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We evaluate three link functions (square root, logit, and copula) and Matérn kernel in the kernel-based estimation
of reflectance spectra of the Munsell Matte collection in the 400–700 nm region. We estimate reflectance spectra
from RGB camera responses in case of real and simulated responses and show that a combination of link function
and a kernel regression model with a Matérn kernel decreases spectral errors when compared to a Gaussian mix-
ture model or kernel regression with the Gaussian kernel. Matérn kernel produces performance similar to the thin
plate spline model, but does not require a parametric polynomial part in the model. © 2013 Optical Society of
America
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1. INTRODUCTION
Spectral reflectance image from object surface is a highly
useful representation for object analysis and visualization.
Here we concentrate on the problem of estimating pixel-wise
reflectance spectra from RGB measurements using nonlinear
estimation models and a priori knowledge. The motivation
for using RGB cameras is that they are cheap and practical
imaging devices and can rapidly collect many measurements
from the same object in one shot. The results obtained with
the RGB camera cannot compete with the quality of the tradi-
tional spectral imaging devices, but it is expected that the
estimations are useful in many applications. For example,
in the context of artwork imaging, it has been suggested that
spectral reflectance estimations and RGB imaging systems (or
other broadband systems with few bands [1]) are useful and
practical [2,3].

Our earlier research in [4–6] suggests that one way to in-
crease the accuracy of estimation is via the inclusion of a

priori knowledge, such as the physically feasibility of all
spectral reflectance values. Here we continue this work
and produce physically feasible estimations via link functions
and show that the precision of the estimations is increased
especially in terms of spectral shape.

Our main focus is in the comparison of the performance of
link functions when combined with so-called reproducing ker-
nel Hilbert space (RKHS) based regression models [4–6]. We
evaluate, apparently for the first time in reflectance estima-
tion, the Matérn kernel and copula-based link functions. In
particular, we demonstrate their performance relative to a
model with the positive definite Gaussian kernel and condi-
tionally positive definite thin plate spline (TPS) kernel. We
compare the performance of copula-based link function to
previously proposed transformations by using simulated
and real data from the Munsell Matte collection [7,8]. Hence,

we assume a context where the training and test sets come
from same source, and a large, representative training set
is used. Evaluation of models is done by using spectral and
color differences in two extreme conditions: using ideal
noise-free simulations and real noisy measurements with lim-
ited accuracy. In a simulated noise-free case, we use the Gaus-
sian mixture model (GMM) as a reference method and show
that performance of kernel models is significantly better in
terms of standard spectral metrics. In the case of real data,
we compare kernel-based models and show that a combina-
tion of link function and a model with a Matérn kernel de-
creases spectral errors when compared to previously
evaluated kernel model with the Gaussian kernel.

2. ESTIMATION OF SPECTRAL
REFLECTANCE
A. Observational Model
Let q ∈ Rn be hyperspectral reflectance and suppose
x ∈ Rk is a multispectral response of the form x � z� e
where e is measurement noise that has expectation
E�e� � 0. We assume a linear observational model for mul-
tispectral response

z � Wq; (1)

where W ∈ Rk×n is a known matrix that combines the ef-
fect of sensor and light source. The object to be estimated
in following is q ∈ Rn when k < n. We assume that a train-
ing set of the form

S � f�x1; q1�;…; �xm; qm�g ⊂ Rk × Rn (2)

is available, where xi � Wqi � ei, i � 1;…;m.
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B. Estimation Using Wiener Model
For future reference, we note that if u1 and u2 are two jointly
Gaussian random vectors with expectations E�ui� � μi and
i � 1; 2 and covariances Cov�ui;uj� � Σij and i; j � 1; 2, so
that

�u1
u2

�
∼N

�� μ1
μ2

�
;
�Σ11 Σ12

Σ21 Σ22

��
; (3)

then the conditional distribution of u2 conditionally on u1 is
([9], p. 522)

u2ju1 ∼N �μ2 � Σ21Σ−1
11 �u1 − μ1�;Σ22 − Σ21Σ−1

11Σ12�: (4)

Assuming that we have Eq. (1) with q ∼N �0;Σq� and
e ∼N �0; σ2eIk�, i.e., we assume that the measurement errors
are independent across response channels and have equal
variances. Using Eq. (4), we have representation for the condi-
tional mean E�qjx� as

q̂ � ΣqWT �WΣqWT � σ2eIk�−1x: (5)

Estimate in Eq. (5) is also called a Wiener estimate [10–14],
and it is widely used in reflectance estimation. Because of
the prior assumption, the values of estimations, however,
are not constrained to be positive or in any bounded range.
Also this model only utilizes the covariance matrix and mean
of the spectral data in estimation.

C. Estimation Using a Gaussian Mixture Model
The Wiener model can be replaced by a much more general
Gaussian mixture density for reflectance as suggested, e.g., by
Murakami et al. [11]. Especially when an accurate (in terms of
target reflectances) and sufficiently large set of spectral data
is available, an estimation model based on the Gaussian
mixture density can be much more accurate than the Wiener
model. Therefore, as a reference method for reflectance esti-
mation in the simulated case, we use a GMM.

