we travel between locations.

Earlier studies have indicated that better accessibility increases the land-use pressure
and human disturbance on the environment in Amazonia (e.g. Peres & Terborgh 1995;
Angelsen & Kaimowitz 1999; Peres & Lake 2003). Therefore, it is important to
understand the current accessibility patterns to be able to predict future land-use
changes or evaluate socio-economic conditions in the region. Furthermore, as analysis
of accessibility requires data which is often missing from areas like Peruvian Amazon,
it is important to develop transferable methodologies to carry out relevant accessibility
analysis. Understanding these patterns can be achieved with the spatio-temporal data

obtained from the monitoring system AROS.

Earlier accessibility studies in Amazonia (e.g. Salonen et al. 2012a; Salonen et al. 2013)
have concluded that when measuring accessibility patterns in environment such as
Peruvian Amazonia, it would be important to take into account the dynamic nature of
the river network (in addition to spatial structure) since the transportation characteristics
along the rivers may vary significantly between seasons. Also Geurs & Wee (2004)
have emphasized the importance to study spatio-temporal patterns thus allowing more

accurate analysis of accessibility.

1.4 The objectives of the thesis
This thesis continues from the research of Salonen et al. (2012) and aims at revealing
the dynamics of Amazonian riverine transportation patterns using spatio-temporal
information derived from collaborating river boats that operate along the Amazonian
rivers. The study aims at gaining information about the seasonal variation in movement
patterns of the river boats, and to study how the river geometry and flow direction affect
these patterns. To be able to study these patterns the first task is to developed methods
to manage and reconstruct trajectories from the location information and thus further to

derive knowledge from the AROS data via spatial data mining (i.e. geographic



knowledge discovery). Measured movement patterns then again enable to aggregate and
turn movement characteristics into more general measures such as accessibility patterns

as means of time distance between locations.
Thus this thesis has three key research questions or objectives:

1. Develop geographic knowledge discovery methods to extract knowledge
from continuous location information provided by the river boat tracking
system AROS

2. How the movement patterns of the vessels vary between seasons?

3. How the river geometry affects the movement patterns at the study area?

The main hypothesis of the thesis is that the dynamic nature of the Amazonian rivers
affects the navigation speeds of the vessels and thus also accessibility patterns in the
study area. Second hypothesis is that there is a connection between river geometry and
navigation speed that can be modeled.

1.5 Thesis outline
Figure 1 represents the outline of this thesis. A certain matter has to be pointed out from
the structure of this thesis: chapter 5 (methods), that represents the processes and
algorithms used for knowledge discovery, could mostly be represented also as part of
the results (chapter 6). Representing the developed knowledge discovery methods
already in chapter 5 was however chosen because developed tool was used for
analyzing the data from AROS. These tools enabled to characterize the riverine
transportation patterns in Peruvian Amazon which are thus represented as results in
chapter 6. Data and developed methods would allow to analyze various different aspects
of transportation in the study area but only few specific aspects are covered in this thesis
and represented in results. Also few methods that are used for representing the methods

are exceptionally discussed along the chapters of results.
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Il. BACKGROUND

2.1 Technical framework

Studying spatio-temporal transportation characteristics in Peruvian Amazon based on
voluminous GPS-data requires to develop effective methods to reconstruct trajectories
and extract knowledge from the voluminous spatio-temporal movement data collected
with AROS. Thus the first research question (see 1.4) of this study involves many
aspects that are rather technical in nature. Harvesting information from the data strongly
relates to research areas of geographic knowledge discovery (GKD) introduced by
Miller & Han (2001) which is a specific geographically oriented approach to knowledge
discovery in databases (KDD) that is a set of methods for identifying high-level
knowledge from low-level data (Fayyad et al. 1996). GKD and KDD are
interdisciplinary approaches that integrates methods e.g. from machine learning, pattern
detection, (geo)statistics, databases and (geo)visualization of data. At more specific
level this study relates to analysis of movement which is a GDK approach focused on
analyzing the patterns of movement data.

2.2 Basics of movement data

According to Andrienko et al. (2008) movement data consists of three principal
components; 1) Time as a set of moments, 2) Population, a set of entities that move and
3) space, a set of locations that can be occupied by the entities. Dodge et al. (2009)
define moving point objects (MPQ) as “entitics whose positions or geometric attributes
change over time”. Thus MPOs can be seen as a dynamic representation of a static point
where each location is specified three-dimensionally by a tuple of (x, y, t) coordinates
where t represents time (Hagerstand 1970; Hornsby & Egenhofer 2002; Laube 2005).

A sequence of successive positions of the moving object over a period of time forms
movement pattern which can be represented and visualized as a space-time path which
is a key concept related to time-geography first introduced by Hagerstrand (1970).
Space-time path (or trajectory) basically traces an individual’s movements and activities
in space with respect to time (see Figure 2) (Miller & Bridwell 2009). Related to data

mining tasks Spaccapietra et al. (2008) considers trajectory as a time series of spatial

data (to.n, X, y -points in Figure 2).



Time

A
16:00+
15:00T >

14:00
13:00+

12:001

11:00 movement
10:00+

stationary

09:00 Lo xy

08:00+ l
l,: X,y longitude

latitude

Figure 2. A concept of trajectory and moving point objects. Modified after Miller & Bridwell (2009).

The state of the moving object at a selected time moment can be characterized not only
by its position in space but also by additional characteristics such as speed, direction
and acceleration. The entities themselves (regardless of the movement) can also be
characterized by supplementary characteristics such as 1D, capacity, size, vessel type
etc. Also the locations where the entities move can be characterized with information

about river height, altitude, river type, sinuosity index etc. (Andrienko et al. 2008).

In order to analyze the behavior or patterns of the moving objects it is necessary to have
detailed information about the trajectory of the object as well as information about the
environmental conditions (i.e. supplementary characteristics) related to the trajectory
(Spaccapietra et al., 2008). Combination of different datasets allows setting
sophisticated research questions that take into account space and time as well as other

additional attributes related to the studied phenomenon.

However, before there are any kinds of patterns to analyze, it is necessary to reconstruct
those patterns from the GPS observations. This can be done via geographic knowledge

discovery.



2.3 Geographic knowledge discovery and spatial data mining

”The world is data rich, but information poor.” - Han & Kamper (2011)

Geographic knowledge discovery (GKD), or spatial data mining (SDM) as it is also
often called, is an active, growing and highly interdisciplinary research field that is still
at a relatively early stage of its development. GKD focuses on the development of
theory, methodology and practice for the extraction of useful information and
knowledge from massive and complex spatial databases (Mennis & Guo 2009).

Knowledge discovery is exploratory in nature and it can be seen as more inductive than
e.g. traditional statistical methods (upper half in Figure 3). In inductive reasoning
(Hempel 1965) the aim is to form theories based on pattern and generalizations from the
observations. Knowledge discovery also naturally fits in the initial stage of a deductive
reasoning (lower half in Figure 3) where aim is to develop and modify the theories
based on the discovered information from observation data (Miller & Han 2009) and
thus increase the overall understanding of the studied phenomena.
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Tentative
Hypothesis

INDUCTIVE REASONQ

Hypothesis

Observations

Confirmation

!NINOSVEIH JAILDNA3a

Figure 3. The aim of inductive reasoning and deductive reasoning is to increase the understanding about
the studied phenomena (Hempel 1965).
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One might ask: “Why should I use GKD instead of traditional spatial analyses? What is
the difference?” The reason why geographic knowledge discovery has emerged is
because the traditional spatial analysis (SA) methods were developed in an era when
data were relatively scarce and computational power was not as powerful as today
which restricted the developed analysis methods at that time (Miller & Han 2009).
Since we have moved from a data-poor era to a data-rich era, the traditional SA
methods often do not meet the analysis needs of today. These shortcomings related to
traditional spatial analysis according to Mennis & Guo (2009) are:

- They cannot process the large data volumes that is produced these days

- They do not know how to process newly emerged data types such as trajectories
of moving objects

- They focus on a limited perspective (e.g. univariate spatial autocorrelation) and
cannot suggest any better alternatives if the chosen perspective or model is
appropriate for the phenomenon and do not show interesting relationships

Even though traditional SA methods are still highly needed in various research areas,
the geographic knowledge discovery has emerged to fill the limitations listed above.
Since the amount of data in the world is increasing at high speed, we can now obtain
much more diverse, dynamic and detailed data than was ever possible before the
modern data collection techniques (Goodchild, 2007). Such data provide opportunities
for gaining new knowledge and better understanding of complex geographic
phenomena such as human—environment interaction and socio— economical dynamics
(Mennis & Guo 2009). Because of this diverse and voluminous data, it is necessary to
automate the knowledge discovery process since it is not possible for a person to
manually harvest the knowledge from these data sources. Thus automated knowledge

discovery is the key principle of (spatial) data mining (Shekhar et al. 2011).

2.3.1 GKD as a process
Knowledge discovery as a whole is an iterative process that involves multiple
(automatic) steps including 1) data cleaning, preprocessing and integration 2) data
selection, transformation and incorporation of prior knowledge, 3) analysis/data mining
with computational algorithms and/or visual approaches, 4) interpretation and
evaluation of the results (see Figure 4). As an iterative process, the process chain

includes also reformulation or modification of hypotheses and theories due to new
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knowledge (dashed arrows in Figure 4) as well as adjustment to data and analysis
methods thus leading to re-evaluate the results on each iteration (Fayyad et al 1996; Han
& Kamper 2001). Even though the emphasis on knowledge discovery is in automation,
the whole process is conducted by the user since each step involves decisions that have
been made by the analyst (uniform arrows in Figure 4) (Han & Kamper 2001).
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Figure 4. The concept of knowledge discovery which is an iterative process chain conducted by the user
to derive knowledge from the data. Modified after Han & Kamper (2001: 6).

The described basis of knowledge discovery process is common to both traditional
KDD as well as to GKD. The difference of GKD compared to KDD comes when taking
a look at the data. The input data for geographic knowledge discovery is spatial, i.e. it is
georeferenced, which causes similar effects as have been acknowledged in the area of

geostatistics (see e.g. Cressie 1993; Goovaerts 1999) to relations between observation
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due to Tobler’s (1970) first law of geography (autocorrelation etc.). Also the complexity
of geographical inputs (i.e. extended objects such as points, lines, polygons, rasters)
restrain the use of general purpose data mining algorithms (Shekhar et al. 2011).

The nature of spatial data is especially important in data mining (3 step of knowledge
discovery) where spatial relations effect on results. Data mining of spatial data includes
various common and important tasks/analysis methods such as spatial classification and
prediction (regression models), spatial outlier detection, spatial association rule mining
and co-location pattern discovery, spatial cluster and hot spot analysis, and
geovisualization (Mennis & Guo 2009; Shekhar et al. 2011).

Related to this thesis, the most relevant spatial data mining tasks are spatial
classification and geovisualization. Therefore | will explain and cover only these
methods in the forthcoming chapters.

2.3.2 Mobility data mining

... the world of 2000 is desperately going to need men and women with a clear view and
involved concern for Man’s use of space over time.” - Gould (1969)

One of the frontiers of GKD is the management and analysis of spatio-temporal data
such as mobility data. Giannotti & Pedreschi (2008) refers this as mobility data mining
which aims at understanding the movement behavior of different targets by analyzing
the mobility data through appropriate patterns and models extracted by efficient
algorithms. This novel knowledge discovery process is composed of three steps:
trajectory reconstruction, knowledge extraction and delivery of the obtained information.
These steps thus follow the principles of knowledge discovery process (as illustrated in
Figure 4) where trajectory reconstruction responds to data transformation step,
knowledge extraction to data mining step, and delivery of information to evaluation and

presentation step.

2.3.3 Trajectory reconstruction
Trajectory reconstruction is the first task when processing mobility data. Transforming
the movement data into trajectories of moving objects is however not a straightforward
procedure as e.g. Marketos et al. (2008) have pointed out. Since the raw points (x- and
y-coordinates with timestamp) arrive in bulk sets, it is necessary to have a filter that

decides if the new series of data is to be appended to an existing trajectory or not. In
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other words the filter detects and separates individual trajectories from the data mass. It
IS necessary that this filter contains multiple generic parameters or “triggers” that do the
filtering, such as temporal or spatial gabs between observations, tolerance distance,
maximum speed and maximum noise duration (Marketos et al. 2008). In the case of this
study also the direction of movement was used for filtering (see 5.2 for more details).

