
An informal discovery procedure
for two-level rules

Kimmo Koskenniemi
Department of Modern Languages, University of Helsinki, Finland

abstract
Keywords:
morphological
analysis,
discovery
procedure,
two-level rules,
two-level
morphology,
IPA

The paper shows how a certain kind of underlying representations (or
deep forms) of words can be constructed in a straightforward manner
through aligning the surface forms of the morphs of the word forms.
The inventory of morphophonemes follows directly from this align-
ment. Furthermore, the two-level rules which govern the different re-
alisations of such morphophonemes follow fairly directly from the pre-
vious steps. The alignment and rules are based upon an approximate
general metric among phonemes, e.g., articulatory features, that de-
termines which alternations are likely or possible. This enables us to
summarise contexts for the different realisations.

1 introduction

The orientation of this paper is linguistic rather than statistical, and
the general framework is not taken from machine learning. The aim
of the procedure that this work details is to assist rather than to
replace the linguist. The scheme makes use of the common knowl-
edge that human linguists have. The procedure is intended to make
a part of such knowledge operational. In order to use the procedure,
the linguist must select examples which contain only regular (mor-
pho)phonological alternations. The alternations must be of the types
for which the procedure has general models, e.g., assimilations, agree-
ments or phonotactic constraints. A good choice of examples is essen-
tial for getting good and general rules.

Journal of Language Modelling Vol 1, No 1 (2013), pp. 155–188

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/18616869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Kimmo Koskenniemi

Linguists have a special talent to cope with regularities and ex-
ceptions. A human linguist is able to consider factors beyond plain fre-
quencies and, e.g., recognise the fact that certain morphophonological
phenomena are closed, and no new words will follow them, and that
some others are productive and readily extend to new words. Using
such knowledge, the linguist can sometimes make sense of phenomena
which might remain fuzzy for present machine learning and statistical
methods.

The aims of the procedure sketched here are (1) to partition a
set of example word forms into stems and inflectional morphemes by
aligning (character by character) the stems and inflectional morphs,
(2) to establish morphophonemic representations for the stems and
affixes, and (3) to deduce a set of two-level rules which express the
general context conditions (according to which the morphophonemes
are realised in the examples and in any similar words). Through
such steps, lexicon representations and rules for an inflectional class
can be established. Applying the procedure to all productive inflec-
tional classes is needed in order to describe the morphology of a
language.

General (but approximate) linguistic knowledge about phonology
guides the mechanical procedure presented in this paper. In particu-
lar, knowledge of the kinds of phonological alternations that are com-
mon in the languages of the world, and the kinds of phonological
contexts that such alternations typically occur in, are used. Possible
alternations can be, e.g., assimilations (where adjacent sounds become
more similar to each other), dissimilations (where similar sounds be-
come more distinct from each other), metathesis (where two sounds
are swapped), phonotactic constraints (where, e.g., a certain type of
syllable structure is enforced), agreements or harmonies (where, e.g.,
some vowels in the affixes become more similar to those in the word
root).

Two-level morphology is used here because, in that framework,
individual rules can be kept quite independent of each other.1 The orig-
inal form of the two-level morphology (Koskenniemi, 1983) is math-
ematically simple because each rule written by the linguist is a con-

1See, e.g., Karttunen (1993) for an overall introduction to two-level mor-
phology.

[156]

An informal discovery procedure for two-level rules

straint which must be satisfied separately. On the other hand, this
simplicity makes it more difficult to simulate generative phonology
using two-level rules in cases where some phonemes can be affected
by several unrelated rules.
A more complex form of the two-level formalism which uses rule

conflict resolution mechanisms is more suitable for using similar un-
derlying representations as the generative phonology. Rule conflicts
can be resolved by pre-processing the individual rules using the whole
grammar and by copying parts of rules into some other rules which
makes the rules more complex, see Karttunen et al. (1987) for that
approach.

The present approach uses reduced versions of the two-level gram-
mars which neither use any conflict resolution mechanisms nor need
them. In two-level grammars, right-arrow conflicts only arise when
the same correspondence occurs in separate rules. This does not hap-
pen in the proposed procedure which produces a single rule for each
realisation of a morphophoneme (even if such a rule may have several
context parts). Left-arrow conflicts arise when different realisations of
a morphophoneme have overlapping contexts. The conflict resolution
mechanism of two-level compilers recognises the special case where
one context is a proper subset of another, and resolves it by priori-
tising the smaller context. The grammars produced by the proposed
procedure avoid left-arrow conflicts because the corresponding mor-
phophonemes will be distinct from each other.

Rewrite rules must usually be applied in a specific order. Apply-
ing a rule changes the string, and the remaining rules depend on the
earlier ones. The number of different orderings grows according to the
factorial of the number of rules, e.g., five rules could be applied in 120
distinct orders but 20 rules in as many as 2,432,902,008,176,640,000.
Phonological grammars using rewrite rules need a rule ordering, even
if not all rules are equally sensitive to such. Discovering complex
rewrite rule grammars is probably difficult because one must discover
both the rules and their ordering. The reduced two-level grammars,
on the other hand, avoid the rule ordering altogether because all rules
are applied in parallel.

The procedure presented here treats the underlying forms of mor-
phemes and the morphophonemes in an extremely concrete manner.
Morphophonemes are represented just as the combinations of the corre-

[157]

Kimmo Koskenniemi

sponding letters (or phonemes) which we can observe in the surface
forms. On the one hand, such an interpretation of morphophonemes
is crude, but on the other hand, it is a fact that anybody can observe.
Lexical representations are sequences of lexical characters, each of which
is either a letter or a morphophoneme.

Using a systematically selected set of surface forms, the procedure
creates lexicon entries and rules for such words. The entries contain
morphophonemes deduced by the procedure. The deduced rules are
simple two-level rules. The resulting rules can be compiled using the
existing two-level compilers, such as the open source HFST-TWOLC
(Silfverberg and Lindén, 2009) or the proprietary Xerox LEXC.2 This
paper describes the plan for the actual procedure, including some
feasibility estimates according to which the approach appears to be
tractable. Unfortunately, an implementation is not yet available (but
cf. Section 14).

This work differs from unsupervised discovery of morphology
where the lexical units and rules would be induced from raw corpus
data. The approach is based on the observation that many linguists
find it difficult to express their intuitions as formal rules, whereas they
are comfortable with providing concrete examples. This work makes
use of this kind of human supervision. When implemented, the proce-
dure would be a useful tool for a linguist. The informal procedure as
discussed below, may even guide the linguist in designing rules and
grammars even in the absence of an implementation. Theoretically
oriented linguists might also discuss the merits and the shortcomings
of the very concrete and objective interpretation for morphophonemes
presented here.

This paper argues for the utility of phoneme by phoneme (or char-
acter by character) alignment of word forms and discusses its tractabil-
ity. In particular, it presents a way how both the stem parts and the
affix parts should and can be aligned. The alignment appears to be
possible for a wide array of different types of languages. Such an align-
ment can be directly utilised in the two-level framework (but less so
in the rewriting framework). Once a proper alignment is determined,

2See www.stanford.edu/~laurik/.book2software/twolc.pdf and
http://www.cis.upenn.edu/~cis639/docs/twolc.html for the documenta-
tion of the two-level grammar formalism.

[158]

www.stanford.edu/~laurik/.book2software/twolc.pdf
http://www.cis.upenn.edu/~cis639/docs/twolc.html

An informal discovery procedure for two-level rules

the lexical representations of stems and affixes are algorithmically and
uniquely determined.
It is argued that, in this framework, the deduction of the nec-

essary morphophonological two-level rules is easier than using the
rewrite rule framework. In particular, it is shown that the deduction
of rules for one morphophoneme is entirely independent of the rules for
other morphophonemes. In principle, one may discover rules for var-
ious kinds of morphophonemic alternations provided that the alter-
nations are (morpho)phonological in their nature, and do not involve
suppletion or otherwise introduce, delete or change larger units. Spe-
cific procedures for each type of conditioning are needed, but can be
designed.

The main claim of this paper is that the framework presented has
a better potential to succeed in discovering regularities in languages
which have an elaborate morphophonology. Other approaches appear
to perform best when applied to English or other languages with fairly
simple morphology. In particular, as compared to the machine learn-
ing oriented approaches, the framework proposed here appears to be
able to cope with more demanding phenomena such as interdigitation
of Semitic languages, phenomena based on syllable structures, agree-
ments, metathesis of non-contiguous segments, and the like. This pa-
per argues for the validity of this claim. Deeper understanding can be
reached when an implementation is available and has been applied to
a number of different languages.

