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1 Introduction

Partially ordered sets or posets have various applications in computer science rang-
ing from database systems to distributed computing. Posets have uses in ranking
scenarios where certain pairs of elements are incomparable, such as ranking con-
ference submissions [DKM+11]. In a recommender system, a poset data structure
may be used to record the partially known preferences of the users [RV97]. In pub-
lish/subscribe systems, posets are used for message filtering [TK06] [CRW01]. In
database systems, posets can be used e.g. to aid decomposition of a database schema
[Heg94].

In this thesis we focus on poset online operations. An online algorithm operates
on incomplete information. For example, a content-based router might store the
client subscriptions in a poset data structure. The data structure has to be updated
every time the clients make changes to their subscriptions; the entire set of input
elements cannot be known in advance, which places additional requirements on the
poset data structures and algorithms. In contrast, an offline algorithm knows the
entire input set in advance and can thus make an optimal choice at each step. With
online operations we sometimes have to settle for a non-optimal solution.

A poset data structure may have to store large amounts of data. Additionally, the
element comparisons might be expensive. This creates a need for efficient poset data
structures and algorithms. The online requirement and the use cases considered in
this thesis necessitate also fast insertion and deletion operations.

We study the complexity of poset online operations on various poset and poset-
like data structures. We seek to find the most efficient poset data structures and
algorithms in terms of a fixed set of online operations which was chosen to support
the online case while remaining small enough to fit in the scope of a master’s thesis.
We discuss the issue both from a theoretical and empirical aspect although the focus
is on the empirical part. In the empirical part, we present the results of an empirical
evaluation that was carried out by implementing all studied data structures from
scratch in Java and executing a series of benchmark runs in a controlled environment.

This thesis is organized as follows. First, in Section 2 we define the terms and
syntax used in the rest of the paper. In Section 3 we study a couple of the poset use
cases in more detail. In Section 4 we discuss a few necessary preliminaries before
introducing the poset data structures in Section 5 and poset-derived forest in Section
6. In Section 7 we present the results of the experimental evaluation and finally in
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sections 8 to 10 we discuss the results and possible future work. Algorithm pseudo
code listings can be found in the appendix.

2 Definitions

A partially ordered set or poset P is a partial ordering of the elements of a set.
Poset P is formally defined as P = (P,�) where P is the set of elements in P and �
is an irreflexive, transitive binary relation. a � b claims element a ∈ P precedes, or
dominates, element b ∈ P and a � b claims a does not precede b. If either a � b or
b � a holds, the elements are said to be comparable, written as a ∼ b. Otherwise the
elements are said to be incomparable, written as a � b. An oracle is a theoretical
black box that answers queries about the relations of elements. Given elements a
and b, the oracle answers with a � b, b � a, or a � b.

A chain of P is a subset of mutually comparable elements of P . A chain C ⊆ P is
defined as ci, cj ∈ C, i 6= j such that for any ci, cj either ci � cj or cj � ci holds. An
antichain of P is a subset of mutually incomparable elements of P . An antichain
A ⊆ P is defined as ai, aj ∈ A, i 6= j such that ai � aj for any ai, aj.

A chain decomposition of P is a set of chains C ⊆ P such that their union equals
P . A minimum chain decomposition of P is a chain decomposition that contains
the fewest number of chains possible given P and a maximum chain decomposition
of P is a chain decomposition that contains the largest number of chains given P .

The width of a poset, w(P), is the number of elements in the largest antichain of the
poset [DKM+11] [BKS10], which equals the number of chains in a minimum chain
decomposition of that poset [Dil50]. For our purposes we also define another width,
wmax(P), as the number of chains in a maximum chain decomposition of P . The
widths are characterized by the following equation: w(P) ≤ wmax(P) ≤ n, where n
is the number of elements in P .

The root set of poset P is the set of elements p ∈ P such that pi � p for all
pi ∈ P, pi 6= p, that is the set of elements that are not covered by any other elements
of P . It is also called the non-covered set. The covered set of an element e is a set
of elements p ∈ P such that e � p.
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3 Use cases for posets

In this section we briefly discuss two poset use cases in order to provide background
for the rest of the paper. In Section 3.1 we discuss content-based routing in the
context of publish/subscribe systems, and in Section 3.2 we discuss recommender
systems. The treatment given in this section is necessarily brief and the reader is
encouraged to read the referenced papers for more information.

3.1 Publish/subscribe systems

A publish/subscribe system decouples the information producers and the informa-
tion consumers. A publish/subscribe system consists of a set of producers, who
publish notifications, a set of consumers, who subscribe to notifications, and a set of
message brokers who deliver the notifications from the producers to the subscribers.
There are many benefits to publish/subscribe systems. The following benefits are
given by Mühl [Müh02]. The first benefit is loose coupling or decoupling in space:
the producers need not address or know the consumers and vice versa. According to
Mühl, loose coupling “facilitates flexibility and extensibility because new consumers
and producers can be added, moved, or removed easily.” [Müh02] The second ben-
efit is asynchronous communication. The third benefit is decoupling in time: the
producers and the consumers need not be available at the same time.

Publish/subscribe systems can be divided into two broad categories: subject-based
systems and content-based systems [LP+03]. In a subject-based system each notifi-
cation belongs under a topic and the consumers subscribe to topics of interest. This
has several downsides. First of all, the producer needs to maintain the category of
topics and classify each notification. Also, to remain meaningful, the topics must be
broad enough, but broader topics make it necessary for the consumers to perform
client-side filtering; if the consumer is interested in a narrow subset of the notifica-
tions, for example Delta Airlines flights outbound from Miami at certain times, a
topic fulfilling those exact criteria most likely does not exist and the consumer must
therefore subscribe to one or more broader topics and filter the relevant notifications
from all notifications classified under those topics.

Content-based systems on the other hand provide the consumer only the informa-
tion she needs without the need to learn the set of topic names and their content
before subscribing [LP+03]. In a content-based system the consumers subscribe to
notifications by specifying filters in a subscription language [EFGK03]. The filters
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can contain the basic comparison operators and can be logically combined to pro-
duce more complex filters. The filters are then applied to the metadata of each
notification to determine whether it matches the filter. For example, a filter such
as “airline = delta” would match all notifications of flights operated by Delta Air-
lines in a hypothetical flight monitoring system. “airline = delta ∧ airport = mia”
would match all flights operated by Delta Airlines and flown out of Miami. In a
content-based systems the number of unique subscriptions can be considerably larger
than in a topic-based system which necessitates efficient matching of notifications
to subscriptions [LP+03].

The simplest way to implement a distributed notification service is flooding [Müh02].
In the flooding approach a router forwards a notification published by one of its
local clients to all neighboring routers. If a router receives a notification from a
neighboring router, it simply forwards it to all other neighboring routers. Received
notifications are also forwarded to local clients with matching subscriptions. Major
drawback of the flooding approach is that a potentially large number of unnecessary
notifications are sent since each notification is eventually received by every router in
the system regardless of whether there are interested parties to whom it can forward
the notification.

The opposite approach to flooding is content-based routing. In content-based rout-
ing the notifications are routed based on their contents. Specifically, a notification is
sent to a router only if it can forward the notification to an interested party (a client
or another router). Covering-based routing is a special case of content-based rout-
ing. In covering-based routing the covering relation of filters is exploited [Müh02].
A filter f1 is said to cover another filter f2 if f1 matches all notifications f2 matches.
The covering relations of a set of filters impose a partial order on the set.

Systems such as Siena exploit the covering-based partial order by storing the client
subscriptions in a poset data structure. The following example is based on the
description of Siena by the Siena authors [CRW01]. Figure 1 contains an example
poset with a couple of subscriptions. In the figure, an arrow from filter f1 to filter f2
means filter f1 covers filter f2. If a new subscription is inserted into the poset, it is
forwarded to the router’s parent or master server only if it is a root subscription, i.e.
it is not covered by any other filter in the poset. For example, if the filter “a = 35”
is inserted into the poset, the router discovers it is already covered by another filter
in the poset which means that the router itself has already subscribed to the filter.
Conversely, if filter “a > 1 ∧ a < 200” is removed from the poset, the router would
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a = 35

a > 10 ∧ a < 50

a > 1 ∧ a < 200

Figure 1: An example filters poset.

have to subscribe to the newly uncovered filter “a > 10 ∧ a < 50”.

3.2 Recommender systems

Recommender systems recommend items to users based on other users’ preferences.
In a typical setting, the users provide recommendations as inputs which the system
aggregates and directs to appropriate recipients [RV97]. A user’s preferences can
be seen as a directed acyclic graph. A recommender system does not usually have
complete information of a user’s preferences. For example, the system might know
the user prefers movie A to movie B but does not have information about the user’s
preference regarding movies B and C. Because of this, the user’s preferences actually
form a poset instead of a generic graph.

One possible strategy to implement a recommender system is to store the prefer-
ences of a user in a poset data structure and measure its distance to the posets that
represent other users’ preferences. The measured distance is then used to find users
with similar preference structure. For example, Ha and Haddaway [HH98] discuss
a system that, when encountering a new user A, first elicits some preference infor-
mation from A and then finds a user B with a preference structure closest to the
preference structure of A. The preference structure of B is then used to determine
the initial default representation of A’s preferences.

There are different methods for computing the distance between two preference
posets such as Spearman’s footrule and Euclidean distance. All methods require gen-
erating or counting linear extensions of a poset, which are considered hard problems.
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Ha and Haddaway discuss approximation techniques with acceptable complexities
for solving the problem [HH98]. Although we do not consider linear extension gen-
eration further in this thesis, it is important the underlying poset data structure
provides efficient add, delete, and look-up operations.

4 Problem description

In this thesis we seek to find the most efficient poset data structures and algorithms
in terms of a fixed set of online operations. Additionally, we study the poset-derived
forest which is not a “true” poset data structure but rather a replacement data
structure for posets, used mostly in content-based routing.

In the following subsections we discuss a few necessary preliminaries. First in Section
4.1 we describe the set of poset operations used throughout the paper. Then in
Section 4.2 we discuss different types of complexities. Finally, in Section 4.3 we give
theoretical lower bounds on certain operations.

4.1 The set of operations

We consider the following online operations: add, delete, look-up, and computing
the root set. Add and delete operations are used to construct a poset data structure
by adding and removing elements from it. Look-up means finding out the relation
of two elements of a poset in a manner similar to querying an oracle but without
incurring the cost of an oracle query. Computing the root set simply means finding
out the root set of a currently constructed poset. The root set of a poset is not fixed
in the online scenario but rather varies with addition and removal of elements.

The rationale for choosing these operations is as follows. Add and delete are nec-
essary operations because of our practical approach to posets. If we have e.g. a
filtering system there must be a way to add and remove filters from the poset.
Look-up on the other hand is the most basic operation to query the information
stored in the poset. Root set computation is used in content-based routing.