In our case, it assumed that we have a training set in Eq. (2).
Assuming that we have the observational model in Eq. (1) with
e ∼N �0; σ2eIk�, we construct a Gaussian mixture density as a
prior for future observations q of the form

p�q� �
Xm
i�1

vipi�q�; (6)

where vi � 1∕m is the prior probability that a new sample
comes from a Gaussian distribution, q ∼N �qi; σ2qIn�, with
density

pi�q� �
1

�2π�n∕2σnq
exp

�
−

1

2σ2q
‖q− qi‖2

�
; i� 1;…;m: (7)

If q, corresponding to a new measurement x, came from pi,
then

�
x
q

�
� N

��
Wqi
qi

�
;
�
σ2qWWT � σ2eIk σ2qW

σ2qWT σ2qIn

��
: (8)

Using notation γ � σ2e∕σ2q and Eq. (4) for conditional distri-
bution, we have

qjx ∼N � ~qi�x�;Σ� (9)

with the mean and the covariance

~qi�x� � WT �WWT � γIk�−1�x −Wqi� � qi; (10)

Σ � σ2q�In −WT �WWT � γIk�−1W�; (11)

provided that q came from pi.
Assuming Eq. (1) such that q ∼N �qi; σ2qIn� with density

Eq. (7), and independently e ∼N �0; σ2eIk�, we have

xjq ∼N �Wq; σ2eIk�; (12)

for all qi. This common density is denoted as p�xjq�. The joint
density of �x;q� is denoted as pi�x;q� � pi�qjx�pi�x� where
pi�qjx� is the Gaussian density with mean Eq. (10) and covari-
ance Eq. (11), and pi�x� is the marginal distribution. The joint
density can be also written as

pi�x;q� � p�xjq�pi�q�: (13)

We have the posterior p�qjx� � p�x;q�∕p�x� where
p�x; q� � p�xjq�p�q�. Using Eqs. (6) and (13), we can write

p�xjq�p�q� �
Xm
i�1

vipi�qjx�pi�x�; (14)

p�x� �
Xm
i�1

vipi�x�; (15)

and the representation for the posterior distribution

p�qjx� �
Pm

i�1 pi�qjx�pi�x�Pm
i�1 pi�x�

: (16)

The conditional probability that q came from pi, given ob-
served x is

~pi�x� � pi�x�∕
Xm
i�1

pi�x�; (17)

where

pi�x� ∝ exp
�
−

1

σ2q
�x −Wqi�T �WWT � γIk�−1�x −Wqi�

�
: (18)

The estimate of q is then obtained from Eq. (16) as the condi-
tional mean

q̂ � E�qjx� �
Xm
i�1

~pi�x�E�qijx� �
Xm
i�1

~pi�x� ~qi�x�; (19)

Defining Q � �q1…qm�T ∈ Rm×n, the estimate in Eq. (19) can
be formulated as a combination of a parametric and a non-
parametric part
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q̂ � �QT
−WT �WWT � γIk�−1WQT � ~p�x�

�WT �WWT � γIk�−1x; (20)

where ~p�x� � � ~p1�x�;…; ~pm�x��T and ~pi�x� are calculated us-
ing Eq. (17). The first term is the weighted average of the
residual from Wiener estimates, and the second term corre-
sponds to a Wiener estimate in Eq. (5) with Σq � σ2qIn.

D. Estimation Using Kernel-Based Regression
We utilize a kernel-based regression model for reflectance es-
timation as suggested in [4–6]. The goal is to estimate a map-
ping x → q using a regression model, where we assume that
x ∈ X and X is the closed and bounded subset of Rk.

In the simplest case, a vector valued regression model for
mapping x → q is formulated with independent scalar regres-
sions for components of vector q. Let us write Q � �qji�,
j � 1;…;m, i � 1;…; n. We denote a training set Si �
f�x1; q1i�;…; �xm; qmi�g ⊂ Rk × R for i � 1;…; n, and the sca-
lar regression is formulated as the minimization problem

V �f i� �
Xm
j�1

�qji − f i�xj��2 � η‖f i‖2H; (21)

over f i ∈ H, where H is an RKHS of functions f i∶ X → R in-
duced by a symmetric, continuous, and positive definite func-
tion (Mercer kernel) κ∶X × X → R [15,16]. The first term on
the right-hand side measures the fit of the function to the train-
ing data under the squared error loss. The term ‖f ‖2H in
Eq. (21) is the square of a norm of f , and η is a scalar param-
eter, which allows us to control the balance between lack of fit
and the RKHS norm of the solution. The term η‖f ‖2H is called
as a regularization functional, and its purpose is to reduce
wiggliness of f and improve generalization properties of mod-
els. By using the Mercer kernel κ of H, the representation for
the function f i ∈ H that minimizes Eq. (21) can be written as

f i�x� � aTi k�x�; (22)

where ai � �ai1; ai2;…; aim�T ∈ Rm is unique, and k�x� �
�κ�x1; x�; κ�x2; x�;…; κ�xm; x��T ∈ Rm [15,16]. The squared
norm is written as ‖f i‖2H � aTi Kai, whereK ∈ Rm×m is the ker-
nel matrix of training data, with Kij � κ�xi; xj�.

We focus on this approach by using the squared error loss
and the same model for all the i � 1;…; n components. The
minimization problems for i � 1;…; n combined are written

argmin
A∈Rm×n

V�A� �
Xm
j�1

‖qj − ATk�xj�‖2 � ηTr�ATKA�; (23)

where A � �a1…an� ∈ Rm×n, Tr�·� denotes matrix trace,
K ∈ Rm×m is the kernel matrix of training data, and k�xj�T �
�κ�x1; xj�;…; κ�xm; xj�� ∈ Rm is a row vector containing the
kernel evaluations between the training set and point xj .
The solution for Eq. (23) is written as

Â � �K � ηIm�−1Q (24)

and the estimate of q corresponding to x is evaluated as

q̂ � ÂTk�x� � QT �K � ηIm�−1k�x�: (25)

The estimate in Eq. (25) is a linear combination of training
spectra, i.e., q̂ � QTp�x�, where p�x� � �K � ηIm�−1k�x� ∈
Rm denotes coefficient vector corresponding to measure-
ment x.