The computation of global descriptors (Dodge et al. 2009), or instantaneous movement
descriptors as Laube et al. (2007) calls them, focus on characterizing the movement
itself and can be seen as part of trajectory reconstruction or knowledge extraction,
depending on how you want to look at it. These descriptors such as speed, acceleration,
duration of movement, sinuosity, travelled path, displacement and direction (Giannotti
& Pedreschi 2007; Laube et al. 2007; Dodge et al. 2008) need quite often to be
smoothed (see 5.7 for more details) since the movement data can be quite noisy or
fragmentary (Laube et al. 2007) that is caused by inaccurate observations and
incomplete data. These global descriptors form fundamental building blocks for
analyzing the movement with respect to its environment. This movement/environment
relationship is a great interest for e.g. ecologists who try to find environmental cues that
affect the motion of individual organisms (see Nathan et al. 2008), and naturally for this

research as well that focuses on transportation.

2.3.4 Knowledge extraction
The second (or third) step in the mobility data mining process is knowledge extraction
with spatio-temporal data mining methods such as classification or geovisualization.
The aim of this phase is to reveal useful and interesting patterns out of trajectories (see
Laube & Purves (2006) for discussion and methods about evaluating the motion

interestingness).

Classification can be seen as discovery of behavior rules that aims at explaining the
behavior of current events (or movement) and predicting that of future ones (Giannotti
& Pedreschi 2008). Classification is about grouping data items into classes according to
their properties, i.e. attribute values (Mennis & Guo 2009) via supervised (with training
dataset) or unsupervised classification (i.e. clustering). There are various different
classification methods such decision trees, artificial neural networks, maximum
likelihood estimation, nearest neighbor methods and case-based reasoning. Related to

this thesis a decision tree classification (supervised) is one part of the knowledge
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extraction process since the developed algorithm utilizes a training set, or ancillary data
(see I11), to categorize the mobility data of the vessels and calculate global descriptors
(see Figure 5).
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Figure 5. The concept of decision tree.

Making spatio-temporal queries from the mobility data can also be considered as a part
of knowledge extraction and there are various different queries that can be implemented
related to motion. These queries can be separated into location-based queries,
continuous queries and trajectory-based queries (Agarwal et al. 2002). Location based
queries answer to question such as “Show all MPO's that are within 1 km from point A”
whereas continuous queries involves a moving location range and can answer to
question such as “Follow targets that are within 500 meters around car B”
(Raptopoulou et al. 2003). Trajectory based queries involve the topology of the
trajectory and derived information related to the trajectory such as velocity or direction
of movement. These queries can answer to questions such as “Which targets are
heading north?” or “Which targets were moving upstream with the speed of 15 km/h
during February?” Related to this study the trajectory-based queries are the most useful
since the purpose of this study is to reveal changes in movement patterns according to

seasonal changes in water levels and navigation direction (upstream/downstream).

Yet another type of knowledge extraction method is based on a novel multidisciplinary
research field of geovisual analytics where the emphasis is on interaction between user

and the data through interactive visualizations. It is good to acknowledge that this can
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be considered also as a part of knowledge delivery phase (see 2.3.5) since the
knowledge extraction is based on visualization which is also a significant part of
representing the results. The aim of geovisual analytics is to synthesize information and
derive insight from very large and complex datasets for understanding, reasoning and
decision making (Keim et al. 2010) by interactive spatial and temporal exploration of
data through zooming, panning, grouping and selecting which can be defined as
ESTDA (Exploratory Spatio-Temporal Data Analysis) (Andrienko & Andrienko 2005).
ESTDA have power to reveal hidden patterns that are not visible through a single view
or angle of the data. Geovisual analytics are used widely for representing movements in
three dimensional form and discovering interesting patterns from mobility data (see
Figure 6) that are easily overlooked by other analysis and visualization methods (e.g.

Kwan 2000; Zhao et al. 2008; Demsar & Virrantaus 2010; Kraak 2011).
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Figure 6. Trajectories of walking individuals and their footprint at downtown Helsinki. Time intervals
indicate when individuals reach the common destination (upright black pole). Represented with uDig
software attached with Space-Time-Cube plugin developed by ITC (University of Twente).

2.3.5 Knowledge delivery
The final step of GKD process is knowledge delivery, i.e. the presentation of the results

and evaluating their information. Extracted patterns from the data can be considered
extremely rarely as knowledge per se. Thus it is highly important and necessary to
reason and compare the patterns with relevant background knowledge, refer them to
other appropriate geographic information (Giannotti & Pedreschi 2008) and evaluate the

interestingness of the patterns (Laube & Purves 2006).
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Related to mobility data a widely used visualization and representation method of the
results is utilization of space-time cube (STC) which was discussed in the previous
chapter (2.3.4). However also other types of representation methods are widely used for
representing spatio-temporal movement characteristics since STC can become quite
“messy” when representing loads of trajectories simultaneously, and if interactive
exploration is not possible (such as in printed papers) STC becomes less usable as a

visualization method.

One typical way of representing movement characteristics (in 2D) is to use so called
movement parameter profiles (Dodge et al. 2009) (see Figure 7) where time is
represented at x-axis and movement parameter such as velocity (speed) or acceleration
(change of speed) is represented at y-axis. Simple but useful way of comparing the
movement characteristics of different trajectories together is to calculate a median or
average of the parameter (e.g. speed) for every individual trajectory (righter most box in
Figure 7) and then compare the deviations of those trajectories by plotting them all in
the same graph.

In the case of this thesis a so called route point which indicates the positions of the
network was used. This kind of representation allows linking a selected position of x-

axis straightly to its geographic location.
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Figure 7. The concept of 2D movement parameter profiles. Modified after Dodge et al. (2009: 423).

Another useful way of representing time oriented information (such as seasonal
mobility data) is to use cyclic representation (see Figure 8) where data is plotted on
circular form where each angle of the circle indicates a specific time interval thus
allowing to discover some cyclic patterns that would not be apparent with traditional

linear plotting (x, y —diagrams) (Andrienko et al. 2010).

17



Time

0 500
__‘

Figure 8. Example of cyclic spiral representation of health-related time series data. Modified after
Andrienko et al. (2010: 1586).

2.4 From mobility analysis into wider contexts

“Transport is one of the most powerful factors affecting and explaining the distribution of social

and economic activity.” - Knowles et al. (2008)

Modern information technologies and analytical methods (such as GKD) enable us
better than ever to gather and harvest spatio-temporal information about movements,
activities and presence of variety of objects such as humans, vehicles and animals. This
is possible via various data sources such as mobile phones (Ahas et al. 2010),
professional observation systems (AlS, ADS-B -Aviation monitoring etc.) (e.g. Demsar
& Virrantaus 2010) and more recently also via social media services (Andrienko et al.
2013; Li et al. 2013). Accessing continuously such information can be utilized in
various contexts such as in decision making processes and planning considering also

different environmental aspects.

2.4.1 Mobility information in decision-making and planning
Many political planning decisions are often based on “rules-of-thumb* principles even
though the need for accurate and more real-time information is higher than ever (e.g.

Wilkins & desJardins 2001; Krizek et al. 2009) since our society is increasingly
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dynamic and mobile (YLE 2013b). Acknowledging the previous, a new movement
called evidence-based practice (EBP) that emphasizes the use of scientifically analyzed
information has emerged to support the decision making processes. EBP attempts to
bridge the gap between traditional rules-of-thumb decision making and more formally
analyzed information based on as accurate and recent data as possible. EBP was first
introduced in the field of medicine but it has recently been utilized also in urban
planning (Krizek et al. 2009) and regional land use decisions (Sutherland et al. 2007).
Mobility data can be seen as one significant information source related to EBP and

urban planning.

2.4.2 From realized mobility into accessibility patterns

The observed mobility of different objects (such as humans) is in principle describing
the movement dynamics of moving objects on a certain period of time within the chosen
spatial area (i.e. spatio-temporal domain) (Hagerstrand 1970). This gives exact
information about the movements within the spatio-temporal domain but often such
detailed data is not particularly usable when using it in other contexts such as in
environmental models that often require more simple form of information. Thus making
the movement data more simple by aggregating it with certain parameters and
constraints is often more useful and informative than preserving all the details of the
data.

One of the possible ways of utilizing mobility information is by using it as background
information in accessibility analyses. Accessibility, i.e. the potential of opportunities for
interaction (Hansen 1987) or degree of connectivity (Ingram 1971) that basically
describes the potential movements, can be seen as a powerful concept of simplifying the
realized movement characteristics into more generalized patterns describing e.g. the
time distances between places within specific timeframes. Accessibility can be seen as
an increasingly important analytical tool as means of understanding the human-

environment interactions (Verburg 2011; Salonen et al. 2013).

2.4.3 Accessibility related phenomena
Accessibility, which is possibly derived from observed mobility, can be connected into
wide area of environmental, economic and societal phenomena at different spatial scales
ranging from local to global. Accessibility can be seen as useful indicator of the form

and intensity of human-environment interactions since it can be strongly linked to
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phenomena such as land use change, human alteration of natural environments,
deforestation, ecosystem modification, regional development and economic interaction
(e.g. Ellis & Ramankutty 2008; Salonen et al. 2013; Vickerman 1995; Vickerman et al.
1999; Verburg et al. 2011).

On a local and regional scale, the structures of transportation and land use (services,
work places and housing) influences citizen’s need to use time and energy for travelling
that also can be seen as important factors influencing human well-being. Local and
regional scale traffic and transport have been found as major causes of environmental
problems in urban regions (Bertolini and le Clercq 2003; International Energy Agency
2009) thus there is also growing concern over urban greenhouse gas (GHG) and carbon
dioxide (CO2) emissions resulted from daily travel (Yang et al. 2009; Lahtinen et al.
2013).

In today’s globalizing world, transnational, long distance travelling by different travel
modes has become everyday activity for many people and most goods, which consumes
enormous amounts of energy and natural resources. In addition, while climate and
geology have shaped ecosystems and evolution in the past, there is growing evidence
showing that human forces are in many areas surpassing the natural forces modifying
our landscape (Turner et al. 1994; Rindfuss et al. 2004). Human-environmental
interactions have far reaching consequences for the functioning of the Earth system on
different spatial and temporal scales (Ellis & Ramankutty, 2008; Verburg et al., 2011)
thus it is increasingly important to understand the global interaction of accessibility and
land use and the implications they have on the environment and competitiveness of

societies (e.g. Salonen et al. 2012b; Salonen et al. 2013).

2.4.4 Previous transportation studies in Peruvian Amazonia
Previous studies in Amazonia that have included transportation aspects as part of the
study have mostly concentrated on the role of roads, and studies have mainly focused on
Brazilian part of Amazonia (e.g. Bauch et al. 2007). There are however also few studies
that have focused on Peruvian Amazonia and the role of rivers as main transportation
network (Salonen et al. 2012a; Salonen et al. 2013).

Salonen et al. (2012a) have studied the accessibility patterns based on time distances on
riverine transportation system of Peruvian Amazon. They discovered that the network

distances are considerably higher (on average 1.6 times longer) than the Euclidian
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distances that have been typically used as measure of accessibility in previous studies
(e.g. Peres & Terborgh 1995; Peres & Lake 2003). They noticed that the time distances
depend on the size of the channel since larger channels are faster than narrow densely
meandering channels to navigate. Seasonal changes in navigation patterns and greatly
influence the everyday life of the inhabitants in Amazonian communities, and thus
Salonen et al. (2012) concluded that it would be important to study the temporal aspects
of Amazonian river transports. Also changes in the river networks have great impact on
people’s life since the vital river connection can migrate kilometers away thus hindering

the product and food supply of villages (Coomes et al. 2009).

