
Date of acceptance Grade

Instructor

Tool for simulating reputation management algorithms in mul-
tiagent systems

Liliya Rudko

Helsinki October 17, 2013

MSc thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/18616736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Liliya Rudko

Tool for simulating reputation management algorithms in multiagent systems

Computer Science

MSc thesis October 17, 2013 74 pages + 8 appendices

multiagent systems, reputation management systems, reputation management algorithm

Kumpula science library, serial number C-2013-

Efficient service-oriented inter-enterprise collaboration focuses on the business processes of the en-
terprises and hides the technology differences between them. However, such collaboration induces
two main challenges. First, there should be an accessible and functioning infrastructure available
for the collaboration. Second, as the growing number of participants can lead to the growing level
of misbehaving among them, and thus market deterioration, that is why the parties should have
common understanding of the behavior that is appropriate and can be trusted.

We focus on the trust relationships between the agents’ interactions. Agents make a trust decision
before interacting, and this decision among other factors is based on an estimation of another
agent’s reputation. A reputation management system collects and analyzes interactions experience
between agents.

Let us call a person, company or any other possible entity whose goal is to build an infrastructure for
the interactions between enterprises using one of the trust and reputation management algorithms
as an infrastructure builder. For an infrastructure builder it is important to evaluate and compare
reputation management systems, choosing one of them based on the evaluation and comparison
results. This remains an open question in research. The thesis aims at supporting the decision-
making process of this kind.

We suggest evaluation criteria for a trust or reputation management systems’ evaluation. We
implement a generic tool which can plug in a trust or reputation management algorithm and
simulate the behavior of the multiagent system where every agent follows the same algorithm.
We illustrate the tool’s support for some of the suggested evaluation criteria. We provide some
recommendations for further development of the generic tool for evaluating and comparing the
above-mentioned behavior characteristics of different trust and reputation management algorithms.

ACM Computing Classification System (CCS):
Human-centered computing → Collaborative and social computing → Collaborative and social
computing systems and tools → Reputation systems
Computing methodologies → Artificial intelligence → Distributed artificial intelligence → Multi-
agent systems

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 Trust and reputation management concepts 3

2.1 Risk-aware trust decisions . 4

2.2 Reputation management concepts . 8

2.2.1 Types of reputation . 8

2.2.2 Reputation representation . 10

2.3 Using reputation information in a trust decision 13

3 State of the art 16

3.1 Classification of reputation management algorithms 16

3.2 Distributed reputation management algorithms 19

3.2.1 Distributed communication protocol 20

3.2.2 Reputation calculation methods 23

3.2.3 Vulnerabilities of reputation management systems 26

3.3 Testbeds for the comparison of reputation management algorithms . . 31

3.3.1 The Agent Reputation and Trust (ART) testbed 31

3.3.2 The Trust and Reputation Experimentation and Evaluation
Testbed (TREET) . 32

3.3.3 A model for a testbed for evaluating reputation systems . . . 34

4 Tool for simulating reputation management algorithms 37

4.1 Behavior evaluation of a reputation management algorithm 37

4.2 Tool architecture and interface . 40

4.2.1 Assumptions for the system 40

4.2.2 Information flow in the system 44

5 Representation of the example algorithm in our system 46

5.1 Main concepts of the algorithm . 46

iii

5.1.1 Reputation representation . 47

5.1.2 Concatenation and aggregation of reputation 50

5.1.3 Update of referrer’s reputation 51

5.1.4 Update of service provider’s reputation 53

6 Evaluation and analysis 55

6.1 Agents’ reactivity to behavior changes 56

6.2 Recovery of a service provider’s reputation 59

6.3 Reputation evolution of different service providers 60

7 Conclusion 64

References 67

Appendices

A Representation of the probabilistic approach in our system

B Agents’ reactivity to changes in the behavior of a service provider

1

1 Introduction

Enterprises that provide services differ in terms of business management concepts
and technology solutions [KRRM08]. Conventionally, service-oriented inter-enterprise
collaboration implied inter-connection of business processes based on homogenized
technology. However, effective service-oriented inter-enterprise collaboration should
isolate technology differences and focus on business processes. In order to enable
the isolation of technology differences, we can for example represent enterprises’ ser-
vices through interfaces of different types and define the ways of inter-connections
between these interfaces.

The main advantage of such technology-isolated inter-enterprise collaboration over
conventional one is the smaller investments required from the parties for the tech-
nology inter-connections. Moreover, the parties can keep their technological au-
tonomy. However, two main challenges arise in this technology-isolated context of
inter-enterprise collaboration. First, there should be an accessible and functioning
infrastructure available for such collaboration (e.g., to define service interfaces and
inter-connections between them) [Ruo12]. Second, as the growing number of partic-
ipants can lead to the growing level of misbehaving among them, and thus market
deterioration, the parties should have common understanding of the behavior that
is appropriate and can be trusted.