Look-up is not a meaningful operation for the poset-derived forest because poset-
derived forest stores only a subset of the relations of a poset. In the case of the poset-
derived forest we substitute computing the covered set for the look-up operation.
A use case for computing the covered set is when a new filter is inserted into the
poset-derived forest in a content-based router and we want to remove all filters that
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are covered by the new filter in order to avoid redundancy [TK06]. For the “true”
posets this is easily done as part of the add operation since all relations must be
discovered in any case, but in the case of the poset-derived forest extra work is
required.

Note that the choice of a substitute operation for the look-up operation is somewhat
arbitrary; we could also have chosen e.g. computing the covering set. We will mostly
focus on the add, delete, and root set computation operations, but we also wanted
to include a case with an operation that potentially requires the traversal of the
entire structure. Both the covered and covering set operations are such operations.
Also, performing the covered set computation independently of the add operation is
slightly less efficient than combining them, as would be done in a real-world system,
but the difference is not significant. Finally, avoiding filter redundancy in content-
based routers is a topic in its own right. Tarkoma [Tar08] discusses filter merging
techniques for publish/subscribe systems.

4.2 Types of complexities

We will focus on two kinds of complexities. Query complexity measures the number
of oracle queries an algorithm performs while total complexity measures the total
number of operations the algorithm performs. The distinction is not arbitrary;
a query may be expensive to carry out compared to other operations. Examples
of potentially expensive queries include computing the covering relation of filters
in a filtering system [TK06] or running an experiment to determine the relative
evolutionary fitness of two strains of bacteria [DKM+11]. For the rest of the thesis
we will not consider cases as extreme as the latter case, for in such cases queries are
so expensive to carry out that optimizing query complexity above everything else
becomes top priority. In later sections we will discuss and dismiss algorithms with
good query complexity but bad total complexity.

For total complexity, we generally do not consider the time it takes to locate an
entry in the constructed poset. For example, to determine the relation of element a
to element b the look-up algorithm would first have to locate a and b in the poset
data structure. Most poset data structures are not efficient search structures and
would require an auxiliary search structure such as a hash table for efficient real-
world operation. Since that is out of the scope of this work, in the rest of the thesis
we assume an element of a poset data structure can be located in constant time by
an unspecified mechanism.



8

4.3 Certain theoretical lower bounds

Information theoretical lower bound on the size of a data structure that stores a
poset is n2/4 +O(n) bits [MN12]. Sorting a poset of width at most w on n elements
requires Ω(n(log n+w)) oracle queries [DKM+11]. Hence inserting a single element
to a poset of n elements of width at most w requires Ω(log n+w) oracle queries. The
lower bound on the query complexity of the delete, roots, and look-up operations is
Ω(1) because once a poset has been constructed, it contains the same information
regarding the elements in it that an oracle could provide. No oracle queries are thus
necessary to carry out these operations.

5 Poset data structures

We now turn our focus to poset data structures. A poset data structure is a general-
purpose data structure that records the elements and relations of a poset. We begin
with a straightforward matrix implementation in Section 5.1, continue with Siena
poset in Section 5.2 and finish with ChainMerge in Section 5.3. The order was chosen
so that each structure is more complex than the previous one. Later in Section 6
we discuss poset-derived forest which is a special-purpose data structure that stores
a subset of the relations of a poset. Figure 2 contains representations of all three
data structures studied in this section.

5.1 Incidence matrix

A poset can be represented as a directed acyclic graph (DAG) where the vertices
correspond to the elements of the poset and the edges correspond to the relations
between the elements. Specifically, if there exists a path from vertex a to b, then a
dominates b.

An incidence matrix is a straightforward implementation of a DAG. An incidence
matrix for a poset with n elements is an n × n matrix where the cell (a, b) stores
information about the relation of the element on row a to the element in column b.
In Figure 2a we use X in cell (a, b) to denote that the element on row a dominates
the element in column b. Obviously, if cell (a, b) contains X then cell (b, a) cannot
contain X. The space complexity of an n× n matrix is Θ(n2).

We present two similar variants: the matrix and the query-optimized matrix (q-o
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1 6 5 2 3 7 4

1

6 X X

5 X X

2

3 X X

7 X X X X X X

4

(a) Matrix. X in cell (a, b) indicates the
element on row a dominates the element
in column b.

7

6 53

2 41

(b) Siena poset. a→ b indicates a domi-
nates b. Note that the relation 7 � 2 for
example is implicit.

B CA

3

- 1 -

1

- - -

6

- - 2

2

- - -

7

0 0 -

5

1 - -

4

- - -

(c) ChainMerge. A, B, and C are the
chains. The numbers on the top left cor-
ner of each element indicate the index of
the highest element of each chain, starting
from 0, that this element dominates.

Figure 2: Three poset data structures with the same data. Root elements are shown
as filled in each of the figures.
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matrix). The variants differ only in the add operation: whereas the matrix compares
a new element to every existing element (thus resulting in linear query complexity
growth), the query-optimized matrix uses existing information to deduce the relation
of the new element to the existing elements. The query-optimized matrix variant
has very good query complexity but worse total complexity.

Algorithm 1 is the regular matrix add operation. The algorithm inserts the new
element into the Matrix and updates the rest of the matrix to reflect the fact. The
algorithm compares the new element with each existing element resulting in O(n)

query complexity and O(n) total complexity.

Algorithm 2 deletes an element from the Matrix and updates the relations accord-
ingly. This requires touching every remaining element in the matrix which results
in O(n) total complexity. No oracle queries are performed resulting in O(1) query
complexity.

The query-optimized matrix add variant is presented in Algorithm 3. The algorithm
avoids doing unnecessary oracle queries by exploiting the information already gath-
ered during the insertion process to the extent possible. If the algorithm detects that
an existing element e dominates the new element it scans the matrix to find elements
that dominate e and updates their relation to the new element without performing
additional oracle queries. Likewise, if the algorithm detects the new element domi-
nates an existing element e it scans the matrix to find elements dominated by e and
updates their relation to the new element. Because of the extra scans, the algorithm
has a worst-case total complexity of O(n2). The worst-case query complexity of the
algorithm is O(n) as is the case with the regular add variant, although benchmarks
show that the query-optimized matrix add variant performs considerably better in
practice.

Algorithm 4 computes the root set of the Poset using the information recorded in
the Matrix. The algorithm scans the entire matrix which results in O(n2) total
complexity. Query complexity of the algorithm is again O(1) since no element
comparisons are performed. Algorithm 5 performs a look-up using the information
recorded in the Matrix. It has a total and query complexity of O(1).

A note on pseudo code notation: Pdominates[r,c] denotes a look-up of the value on row
r and column c in the matrix. Pdominates[r,c] = true means that element r dominates
element c.
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5.2 Siena filters poset

Siena filter poset is a DAG-like poset used in the Siena project [CRW01], discussed
previously in Section 3.1. For each node in the Siena poset, successor and predecessor
sets are maintained. Insertion and deletion are straightforward. Worst-case space
complexity of Siena is O(n2). Siena is limited in terms of scalability [TK06]. Poset-
derived forest is an adaptation of Siena that was designed for fast addition, deletion,
and root set computation. We study poset-derived forest in detail in Section 6.

We describe add, delete, look-up, and root set algorithms for the Siena poset data
structure [CRW01]. Siena authors have not published a description of the algorithms
but the Siena project Java code is publicly available [Car12]. We used the actual
Siena project code and a description of the algorithms by Tarkoma and Kangasharju
[TK06].

Algorithm 7 adds an element into the Siena poset. The necessary helper functions are
listed in Algorithm 8. The algorithm first traverses the poset in breadth-first order
starting from the root to find the predecessors of the new node. Then it traverses
the poset starting from the predecessors set to find the successors of the new node.
The successor set must be pruned. It is possible that a node in the successor set is
also an ancestor of another node in the successor set. After pruning the algorithm
uses the predecessor and successor sets obtained to insert the new node into the
poset at the correct position. Finding the predecessor and successor sets results in
O(n) query complexity. Looping through all successors for each predecessor results
in O(n2) total complexity.

Note that the choice of breadth-first order for the add algorithm is not arbitrary.
Depth-first order could be used but breadth-first order results in better performance
both in terms of number of oracle queries and amount of CPU time used because the
depth-first variant would have to prune the predecessor set as well. Using breadth-
first order ensures that the predecessor set contains only the direct predecessors of
the new node.

Algorithm 9 deletes an element from the Siena poset. When an element is deleted,
its successors’ predecessor sets and its predecessors’ successor sets must be updated
accordingly. If the deleted element was a root element, its successor elements with an
empty predecessor set become new root elements. If the deleted element was not a
root element, each successor is connected to each predecessor unless the predecessor
in question is already an ancestor of that successor. The worst-case estimate for
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both the number of successors and predecessors is n. In addition, the ancestor check
has to traverse at most n elements. This yields a total complexity of O(n3). Since
no direct element comparisons are done, the query complexity of the algorithm is
O(1).

Root set computation is trivial: because the root set elements are the root nodes of
the structure, they can be obtained without any extra computation. Because of the
triviality of the operation, we did not include pseudo code for it. Total complexity
of Siena root set computation is O(w). The query complexity is O(1).

Algorithm 6 performs a look-up operation using the information stored in the Siena
poset. Let us compare elements a and b. The algorithm first checks whether a is
an ancestor of b. If that is the case, a dominates b and the algorithm terminates.
If that is not the case, the algorithm checks whether b is an ancestor a. If b is an
ancestor of a, b dominates a. Otherwise a and b are incomparable. The ancestor
checks visit at most n elements resulting in O(n) total complexity. Since no oracle
queries are performed, the query complexity is O(1).

5.3 ChainMerge

ChainMerge is a data structure by Daskalakis et al [DKM+11]. It stores the poset as
a chain decomposition with domination information stored at each element. Specif-
ically, each element stores the highest element it dominates in every other chain.
This results in Θ(wn) space complexity if the chain decomposition is minimum and
Θ(wmaxn) space complexity if the chain decomposition is not minimum. We will
return to this issue later in the section.

This section is organized as follows. In Section 5.3.1 we study offline insertion algo-
rithm by the ChainMerge authors. In Section 5.3.2 we present our online adaptation
of an offline insertion algorithm by the ChainMerge authors. In Section 5.3.3 we
present our delete algorithm and the ChainMerge authors’ look-up algorithm. Both
algorithm are relatively simple and are thus presented together. In Section 5.3.4 we
present our root set computation algorithm and finally in Section 5.3.5 and Section
5.3.6 we discuss ways to maintain a minimum chain decomposition.
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5.3.1 Offline insertion algorithms

Unlike the Siena poset, which was designed for content filtering, ChainMerge was
devised as an aid in sorting and selection. The insertion algorithms presented by
the ChainMerge authors are therefore offline algorithms, i.e. they require that the
set of input elements is known in advance.

The POSET-MergeSort algorithm by Daskalakis et al [DKM+11] constructs a
ChainMerge structure by recursively partitioning the set of input elements into
smaller parts. The POSET-BinInsertionSort algorithm by the same authors
is more suitable for the online insertion case since it processes the input elements
one at a time. POSET-BinInsertionSort in its original form does however re-
quire that the width w of the constructed poset is known in advance which is not
possible without knowing the input elements. We will present an online version
of the POSET-BinInsertionSort algorithm without this requirement in Section
5.3.2.