2 past work

Most of the recent work on the theme of morpho(phono)logical discov-
ery methods has been done within the framework of unsupervised ma-
chine learning. These start from large unannotated corpora and other
raw language resources and they try to describe the inflection of words
in an economic manner without human intervention. The present pa-
per operates differently, and it aims to discover more precise rules
than what the unsupervised approaches can.
Gildea and Jurafsky (1995) report experiments with discovering

finite-state transducers from large sets of examples. They extend and
improve the OSTIA algorithm (Oncina et al., 1993) by aligning the
examples using an edit distance based on the phonological binary fea-

[159]

Kimmo Koskenniemi

tures of phonemes and use training data of tens of thousands of words
in the general framework of Mitchell (1982).
Theron and Cloete (1997) studied a problem where the starting

point was a list of pairs consisting of an inflected word form and
the corresponding base form. Their work was based on edit distances
when aligning the inflected and the base form with each other. Their
algorithm deduced the context parts of the two-level rules by starting
from the full lists of correct contexts and then by truncating them as
long as the rules still accounted for the correct forms.
Yarowsky andWicentowski (2000) present a method for deducing

stem alternation rules and morphological analysis applicable for lan-
guages similar to the Indo-European languages which are nowadays
spoken in Europe. The method makes use of initial tables of endings,
an unannotated corpus and a collection of candidate noun, adjective
and verb roots. Roots of word forms and rules are deduced using fre-
quency statistics. The method of identifying roots is trained and com-
bines several models. Most of the irregular English words were learnt
by the procedure.

Linguistica algorithm (Goldsmith, 2006) and Morfessor (Creutz
and Lagus, 2004) represent word forms using sets of substrings and
they utilise criteria such as the minimum description length (MDL).
The end results of such processes are sets of strings which are simi-
lar to linguistic morphs (but not always the same). Concatenations of
such sets model the word forms of the language. Goldwater and John-
son (2004) build on top of Goldsmiths Linguistica and reduce the sets
further by introducing phonological rules.

The PhD dissertation of Chan (2008) on the induction of mor-
phology and lexical categories includes a fairly comprehensive survey
on previous work on machine learning of morphology. A few stud-
ies have a more linguistic conception of the phonological rules to be
found. They usually assume that the procedure has access both to the
underlying and the surface form of example words.

Johnson (1984) presented a discovery procedure for ordered
rewrite rules in the framework of generative phonology. He starts
from a given table of forms of a set of lexemes and assumes that the
morphemes have been segmented, corresponding phonemes identi-
fied, and that the phonemes are represented using their distinctive
features. Johnson claimed that his procedure can cope with the rule

[160]

An informal discovery procedure for two-level rules

ordering by considering the contexts of the rules. The last rules in
the cascade have contexts which are apparent in the surface forms,
whereas the rules early in the sequence tend to use contexts which
are less visible in the surface forms. The data on which the method
was tested involved six rules for Japanese. He notes that the rules,
underlying representations, and the rule orderings are not strongly
determined by the data. Lots of computation was required and it re-
sulted in multiple solutions that consisted of different rule orderings
and different underlying representations. The goals of Johnson were
otherwise similar to those of the present paper.
Touretzky et al. (1990) study rules needed in order to generate

phonetic realisations out of underlying (morpho)phonemic represen-
tations. The rules are learnt step by step from input examples where
both the underlying and surface forms are given. The learning occurs
by approximating the contexts both from specific examples (which
may be too narrow) and generalisations (which may be too broad) as
context conditions.
Oflazer and Nirenburg (1999) and Oflazer et al. (2001) present a

method for bootstrapping morphological analysers by combining hu-
man elicitation and machine learning. Human informants provide the
examples used by the machine learning process to deduce rewrite rules
necessary for accounting for the data. The method has been applied,
e.g., to Polish, where alternations both in the stems and in the endings
were captured. This interactive approach is relevant for the procedure
presented in this paper, and maybe the best parts of these two could
be combined in future.

A recent work by Hulden et al. (2011) studies the learning of di-
alectal morphologies using parallel corpora. The authors end up using
parallel rewrite rules for describing the mapping between the standard
Basque and one of its dialects. They use the FOMA rewrite rule system
(Hulden, 2009) which is an open source replacement for Xerox XFST
(Beesley and Karttunen, 2003).3
The present paper elaborates an earlier work, see Koskenniemi

(1991) where a version of the procedure was sketched. The general
3Both FOMA and XFST support certain forms of parallel rewrite rules which

avoid the rule ordering problems. On the other hand, such parallel replace rules
have to be compiled together as a single unit which may become computationally
heavy if there are many rules.

[161]

Kimmo Koskenniemi

idea of first aligning and then deducing was presented there. The
present paper formalises the alignment in order to make the poten-
tially intractable task feasible. In addition, a distance metric is pre-
sented so that choosing among alternative solutions is better defined.
Furthermore, this paper tells more explicitly how languages with in-
fixation, prefixation, etc., can be handled.

3 simplified two-level morphophonology

Koskenniemi (1983, 1984) detail the origins of the two-level morphol-
ogy, Karttunen (1993) presents a brief introduction, and Karttunen
and Beesley (2001) presents a history of the two-level formalism.
In all versions of the two-level formalism, the morphophonological

rules are based on just two representations of word forms: the lexical
representation and the surface representation. There are no intermedi-
ate representations between these two. The lexical representation is
a string of characters and serves as the underlying representation of
morphemes.

In the present simplified formalism, the lexical characters of the
morphemes may be:
• phonemes (or letters) which, in our simplified formalism, always
correspond to themselves in the surface representation;
• morphophonemes which correspond to two or more alternative
phonemes (or letters) in the surface representation; and
• auxiliary symbols which always correspond to zero in the surface
representation and may be used either as boundary symbols be-
tween morphemes or as markers of grammatical categories.

We denote morphophonemes by the alternative letters they represent,
e.g., aä represents a morphophoneme which can be realised either as
a or ä.4 Lexical representations are given here with spaces between
the characters in order to make the morphophonemes explicit, e.g., t a
l o s s aä. Surface representations are strings of letters and zeroes (0).

4Mathematically, these kinds of morphophonemes are tuples rather than sets.
In the general case, the morphophoneme is a sequence of the surface letters that
the morphophoneme is realised as. Thus, a morphophoneme for an e in the base
form and alternating with an i in its inflected forms is different from an i in the
base form alternating with an e. The shorter notation is used simply for brevity.

[162]

An informal discovery procedure for two-level rules

Zeroes act as place holders for morphophonemes which are deleted
from surface forms. Within the two-level rules, zeroes are, however,
treated as characters (rather than epsilons or null strings).
Let us consider a simplified example taken from the Finnish in-

flection of nouns. Word forms are constructed by affixing endings after
the stem, e.g., piha a ‘yard’ + ‘partitive’, piho i lla ‘yard’ + ‘plural’
+ ‘at’ and piho j a ‘yard’ + ‘plural’ + ‘partitive’. A linguist would
notice that the stem-final vowel is either a or o in the surface forms,
and therefore we interpret it as a morphophoneme ao in the lexical
form. Similarly, we notice that the plural morph is either i or j on the
surface. Thus, we have the lexical representation p i h ao for ‘yard’
and ij for ‘plural’. Now we can represent the correspondence of the
(somewhat simplified) lexical and surface forms (where ao and ij are
single and indivisible symbols):

p i h ao a p i h ao ij l l a p i h ao ij a
p i h a a p i h o i l l a p i h o j a

Two-level rules specify how lexical and surface representations
may correspond to each other. We need one rule for ao, and another
for ij. Studying these and other examples, the linguist would notice
that ao:o occurs before the plural morpheme ij and that the plural
morpheme itself realises as ij:j if and only if it ends up between vow-
els on the surface. A linguist might write the two-level grammar as:

Alphabet a d e f g h i j k l m n o p r s t u v y ä ö
ao:a ij:i ;

Vowel = a e i o u y ä ö ;
Rules
”ao in plural” ao:o <=> _ ij: ;
”ij between vowels” ij:j <=> :Vowel _ :Vowel ;

The alphabet lists all letters andmorphophonemes. In addition, it gives
the default correspondences of the morphophonemes, here ao:a and
ij:i. The first rule tells two things: first (the right arrow component),
that ao:o can occur only if it is immediately followed by a lexical ij,
and secondly (the left arrow component), that when a lexical ao occurs
in this context, o is the only possible corresponding surface character.
Similarly, the second rule says that ij:jmay occur only between surface
vowels and that in such a place ij:i is forbidden. The pair before the

[163]

Kimmo Koskenniemi

double arrow is called the centre of the rule. The context part is (or
possibly several of such are) on the right of the double arrow. A context
part consists of the left context and a right context separated from each
other by an underscore. Two-level grammars usually consist of double
arrow <=> rules which combine the requirements of right arrow => and
left arrow <= rules.

