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Abstract

Acyl chain remodeling in lipids is a critical biochemical process that plays a central role in disease. However, remodeling
remains poorly understood, despite massive increases in lipidomic data. In this work, we determine the dynamic network of
ethanolamine glycerophospholipid (PE) remodeling, using data from pulse-chase experiments and a novel bioinformatic
network inference approach. The model uses a set of ordinary differential equations based on the assumptions that (1) sn1
and sn2 acyl positions are independently remodeled; (2) remodeling reaction rates are constant over time; and (3) acyl
donor concentrations are constant. We use a novel fast and accurate two-step algorithm to automatically infer model
parameters and their values. This is the first such method applicable to dynamic phospholipid lipidomic data. Our inference
procedure closely fits experimental measurements and shows strong cross-validation across six independent experiments
with distinct deuterium-labeled PE precursors, demonstrating the validity of our assumptions. In constrast, fits of
randomized data or fits using random model parameters are worse. A key outcome is that we are able to robustly
distinguish deacylation and reacylation kinetics of individual acyl chain types at the sn1 and sn2 positions, explaining the
established prevalence of saturated and unsaturated chains in the respective positions. The present study thus
demonstrates that dynamic acyl chain remodeling processes can be reliably determined from dynamic lipidomic data.
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Introduction

Lipids are fundamental building blocks of cellular membranes

and are also essential for signal transduction, energy homeostasis,

and many other cellular processes. Recent advances in mass-

spectrometry have made large-scale quantification of lipidomes

possible [1,2] and have revealed an unprecedented diversity of

lipid species [3–5]. Such lipidomics data provide an enormous

amount of information, which should eventually lead to under-

standing of the mechanisms underlying lipid homeostasis and its

impact on cellular functions.

Glycerophospholipids are the dominant lipids in mammalian

membranes and are comprised of a glycerol moiety, a polar head

group linked via a phosphate to the sn3 position of the glycerol

moiety as well as an acyl chain esterified to the sn1 and the sn2

positions [6]. The hydrocarbon chain in the sn1-position can also

be linked to the glycerol moiety via an alkyl or alkenyl ether bond.

Because of these variations as well as the variation of the length

and number of double bonds, glycerophospholipids comprise a

great number of molecular species. The molecular species

composition is regulated by biosynthesis, turnover and acyl chain

remodeling (i.e. the Land’s cycle [7]), mediated by phospholipases

and acyltransferases or transacylases. Distortions of the molecular

species distributions can lead to severe pathophysiological

consequences and altered lipid distributions have been found in

many diseases such as Barth Syndrome, heart failure, type 2

diabetes, and several types of cancer [8–12]. Understanding of

these distortions is a crucial problem, for cell and developmental

biology, potential diagnostics and treatments, and nutrition [13].

The mechanisms by which lipid composition influences human

diseases in most cases remain to be elucidated, though lipids have

common roles in membrane structure, membrane trafficking,

regulation of membrane proteins, and cellular architecture [13].

For example, it was recently shown that obesity increases

arachidonic acid in membrane phospholipids, and that subsequent

lipid remodeling retargets arachidonic acid to ether lipids. This

process is believed to make adipocytes more vulnerable to

inflammation [14].

Traditionally, the acyl remodeling process has been studied by

addressing the specificity of individual enzymes in vitro using a

limited number of substrate species [15–18]. The recent advances

in lipidomics suggest that deeper understanding could be obtained
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by applying novel data-mining approaches to lipidomic data, but it

remains a challenge to accurately infer the remodeling processes

from these complex datasets. Some aspects of acyl remodeling

have been revealed by computational approaches. For example,

the molecular species composition of cardiolipin can be closely fit

by a model in which the four cardiolipin acyl chains are remodeled

independently and identically [11,19,20]. But the picture is

incomplete as the fit breaks down in the case of cancerous tissues

and may also be distorted by cell culture conditions [19]. Pulse-

chase time course experiments [21,22] would be superior for

determining remodeling mechanisms, but currently there are no

computational methods to infer the processes and their associated

kinetic parameters from lipid time course data.

In particular, pulse-chase experiments with isotope-labeled

precursors (such as choline or ethanolamine) should provide

superior information to steadystate measurements [23–25], but the

interpretation of pulse-chase experiments is complicated by

simultaneous labeling of a multitude of molecular species already

during the pulse. To avoid this complication, we recently devised a

novel approach that allows one to study metabolism of individual

phospholipid species in unprecedented detail [21]. A multitude of

PE or PS species with a deuterium-labeled head group were

synthesized and introduced to cultured cells using cyclodextrin-

mediated transfer, and the metabolism of the species in time was

monitored by electrospray ionization mass spectrometry. While

the PE and PS species similar or identical to endogenous species

were hardly remodeled (as expected), those not present endoge-

nously were rapidly remodeled at both the sn1 and sn2 position,

eventually yielding a molecular species profile similar to that the

endogenous PE and PS. Major differences in remodeling pathways

and kinetics were observed between the species within a class, as

well as between corresponding PE and PS species. However, due

to complexity of the data, the contributions of the alternative

remodeling pathways could be only roughly estimated.