POSET-BinInsertionSort works by maintaining a chain decomposition of the
partially constructed poset into w chains where w is an upper bound on the width
of the fully constructed poset. When a new element is inserted, its relation to every
other element is determined by executing 2w binary searches to find the smallest
element in each chain that dominates the new element and the largest element in
each chain that is dominated by the new element. This results in O(w log n) query
complexity which is worse than the lower bound of Section 4.3 by a factor of w.

Daskalakis et al present a query-optimal modification of POSET-BinInsertionSort

called EntropySort that achieves the theoretical lower bound by exploiting the
properties of the partially constructed poset to turn the binary searches into weighted
binary searches. The weights are assigned so that the number of oracle queries re-
quired to insert an element into a chain is proportional to the number of candidate
posets that are eliminated by the insertion of that element [DKM+11]. This requires
computing the number of width-w extensions (the candidates) of the partially con-
structed poset for each input element, which is too expensive in practice. We do not
consider EntropySort further.

5.3.2 Online insertion algorithm

We present an online adaptation of the POSET-BinInsertionSort algorithm by
Daskalakis et al [DKM+11]. The original algorithm maintains a chain decomposition
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of width at most w and has O(w log n) query complexity. The exact mechanism for
maintaining the chain decomposition is left unspecified since Daskalakis et al present
the POSET-BinInsertionSort and EntropySort algorithms more as exercises
in query optimality rather than practical algorithms.

Although we do not know the width of the final poset, w, in the online case, it is
possible to maintain a chain decomposition of size wc where wc is the width of the
current poset rather than the width of the final poset. Since wc ≤ w, such a version
of the algorithm would also have O(w log n) query complexity, although maintaining
a minimum chain decomposition is very expensive in practice. We delay discussion
of the minimum chain decomposition case until Section 5.3.5.

We now present the online adaptation of the POSET-BinInsertionSort algo-
rithm. This version of the algorithm does not maintain a minimum chain decom-
position. Rather, it maintains a chain decomposition of width at most wmax. The
algorithm does this by inserting the new element into the longest suitable chain.
If no suitable chains are found, it creates a new chain for the element. Once an
element is inserted into a chain, it is never moved to another chain. In this sense
our algorithm is analogous to a first-fit algorithm. A first-fit algorithm would always
choose the first suitable chain whereas our algorithm chooses the longest suitable
chain in order to better exploit binary search. Finding the longest suitable chain
does not incur any extra cost because the relation of the new element to every chain
must be determined in any case.

The online POSET-BinInsertionSort algorithm performs 2wmax binary searches
to determine the relation of the new element to the existing elements, which results
in O(wmax log n) query complexity. Since w(P) ≤ wmax(P), this is worse query
complexity than the query complexity of the original algorithm. We present a way
to reach O(w log n) query complexity in Section 5.3.5.

Total complexity of the online algorithm is O(wmax log n+n) The additional O(n) in
total complexity is the cost of updating the relations of existing elements to reflect
the newly inserted element. See Algorithm 10 for a pseudo code representation of
the algorithm.

Let us finally show why maintaining a minimum chain decomposition is “harder”
than maintaining a chain decomposition of an arbitrary size. Let elements a, b, c, d, e, f,
and g be input elements to a first-fit algorithm and let them have the relations shown
in Table 1.
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a b c d e f g

a X X X X
b X X
c

d X X X X
e X X X
f

g X

Table 1: Example relations. X in cell (a, b) indicates the element on row a dominates
the element in column b.

If the elements are inserted in alphabetical order, after inserting f we have two
chains: a � b � c and d � e � f . When g is inserted, the algorithm is forced to
create a new chain for g. It cannot insert g to the first chain because b � g and it
cannot insert g to the second chain because g � f . If the insertion order would have
been a, e, c, d, b, f, g instead, after c was inserted we would still have only one chain,
namely a � e � g � c. After f was inserted we would have one other chain, namely
d � b � f . The second insertion order resulted in a chain decomposition with one
less chain, which is also a minimum chain decomposition. The algorithm failed to
produce a minimum chain decomposition because of an unfavorable insertion order.
In fact, it has been shown that an adversary can “trick” a first-fit algorithm into
decomposing a poset of width 2 with n elements into n chains by carefully choosing
the input order of the elements [BKS10].

5.3.3 Delete and look-up algorithms

No known ChainMerge delete algorithm exists. Algorithm 11 is our algorithm for
deleting a single element. We use e to denote the deleted element and echain to denote
the chain e belonged to. The implementation is straightforward: First the algorithm
removes the element e. If the removed element was the only element in its chain,
the chain is removed too. Then the algorithm iterates over the remaining elements
to update their domination information for the chain echain. If the entire chain
was removed, the domination information is set to nil. Otherwise it is sufficient to
subtract one from the index of the largest element each element dominates in chain
echain, if the current value for echain is larger than the index of the deleted element,
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eindex. If the current value for echain is smaller than eindex, nothing needs to be done
since the deletion could not have affected the value. The algorithm runs in O(n)

time with O(1) query complexity.

Algorithm 12 is a look-up algorithm by Daskalakis et al [DKM+11]. It uses the
information stored in the poset to determine the relation of the elements and runs
in O(1) time with O(1) query complexity.

5.3.4 Root set computation

We begin with some useful results.

Definition 5.1. Maximal element of a chain C ⊆ P is an element e ∈ C such that
e � ei for all ei ∈ C, ei 6= e.

Lemma 5.2. If an element is dominated by an element in another chain, it is also
dominated by the maximal element of that chain. Conversely, if an element is not
dominated by the maximal element of a chain, it is not dominated by any element
in that chain.

Proof. Let C1 ⊆ P and C2 ⊆ P be chains of poset P . Let e1 ∈ C1 and e2 ∈ C2 be
elements of the poset. First part: Let us assume e1 � e2. The claim is trivially
true if e1 is the maximal element of chain C1. If e1 is not the maximal element of C1
there must be a maximal element emax ∈ C1 such that emax � e1. From transitivity
of the � relation it follows that if emax � e1 and e1 � e2 then emax � e2. Second
part follows from the first part.

Theorem 5.3. An element is part of the root set if and only if it is the maximal
element of its chain and not dominated by the maximal element of any other chain.

Proof. ′′ ⇒′′: Let us assume er ∈ P is part of the root set for poset P . Therefore
it must be true that ei � er for all ei ∈ P , ei 6= er. If the element er ∈ C is not
the maximal element of its chain, there exists a maximal element emax ∈ C such
that emax � er which leads to a contradiction. Likewise, the existence of an element
e1 ∈ C1 in another chain C1 such that e1 � er leads to a contradiction.
′′ ⇐′′: Let er ∈ C be the maximal element of chain C that is not dominated by the
maximal element of any other chain. By definition there is no element e ∈ C such
that e � er. Based on Lemma 5.2 and our premise we can conclude that there is no
element e ∈ Ci for all Ci ⊆ P , Ci 6= C such that e � er. Therefore e � er is true for
all e ∈ P and thus er is part of the root set.
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Algorithm 13 is our algorithm for computing the root set of the ChainMerge poset.
The algorithm considers the first element of each chain as a potential root element
and discards it if it is dominated by another potential root element. The correctness
of the algorithm follows from Theorem 5.3. The algorithm visits w chains w times
resulting in O(w2) total complexity with O(1) query complexity.

5.3.5 Maintaining a minimum chain decomposition

As seen previously, a chain decomposition of a poset constructed by a first-fit or
equivalent algorithm might be considerably larger than the width of the poset.
We will show in Section 7 that unless minimizing the number of oracle queries
is paramount, our first-fit algorithm is actually a better choice than an algorithm
that aims to maintain a minimum chain decomposition. We will next discuss ways
to maintain a minimum chain decomposition for the sake of completeness.

There are two approaches to the issue: the algorithm can constantly maintain a
minimum chain decomposition or it can periodically restructure the chain decom-
position. An algorithm that constantly maintains a minimum chain decomposition
is an online chain decomposition algorithm. Known online chain decomposition al-
gorithms assume the linear extension hypothesis, which postulates that each new
element is maximal in the poset at the time of insertion, i.e. that the new element
is not dominated by any elements already in the poset [IG]. Considering the use
cases we have presented so far, we can not accept the linear extension hypothesis
and must therefore settle for an offline chain decomposition algorithm.

Several offline chain decomposition algorithms exist. We will present the Merge

algorithm by Tomlinson and Garg [TG97] in the next section. Merge operates on
a set of chains that represent a not necessarily minimal chain decomposition of a
poset making it ideal to use with ChainMerge. Other offline chain decomposition
algorithms are Reduce by Bogart and Magagnosc [IG] and Peeling by Daskalakis
et al [DKM+11], which is similar to Merge. We did not choose Reduce because it
was outperformed by Merge in comparisons done by Ikiz and Garg [IG]. Peeling

on the other hand requires us to know the width of the poset in advance. It also
requires that the cardinality of the input structure is at most 2w [DKM+11] which
we cannot guarantee.
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5.3.6 The Merge algorithm

Tomlinson and Garg present Merge as part of the solution to finding an antichain.
It follows from Dilworth’s theorem that an antichain of size at least k exists if and
only if the poset cannot be partitioned into k − 1 chains [TG97]. Given a chain
decomposition with n chains, their FindAntiChain algorithm tries to partition
the poset into k − 1 chains by calling Merge repeatedly to reduce the number of
chains. If a chain decomposition with k − 1 chains is found, an antichain of size at
least k does not exist.

Each successful invocation of Merge reduces the number of chains in the chain
decomposition by one. Merge takes as input a list of queues sorted in ascending
order which represent the chains of the chain decomposition. Merge works by
iterating over the head (smallest) elements of the input queues until one or more
input queues become empty (in which case the merge will succeed) or until no head
elements are comparable (in which case the merge failed). Each iteration compares
the head element in every input queue to the head element in every other input
queue. If the elements are comparable, the dominated element is removed from the
input queue and appended to an output queue. The incomparable elements form
an antichain A and are not compared against each other on subsequent iterations.
Note that the existing ChainMerge structure can be used to determine the relations
of the elements and therefore no oracle queries are required, which results in O(1)

query complexity.

Pseudo code for Merge is presented in Algorithm 15. In the pseudo code variable
ac keeps track of the currently formed antichain, move keeps track of the elements
to be moved, and bigger keeps track of the relations of the elements. G is a queue
insert graph. It can be initially any acyclic graph with k − 1 edges.