We represent interactions between enterprises as interactions in a multiagent system.
A multiagent system can represent not only network of the enterprises, but also for
example a social network. The agents of the system can interact with each other, for
example communicate or cooperate. We focus on trust relationships between agents’
interactions. We define trust that an agent A puts in an agent B as “willingness of
the agent A to take the risk of collaboration with the agent B” [Ruo06]. Agent A
is a trustor, agent B is a trustee [KBR05]. Agents make a trust decision before
interacting, and this decision can be either binary (e.g., agent either trust or not) or
binary with a hierarchy of sub-decisions (e.g., agent trusts given certain conditions)
[Ruo06]. Trust decision is based among other factors on estimation of a trustee’s
reputation. We define reputation as a “perception that an agent creates through
past actions about its intentions and norms” [MMH02]. A reputation management
system collects and analyzes interactions experience between agents.

There is quite a number of reputation management algorithms suggested for mul-
tiagent systems in the research field. The algorithms differ in their approaches to

2

reputation management, initial assumptions, data models, and technical implemen-
tation. Thus evaluating and comparing the algorithms becomes rather challenging.

In this context, Carbo et al. have suggested the Agent Reputation and Trust testbed
ART [ART11]; Kerr and Coher have proposed the Trust and Reputation Experimen-
tation and Evaluation Testbed TREET [KeC10]; Chandrasekaran and Esfandiari
have suggested the model for a testbed for evaluating reputation systems [ChE11].
ART and TREET simulate basic market place scenarios and thus application spe-
cific, whereas the model of Chandrasekaran et al. provides a generic workflow of
trust relationships to identify the stages of this workflow that different reputation
systems occupy. The model also describes and evaluates certain attack scenarios. An
evaluation of characteristics of reputation management systems (e.g., recoverability
of an agent’s own reputation or an agent’s reactivity to changes in behavior of other
agents) remains an open question. For an infrastructure builder it is important to
evaluate and compare reputation management systems, choosing one of them based
on a generic set of evaluation criteria.

The goal of the thesis is to identify the evaluation criteria for trust and reputation
management systems, implement a generic tool for evaluating and comparing these
systems and illustrate the tool’s support for evaluating the algorithms according to
the identified criteria.

The research method of the thesis includes a state of the art analysis of the field,
design and implementation of a tool for evaluating and comparing reputation man-
agement algorithms, representation of one of the reputation management algorithms
in the system, design and implementation of benchmark loads based on a set of
evaluation criteria, evaluation of the algorithm given the developed loads, and iden-
tification of recommendations and needs for future improvements.

The rest of the paper is organized as follows. Chapter 2 presents environment of
the problem, the role of reputation management in making trust decisions, and rep-
utation management concepts and terminology used in the thesis. Chapter 3 gives
an overview of the state of the art of reputation management algorithms and ex-
isting models of testbeds for the comparison of reputation management algorithms.
Chapter 4 describes the evaluated system’s behavior characteristics and presents our
tool architecture and interface. Chapter 5 presents the chosen algorithm for imple-
mentation in the tool and its representation in the system. Chapter 6 demonstrates
evaluation examples of the chosen reputation management algorithm. In Chapter 7
we conclude our research results and identify future work.

3

2 Trust and reputation management concepts

Different enterprises specialize in various professional fields (e.g., railway transporta-
tions or translations between different languages). The expertise and field coverage
of one enterprise may be not enough for offering a complete product or providing
turn key service to its customers. For that reason enterprises start to collaborate
with each other. Collaboration reveals possibilities for the enterprises to focus on
their own expertise and at the same time provide a complete product, wide range of
services or turn key services to their customers. Moreover, inter-enterprise collab-
oration opens new possibilities for small and medium sized companies to compete
with the large corporations in the same professional field [RuK08].

For example we can consider a company X that provides the state railway trans-
portation. This company has a simple web-site which contains the most important
information, including for example timetable and prices. However, passengers can-
not buy tickets using this web-site and have to queue in the X’s offices. X can
provide wider range of services to its customers if it collaborates with the company
that makes the integration of the payment providers with the X’s web-site and X’s
information system.

Conventionally, inter-enterprise collaboration has implied integration of business
processes based on the compatible technology. Making technology compatible usu-
ally implicates an expensive and time-consuming process of the integration of dif-
ferent information systems of the enterprises.

To make conventional inter-enterprise collaboration more effective, enterprises should
isolate technology differences and focus on their business processes [KRR08]. In or-
der to enable the isolation of technology differences, we can for example represent
enterprises’ services through interfaces of different types and define the ways of
interconnections between these interfaces.

For example in the collaboration between the above-presented state company that
provides railway transportation and the government, technology isolation could
mean the following. The government has a web-portal for the organizations in
which the government has its share. For the state railway company the government
can specify the amount of subsidies or required directions of the railways extension
in that web-portal. The information system of the railway company automatically
connects to the web portal, extracts required information and presents it to the
headquarter of the railway company. At the same time the government web-portal

4

automatically connects to the information system of the railway company to extract
weekly/monthly/yearly reports and presents them to the government officials.