Two-level rules are usually compiled into finite-state transducers
(FSTs). A compiled rule FST accepts all correct examples, i.e. strings
of character pairs like: p:p i:i h:h ao:a or p:p i:i h:h ao:o ij:i l:l l:l
a:a. According to a common practice, we represent pairs with iden-
tical components with a single character: p i h ao:a and p i h ao:o
ij:i l l a.

The linguist collects a set of examples before even starting to de-
sign any rules. The examples specify the task for the rules. This spec-
ification is in a form that can be communicated to and understood
by other linguists. Furthermore, the generated two-level rules can be
checked against these examples in order to verify their correctness –
as described in Section 13.

The rules the linguist writes depend on the lexical representa-
tions one chooses. The experience of the author, when supervising
linguists and students, indicates that when the lexical representations
have been carefully designed, the writing of the two-level rules is
easy and straightforward. Using a sufficiently large set of morphopho-
nemes, one can keep the rules simple and independent of each other.

4 choosing a paradigm
of selected lexemes and forms

For the discovery procedure, we collect a table of word forms, i.e.
surface forms of inflected words. On each row of the table, we have
the same lexeme (in different forms) and on each column, we have the
same form (of different lexemes). To be more precise, on a row, there
are (possibly slightly different) stems of the same lexeme. One must
not include lexemes with suppletion, i.e. words where stems represent
different lexical units, such as good and bett(-er). It is not reasonable
even to attempt to model suppletion using two-level rules (whereas
rewrite rules can freely be used for such). Two-level rules should be
used only for natural morphophonological alternations.

[164]

An informal discovery procedure for two-level rules

In order to describe the steps of the discovery procedure, we use
an example given in Table 1, where six Finnish nouns are inflected in
five different forms: singular nominative, partitive, and inessive, and
plural partitive and inessive (the columns).

SgNom SgPtv SgIne PlPtv PlIne
‘house’ talo taloa talossa taloja taloissa
‘crack’ särö säröä särössä säröjä säröissä
‘cross’ risti ristiä ristissä ristejä risteissä
‘notch’ lovi lovea lovessa lovia lovissa
‘fish’ kala kalaa kalassa kaloja kaloissa
‘dog’ koira koiraa koirassa koiria koirissa

Table 1:
Example raw
word forms

5 lengths of the stems and affixes

Alignment consists of augmenting the word forms with zeroes where
necessary, and inserting boundary symbols which separate the stems
from the affixes. Zeroes are sometimes needed in order to make the
surface forms of the corresponding stems and affixes equal in length.
After this step, the stems which belong to the same lexeme should
have the same number of characters (letters plus possible zeroes), and
the same goes for affixes which belong to the same grammatical form.
After adding some zeroes, the lengths of the word forms in the

table can be expressed as a sum of the length of the (constant length)
stems of the lexeme mi and the (constant length) affix parts of the
grammatical form n j. Initially, the procedure has the lengths of the
raw forms as given in Table 2.
Next, the procedure decomposes the raw lengths of the word

forms into a sum of the lengths of the stem and affixes. It may arrive
at several solutions and one of these should outperform the other ones
during the subsequent steps. The procedure tentatively assumes that
the stems are (at least) as long as the singular nominative forms. Then,
the affixes are at least as long as the difference between the inflected
and nominative forms. In this way, the procedure arrives at the de-
composition of lengths in Table 3. The decomposition is accurate in
all other places except for the plural forms of lovi and koira (which

[165]

Kimmo Koskenniemi
Table 2:

Lengths of the
raw word forms

SgNom SgPtv SgIne PlPtv PlIne
talo 4 5 7 6 8
särö 4 5 7 6 8
risti 5 6 8 7 9
lovi 4 5 7 5 7
kala 4 5 7 6 8
koira 5 6 8 6 8

Table 3:
Lengths of the
raw word forms

tentatively
decomposed into
the lengths of the
stems and affixes

stem SgNom SgPtv SgIne PlPtv PlIne
0 1 3 2 4

talo 4 4+0=4 4+1=5 4+3=7 4+2=6 4+4=8
särö 4 4+0=4 4+1=5 4+3=7 4+2=6 4+4=8
risti 5 5+0=5 5+1=6 5+3=8 5+2=7 5+4=9
lovi 4 4+0=4 4+1=5 4+3=7 4+2=6>5 4+4=8>7
kala 4 4+0=4 4+1=5 4+3=7 4+2=6 4+4=8
koira 5 5+0=5 5+1=6 5+3=8 5+2=7>6 5+4=9>8

are one character too short). Thus, we insert a zero character into
those word forms. The zero could be inserted anywhere in the word
form and the procedure must usually evaluate several possibilities.
Furthermore, one must allow for more zeroes than the minimum

amount to be added if there are more substantial (but regular) alter-
nations within the stem. The calculation gives one or more hypotheses
for the lengths of stems and affixes. The procedure proceeds first with
the above assumption for the lengths and backtracks only if necessary.
The procedure must also be prepared to consider alternative par-

titions. One could, e.g., have shorter stems and longer affixes. Not too
many alternatives exist, and the procedure can enumerate the decom-
positions of the lengths without problems and choose the best (or the
only possible) alternative during the next steps of the procedure.
Up to now, the procedure has made no assumptions about the

position of the stems. They might be at the beginning, end, or some-
where in the middle of the word forms. The stem might even be non-
contiguous, i.e. interrupted by inflectional parts. One could claim that
establishing the (tentative) lengths of morphemes as the first step is
not necessary. It could be solved later, or as a part of the whole task us-

[166]

An informal discovery procedure for two-level rules

ing, e.g., dynamic programming. Such computation, however, appears
to be more complex and less disciplined. Establishing the lengths first
makes the following steps more tractable.

6 positions of the zeroes
and partitioning the word forms

In the previous step, the procedure made an educated guess about
the desired lengths of the stems and affix parts. If the guess produces
poor solutions, then the procedure backtracks and modifies the guess.
For the time being, however, the procedure sticks to the assumption
made in the previous section and adds some zeroes as necessary so
that the lengths of the word forms meet the lengths required by the
partition in the Table 3. The procedure adds the required amount of
zeroes in all different permutations. Thus, from now on, the proce-
dure has full tables of our example words (with zeroes). Each table
conforms with the lengths but has the zeroes in random positions of
the word forms. There may be many such tables and it is not prac-
tical to enumerate them before filtering out the clearly impossible
ones.

A human linguist would perhaps immediately see the positions
where the zeroes are best added, e.g., koir0issa, because in this way
the letters in the first four positions of the stem would be identical in
all stems of the lexeme. The linguist would exclude other positions for
the zero because they would lead to an unnatural correspondence of
letters. However, a computer procedure can manage with many possi-
ble versions where a correct number of zeroes are added but perhaps
not in the correct places.