For an input with n input queues, Pi, there are n−1 output queues, Qi. The crucial
part is deciding to which output queue an element is placed. It is shown that by
making an incorrect choice at this step the algorithm may run out of options with
later elements [TG97]. Merge works by maintaining a queue insert graph, which
is a connected acyclic graph, i.e. a tree. The n vertices of the graph correspond to
the n input queues while the n − 1 edges correspond to the n − 1 output queues.
We use Glabel(i,j) to denote the label of an output queue that corresponds to an edge
between vertices i and j and Pi to denote the input queue that corresponds to the
vertex i. An edge between vertices i and j means that the head elements of Pi and
Pj dominate the tail (largest) element of Q(i, j).
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The following is a description of the FindQ algorithm by Tomlinson and Garg
[TG97]. The algorithm uses the queue insert graph to find an appropriate output
queue for an element. When the head element of Pi is dominated by the head
element of Pj, an edge i, j is added to the graph. Since the graph was a tree, it now
contains exactly one cycle which includes the edge i, j. Let i, k be the other edge
incident to i that is part of the cycle. The algorithm now removes i, k and assigns
the label Glabel(i,k) to i, j. The element is placed to the output queue denoted by
that label. The pseudo code for the FindQ algorithm is listed in Algorithm 14.

If the size of the antichain A reaches the size of the chain decomposition while
iterating over the elements, the merge fails and the algorithm terminates. If one of
the input queues becomes empty, the merge will succeed and the algorithm appends
the rest of the input queues to the appropriate output queues before terminating.
Tomlinson and Garg do not describe the append step in more detail. The following
is a description of our simple although suboptimal append algorithm.

The algorithm FinishMerge assigns each of the n − 1 output queues to the at
most n− 1 non-empty input queues so that each non-empty input queue is assigned
exactly one output queue. First, we observe that based on the previous description
of the queue insert graph, the remaining elements of an input queue denoted by
vertex i in G may be appended to any of the output queues denoted by edges
labeled with Glabel(i,j), 1 ≤ j ≤ n, that is any edge incident to i. The algorithm
first finds all vertices that represent non-empty input queues with exactly one edge
connecting them to the rest of the graph and assigns the only possible output queue
to each of them. The assigned edges are removed from the graph. Removal of the
edges results in vertices with previously two edges now having only one edge. The
algorithm repeats until all output queues are assigned. Because the algorithm does
not consider empty input queues, it is sometimes left with several non-empty input
queues that have more than one edge incident to them but no non-empty input
queues with only one edge incident to them. In that case the algorithm chooses
one of the input queues and assigns it an output queue. This makes the algorithm
slightly suboptimal for it is possible to make a non-optimal choice at this point. The
deviation from minimum chain decomposition is not large as seen later in Figure 11
in Section 7. Pseudo code for the FinishMerge algorithm is presented in Algorithm
14.

Finally, the Minimize algorithm of Algorithm 14 ties it all together by repeatedly
calling Merge to reduce the size of the chain decomposition. Minimize differs from
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Tomlinson and Garg’s FindAntiChain algorithm in that Minimize calls Merge

for the entire chain decomposition until merging no longer succeeds. FindAn-

tiChain on the other hand calls Merge for a rotating subset of the chains based
on the value of k which is the size of the antichain the algorithm is trying to find
[TG97].

Let us next estimate the worst-case total complexity of Minimize. The loop in
Minimize is executed at most wmax − w times which equals n in the worst case.
The Merge function inside the loop consists of a while loop, two nested for loops
inside the while loop, a move loop inside the while loop, and a FinishMerge call.

The while loop in Merge is executed at most n times and both for loops at most
wmax times. The move loop is executed at most n times. The cycle finding al-
gorithm inside the move loop visits all nodes of G in the worst case which re-
sults in O(nwmax) total complexity for the move loop. Based on the above, the
total complexity of the while loop is O(n(w2

max + nwmax)). The FinishMerge

algorithm repeatedly iterates through the vertices of G so that on each iteration
at least one vertex (input queue) is assigned an edge (output queue) which re-
sults in O(w2

max) total complexity for FinishMerge and together with the while
loop complexity in O(n(w2

max + nwmax) + w2
max) total complexity for Merge and

O(n2(w2
max + nwmax) + nw2

max) total complexity for Minimize.

We have neglected one cost so far. After the chain decomposition has been mini-
mized, the relation of each element to other chains has to be re-established. This
is equivalent to re-adding each of the elements to the structure with one exception:
the query complexity is constant this time because the existing CM structure can be
used for element comparisons. The same is true for the Minimize operation which
makes the query complexity of the entire reconstruction operation O(1). The total
complexity of the reconstruction operation is the total complexity of Minimize and
the cost of n add operations where n is the number of elements in the poset.

One last thing to discuss is the interval, in terms of the number of elements inserted,
between successive reconstruction operations. As the total complexity estimate sug-
gests, unless keeping the number of oracle queries low is paramount (or the input
data is known to be pathological), reconstructing the chains is most likely not worth
the time spent doing it. If the number of oracle queries must be kept low at all costs,
reconstructing the chains often—even after every insertion—is the best choice. We
experiment with a few possible values in Section 7.
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Structure add delete roots look-up

Siena poset O(n) O(1) O(1) O(1)

ChainMerge O(wmax log n) O(1) O(1) O(1)

ChainMerge
min. chains

O(w log n) O(1) O(1) O(1)

Matrix O(n) O(1) O(1) O(1)

Q-o Matrix O(n) O(1) O(1) O(1)

Lower bound Ω(w log n) Ω(1) Ω(1) Ω(1)

Table 2: Query complexities.

Structure add delete roots look-up space comp.

Siena poset O(n2) O(n3) O(w) O(n) O(n2)

ChainMerge O(wmax log n+ n) O(n) O(w2
max) O(1) Θ(wmaxn)

ChainMerge
min. chains

O(w log n+ n) O(n) O(w2) O(1) Θ(wn)

Matrix O(n) O(n) O(n2) O(1) Θ(n2)

Q-o Matrix O(n2) O(n) O(n2) O(1) Θ(n2)

Lower bound Ω(n) Ω(n) Ω(w) Ω(1) Ω(wn)

Table 3: Total complexity of the operations and space complexity. For structures
other than Siena the lower and upper bounds on space requirement are the same.

5.4 Worst-case complexities

Tables 2 and 3 compare the data structures in terms of query complexity and total
complexity. Table 3 contains also space complexity estimates. For structures other
than Siena the lower and upper bounds on space requirement are the same and they
are thus denoted by theta (Θ) instead of big-oh.

The minimum chains ChainMerge variant is the smallest of the data structures
studied in this section with a space complexity of O(wn). Since w = n in the worst-
case and n2/4 + O(n) ∈ O(n2), our findings are in line with the theoretical lower
bound of Section 4.3. It must be noted, though, that none of our structures are
especially space efficient. We will discuss space efficient poset structures briefly in
Section 5.5.

The data structure with least oracle comparisons is also the minimum chains Chain-
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Merge variant with a query complexity of O(w log n). Since w = 1 represents a total
order, our query complexity is worse than Ω(log n+w) of Section 4.3 with all possible
values of w. The EntropySort algorithm discussed previously is query-optimal
but too expensive in practice.

5.5 Other data structures

We will briefly mention two other poset data structures before moving forward. The
purpose of both structures is to reduce the size of the stored poset. Since we are
not particularly concerned with space efficiency, we will not consider these data
structures further.

Bit-encoded ChainMerge by Farzan and Fischer [FF11] reduces the size of a poset by
storing the transitive reduction of a graph G representing the poset and not G itself.
Transitive reduction of G is the smallest subgraph of G with a transitive closure
equal to the transitive closure of G [FF11]. Furthermore, the chains of the poset
and their relations are stored as bit vectors. The main advantage of bit-encoded
ChainMerge is the smaller space requirement although the structure is applicable
only to posets of small width. The space requirement of a bit-encoded ChainMerge
structure is (1 + ε)n log n+ 2nw(1 + o(1)) bits for an arbitrary small constant ε > 0

[FF11], which is greater than the theoretical lower bound of Section 4.3. Munro and
Nicholson [MN12] present their own bit-encoded data structure for arbitrary posets
that matches the theoretical lower bound of Section 4.3. Munro and Nicholson’s
data structure is an example of a succinct data structure. A succinct data structure
matches the theoretical lower bound on the size of the structure to within lower
order terms while supporting efficient query operations [MN12].

6 Poset-derived forest

Poset-derived forest (PF) by Tarkoma and Kangasharju is a data structure designed
for fast additions, deletions, and fast computation of the root set [TK06]. Poset-
derived forest achieves these fast operations by storing only a subset of the relations
of a poset. Figure 3 illustrates the difference between Siena poset and poset-derived
forest. Because complete relations are not stored, look-up is not a meaningful oper-
ation for poset-derived forest, and we substitute it with computing the covered set.
With incomplete relations, deletion can no longer be performed with O(1) query
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complexity. Nevertheless, PF performs considerably better than Siena poset in the
tasks it was designed for. We provide brief comparison of PF against Siena poset
in Section 7.5. For a more comprehensive comparison of PF against Siena poset the
reader is referred to the paper by Tarkoma and Kangasharju [TK06].

We begin with a few crucial definitions in Section 6.1 and describe the basic PF
algorithms in Section 6.2. In sections 6.3 to 6.5 we discuss several variants of the
basic PF structure. Tables 4 and 5 provide a summary of the query and total
complexities of the variants. The variants are benchmarked in Section 7.5.

6.1 Definitions

These definitions are based on the definitions by Tarkoma and Kangasharju [TK06].

Definition 6.1. Poset-derived forest is a pair (P,3) where P is the set of elements
and 3 is an irreflexive, transitive binary relation. For each element a ∈ P , there
exists at most one element b ∈ P such that a 3 b. If a 3 b then a � b.

The elements a ∈ P for which there does not exist an element b ∈ P such that b 3 a

form the root set. The elements of the root set can be thought of as children of
a so-called imaginary root which is a node not in P . Including the imaginary root
allows treating the entire forest as a single tree.

Definition 6.2. A poset-derived forest is sibling pure at node a if all children of a
are mutually incomparable. A poset-derived forest is sibling pure if it is sibling pure
at every node, including the imaginary root.

Generally, we do not consider non-sibling-pure forests in this thesis, although there
may be use cases in content-based routing that do not require sibling purity [TK06].
The lazy-evaluated poset-derived forest variants of Section 6.4 are a special case:
they are sibling pure only to a certain depth.

6.2 The algorithms

We describe algorithms for the poset-derived forest data structure. All algorithms
except covered set computation are originally described by Tarkoma and Kan-
gasharju [TK06]. We do not provide pseudo code for the root set algorithm because
it is trivial.
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Figure 3: Removing the dotted relations of this Siena poset produces one of the
many possible poset-derived forests for this poset. The filled node is a root node.

Algorithm 16 adds a new element to the poset-derived forest. The algorithm tra-
verses the forest starting from the imaginary root until a node is found that domi-
nates the new element. The new element then becomes the child of that node. At
each node, if the new element dominates any children of the node, the dominated
children become the new element’s children. If the new element is not dominated by
any existing nodes, it simply becomes a root node. In the worst case, every node is
visited before the algorithm terminates resulting in O(n) total complexity and O(n)

query complexity. The call to the Balance function on line 33 in Algorithm 16 is
only done for the actively balanced variant, discussed in Section 6.3.