The main advantage of such technology-isolated inter-enterprise collaboration over
a conventional one is that the parties can keep their technological autonomy. Fur-
thermore, such collaboration allows to increase the number of possible participants
either within one deal or total number of participants interacting with each other.

However, there are two main challenges connected with such technology-isolated
inter-enterprise collaboration. First, an accessible and functioning infrastructure
should be available to enable the collaboration (e.g., to define service interfaces
and inter-connections between them) [Ruo12]. Second, as collaboration in this new
environment is much easier and leads to new possible interactions, the trust between
new partners cannot be formed in the conventional way when trust relationships are
built during a long time period and common experience. In other words, a growing
number of participants or possible partners can lead to a growing level of misbehavior
among them, and thus market deterioration.

Thereby the collaborating parties should have common understanding of the behav-
ior that is appropriate and can be trusted. In the conditions of easy collaboration
between market participants there is a need for a system that helps them to identify
whom to trust, encourage trustworthy behavior and discourage those participants
who are dishonest [RZF00].

2.1 Risk-aware trust decisions

This section presents the main terms within the thesis. We also describe the steps of
a trust decision process in a multiagent system and specify the place of reputation
management in this process.

In the thesis we represent interactions between enterprises as interactions in an
open multiagent system. A multiagent system implies that agents behave in
an autonomous manner in order to achieve their own goals, while open multiagent
system implies that agents can freely join or leave the system at any time [HJS06].
A multiagent system can represent not only a network of enterprises, but also for
example a network of human beings - social network.

The agents of a multiagent system can interact with each other (e.g., communicate or
collaborate). We focus on trust relationships between agents. Trust that a trustor
puts in a trustee is an “extent to which a trustor is willing to participate in a given

5

action with a trustee, considering the risks and incentives involved” [Ruo12, KBR05].
Figure 2.1 represents a schematic view of a trustor that places its trust in a trustee.

Trustor (TR)Trustor (TR)

Trustor (TR)

A

Service provider (SP)

B

Trustee

A

Referrer (RF)

B

Service provider (SP)

C

A B

Figure 2.1: A trustor and a trustee.

In our multiagent system an instance of interaction between agents is a service. We
define the following roles of the agents: a service provider SP, referrer RF (to a
service provider) and a trustor TR. Both a service provider and a referrer can be
trustees for a trustor. Any agent in the system can perform one of the roles at a
time. For example an agent A can be a trustor in one interaction and identify its
trust placed in an agent B who is a service provider in this interaction. Figure 2.2(a)
reflects this case. However, concerning different interaction A can still perform the
role of a trustor, but view B as a referrer to other service providers. Figure 2.2(b)
reflects this case.

Trustor (TR)Trustor (TR)

Trustor (TR)

A

Service provider (SP)

B

Trustee

A

Referrer (RF)

B

Service provider (SP)

C

A B

(a) A trustor and a service provider as a
trustee.

Trustor (TR)Trustor (TR)

Trustor (TR)

A

Service provider (SP)

B

Trustee

A

Referrer (RF)

B

Service provider (SP)

C

A B

(b) A trustor and a referrer as a
trustee.

Figure 2.2: Different roles of a trustee.

Agents make trust decisions based on evaluation and comparison of involved risks
and benefits of an interaction [Ruo12]. Trust decisions are made before actual inter-
action, or during this interaction if any risk-relevant actions are involved [RuK08].
Our view of information model for a process of taking trust decisions is based on
the model presented in the Trust Based on Evidence (TuBE) system [Ruo12], which
includes the following decision factors: reputation, risk, importance, risk tolerance
and context (Figure 2.3).

6

3. Importance2. Risk

1. Reputation

4. Risk tolerance

Context

Comparison

Trust decision

Figure 2.3: Information model for a trust decision process.

Trust decision is based on the comparison between estimated risk involved in the
action and level of risk tolerance identified for the action. Risk estimation is based
on the trustee’s reputation. Risk tolerance is based on the business importance
of the action. Context takes into account any fluctuations in the environment and
local policy within a trustor enterprise, adjusting the aforementioned decision factors
according to these changes.

Any trust decision and its underlying risk analysis are aimed to protect or fulfill inter-
ests of a trustor in certain areas. Upon the collaboration experience trustor evaluates
the trustee in these areas in order to store the information for future trust decisions
with the same trustee concerning the same service type. Different trust manage-
ment systems define the way of estimating a trustee concerning particular service
type differently. Some systems (e.g. EigenTrust [KSG03] or PeerTrust [XiL04])
evaluate collaboration experience in a single dimension (e.g., experience or money
gain/loss), others (e.g. Pinnocchio [FKO04], FIRE [HJS06] or the TuBE [Ruo12])
- by a set of dimensions that can represent different collaboration aspects (e.g., fi-
nancial, security and contract satisfaction). Mostly in the latter systems a different
set of dimensions can be assigned also to different service types.