The partitioning of the word forms into stems and affixes is done
by adding a fixed number of boundary symbols (+) into the word
forms. If we have only suffixes (as in our example) or only prefixes,
one boundary will be sufficient. If we have both prefixes and suffixes,
two boundary symbols are needed. More than two may be needed for
Semitic languages with both prefixes and suffixes and even interdigi-
tation (where vowel affixes are inserted inside the word root). In fact,
the interdigitation does not cause any additional problems for the two-
level or rewrite rules cf., e.g., Kataja and Koskenniemi (1988). The
problem with interdigitation is how to build the lexical or underly-

[167]

Kimmo Koskenniemi
Table 4:

Example word forms
with zeroes and boundaries

in bad positions

SgNom SgPtv SgIne PlPtv PlIne
talo+ talo+a talo+ssa talo+ja talo+issa
särö+ särö+ä särö+ssä särö+jä särö+issä
risti+ risti+ä risti+ssä riste+jä riste+issä
lovi+ love+a love+ssa lovi+a0 lo0v+issa
kala+ kala+a kala+ssa kalo+ja kalo+issa
koira+ koira+a koira+ssa 0koir+ia 0koir+issa

ing representation out of morpheme-like elements. That is not, how-
ever, within the scope of rule discovery. The added boundary symbols
split the word form into even- and odd-numbered segments. The stem
of the lexeme consists of either the odd-numbered or even-numbered
segments. The remaining segments represent the inflectional affixes
which belong to the grammatical form.
On the basis of the calculation of the lengths in the previous steps

(and knowing at which end the affixes are located), we can insert the
boundary symbols at uniquely determined positions in the word forms
which have been augmented with zeros as necessary. This is now done
for all alternative tables. If our assumption on the positions of the
affixes is wrong, then the following steps will produce poor results,
and we must backtrack and revise our assumption.
In our example, the procedure adds exactly one boundary sym-

bol to each of these four word forms and one of the alternative tables
for our example could now look as shown in Table 4. There, some
corresponding letters are quite incompatible with each other, e.g., i-
e-e-i-v in the fourth position of the stems for lovi, and o-k in the
second position of the stems for koira. We consider vowels to be in-
compatible with consonants (except with semivowels) and vice-versa.
We exclude all tables which violate this coarse constraint. Therefore
Table 4 (and other tables containing equally poor correspondences)
will be excluded.
Among the possibilities, the procedure also produces Table 5,

where the characters in the corresponding positions of the same stems
are reasonably congruent with each other. The same holds for char-
acters in the corresponding positions of the suffixes. A human linguist
would probably like this table best.

[168]

An informal discovery procedure for two-level rules

SgNom SgPtv SgIne PlPtv PlIne
talo+ talo+a talo+ssa talo+ja talo+issa
särö+ särö+ä särö+ssä särö+jä särö+issä
risti+ risti+ä risti+ssä riste+jä riste+issä
lovi+ love+a love+ssa lov0+ia lov0+issa
kala+ kala+a kala+ssa kalo+ja kalo+issa
koira+ koira+a koira+ssa koir0+ia koir0+issa

Table 5:
Example word forms
with added zeroes and
boundaries in good
positions

The simple example we are studying would have only a few thou-
sand different possibilities for adding the two required zeroes. The
coarse checking of impossible tables would be no problem at all. With
larger examples, some planning for the efficient exclusion of the im-
possible tables is needed. One option is to use a kind of branch-and-
bound algorithm to prune the search space more efficiently. Adding
a zero to a wrong place often causes an impossible correspondence
so that one can exclude a whole class of tables before even creating
them. Another alternative would be to represent the set of tables as
finite-state networks which would remain quite reasonable in size and
be straightforward to construct. Impossible paths (representing tables)
would be excluded by a sequence of XFST or FOMA rules which would
filter out strings (i.e. tables) by checking the compatibility of each
character position. The PhD dissertation of Grzegorz Kondrak gives,
among other things, a survey of the various methods which have been
used in aligning words – see Kondrak (2002).

7 morphophonemes and
the representation of morphemes

Now that we have processed the initial matrix of word forms into a
reasonably small set of tentative tables differing from each other in
the positioning of zeroes, the next step of the procedure is to rank the
remaining tables according to the morphophonemes that they imply.
The different stems (for each lexeme) and affixes (for each grammat-
ical form) in the Table 5 are now of equal length. Stems can be ex-
tracted and aligned as in the Table 6, where the bottom row indicates
the morphophonemic representation that follows from the aligned

[169]

Kimmo Koskenniemi
Table 6:

Stems of the lexemes
i.e. word forms with

boundaries and zeroes but
the affix part removed

t a l o s ä r ö r i s t i l o v i k a l a k o i r a
t a l o s ä r ö r i s t i l o v e k a l a k o i r a
t a l o s ä r ö r i s t i l o v e k a l a k o i r a
t a l o s ä r ö r i s t e l o v 0 k a l o k o i r 0
t a l o s ä r ö r i s t e l o v 0 k a l o k o i r 0
t a l o s ä r ö r i s t ie l o v ie0 k a l ao k o i r a0

Table 7:
Affixes of the

grammatical forms
SgPtv SgIne PlPtv PlIne
a s s a j a i s s a
ä s s ä j ä i s s ä
ä s s ä j ä i s s ä
a s s a i a i s s a
a s s a j a i s s a
a s s a i a i s s a
aä s s aä ij aä i s s aä

stems. Most positions in the series of stems contain the same char-
acter. The vowels at the end alternate a bit in some stems. The rela-
tions between corresponding letters in the endings also look regular
(see the Table 7 where we, again, have included in the last row the
morphophonemic representations of the affixes).
The criterion for ranking the alternative tables is based on the

quality of morphophonemes that each table implies. We denote the
morphophonemes by indicating the characters they represent, e.g., ie,
ie0, ao, a0, aä and ij.5 According to common linguistic knowledge,
similar phonemes are more likely to alternate with each other and
radically different ones may not alternate with each other.
In Table 8, we see the (coarse) phonemic characterisations for

the Finnish vowels according to the features used in the IPA (Interna-
tional Phonetic Alphabet). In addition to the named features, we have
associated (somewhat ad hoc) numerical values with the features for
the purposes of the discovery procedure. We can approximate vow-
els in the languages of the world according to the IPA using three

5Technically, e.g., ie stands for the tuple (i, i, i, e, e) and ie0 for (i, e, e, 0, 0),
cf. footnote in Section 3.

[170]

An informal discovery procedure for two-level rules

Letter IPA Height Backness Rounding
ä /æ/ (near-)open 1 front 1 unrounded 0
a /ɑ/ open 1 back 5 unrounded 0
e /e/ close-mid 5 front 1 unrounded 0
ö /ø/ close-mid 5 front 1 rounded 1
o /o/ close-mid 5 back 5 rounded 1
i /i/ close 7 front 1 unrounded 0
y /y/ close 7 front 1 rounded 1
u /u/ close 7 back 5 rounded 1
j /j/ semivowel 9 front 1 unrounded 0

Table 8:
Phonological features and
numerical approximations
of Finnish vowels

Front Back
Height unrounded rounded unrounded rounded
Close /i/ i /y/ y /u/ u

Close-mid /e/ e /ø/ ö /o/ o
Open /æ/ ä /ɑ/ a

Table 9:
Distinctions in the Finnish
vowel system

digits (as in Table 8): one for the tongue height with a scale from 1
(low or open) to 7 (high or close), a second for the backness with a
scale from 1 (front) to 5 (back), and third for rounding with 0 (un-
rounded) and 1 (rounded). The values represent just an ordinal scale,
not any physical dimensions. A tongue height of 5, for instance, is
higher than 1 but not necessarily five times as high.6 Phonemes in
most languages employ only a part of the possible heights and back-
ness values.

There is no opposition between open and near-open vowels in
Finnish, so the difference between them is ignored and the value 1
used for both. The Finnish vowel system is often represented as in
Table 9. According to the Tables 8 and 9, ie makes a perfect morpho-
phoneme for our purposes, as these two vowels differ by one feature
only, the height of the tongue (and even only by one step).

6Furthermore, the front vowels differ in their backness: /i/ and /y/ are most
front, /e/ and /ø/ a bit less front and /æ/ even more to the back. These differ-
ences play no role in the present discussion. See http://www.langsci.ucl.ac.uk/ipa/
for more information on the IPA alphabet.

[171]

Kimmo Koskenniemi
Table 10:

Phonological features of
common Finnish

consonants

Letter IPA Place Manner Voicing
m /m/ bilabial 1 nasal voiced 1
p /p/ bilabial 1 plosive unvoiced 0
v /v/ labiodental 2 fricative voiced 1
t /t/ alveolar 4 plosive unvoiced 0
d /d/ alveolar 4 plosive voiced 1
s /s/ alveolar 4 fricative unvoiced 0
r /r/ alveolar 4 trill voiced 1
l /l/ alveolar 4 lateral

approximant
voiced 1

j /j/ palatal 7 approximant voiced
(semivowel)

1

ng /ŋ/ velar 8 nasal voiced 1
k /k/ velar 8 plosive unvoiced 0
h /h/ pharyngeal 10 fricative unvoiced 0

Using this table, the components of aä differ only by one feature:
ä being front and the a being back. In ao there are two minimally
different values: o is rounded and one step more close than a which
is unrounded. In Finnish, there is no back vowel more like a than o.
Note that the semivowel j is given a characterisation both as a vowel
(in Table 8) and as a consonant (in Table 10).