Algorithm 17 deletes an element from the poset-derived forest. It runs the Add

algorithm for every subtree rooted at the deleted element. In the worst case, there
are n subtrees resulting in O(n2) total complexity and O(n2) query complexity.
Running Add for the subtrees is necessary to maintain sibling purity. We do not
discuss cases where sibling purity is not maintained.

Algorithm 18 performs covered set computation. The algorithm traverses the entire
structure resulting in O(n) query and total complexities. Root set computation is
trivial. Every non-covered filter is a root node in a maximal (i.e. sibling pure) poset-
derived forest [TK06]. Thus it is sufficient to list the root nodes of a poset-derived
forest to obtain the root set which results in O(w) total complexity and O(1) query
complexity.
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6.3 Balanced PF

We present two alternative balancing implementations for the poset-derived forest,
called active balancing and passive balancing. These balancing schemes are not
related to interface-based balancing discussed by Tarkoma and Kangasharju [TK06].

Passive balancing balances the structure by always inserting a new element into the
shortest subtree. Active balancing extends passive balancing by doing additional
rebalancing operations. Active balancing results in shorter trees but requires more
oracle queries due to the rebalancing operations. We compare the performance of
balanced PF variants in more detail in Section 7.5.

The passive balanced variant always inserts the new element into the shortest pos-
sible subtree. It achieves this by storing the height of the tallest subtree rooted at
each node. Whereas the basic PF Add operation of Algorithm 16 makes an arbi-
trary choice of the subtree to descend to at each node—seen as the assignment to
next on line 17 of Algorithm 16—the passive balanced variant simply chooses the
shortest subtree. We do not present pseudo code for this fairly trivial variant.

Passive balancing can fail to produce the shortest possible structure because it does
balancing only by choosing the subtree when traversing the poset-derived forest. In
the worst case the input values are inserted in increasing order and no choosing is
done. Active balancing on the other hand constantly monitors the height of the
subtrees and rebalances them.

Active balancing does a rebalancing operation after each inserted element. This is
seen as the call to the Balance function on line 33 in Algorithm 16. Algorithm
19 contains the pseudo code listing for the Balance algorithm. The balancing
algorithm works as follows. First the algorithm determines whether the difference in
length of the shortest and tallest subtree rooted at node r exceeds a certain threshold.
The threshold calculation can be seen on line 5 in Algorithm 19. The point of the
threshold calculation is to ensure that the balancing operation is meaningful. In
the worst case the taller subtree is appended to the end of the shorter subtree. The
algorithm therefore ensures that the combined length of the subtrees is 2 less than
the original length. If the threshold is exceeded, the algorithm traverses the longer
subtree recursively to find the nodes at the middle of the subtree and moves them
to the shorter subtree if possible. The total and query complexities of the Balance

function are O(n). Because the Balance function is called from the end of the
Add function, it brings the total and query complexities of the Add function to
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O(n2) for the actively balanced variant.

6.4 Lazy-evaluated PF

Lazy-evaluated poset-derived forest works by postponing the evaluation of elements
until necessary. The lazy-evaluated variant has a predetermined initial evaluation
depth to which it evaluates the elements. For example, when a new element is
inserted into a lazy-evaluated PF with initial evaluation depth of one, the new
element’s relation to the root nodes is determined in the usual manner. After this
step the new element either becomes a root node itself or a child of one. The
evaluation stops after this step. The structure is sibling pure to depth 1. Evaluation
to a depth of at least 1 is necessary for fast root set computation.

Each node of the lazy-evaluated PF contains an evaluated? flag which indicates
whether the children of the node are evaluated. The flag is necessary because each
subtree of the structure might be evaluated to a different depth. Although the initial
evaluation depth is fixed, insertion of a new root node causes the evaluation depth
of the subtrees rooted at the new root node grow by one as seen in Figure 4. Node
31 in the figure dominates all other nodes and node 15 dominates nodes 7 and 3.
In Figure 4a element 31 is inserted first and the resulting structure is evaluated to
depth 1. In Figure 4b element 31 is inserted last. Because the subtree rooted at 15
is already evaluated to depth 1, the final subtree of Figure 4b is evaluated to depth
2. Although varying evaluation depth makes the implementation more complex, a
simplified implementation does not justify discarding already computed information.

Another noteworthy thing in Figure 4 is that a lazy-evaluated PF contains consid-
erably more leaf nodes than an ordinary PF. This is beneficial since the deletion
of a leaf node is cheaper than the deletion of a non-leaf node because it does not
require relocating the deleted node’s children. On the other hand, deletion of a root
node is more expensive in the lazy evaluated variant because the replacement root
node is not immediately known. There is a trade-off between smaller and larger
evaluation depths; smaller evaluation depths result in more efficient add operation
but less efficient delete operation than larger evaluation depths.

The insertion algorithm for the lazy-evaluated PF variant is a simple modification of
Algorithm 16. When the initial evaluation depth is reached (or when a subtree with
an unevaluated root node is encountered), the new value is inserted at the current
position. The delete operation does not require any modification to Algorithm 17
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Figure 4: The same lazy-evaluated PF with an initial evaluation depth of 1 and two
different insertion orders. The dotted line indicates an unevaluated node.

since it already calls add for the children of the deleted node.

6.5 PF merging

If the use case is insertion-heavy, it may be beneficial to first construct smaller
poset-derived forests and then merge them. We call such a structure MergeForest.
A straightforward MergeForest implementation uses an array of n poset-derived
forests. When a new element arrives, it is inserted into the next PF in a round-
robin fashion. A merge step involves merging all n− 1 PFs to the nth PF. Merging
of two poset-derived forests, PF1 and PF2, is accomplished by inserting each of the
trees in PF2 to PF1 with the ADD function of Algorithm 16. We will see in Section
7 that this approach will spare a considerable amount of oracle queries in the ideal
case. This is possible because the merge step benefits from adding entire subtrees
by comparing only the root element and does not therefore require nearly as many
oracle queries as inserting into the smaller posets spared.

Another issue, which we will not pursue further, is that the construction of the
smaller posets could be done in parallel with a multi-CPU computer or in a dis-
tributed manner with a workload distribution framework such as MapReduce [DG08].
One of the issues with a real production scale system would be how to share the
data (i.e. pieces of the forest) with other nodes. Salo [Sal10] has studied a similar
issue in the context of content-based routing.



28

Structure add delete roots covered set space complexity

Basic PF O(n) O(n2) O(w) O(n) O(n)

Balanced PF (passive) O(n) O(n2) O(w) O(n) O(n)

Balanced PF (active) O(n2) O(n3) O(w) O(n) O(n)

Lazy PF O(n) O(n2) O(w) O(n) O(n)

Lower bound Ω(n) Ω(n2) Ω(w) Ω(n) Ω(n)

Table 4: Poset-derived forest and variants total complexities.

Structure add delete roots covered set

Basic PF O(n) O(n2) O(1) O(n)

Balanced PF (passive) O(n) O(n2) O(1) O(n)

Balanced PF (active) O(n2) O(n3) O(1) O(n)

Lazy PF O(n) O(n2) O(1) O(n)

Lower bound Ω(n) Ω(n2) Ω(1) Ω(n)

Table 5: Poset-derived forest and variants query complexities.

7 Experimental evaluation

Let us turn our focus to experimental evaluation of the data structures and algo-
rithms we presented in previous sections. First we describe the benchmarking setup
in sections 7.1 to 7.3. Then we present the results for poset structures in Section
7.4 and for poset-derived forest in Section 7.5.

7.1 Input values

We used simple integer values as the inputs and their natural order as the order of
the elements of a poset. To introduce artificial incomparability among the elements
we used several different comparability percents. A comparability percent for a
benchmark run determines the percentage of mutually comparable elements in the
set of input values. The comparabilities were distributed uniformly among the set
of input values as described in Section 7.2.

We used the following comparability percents: 0, 25, 50, and 85. A comparability
percent of 50 is a reasonable value when the actual use case for the poset is not
known. The zero percent case is hardly encountered in practice but was included
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Figure 7: Amount of CPU time used per add operation.
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Figure 9: Amount of CPU time used per look-up operation.
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Figure 10: Amount of CPU time used per root set computation.
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Figure 11: ChainMerge chain partition results. The figures on the left side represent
the number of chains with different comparability percents and the figures on the
right side represent the number of oracle queries for the same comparability percent.
The two figures on the bottom represent CPU benchmarks. ChainMerge-1 recon-
structs the chains after every insertion, ChainMerge-50 after every fifty inserted
elements and so on.
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because it induces worst-case behavior in many of the algorithms. 100 percent
comparability represents a total order and is therefore outside the scope of this
work, although we did want to bias the largest of the values towards a total order
and thus chose 85 instead of 75 as the largest comparability percent. See Figure 5
for an example of the effect of comparability percent on query complexity.

Most of the benchmarks were executed with uniformly distributed input values, i.e.
each of the input values was as likely to be chosen as the nth input value to the
benchmarked algorithm. In some cases the input values were fed to the benchmarked
algorithm in strictly descending order.

7.2 Element comparison scheme

To introduce artificial incomparability among the elements a comparability matrix
with uniformly distributed values was used. A comparability matrix records the
comparability of each element to every other element in P . To compare elements
a, b ∈ P we would first query the comparability matrix to find out whether a and b
are comparable. If they are comparable, we would compare them by their natural
order, i.e. if a > b then a � b.

The comparability matrix must satisfy two properties: symmetricity, i.e. a ∼ b ⇒
b ∼ a for all a, b ∈ P , and transitivity, i.e. a � b ∧ b � c⇒ a � c for all a, b, c ∈ P .
Symmetricity is easily maintained by storing only half of the matrix as an upper
triangular matrix and converting queries such as (5,2) to (2,5). Transitivity was
ensured by running a transitivity checker after the matrix was constructed. The
checker would detect and repair any transitivity violations found by adding missing
relations to the matrix until it satisfied the transitivity requirement. Because of this
step it was not feasible to estimate the resulting comparability percent of the matrix
in advance. Rather, we constructed several matrices with different values for n and
picked the ones that satisfied the required comparability percent.

The entire process to produce a random set of comparabilities is as follows. First,
the comparability matrix is filled with n values and then shuffled. Then the tran-
sitivity checker is run to enforce transitivity. After this the comparability percent
of the resulting matrix is assessed. If the resulting comparability percent equals the
requested percent within a 1% error margin, the algorithm terminates. Otherwise a
new value for n is chosen and the process repeats. Binary search was used to find
suitable values for n in a small number of steps.
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Structure add delete roots look-up dominated set

Siena poset 2000/1000 1000/200 2000 10000 -
ChainMerge 2000 2000 20000 20000 -

Matrix 2000 2000 500 20000 -
Poset-derived forest 5000 5000 - - 4000

Table 6: Batch sizes used for the CPU time benchmarks. A smaller batch size was
used for 50% and 85% Siena add and delete benchmarks since they were very slow
to execute compared to the other benchmarks.