Pinocchio [FKO04] for example allows defining different dimensions of service quality
for different service types (e.g., quality of final product and profitability of service).
FIRE [HJS06] allows rating service providers from the point of view of different
dimensions, however not distinguishing between different service types.

The TuBE system [Ruo12] defines monetary, reputation, control, and satisfaction
as guarded assets. The system analyzes potential outcome or changes for each of

7

these assets for the trustor. The monetary asset represents monetary gains or losses
connected with any artifacts that can have monetary value (e.g., cost of service
or a good, compensations, or gained profit). The reputation asset represents a
trustor’s reputation in the community both as a service provider and as a provider
of recommendations about other market participants (e.g., how a collaboration will
affect these reputation views of the trustor in the community). The control asset
represents security and privacy issues (e.g., information or physical security), auton-
omy and independence, reliability and availability. The satisfaction asset represents
the accomplishment of the trustor’s expectations about the trustee’s behavior (e.g.,
quality of the service received, prompt response or the level of reality matching with
expectations).

In general terms we can represent dimensions of the collaboration aspects in the
following form. Let a trust management system to trace a set of collaboration
dimensions D, D = {dimension0, dimension1, ..., dimensionN}. Indexes of the di-
mensions range from 0 to |D| − 1. In every dimension there is a set of possible
collaboration outcomes O, O = {outcome0, outcome1, ..., outcomeM} that can be
represented as a set of integers (e.g., for the experience dimension outcome0 = 0 is
unknown effect, outcome1 = 1 is positive effect, outcome2 = 2 is negative effect).
Indexes of the outcomes range from 0 to |O| − 1. In general terms, for every dimen-
sion the unknown effect or similar outcome that contains the number of experiences
where no outcome type can be determined should be tracked in order to evaluate
the quality of available information [RuK08].

Thus, the process of taking a trust decision in the given environment flows in two
directions - one of them aims at identifying risk associated with the action, while
another one aims at identifying risk tolerance accepted for the action. The thesis
focuses on the reputation factor in the whole chain of taking trust decisions, as
reputation is a key input to these decisions. However, we can not eliminate risk
analysis and its comparison with the risk tolerance either, as the reputation view
is based on previous experience, but in order to obtain this experience, we need to
take trust decisions of whether collaborate or not with a certain trustee.

Further we present a generic view of the important aspects within two main tracks
of a trust decision process: risk estimation based on reputation information and risk
tolerance identification based on importance of the action [RuK08]. However, more
attention is paid to the reputation management in the whole chain of taking trust
decisions. Context adjustment is out of scope of the current work.

8

2.2 Reputation management concepts

This section represents our notion of reputation. We describe possible types of
reputation and their representation. We unify the types of reputation and their
representation among the algorithms to make them comparable between each other,
however this unification is generic enough to embrace specific visions of different
algorithms. Moreover, we identify how reputation can be represented in our system.
The section helps to map reputation representation of a reputation management
algorithm to the generic reputation representation of the system, which is crucial
for further plugging in the reputation management algorithm into the system.

2.2.1 Types of reputation

Reputation is a “perception that an agent creates through past actions about its
intentions and norms” [MMH02]. Referral is the information about agents’ reputa-
tion. A source of a referral is a referrer. Referrals can be either direct or indirect.
When a referrer has a first-hand experience with the service provider, their referrals
are direct. When a referrer has gone through mediators before reaching the trustor,
their referrals are indirect [Ruo12].

A reputation management system collects, analyzes and distributes information
about interaction experiences between agents [RKK07]. Reputation management
system with the agents of the system form a reputation network [Ruo12].

An agent’s reputation can be either global, which represents a shared reputation
value for all the system members, or subjective, which depends on the trustor that
evaluates it. Subjective reputation is based on aggregation of the direct local experi-
ences with the experiences of other agents. From the point of view of a trustor who
stores experience information, local direct experiences form local reputation, while
aggregation of the third-party experiences forms external reputation. Figure 2.4
depicts these types of reputation.

As global and external reputation values are just different ways of representing the
reputation view from the outside the given trustor system, they are usually mutually
exclusive. Reputation algorithms identify local and either global or external reputa-
tion values. Our model originally contains local, external and subjective reputation
representations, although global reputation can be mapped into the model instead
of the external one. Generally speaking, our system allows reputation representation
consisting of up to three different values, one of which can be based on two others.

9

Reputation of B

Global Subjective to A

External to A Local to A

. . .

Trustee (B) Trustor (A)

Figure 2.4: Types of reputation.

Local, global and external reputation values are stored separately in our system,
as in some scenarios of decision taking these values can be used separately. In the
general scenario these values are aggregated only at the moment of decision taking.
Below we consider possible behavior scenarios of an agent where local, global and
external reputation values can be used separately.

If an agent is new to a network, it has no direct experience with any of the service
providers, which means that it has no local reputation for any of them yet. In this
case it may use either the global reputation, if it is available, or external reputation
of the requested service provider. Global reputation of a service provider is the same
from the point of view of all the agents, that is why it is sufficient to contact one of
them or the central system. However, external reputation can be obtained based on
one, some or all the agents experiences in the network, which will result in different
reputation values. The approach is specified by the chosen reputation management
algorithm. Thus in this scenario agent can separately use either global or external
reputation of the service provider.