Consonants have more possible feature values than vowels. The
place of articulation corresponds to the backness of vowels, but the
different manners of articulation are less related to each other and do
not form a continuum or an ordinal scale. Voicing is a binary feature
and can be represented in the same way as the rounding of vowels. The
features of some Finnish consonants are given in Table 10. The sim-
ilarity between i and j requires a bit of linguistic knowledge: palatal
consonants are pronounced roughly at the same place as front vowels,
and that a semivowel is like a vowel but pronounced with some fric-
tion. The numerical values for the backness of vowels and the place of
articulation for consonants seem to be on different scales. No vowels
are articulated as front as some consonants. When comparing j with
vowels, we may treat it as: tongue height 9 (more closed than any
vowel), backness 1 (i.e. front), unrounded 0, as in Table 8.

[172]

An informal discovery procedure for two-level rules

Morpho-
phoneme Heights Backnesses Roundings Penalty
aä 1,1 5,1 0,0 1
ij 7,9 1,1 0,0 1
ie 7,5 1,1 0,0 1
ie0 7,5,– 1,1,– 0,0,– 3
ao 1,5 5,5 0,1 2
a0 1,– 5,– 0,– 2

Table 11:
Penalties for differences of
phonemes in morphopho-
nemes implied by
Table 5

SgNom SgPtv SgIne PlPtv PlIne
talo+ talo+a talo+ssa talo+ja talo+issa
särö+ särö+ä särö+ssä särö+jä särö+issä
risti+ risti+ä risti+ssä riste+jä riste+issä
lovi+ love+a love+ssa lovi+0a lovi+0ssa
kala+ kala+a kala+ssa kalo+ja kalo+issa
koira+ koira+a koira+ssa koiri+0a koiri+0ssa

Table 12:
Example word forms
with added zeroes and
boundaries in alternative
(almost good) positions

Tables organised according to articulatory features reflect the
closeness of phonemes. Phonological or morphophonological alterna-
tions typically modify just one or sometimes two features of a sound
such as the voicing of a stop or the backness of a vowel. For the pur-
poses of the discovery procedures, no perfect metric is required. A
rough approximation will be sufficient if it is capable of excluding
linguistically infeasible alternations.
In Table 11, we list the numerical characteristics of the vowels

in the morphophonemes and use an ad hoc formula for computing a
penalty. For the vowel height, we use four levels: (near-)open, close-
mid, close, and semivowel. One-level difference in height, a different
backness, or rounding counts as 1 each; a bigger difference in height,
or if a zero belongs to the morphophoneme that corresponds to a dele-
tion, then it counts as 2. The total penalty of the morphophonemes in
Table 11 is 10.
Some other aligned tables may have survived whenwe filtered out

the impossible alignments. In fact, a fairly good alternative would be
the one given in Table 12. This one differs from our earlier good table
by inserting the zeroes one position later than in our earlier good alter-

[173]

Kimmo Koskenniemi
Table 13:

Penalties for differences
of phonemes in morpho-

phonemes implied
by Table 12

Morpho-
phoneme Heights Backnesses Roundings Penalty
aä 1,1 5,1 0,0 1
j0 7,– 1,– 0,– 2
i0 7,– 1,– 0,– 2
ie 7,5 1,1 0,0 1
ao 1,5 5,5 0,1 2
ai 1,7 5,1 0,0 3

native. The alignment is almost as good as the earlier one. If we add up
the penalties, as in Table 13, we get a total penalty of 11. With these
weightings, the procedure would choose the “right” solution, but in
general, we cannot select the best one on the basis of the morphopho-
nemes alone. The “almost good” solution could be used for deducing
the rules and would account for the facts. Linguistically, however, ai
is not a very attractive alternation because the components are from
the extreme ends of both the height and backness scales. Maybe the
penalty for such ought to be even higher than 3.

8 how a linguist could find
the rules for morphophonemes

The procedure has used the suitability of induced morphophonemes in
order to guide the selection of paradigm tables for the next step where
two-level rules are deduced. The procedure continues with the best
alternative (which was presented in Table 5). The morphophonemes
established in the preceding steps already define how they may be
realised on the surface level. The rules must specify in what kinds of
contexts each of the alternatives can occur. We first discuss how a
human linguist could approach the discovery of the two-level rules
needed.

We drop the pluses from our table as they are not needed in the
example we are studying (and not in many other cases either). The
alphabet of the two-level grammar is already defined through the let-
ters occurring in the example and as a consequence of the morpho-
phonemes implied by the alignment:

[174]

An informal discovery procedure for two-level rules

Alphabet a k l o r s t v ä ö aä:a aä:ä ij:i ij:j
ie:i ie:e ie0:i ie0:e ie0:0 ao:a ao:o a0:a a0:0 ;

Table 14 presents the facts about the contexts where the morpho-
phonemes occur. The pair in focus (one in each word form) is marked
with bold face. Different realisations of a morphophoneme are given
in separate columns. For the convenience of the reader, the columns
have been arranged so that the realisation with incoherent surround-
ing contexts is always in the leftmost column, whereas the realisations
which have more regular contexts are listed in the other columns.
The upper half of the middle column shows that certain stem-final

vowel morphophoneme realisations (ie:e, ie0:0, ao:o and a0:0) may
only occur before a plural affix which starts with i: or ij:. Looking
at the other columns, we see that such contexts do not occur with
the other realisations of the morphophonemes (i.e. ie:i, ie0:0, ao:a,
a0:a or ie0:i). Thus those realisations of stem-final vowels occur (ie:e,
ie0:0, ao:o and a0:0) only in this context, and this context is the only
alternative. As two-level rules:

”ie” ie:e <=> _ [i: | ij:] ;
”ie0” ie0:0 <=> _ [i: | ij:] ;
”ao” ao:o <=> _ [i: | ij:] ;
”a0” a0:0 <=> _ [i: | ij:] ;

In the rightmost column, we have one more realisation for which
we (as linguists) find a simple formulation: ie0 is realised as i at the
end of a word form. As a two-level rule:

”ie0” ie0:0 <=> _ .#.: ;

When we look (as linguists) at the distribution of the plural ij:j
alternative, we note that the stem has to end in a surface vowel. If the
end vowel disappears on the surface, then ij:j may not occur, thus:

”ij” ij:j <=> [:o | :ö | :e] _ ;

The last morphophoneme to account for is aä. Whereas the earlier
cases depended only on the immediate context, here the realisation
depends on all vowels of stem to the left. The backness of the vowels
is decisive, and we note that in the middle column there is at least

[175]

Kimmo Koskenniemi

Table 14:
Realisations of

morphophonemes
and their contexts

r i s t ie:i
r i s t ie:i aä:ä r i s t ie:e ij:j aä:ä
r i s t ie:i s s aä:ä r i s t ie:e i s s aä:ä
l o v ie0:e aä:a l o v ie0:0 ij:i aä:a l o v ie0:i
l o v ie0:e s s aä:a l o v ie0:0 i s s aä:a
k a l ao:a
k a l ao:a aä:a k a l ao:o ij:j aä:a
k a l ao:a s s aä:a k a l ao:o i s s aä:a
k o i r a0:a
k o i r a0:a aä:a k o i r a0:0 ij:i aä:a
k o i r a0:a s s aä:a k o i r a0:0 i s s aä:a
l o v ie0:0 ij:i aä:a t a l o ij:j aä:a
k o i r a0:0 ij:i aä:a s ä r ö ij:j aä:ä

r i s t ie:e ij:j aä:ä
k a l ao:o ij:j aä:a

s ä r ö aä:ä t a l o aä:a
s ä r ö s s aä:ä t a l o s s aä:a
s ä r ö ij:j aä:ä t a l o ij:j aä:a
s ä r ö i s s aä:ä t a l o i s s aä:a
r i s t ie:i aä:ä l o v ie0:e aä:a
r i s t ie:i s s aä:ä l o v ie0:e s s aä:a
r i s t ie:e ij:j aä:ä l o v ie0:0 ij:i aä:a
r i s t ie:e i s s aä:ä l o v ie0:0 i s s aä:a

k a l ao:a aä:a
k a l ao:a s s aä:a
k a l ao:o ij:j aä:a
k a l ao:o i s s aä:a
k o i r a0:a aä:a
k o i r a0:a s s aä:a
k o i r a0:0 ij:i aä:a
k o i r a0:0 i s s aä:a

[176]

An informal discovery procedure for two-level rules

one back vowel somewhere in the stem whereas in the left column no
back vowels occur, thus:7

”aä” aä:a <=> [:a | :o | :u] ?:?* _ ;

It would be difficult even for the linguist to generalise the contexts
in the leftmost column. Therefore, we say that the realisations in that
column are the default realisations of those morphophonemes. As they
are the only remaining alternatives of their morphophonemes, no rules
are needed for them.