7.3 Benchmarking setup

We implemented all data structures from scratch in Java. Although previous imple-
mentations of Siena posets and poset-derived forest are publicly available as part of
the Siena [Car12] and Fuego [TKLR06] projects, a custom implementation guaran-
teed fair treatment of all data structures and allowed us to easily employ a custom
element comparison scheme, which we described in Section 7.2. Our implementa-
tions of Siena poset and poset-derived forest are based on the description by Tarkoma
and Kangasharju [TK06] and the Siena project Java implementation. The poset-
derived forest variant implementations are based on the original work in Section
6. Our ChainMerge implementation is based on the description by Daskalakis et
al [DKM+11] and original work in Section 5.3. The rather trivial incidence matrix
data structure is based on the description in Section 5.1.

We used two different measures: the number of oracle queries required for an op-
eration and the amount of CPU time used for an operation. For structures other
than poset-derived forest, the number of oracle queries was measured only for the
add operation since it is constant for the other operations. For poset-derived forest
and its variants, we measured the number of oracle queries for the add and delete
operations.

All benchmarks measure the queries or time per operation although all of the CPU
time benchmarks were run in batches to get meaningful results; a single poset op-
eration is executed too fast to measure reliably. For example, most of the CPU
add benchmarks use a batch size of 2000 which means every add measurement is
obtained by executing the operation 2000 times and dividing the result by 2000.
The batch sizes were chosen so that each of the benchmarks could be completed in
a reasonable amount of time. See Table 6 for the different batch sizes used.
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Additionally, all benchmark results are averages of five individual benchmark runs.
This decreased variation and helped smooth out any artifacts caused by particu-
larly (un)favorable sequences of elements. Each benchmark run was executed with
a unique sequence of elements, although it was ensured all benchmarked data struc-
tures were supplied the same sequences of elements. A sequence of n elements is
a random permutation of the values 1...n with random comparabilities among the
elements.

It was assumed that locating a value in any of the benchmarked poset structures is a
constant-time operation. This could be achieved with an auxiliary search structure
such as a hash table. Because searching is out of the scope of this work, we simply
subtracted the element search times from the final figures.

The CPU benchmarks were executed on a dedicated Lenovo ThinkPad laptop with
a 2.7 GHz Intel Core i7 processor and 4 gigabytes of RAM. The benchmarks were
run sequentially, and only one processor core at a time was used for benchmark
execution to avoid any artifacts caused by trashing of the CPU cache.

7.4 Poset structures: results and analysis

The benchmarks in Figure 6 measure the number of oracle queries required per add
operation as the size of the poset grows. We use n to denote the size of the poset.
With 0% comparability Siena and ChainMerge require 2n oracle queries while Matrix
and Query-optimized Matrix require only n queries. The fact that ChainMerge
does not perform any better than Siena is hardly surprising considering it does not
benefit from binary search at all with 0% comparability. With 25% comparability
ChainMerge performs considerably better than Siena and only slightly worse than
the incidence matrix. With higher comparability percents ChainMerge performs
considerably better than both the matrix and Siena which in turn perform equally
well in the 85% comparability benchmark. Query-optimized matrix offers the best
query performance overall which is due to the fact that it considers all information
stored in the poset so far while ChainMerge is limited to exploiting information on
a chain-by-chain basis.

The benchmarks in Figure 7 and Figure 8 measure CPU time per add and delete
operations, respectively. The large variation in Siena values both in the add and
delete benchmarks is caused by the variation in the time that is required to find the
predecessors and successors of the new node. The incidence matrix and ChainMerge
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structures do not exhibit such large variation because the matrix add operation al-
ways grows linearly and the growth of the ChainMerge add depends (logarithmically)
on the number of chains. For the matrix there is no variation and for ChainMerge
the variation is very small.

The benchmarks in Figure 9 and Figure 10 measure the CPU time used per a single
look-up or root set computation operation, respectively. The results reflect the
worst-case estimates of Table 3 where Siena has an O(n) total complexity while
ChainMerge and Matrix have a constant-time look-up operation. Siena is the best
structure in the root set computation benchmark due to the constant-time root
set operation. ChainMerge performs fairly well too but the matrix compares less
favorably to the other structures because it has to process the entire structure in
order to compute the root set as seen in Algorithm 4. Again, these results reflect
the estimates in Table 3.

Figure 11 contains the ChainMerge chain partition results. The benchmarks on
the left side contain the number of chains in the structure with different variants.
Here the number after the name indicates how often the chains are reconstructed:
ChainMerge-1 reconstructs the chains after every inserted element, ChainMerge-
50 after every 50 inserted elements and so on. The benchmarks on the right side
contain the number of oracle queries required per added element with the different
variants. The benchmarks on the bottom row measure the amount of CPU time
used per added element. As can be seen in Figure 11, while the number of chains
and number of oracle queries drops as the comparability percent grows, the relative
differences between the variants remain constant.

7.5 Poset-derived forest: results and analysis

The benchmarks in Figure 12 compare poset-derived forest against Siena poset. PF
performed clearly better with every comparability percent. The 50% results were
included in Figure 12 for reference. Tarkoma and Kangasharju have carried out a
more comprehensive comparison of poset-derived forest versus Siena poset [TK06].

See Figure 13 for a comparison of the lazy-evaluated PF variants. In the figure
lazy-1 denotes a lazy variant with an evaluation depth of 1 and so on. Only the 85%
benchmarks are included because they were highly indicative of the other results and
offered the most pronounced difference between the variants. It can be seen that
the variants with greater evaluation depth perform worse in the add benchmark



37

0

500

1000

1500

2000

2500

3000

0 250 500 750 1000 1250 1500 1750 2000

O
ra
cl
e
q
u
er
ie
s

Poset size

Add: 50% comparability

0

0.01

0.02

0.03

0.04

0.05

0.06

0 250 500 750 1000 1250 1500 1750 2000

S
ec
on

d
s

Poset size

Add: 50% comparability

Siena PF

Figure 12: Poset-derived forest vs Siena poset.
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Figure 13: PF lazy variants: Number of oracle queries required for the add and
delete operations.

but better in the delete benchmark. Worse performance in the add benchmark is
caused by the need to carry evaluations deeper. Better performance in the delete
benchmark is due to the fact that the deeper-evaluated variants have to determine
the replacement node for a deleted root node less often; if the evaluation depth is 2
for example, the successor to a deleted root node is immediately known. Since the
lazy-1 and lazy-5 variants performed best in the add and delete benchmarks, they
were chosen for comparison against other PF variants.

Figure 15 presents a comparison of the add operation for PF variants in terms of the
number of oracle queries. Only the passively balanced PF variant was included in
this comparison since it clearly outperformed the actively balanced variant as seen
in Figure 14. The lazy-evaluated variant can be seen performing increasingly better
compared to the other variants as the comparability percent grows because a larger
comparability percent produces a deeper tree, which benefits the lazy-evaluated
variant more. Although clearly visible in Figure 15, the difference to the other
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Figure 14: Comparison of balanced poset-derived forest variants. The benchmark
with descending values contains also a lazy variant for reference.
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Figure 15: PF variants: Number of oracle queries required for the add operation.
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Figure 16: PF variants: Number of oracle queries required for the delete operation.
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Figure 17: PF variants: Elapsed CPU time per operation for the add and delete
operations.
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Figure 18: PF variants: Number of oracle queries required for the add and delete
operations combined.

0
5
10
15
20
25
30
35
40

0 250 500 750 1000 1250 1500 1750 2000

O
ra
cl
e
qu

er
ie
s

Poset size

Add: PF vs lazy-evaluated PF

PF (90%)
PF (94%)
PF (98%)

PF (lazy-1) (90%)
PF (lazy-1) (94%)
PF (lazy-1) (98%)

Figure 19: PF vs lazy-evaluated PF with high comparability percents.



41

0
2
4
6
8
10
12
14
16

0 250 500 750 1000 1250 1500 1750 2000

Fo
re
st

he
ig
ht

Poset size

Poset-derived forest height

PF 90%
PF 25%

PF (act.bal.) 90%

PF (act.bal.) 25%
PF (pass.bal.) 90%
PF (pass.bal.) 25%
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Figure 22: Cumulative add query benchmarks.

variants is not very big. Figure 19 compares the lazy-evaluated variant against
the basic poset-derived forest with very high comparability percents. With 98%
comparability the lazy-evaluated variant requires only about a third of the oracle
queries required by the basic poset-derived forest. The difference to the basic PF is
even greater with the input values in descending order as seen on the right side of
Figure 14.

Figure 16 presents a comparison of the delete operation for PF variants in terms
of the number of oracle queries. The subfigure on bottom right depicts actual
values instead of a moving average. Note that the 0% results were not included
as the number of oracle queries required for delete is 0 for each of the variants
since with mutually incomparable elements no element will have successors. The
lazy-evaluated variant with depth 1 is clearly seen progressively losing to the other
variants as the comparability percent grows in Figure 16. This is caused by the fact
that the lazy variant delays evaluating the elements until necessary and therefore
experiences a larger impact in the delete phase than the other variants. This is
evident in the subfigure on the bottom right in which large spikes are seen. Each
spike in the lazy-1 variant values is caused by the deletion of a root node. The other
variants also produce spikes but they are virtually indistinguishable compared to the
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Figure 23: Covered set benchmarks. These benchmarks are executed by inserting
elements one by one and computing the covered set of every element in the input set
after each insertion and dividing the result by the number of elements in the input
set.

spikes produced by the lazy variant. The lazy-evaluated variant with depth 5 does
generally no worse than the non-lazy-evaluated variants. The CPU time metrics for
the delete operation are seen in Figure 17 along with the add CPU time metrics. The
performance of all PF variants is very similar. The comparability percents chosen
in Figure 17 are representative of all PF variant CPU benchmark runs.

It is worth noting that the oracle queries spared in the add benchmark by the lazy-1
variant outweigh the additional queries introduced in the delete benchmark, as seen
in Figure 18, which depicts a combined add and delete benchmark. This benchmark
measures the number of oracle queries required for inserting and then immediately
deleting an element. In this benchmark the lazy-1 and lazy-5 variants do equally
well in outperforming the other variants.

Figure 20 shows the height of the balanced poset-derived forest variants as a function
of their size size with two different comparability percents. As seen in the figure,
unbalanced PF produces the tallest structures with both comparability percents.
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The passive balanced version produces structures that are shorter than with the
unbalanced variant but longer than the actively balanced variant. Actively balanced
variant produces always the shortest structures although the differences between all
three variants are small with the lower comparability percent. This is caused by the
fact that lower comparability percents produce naturally wider (and hence shorter)
trees.

Figure 14 compares balanced PF variants. As seen in the figure, actively balanced
poset-derived forest is outperformed most of the time even by the unbalanced poset-
derived forest. Passively balanced poset-derived forest on the other hand performs
generally no worse than unbalanced poset-derived forest but may perform consider-
ably better as seen in the chart with decreasing values in Figure 14. The reason why
unbalanced poset-derived forest is able to match or even surpass the performance
of the balanced variants most of the time is that a random insertion order tends to
produce relatively balanced trees by default as seen in Figure 20.