Salonen et al. (2013) have studied how different accessibility measures perform as input
data for land use and land cover change (LUCC) models. They simulated deforestation
in Peruvian Amazonia and concluded that time distance to market center in association
with distance to transport network (i.e. rivers) had the most accurate simulation results
according to deforestation. They also tested two complementary Euclidian measures
that achieved nearly as accurate results compared to simple network based time
distances. Salonen et al. (2013) thus recommended that LUCC modelers test the effect
of different accessibility variables and their combinations, and paying attention to site-
specific characteristics of the transportation networks and the type of phenomenon

analyzed.
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I11. STUDY AREA

3.1 Loreto and Ucayali regions in Peru

The study area of this thesis covers the Loreto and Ucayali regions in Peru (see Figure
9). Peru is located on the west part of South America sharing borders with Brazil,
Bolivia, Chile, Ecuador and Colombia. Loreto and Ucayali regions are located on the
North Eastern part of Peru and the regions are bordered by mountain range of Andes on
the west side from where the largest river of the world by discharge, Amazon, originates
(Gupta 2007: 31). Loreto and Ucayali regions cover together the Peruvian part of
Amazon rainforest that is locally referred as selva baja (lowland rainforest) that is
defined to be all of the rainforest areas below the elevation of 600m above sea level
(Kalliola et al. 1993: 7).

0°0'S, 75°6'W
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Figure 9. The study area of this thesis covers Loreto and Ucayali regions on the North Eastern Peru.
Elevation map of Peru and its location in South-America.
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Table 1 represents few basic demographic statistics of the study area that are mainly
from the years 2007-2008 since the last census took place in 2007 and thus the numbers
are most reliable from that period of time.

Loreto is the largest and Ucayali is the second largest region by area in Peru, and Loreto
was the 11th and Ucayali 18th the largest region by population in 2007. Since Loreto
and Ucayali regions are mainly covered by rainforest areas this results significantly
lower population densities (2.5 / 4.2 inhabitants per km?) than rest of the country.

Table 1. Statistics of Peru, study area regions and cities that are important harbors related to this study.

(Sources: GOREL 2006¢ ™ INEI 2007 ©: INEI 2008 ®: MTC 2008 “; INEI 2009 ®: BCRP 2009 ©:
MPCP 2010 ; BCRP 2012 ®; INEI 2012 ©; The World Bank 2013 ®?)

Peru Loreto Ucayali lquitos Pucallpa Yurimaguas

Administrative Country Region Region Capital of Loreto Capital of Ucayali Capital of province
status
Population © 27 412 157 891 732 432 159 370 962 204772 51747®
(census 2007)
Population © 30 135 875 1005 953 477 616 422 055 211591 59 062
(estimate 2012)

Area (km?) 1285216®@  368851% 102411 ©® 369 @ 65" 26840
Population 21.3 25 4.2 1005.3 3150.1 19.3

density - 2007
(inhabitants/km?)

Urban/ rural 75.9/24.1 65.4/34.6 75.3124.7
f’)opulation (%)
2

3.2 Central Places of Loreto and Ucayali
In Figure 9 (page 22) there are marked the capital of Peru, Lima, on the west coast with
a large red square and some of the important centers according to this study in Loreto

and Ucayali with smaller red squares.

Iquitos is the capital of Loreto region situated approximately 1000 km North East from
Lima (Euclidian distance). lquitos was founded in 1757 with estimated population of
422 000 in 2012 that ranks it the 6" largest city in Peru (INEl 2012). Iquitos is
commercially important center located at the confluence of Amazon, Nanay and Itaya
rivers, and the city is approximately 100 km northwards from the confluence of Ucayali
and Marafion rivers that originate from the Andes and form the prober of Amazon River.
The river network is essential to local people and economic since the road connections

7from Ilquitos are poor and the majority of the transportation is based on river
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navigation (see Figure 10) (Rodriguez Achung 1994). Thus Iquitos is known as being

the world’s largest city without road connections to the rest of the world.

Iquitos has a long history of being a busy transportation center since the rubber boom
era in the 19™ century when the rubber was exploited from the surrounding areas and
then shipped to the world (Vilchez Vela 2012). Iquitos is still today the most important
transportation hub of the study area according to river transportation (see Figure 11) and
there is frequent boat traffic towards harbors of Peru (e.g. Pucallpa & Yurimaguas) and
also to Manaus (in Brazil) which is the most populous city of the whole Amazon.

Pucallpa is the fastest growing Peruvian city in the Amazon (Abizaid 2005) and it is an
administrative capital of Ucayali region. Related to Amazonian transportation it is also
an important city because it has good road connections to the rest of the country.
Pucallpa has large harbor along Ucayali River which is an important gateway to Iquitos
(1120 km downstream) as means of transporting cargo and passengers. Thus there are
regular daily ship departures between Iquitos and Pucallpa.

Yurimaguas is also an important harbor related to transportation towards Iquitos.
Yurimaguas is a capital of Alto Amazonas province and it is located along the Huallaga
River approximately 680 kilometers upstream from lquitos. Yurimaguas is popular
gateway among the passengers since it is the closest city to Iquitos with good road
connections to the rest of the Peru. Thus a lot of passengers and tourists use the ferry
connection from Yurimaguas if they do not wish to use airplane to reach lquitos.

Yurimaguas is also important center as means of transporting cargo to/from Iquitos.

The maps of this chapter (111 Study area) represent also the smaller center of Saramiriza
which is one of the destination harbors used by our collaborating ship companies
navigating from lquitos. This route (lquitos-Saramiriza) is however not used in this
thesis because of the route is mainly parallel with Iquitos-Yurimaguas route, and the

journeys were irregularly tracked (with AROS).
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Figure 10. Map of the river network in the study area and locations of the important
centers related to this study. Poor road connectivity of Iquitos and Amazonian
lowlands towards other parts of Peru is clearly visible. Photograph represents the only
paved road connection that runs from Iquitos to Nauta. Photograph © Tenkanen 2012.
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Figure 11. Frequency of river boats per week around Iquitos in
2005. Modified after Salonen et al. (2012a).
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3.3 Environmental characteristics of the study area

The environmental conditions of the study region are characterized by moist to very
moist tropical lowland rainforests (Puhakka et al. 1992) with average annual
temperatures varying between 20-28 °C and annual precipitation ranging from 1600 mm
to 3500 mm (Hoffman 1975, cit. Toivonen et al. 2007). The relief of the study area is
gentle with minimal differences in elevation (see Figure 9 and Figure 10). For instance
the approximate gradient of Ucayali River is only five centimeters per kilometer
(Abizaid 2005) and the average slope for entire Amazonian lowlands (from Peru to the
Atlantic Ocean) is only 10 centimeters per kilometer (Puhakka et al. 1992).

The most dominant environmental factors describing the Amazonian lowlands are water
and forests. The Amazon is the world’s largest river basin with area of over 7 million
square kilometers making it the greatest river system of the world (Sioli 1984). The
fluvial system of the area has strong and comprehensive influence over natural habitats
such as plants and animals, as well as on humans that use rivers as a way of earning
their living, gathering food and travelling between locations (Abizaid 2005; Coomes et
al. 2009; Salonen et al. 2012a).

Rivers of the region are typically categorized in terms of their size, channel morphology
and ‘color’ (white-water, black-water and clear-water) (Sioli 1984). Figure 12
represents the important rivers related to this thesis indicated with different colors:
Amazon, Marafion, Ucayali and Huallaga. These rivers are the largest and also most
important as means of riverine transportation routes. The channel morphology (or
pattern) of the rivers in the study area varies from wide anastomosing rivers (Amazon
and Marafion) with quite low sinuosity (rate of meandering) to narrower meandering
rivers with higher sinuosity (Ucayali and Huallaga) (Puhakka et al. 1992). Wider
anastomosing rivers are typically easier to navigate by large river launches (see Figure
15, page 30) than meandering rivers that are narrow and can have also plenty of
sandbanks during low water hampering the navigation (albeit sandbanks can exist also

along anastomosing rivers).
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Figure 12. The map of rivers that are included in this study and their channel types according to Puhakka
et al. (1992) and Toivonen et al. (2007).
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Figure 13. Daily river heights of the year 2012 represented as difference from year’s average river height.
Data source: SEHINAV (2013).
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The river dynamics in Amazonian lowlands are significant that can be clearly seen from
Figure 13 which represents the daily river heights along the main rivers of this study
during the year 2012. The difference between low water and highest peak during high
water can be over 10 meters which demonstrates how massive the dynamism of these
rivers can be. Thus the seasonal changes and flood cycles of the Amazonian river
system is able to modify extensive land areas in river floodplains (Zeng 1999; Marengo
2005; Toivonen et al. 2007).

Figure 14 represents a map of network distances originating from Iquitos and illustrates
how much longer they are compared to Euclidian distances. Sinuosity has significant
effect on the travelling distances, thus the network distances at the study area are almost
twice as long compared to as the crow fly distances (e.g. on Iquitos-Pucallpa route).

Figure 14. Network distances versus Euclidian distances originating from Iquitos along the river network
at the study area.
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Figure 15. a) A panorama view from the boulevard of Iquitos towards the Amazon River during low
water (seen in the horizon). During high water the river rises and fills all the green areas seen in this
picture, b) Harbor of Masusa in lquitos which is basically only a river bank where boats come ashore, ¢)
Passengers usually spend their night by sleeping in hammocks on a passenger deck, d) A modified SPOT
GPS Messenger with a battery and a charger in the cockpit of a river boat, €) Passengers ready to go
ashore at the harbor of Yurimaguas, f) A small cargo ship at the Marafion River. Photographs ©
Tenkanen 2012.
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IV. DATA

4.1 Data sources

The data of this study includes both primary and secondary data sources (see Table 2).
The most important primary data source is the GPS-information of the entities (vessels)
derived from the pilot observation system. Also the reference data that describes the
river network (see 111) has a vital part regarding to all of the analysis made in this study.
Secondary data sources include datasets that are used for visualizations and river
classification that is used to analyze the significance of river geometry to movement
patterns.

Table 2. Data sources of the study.

Data Source Data collection time
Primary data Spatial/temporal GPS-data from AROS 01.01.2012-31.12.2012

information of vessels

River geometry GPS- data from AROS 01.08.2011-

Validation data GPS-measurements on the field 08.10.2012-26.10.2012 /
Secondary data
and spatial datasets ~ Water level statistics ~ SEHINAV (2013) 01.01.2012-31.12.2012

River classification Puhakka et al. (2009); GOREL
(2006a); Toivonen et al. (2007)

River network GPS-measurements on the field, 01.01.2012-31.12.2012

IIAP/Biodamaz (Biodamaz 2004a,
2004b, Josse et al. 2007)

Roads GOREL (2006h)
Administrative GOREL (2006c)
borders

Populated places GOREL (2006c)

The dataset utilized in this thesis consists of 11 572 observations that were collected
with 5 different devices during the year 2012. Altogether 14 332 observations were
collected with AROS (7 devices) but two of these devices are not used for this study
because the data coverage of those devices were low. These two vessels (with low data
coverage) are travelling from Iquitos to Saramiriza and thus, for the most of the time,
they share the same navigation path with two vessels that travels from Iquitos to
Yurimaguas. Parallel navigation paths of these two routes means that the lost
information from Iquitos-Saramiriza route is not significant according to my research

questions.
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The information about daily water level at the study area is provided by Servicio de
Hidrografia y Navegacion de la Amazonia (SEHINAV 2013). The water level is
measured from six different measurement points along the main Amazonian rivers but
in this study only four of them are used. The used measurement points are: Rio
Amazonas in lquitos, Rio Marafion in Nauta, Rio Ucayali in Pucallpa and Rio Huallaga

in Yurimaguas.

The secondary data sources include the spatial datasets provided by the Regional
Government of Loreto that include administrative borders and roads. River
classification is based on the study made by Toivonen et al. (2007) where they studied
the fluvial biogeography of the Peruvian Amazon with quantitative spatial analysis.

4.2 Data collection system AROS
The primary data used in this study is based on a pilot data collection system called
AROS (Amazonian Riverboat Observation System) that utilizes satellite messenger
system to obtain the location information of the vessels. The vessels that collaborate
with this study are large launches (lanchas) (see Figure 15) that operate long distance
journeys and have capacity for approximately 150-300 passengers (Tenkanen 2012) and
35-600 tonnes of cargo (Salonen et al. 2012a).