To more effectively analyze this type of data, we have now

constructed a novel predictive method for determining the lipid

remodeling network and its parameter values. We demonstrate the

usefulness of this approach by analyzing data from pulse-chase

experiments with 6 different exogenous phosphatidylethanolamine

precursors, i.e. 14:0-14:0, 14:1-14:1, 18:3-18:3, 18:0-18:1, 18:1-

18:1, 18:0-22:6 [21].

Results

Our model assumes that (1) sn1 and sn2 acyl positions are

independently remodeled, (2) remodeling reaction rates do not

vary over time and (3) the concentrations of the acyl donors are

constant. These assumptions, which are based on previous findings

on acyl remodeling of phosphatidylethanolamine, phosphatidyl-

choline and cardiolipin [19,20,26], allowed us to model the system

using a simplified framework with a small number of parameters.

We have developed a two-step algorithm to automatically

determine and solve for key remodeling parameters. This

algorithm consists of a flux analysis step to construct and simplify

the remodeling network, followed by a B-spline-based parameter

inference step that optimally solves the ordinary differential

equations governing the system.

We analyzed a set of 6 separate pulse-chase experiments carried

out previously (see Methods and [21]). In those experiments

exogenous PE species with a deuterium-labeled head group were

introduced to BHK21 cells for 1 hour using a cyclodextrin carrier

and the cells were then chased for 24 h. During the chase, a

number of new PE species were generated due to extensive acyl

remodeling as revealed by ESI-MS analysis. The exogenous PE

precursors studied were 14:0-14:0, 14:1-14:1, 18:3-18:3, 18:0-22:6,

18:0-18:1 and 18:1-18:1. The data for each of these experiments

were analyzed using a two-step procedure outlined in Figure 1. In

this procedure, data from individual pulse chase experiments are

used for (1) network inference of acyl remodeling reactions and (2)

inference of parameter values for these reactions.

Inference of the remodeling correlation network
We consider the PE remodeling system as a chemical reaction

network, defined by a finite directed graph G~(V ,E), where V is

the set of vertices consisting of PE molecular species,

S~ S1,S2, � � � ,Snf g, and E is the set of edges, each representing

a remodeling reaction converting source species to target species.

Each edge associates with a remodeling reaction rate that depends

on the remodeled chain only. Here we use the sn1 and sn2

position independence assumption [26] so that any two connected

PE species differ at only one position. Figure 2 (A) shows the full

remodeling network for the 18:3-18:3 PE precursor. There can be

up to n1n2(n1zn2{2) edges in the full network where n1 and n2

represent the number of sn1 and sn2 chain types, though in

practice we do not count edges to PE species that are not

experimentally observed as part of the full network. Parameter

inference on the full network of interactions would be very slow

and is likely to lead to over-fitting.

Remodeling in cells is likely to proceed primarily through a

subset of the possible edges in the full network. The first step

toward the identification of the dominant remodeling pathways

was taken in ref. [21], where the unimportant edges in the full

network were eliminated by manually examining the changes in

PE species concentrations over time. Here, we extend and

automate this process using a fast and accurate correlation

network algorithm that reduces the complexity of the full network.

Briefly, the algorithm iteratively cycles through candidate

‘‘source’’ and ‘‘target’’ species and examines whether the

concentration of the source species is inversely correlated to the

sum of the concentrations of the target species. The significance of

each connection is calculated using a standard t-test, which can be

used to set a threshold for connections. Figure 2 (B) shows the

output of the algorithm for the 18:3-18:3 precursor experiment

(threshold significance level p~0:3) including correlation score

and the evidence time interval for each connection. We observed

that results are relatively insensitive to the choice of significance

level (See Methods).

Figure 2 (C) shows the reduced bidirectional correlation

network for the 18:3-18:3 precursor experiment (See Supporting

Information S1 for results for the other precursors). As can be

seen, a large component of the flux involves the conversion of

18:3-18:3 to 18:1-18:3 and the conversion of the latter to 18:1-

18:1. This suggests that remodeling of 18:3 at the sn1 position is

faster than at the sn2 position. Similarly, in the 14:1-14:1

precursor experiment, the 14:1-14:1 precursor is first converted

at the sn1 position to become 18:1-14:1 and then at the sn2 to

become 18:1-18:1 (Supporting Information S1). However, the

major path of the 14:0-14:0 experiment differs (Supporting

Information S1). 14:0-14:0 is first converted at the sn2 to become

14:0-18:1 and then to 18:1-18:1. An open question is whether the

remodeling mechanisms can still be the same in these experiments,

and how the apparent differences in sn1 and sn2 ordering can be

explained. These points will be addressed below.

Dynamic simulation
Once a correlation network has been inferred for a given

experimental timecourse, the behavior of the system can be

forward simulated using ordinary differential equations (ODEs)

PE Dynamics
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determined by the reduced bidirectional correlation network.

??Table 1 shows the dynamical system governing the 18:3-18:3

experiment reactions (See Figure 2 (C) for a graph of the network).