In the following, we evaluate the nonparametric estimate in
Eq. (25) by considering two strictly positive definite kernels.
As a first choice, we have the Gaussian kernel

κ1�x; v� � exp
�
−

‖x − v‖2

2ς2

�
; (26)

where x, v ∈ X , and ς > 0 is the scale parameter. As a second
choice, we consider a class of Matérn functions ([17], p. 85)
and choose the kernel

κ2�x; v� �
�
1�

���
3

p
‖x − v‖
ς

�
exp

�
−

���
3

p
‖x − v‖
ς

�
; (27)

where x, v ∈ X and ς > 0 is the free parameter.
We compare the performance of these two kernels to the

performance of strictly d-conditionally positive definite TPS
(Duchon’s spline) that was found to give best performance
in [4,6]. Here we use the kernel

κ3�x; v� � cd;k‖x − v‖2d−k; cd;k �
Γ�k∕2 − d�

22dπk∕2�d − 1�! ; (28)

where 2d − k > 0 is odd, and Γ denotes the gamma function.
For this kernel, the minimization problem in Eq. (23) needs to
be modified to include a parametric polynomial part, so that
we have the minimization

argmin
B∈Rm×n;C∈RN×n

V�B;C� �
Xm
j�1

‖qj − BTk�xj� − CTΨ�xj�‖2

� ηTr�BTKB�
s:t: Ψ�X�TB � 0; (29)

where elements of Ψ�xj� ∈ RN include all monomial terms of
polynomial with k variables and total degree d − 1 andΨ�X� �
�Ψ�x1� � � �Ψ�xm��T ∈ Rm×N is the matrix of the polynomial
terms as rows [6,16]. The semi-parametric estimate of q cor-
responding to x is

q̂ � B̂Tk�x� � ĈTΨ�x�; (30)

where B̂ and Ĉ are the solution for Eq. (29) (coefficient ma-
trices presented in [6]).

3. LINK FUNCTIONS
The values of reflectance spectrum q are positive or even re-
stricted to region [0,1]. Especially for the Lambertian surfaces,
all the measurements are in [0,1] due to physical reasons.
However, it is usual also for practical measurements that
reflectance data have values restricted to [0,1]. Motivated
by these constraints, we utilize transformation for elements
of reflectance vectors that provide physically feasible values
in estimations (positive or in region [0,1] depending on trans-
formation). We call the functions defining these transforma-
tions as link functions.
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Here, the kernel-based learning models are combined with
the transformation for q via link functions. In detail, the reflec-
tance vectors qj , j � 1;…;m in Eqs. (23) and (29) are replaced
with transformed vectors ~qj � T �qj� in the training phase of
the regression model (and recovered via inverse link function
when needed, i.e., q � T −1� ~q�). We evaluated three link func-
tions T :

(1) The square root ~q � ���
q

p
with element-wise calculation

and with inverse transformation q � ~q2.
(2) The logit function

~q � logit�q� � log
�

q
1 − q

�
; (31)

where log ∶�0;�∞�→ R is the natural logarithm evaluated
element-wise for q ∈�0; 1�n. The inverse transformation is de-
fined using component-wise logistic function

q � exp� ~q�
1� exp� ~q� : (32)

(3) A Gaussian copula

~q � Φ−1�F�q�� � Φ−1�F1�q1�; F2�q2�;…; Fn�qn��T ; (33)

where Fi denotes the beta cumulative distribution function
with parameters ai, bi, and Φ−1 as the inverse of the normal
cumulative distribution function Φ�xjμ � 0; σ � 1� �
�1∕

������
2π

p
� R x

−∞ exp��−t2�∕2�dt evaluated element-wise for
Fi�qi�, i � 1;…; n. The transformed values are

~qi � Φ−1�Fi�qi�� � Φ−1

�
Γ�ai � bi�
Γ�ai�Γ�bi�

Z
qi

0
tai−1�1 − t�bi−1dt

�
;

i � 1;…; n; (34)

where Γ is the gamma function. The idea in this transforma-
tion is based on the assumption that the elements qi of reflec-
tance vector q � �q1; q2;…; qn�T are in [0,1] and marginally
distributed according to the beta distribution. By evaluating
the beta cumulative distribution function Fi�qi� as above
(parameters ai, bi estimated by using available data and maxi-
mum likelihood), the values become uniformly distributed.
The uniformly distributed values are further transformed
via the inverse of the normal cumulative distribution function
Φ−1, so that resulting values ~qi in Eq. (34) become normally
distributed. The inverse transformation is defined element-
wise using

qi � F−1
i �Φ�~qi��; i � 1;…; n; (35)

where Φ�~qi� � Φ�~qijμ � 0; σ � 1� is the normal cumulative
distribution function, and F−1

i is the inverse of the beta cumu-
lative distribution function with same parameters ai, bi as
used in Eq. (34).

Only the logit and copula link functions provide restriction
to [0,1], whereas the square root can be used to provide pos-
itive estimates. In our approach, the link functions provided
only the transformed reflectance data ~q in minimizations of
Eqs. (23) and (29) without any transform to response vectors
x. After the evaluation of the model (and during parameter

optimization), return to original reflectance scale was per-
formed via inverse link function.

4. EXPERIMENTS
In the experiments, we used the reflectance data of the Mun-

sell Book of Color—Matte Finish Collection (400–700 nm
wavelength range with 5 nm sampling) [8] and corresponding
RGB responses for evaluations. Using these data, we had re-
flectance q ∈ R61 and corresponding observation x ∈ R3.

A. Simulated and Real RGB Data
In the first experiment, we simulated RGB values for the
Munsell Matte colors by using the combination of CIE x̄,ȳ,
z̄ 1931 system and CIE D65 illuminant as the sensor system
W in the observational model of Eq. (1). Before response sim-
ulation, the light source and the CIE x̄,ȳ, z̄ responsivities were
scaled to unit vectors. In this experiment, we performed
estimations by using simulations with a linear and noise-free
observation model with the aim to give an indication about the
performance of the models in ideal conditions.