The developed data collection and monitoring system resembles the automatic
identification system (AIS) that is used in maritime vessel tracking and it was developed
because in the Peruvian Amazon this kind of expensive tracking system is not used.
These low cost satellite messengers (approx. 100€ each) enable to determine the
location of the device by GPS satellite system and to send its location information via
communication satellites to a database. The tracking of the vessels is based on the
devices provided by SPOT LLC® (2013) that are originally developed for outdoor
activities (hiking etc.) but related to this study these devices are applied to continuously

track the moving vessels along the rivers of Peruvian Amazon.

In the data collection system (see Figure 16) altogether seven satellite messengers are
utilized on different boats that send their location information every 10 minutes (at best)
to the service provider’s database (Spot). From the service provider’s database the data
is collected automatically to MySQL database that is located on the server at the

University of Helsinki. The purpose of MySQL database is to preserve the data since
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SPOT does not provide long-term storage of data for the users and the location
information is always cleared from the service provider’s database after seven days.

From the MySQL database the data is further obtained for the knowledge discovery
process (see part V).

Real time location information

Name-ID
Coordinates
Timestamp

Status

Service
provider’s
database

MySQL

database
(Univ. of Helsinki)

> | -CSV » | KNOWLEDGE
- Entity id file DISCOVERY

- Coordinates

Figure 16. Concept of the pilot data collection system that utilizes GPS satellite messenger that is able to
both receive and send location information.

The satellite messengers work normally with 2 x 1.5V lithium batteries that provides the
battery life for 14 days but since the purpose of this tracking system is to continuously
track the vessels for longer periods, these devices were modified in a way that they can

utilize 12V battery that can be charged during the nights when there is electricity
available on the boats (see Figure 17).
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Figure 17. In the pilot project modified SPOT Satellite Messengers are used to deliver location
information. Photograph © Tenkanen 2012.

These modifications minimize the maintenance work of the devices since there is no
need to change the batteries every two weeks and prevent also possible interruptions of

tracking that are caused by exhausted batteries.

4.3 Data structure
The GPS observations derived from the SPOT satellite system are stored in a local
database at the University of Helsinki and they are retrieved via a XML-feed service
provided by SPOT. There were altogether nine different vessels collecting the data
during the year of 2012. However there were only five collaborating vessels that are
taken into account in this study until the end of September 2012 because of the poor
data quality and coverage by other GPS-devices. Since October 2012 there have been
altogether seven devices collecting the data and from October to the end of year 2012

all of the observations were taken into account in this study.

The structure of the GPS-data is fairly simple (see Table 3) and it consists of entity ID,
latitude and longitude coordinates, timestamp, Unix time and message type
(test/tracking). Unix time represents the time (seconds) elapsed since the midnight
Coordinated Universal Time (UTC) 1.1.1970 which is currently the primary time
standard (ITU 2002). Unlike many GPS-devices SPOT system does not provide any

supplementary information about speed, direction, altitude etc. and therefore these
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information is derived from the data itself and from other data sources by calculating
(see 5.7).

Table 3. Example of the data structure of GPS -waypoint.

id lat lon timestamp Unix time messagetype
Boatl | -6.08115 | -75.0966 | 2012-01-02T17:20:28.000Z | 1325542828 TRACK

Boatl | -6.07864 | -75.2855 | 2012-01-02T17:36:12.000Z | 1325543351 TRACK
Boatl | -6.07722 | -75.2935 | 2012-01-02T17:48:27.000Z | 1325545273 TRACK

Boat2 | -7.22510 | -73.2645 | 2012-01-06T00:44:38.000Z | 1325552334 TRACK

Boat2 | -7.22644 | -73.2519 | 2012-01-06T00:56:11.000Z | 1325552511 TRACK

4.4 Reference / training dataset
The data mining processes of TRAT are based on the characteristics of a movement
itself and the values of reference data. Reference data consist of digitalized river routes
along Amazonian rivers which have river characteristics as supplementary data.
Reference dataset was digitized based on observed GPS-points of the vessels which
provide better locational accuracy of the actual navigation routes than relying on

satellite pictures or maps of the area.

Routes consist of reference points that are separated from each other by the distance of
1 kilometer along the river. The distance between reference points was chosen because
the constant unit of 1 (km) is easy to comprehend and apply to different analyses and it
is adequate enough to separate the observations from each other. Each point has
supplementary data that describes the point itself (id-number), position value of selected
point related to Iquitos (distance in kilometers) and values that characterize the river at

the selected location (see Figure 18).
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Figure 18. Reference point dataset.

4.5 Validation data
For assessing the quality of AROS as a data source and TRAT as an analysis tool, field
measurements were made at the study area during the autumn of 2012. These field
measurements were conducted by travelling the routes from Iquitos to Yurimaguas
(11.10. — 14.10.2012) and lquitos to Pucallpa (20.10. — 24.10.2012) with the same
vessels that collaborates with our research group and collecting data simultaneously
with AROS (SPOT satellite messengers) and Garmin GPS-device (Garmin GPSmap62)
with high sample rate (1 obs./min). GPS-device had spatial accuracy less than 10 meters

constantly.
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V. METHODS

5.1 Softwares

This study utilizes Open Source software called Muste (Sund 2011) which is a package
built for R. Muste is having it roots on a Finish statistical software called SURVQO®
(Mustonen 1992) and while it is basically a package of R, it is also an independent
software with its own user interface and many functionalities that R does not offer.
Muste together with few R functionalities was used as a platform for automatizing the
data management and data mining process. Representations of the data with different
visualizations were mainly conducted with R. 2D maps were mainly produced with
ArcGIS® (ESRI Inc. 2010) and CoreDRAW Graphics Suite X5® while the 3D maps
representing the trajectories were produced with open source GIS-software uDig® (uDig
2011) with STC-plugin developed by ITC (University of Twente).

5.2 Trajectory reconstruction and analysis tool
Trajectory Reconstruction and Analysis Tool (TRAT) is a specific tool designed to
manage and analyze automatically the GPS information obtained from the SPOT GPS-
tracking system (ARQOS). The reason for developing this kind of data management and
analysis tool is purely practical since the amount of data is large and growing
continuously, thus processing the voluminous data manually would be extremely time
consuming and vulnerable for errors. This study addresses the principles of Open
Knowledge Foundation (2013), thus the whole code for TRAT will be later publicly

available via Accessibility Research Group (2013) website.

The main features of TRAT:

Options for selecting, sorting and grouping the data based on:
o Time of interest (time interval / weekday)
o Boat/ route of interest
o Place/ river of interest
= |dentification of an individual journey
= Calculation of travel speeds of the vessels
o Travel speed for each segment
o Auverage travel speed for each journey
= Travel time calculations
o Total travel time from harbor to harbor
o Travel time from selected place to destination of the journey
= Data quality calculations
o Data coverage — percentage of tracked distance from the whole journey
o Observation density
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Figure 19 represents all analytical processes of TRAT as a flowchart. Work phases are
divided into separate sections which illustrates tool’s relation to geographic knowledge

discovery and mobility data mining.

5.3 Data preparation
Before any calculations or analysis the data needs to be prepared which is the first task
of the TRAT. In this process the algorithm cleans the data from observations that have
any null values and reshapes the timestamp into the standard combined date and time
form in UTC (2012-01-30T15:00:00.000Z) (1SO 8601 2004).

The time information of the GPS data is represented in Greenwich Mean Time (GMT 0)
and therefore this needs to be converted into the Peruvian time zone (GMT -5). This is
done by utilizing the as.POSIX* functions in R that are used for calendar date and time
representations and manipulations (R documentation 2013).

After these procedures the data can be filtered and sampled by options listed in chapter
5.2 and thus is ready for further analysis.

5.4 Data enrichment with ancillary data
The analytical processes used in TRAT are primarily based on reference dataset (see 4.4)
that includes information of the transportation network and different ancillary
information that are collected from different data sources and then added as attribute
data to the reference points. Enriching the AROS dataset with the information of
reference dataset is done by joining them spatially together (see Figure 20 and
Appendix 1) enables further processing and analyzing of the data and is therefore crucial

part of the developed analysis tool.
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Figure 20. The concept of spatial join between a GPS-waypoint and the closest reference point.

5.5 Direction identification
The direction of movement is based on the network characteristics of the reference
dataset (position value). Since every reference point has a unique id-number ascending
from lquitos towards the destinations, it is possible to determine the direction of the
observation pair. Observation pair consists of two consecutive observations that have
information about location and time. Because of the nature of river network, it is
especially easy to determine the movement direction since the navigation direction that

this study is interested in can be either up- or downstream.

Determining the main direction of a trajectory is more complicated since the direction
of movement is not necessarily consistent during the whole trajectory. The main
direction of a whole journey is based on the dominant direction of a trajectory where it
is possible to have a few arcs that goes to opposite direction without the algorithm to
change the main direction of a trajectory (scanning is based on the dominant direction

of 20 observations).

5.6 Classification of individual journey — Trajectory reconstruction
Analysis of spatio-temporal movement patterns of the vessels requires accurate
identification of individual journeys of the vessels. In this study a single journey (or a

trajectory) indicates a trip that runs between the harbor of Iquitos and one of the
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destination harbors of Pucallpa and Yurimaguas. The journey can go either upstream or
downstream depending on the destination.

For the identification of a single journey we can make two assumptions according how
the device is tracking:

1. The device is tracking continuously without pauses in the data.
2. The device is tracking only when the vessel is moving.

Depending on the tracking mode the identification algorithm of a journey is different.
Depending on the tracking mode it is necessary to have different “triggers” that enables
the identification process (see Appendix Il for the algorithm). These triggers that enable

to delineate a journey include:

= Comparison of the direction of movement
= Observation of stationary time (in the harbors)
= Observation of tracking pauses in the data

= Temporal gap between observations gapsime
= Spatial gap between observations gapspace
= Tolerance distance Dy,

1) When the device is tracking continuously the identification process is based on the
first two triggers. Based on the nature of river network transportation we can assume
that when the vessel has reached its final destination it will presumably change its
course to opposite direction which can therefore be used for separating a journey from
another. The observation of the stationary time is another way to separate a journey
because we can assume that when the vessel is certain amount of time at the same
location we can assume that the vessel is at the harbor and that indicates the end of that

individual journey.

2) When the device is tracking only when the vessel is moving it is possible to find
these untracked gaps from the data based on the time information. We can assume that
when the GPS-device is not tracking for a certain amount of time it means that the

vessel is at the harbor and that indicates the end of that individual journey.

Achieving the most reliable algorithm for journey identification these two different

methods are joined in the same algorithm and thus the result is not dependent of the
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tracking mode of the device. This makes the identification algorithm suitable also for
other applications that relate to network based GPS location information.

To be able to correctly identify an individual journey it is necessary to calibrate the
algorithm based on movement patterns of the vessels. For calibrating the algorithm
parameters it IS necessary to decide what is the 1) stationary time limit and 2)
untracking time limit for the algorithm to separate an individual journey from the data
mass. To find the best parameters for the algorithms it is good to have some preliminary
information about the movement patterns of the vessels or at least do some preliminary
analysis of the data to get a picture of the transportation patterns. In this study the
chosen time limit is 36 hours which proved to be optimal time for effectively detect
individual journey from another after testing.

The journey identification concept is demonstrated in Figure 21 with space time cubes
where the lines represents spatially and temporally connected observations. In the start
situation (left cube) all of the observations are connected together with straight lines and
they form unorganized set of spatio-temporal lines where there is no information about
when or where the individual journey ends or starts. Represented algorithm identifies
and indicates the individual journeys with so called JourneylD, and as a result the
space-time paths are classified into separate trajectories represented with different
colors in the end situation (right cube). Here the temporal and spatial links are applied

only to those observations which are identified to belong on the same journey.

Start situation End situation

Journey
identification

»
>

Time (t) / TEX

y

/5,

Figure 21. Space time cubes representing the journey identification process. Left space time cube
represents the start situation of the data where all the observations are linked together both spatially and
temporally. Right space time cube represents the results of the journey identification where individual
journeys are identified as separate trajectories.
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5.7 Travel speed calculation
The speed of an object is traditionally defined in physics as the magnitude of its velocity.
In other words it is the rate of change of the objects position (Wilson 1901). An average
speed of an object is defined as the total distance covered over the given amount of time.