If an agent is not new to the network, it has its own local reputation information. In
case it cannot obtain global or external reputation for some reasons, it can simply
rely on its own local information. Thus in this scenario local reputation can be used
separately.

In a common case an agent has its own local reputation information, it requires either
global reputation or external reputation from the third-party experiences. Then it
aggregates these types of information into a complete picture of service providers
and finally chooses one of them to interact with based on this information.

10

2.2.2 Reputation representation

This section shows the representation of local and external reputation views, and
some implementation solutions for the reputation representation in our system. We
suppose that local reputation view contains local type of reputation, while external
reputation view contains external and global types of reputation. Reputation repre-
sentation of local and external reputation views of a trustee concerning a particular
service from a trustor’s point of view follow the same format. Reputation repre-
sentation contains number of experiences of every outcome for every dimension
specified for the provided service. Alongside with this representation, it is important
for every reputation view to assign the overall credibility value that estimates how
accurate and useful this reputation information appears to the trustor [Ruo12].

Further we take a closer look at the most common problem connected with gather-
ing the information about number of experiences with a particular service provider
concerning a particular service. Moreover, we shed more light on the notion of cred-
ibility of the reputation value. Finally, we present some implementation solutions
taken for the reputation representation in our system.

Commonly in the trust management systems reputation information represents ex-
perience outcomes regardless of the actions that led to these outcomes. For example
there is a service provider that sells books. Service type in this case can be sell-
ing books. The service provider can sell both new and second-hand books. Suppose
there is one dimension that we are interested in for this service type — experience —
that can have the following outcomes: 0 as unknown effect, 1 as positive experience,
and 2 as negative experience.

As we do not store actions that led to the outcomes, our reputation information
will contain the number of experiences with this service provider concerning selling
books: 10 positive and 3 negative experiences. Based on this we take our future
decisions of collaborating or not with the same service provider. However, this
reputation information connected to actions would be represented in the following
way: selling new books resulted in 10 positive and 0 negative experiences, while
selling second-hand books resulted in 3 negative and 0 positive experience. Based
on this information the trustor would make more accurate predictions about the
service provider behavior in the particular action. We believe that if it is important
for a trustor to connect actions with their outcomes, it is possible to detail service
types to the required level. Thus instead of having one service type selling books,
we could identify two of them: selling new books and selling second-hand books. So,

11

every important action can be traced by introducing a separate service type.

However, in this case the sparsity of information can become a potential challenge.
A multiagent system contains quite a number of agents and services. However, even
very active agents will rate just a small portion of all the available services, while
even the most popular services will have a small portion of ratings from the agents
with respect to the overall number of the ratings in the system [PPK05]. Splitting
one service type to several increases the number of available types of services in
a multiagent system and thus increases the sparsity of information. Information
sparsity becomes a challenge for an algorithm to gather the experience information,
as it becomes a problem to locate the sources of this information.

Knot-aware trust based reputation model [GGH08] for example suggests one possible
solution to the information sparsity problem. The model identifies the particular
group of similar members inside the entire multiagent system and specifies an agent’s
behavior in such a way that the agent addresses to the members of its group in the
first place.

The overall credibility for a reputation value estimates how accurate and useful
this reputation information appears to the trustor [Ruo12]. Credibility value can
be for example a real number in [0..1]. In this case we suppose that credibility of
the local reputation view equals to 1, as the trustor believes in its own first-hand
experience. In general terms, if there are several communities, each of which uses
different trust or reputation management system, a trustor has its representative
agents in every community. Credibility of every piece of external information is a
combination of a credibility of the source agent with the credibility of the source
agent’s community. Overall credibility of the external reputation information is
based on the combination of the credibilities of its different pieces.

In our model we simulate a multiagent system as a single community, every agent of
which uses the same trust and reputation management system. A credibility of the
external piece of information in this case contains a source agent’s credibility only.
Thus, we omit credibility value for the whole community.

Different reputation management algorithms specify differently the algorithms for
combining different reputation values between each other or with the trustor’s local
information, as well as algorithms for combining credibility of the gathered infor-
mation. Section 3.1 presents an overview of the main differences in reputation
management algorithms, as well as differences in their assumptions.

12

Further we present some implementation solutions taken for the reputation repre-
sentation in our system. Reputation.java class is responsible for representing reputa-
tion. This class should be generic enough to be able to represent possible reputation
view of different reputation management algorithms. Particular reputation repre-
sentation is defined by the reputation management algorithm used in a multiagent
system. Table 2.1 describes the fields of the class.

Table 2.1: Fields of Reputation.class in the system.
Field type Field name Field description

int agentId Id of the agent whose reputation value this object
represents

Pair localReputation Local reputation value of a trustee. Field contains
a pair of objects. First object is an object of local
reputation, while second is an object of a credibil-
ity value of the local reputation view.