In the second experiment, we used the measured RGB val-
ues (sRGB, JPEG) for the Munsell Matte colors using Fujifilm
Finepix S1 Pro digital camera with a Nikon AFNikkor
25–50 mm zoom lens. The camera’s f-number was set to
F4.8, ISO was set to 400, white balance set to fluorescent
(“Fluorescent 1”), and the exposure time to 1/45s. The pages
of the Munsell book were attached to a vertical surface, and
the camera was set up orthogonally toward the surface.
Denoising of the RGB measurements was performed by cal-
culating spatial averages of 5 × 5 pixel area from the middle
of each color chip. We also removed 36 samples with satu-
rated response values.

This same real RGB data were used in [4–6], with different
processing for saturated responses. There are several limita-
tions in these data that can be listed as (1) measured using
RGB camera with a somewhat aged technique (announced
January 2000) with a Fuji SuperCCD/RGBG filter with some
unknown demosaicing method; (2) unknown spectral respon-
sivity; (3) Fluorescent Philips DeLuxe90 TLD 18W/965 as a
light source during measurements; (4) default spectral nonli-
nearity (without additional post-processing); (5) JPEG values
with sRGB color space; (6) default spatial uniformity (without
additional postprocessing). Due to these limitations, the qual-
ity of real RGB data correspond to somewhat extreme condi-
tions and can be easily improved in terms of measurement
approach, data format, and device properties.

Our evaluation setting therefore includes two extreme
cases for RGB measurements: ideal noise-free simulated
measurements with CIE system and real noisy responses
(averaged, though) that have far from optimal quality. The de-
tails of the two experiments are summarized in Table 1.

B. Parameter Optimization and Evaluation
For training set S in Eq. (2), we randomized 90% of the Munsell
samples for training and used the remaining 10% for testing.
Before model constructions and evaluations, we combined
the RGB responses from training and tests and scaled them
to range [0,1]. All the free parameters in the models were
optimized by using tenfold cross-validation [minimization of
average of squared RMSE, see Eq. (36) below] in the training
set [18]. For the GMM in Eq. (19), we fixed γ � 0 due to the
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noise-free model and optimized the σq in Eq. (18). For the ker-
nel model in Eq. (25) with the Gaussian in Eq. (26) and the
Matérn kernel in Eq. (27), we optimized the regularization η
and kernel parameter ς. In case of the TPS model, we fixed
d � 3 in Eq. (28) and optimized only the regularization param-
eter η in Eq. (29). In this case, the parametric part of TPS was
a multivariate polynomial with 10 monomial terms and total
degree 2.

Two consecutive cross-validation search grids (search lines
for the GMM and TPS) for the free parameters were used: the
first grid provided the coarse location of parameters, and
the second was a refined grid in the neighborhood of coarse
location. The first grid was defined so that the kernel param-
eters for the Matérn and Gaussian kernels were sampled in
range [2−4, 24] using 17 sampling points (f2−4∶0.5∶4g) and the
regularization parameters (all kernel models) were sampled
in range [2−30, 2−4] using 27 sampling points (f2−30∶1∶−4g).
The second grid was defined similarly in the neighborhood
of coarse location using 20 × 20 grid size. During the optimi-
zation of parameters, the link functions were used so that the
errors were always evaluated in original reflectance scale (via
inverse link function). The GMM was optimized so that the
cross validation was using 60 sampling points in coarse range
[10−6,1]. The finer sampling was defined using 91 points in the
neighborhood of optimal coarse location.

By using the optimized parameters, we evaluated the accu-
racy for the independent test set and calculated several spec-
tral and color error values as presented below. As a second
case, we also produced 200 other data permutations randomly
(via MATLAB and uniformly distributed pseudorandom num-
bers) for training (90% of data) and test set (10% of data) and
evaluated the average performance of these permutations by
using the same optimized parameters as found by the cross-
validation method above. The purpose of this calculation is to
reduce data-sampling effects from accuracy evaluation.

In the evaluation of results for each spectrum in the test set,
we used RMSE,

RMSE�q; q̂� �
������������������������
‖q − q̂‖2∕n

q
; (36)

and Pearson distance (PD)

PD�q; q̂� � 1 −
qT q̂

‖q‖‖q̂‖
: (37)

The PD (1 − PD is called as GFC [19,20]) is independent of the
magnitude and therefore gives information about the shape of
estimations. Evaluation of colorimetric accuracy of estima-
tions were performed by using DE2000 distance and CIE
D65, CIE A, and F11 illuminants. We also calculated wave-
length-wise MSE for each wavelength location:

MSE�i� �
Xl

j�1

�qji − q̂ji�2∕l; i � 1;…; n; (38)

where l denotes the number of test samples, and qji, q̂ji denote
the elements of reflectance matrices for test set samples

Q � �q1q2 � � �ql�T � �qji�; j � 1;…; l; i � 1;…; n

(39)

and estimated test set samples

Q̂ � �q̂1q̂2 � � � q̂l�T � �q̂ji�; j � 1;…; l; i � 1;…; n:

(40)

5. RESULTS
The numerical results for Experiments 1 and 2 (Table 1) are
presented in Tables 2 and 3. The results in Table 2 for spectral
accuracy (RMSE and PD) are presented using average, maxi-
mum values and 95th percentile values. Color differences in
Table 3 are presented using average and maximum values for
D65, A, and F11 illuminants. In both tables, the values in
parentheses represent the average values corresponding to
200 data permutations to training and test sets.