In this study the travel speed is calculated for each segment that consists of two points
including information about temporal and spatial distances between those observations.
Temporal information is derived directly from the AROS data as timestamp and Unix
time. Network distance between observations is derived by obtaining the route positions
of the two consecutive points along the navigation path by spatially joining them with
reference dataset (see 5.4), and then calculating the (network) distance between
observations (abs(observation,.observationy)). Average travel speed is calculated based

on evolving journey characteristics, i.e. cumulative travel distance and time:

point point
Segment= @.....cceenee.. b
|
Segment
Distance

Travel Speed = ——— € Segment
Time

Cumulative distance

Average Speed =

Cumulative time

Normally the average travel speed of a full journey is calculated by dividing the covered

total distance by the total amount of time used for a journey:

Total distance

Average travel speed of a journey = € JourneyID kO,l...n

Total time

This formula however does not characterize the movements of the vessel particularly
accurately since the elapsed time includes also the time when the vessel has not been
moving. This formula describes more the average evolution of a journey instead of the
characteristics of movement itself. Therefore it is necessary to cut out the stationary

time when the vessel is not moving of the elapsed time:

Average travel speed of  — Total distance

a journey (movement) " Total time—Stationary Time

€ JourneyID k0,1...n
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The average travel speed is calculated for each observation belonging to a same journey
and therefore it is possible to gain information not only about the average travel speed
of a whole journey but also how the travel speed has varied during the journey.

5.8 Total travel time calculation
Even though the average speed might be more accurate way to study how the seasonal
dynamics (water level variation) affect the transportation in the Amazonian area, it
could also be interesting and sensible to study how the travel times varies in different
times of the year between origin and destination harbors.

Total travel time is simply calculated by subtracting the time at the origin harbor (to)
from the time at the destination harbor (tenq):

Total travel time = teng —to

5.9 Time distance calculation
In TRAT two different approaches are applied for time distance calculations. The first
approach is to calculate the time distance based on the information of arrival time at the
destination harbor and then compare this to the time at the selected point. The
calculation formula is therefore similar to total travel time calculation but the start

location (to) varies according to the selected location (tyos).
Time distance to harbory = teng — tpes € JourneyID

This type of approach gives an accurate result of the time distance from selected points
to destinations but it requires that the data is already obtained throughout the whole
journey. Thus this approach cannot be used for modeling the estimate arrival time to the

harbor while the journey is still in progress.

Therefore another approach is used for estimating the time distance to the harbors when
only incomplete information about the journey is available. The time distance from
selected location to the harbors is calculated by dividing the distance to the harbor by

average travel speed that has been evolved since the beginning of the current journey.

Distance to harbor

Time distance estimate to harbory = € JourneylD

Cumulative Average speed
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The time distances are calculated only to the harbors that belongs to the route of the
selected vessel. For example, the time distances will be calculated only to the harbors
along Ucayali when a vessel is travelling from Iquitos to Pucallpa. The time distance is
calculated to both directions so that the time distance towards the origin harbor
represents basically the same value as total travel time at selected location. However the
time distance towards destination harbor represents an estimate of the remaining travel
time to the destination based on the travel speed information obtained from the passed
journey. Therefore the accuracy of the time distance estimate towards the destination
improves as the distance to the destination decreases and is at lowest when the journey
begins.

5.10 Sinuosity index calculation
Sinuosity index is one of the basic measures describing the river geometry. Sinuosity
index describes basically how much river meanders along its path and is therefore a
good measure to get an idea of the river’s nature, if it iS an anastomosing river or a

meandering river. Sinuosity index is calculated by dividing the network path length by
Euclidian distance (see Figure 22).
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Figure 22. The concept of sinuosity index calculations.
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The intensity of the sinuosity index depends on the Euclidian distance. The shorter the
Euclidian distance the more local are the values of the sinuosity index. Therefore the
appropriate Euclidian distance depends on the river and the purpose of the study or how
localized measures you want. In this study the Euclidian distances of 10 kilometers and
5 kilometers was tested and based on these tests 10 km was chosen which proved to be
local enough to get variation to the results along the river but not too short to loose
information about the river geometry.

5.11 Data smoothing and filtering

Movement data and characteristics of any type of MPO (such as vehicle, animal or
human) is typically highly deviated and extremely “noisy” thus making it difficult to
reveal any clear patterns from the “raw” movement characteristics. For gaining better
understanding of the movement data it is useful and often necessary to filter and smooth
the data with specific methods (see Figure 23). In order to smooth raw GPS data several
methods can be employed, such as least squares, spline approximation, moving average,
kernel-based smoothing, and Kalman filtering (Dodge et al. 2009).

RAW MOVEMENT DATA SMOOTHED / FILTERED MOVEMENT DATA

Figure 23. Concept of smoothing the movement data with intensive smoothing.

TRAT utilizes a specific moving average smoothing technique (see Figure 24) to
harmonize the data in a way that it becomes more comprehensible. Moving average
smoothing can be done with different window sizes that defines how many observations
(or more commonly time intervals) are taken into account when calculating the average
value. In TRAT the window sizes of 3 and 9 observations are used since they proved to

work well for smoothing the data without significant loss of movement characteristics.
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Smoothing that is based on consecutive observations rather than time intervals was used
since the temporal observation density of ARQOS is quite irregular.

Window size 3
Calculated
‘alue
| Dbservation id

-1 1
Moving average = t?f
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Figure 24. Moving average smoothing based on neighboring observations.

5.12 Assessment of AROS data and TRAT
The data used in this study has errors caused by different factors (see 7.4 for details).
Therefore different data quality indices are calculated for enabling to evaluate the

significance of the errors when representing the results.

The accuracy of travel speed calculations depends on the density of the observations. If
the data is sparsely distributed along the route, a lot of information is lost between the
observed locations and the average travel speed calculations become less representative.
For example if the time interval between two observations is several hours the
probability that there has been an unrecorded stop gets higher. This causes that the
average speed calculated for this segment does not represent the actual movement since

also the time that passed during the stop is taken into account.

To evaluate the quality of travel speed calculations an index that describes the
observation density of a journey is calculated based on the distances between the

observations:
Observation density = Mean(}’ Position, - Positiony) € RoutelD ko1 5

Related to the average travel speed calculations (see 5.7), it is important to know the
proportion of tracked route compared to the whole route from origin harbor to the

destination. The results are most accurate when the lost route length is
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at a minimum. This is calculated by dividing the total tracked length by total length of
the selected route:

Tracked path length

Proportion of tracked route = € RoutelD Ko 1. n

Total path length

In addition to quantification of the quality of individual journeys, also assessing the
quality of AROS as a whole is done by comparing the data to simultaneous in-situ GPS-
measurements made on the field with high sample rate (see 4.5). Assessment is done by
comparing the topologies of the two datasets, and searching significant gaps in the
tracking data (by visual exploration with geovisual analytics). In addition to topological
differences between trajectories and in-situ measurements, also the travel speed
calculations are assessed by comparing the two datasets together. Evaluating the
accuracy of the developed GKD tool (TRAT) is conducted by visually assessing the
accuracy of journey detection and identification of the vessel’s navigation direction
(upstream / downstream) by utilizing interactive 3D-visualization (geovisual analytics)

of trajectories with uDig software.
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VI. RESULTS

6.1 Travel speed of individual journeys and their relation to river heights
Figure 25 and Figure 28 represent the characteristics of average travel speed of
individual journeys as radar plot diagrams separated by navigation directions. The
directional axis (0-360°) represents time and the length of the red and black lines
represent the average travel speed and trajectory quality (see 5.11) of a single journey.
The direction or time angle of the line that represents the result is calculated for a full
year with following formula:

Time

266 ¢ 360

Angle =

The time is divided by the number of days in the year 2012 (366 days) and then
multiplied by the degrees of a full circle (single day = 0.98°). Daily water levels are
represented with blue polygon in the middle of the diagram as a measure of difference

from year’s average water level (white ring).

Altogether there are 65 individual journeys detected from the dataset with good tracking
quality and represented in Figure 25 and Figure 28. By looking at the temporal
distribution of the journeys, it can be seen that the vessels have been moving fairly
regularly throughout the year, i.e. having at least one travelled journey per
month/direction. However, there have been periods between October to November on
Iquitos-Pucallpa route (IQT-PUC) and January to February on Iquitos-Yurimaguas

route (IQT-YUR) when there are no observations.

From the radar plots (Figures 25 and 26, pages 49 & 50) it is possible to see that the
downstream navigation seems to be altogether faster (mostly between 15-17 km/h) than
upstream navigation where travel speeds are mostly below 14 km/h. When looking at
the IQT-PUC route (Figure 25) it seems that the travel speed patterns has strong
correlation (R=0.8553) with water levels (light blue polygon) on downstream navigation,
i.e. when the water level is high the travel speed is high and vice versa. Fitting simple
regression model (y=a+p«+€) between variables (dependent=speed, predictor=river
height) reveals that river height of Ucayali explains over 73% (R?=0.7315) of the
variance of travel speed which is considerably high. When travelled upstream the travel

speed pattern seems to be more stable, i.e. there is less variation between travel speeds.
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There seems to be some evidence that the travel speeds are slower when water levels are
high and vice versa (upstream) but the correlation and explanatory power between water
level and travel speed is low (R=0.2433, R?*=0.0592) which indicates that there is no
statistical relation between the variables.

AVERAGE SPEED OF THE JOURNEYS WITH QUALITY ASSESSMENT VS. WATER LEVEL - YEAR 2012

DOWNSTREAM UPSTREAM
2_ Jan 2_
R"=0.73 R"=0.06 5

Jan

mmmm Average speed (km/h)
Jul = Trajectory quality - Proportion of observed journey Jul
[ Ucayali - Water level (meters)

x_g_l Mean Water level

7 = = = = Min/Max Water level

me
IQUITOS-PUCALLPA

Figure 25. lquitos-Pucallpa. Radar plot representing the average speeds of individual journeys vs. water
level and their R? values from linear regression (y=speed, p=water level).

On Ilquitos-Yurimaguas route (IQT-YUR) (Figure 26) the connection between water
level and travel speed is altogether not as clear as on IQT-PUC route. Visually it seems
that the travel speeds are lower during low water (August-October) than on other
months when travelled downstream but statistically there seems to be no connection
between water level and travel speed (R=0.2579, R’=0.0665). The results of upstream
navigation are quite similar, i.e. there seems to be no connection between travel speed
and water level (R=0.2752, R?=0.0757). The results could be more representative and

better if there would be more tracked journeys during the high water (January-February).
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AVERAGE SPEED OF THE JOURNEYS WITH QUALITY ASSESSMENT VS. WATER LEVEL - YEAR 2012
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Figure 26. Iquitos-Yurimaguas. Radar plot representing the average speeds of individual journeys vs.

water level and their R? values from linear regression (y=speed, p=water level).

Altogether there seems to be clear connection between travel speed and water level only
on lquitos-Pucallpa route when travelled downstream. All of the other cases that were
studied did not have high correlation and the explanatory power of river height
according to travel speed was only around 6-8%. Figure 27 represents the residuals
from the linear regression where fitted value is in this case travel speed. Noteworthy
from the plots is exceptionally good fit of model on higher travel speeds of Iquitos-
Pucallpa route when travelled downstream which is evident also in Figure 25 and

explains the high R?value of the case.

When looking at the trajectory quality (black lines within red lines) it seems that the
results are fairly representative since the percentage of tracked journey (total path length)
are clearly over 50% for almost all of the journeys (2 exceptions) and mostly the

tracked-journey percentage is higher than 90% which indicates good representativeness.
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Figure 27. Residual plots from simple linear regression model.

6.2 Seasonal and directional travel speeds
Figure 28 and Figure 29 represent the seasonal movement characteristics of the vessels
along the navigation routes where route position indicates the network distance from the
city of lquitos. Also additional information about populated places is included in the
graph. Seasons have been separated into three classes (high water, low water and
intermediate) mainly based on actual river height information (see Table 4 and Table 5
for chosen time periods) provided by SEHINAV (2013). Also information (see
Appendix I11) about the typical river stages at the Peruvian Amazon was used to guide
and validate the decisions. Directional average (purple dashed line) indicates the
average travel speed of all observations (regardless of the season) allocated for each

route position.
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Figure 28. Movement profiles of Iquitos-Pucallpa route representing the seasonal travel speed dynamics.
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Figure 29. Movement profiles of Iquitos-Yurimaguas route representing the seasonal travel speed
dynamics.