The linguist who knows some facts about Finnish notices that the
inflectional class of risti is productive and contains plenty of nouns,
whereas that of lovi is a closed class containing fewer words. The steps
above resulted in different stem-final morphophonemes for the lexical
representations these words. The establishment of the lexical represen-
tations and the design of the corresponding rules was not affected by
the existence of two apparently-overlapping inflectional classes. When
one builds a lexicon, one must decide, for each such an ambiguous
noun, to which class it belongs in order to build an appropriate lexi-
con entry. That decision may be made by human informants (e.g., by
crowdsourcing), or by using evidence, e.g., from corpora or Internet
search engines.

9 procedure for finding short context

We have now seen how a human linguist might discover the two-level
rules according to the envisaged procedure. The formal procedure han-
dles each morphophoneme separately. The procedure could start, e.g.,
with ie and try to find a phonologically natural characterisation of
contexts such that ie:i in our data occurs in contexts of that type but
ie:e does not. If a satisfactory result is not reached, the procedure tries
to find a natural set of contexts where the other alternative ie:e may
occur but ie:i may not.
Manymorphophonological alternations are conditioned by an im-

mediate context consisting of just one or a few phonemes. Thus, the
procedure tries to find as short a context as possible which still dis-

7 In a slightly larger and thus more realistic example we would also have
forms like s i n ie0:e aä:ä and k a s t ie:i aä:a which would rule out attempts to
explain the outcome of aä on the basis of the stem-final vowel alone.

[177]

Kimmo Koskenniemi

criminates the desired realisations from all other realisations of the
morphophoneme (cf., e.g., Theron and Cloete, 1997). The procedure
starts with the full contexts for ie:i where both the left and right con-
texts are present, and we have added a word boundary symbol #:0 at
the beginning and end of the word forms:

#:0 r i s t _ #:0
#:0 r i s t _ aä:a #:0
#:0 r i s t _ s s aä:ä #:0

This disjunction of the full contexts clearly separates the occurrences
of ie:i from the other realisation (ie:e). The procedure drops charac-
ters from the outer ends as long as the disjunction still separates the
occurrences. If possible, the longer side of the context is truncated
before the shorter side. When processing the above contexts, the pro-
cedure will erase the left context altogether but one character must
be left to the right context – resulting in a context _ [#: | aä:ä | s].
The procedure does not accept this result, as it contains both vowels
and consonants and, therefore, is not acceptable on the same argu-
ments which were mentioned when the some morphophonemes were
excluded as unnatural in Section 7.
The procedure tests the other alternative ie:e, and shortens the

contexts until there is just one character left in the right context, i.e.
_ [ij:j | i]. This context is acceptable on the same grounds as the mor-
phophoneme ij itself. Some cleaning and generalisation may still be
needed as explained in the next section.

For morphophoneme realisations ie0:e, ao:a, and a0:a, the pro-
cedure fails to find a natural context which would discriminate them
from the other alternatives. For the other realisations of these mor-
phophonemes, the procedure succeeds in the same way as for ie:e.
For ie0:0, the smallest discriminating context clearly becomes _ #:0.

The contexts for the realisation ij:i would be just one character to
the left, [ie0:0 | a0:0] _, and for ij:j similarly [o | ö | ie:e | ao:o] _. If
more than one alternative explanation remains, later steps will decide
which one is preferred over the others.

[178]

An informal discovery procedure for two-level rules

10 generalising contexts

In the previous section, the procedure found two-level contexts con-
sisting of character pairs. In most cases (but not always), having both
levels is superfluous. Proper discrimination can usually be achieved
using either the lexical or surface context. Furthermore, the contexts
can (and ought to) be generalised to use whole classes of phonemes
instead of listing only those letters and combinations which happened
to be present in the examples. Both the lexical and surface contexts
are generalised first, and the choice between them is made thereafter.
The naturalness of contexts can be evaluated according to the

phonemes which occur in individual positions of contexts. Morpho-
phonemes occurring in lexical contexts are treated by splitting them
into their component letters, e.g., ao is treated as if a and o would
occur in that position of the contexts. Table 15 shows how the phono-
logical properties of one-character-long left contexts of the morpho-
phoneme ij can be summarised.

contexts for ij:j
two-level ao:o ie:e o ö Height Back Round
lexical a e i o ö 1–7 1–5 0–1
surface e o ö 5 1–5 0–1

contexts for ij:i
two-level ie0:0 a0:0 Height Back Round
lexical 0 a e i 1–7 1–5 0
surface 0 – – –
ignoring 0 Place Manner Voicing
surface r v 2–4 trill/fricative 1

Table 15:
Generalising the
one character left
context for ij:j

Using the table, the procedure observes that the lexical contexts
for the twomorphophonemes are overlapping and therefore the lexical
context is not useful, but the surface contexts are able to discriminate
between the two alternants. If we study the surface contexts, we see
that surface zeroes probably ought to be ignored, i.e. the context letter
would be the one preceding (or, respectively, following) a zero. In
this particular case, it would provide a reasonable context for ij:i, but
it does not matter because we get a better one from the alternative.

[179]

Kimmo Koskenniemi

The surface contexts in our examples for ij:j allow many vowels, and
the procedure generalises it to allow all vowels because the context
discriminates between the alternatives. This turns out to be fortunate
as further examples would bring stems ending in u or y.

Let us look back at Table 12, our second best table with zeroes and
boundaries. That one was only a bit worse when measured on the basis
of the morphophonemes it implied. The context condition for the plu-
ral ij for the best table (after generalisations) was any surface vowel.
The plural morpheme in the second best table needs two separate mor-
phophonemes instead of one, j0 and i0, and a rule for each where the
context conditions would be no simpler than in the best table. The
stem-final morphophonemes ai and ei for the second best table would
be problematic, as both surface realisations of the morphophonemes
occur in an identical surface context. Remember that we decided to
omit the explicit boundary symbol (+) for brevity. If we keep the
boundary symbol, the rules of the best table can use even the surface
context, but definitely not the rules of the second best table. With a
reasonable penalty formula for rules and their context expressions, the
best table would again get a better score than the second best.

The example of Finnish nouns was a very restricted one because
it contained no alternating consonants. Finnish is known to be a lan-
guage with a fairly complex morphophonology, and has plenty of con-
sonantal alterations as well. Consonant gradation weakens voiceless
stops k, p and t. A distance metric for consonants would be similar to
that of vowels. The place of articulation can be expressed on a scale
from 1 to 11 and the voicing with values 0 and 1 as in Table 10. The
manner of articulation often varies in the alternations. However, the
different manners are in no particular order and it is difficult to say
which manners are close to (or far away from) each other.

Let us consider a mini example of the Finnish consonant gradation
in Table 16.

Table 16:
Examples of consonant

gradation of p with added
zeroes and boundaries

SgNom SgEss SgIne SgAll
‘twig’ varpu+ varpu+na varvu+ssa varvu+lle
‘shield’ kilpi+ kilpe+nä kilve+ssä kilve+lle
‘pond’ lampi+ lampe+na lamme+ssa lamme+lle
‘stick’ keppi+ keppi+nä kep0i+ssä kep0i+lle

[180]

An informal discovery procedure for two-level rules

The procedure can readily accept the induced morphophonemes
pv, pm and p0 because they are articulated approximately in the same
place: pv in places 1–2, pm in places 1–1. The procedure aligns and
forms the morphophonemes for this mini example without problems.
Note that the direction of the change is well motivated: the stop p be-
comes a bit more like the immediately preceding phoneme r, l or m.

The task for the procedure is to find a generalised context which
would account for the occurrence of the alternative realisations.
Again, left hand context is not useful at all. The right-hand context
appears to be quite sufficient. The lexical context for the the weak
alternatives p:v, p:m, and p:0 is u s s aä, e s s aä, i s s aä or u l l e,
e l l e, i l l ewhich can be generalised as V: C: C: (i.e. a closed syllable)
without losing any discriminative power.

11 procedure for
finding harmony contexts

For the morphophoneme aä, the mechanism of finding a short con-
text fails, and the procedure knows that it has failed (cf. Table 14).
The shortening does not progress successfully, and all tentative con-
texts are unacceptable (having consonants and vowels in the same
positions).