Figure 21 shows the number of oracle queries required for a concurrently constructed
poset-derived forest, i.e. a MergeForest. “MergeForest (1)” means the MergeForest
was comprised of exactly one poset-derived forest (and is thus equal to a plain poset-
derived forest), “MergeForest (2)” means the MergeForest was comprised of exactly
two poset-derived forests and so on. The poset-derived forests were merged in the
end which causes a visible spike in the plots. We used cumulative values in this case
to make comparing the results feasible. With non-cumulative values the plots are
mostly flat with huge spikes in the end which makes it impossible to judge the relative
performance of the variants. The performance of MergeForest with lazy-evaluated
poset-derived forests was similar to MergeForest with plain poset-derived forests
and was thus not included. The last benchmark on the bottom right measures the
performance of the “find covered values” operation. In this benchmark the order of
the variants is reversed: the ones that performed better in the add benchmarks now
perform worse and vice versa. This is caused by the smaller number of candidate
values being eliminated by a comparison with the root value in a smaller forest.

Figure 22 contains cumulative add benchmark of all PF variants for purposes of
comparison against the MergeForest variant. As seen in the figure, MergeForest
performs considerably better than the other variants or the basic poset-derived for-
est. The “MergeForest (25) (lazy)” variant in Figure 22 is a data structure that
contains 25 lazy-evaluated poset-derived forests. As seen in the figure, it performs
only marginally better than the non-lazy-evaluated variant with 25 forests. Fig-
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Metric Matrix Siena CM PF

Add fast slow fast fast
Delete fast slower fast fast
Look-up fast slow fast unsupported
Root set computation slow very fast fast very fast
True poset yes yes yes no
Best for incremental add X
Best query complexity X
Least space requirement X

Table 7: Strengths and weaknesses of the four major data structures. Note that the
best query complexity result concerns the query-optimized matrix variant and the
least space requirement result concerns the minimum chains CM variant.

ure 23 contains cumulative covered set computation benchmarks, with only minor
differences seen between the variants.

8 Discussion

The benchmark results of Section 7 correlate generally well with the worst-case es-
timates presented earlier. As could be expected, the performance of any of the
algorithms was not as bad as the corresponding worst-case estimate, but the algo-
rithms with worse worse-case estimates tended to perform generally worse than the
algorithms with a better worst-case estimate. ChainMerge is a notable exception:
although the worst-case query complexity estimate of Table 2 for ChainMerge add
operation is the worst of all poset add algorithms (wmax = n in the worst-case), in
practice a first-fit or equivalent ChainMerge implementation performs close to opti-
mal query-wise in typical scenarios, as previously discussed. Tables 7 and 8 provide
a summary of the strengths and weaknesses of the data structures.

The best poset data structure for incremental add, based on the evaluation in Section
7, would be ChainMerge. It performed well both in terms of the number of oracle
queries required and the amount of CPU time used. With a comparison percent of
50 or higher, ChainMerge was outperformed in terms of the number of oracle queries
only by the query-optimized matrix variant. The query-optimized matrix variant
however exhibited orders of magnitude worse performance than ChainMerge in the
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CPU time benchmark. When we consider that a first-fit or equivalent ChainMerge
implementation performs close to optimal and take into account the high cost of re-
constructing the chain decomposition, we consider a first-fit equivalent ChainMerge
insertion algorithm the best choice overall for an incremental poset add use case.
Additionally, ChainMerge is likely the best choice for a general-purpose poset use
case.

If the aim is to reduce the number of oracle queries at all cost, then the query-
optimized matrix variant is the best choice for a poset data structure: it required
the lowest number of oracle queries in the query add benchmark and cannot be
outperformed by other data structures in other query benchmarks since the query
complexity of the other operations is constant for all poset data structures. Query-
optimized matrix does not do as well in the CPU add benchmarks as the other
poset structures but did nevertheless outperform Siena in the CPU add benchmark
of Section 7.

When fast root set computation is the concern, the Matrix and query-optimized
matrix structures do not fare well. As far as true poset structures are considered,
Siena is the best structure for fast root set computation. However, if no part of the
functionality offered by a “true” poset data structure is needed, then poset-derived
forest is a better alternative.

The best data structure, of the main data structures discussed, to minimize space re-
quirement is the minimum chains ChainMerge variant with least space complexity in
Table 3. The experimental evaluation did not include space requirement evaluation,
but the benchmarks in Figure 11 suggest that the difference in space requirement
between the minimal and first-fit ChainMerge variants is negligible. If space is at
premium, the succinct structures briefly mentioned in Section 5 might be worth the
extra implementation effort.

Poset-derived forest is the best structure of those studied for publish/subscribe sys-
tems due to the fast add, delete, and root set computation operations. Plain poset-
derived forest performs rather well in a typical scenario. It is outperformed by the
MergeForest variant in a pure incremental add scenario. However, if the insertions
are interspersed with other operations, performance of the parallel variant may suf-
fer significantly. A balanced poset-derived forest may perform better than a plain
poset-derived forest in some highly specific scenarios such as if the input set con-
tains a lot of values in descending order. Lazy-evaluated PF performs well when
the comparability percent is high. Combining the MergeForest and lazy-evaluated
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Structure Comment

PF Fast overall
Balanced PF Performs better in specific scenarios. The actively balanced

variant produces the shortest tree.
Lazy-eval. PF Performs well with high comparability percents.
MergeForest Excels in pure incremental add scenario.

Table 8: Summary of the poset-derived forest variants.

variants does not provide a performance gain.

9 Future work

Poset-derived forest merging of Section 6.5 is an interesting topic for more study.
Depending on the supported operations and their frequency it might make sense to
not merge the posets at all but instead execute all operations on the non-merged
structure. Distribution and parallelization are also subtopics of interest within this
topic.

Poset merging has been studied by Chen et al [CDS]. Poset merging is distinct
from poset-derived forest merging; the methods and results in this thesis are not
generalizable to posets because when merging two posets, the relation of every ele-
ment to every other element must be determined, unlike with poset-derived forests.
Chen et al present poset merging algorithms and establish certain theoretical bounds
but note that the problem still contains open research questions [CDS]. Applying
poset merging techniques to the poset structures presented in this thesis—especially
ChainMerge— might be worth study.

Combination data structures are another possible item for future study. A combi-
nation data structure combines two existing data structures to better exploit the
strengths of each of the data structures while trying to work around their weaknesses.
The incidence matrix and ChainMerge seem good candidates for a combination poset
data structure.

BE-tree is a highly scalable structure for indexing and matching boolean expressions
[SJ11]. BE-tree is not a poset data structure but it can be used for filter matching in
content-based routing. An empirical study might analyze the efficiency of BE-tree
against the data structures discussed in this thesis in a specific setting.
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10 Conclusions

We studied in detail four poset or poset-like data structures: the incidence matrix,
Siena poset, ChainMerge, and poset-derived forest. We presented several adapta-
tions and optimizations to these data structures: a query-optimized matrix inser-
tion algorithm, first-fit-equivalent and query-optimized online ChainMerge insertion
algorithms, an efficient ChainMerge root set computation algorithm, and several
poset-derived forest variants.

We carried out an experimental performance study on the data structures. The
results indicate that a first-fit-equivalent ChainMerge is the best general-purpose
poset data structure. The query-optimized matrix variant is the best structure
to minimize the number of oracle queries. Siena and poset-derived forest are the
best structures for fast root set computation. If only the add, delete, and root set
computation operations are needed, poset-derived forest is preferable to Siena poset
due to faster add and delete operations. The basic poset-derived forest performs
well in all scenarios but may be outperformed by one of the variants in a highly
specialized scenario. The MergeForest variant shows most promising results in an
incremental add scenario but more study is needed to determine its usefulness in
typical use cases.
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Appendix 1. Algorithm pseudo code listings

Algorithm 1 Matrix add
input: a poset P , an element e

1: procedure Add(P , e) . Add e to P
2: Pelements ← Pelements ∪ {e}
3: for i← 0, i < |P|, i 6= eindex do
4: if Pelements[i] � e then
5: Pdominates[i,eindex] ← true

6: Pdominates[eindex,i] ← false

7: else if e � Pelements[i] then
8: Pdominates[i,eindex] ← false

9: Pdominates[eindex,i] ← true

10: else
11: Pdominates[i,eindex] ← false

12: Pdominates[eindex,i] ← false

13: end if
14: end for
15: end procedure

Algorithm 2 Matrix delete
input: a poset P , an element e

1: procedure Delete(P , e) . Delete e from P
2: Pelements ← Pelements \ {e}
3: for i← 0, i < |P| do
4: Pdominates[i,eindex] ← false

5: end for
6: end procedure



Algorithm 3 Query-optimized Matrix add
input: a poset P , an element e

1: procedure Add(P , e) . Add e to P
2: Pelements ← Pelements ∪ {e}
3: for i← 0, i < |P|, i 6= eindex ∧ processed[i] = false do
4: if Pelements[i] � e then
5: Pdominates[i,eindex] ← true

6: Pdominates[eindex,i] ← false

7: for j ← 0, j < |P| do
8: if Pdominates[j,i] = true then
9: Pdominates[j,eindex] ← true

10: Pdominates[eindex,j] ← false

11: processed[j]← true

12: end if
13: end for
14: else if e � Pelements[i] then
15: Pdominates[i,eindex] ← false

16: Pdominates[eindex,i] ← true

17: for j ← 0, j < |P| do
18: if Pdominates[i,j] = true then
19: Pdominates[j,eindex] ← false

20: Pdominates[eindex,j] ← true

21: processed[j]← true

22: end if
23: end for
24: else
25: Pdominates[i,eindex] ← false

26: Pdominates[eindex,i] ← false

27: end if
28: end for
29: end procedure



Algorithm 4 Matrix roots
input: a poset P
1: procedure Roots(P , e) . Compute root set of P
2: roots← {}
3: for all c ∈ Pcolumns do
4: roots← roots ∪ Pelements[c]

5: for all r ∈ Prows, r 6= c do
6: if Pdominates[r][c] = true then
7: roots← roots \ Pelements[c]

8: break
9: end if
10: end for
11: end for
12: return roots
13: end procedure

Algorithm 5 Matrix look-up
input: a poset P , elements e and g

1: procedure Look-Up(P , e, g) . Compare e and g
2: if Pdominates[eindex,gindex] = true then
3: return e � g

4: else if Pdominates[gindex,eindex] = true then
5: return g � e

6: else
7: return e � g

8: end if
9: end procedure

Algorithm 6 Siena look-up
input: a poset P , elements e, g ∈ P
1: procedure LookUp(P , e, g) . Compare e and g
2: if IsAncestorOf(P , e, g) then . See delete for IsAncestorOf code
3: return e � g