From Figure 28 and Figure 29 the obvious conclusion is that the travel speed varies in
different parts of the river. The effect of populated places on travel speed patterns is
evident and the travel speed clearly decelerates near the cities and larger rural
communities. There are also areas where travel speed is clearly higher than generally
(e.g. between route positions 170-220 on Figure 28). Both routes have more variation in
travel speeds when travelled downstream. Comparing the routes together suggests that
the navigation is altogether more stable on shorter IQT-YUR route with less variation
compared to 1QT-PUC route.
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Table 4. Iquitos-Pucallpa
navigation direction.

. Seasonal travel speed characteristics and comparison between seasons and

. . # Tracked journeys / Average travel Standard .. .
Season Time period observations speed (km/h) deviation (km/h) Minimum (km/h) | Maximum (km/h)
Down Up Down Up Down Up Down Up Down Up
Highwater | Jan1-Apr30 | 5/733 6/950 17.5 12.0 0.3 1.2 17.1 10.0 18.0 13.8
) May 1-Jun 30,
Intermediate Nov 16-Dec 31 6/922 8/1709 | 15.8 11.1 1.2 2.2 14.0 7.5 17.1 13.8
Low water | Jul16-Nov15 | 4/822 5/812 13.4 13.2 1.7 1.2 10.8 10.9 14.9 14.2
Seasonal difference of Directional difference of average speed
average speed (Downstream navigation vs. upstream)
Season km/h Percentage Season km/h Percentage
Down Up Down Up High water 5.5 +45.8 %
High vs. Low water 4.1 -1.2 +30.6 % -9.1% Intermediate 4.7 +42.3 %
High water vs. 17 09 | +108% | +8.1% Low water 0.2 +1.5%
Intermediate
Intermediate vs. Low
2.4 -2.1 +17.9% -15.9%
water
Table 5. Iquitos-Yurimaguas. Seasonal travel speed characteristics and comparison between seasons and
navigation direction.
s Ti iod # Tracked journeys / Average travel | Standard deviation Minimum Maximum
eason ime perlo observations speed (km/h) (km/h) (km/h) (km/h)
Down Up Down Up Down Up Down Up Down Up
High water | Jan1-May15 | 4 /479 5/661 15.7 12.7 1.1 1.3 14.0 10.2 16.9 14.1
) May 16-Jul 15,
Intermediate Nov 16-Dec 31 4/1035 4/1433| 159 13.5 0.8 0.7 14.7 12.4 16.7 14.5
Low water | Jul16-Nov15| 7/886 7/1130 | 15.4 12.5 0.7 2.5 14.6 6.4 16.4 13.9
Seasonal difference of Directional difference of average speed
average speed (Downstream navigation vs. upstream)
Season km/h Percentage Season km /h Percentage
Down Up Down Up High water 3 +23.6 %
High vs. Low water 0.3 0.2 +1.9% +1.6 % Intermediate 2.4 +17.8 %
High water vs. -0.2 -0.8 -13% | -5.9% Low water 2.9 +23.2%
Intermediate
Intermediate vs. Low 0.5 1.0 +3.2% +8.0 %

Table 4 and Table 5 represent the seasonal travel speed characteristics among the

navigation

routes

by

seasonal

classes

and

by

navigation

directions

(upstream/downstream) and comparisons between these variables. Differences between

seasons were calculated by subtracting the average travel speed from another (e.g. high

water — low water) and then calculating the percentage that represents how much faster

(or slower) the first season is from the second. The seasonal directional differences
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indicates how much faster it is to navigate downstream compared to upstream

navigation.

Results show that the tracked journeys have been quite evenly distributed among
classified seasons and navigation directions, which is important related to
representativeness of the results. The number of individual tracked journeys ranges
from 4-8 between season/direction.

When looking at the seasonal average travel speeds (also visually present in Figure 28
and Figure 29) of IQT-PUC route, the results suggest that there is clear difference
between seasons. When travelled downstream the results suggest that it is fastest to
navigate during high water (17.5 km/h) and slowest during low water (13.4 km/h).
Difference between seasons on downstream direction is approximately 30%. When
travelled upstream the situation changes thus being fastest to navigate during low water
(13.2 km/h) and slowest during intermediate (11.1 km/h). Difference between seasons
when travelled upstream is 15%. Results also suggest that during low water it is equally

fast to navigate upstream and downstream.

When looking at Iquitos-Yurimaguas route it is evident that the differences between
seasons are significantly smaller compared to Iquitos-Pucallpa route. When travelled
downstream the average speed ranges from 15.4 km/h to 15.9 km/h and on upstream
direction from 12.5 km/h to 13.5 km/h. Percentual difference between seasons is mostly
below 5% and the highest difference is 8%. These results therefore suggest there is no
seasonal difference according to travel speed on IQT-YUR route. However directional
difference of average travel speeds is evident and it seems to be approximately 20%

faster to travel downstream compared to upstream navigation.

Comparing the routes (IQT-PUC and IQT-YUR) together suggests that the navigation is
altogether more stable on shorter Iquitos-Yurimaguas route which suggests that the
larger anastomosing rivers (Amazonas, Marafion) are more stable and easier to navigate

compared to narrower and meandering river of Ucayali.

6.3 Spatio-temporal examination of river navigation at Peruvian
Amazon
Figure 30 and Figure 31 illustrate the previous results in spatio-temporal context

showing how far it is possible to reach within certain temporal constraints along the
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navigation route from selected cities when travelled upstream or downstream (i.e.
accessibility). The chosen time constraints are 6 and 12 hours and the selected cities are
Requefia and Lagunas. It should be noticed that these results are based on movement
characteristics only, i.e. these results do not take into account the stationary time that is
spent at the harbors during the journeys when loading cargo or taking aboard passengers.
Network distances were calculated based on seasonal average travel speed information
on both navigation directions:

Network distance from the city = (Average travel speed & season & direction) * time
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Figure 30. An accessibility map representing how far it is possible to reach from the city of Requefia in 6
and 12 hours.

Figure 30 represents a map of reachable distances from the city of Requefia which is
situated along the lquitos-Pucallpa route 244km upstream from Iquitos. The directional
difference is clearly visible on the map as the downstream navigation reaches 210

kilometers at best when upstream navigation reaches only 158 kilometers in 12 hours.
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Differences between seasons are also clearly visible especially when travelled

downstream.

Results suggest that it is nearly possible to reach the city of Iquitos in 12 hours from
Requefia during the high water as the remaining distance is only 34 km (2 hours of
travel). Comparing this to low water navigation shows that the absolute distance and
time distance are clearly higher - the remaining distance to Iquitos is 83 kilometers

which means 6 hours of travel during the low water.

Seasonal differences are not as evident when travelled upstream. However since the
distances are long, even these smaller differences becomes relevant. Reaching the city
of Pucallpa which is 876 kilometers upstream from Requefia takes 66 hours (2.75 days)
during low water (fastest) and 79 hours (3.3 days) intermediate (slowest).
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Figure 31. An accessibility map representing how far it is possible to reach from the city of Lagunas in 6
and 12 hours.

Figure 31 represents a map of reachable distances (accessibility) from the city of
Lagunas which is situated along the Iquitos-Yurimaguas route 183km downstream from

Yurimaguas. Map reveals how small the differences are between seasons since the lines
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that indicate reachable distances are overall highly clustered. Also the difference

between navigation directions is less obvious compared to Iquitos-Pucallpa route.

Results suggest that it is almost possible to reach Yurimaguas within 12 hours on all
seasons as remaining distance is between 21 to 33 kilometers and the remaining travel
time is approximately 1.5 hours (93-100 minutes). Reaching the city of Iquitos (496 km
downstream) from Lagunas takes approximately 32 hours (1.3 days) during all seasons.

6.4 Effect of sinuosity to travel speeds
Figure 32 represents aggregated travel speed characteristics during high water (red lines)
and low water (turquoise lines) against rate of sinuosity of the river (blue dashed lines)
on the route Iquitos-Pucallpa (IQT-PUC) which was chosen because it has more
variation in travel speed characteristics (see Figure 28 and Figure 29). X-axis represents
the route positions, y-axis on the left side represents the travel speed characteristics, and
y-axis on the right side represents the rate of sinuosity.

Because the interest is now on studying how the sinuosity affects the travel speed
characteristics along the navigation routes, the actual travel speed information (that
varies between seasons) was standardized to fit the same scale where average speed of
individual journey represents O-line. Travel speeds have been standardized by
transforming the navigation speeds of segments (see 2.3.5 and 5.7) belonging to
individual journey in a way that they represent the difference from calculated average

speed of that journey:

Difference from average speed (km/h) = Travel speed of segment — Average travel speed €

JourneyID kg

In addition, the movement characteristics of the journeys were classified into two
classes (high water and low water, see Table 4. Iquitos-Pucallpa. Seasonal travel speed
characteristics and comparison between seasons and navigation direction.) to find out if there is
differences between seasonal opposites. Movement data is noisy, therefore removing
this noise was done by aggregating the seasonal classes into single lines in a way that
travel speed on each route position represents the average speed of all the observations
of different journeys associated to that position, and then smoothing the data by
calculating moving average values with window size 3 that gently reduced the noise but

maintained the movement characteristics (see 5.11 for details).
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Figure 32. Comparison of sinuosity index and travel speed characteristics on lquitos-Pucallpa route.

Graphs a) and b) represent results during high water, and graphs c) and d) during low water.

Sinuosity index value 1 indicates straight line (i.e. Network distance = Euclidian

distance) and higher values indicate how much longer the network distance is compared
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to Euclidian distance, i.e. sinuosity index 2 means that the network distance between
two locations is two times longer than the Euclidian distance (see 5.10 for more details).

Results (Figure 32) suggest that there seems to be some connection between sinuosity
and travel speed characteristics observed with AROS but only at specific areas. In the
results are present only observations that had travel speed higher than 5 km/h which was
done (before aggregations) to remove the effect of harbors and populated places (larger
villages etc.) to the travel speeds. However, as can be seen from the results this
procedure did not work as wanted because near populated places (shown as gray
rectangulars and circles at the bottom of the graph) the travel speeds are commonly
much lower than would be assumed by the sinuosity index of those areas. This is
probably caused by low sample rate of AROS that does not enable to achieve such
spatially detailed analysis.

Luckily, the highest sinuosity index value is on the area (approximately 570-590 km
from Iquitos) where there are no populated places in the surrounding areas (highlighted
with yellow box on the right on each graph), and thus concentrating at this particular
area allows making few conclusion with some confidence related to the connection
between sinuosity and movement characteristics. There indeed seems to be some
connection between the factors especially during high water (graphs a and b) when
travel speed starts to move well below average near the areas where sinuosity index is
high. This effect can be seen on both navigation directions but more clearly when
travelling downstream. When comparing the results of the same locations during low
water (graphs ¢ and d), it seems that the sinuosity of river has no effect on movement

characteristics which is interesting.

There is also another interesting stretch of navigation path near Iquitos (approximately
route positions 100-200) where the effect of populated places is lower, sinuosity index
is low, and there seems to be similar patterns during high water and low water
(highlighted with yellow boxes on the left side of the graphs). When travelling upstream
(graphs b and d) there are two peaks where travel speeds are higher than average, which
is expected on low sinuosity, but there seems to exists some smaller village at route
position 160 (approx.) where vessels are stopping since the travel speeds always drop
near that location. There also seems to be clear difference between navigation directions

on this area: when travelling upstream the navigation speeds are higher than average,
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and vice versa when travelling downstream. Intuitively the assumption is that the
navigation speeds are higher when travelling downstream but in this case the results
indicate the opposite which is interesting and possibly indicates something about
directional differences in local transportation (i.e. more stops when travelling

downstream).

61



62



VIlI. DISCUSSION & CONCLUSIONS

7.1 Technical assessment — Evaluation of topology
Figure 33 represents the topological comparison between AROS (blue line) and the high
sample rate GPS-measurements made with Garmin. Some of the notable topological
differences between datasets are highlighted with yellow circles. When looking at
Iquitos-Yurimaguas route (map a), it seems that altogether the topological accuracy of
AROS is quite good since there are no significant visible differences between AROS
and Garmin. Differences can be found only at the highly meandering parts of the river

where lower
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Figure 33. Topological comparison of AROS and in-situ GPS-measurements made at the field during
October 2012.
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sample rate of AROS (1 observation/10 minutes) causes ‘cut-offs’, i.e. some of the river

bendings are left unobserved with AROS.