Harmony or agreement can be detected using phonological fea-
tures. The data for this purpose is collected in Table 17, where the
vowel context or the whole preceding word form is summarised. On
the left, the word forms with different vowel configurations are listed.
In the middle, each of these vowels is represented numerically accord-
ing to Table 8. On the right, there is a summary of the set of vowels
in the word form indicating the range of tongue height, backness and
rounding for that word form.

The procedure looks at these summary ranges, and tests each of
them whether some of these ranges could be used to separate the
words where aä:ä occurs from those where aä:a occurs. Height is not
able to discriminate, and neither can rounding. Backness clearly can.
A criterion requiring that a word has at least one vowel with backness
> 1 will indicate all those contexts or words where aä:a may occur.
The procedure thus finds a positive criterion for the occurrences

of aä:a, but for aä:ä there is only a negative criterion. Thus, the pro-

[181]

Kimmo Koskenniemi
Table 17:

Harmony in
terms of tongue
height, backness
and rounding of
vowels in the
word form

aä:ä Height Back Round
särö_, säröss_, säröj_ (2,1,0), (4,1,1) 2–4 1 0–1
säröiss_ (2,1,0), (4,1,1), (7,1,0) 2–7 1 0–1
risti_ (7,1,0), (7,1,0) 7 1 0
ristej_ (7,1,0), (5,1,0) 5–7 1 0
risteiss_ (7,1,0), (5,1,0), (7,1,0) 5–7 1 0

aä:a Height Back Round
talo_, taloss_, taloj_ (1,5,0), (5,5,1) 1–5 5 0–1
taloiss_ (1,5,0), (5,5,1), (7,1,0) 1–7 1–5 0–1
love_, lovess_ (5,5,1), (5,1,0) 5 1–5 0–1
lovi_, loviss_ (5,5,1), (7,1,0) 5–7 1–5 0–1
kala_ (1,5,0), (1,5,0) 1 5 0
kaloj_ (1,5,0), (5,5,1) 1–5 5 0–1
kaloiss_ (1,5,0), (5,5,1), (7,1,0) 1–7 1–5 0–1
koira_, koirass_ (5,5,1), (7,1,0) 5–7 1–5 0–1
koiri_, koiriss_ (5,5,1), (7,1,0), (7,1,0) 5–7 1–5 0–1

cedure classifies aä:ä as the default realisation and no rule is written
for it. For aä:a the criterion can be expressed as:

”aä” aä:a <=> [:a | :o | :u] ?:?* _ ;

where the procedure generalises the backness even to u – for which
there is no example in the data.

12 finding grammatical conditions

The above methods do not handle morphophonemic alternations
which are difficult or impossible to describe using phonological con-
texts alone. Grammatical conditioning of morphophonemic alterna-
tions is a common phenomenon, though. In some languages, certain
inflectional forms are characterised by alternations in the stem rather
than by overt affixes. The alignment, adding zeroes and segmenting
possible affixes, would proceed with no special problems, but no rules
would be found.

[182]

An informal discovery procedure for two-level rules

The discovery procedure sketched above could easily be modified
to discover grammatically conditioned regularities. Suppose that we
create a special symbol for each grammatical form. We would include
an appropriate special symbol at the end of each word form. If all
other patterns for contexts fail, then those special symbols would be
tried as contexts. If the presence of certain symbols would discriminate
the occurrences of different realisations, the procedure would output
a rule of the following type:

”ae:e” ae:e <=> _ ?:?* Passive: ;

where Passive stands for such a special symbol (which is required to
be somewhere in the right context).

13 compiling and verifying the rules

Even before we have an implementation for the discovery procedure,
one can simulate the steps of the procedure manually. The result-
ing two-level rules may be compiled using the open source two-
level rule compiler HFST-TWOLC written by Miikka Silfverberg of
the HFST team at the University of Helsinki (Silfverberg and Lindén,
2009).
The table of example word forms after the addition of zeroes

and morpheme boundaries can be used for testing the (automatically
or manually produced) two-level rules by a trivial conversion script
which reads in the aligned word forms, builds the morphophonemes,
and outputs strings of character pairs suitable for the HFST-PAIR-TEST
program of the HFST suite. The file would have lines such as the fol-
lowing:

t a l o
t a l o ij:j aä:a
k a l ao:o ij:j aä:a

These lines can be input to the HFST-PAIR-TEST program which re-
ports any violations against the rules it finds in the test data. Violations
pinpoint the example word form, the position and the rule where the
mistake appears to be.
In addition to testing the obvious positive examples, one may pro-

duce a file which systematically contains negative examples, i.e. ex-

[183]

Kimmo Koskenniemi

amples derived from the correct ones but where at least one rule is
violated. Such a set of negative examples can be produced out of the
positive ones by (1) creating a transducer E which accepts the positive
examples, (2) taking its input (i.e. upper) side E.u, (3) computing the
transducer P which accepts the pair alphabet of the rules, (4) comput-
ing [E.u .o. P∗]− E and (5) listing the pair strings it accepts.

14 conclusions and future tasks

A concrete implementation of the discovery procedure would, of
course, be needed in order to draw any final conclusions. The paper is
intended to be a useful specification for implementing the process.8
One goal of the above discussion has been to explain the utility of

the phoneme-by-phoneme alignment of word forms. If an acceptable
alignment is reached, then the establishment of lexical representations
is trivial and the induction of rules is fairly simple. Different types
of (morpho)phonological phenomena may need specialised functions
which can be added in a modular fashion. The two-level grammars
that the procedure creates can cope with some phenomena which of-
ten cause problems for linguists when they are writing rules:
• Interactions do not occur between rules, except that one has to pro-
cess the realisations of each morphophoneme together so that the
morphophoneme leaves just one of its surface realisations with-
out a rule (as the default realisation). The inference of each rule
is entirely independent of the form (or existence) of other rules.
• Epenthesis (where surface phonemes have no counterpart in the
lexical representation) never occurs. Instead, the alignment pro-
duces a morphophoneme, e.g., e0 if a vowel e is inserted to re-
solve a complex consonant cluster. Technically, epenthesis is re-
duced to normal correspondences. (Rules for epenthesis are tricky
in some formalisms.)
• Overlapping or inclusive contexts. Finnish consonant gradation has
one such example with the weak counterparts of k. A single k is
normally deleted in the weak grade (koko – koon), but in some

8There are suitable open source tools available which support the algebra of
weighted finite-state transducers and which could be used for implementing the
discovery procedure, see, e.g., Lindén et al. (2011).

[184]

An informal discovery procedure for two-level rules

words it alternates with v (puku – puvun) and between identical
vowels preceded by a long vowel it is spelled as an apostrophe
(raaka – raa’an). The alignment produces three different mor-
phophonemes (k0, kv and k’) for these cases and the rule discov-
ery notices no problems at all.
• All conditions for a certain surface realisation of a morphopho-
neme are represented using a single rule. In this way, the rest of
the sources for rule interactions are avoided. It should be noted
that some natural phonological contexts may consist of disjoint
parts. The above discussion did not cover such cases. Combina-
tions of contexts can be expressed using multiple context parts in
the two-level rules (provided that each context part can be dis-
covered separately), but the discovery of rules needing multiple
contexts is not discussed in this paper.
Some simplicity and computational feasibility was gained by

adopting the above framework (with many morphophonemes) at a
price of losing some linguistic elegance. The procedure moves a part
of the complexity of the morphophonology from the rules into the
lexical representations. The rules need not bother with all possible re-
alisations of an underlying phoneme because, instead of a phoneme,
there is a morphophoneme which specifies exactly what the alterna-
tives are. It should be noted that the above procedure (and the two-
level rules in general) appear to work best with phonemic alphabets.
Conventional orthographies may be quite different from their pro-
nunciation and thus complicate rule discovery. Furthermore, isolating
languages like Chinese or Vietnamese have little morphophonology
to be discovered by any procedure. In some European languages,
the morphophonological rules play a minor role. Thus, the proposed
procedure might be most useful in languages with plenty of regular
phonological alternations.