To infer the values of the parameters in the correlation network,

we implemented an expectation-maximization-like B-Spline algo-

rithm in which parameter values are updated iteratively to

minimize an objective error function [27] subject to the constraint

that the solution satisfies the ODEs that govern the system (See

Methods).

Figure 1. Schematic of the complete inference procedure for determining phospholipid remodeling processes. The procedure is based
on two steps using lipid mass spectrometry values: (1) Network inference of the possible acyl remodeling reactions. This yields a simplified
remodeling network from the theoretically possible full remodeling network; and (2) Dynamic simulation of the remodeling processes at potential
parameter values to fit the lipid mass spectrometry data using the simplified remodeling network. The space of potential parameter values is
searched to find the values that best fit the data.
doi:10.1371/journal.pone.0050858.g001

Figure 2. Full PE remodeling network and reduced network based on flux analysis. The full PE remodeling network of 18:3-18:3 pulse-
chase experiment consists of all possible acyl chain exchange reactions between lipid species at any time t, assuming sn1 and sn2 positions are
independently remodeled (A). The simpler remodeling network (C) inferred from flux analysis (B) can be adequate for fast and accurate determination
of the system. Flux analysis identified reactions with significant evidence that one species converts to the other. A large portion of flux in (B) involves
18:3-18:3 converted to 18:1-18:3 and then converted to 18:1-18:1, according to the edge correlation score (Equation 2) and evidence time range in
brackets.
doi:10.1371/journal.pone.0050858.g002
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Figure 3 shows the fit results for each of the six experiments. For

these datasets, we observed that parameter values generally

converged within 1000 iterations (See Supporting Information

S1). As can be seen, the simulation curves closely fit the

experimental data, suggesting that the models accurately describe

the PE remodeling system. As a control, we repeated the inference

procedure on nonsense data generated by permuting labels on the

PE species. For the label-permuted data, we saw that fits were

systematically worse. Examples of fits for label-permuted data are

shown in Figure 4 for the 18:3-18:3 and 14:0-14:0 precursor

experiments. We also observed that the inferred parameters

displayed much larger variation across iterations in these cases

than for the real data (Supporting Information S1). More

generally, for each experiment except the 18:0-18:1 precursor

experiment we performed random label permuting of the data 100

times and compared the quality of the fit to that found for the real

data. The 18:0-18:1 precursor experiment was not used because

the original data contains only 2 lipid species. For three of the

experiments (14:0-14:0, 14:1-14:1, 18:3-18:3) we observe that the

real data is systematically better fit by our procedure than the

permuted datasets, as shown in Figure 5 (left). The mean and

standard deviation of the error function are shown across 100

permutations for each of the experimental sets. The fit error for

the real data is also lower than the average error for the 18:0-22:6

and 18:1-18:1 experiments, though this effect is weaker than for

the other experiments.

In addition, we observed that fits were systematically worse

when we used parameters other than those that were found in the

correlation network inference step. We observed that when we

removed the parameters corresponding to the major reactions (sn1

precursor?18:1) and (sn2 precursor?18:1) and added in random

parameters to replace them, the fit procedure converged on worse

error values. This is shown in Figure 5 (right). These findings

demonstrate that the close fits for the real data were not due to

overfitting. We note also that it is important to use bidirectional

reactions rather than only the 1-way processes observed in the

network inference step (See Supporting Information S1). A list of

all inferred parameters in all experiments is given in Supporting

Information S1.

Deacylation and reacylation at sn1
Since the same cell line is used in all experiments, we

hypothesized that the inferred remodeling parameters should be

the same in all experiments, and if so this would support the

accuracy of our inference procedure. Primary conversions, i.e.

those involving acyl flux from an acyl chain found in the PE

precursor, should have the most reliable inferred parameter

values. This is due to their high initial abundance in each

experiment and the large changes in the precursor concentration

over time. Therefore we focused on comparisons of the primary

effect parameter values across the experiments. Table 2 shows the

primary effect parameter values inferred in each experiment.

Remarkably, the individually solved remodeling mechanisms

from the six experiments show strong consistencies, suggesting that

our model correctly describes the behavior of the biological

system. For example, the sn1 18:0 to 18:1 conversion rates inferred

from the two precursor experiments (18:0-22:6 and 18:0-18:1) are

consistent (0:0673 and 0:07 respectively). While conversion rates

were dependent on the initial chain and the new chain, we

observed certain regularities. For example, chains convert at

varying rates to 18:1 at the sn1 position. The fastest converting

chain is 14:1 and the slowest is 18:0, with overall order

14:1w18:3w14:0w18:0 (relative rates 0:5903, 0:2500, 0:0889,

0:07). Since all of these chains are being converted to the same

product, rates must differ because of differences in deacylation

rate. 14:1 is the most rapidly deacylated sn1 chain while 18:0 is the

one most slowly deacylated. Analogously, when we examined the

rates associated with conversion to 18:0 at the sn1 position, we saw

that 14:1 deacylated the fastest, just as we saw that 14:1 deacylated

the fastest in conversions to 18:1. In fact, the 18:1 column and the

18:0 column both have (14:1, 18:3, and 14:0) as their three fastest

deacylating chain types. This suggests that the same deacylation

processes are active in all experiments and that our method is

accurately detecting them.