4: else if isAncestorOf(P , g, e) then
5: return g � e

6: else
7: return e � g

8: end if
9: end procedure



Algorithm 7 Siena add
input: a poset P , an element e

1: procedure Add(P , e) . Add e to P
2: pred← FindPredecessors(e,Proot)
3: succ← FindSuccessors(e, pred)
4: for all s1 ∈ succ do . The prune step
5: for all s2 ∈ succ, s1 6= s2 do
6: if s2 is ancestor of s1 then
7: succ← succ \ s1
8: end if
9: end for
10: end for
11: for all p ∈ pred do
12: for all s ∈ succ do
13: if s ∈ psuccessors then
14: spredecessors ← spredecessors \ {p}
15: psuccessors ← psuccessors \ {s}
16: end if
17: end for
18: epredecessors ← epredecessors ∪ {p}
19: psuccessors ← psuccessors ∪ {e}
20: end for
21: for all s ∈ succ do
22: spredecessors ← spredecessors ∪ {e}
23: esuccessors ← esuccessors ∪ {s}
24: end for
25: end procedure



Algorithm 8 Siena add: Helper functions
1: procedure FindPredecessors(e, root) . Find all predecessors f e
2: pred = {}
3: next← root

4: while next 6= ∅ do
5: node← remove and assign first element of next
6: if node is not already visited then
7: childDominates← false

8: for all s ∈ nodesuccessors do
9: if s already visited then . Avoid oracle queries when possible
10: if childDominates = false and s � e then
11: childDominates← true

12: end if
13: else if s � e then
14: childDominates← true

15: next← next ∪ s
16: end if
17: end for
18: if childDominates = false then
19: pred← pred ∪ node
20: end if
21: end if
22: end while
23: return pred

24: end procedure
25:

26: procedure FindSuccessors(e, roots) . Find all successors of e
27: succ = {}
28: next← roots

29: while next 6= ∅ do
30: node← remove and assign first element of next
31: if node is not already visited then
32: if e � node then
33: succ← succ ∪ node
34: else
35: next← next ∪ nodesuccessors
36: end if
37: end if
38: end while
39: return succ

40: end procedure



Algorithm 9 Siena delete
input: a poset P , an element e

1: procedure Delete(P , e) . Delete e from P
2: for all s ∈ esuccessors do
3: spredecessors ← spredecessors \ {e}
4: end for
5: for all p ∈ epredecessors do
6: psuccessors ← psuccessors \ {e}
7: end for
8: for all s ∈ esuccessors do
9: for all p ∈ epredecessors do
10: if p = Proot then
11: if spredecessors = ∅ then
12: spredecessors ← spredecessors ∪ p
13: psuccessors ← psuccessors ∪ s
14: end if
15: else
16: if IsAncestorOf(P , s, p) = false then
17: spredecessors ← spredecessors ∪ p
18: psuccessors ← psuccessors ∪ s
19: end if
20: end if
21: end for
22: end for
23: end procedure
24:

25: procedure IsAncestorOf(P , e, g) . Determine whether e is an ancestor of g
26: if g ∈ esuccessors then
27: return true

28: end if
29: for all s ∈ esuccessors do
30: if IsAncestorOf(P , s, g) then
31: return true

32: end if
33: end for
34: return false

35: end procedure



Algorithm 10 ChainMerge add
input: a poset P , an element e, maximum width of poset w

1: procedure Add(P , e, w) . Add e to P
2: for all c ∈ Pchains do
3: sdc ← Use binary search to find smallest value v ∈ c such that v � e

4: ldc ← Use binary search to find largest value v ∈ c such that e � v

5: emaxdom(c) ← ldc

6: end for
7: c← Longest chain c ∈ P such that ldc = 0 or smc = |c| or ld− sm = 1

8: if c exists and |P| ≥ w then
9: Insert e into c
10: run UpdateDominations(P , e, sd)
11: else
12: Create a new chain and insert e into it
13: run UpdateDominations

14: end if
15: end procedure
16:

17: procedure UpdateDominations(P , e, sd)
18: for all p ∈ P , pchain 6= echain do
19: if pmaxdom(e) = nil then . No previous value
20: if pindex ≤ sdpchain then
21: pmaxdom(e) ← eindex

22: end if
23: else if pmaxdom(e) < eindex then
24: New value was inserted after the domination point → do nothing.
25: else if pmaxdom(e) = eindex then
26: if pindex > sdpchain then
27: pmaxdom(e) ← pmaxdom(e) + 1

28: end if
29: else if pmaxdom(e) > eindex then
30: if pindex > sdpchain then
31: pmaxdom(e) ← pmaxdom(e) + 1

32: else
33: pmaxdom(e) ← pmaxdom(e) − 1

34: end if
35: end if
36: end for
37: end procedure



Algorithm 11 ChainMerge delete
input: a poset P , an element e

1: procedure Delete(P , e) . Remove e from P
2: Remove e from P
3: if echain = ∅ then
4: for all p ∈ P , pchain 6= echain do
5: pmaxdom(e) ← nil

6: end for
7: Remove echain from the set of chains of P
8: else
9: for all p ∈ P , pchain 6= echain do
10: if pmaxdom(e) > eindex then
11: pmaxdom(e) ← pmaxdom(e) − 1

12: end if
13: end for
14: end if
15: end procedure

Algorithm 12 ChainMerge look-up
input: a poset P , elements e, g ∈ P
1: procedure Look-Up(P , e, g) . Compare e and g
2: if echain = gchain then
3: if eindex < gindex then
4: return e � g

5: else
6: return g � e

7: end if
8: else
9: if emaxdom(g) ≤ gindex then
10: return e � g

11: else if gmaxdom(e) ≤ eindex then
12: return g � e

13: else
14: return e � g

15: end if
16: end if
17: end procedure



Algorithm 13 ChainMerge roots
input: a poset P returns: the root set

1: procedure Roots(P , e) . Compute root set of P
2: roots ← {}
3: for all c1 ∈ Pchains do
4: e← First element of c1
5: roots← roots ∪ {e}
6: for all c2 ∈ Pchains, c2 6= c1 do
7: p← First element of c2
8: if pmaxdom(c1) = eindex then
9: roots← roots \ {e}
10: break
11: end if
12: end for
13: end for
14: return roots
15: end procedure



Algorithm 14 ChainMerge Minimize
input: a poset P returns: a minimal or close to minimal chain decomposition

1: procedure Minimize(P) . Minimize P
2: while true do
3: chains←Merge(P)

4: if chains = nil then
5: break
6: end if
7: Pchains ← chains

8: end while
9: end procedure

1: procedure FindQ(G,m, n) . Find output queue for m
2: Add edge (m,n) to G
3: (m, p)← the edge such that (m,n) and (m, p) belong to the same cycle in G
4: Remove (m, p) from G

5: Glabel(m,n) ← Glabel(m,p)

6: return Glabel(m,n)

7: end procedure

1: procedure FinishMerge(G) . Find output queues for the remaining input queues
2: while There are non-empty nodes of G with no assigned edges do
3: for all n ∈ Gnodes, n is not empty, n has no edge do
4: edges← all edges (n, i) ∈ G
5: if |edges| = 1 then
6: noutput−queue ← Glabel(n,i)

7: Remove edge (n, i) from G

8: end if
9: end for
10: if No edges were assigned in the loop then
11: Pick a non-empty node n ∈ Gnodes and assign it an output queue as above
12: end if
13: end while
14: end procedure



Algorithm 15 ChainMerge Minimize (continued)
1: procedure Merge(P) . Merge chains of P
2: k ← |Pchains|
3: Q← an array of k − 1 initially empty output queues
4: P ← Pchains . The input chains
5: G← initially any acyclic graph with k − 1 edges
6: ac← {}
7: while |ac| < k and @i : Pi = ∅ do
8: move← {}
9: for all c1 ∈ P, c1 /∈ ac do
10: for all c2 ∈ P, c2 /∈ ac, c2 6= c1 do
11: head1 ← head element of c1
12: head2 ← head element of c2
13: if head1 � head2 then
14: move← move ∪ head2
15: bigger[i]← j

16: else if head2 � head1 then
17: move← move ∪ head1
18: bigger[j]← i

19: end if
20: end for
21: end for
22: for all m ∈ move do . The move loop
23: q ← FindQ(G,m, bigger[m])

24: Move m into output queue Q[q]

25: end for
26: ac← P \move
27: end while
28: if ∃i : Pi = ∅ then
29: FinishMerge(G)
30: return Q

31: else
32: return nil . Merge failed
33: end if
34: end procedure



Algorithm 16 Poset-derived forest add
input: a poset P , an element e

1: procedure Add(P , e) . Add e to P
2: run Add(Proot, e)
3: end procedure
4:

5: procedure Add(r, e) . Add e to the subtree rooted at r
6: rSet← {}
7: next← nil

8: prevSuccessors← esuccessors

9: for all s ∈ rsuccessors do
10: if e � s then
11: if prevSuccessors = ∅ then . Preserve sibling purity on delete
12: esuccessors ← s

13: end if
14: rSet← rSet ∪ {s}
15: doInsert← true

16: else if s � e then
17: next← s

18: end if
19: end for
20: rsuccessors ← rsuccessors \ rSet
21: if doInsert then
22: rsuccessors ← rsuccessors ∪ {e}
23: if prevSuccessors 6= ∅ then . Preserve sibling purity on delete
24: for all s ∈ rSet do
25: run Add(e,s)
26: end for
27: end if
28: else if next = nil then
29: rsuccessors ← rsuccessors ∪ {e}
30: else
31: run Add(next,e)
32: end if
33: run Balance(r) . Only for the actively balanced variant
34: end procedure



Algorithm 17 Poset-derived forest delete
input: a poset P , an element e

1: procedure Delete(P , e) . Delete e from P
2: p← epredecessor

3: psuccessors ← psuccessors \ {e}
4: for all s ∈ esuccessors do
5: run Add(P , s)
6: end for
7: end procedure

Algorithm 18 Poset-derived forest covered set computation
input: a poset P , an element e

1: procedure FindCoveredSet(P , e) . Find covered set of e
2: return run FindCoveredSetRecursive(Proot)
3: end procedure
4: procedure FindCoveredSetRecursive(r, e) . Find covered set of e starting from r

5: coveredSet← {}
6: if e � r then
7: coveredSet← r

8: end if
9: for all s ∈ rsuccessors do
10: coveredSet← coveredSet∪ FindCoveredSetRecursive(s, e)
11: end for
12: return coveredSet

13: end procedure



Algorithm 19 Poset-derived forest balance
input: root of a subtree r

1: procedure Balance(r) . Balance the subtrees rooted at r
2: max← tallest subtree rooted at r
3: min← shortest subtree rooted at r
4: diff ← maxdepth −mindepth

5: threshold← maxdepth/2 +mindepth + 2

6: if diff > threshold then
7: run BalanceRecursive(max,min, diff/2)
8: end if
9: end procedure
10:

11: procedure BalanceRecursive(max,min, depth)
12: if depth = 0 then
13: for all s ∈ maxsuccessors do
14: if min � s then
15: maxsuccessors ← maxsuccessors \ s
16: minsuccessors ← minsuccessors ∪ s
17: end if
18: end for
19: else
20: for all s ∈ maxsuccessors do
21: run BalanceRecursive(s,min, depth− 1)
22: end for
23: end if
24: end procedure