A. Experiment 1: Simulated RGB
The numerical results for simulated data in Tables 2 and 3 can
be summarized as follows:

(1) The GMM and kernel models without link function
(Table 2, upper half): in this case, all three kernel models pro-
vide lower average, maximum, and 95th percentile RMSE val-
ues than the GMM, but the maximum and 95th percentile of
PD values indicate better performance for the GMM. Averaged
results from 200 randomization for training and test set show
similar performance for the RMSE, but in this, case the kernel
models with the Matérn and TPS kernels provide the best
results also for all the PD metrics. These two kernels also
provide significant improvements when compared to perfor-
mance of the Gaussian kernel. For example, when the Matérn
kernel is considered, it can be seen that (when compared to
the Gaussian) the average RMSE metric decreases 13.5%
(averaged result decreases 12.6%), the maximum RMSE met-
ric increases 7% (averaged result, however, is similar), and the
95th percentile of RMSE decreases 2.9% (averaged result de-
creases 2.8%). Similarly for the PDmetric: the average PDmet-
ric decreases 18.2% (averaged result decreases 20.4%), the
maximum PD metric decreases 30.8% (averaged result de-
creases 8.6%), and the 95th percentile of PD increases 9.3%
(averaged result, however, decreases 19.3%). All the results
for the TPS kernel are similar to the Matérn kernel results

Table 1. Overview over Training and Test Setsa

Experiment Training/Test Set Sensor Nonlinearities
Spectral

Responsivity
Color
Space Format Light Noise Denoising

1: Simulated Munsell 90%/10% CIE x̄,ȳ, z̄ 1931 — Known CIE XYZ — CIE D65 — —

2: Real Munsell* 90%/10% Fujifilm Finepix Pro 1 Yes Unknown sRGB JPEG Fluorescent Real Averaging
aMunsell* denotes a set of 1232 Munsell samples (corresponding to nonsaturated RGB values). Reflectance data was represented in 400–700 nm range using 5 nm

sampling.
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(see also similarity in wavelength-wise errors for the Matérn
and TPS in Fig. 1).

(2) Kernel models with and without link function (Table 2,
upper half): the use of link functions provide slightly better
results in terms of the RMSE and markedly better accuracy
in terms of the PD metric. For example, for the Matérn kernel
model with and without link function, in the best case (with
the logit) the average PD metric decreases 34.8% (averaged
result decreases 18.4%), the maximum PD metric decreases
69.9% (averaged result, however, increases 8.2%), and the
95th percentile of the PD decreases 44.7% (averaged result
decreases 24.7%).

(3) Wavelength-wise error analysis in Fig. 1 shows that re-
gions with the largest errors correspond to low sensitivity re-
gions for the sensor. This figure also shows that the Matérn
kernel model with copula link function provides better accu-
racy than the GMM model for all the wavelength locations.
Wavelength-wise error analysis in Fig. 2 (figure on the left)
shows that the Matérn kernel model with link function pro-
vides improvement in MSE accuracy especially in the range
of 625–700 nm when compared to the Gaussian kernel model.

(4) Color errors (Table 3, upper half) are similar for all the
models. The only exception is the case of the F11 illuminant,
where the maximum color difference for the GMM shows
approximately two units higher CIE2000 error when com-
pared to the kernel models. The color error for the GMM in
the case of the D65 illuminant is zero, since γ � 0, and the
matrix W in Eq. (1) was defined using the CIE XYZ sensitiv-
ities and the D65 illuminant. Although the color errors are low
and similar for all the models, they hide the fact that especially
estimated values in the 600–700 nm region show significant
differences spectrally (see Figs. 1 and 3).

In conclusion, it can be seen that new model, the Matérn
kernel model with the logit link function provides the most
accurate results in most cases (similar with the TPS model).
For this model, we further analyzed the RMSE, PD, and
DE2000 (under D65) errors for samples in the test set and
compared those to the results for the TPS (with the logit)
and Gaussian kernel model. The results are presented in Fig. 4,
where results for the Matérn kernel model are ordered, and
the corresponding result for the Gaussian kernel and TPS
are also presented. The figures show that in terms of the

Table 2. Spectral Error Valuesa

Method RMSE Avg. RMSE Max. RMSE 95th PD Avg. PD Max. PD 95th

Experiment 1 (Simulated RGB data)

Link function: none
GMM 0.0129 (0.0116) 0.0778 (0.0786) 0.0402 (0.0370) 0.00161 (0.00230) 0.0152 (0.0694) 0.00694 (0.00887)
Gaussian kernel 0.0111 (0.0103) 0.0532 (0.0599) 0.0342 (0.0289) 0.00165 (0.00186) 0.0399 (0.0419) 0.00689 (0.00768)
Matérn kernel 0.0096 (0.0090) 0.0572 (0.0595) 0.0332 (0.0281) 0.00135 (0.00148) 0.0276 (0.0383) 0.00760 (0.00620)
TPS kernel 0.0096 (0.0090) 0.0570 (0.0595) 0.0328 (0.0281) 0.00135 (0.00147) 0.0280 (0.0382) 0.00757 (0.00617)

Link function: square root
Gaussian kernel 0.0107 (0.0099) 0.0512 (0.0610) 0.0323 (0.0291) 0.00120 (0.00154) 0.0242 (0.0417) 0.00508 (0.00608)
Matérn kernel 0.0093 (0.0087) 0.0554 (0.0597) 0.0319 (0.0278) 0.00101 (0.00131) 0.0137 (0.0401) 0.00538 (0.00513)
TPS kernel 0.0094 (0.0087) 0.0551 (0.0598) 0.0328 (0.0278) 0.00101 (0.00130) 0.0139 (0.0398) 0.00530 (0.00512)

Link function: logit
Gaussian kernel 0.0103 (0.0097) 0.0508 (0.0601) 0.0333 (0.0288) 0.00104 (0.00150) 0.0154 (0.0443) 0.00462 (0.00569)
Matérn kernel 0.0092 (0.0086) 0.0558 (0.0598) 0.0326 (0.0276) 0.00088 (0.00125) 0.0083 (0.0417) 0.00420 (0.00467)
TPS kernel 0.0092 (0.0086) 0.0556 (0.0598) 0.0332 (0.0276) 0.00088 (0.00123) 0.0083 (0.0411) 0.00411 (0.00463)