We observed a similar effect with reacylation. To determine

whether the reacylation rate is also dependent on the chain type,

we examined the relative rates of sn1 chain conversion to 18:1,

18:0 and 16:1. For the 14:0-14:0, 14:1-14:1, and 18:3-18:3 PE

precursors, the ratios of the conversion rates of the sn1 precursor

to 18:1, 18:0 and 16:1 were 1 : 0.1 : 0.29, 1 : 0.18 : (no data), and 1

: 0.26 : 0.24, respectively. Thus these ratios are relatively robust.

(Normalization by the precursor-to-18:1 rate is necessary to

account for differences in the deacylation rate of the precursors)

This behavior indicates that common mechanisms are active in

separate precursor experiments. Therefore, cross-validation using

independent precursors should be generally effective for deter-

mining model robustness. The observed consistency of rates also

indicates the accuracy of our methodology.

Table 1. Differential equation model for PE dynamic remodeling.

Production from other species Conversion to other species

d½18:3{18:3�
dt

= k6½18 : 0{18 : 3�zk7½18 : 1{18 : 3�zk8½16 : 1{18 : 3� {k2½18 : 3{18 : 3�{k3½18 : 3{18 : 3�{k4½18 : 3{18 : 3�

d½16:1{18:1�
dt

= k1½16 : 1{18 : 3� {k5½16 : 1{18 : 1�

d½16:1{18:3�
dt

= k2½18 : 3{18 : 3�zk5½16 : 1{18 : 1� {k1½16 : 1{18 : 3�{k8½16 : 1{18 : 3�

d½18:0{18:1�
dt

= 0

d½18:1{18:1�
dt

= k1½18 : 1{18 : 3� {k5½18 : 1{18 : 1�

d½18:0{18:3�
dt

= k4½18 : 3{18 : 3� {k6½18 : 0{18 : 3�

d½18:1{18:3�
dt

= k3½18 : 3{18 : 3�zk5½18 : 1{18 : 1� {k1½18 : 1{18 : 3�{k7½18 : 1{18 : 3�

Shown are the ODEs for the 18:3-18:3 remodeling system, according to the correlation network in Figure 2 (C). The reaction parameters k are unknown a priori. They
depend on the sn1/sn2 position, initial chain type, and product chain type.
doi:10.1371/journal.pone.0050858.t001
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More generally, we were able to distinguish deacylation and

reacylation rates and determine relative rates for different chain

types by integrative analysis of the combined data using the steady

state approximation for the concentrations of reaction intermedi-

ates (See Methods). For example, by normalizing the fitted sn1

kinetic parameters in Table 2 to 18:1, which is the fastest

converted chain type, we obtain that on average, the sn1

reacylation rates have the order 18:1w16:1w18:0 (1 : 0:27 :

0:21 – see Supporting Information S1). Reacylation rates are

controlled by the abundance of the given chain type in the donor

lipid pool, and selectivity is determined by the acyltransferases/

transacylases involved. We observe that the deacylation rates

decrease in the order 14:1w18:3w14:0w18:0w18:1 (1 : 0:46 :

0:15 : 0:12 : 0:03 – see Supporting Information S1), reflecting the

specificity of phospholipase A1. Thus unsaturated chains are

removed faster from the sn1 position than saturated ones, which at

least in part explains why saturated chain types are enriched at

sn1. Consistent with our previous suggestion [21], removal of 18:1

from the sn1 position is considerably slower than that of other

acyls such as 14:0 and 18:3. For more detail on calculation of

Figure 3. Fit of dynamic simulations for six pulse-chase experiments. Precursors are 14:0-14:0 (A), 14:1-14:1 (B), 18:3-18:3 (C), 18:0-22:6 (D),
18:0-18:1 (E) and 18:1-18:1 (F). Simulations (curve) are in good quantitative agreement with measurements (dots and bars indicate mean and standard
error of the mean across replicates). The errors (Equation 8) between prediction and observation are 387, 1064, 2680, 753, 262, and 118 respectively.
doi:10.1371/journal.pone.0050858.g003

Figure 4. Permutation test result. To examine the robustness of the model, we randomly permuted species labels of the data and used them to
solve dynamic system defined by the original data. Shown here are results for the 18:3-18:3 (a) and 14:0-14:0 (b) experiments as examples. As can be
seen, the fitting performances are much worse than for the original data, with larger error 5221 compared to original 2680 (a) and 458 compared to
original 387 (b). The curves are simulations and the dots are randomly permuted data.
doi:10.1371/journal.pone.0050858.g004

PE Dynamics
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deacylation and reacylation rates, see Method and Supporting

Information S1.