Pair externalReputation External or global reputation value of a trustee.
First object of a pair is an object of external rep-
utation. Second object in a pair is an object of
credibility value for the external reputation view.

Pair subjectiveReputation Subjective reputation value of a trustee. First ob-
ject of a pair is an object of subjective reputation.
Second object in a pair is an object of credibility
value for the subjective reputation view.

long timestamp Time at which this reputation object was created

Reputation representation is important because it is the main calculation unit of any
reputation management algorithm. For this reason some reputation management
algorithms consider up to three different reputation views to compute the single
reputation value at a time. Different reputation views allow to make calculations of
the overall reputation value more accurate. However, it may become a challenging
mathematical task to combine them and proof the validity of the suggested solution.

Moreover, reputation representation also determines how reputation information can
be shared in the system. However the main goal of reputation representation is using
it in trust decisions. Section 2.3 elaborates how reputation information can used in
a trust decision.

13

2.3 Using reputation information in a trust decision

The section evolves Section 2.1 given our knowledge of Section 2.2. It shows theoret-
ical representation of every step in a trust decision process, including representation
of reputation and reputation management in this process.

Our general model of risk analysis based on reputation information is similar to one
presented in the TuBE system [RuK08]. Reputation U of a trustee consists of two
halves: local reputation U local and external reputation U ext, combined from multiple
sources.

Each of these reputations consists of vectors that contain a number of experiences
for all the possible outcomes in O for all the dimensions in D, d = 0, 1, ..., |D| − 1.
In other words, there are |D| vectors, each of which corresponds to the dimension d
and contains the counters of all the experienced outcomes in O. Based on this
information we can identify the total number of experiences with a trustee. Let
Elocal and Eext be the whole set of local and external experiences respectively. Then
the number of local and external experiences with the trustee respectively are |Elocal|
and |Eext|.

In this generic model we assume that there is an outcome unknown effect in O. Cal-
culating the number of these outcomes separately allows us to identify the proportion
of uncertain values. Thus, qlocald and qextd correspond to the number of experiences
in |Elocal| and |Eext| accordingly where a trustor registered unknown effect outcome
in the dimension d. Then, proportion of uncertain values for local and external
experiences in the dimension d would be qlocald

|Elocal|
and qextd

|Eext| respectively.

Local and external reputation views are represented also with the credibility scores
clocal or cext respectively. The local credibility value clocal is the maximum value
in the range of credibility values (e.g., in case credibility lies in [0..1], clocal = 1),
which indicates that a trustor believes in its own first-hand experience. The ex-
ternal credibility value cext is the combined credibility value of all the third-party
experiences.

Before calculating the risk associated with the action, we need to combine local and
external reputations in the overall reputation view U . The combination includes: 1)
calculation of the overall number of experiences, |E| = |Elocal|+|Eext|; 2) calculation
of the overall number of experiences with unknown effect outcome, qd = qlocald + qextd ;
and 3) aggregation of the credibility values clocal and cext in the overall credibility
value c. The details and scope of the reputation representations as well as their

14

special features in the merging process are defined by the concrete reputation man-
agement algorithm used in the trust management system. Above we have outlined
the generic framework for this process.

3. Importance

4. Risk tolerance

Context

Trust decision

2. Risk R

dimension
0

P
ro

ba
bi

li
ty

outcome
0

...

Credibility c
Overall number of experiences |E|
Overall number of experiences with unknown effect outcome q

d

1. Reputation U

dimension
0

outcome
1

N
um

be
r

of

ex
pe

ri
en

ce
s

outcome
0
 outcome

M

...

Outcomes

outcome
1
 outcome

M

...

di
m

en
si

on
1 R

is
k

va
lu

e

di
m

en
si

on
0

di
m

en
si

on
N

...

Dimensions ...

Outcomes

dimension
1

…

dimension
N

dimension
1

…

dimension
N

C
om

pa
ri

so
n

Figure 2.5: Information models of trust decision process.

Risk R of an action contains |D| vectors rd, d = 0, 1, ..., |D| − 1, one for each
dimension. Thus, R =(r0, r1, ..., r|D|−1). Every vector rd in general terms can be
represented as rd = (pd, |E|, c, qd). In this formula pd is the vector of probabilities
for every possible outcome O in the dimension d, excluding unknown effect outcomes,
as they are separately represented by qd. The overall proportion of uncertain values
can be identified by the following formula qd

|E| [RuK08].

In the process of taking trust decisions, presented in Figure 2.3, after we have iden-
tified risk based on the reputation information and associated with the action, we
define the level of risk tolerance based on the importance of the action. Importance
of an action and level of risk tolerance do not depend on a trustee’s previous behav-
ior, they are mostly connected with the particular action between the certain trustor
and trustee [RuK08]. The more important action the higher risk tolerance associated

15

with it. Risk tolerance can be represented as a vector T = (t0, t1, ..., t|D|−1), con-
taining |D| values for each of the dimensions that represent the minimal acceptable
(“bottom” limit) for the risk values in the risk vectors rd.