Link function: copula
Gaussian kernel 0.0105 (0.0098) 0.0517 (0.0601) 0.0327 (0.0289) 0.00113 (0.00151) 0.0201 (0.0424) 0.00480 (0.00592)
Matérn kernel 0.0094 (0.0087) 0.0563 (0.0597) 0.0330 (0.0278) 0.00096 (0.00127) 0.0110 (0.0402) 0.00482 (0.00487)
TPS kernel 0.0094 (0.0087) 0.0562 (0.0597) 0.0329 (0.0278) 0.00096 (0.00125) 0.0110 (0.0396) 0.00468 (0.00482)

Experiment 2 (Real RGB data)

Link function: none
Gaussian kernel 0.0148 (0.0150) 0.0533 (0.0621) 0.0336 (0.0373) 0.00138 (0.00142) 0.0288 (0.0327) 0.00724 (0.00537)
Matérn kernel 0.0132 (0.0139) 0.0493 (0.0630) 0.0317 (0.0351) 0.00117 (0.00128) 0.0207 (0.0325) 0.00595 (0.00507)
TPS kernel 0.0135 (0.0141) 0.0507 (0.0610) 0.0325 (0.0357) 0.00121 (0.00128) 0.0237 (0.0318) 0.00617 (0.00520)

Link function: square root
Gaussian kernel 0.0148 (0.0149) 0.0528 (0.0619) 0.0328 (0.0372) 0.00142 (0.00133) 0.0432 (0.0325) 0.00615 (0.00496)
Matérn kernel 0.0134 (0.0139) 0.0494 (0.0615) 0.0336 (0.0351) 0.00124 (0.00121) 0.0285 (0.0306) 0.00581 (0.00481)
TPS kernel 0.0135 (0.0140) 0.0497 (0.0610) 0.0321 (0.0357) 0.00124 (0.00121) 0.0295 (0.0303) 0.00614 (0.00480)

Link function: logit
Gaussian kernel 0.0146 (0.0148) 0.0511 (0.0619) 0.0318 (0.0374) 0.00141 (0.00129) 0.0432 (0.0314) 0.00661 (0.00482)
Matérn kernel 0.0133 (0.0139) 0.0493 (0.0618) 0.0324 (0.0352) 0.00124 (0.00119) 0.0301 (0.0303) 0.00545 (0.00472)
TPS kernel 0.0133 (0.0140) 0.0494 (0.0612) 0.0302 (0.0356) 0.00123 (0.00119) 0.0307 (0.0297) 0.00586 (0.00469)

Link function: copula
Gaussian kernel 0.0147 (0.0148) 0.0518 (0.0621) 0.0329 (0.0373) 0.00138 (0.00130) 0.0384 (0.0312) 0.00640 (0.00486)
Matérn kernel 0.0133 (0.0139) 0.0495 (0.0617) 0.0329 (0.0351) 0.00123 (0.00120) 0.0288 (0.0306) 0.00559 (0.00476)
TPS kernel 0.0133 (0.0140) 0.0497 (0.0612) 0.0306 (0.0356) 0.00122 (0.00120) 0.0287 (0.0300) 0.00579 (0.00474)

aNumber in parenthesis is average error from 200 randomizations to training and test sets.
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Table 3. Color Error Values, Corresponding to DeltaE2000 Errors under D65, A, and F11 Illuminanta

Method ΔE Avg. (D65) ΔE Max. (D65) ΔE Avg. (A) ΔE Max. (A) ΔE Avg. (F11) ΔE Max. (F11)

Experiment 1 (Simulated RGB data)

Link function: none
GMM 0 (0) 0 (0) 0.49 (0.47) 3.02 (2.53) 0.69 (0.69) 5.32 (4.73)
Gaussian kernel 0.05 (0.04) 0.27 (0.29) 0.42 (0.44) 2.25 (2.09) 0.68 (0.67) 3.13 (3.49)
Matérn kernel 0.00 (0.00) 0.01 (0.01) 0.38 (0.39) 2.47 (2.12) 0.60 (0.58) 3.34 (3.63)
TPS kernel 0.00 (0.00) 0.00 (0.00) 0.38 (0.39) 2.47 (2.12) 0.60 (0.58) 3.34 (3.63)

Link function: square root
Gaussian kernel 0.14 (0.14) 0.53 (0.64) 0.43 (0.44) 2.31 (2.08) 0.67 (0.66) 3.13 (3.49)
Matérn kernel 0.09 (0.10) 0.58 (0.61) 0.38 (0.39) 2.51 (2.14) 0.60 (0.58) 3.39 (3.58)
TPS kernel 0.09 (0.10) 0.54 (0.57) 0.38 (0.39) 2.50 (2.13) 0.60 (0.58) 3.39 (3.59)

Link function: logit
Gaussian kernel 0.20 (0.21) 0.95 (1.04) 0.45 (0.48) 2.30 (2.19) 0.68 (0.67) 3.08 (3.47)
Matérn kernel 0.13 (0.14) 0.96 (0.96) 0.39 (0.41) 2.52 (2.24) 0.61 (0.59) 3.36 (3.58)
TPS kernel 0.14 (0.14) 0.92 (0.91) 0.39 (0.41) 2.52 (2.22) 0.61 (0.58) 3.38 (3.59)