Deacylation and reacylation at sn2
Robust deacylation and reacylation rates were also found for the

sn2 position, although there were less data than for the sn1

position. For example, the relative conversion rate of 14:0 to 18:1

vs. 18:2 was 1 : 0:29 (See Table 2 and Methods). This ordering is

in agreement with the conversion rates of precursors having 14:1

at the sn2, i.e. conversion to 18:1 was preferred to 18:2 in a ratio of

1: 0:71. Based on the integrative analysis described above, we

determined that the deacylation rates of different chain types

decrease in the order 14:0w14:1w22:6w18:3 (1 : 0:27 : 0:14 :

0:1). It is interesting to note that the saturated or monounsaturated

chains are removed faster than polyunsaturated ones, thus

providing a possible explanation why the sn2 position is enriched

in polyunsaturated acyl chains. Removal of 18:1 from the sn2

position also appears to be slower than that of 14:0 and 14:1. An

unexpected observation is that the sn2 22:6 chain of 18:0-22:6 PE

precursor converts to 20:4 much faster than to 18:1. This conflicts

with the reacylation rates predicted from the behavior of a 14:1

chain at sn2, which is replaced by 18:1 twice as fast as by 20:4 in

the 14:1-14:1 precursor. This phenomenon is worth further

investigation as it may indicate a cooperative interaction between

sn1 and sn2 chain remodeling.

We also observed consistencies in secondary effect parameters.

For instance, the sn1 16:1 to 18:1 conversion rate was found to be

0:0395 for the 14:0-14:0 precursor and 0:0358 for the 18:1-18:1

Figure 5. Comparison of fits for the DLipid Procedure on real data to fits for random data or random parameter sets. (Left) Error
values for fits to real data (blue) and random label permuted data (red, average and stddev from 100 runs) for 5 separate experimental datasets.
(Right) Error values for fits using the parameter set learned in the network inference step of DLipid (blue) and for parameter sets perturbed from this
set (green). In the perturbation, parameters for the major reactions sn1 precursor-to-18:1 and sn2 precursor-to-18:1 parameters are deleted and
random parameters are added in to replace them, and then inference is performed using this modified parameter set.
doi:10.1371/journal.pone.0050858.g005

Table 2. Remodeling rate parameters from six independent experiments.

Experiment precursor new sn1 chain new sn2 chain

Initial
chain 18:1 18:0 16:1 16:0

Initial
chain 18:1 18:2 16:1 20:4

14 : 0{14 : 0 14:0 0.0889 0.0166 0.0261 - 14:0 0.5176 0.1520 - -

14 : 1{14 : 1 14:1 0.5903 0.1083 - - 14:1 0.1400 0.0998 0.1153 0.0769

18 : 3{18 : 3 18:3 0.2500 0.0650 0.0589 - 18:3 0.0555 - - -

18 : 0{22 : 6 18:0 0.0673 - - - 22:6 0.0724 - - 0.1146

18 : 0{18 : 1 18:0 0.0700 - - - 18:1 - - - -

18 : 1{18 : 1 18:1 - 0.0019 0.0072 0.0041 18:1 - 0.0029 - -

Inferred remodeling rate parameters from six independent experiments. A ‘‘-’’ indicates unmodeled reactions either due to missing species or low flux in the
experiment. The sn1 18:0 to 18:1 rate parameters inferred from two precursor experiments are similar: 0.0673 and 0.07 for the respective 18:0-18:1 and 18:0-22:6
experiments. The sn1 rate parameters of the first row have ratios 1:0.19:029, similar to ratios in the second row 1:0.18:- and third row 1:0.26:0.24. This indicates that the
relative reacylation rates of 18:1, 18:0, and 16:1 are consistently ranked across experiments. Likewise, by comparing values within a column, we can determine relative
deacylation rates, i.e. 14:1w18:3w14:0 at ratios 6.58:3:1 at the sn1 position. Analogous behavior was also observed for the sn2 position (See Supporting Information S1
for details).
doi:10.1371/journal.pone.0050858.t002
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precursor. Also, the sn2 18:2 to 18:1 conversion rates were

determined to be 0:0388 for the 14:0-14:0 precursor and 0:0396
for the 18:1-18:1 precursor. Since these inferences are based on

conversions from lower abundance acyl species not originating in

any precursor, they may be more sensitive to experimental errors.

Future experiments with precursors having sn1 16:1 or sn2 18:2

would be beneficial to determine the accuracy of the approach for

secondary rate parameters.

Discussion

Due to the complexity of lipid remodeling and the lack of

previous computational tools, quantitative interpretations of

lipidomic data have been rare [1]. In this work, we have presented

the first method for inferring the processes and kinetic parameters

of phospholipid remodeling from lipidomic data. This method

required two steps: network structure inference using a fast

correlation analysis step, and inference of kinetic parameters

through an efficient B-Spline based optimization approach for

fitting the dynamical system. This work provides a significant

advance compared to previous lipidomic data mining approaches

for acyl chain remodeling, which focused on steady-state systems

[19] or were based on dynamic simulations without an explicit

method for parameter inference [20]. These acyl chain remodeling

studies are complementary to works addressing metabolic fluxes

between classes of lipids with different head groups [28,29].

By applying our new method, we have revealed a number of

important facts about lipid remodeling. We have shown that 18:1

is the predominant reacylated acyl chain at both sn1 and sn2

positions, consistent with previous findings [21]. We were also able

to determine the deacylation and reacylation rates of different

types of acyl chains. For example, we found that unsaturated

chains are cleaved off more rapidly than saturated ones at the sn1

position (14:1w18:3w14:0w18:0), while at the sn2 position

saturated chains are more quickly removed (14:0w14:1). These

data explain why saturated acyl chains are predominant in the sn1

position and unsaturated chains are predominant in the sn2

position of diacyl glycerophospholipids.