When looking at the route Iquitos-Pucallpa (Figure 33b) it is evident that the topological
accuracy of AROS is not as good as when compared to IQT-YUR route. There are
similar and more significant cut-offs at the meandering parts of the river, and in addition
there is poor observation density at the beginning of the journey (near Iquitos) which
causes significant topological differences compared to Garmin GPS-measurements.
There is also lack of observations at the end of the journey, i.e. the last 39 km of the
journey was not recorded during the in-situ measurements because AROS GPS-device
went off at night during the measurements.

Journey evolution:

_{__1 I] Elapsed time
"‘"ﬂﬁll“ﬂ‘ ‘Il - ()

Onward cource {x,y)

Figure 34. Trajectory quality, as means of tracking continuity, can be assessed visually with the concept
of journey evolution that enables to reveal if there are gaps existing along the journeys.

Lack of observations and topological inaccuracies during the journeys illustrate typical
shortcomings of AROS. Figure 34 demonstrates a visual method utilizing geovisual
analytics to assess the trajectory quality of AROS with the concept of journey evolution.

During the year 2012 there were 48 recorded trajectories with good tracking continuity
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and 17 trajectories with moderate shortages in tracking continuity and 14 trajectories
with significant shortages in the tracking continuity.

7.2 Technical assessment — Accuracy of travel speed calculations

Figure 35 represents the travel speed comparisons between AROS data and in-situ
measurements where x-axis represent the route position (i.e. network distance from
Iquitos) and y-axis represents travel speed (km/h). Solid lines represent how the average
speed progresses during the journeys (see 5.7 for details). Dashed lines represent the
travel speed between consecutive observations (AROS) and the consecutive route
positions (Garmin). Accurate comparison of travel speeds between datasets along the
navigation routes were done by associating the observations with route positions (i.e.
reference points, see 4.4). Each Garmin-observation (1 obs./minute) is associated to the
nearest route position that are evenly distributed by 1km intervals along the travel routes,
and travel speed calculations were based on these aggregated (mean) observations
(approximately 3 observations / route position).
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Figure 35. Comparison of travel speed calculation results between AROS data and in-situ GPS-
measurements made with Garmin GPS-device.
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Results suggest that deviation of travel speeds (dashed lines) is higher with AROS
compared to more densely distributed Garmin observations. When comparing the
progression of average travel speed (solid lines), the results show that on Iquitos-
Yurimaguas-route the average speed values are almost identical between Garmin (10.72
km/h at destination) and AROS (10.48 km/h at destination). High similarity of average
travel speed calculations (2.3 % difference) indicates high accuracy of the results even
though the deviation of (individual) travel speeds (of ARQOS) is higher along the route.

However, on Iquitos-Pucallpa route (lower graph in Figure 35) the average travel speed
calculation of AROS (13.68 km/h at destination) differs notably from Garmin
measurements (11.66 km/h at destination) and the difference between datasets is 2 km/h
(17.3% difference). Average travel speeds are almost identical at the beginning of the
journey but approximately at route point 220 (km from Iquitos) the average travel speed
calculation of AROS separates from Garmin which suggests inaccuracies either in data
or in algorithms of TRAT. Closer look of the data reveals that there is indeed
inaccuracy in calculations because the spatial join between reference dataset and AROS
observation was incorrect thus causing the difference in average speed calculations (see
Figure 36). This critical assessment of travel speed calculations reveals that correct
spatial join is important for accurate results even though the differences between AROS

and in-situ measurements (Garmin) are not critical.
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Figure 36. Incorrect spatial join to reference dataset causes calculation errors.
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7.3 Technical assessment - Accuracy of journey and navigation direction
identification

Figure 38 (on page 68) represents the whole dataset used in this study as a 3D snapshot

picture. The interactive version of this visualization is used for conducting the technical

assessment.

Figure 37 Challenging situations for TRAT’s algorithm can be found at the beginning of the trajectories.

As can be seen from the Figure 38 the journey identification algorithm of TRAT seems
to be working correctly since all of the trajectories are nicely separated from each other
and there are no signs of “messy” or mixed trajectories. Also the accuracy of navigation

direction detection seems to be mainly accurate (assessed by interactive exploration).

However, occasionally there seems to be certain analytically challenging situations for
the algorithm at the beginning of the journeys when the navigation direction changes
(indicated with red/blue colors) which are highlighted with yellow circles in Figure 37.
In Figure 37a it seems that the two trajectories are connected together (i.e. problem with
journey identification) but checking this interactively with uDig confirms that
trajectories were however correctly separated from each other, i.e. they have separate
journeylDs. Figure 37b reveals that there seems to be some difficulties at the very
beginning of the journey to identify direction of movement which might be happening
on the first few observations because there are not enough observations for the

algorithm to accurately determine the principal navigation direction.
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Figure 38 Space-time cubes representing individual journeys at Peruvian Amazon identified with TRAT. Data was collected with AROS in year 2012.



7.4 Evaluation of the significance of errors
In the data there are three main sources of error caused by different factors. As Dodge et
al. (2009) mentions: the raw mobility data obtained with tracking devices contains
usually some degree of noise, gaps and outliers. The reconstruction accuracy of
trajectories and their level of spatial accuracy and temporal granularity
(seconds/minutes etc.) depends on the quality of the log entries (Giannotti & Pedreschi
2008). The most significant source of error related to the analytical accuracy of TRAT
is the missing data during the journey as was seen in Figure 34 (page 64). Other minor
sources that cause errors and thus affect the accuracy of results are the signal loss of the
GPS-devices causing position errors, and the errors caused by incorrect spatial join to
the reference data and position error in this process, and occasional position errors in the

reference dataset (see Figure 39).
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Figure 39. Positional error when joining to the reference dataset (on the left) and position errors in the
reference dataset where network distances differ from aspired 1km interval (on the right).

The satellite messengers optimally send their location information at every 10 minutes,
however, it is not uncommon to have sample rates lower than that which decreases the
data quality. The most significant data quality problems in this study are related to this
matter which causes observation gaps in the data. Usually observation gaps that are
longer than usual arise because the GPS-devices used are designed in a way that they
need to be reactivated every 24 hours. It is the responsibility of the crew of the ships to
take care that the device is reactivated regularly thus making it possible that the crew
sometimes forgets to reactivate the GPS which might cause even loss of several hours
of data.

Another matter that can effect on data quality is related to signal strength of GPS-
devices with satellites. A clear sky view is required to get accurate position information
with a GPS device (SPOT 2007) and since there might be e.g. trees blocking the sky,
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there might be errors in the data. The GPS-receivers used in this study are located in the
cockpit of the vessel with large windows which is normally at the highest part of the
boat. This usually provides good sky view and since the vessels are navigating along the
rivers there are usually no trees blocking the satellites. However the steel structure of
the ships might cause some problems with the signal and it is possible that some of the
observations are lost or the position information might be inaccurate because of the
weak signal.

The significance of the mentioned errors varies depending on the type of analysis used.
When analyzing the total travel time or average speed of a journey, it is basically
enough to have only two observed points (at the start and at the end of the route) to
calculate accurate average speed of that journey. But when analyzing how the
movement evolves during the journey, the accuracy of such an analysis depends on how

densely the observations are located.

It is important to acknowledge that the movements of the vessels along the rivers are
more foreseeable and regular compared to e.g. movements of cars along the road
network. The travel speed of the vessel is quite constant and much slower than cars, and
the navigation along the river is quite smooth since there is no traffic or restrictions in
the same way as in road networks. This slightly compensates the shortcomings of the
data.

7.5 Comparing AROS and TRAT to other studies and applications
Analysis of mobility data can be considered as ‘hot-topic’ right now and there are many
applications and studies where different kind of tools have been developed to analyze
the data from tracking devices. However there are not many studies that would focus on
developing methods for analyzing and visualizing the movements of vessels: Demsar &
Virrantaus (2010) took spatio-temporally oriented approach in their article by analyzing
and developing methods for visualization of space-time trajectory densities based on
(AIS) vessel movement data in the Gulf of Finland, while Willems et al. (2009) have
similar data and objectives to develop methods for visualizing trajectory densities but
taking account only geographic space (i.e. no spatio-temporal approach). In contrast
with this study, the AIS movement data utilized in those studies has high sample rate (1
observation / 2-10 seconds) which enables to take totally different approach when doing

analysis compared to this study that utilizes AROS data with low sample rate (1

70



observation / 10 minutes at best). With AIS data it is possible to calculate relatively
accurate navigation speed straightly by measuring Euclidian distance between
consecutive observations and dividing the result by temporal difference between the two
observations. Also detecting individual journeys and calculating different global
movement descriptors (such as acceleration) can be done with higher accuracy and
greater detail compared to AROS data, even though the analytical methods for

calculating these parameters are similar.

However studies that analyze mobility data with low sample rate also exists. Ahas et al.
(2007) studied the spatio-temporal movement patterns and activity spaces of commuters
in Tallinn region, Estonia by utilizing movement data from mobile phones. Mobile
positioning data has also been utilized to model meaningful locations to mobile phone
users by utilizing spatio-temporal analyses to detect places where people spend a lot of
time frequently (so called anchor points or points of interests) such as home and work
(Ahas et al. 2010). Mobile positioning data is collected every time when user makes a
call or sends text message. This data includes information about the time when the
phone was used and information about the location where the user was during that time,

which enables to build trajectories but with fairly low spatio-temporal details.

Mobile positioning data, such as what is utilized for research in Estonia, has presumably
lower sample rate than AROS since it is dependent of usage activity of the mobile
phone user. In this sense, the mobile positioning data can be considered as being more
sparsely scattered mobility data, whereas AIS data is more densely scattered, and thus
AROS data situates somewhere in between when ‘rating’ the spatio-temporal data
density characters of different mobility data sources. With higher sample rate it is
possible to make more detailed spatio-temporal movement analysis, but on the other
hand, as details of the data grow, so does the volume of the data. This means that it
needs more processing power from the computer and takes more time to perform the

analyses.

Altogether the analytical approaches used in TRAT are fairly simple and universal, thus
similar methods have been utilized also in other studies (e.g. Marketos et al. 2008;
Dodge et al. 2009). However because of the low sample rate of AROS, TRAT utilizes
more complicated way of obtaining the distance between observations and identifying

the direction of movement by utilizing training dataset and decision-tree classification
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method, which separates TRAT from methods used in other studies and applications.
Similar kind of applications or studies that would utilize and analyze such semi-densely
distributed movement data (such as AROS data) and would utilize similar analytical
approaches (as in TRAT) to extract knowledge from such data has not been done before
to my best knowledge.

7.6 Evaluation of the results - Transportation characteristics in the
Peruvian Amazon

Transportation patterns (as well as almost any dynamic phenomena) are in constant
change both spatially (e.g. changes in traffic arrangements and service structures) and
temporally (e.g. yearly / diurnal changes in transit schedules and people’s locations).
Yet, analyses are most often analyzed as a static phenomenon, and analyses are focused
on a specific moment and / or based on simplistic assumptions on residents daily
mobility patterns. Problems related to the lack of dynamic analysis methods are
increasingly recognized (e.g. Li et al. 2011; Tribby & Zandbergen 2012), but difficulties
in finding appropriate data for such analyses often hinders the use of more sophisticated

approaches.