The tractability of the procedure is not obvious, even if we assume
that the table of examples is well chosen. Some care has been taken
in order to restrict the searching sufficiently so that the complexity of
the computation would not explode. It seems to be useful to fix the
assumptions concerning the stem and affix lengths before one starts
finding appropriate places for the zeroes. Similarly, it seems useful to
check for rough compatibility before generalising any contexts. These

[185]

Kimmo Koskenniemi

and other similar precautions do not affect the end result, but may
help in finding the solutions reasonably fast.
A linguist would probably like to merge similar or related mor-

phophonemes. Good candidates for merging would be morphopho-
nemes which have a default realisation in common. Merging usually
requires some revision of the corresponding two-level rules. It appears
to be fairly straightforward to check whether such mergers can be
done while keeping the revised rules simple and deducible. The cri-
teria used for deducing single rules apply as such for the merging of
rules. Such generalisations would make the lexical representations of
morphemes and affixes simpler while remaining fully equivalent with
the initial version. These tasks and questions may possibly be studied
and solved by future work, as well as by the elaboration and tuning
of the penalty scores for rules.

references
Kenneth R. Beesley and Lauri Karttunen (2003), Finite State Morphology,
Studies in Computational Linguistics, 3, University of Chicago Press, additional
info, see: www.stanford.edu/~laurik/fsmbook/home.html.
Erwin Chan (2008), Structures and Distributions in Morphology Learning, a
dissertation in Computer and Information Science, University of Pennsylvania.
Mathias Creutz and Krista Lagus (2004), Induction of a Simple Morphology
for Highly-Inflecting Languages, in Proceedings of the Seventh Meeting of the ACL
Special Interest Group in Computational Phonology, pp. 43–51, Association for
Computational Linguistics, Stroudsburg, PA, USA.
Daniel Gildea and Daniel Jurafsky (1995), Automatic induction of finite
state transducers for simple phonological rules, in Proceedings of the 33rd annual
meeting on Association for Computational Linguistics, pp. 9–15, Association for
Computational Linguistics, Cambridge, Massachusetts.
John Goldsmith (2006), An Algorithm for the Unsupervised Learning of
Morphology, Natural Language Engineering, 12(4):353–371.
Sharon Goldwater and Mark Johnson (2004), Priors in Bayesian Learning
of Phonological Rules, in Proceedings of the Seventh Meeting of the ACL Special
Interest Group in Computational Phonology, pp. 35–42, Association for
Computational Linguistics, Stroudsburg, PA, USA.
Mans Hulden (2009), Foma: a Finite-State Compiler and Library, in
Proceedings of the Demonstrations Session at EACL 2009, pp. 29–32, Association
for Computational Linguistics, Stroudsburg, PA, USA,
http://www.aclweb.org/anthology/E09-2008.

[186]

www.stanford.edu/~laurik/fsmbook/home.html
http://www.aclweb.org/anthology/E09-2008

An informal discovery procedure for two-level rules

Mans Hulden, Iñaki Alegria, Izaskun Etxeberria, and Montse
Maritxalar (2011), Learning word-level dialectal variation as phonological
replacement rules using a limited parallel corpus, in Proceedings of EMNLP
2011, Conference on Empirical Methods in Natural Language Processing,
DIALECTS’11, Association for Computational Linguistics, Stroudsburg, PA, USA.
Mark Johnson (1984), A Discovery Procedure for Certain Phonological Rules,
in Proceedings of the 10th International Conference on Computational Linguistics
and 22nd Annual Meeting of the Association for Computational Linguistics,
pp. 344–347, Association for Computational Linguistics, Stroudsburg, PA, USA,
http://www.aclweb.org/anthology/P84-1070.
Lauri Karttunen (1993), Finite-state Constraints, in Proceedings of the
International Conference on Current Issues in Computational Linguistics, June
10–14, 1991. Universiti Sains Malaysia, Penang, Malaysia, pp. 173–194.
Lauri Karttunen and Kenneth R. Beesley (2001), A short history of
two-level morphology,
http://www.helsinki.fi/esslli/evening/20years/twol-history.pdf.
Lauri Karttunen, Kimmo Koskenniemi, and Ronald M. Kaplan (1987),
A compiler for two-level phonological rules, in M. Dalrymple, R. Kaplan,
L. Karttunen, K. Koskenniemi, S. Shaio, and M. Wescoat, editors, Tools
for Morphological Analysis, volume 87-108 of CSLI Reports, pp. 1–61, Center for
the Study of Language and Information, Stanford University, Palo Alto,
California, USA.
Laura Kataja and Kimmo Koskenniemi (1988), Finite-state Description of
Semitic Morphology: A Case Study of Ancient Accadian, in COLING Budapest:
Proceedings of the 12th Conference on Computational Linguistics, pp. 313–315,
Association for Computational Linguistics, Stroudsburg, PA, USA,
http://aclweb.org/anthology-new/C/C88/C88-1064.pdf.
Grzegorz Kondrak (2002), Algorithms for Language Reconstruction, Ph.D. thesis,
University of Toronto.
Kimmo Koskenniemi (1983), Two-level Morphology: A General Computational
Model for Word-Form Recognition and Production, number 11 in Publications,
University of Helsinki, Department of General Linguistics.
Kimmo Koskenniemi (1984), A General Computational Model for Word-Form
Recognition and Production, in Proceedings of COLING-84, 2–4 July 1984,
Stanford University, California, pp. 178–181, Association for Computational
Linguistics, Stroudsburg, PA, USA.
Kimmo Koskenniemi (1991), A Discovery Procedure for Two-level Phonology,
in L. Cignoni and C. Peters, editors, Computational Lexicology and
Lexicography: Special Issue Dedicated to Bernard Quemada, volume VI:I, Giardini
editori e stampatori in Pisa, Pisa, Italy.

[187]

http://www.aclweb.org/anthology/P84-1070
http://www.helsinki.fi/esslli/evening/20years/twol-history.pdf
http://aclweb.org/anthology-new/C/C88/C88-1064.pdf

Kimmo Koskenniemi

Krister Lindén, Erik Axelson, Sam Hardwick, Tommi A. Pirinen, and
Miikka Silfverberg (2011), HFST – Framework for Compiling and Applying
Morphologies, in C. Mahlow and M. Piotrowski, editors, Systems and
Frameworks for Computational Morphology 2011 (SFCM-2011), volume 100 of
Communications in Computer and Information Science, pp. 67–85, Springer-Verlag.
Tom M. Mitchell (1982), Generalization as search, Artificial Intelligence,
18(2):203–226.
Kemal Oflazer, Sergei Nirenburg, and Marjorie McShane (2001),
Bootstrapping morphological analyzers by combining human elicitation and
machine learning, Computational Linguistics, 27(1):59–85.
Kemal Oflazer and Sergei Nirenburg (1999), Practical Bootstrapping of
Morphological Analyzers, in Proceedings of Computational Natural Language
Learning (CoNLL99). Workshop at EACL’99, pp. 143–146, Springer-Verlag.
José Oncina, Pedro García, and Enrique Vidal (1993), Learning
subsequential transducers for pattern recognition interpretation tasks, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(5):448–458.
Miikka Silfverberg and Krister Lindén (2009), Conflict Resolution Using
Weighted Rules in HFST-TWOLC, in Proceedings of the 17th Nordic Conference of
Computational Linguistics, NODALIDA 2009, pp. 174–181, Northern European
Association for Language Technology (NEALT),
http://hdl.handle.net/10062/9752.
Pieter Theron and Ian Cloete (1997), Automatic Acquisition of Two-Level
Morphological Rules, in Fifth Conference on Applied Natural Language Processing
Proceedings of the Conference, pp. 103–110, Association for Computational
Linguistics.
David Touretzky, Gillette Elvgren, and Deirdre W. Wheeler (1990),
Phonological rule induction: An architectural solution, in Proceedings of the 12th
Annual Conference of the Cognitive Science Society (COGSCI-90), pp. 348–355,
Cognitive Science Society.
David Yarowsky and Richard Wicentowski (2000), Minimally supervised
morphological analysis by multimodal alignment, in Proceedings of the 38th
Annual Meeting on Association for Computational Linguistics: Hong Kong,
Association for Computational Linguistics.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[188]

http://hdl.handle.net/10062/9752
http://creativecommons.org/licenses/by/3.0/

	Introduction
	Past work
	Simplified two-level morphophonology
	Choosing a paradigm of selected lexemes and forms
	Lengths of the stems and affixes
	Positions of the zeroes and partitioning the word forms
	Morphophonemes and the representation of morphemes
	How a linguist could find the rules for morphophonemes
	Procedure for finding short context
	Generalising contexts
	Procedure for finding harmony contexts
	Finding grammatical conditions
	Compiling and verifying the rules
	Conclusions and future tasks