To appreciate the importance of the computational modeling

approach we have developed, it is useful to compare the results

with those that would have been deduced by empirical observation

of the data. Figure 6 shows the distribution of acyl chains at the

sn1 position of PE at the final time point in each experiment,

normalized by the amount of 18:1 at the sn1 position (See also

Supporting Information S1). This is when the experiments have

had the most time to equilibrate, so if similar remodeling processes

are occurring in each experiment we would expect the acyl

distributions to be similar. However, we observe that there are still

substantial residual effects from the precursors. The most salient

effects are that there are much larger amounts of 18:0 at the sn1

position in the 18:0-22:6 and 18:0-18:1 precursor experiments

than in the other precursor experiments. Under purely empirical

interpretation, this precursor bias might lead one to believe that

remodeling processes differ across experiments. However, our

quantitative modeling approach allowed us to determine that

remodeling processes are in fact consistent across experiments. It is

remarkable that our simulations not only all provide good fits but

also cross validate in the parameter values, despite the fact that

mass spectrometry measurements used to obtain the raw data have

some positional isomer and missing data uncertainties. This

suggests that the model is not excessively sensitive to measurement

uncertainties and thus captures the essential features of the

remodeling process in vivo.

Empirical interpretation also has other shortcomings. For

example, while the prior empirical interpretation suggested several

interactions between sn1 and sn2 chains [21], our modeling

approach indicates that the data can be well fit even if sn1 and sn2

chains react independently. Our modeling approach also has the

advantage of providing quantitative estimates of kinetic parame-

ters, which are non-obvious in empirical analysis. For example, we

were able to determine that the sn1 deacylation rate varies by an

order of magnitude depending on the type of acyl chain.

A strength of our method is that it is based on the

straightforward position-independence assumption [26], which

has previously found to be valid in most contexts for the tetra-acyl

phospholipid cardiolipin [19]. The success of the present model

indicates sn-position independence is typical for glyceropho-

spholipid acyl chain remodeling. While certainly models involving

large number of parameters and more cooperative effects should

be able to fit the data, we have focused on an independence model

due to the standard criterion of wishing to keep the number of

parameters to a minimum. However, we do note that occasional

deviations from independence were observed in this study, e.g. in

the analysis of sn2 reacylation behaviors, suggesting that in a few

cases interactions among the acyl chains may influence the

remodeling process. This interaction/cooperativity could relate to

overall molecular hydrophobicity, which has been recently

strongly implicated in the specificity of A-type phospholipases [30].

In summary, we have constructed a powerful modeling tool for

the analysis of glycerophospholipid remodeling pathways and their

kinetics. The present work demonstrates that computational

methods can quantitatively determine the details of glyceropho-

spholipid remodeling by identifying the specificity and kinetics of

deacylation and reacylation. Notably, the present method can be

readily extended to other glycerophospholipid classes and should

thus allow one to obtain a comprehensive picture of lipid

remodeling, which will be essential for understanding lipid

homeostasis in mammalian cells. A natural future application will

be determining the mechanistic impact of various types of

perturbations, e.g. knockdown of putative remodeling enzymes.

Software implementations for the Correlation Network (JAVA)

and Dynamic Simulation (MATLAB) are available at http://

nbidiaz.github.com/DLipid/.

Methods

Network Inference
The remodeling pathway of phospholipids can be thought of as

a directed weighted graph G~(V ,E) where the nodes represent

the lipid species si, 1ƒiƒn, and the directed edges ei,j , 1ƒi,jƒn

indicates the flux. Here n denotes the total number of species. The

weight of each edge is proportional to the degree of the flux from

source species to the target species. Here we describe a novel

algorithm for inferring such a network from MS time course

measurement such as in pulse chase experiments. Let T~ftigm
i~1

be the measurement times, and m is the total number of

measurements. At each time point ti all species whose concentra-

tion levels are decreasing in the next time point, at a significance

level pi as determined by t-test, are identified as possible

remodeling sources. By a source we mean a species that is

remodeled into a target species. The significance level pi depends

on the time point and is defined by pi~
h

tiz1{ti

. In practice,

parameter inferences are relatively insensitive to the choice of

significance level. An example of this is shown in Table 3.

Denote the set of candidate sources at the ith time point by Pi.

For each a[Pi, we define the neighborhood N(a), to be the set of
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lipid species b that share exactly one chain with a. Next we

introduce a correlation function that helps to determine whether

b[N(a) could be the remodeling product of a. For a lipid species c,

define

sgn(½c�i)~sgn(½c�iz1{½c�i) ð1Þ

where the sgn(½c�iz1{½c�i) is determined according to the t-test at

the significance level pi. Let

cor(a,b,ti,tm,p,h)~d(a,b,ti,tm,p,h)|

Xtm

h~ti

j ½a�hz1{½a�h
� �

½b�hz1{½b�h
� �

j
ð2Þ

where d(a,b,ti,tm,p,h) is a sign function that is negative if

sgn(½a�h)|sgn(½b�h)v0 for all iƒhvm and positive otherwise.