Link function: copula
Gaussian kernel 0.15 (0.16) 0.74 (0.80) 0.43 (0.45) 2.28 (2.11) 0.67 (0.67) 3.10 (3.47)
Matérn kernel 0.10 (0.11) 0.77 (0.78) 0.38 (0.40) 2.50 (2.18) 0.61 (0.58) 3.30 (3.58)
TPS kernel 0.10 (0.10) 0.74 (0.74) 0.38 (0.40) 2.50 (2.17) 0.61 (0.58) 3.36 (3.59)

Experiment 2 (Real RGB data)

Link function: none
Gaussian kernel 1.28 (1.24) 8.81 (3.67) 1.3 (1.28) 8.99 (3.89) 1.44 (1.40) 9.18 (4.90)
Matérn kernel 1.23 (1.21) 8.49 (3.64) 1.25 (1.25) 8.88 (3.95) 1.38 (1.36) 8.85 (5.06)
TPS kernel 1.24 (1.21) 8.51 (3.61) 1.26 (1.24) 8.87 (3.91) 1.39 (1.35) 8.86 (4.92)

Link function: square root
Gaussian kernel 1.28 (1.23) 8.74 (3.63) 1.29 (1.27) 8.9 (3.86) 1.44 (1.38) 9.11 (4.77)
Matérn kernel 1.23 (1.20) 8.5 (3.59) 1.25 (1.23) 8.86 (3.89) 1.38 (1.34) 8.85 (4.91)
TPS kernel 1.23 (1.20) 8.51 (3.59) 1.25 (1.24) 8.86 (3.90) 1.39 (1.34) 8.86 (4.88)

Link function: logit
Gaussian kernel 1.29 (1.25) 8.75 (3.69) 1.29 (1.28) 8.93 (3.95) 1.43 (1.39) 9.1 (4.89)
Matérn kernel 1.23 (1.21) 8.49 (3.61) 1.24 (1.24) 8.86 (3.93) 1.37 (1.35) 8.85 (4.96)
TPS kernel 1.23 (1.21) 8.5 (3.61) 1.24 (1.24) 8.86 (3.93) 1.38 (1.35) 8.85 (4.94)

Link function: copula
Gaussian kernel 1.28 (1.24) 8.77 (3.67) 1.29 (1.28) 8.95 (3.93) 1.43 (1.39) 9.13 (4.90)
Matérn kernel 1.23 (1.20) 8.5 (3.60) 1.24 (1.24) 8.87 (3.91) 1.38 (1.35) 8.85 (4.95)
TPS kernel 1.23 (1.21) 8.5 (3.61) 1.24 (1.24) 8.86 (3.92) 1.38 (1.35) 8.85 (4.94)

aNumber in parenthesis is average error from 200 randomizations to training and test sets.
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Fig. 1. Left: Location of wavelength-wise errors for the GMM and for a kernel model with a link function (a result corresponding to one data
randomization in Experiment 1) with respect to the sensor sensitivity properties. Red curves represent relative sensitivity of CIE x̄,ȳ, z̄ 1931 sensor
system. Right: Wavelength-wise errors for the Gaussian and Matérn kernel and TPS (Experiment 1).
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RMSE and PD metrics, the Matérn kernel and the TPS model
with the logit function provides significant improvements for
several samples when compared to the Gaussian kernel, but
also decreased performance for some samples. However, the

figure shows that the decrease in accuracy (for some samples)
is not as dramatic as is the significant increase in accuracy for
some samples. The results for the Matérn kernel and for the
TPS are similar with only small deviations for some samples.
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Fig. 2. Left: Wavelength-wise errors for the Gaussian kernel and for the Matérn kernel models with link functions (a result corresponding to
one data randomization in Experiment 1). Right: Wavelength-wise errors for the Gaussian kernel and the Matérn kernel models with link functions
(a result corresponding to one data randomization in Experiment 2).
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Fig. 3. First row (image on left): Sample corresponding to largest PD difference between the Gaussian kernel model (0.03987) and the Matérn
kernel model with link function (0.00831) in Experiment 1 (simulated data). First row (image on right): Sample corresponding to the largest RMSE
difference between the Gaussian kernel model (0.0261) and the Matérn kernel model with link function (0.0083) in Experiment 1 (simulated data).
Second row (image on left): Sample corresponding to largest PD difference between the Gaussian kernel model (0.01043) and the Matérn kernel
model with link function (0.01758) in Experiment 2 (real data). Second row (image on right): Sample corresponding to the largest RMSE difference
between the Gaussian kernel model (0.0352) and the Matérn kernel model with link function (0.0179) in Experiment 2 (real data).
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The last figure for the color errors show that the kernel mod-
els with link functions increase the color error (here D65 illu-
minant) when compared to the Gaussian kernel model, if the
error is calculated under the illuminant that was used in the
observation model (also D65) in Eq. (1). However, with this
same observation model using the D65 illuminant, the distri-
bution of color errors with the A and F11 illuminants behave
similarly with or without link function.

B. Experiment 2: Real RGB
The numerical results for real data in Tables 2 and 3 can be
summarized as follows:

(1) Kernel models without link function (Table 2, lower
half): When the Matérn kernel is considered, it can be seen
that (when compared to the Gaussian kernel): the average
RMSE metric decreases 10.8% (averaged result decreases
7.3%), the maximum RMSE metric decreases 7.5% (averaged
result increases 1.4%), and the 95th percentile of RMSE
decreases 5.7% (averaged result decreases 5.9%). Similarly
for the PD metric, the average PD metric decreases 15.2%
(averaged result decreases 9.9%), the maximum PD metric
decreases 28.1% (averaged results are similar), and the 95th
percentile of the PD decreases 17.8% (averaged result de-
creases 5.6%). All the results for the TPS are similar with
the Matérn kernel model (although more differences than
in the simulated case).