When risk analysis is completed and risk tolerance vector is identified, the com-
parison between these vectors follows. Figure 2.5 enhances Figure 2.3, representing
important information models for each step in a trust decision taking process. In
case every risk value in the risk vectors rd stays within the limited values of the risk
tolerance vector, a trust decision is positive, otherwise it is negative.

16

3 State of the art

This section represents the state of the art in the field of reputation management
systems. The aim of the section is to present the design features of the general
reputation and trust management flow supposed in our system, based on the analysis
of current reputation management algorithms. Moreover, we aim to reveal the place
of our system among the current systems whose goal is to evaluate and compare
different reputation management algorithms.

To serve our goal, first we present classifications of reputation management algo-
rithms and expose the place of our general reputation management algorithm in
these classifications. Second, we have a closer look at distributed reputation man-
agement algorithms, as our system is meant for evaluation and comparison of such
algorithms. We present some design features of our general reputation management
algorithm based on the analysis of the distributed reputation management algo-
rithms. Finally, we identify the place of our system among the systems with the
same goal of evaluating and comparing different reputation management systems.

3.1 Classification of reputation management algorithms

We present two different classifications of reputation management algorithms. One
of them is based on the technical implementation of the algorithms and distinguishes
centralized and distributed algorithms. Another classification is based on the infor-
mation flows in the algorithms and distinguishes different data sending patterns and
data sharing modes of the algorithms.

Figure 3.1 presents classification of reputation management systems based on their
technical implementation. In a centralized reputation management system all the
members have an access to the shared information, which is usually maintained by
the central server. The main purpose of a centralized reputation or trust manage-
ment system is to allow easy collaboration between the existing members of the
network. Thus, in case a centralized reputation or trust management system be-
comes successfully deployed, more and more participants are joining the network
and the system becomes globally accessible. Centralized reputation management
system are used for example in such on-line market systems as eBay and Amazon.

At some point if a centralized entity does not scale itself or is not adjusted in the
required way to serve the increasing number of the network members, it becomes

17

difficult for the system to govern all the members. The huge number of mem-
bers implies also a growing number of misbehaving among them. Theoretically the
number of members in the network can be unlimited. However practically a central-
ized entity has some limits of scaling according to the limited resources around the
world. Thus, at some point the system’s performance deterioration or even crashing
becomes inevitable.

Reputation management systems

Centralized (one server) Distributed

Push mode (agent
broadcasts)

Pull mode (agent or
server requests)

Several servers Peer-to-peer

Raw data
Reputation

values Figure 3.1: Classification of reputation management systems.

Decentralized or distributed reputation systems become an alternative to central-
ized ones, providing new ways of reputation and trust management systems deploy-
ment. Thus for example distributed trust systems provide possibilities for incorpo-
rating various reputation management algorithms between the network members.

A pure centralized reputation management algorithm implies that a multiagent sys-
tem has one server, which obtains the data from the agents and performs the cal-
culations. A distributed reputation management algorithm implies that either a
multiagent system does not have a central server altogether, or it has several servers
that execute the algorithm and maintain consistency of the data between each other.
In the former case every agent implements the reputation management algorithm
locally and shares the data according to a defined protocol.

Our model focuses on distributed peer-to-peer reputation management algorithms,
as they are quite numerous compared to other ones, and it has become hard to com-
pare these algorithms between each other [KeC10]. However, both distributed algo-
rithms with several servers and centralized algorithms can be mapped to our model
as well. In case of centralized reputation management algorithms, we can consider
them as distributed reputation management algorithms with only one provider of
recommendations. Similarly for the distributed reputation management algorithms
with several servers we can consider a distributed reputation management algorithm
with several providers of recommendations.

18

The second classification is based on the information flows of the reputation man-
agement systems. Chadwick [Cha05] distinguishes data sending patterns and
data sharing modes that can be used in any of the systems’ types presented in
Figure 3.1. Data sending patterns include raw data and reputation values. Data
sharing modes include push and pull mode. Figure 3.2 depicts data sending patterns
and data sharing modes.

Push mode

(agent broadcasts)

Pull mode

(agent or server requests)

Raw data
Reputation

values

Figure 3.2: Data sending patterns and modes.

In any of the specified type of reputation management system data can be obtained
either in a raw format or as a computed reputation values. A centralized server can
obtain raw data, perform calculations of reputation values and provide the results.
Similarly, centralized server can obtain calculated reputation values from the agents,
collate them and provide the results. In the latter case Chadwick also supposes that
agents can calculate reputation values based on their own reputation management
algorithms that can be different between the agents [Cha05]. However, we assume
that it is better for the agents to use the same reputation management algorithm,
as these algorithms have different assumptions, areas of application and protocols.
Collating reputation values that were computed using different logic can provide
unreliable and inconsistent results to be used by other agents in their reputation
calculations. However agents can still use different decision policies locally that
does not affect any results of reputation calculation of other agents.