This d function is introduced to capture the inverse relation

between the concentrations of a and b over the entire time interval

½ti,tm�. Note that ½a�h and ½b�h denote the concentration of a and b

species at hth time point, respectively.

For each candidate source a, we associate a set E(a) of edges.

The set E(a) is initialized to the empty set. We then cycle through

candidate target set N(a), and for each member b[N(a), we add

an edge eb to E(a) if cor(a,b,ti,tm,p,h)v0 or if there exist a species

c[N(b) such that cor(a,bzc,ti,tm,p,h)v0. The second correla-

tion is introduced to account for the possibility that b is remodeled

to c which reduces the concentration of b. h is defined as the

significance threshold value in Algorithm 1 (Supporting Informa-

tion S1). We select the c with highest correlation value. Since the

concentrations of species vary in time, some fluxes may only be

visible at later time intervals. These new fluxes may influence the

correlations at the earlier time points. For this reason, If no

negative correlation is found in the time interval ½ti,tm�, the final

time point tm is reduced to the previous time point tm{1 and the

whole process is repeated. We do this until an edge is found or we

reach tiz1. These recursions are repeated for the entire source set.

Lastly, the weights of the edges are set to the correlation values.

See SI for the pseudo-code of this algorithm.

Figure 6. The distribution of acyl chains at the sn1 position at the 24 hr timepoint in each experiment, normalized by the amount of
18:1 at the sn1 position. For further details and comparable sn2 data, see Supporting Information S1.
doi:10.1371/journal.pone.0050858.g006

Table 3. The primary parameter values of 14:0-14:0 experiment are stable using different correlation network thresholds.

threshold num edges num para error sn1 14:0?18:1 sn1 14:0?16:1 sn1 14:0?18:0
sn2
14:0?18:1

sn2
14:0?18:2

0.1 16 14 400 0.0893 0.0312 - 0.6197 -

0.2 26 22 394 0.0911 0.0256 0.0213 0.5260 0.1216

0.3 32 24 387 0.0889 0.0261 0.0166 0.5176 0.1520

0.4 50 38 372 0.0801 0.0269 0.0130 0.3836 0.1062

full 66 50 371 0.0688 0.0242 0.0163 0.3426 0.1018

Each row indicates the number of edges, number of parameters, fit error, and inferred parameter values at a given significance threshold for determining edges in the
correlation network.
doi:10.1371/journal.pone.0050858.t003
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Dynamic Simulations
The remodeling process of PE is a dynamical system that can be

modeled by a set of coupled differential equations. This dynamical

system depends on the rates of conversion of PE species into one

another. These rates are not known a priori. Denote these

parameters by the vector a~(a1, � � � ,a‘)[R‘, where ‘ denotes the

total number of parameters. Let x[RN represent the vector of PE

concentrations. Here N denotes the total number of species. The

dynamical system describing the PE remodeling is then

dx

dt
~f(x,a) ð3Þ

Given a set of observations fx̂x(ti)gn
i~1, there are a number of

available numerical approximations that can be used to approx-

imate the parameters a using the observed time-course measure-

ments, while simultaneously solving the differential equations [31–

33]. Since the dependence of the vector field on the parameters is

linear (See Table 1 for an example), we may rewrite the parameter

inference problem as a minimization problem that can be

efficiently solved using Singular Value Decomposition, SVD, or QR

decomposition as described in [27]. We write the solution u(t) of

the above system as a linear combination of cubic B-splines,

u(t)&x(t) ð4Þ

u(t)~
Xp

j~0

bjBj(t) ð5Þ

where Bj(t) are the B-splines and bj[RN are the spline coefficients

[34,35]. Define the error function ED(b) as the square of the

distance of the solution u(t) to the observation points as follows.

ED(b,a)~
Xn

i~1

DD
Xp

j~0

bjBj(t){x̂x(ti)DD2 ð6Þ

Our goal is to minimize the above error function, while

simultaneously ensuring that the solution satisfies the differential

equations. The constraint that u has to satisfy the differential

equations second constraint can also be stated in terms of a

minimization problem. More precisely, if we have estimates ûu(rk)
of the solution at the so called ‘‘collocation points’’, rk, we can

define the error function

EM (b,ûu)~
Xq

k~1

DD
Xp

j~0

bj

dBj(rk)