(2) Kernel models with and without link function (Table 2,
lower half): TheRMSE results for all thekernels are similarwith
andwithoutthelinkfunctions.Thereissomeimprovementwhen
thelinkfunctionsareused,but thepositiveeffectof thelinkfunc-
tion is clearly dampenedwhen compared to the simulated case.
Theperformanceof thelinkfunctions issomewhatmixedforthe

PDmetric (all kernels): theaverage,maximum,and95thpercen-
tile valuesare similaror increased incaseofone training/test set
randomization, but the averaged results over several training/
test permutations (in parenthesis) are decreased when com-
pared to case where link functions are not used.

(3) Relative shape of the wavelength-wise error curve in
Fig. 2 (figure on the right) shows similar error distribution
with the simulated case. This curve shows that the Matérn ker-
nel model with some link function provides improvement in
accuracy for all the wavelength locations when compared
to the Gaussian kernel model without link function.

(4) Color errors (Table 3, lower half) are again similar
for all the kernel models in spite of significant spectral
differences (see Fig. 3, second row). However, the behavior
of averaged (over 200 data randomizations) color errors de-
viate significantly from the simulated case. In this real case,
the averaged maximum results are significantly lowered.

In same way as in the simulated case, we analyzed the
RMSE, PD, and DE2000 (under D65) errors for each sample
in the test set when using the TPS and Matérn kernel models
with the link function. The results were again compared those
for the Gaussian kernel model. The results are presented in
Fig. 5, where results for the Matérn kernel model with the logit
are ordered, and the corresponding result for the TPS (with
the logit) and Gaussian kernel are also presented. The results
for the Matérn kernel model and TPS are again similar as in
the simulated case. For the RMSE and PD metrics, the Matérn
kernel model and the TPS model with the logit function pro-
vide significant improvements for several samples when com-
pared to the Gaussian kernel, but also decreased performance
for some samples. The distribution of the PD and DE2000 val-
ues are somewhat different from the simulated case, since it
can be seen that there are one to two samples with high errors.
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6. DISCUSSION
The logit link function has been evaluated before in [5] (up
to a scalar) and in [6]. Also a closely related link function
for the square root has been used for reflectance estima-
tion in a form ~q � a −

���
q

p
, with optimized a ∈ Rn [3]. The

copula model has not been used for reflectance estimation
before, but the core element in our model, the beta distri-
bution, has been proposed to be accurate distribution for
reflectance in [21]. Nevertheless, it is possible to modify
the copula model by using another distribution in place
of the beta distribution and then follow the same steps
when using cumulative distribution functions and corre-
sponding inverse functions.

We did not evaluate the GMM with the link functions, since
this model is based on the linear model in Eq. (1), and any
nonlinear transformation for q would require some lineariza-
tion procedure. In this case, the use of link functions would be
significantly more complicated than in the case of empirical
regression.

Here our main interest was in the evaluation of the global
models in Eqs. (23) and (29) for the estimation with strictly
(conditionally) positive definite kernels. These models allow
to construct both regression estimators and interpolators that
are independent of the spacing of data in the input domain.
The model in Eq. (23) is also independent of dimension of
data. Kernel models with the Gaussian [4–6,20,22] and the
TPS (Duchon’s spline) [4,6,22] kernels have been found to pro-
vide accurate reflectance estimation previously and therefore
were natural choices for evaluation here. One aspect for all
three kernels evaluated here is that the values κ�x; v� depend
only on the Euclidean distance between x and v, and there
exists univariate functions f , such that κ�x; v� � f �r�,
f ∶�0;∞� → R, with r � ‖x − v‖.

Kernel regression model based on the squared error loss
has been found to provide a more accurate reflectance esti-
mation when compared to several other models [4,5,20,22].
Especially, previous research in [22] has suggested that
model based on the squared error loss is very competitive
against relatively more complex kernel-based regression
model with the ϵ-insensitive loss function, i.e., jy − f �x�jϵ �
maxf0; jy − f �x�j − ϵg.

We comment on two plug-in modifications for the regres-
sion models in Eqs. (23) and (29). First, the noisy observations
x (experiment 2) in regression could be replaced with z � Wq
if W is known. Second, if Eq. (1) need to be valid for the es-
timate, the kernel regression in Eq. (23) or Eq. (29) can be
used only for modeling the Wiener residual. This approach
produces a similar estimate as in the case of GMM in
Eq. (20) and would be also similar to the approach in [23],
where the Wiener residual was modeled with locally weighted
linear regression. However, the best approach is the fitting of
parametric and nonparametric parts at the same time as in the
case of TPS.

7. CONCLUSION
Our results suggest that link functions (square root, logit,
copula) and Matérn kernel improve the spectral accuracy for
regression-based spectral reflectance estimation from RGB
responses. Simulated and real data show similar relative
performance for different kernels and link functions and indi-
cate that especially the spectral shape (indicated by Pearson

distance) is estimated more accurately via link functions. In
our experiments with the Munsell Matte collection, the effect
of link functions was more significant in the case of simulated
data, partly attributable to limited accuracy of our real RGB
responses. In most cases the kernel model with the Matérn
kernel and the logit link function gave the best accuracy,
although with highly similar accuracy to the model with the
Matérn kernel and the copula link function. One useful aspect
is that the logit model is independent of the training data and
is therefore somewhat easier to calculate than the copula
model. For simulated and real data, the combination of the
logit link function and the Matérn kernel decreased several
spectral errors significantly in most cases when compared
to the kernel regression with the Gaussian kernel (with or
without the link function). It was also found that the Matérn
and TPS kernel produced similar results for simulated and real
data. The Matérn kernel, however, is a strictly positive definite
kernel and does not require parametric polynomial part in
model and is therefore easier to use in computations. A simu-
lated noise-free case indicated that all the evaluated kernel
models with some link function provide more accurate
estimation than the Gaussian Mixture Model in terms of the
RMSE, Pearson distance, and wavelength-wise errors.
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