Content of this thesis is mostly focused on rather technical aspects related to
development of TRAT. However this study also includes more practical part which is
focused on revealing the transportation patterns at the study area during the year 2012
and how these patterns influence in wider contexts. There are not many published
papers that would focus on transportation patterns in Loreto and Ucayali regions as a
whole, and most of the papers have focused on more small scale analyses (e.g. Chomitz
& Thomas 2003) or based their analyses on Euclidian distances (Peres & Terborgh 1995;
Peres & Lake 2003) between places which can be problematic since high sinuosity of
the navigation paths (i.e. rivers) may result that the network distances are much longer
compared to straight-line distances (Toivonen et al. 2007) (see Figure 14 on page 29).
This thesis is the first attempt to take spatio-temporal approach in the study area which
is conducted by studying seasonal variation of movement patterns along Amazonian

rivers: to my best knowledge there are no other studies taking such approach.
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7.6.1 Comparing the results to other studies
Salonen et al. (2012a) compared in their study the network distances of based on river
channels (in Loreto region) to straight-line Euclidian distances. They also developed a
quantitative model of accessibility patterns as means of time distances from different
parts of Loreto to the city of Iquitos. Their analysis was based on measured travel
speeds and observed travel times aboard local riverboats during high water (January-
February), i.e. analysis did not take into account seasonal variation. Comparing the time
distance calculations of this study to analysis of Salonen et al. (2012a), it seems that the
results of this study are quite reasonable and consistent with their study. The travel time
from Requefia to Iquitos was approximately 15 hours in their study which matches
fairly well with the results of this thesis (14 hours) during the high water (i.e. January 1%
— April 30™). The difference between the results of this study compared to results of
Salonen et al. (2012a) is below 10% which indicates good accuracy of the results.
Salonen et al. (2012a) also noticed in their study that navigation differs depending on
the channel type (i.e. morphology) and the size of the river. The results of this thesis
also confirm that navigation indeed differ depending on the factors mentioned by
Salonen et al. (2012). An important factor in determining the transportation
characteristics on riverine environment is the direction of movement which affects the
navigation speeds (Chibnik 1994 cit. Salonen et al. 2012a). Results of this thesis also
confirm this, but with addition that the significance of navigation direction to

transportation characteristics depends on the size and morphology of the river.

Acknowledging that the validation of the results of this thesis is based on only one
comparative study with actual data about transportation characteristics covering the
whole study area (Salonen et al. 2012a), it is necessary to cross-validate results by
comparing them to data from different years collected with AROS. That, however, is

not on the scope of this thesis.

7.6.2 Evaluating the significance of the results in wider contexts
This study can be considered to have societal significance in different levels since the
transportation patterns in the study area affect: 1) the everyday life of local inhabitants,
2) the economy of Loreto and Ucayali provinces (regional scale) and 3) the connectivity
between regions in northern South America (national/international). 4) Globally this

study can be related to the climate change studies since with long-term surveillance of
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river transportation with AROS it could be possible to detect e.g. weather anomalies
(exceptional flooding/drought) that influence on river navigation in the study area.

As mentioned by Knowles (2008), the transportation is in a key role when trying to find
the factors affecting on development of a certain location. A common way to evaluate
the level of transportation development is to measure the connectivity between places
and analyze accessibility patterns in the study region. This study utilizes the concept of
accessibility which has been studied a lot and is known to have wide range of influence
on different fields of studies and scales (e.g. climate change, economics, land cover

changes, human interactions etc.).

Taking account environmental aspects, many studies have indicated that the growing
populations and the need for monetary incomes increasingly endanger the ecologically
and economically important flood plain and forest areas in the tropical forests like
Amazonia (Kvist & Nebel 2001; Geist & Lambin 2002; Killeen 2007). Thus
transportation as means of accessibility to nearby markets has significant role related to
conversational aspects, land use pressure and deforestation at the study area (Salonen et
al. 2013). Results of this study could provide more accurate data for LUCC models that
were used in the study of Salonen et al. (2013).

The development of riverine transportation is also one of the key targets according to
IIRSA. IIRSA (Initiative for the Integration of the Regional Infrastructure of South
American) is a project that aims at improving the physical links and transportation
infrastructure among the South American countries via highways, hydrovias (waterways)
and energy projects. The initiative targets at improving the standard of living in the
South American countries but there has also been a great concern that the organizing
principle does not take adequately into account the impacts of the improvements in
infrastructure on the extremely valuable and vulnerable Amazonian rainforest areas
(Killeen 2007).

In the past we have seen how drastically the new highway corridors in the Brazilian
Amazon has altered the environment and accelerated the deforestation and
fragmentation process along the new passages (Fearnside 2008). These are true threats
anywhere where there are plans to build large road networks through the pristine forest
areas. The improvements on the river transportation might offer a less destructive

alternative for enhancing the connectivity between South American areas because the
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waterways are naturally creating the transportation network through the densely
forested areas. Thus this study could offer relatively accurate background information
for the decision makers responsible for the development of transportation infrastructure
in the study area about how the riverine transportation functions along the dynamic river

networks.

7.7 Future possibilities of movement analyses and need for
transportation oriented studies in the Peruvian Amazon

Mobility data and the mining of such data is still a quite novel area of research which
the progress of current information technologies has enabled during the last ten years
(approx.). Nowadays, as the use of mobile devices with GPS is more popular than ever,
it is inevitable that the availability of location and mobility information has also grown
exponentially. Before the development of current wireless and mobile technologies,
collecting the location data was only possible by highly expensive and time-consuming
means such as field experiments, surveys or with the ad hoc sensors placed on the
streets or vehicles. Even though these means are still used, current technology offers a
possibility to collect and store mobility data at a very low cost straight from the users.
Having continuous access to more accurate, close to real-time information about human
movements can help us to better understand the dynamics of our living environment and
society thus possibly contributing as “better” decision making in various sectors such as
in urban and land use planning as well as when making decisions and plans related to

environment.

Everyday actions of people leave digital traces in the information systems of the
organizations, and since the communication and computing devices are ubiquitous and
carried to everywhere this enables to sense human activity in a territory (Giannotti &
Pedreschi 2008). The value of the knowledge about people movement is high for many
instances. Urban planner for example, could utilize mobility data for localizing new
services (such as library or tourist information point) or for organizing logistic systems
based on the movement patterns. For commercial purposes mobility information of
people would be off high interest to for example to allocate advertisements more
accurately for the eyes of specific customer segments. The location information is

getting even more accurate in the future as it will be possible to track even inside the
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buildings and in densely populated places with Navigation via Signals of Opportunity
(NAVSOP) device that utilizes not only the satellites but also the Wi-Fi, TV, radio and
mobile phone signals to get an accurate location information of the device (Bae Systems
2012).

Related to mobility analyses in the study area: there is a need to continue studying the
riverine transportation patterns in Peruvian Amazon since all of the results of this study
need to be assessed and cross-validated by comparing them with data from other years
(2013 onwards). AROS data and TRAT provides also many possibilities for future
research in the study area and it would be interesting to study on more detailed level
how different river morphologies (anastomosing, meandering etc.) affect the
transportation patterns. Another interesting study would be to test if it is possible to
build a model which could predict the movement characteristics (speed etc.) on different
type of rivers based on AROS data from specific stretch of river (such as Ucayali or
Marafion). Also 80 interviews were made for the passengers of the vessels at the same
time when conducting in-situ GPS-measurements. People were asked how they
experience the travelling along the Amazonian rivers, and also questions that handle
travel times between seasons and places etc. were asked. Thus it would be interesting to
assess the results of this thesis based also on those interviews. Related to utilization of
developed methods, it would be interesting to evaluate how TRAT (with few
modifications) performs on other data sources such as AIS which provides interesting
global scale data of movements of professional vessels. Such data would allow to study
and form global transportation patterns and would enable to estimate global flows of
cargo and goods etc. Altogether there is plenty of potential for future research based on
AROS data and/or TRAT.

7.8 Conclusions
As an outcome of this thesis a specific analytical tool called TRAT was developed to
extract knowledge from movement data provided by low cost observation system
AROS that has been developed for tracking the riverboats in the Peruvian Amazon
where most of the transportation is based on river networks. Utilizing TRAT and AROS
it is possible to obtain relatively accurate information (assessed by visual exploration

and comparing the results to in-situ measurements) about seasonal transportation
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characteristics at the study area (such as speed and average travel times between
locations at different times of the year).

Results of this thesis suggest that navigation along the rivers had seasonal and
directional variation and also the river morphology affected the movement patterns of
the vessels in year 2012. On lquitos-Pucallpa route, which is mostly meandering by
river morphology, the downstream navigation was over 40% faster than upstream
navigation during high water and intermediate, but during low water there was no
difference between navigation directions. On Iquitos-Yurimaguas route, which is mostly
anastomosing by river morphology, the downstream navigation was approximately 20%
faster during the entire year. Seasonal variation was more evident on Iquitos-Pucallpa
route where navigation was over 30% faster during high water compared to low water
(when travelled downstream). On upstream direction the navigation was fastest during
low water but seasonal differences were considerably lower compared to downstream
navigation. On lquitos-Yurimaguas route it seemed that there is no seasonal difference

since the travel speeds were quite similar throughout the year.

Fitting simple regression model between average travel speed of the journeys and water
levels of the river revealed that there seemed to be strong connection between travel
speed and river height of Ucayali on Iquitos-Pucallpa route when travelled downstream.
However on other cases there seemed to be no clear connection between travel speed
and river height. Also connection between river sinuosity and travel speed was studied
on lquitos-Pucallpa route but there were difficulties to reduce the effect of populated
places (i.e. locations where vessels stop during the journeys) on movement
characteristics. Thus there were only few areas along the river network where the effect
of sinuosity could be evaluated. On these areas the results suggest that high sinuosity
indeed decelerates the navigation speed especially when travelled downstream. On areas
where the river do not meander (i.e. low sinuosity), the travel speed seemed to be higher

especially when travelling upstream which was slightly surprising.

Comparing the results with earlier study (Salonen et al. 2012a) implied that the results
of this thesis seemed to be fairly accurate, however it is necessary to validate the results
by doing cross-validations between data from different years observed with AROS. This
is especially important since the river dynamics were slightly exceptional during the

year 2012 (major floods). Spatio-temporal information such as mobility data from
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AROS can be utilized in many areas ranging from decision making based on real-world
information to e.g. more accurate analyses of accessibility which has become an
increasingly important and useful analytical tool as means of understanding the spatial
relationships between our society and environment (e.g. transport and land use) and as

means of visualising their changing geographical setting at a general level.
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APPENDICES
APPENDIX I

R-code for joining observation to the nearest reference data point (adapted from:
https://stat.ethz.ch/pipermail/r-help/2008-September/173983.html).

spatial.join <- function(x, y, lat, lon, obs, latRef, lonRef) {

## construct data frame d in which d[i,] contains information
## associated with the closest point in y to x[i,]

Xpos <- as.matrix(x[,c(lat, lon, obs)])

xposl <- lapply(seq.int(nrow(x)), function(i) xpos[i,])
ypos <- t(as.matrix(y[,c(latRef, lonRef)]))

yinfo <- y[, colnames(y)]

get.match.and.dist <- function(point) {

sqdists <- colSums((point - ypos)”"2)
ind <- which.min(sqdists)
c(ind, sqgrt(sqdists[ind]))

}

match <- sapply(xposl, get.match.and.dist)

chind(xpos, mindist=match[2,], yinfo[match[1,],])
}

join <- spatial.join(boatpoint, refpoint, 'lat’, ‘lon’, 'obs’, 'latRef’, 'lonRef")
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APPENDIX 11

Algorithm for journey detection (Survo coding, Mustonen 1992):

VAR journeylD:2=if(ORDER=1)then(1)else(RID2) TO BoatIlD1

RID2=if(TSTOP<36)then(RID4)else(RID3)
RID3=if(TSTOP[-1]>=36)then(journeylD[-1])else(journeylD[-1]+1)
RID4=if(Dhour<36)then(RID7)else(RID5)
RID5=if(Dhour[-1]>=36)then(RID6)else(journeyl D[-1]+1)
RID6=if(DDistance>=500)then(journeylD[-1]+1)else(journeylD[-1])
RID7=if(RDir[0]=RDir[-1])then(journeyID[-1])else(RID8)

RID2 = Observation of stationary time (threshold = 36 hours proved to be optimal) to

determine individual journey.

RID3 = Maintaining journeylD if stationary still continues

RID4 = Determing journeylD based on temporal gab between observations (threshold =

36h)

RIDS = Maintaining journeylD if tracking was “accidentally” put on for only 1

observation

RID6 = Determing journeylD based on distance between consecutive observations

(threshold = 500 kilometers)

RID7 = Determing journeylD based on principal navigation direction

APPENDIX 111
The stages of the Peruvian Amazon rivers (SEHINAV 2013).

EPOCAS DE CRECIENTES Y VACIANTES DEL RIO AMAZONAS Y SUS PRINCIPALES AFLUENTES
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