dt
{f(ûu(rk),a)DD2 ð7Þ

which yields the overall error function

E(b,a,ûu)~lED(b,a)zEM (b,ûu) ð8Þ

where l is a weight parameter that controls the weight given to the

observations versus the differential equations. Note that the since

the dependence of f on a is linear, E is linear in (b,a). This

minimization problem is then readily solved using SVD or QR

decomposition. In practice, the approximations ûu(m) are fitted in

an iterative manner where at the mth step, E is minimized with

respect to (b,a) and the resulting b is used to generate the new

estimate ûu(mz1). The initial estimate ûu(0) is set to the solution of the

minimization of Equation 6. In our calculations the l parameter

was set to 100. 5 B-splines were used for initial shooting. 21 B-

splines and 49 ((tend{tstart)|2z1) collocation points were used

for precise approximation to the real function. We iterated for at

least 1000 steps and then stopped at the solution which gives the

minimum error among the last 6 steps, to correct for periodicity

issues. The algorithm also stops when the error changes too slowly,

i.e. v0:0001 between two subsequent steps. Improvement of the

fit from the initial guess was in general large and occurred rapidly

in the first few steps of the iterative process (Supporting

Information S1). Some parameters exhibited periodicity in the

convergence process, which may be related to the shape of the

solution space. In such situations, we only tracked the solution set

which gives the lowest error. These other periodic solutions

yielded parameter values which were similar to the solution with

the lowest error (Supporting Information S1).

As an additional verification, the inferred parameters were used

to independently solve the differential equation using standard

numerical techniques. In our implementation we used the matlab

function ode45 with stepsize 0.01 with initial conditions and

remodeling rates as solved by the dynamic algorithm.

Deacylation and Reacylation Rates
Deacylation and reacylation rates were calculated from the k

values given in Table 2. Note that in Table 2 the conversion rates

14:0?18:1 and 14:0?18:0 have a ratio of 5.36, which is relatively

similar to the ratio of the rates 14:1?18:1 and 14:1?18:0 (5.45)

and the ratio of 18:3?18:1 and 18:3?18:0 (3.85). This suggests

that new acyl chains are added onto lysophospholipids by a similar

process in all experiments. One possible explanation for this is that

the pool of available acyl chains is similar in all experiments, which

is reasonable since all the experiments were run under the same

conditions and because the acyl distribution becomes increasingly

similar in all experiments over time [21]. Assuming that chain-

specific reacylation processes are similar in different precursor

experiments, absolute conversion rates therefore differ across

experiments because of differences in chain-specific deacylation

rates. Based on this logic, relative deacylation rates can be

determined from the ratio of values between rows, while relative

reacylation rates can be determined from the ratios of values

between columns. For each comparison, deacylation and reacyla-

tion rate ratios were calculated via an average using the rates

found to exist in the inferred network.

The relative ratios between rows and columns can be formally

shown to indicate relative deacylation and reacylation rates by

consideration of the kinetics of all species and deacylated

intermediates using the steady state approximation for the

intermediates. This approximation is justified by the fact that

fully acylated PE is more prevalent than lyso- species in typical

cells. Since the sn1 and sn2 positions are generally independent,

we can consider the behavior of the sn1 (or sn2) position alone. For

each chain type xi at the sn1 position, the kinetics of xi are given

by d½xi�=dt~{k(i)
{½xi�zk

(i)
z½I �, where k(i)

{ is the deacylation rate

of xi, k
(i)
z is the reacylation rate of xi and ½I � is the concentration of

the deacylated intermediate. Assuming that all deacylations lead to

the intermediate I and that d½I �=dt~0, solution of the set of linear

equations yields that the rate parameter in Table 2 from initial

chain i to new chain j is k
(j)
zk(i)

{=
P

l k
(l)
z. From this it follows that

the ratios of rows and columns indicate relative deacylation and

reacylation rates. For example, for relative reacylation rates of

chain types a and b we have

(k
(a)
z k(i)

{=
P

l k
(l)
z)=(k

(b)
z k(i)

{=
P

l k
(l)
z)~k

(a)
z =k

(b)
z . For relative deacy-
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lation rates of chain types a and b we have

(k
(j)
zk(a)

{ =
P

l k
(l)
z)=(k

(j)
zk(b)

{ =
P

l k
(l)
z)~k(a)

{ =k(b)
{ .

Mass Spectrometry Data Analysis
The kinetics of remodeling were derived from data obtained by

using neutral loss scanning which allows selective detection of

labeled vs. unlabeled PE molecules, but does not provide definitive

information on the acyl substituents or their sn-positions.

However, such information was obtained in separate experiments

in which the cellular PE molecules were fragmented using

collisionally-activated decomposition and the products were

analyzed as described in [21]. Several studies have shown that

the identification of the acyl substituents and the assignment of

their sn-positions in glycerophospholipids can be obtained by using

such an approach [36–38]. Our own studies with several pairs of

PE positional isomers yielded three main types of product ions: i)

fatty acid carboxylate anions, ii) lysoPL formed upon neutral loss

of a fatty acid residue as a ketene and iii) a lysoPL-like lipid due to

neutral loss of a free fatty acid. Tests with many pairs of synthetic

PE isomers with a saturated and an unsaturated fatty acyl residue

(e.g. 16:1/18:1-PE and 18:1/16:1-PE) showed that the relative

peaks areas of the carboxylate anion and lysoPE fragment change

in a predicated manner with the isomer ratio (Hermansson and

Somerharju, unpublished data). Based on those data, we were able

to decompose the contributions of the sn1/sn2 isomers in each

experimental sample by linear fitting. We estimate that the

positional isomers in the cellular PE species can be quantified with

an error less than 10%.

Supporting Information

Supporting Information S1 Supporting information.

(PDF)
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