In the same fashion, agents can provide either raw data or already computed reputa-
tion values to one of the servers in a distributed reputation management system with
several servers. Similarly, depending on the distributed algorithm, agents can obtain
either raw data or computed reputation values from other agents in a distributed
peer-to-peer reputation management system.

Raw data or reputation values can be obtained by one of the two different data
sharing modes: push or pull. Push mode implies that the agents spontaneously

19

(e.g., after performing the transaction) provide the data to the network. If there
is one central or several distributed servers in a multiagent system, agents provide
the data either to central or one of the distributed servers (e.g., the closest one).
In the push mode for the peer-to-peer distributed reputation management systems
agents can broadcast the data to all the other agents or to the agents specified by
the reputation management algorithm.

Pull mode implies that either a server or an agent in need requests the data from
other agents. For all the algorithms there is a challenge of finding or choosing the
agents to gather the data from. For the algorithms with either central or distributed
servers there arises also another issue of specifying the time intervals or patterns of
pulling the data.

According to Chadwick, the data sending pattern which is mostly protected from
being misused is sending computed reputation values [Cha05]. In this case it is
more difficult for a server or another agent to skew the results, as it does not have
access to all the original information. In terms of the data sharing mode, Chadwick
distinguishes pull mode as the most reliable. However, there should be a publicly
available list of all the agents of the network, which should be protected against
unauthorized modifications. Moreover, there should be the possibility of multiple
registering for the same agent. Given these conditions pull mode can be repeated
and that is why is more transparent.

Our general model of reputation management systems is based on the distributed
peer-to-peer approach. The data sending pattern can be either raw data or rep-
utation values and is specified by a particular reputation management algorithm.
The default data sending mode is pull, where agent requests data from all the other
agents when it needs the information.

3.2 Distributed reputation management algorithms

This section presents an overview of existing distributed reputation management
algorithms. Moreover, we identify possible vulnerabilities of distributed reputation
management systems. The section forms a basis for our system to be able to plug
in different reputation management algorithms with their special features. As well
as the knowledge of possible vulnerabilities of reputation management algorithms
helps us to identify the ways of comparing the algorithms in terms of their resistance
to different vulnerabilities.

20

A distributed reputation management algorithm can either have distributed stores
to where trustors submit their experience information, or every trustor can keep
its information locally and provide it when other agents request [JIB07]. A trustor
when searching for the external information can either refer to one of the distributed
stores or try to contact other agents. In the latter case the number of agents and
their selection pattern is specified by a reputation management algorithm. After
obtaining external information, the trustor aggregates it with the local information
if it is available. The aggregation manner is specified by a reputation management
algorithm, which can also take into account the credibility of the sources.

These steps lead to a complete view from a trustor’s perspective on a requested
service. The trustor can either specify a service provider while requesting the infor-
mation about the service, or it can get the information about all the service providers
that other agents had experience with concerning the requested service. The trustor
eventually chooses one of the service providers to collaborate with.

Above we have described a general scenario for a reputation management system.
Different reputation management systems can omit or change different parts of the
scenario. Some systems for example may not consider local reputation at all. Others
may first aggregate external information into the total external view and then com-
bine it with the local information, or aggregate every piece of external information
with the local and then combine those values together.

Reputation management algorithms differ in two main aspects [JIB07]: distributed
communication protocol and reputation calculation method. Distributed commu-
nication protocol can specify for example general assumptions for the reputation
management algorithm, information sources, the way in which experience informa-
tion is stored (locally or in the distributed stores) and the pattern of choosing agents
or stores for obtaining the information. Reputation calculation method is used by
a trustor locally to compute the reputation view of a trustee.

Further we take a closer look on these aspects. We illustrate dimensions for the
distribution communication protocol, and how they are covered in our system. We
also review different existing reputation and trust calculation methods.

3.2.1 Distributed communication protocol

Below we consider four different dimensions of a distributed communication proto-
col: information source, visibility type of a trustee’s reputation, model’s granularity

21

and agents’ behavior assumptions. Moreover, we outline the design assumptions of
distributed communication protocol used in our system, main purpose of which is
to evaluate and compare distributed reputation management algorithms.

The first dimension of a distributed communication protocol is an information
source. Sabater et. al distinguish the following information sources in a repu-
tation management algorithm: direct experience, witness information, sociological
information and prejudice [SaS05].

Direct experience includes either information about direct interactions of a trustor
with a service provider or local observation of other agents’ experiences. Observation
information can be quite inaccurate and contain a certain level of noise, that is why
it is usually not used by reputation management algorithms [SaS05].

Witness information is the information obtained from other members of the commu-
nity. This information can include either their local information (e.g., observations
and experiences) or the information that was obtained by them from other agents.

Social relationships between agents are a source of sociological information [SaS05].
Information about social relationships can include for example information about
different roles that the agents can play in a network or their characterization by
different social factors (e.g., competition and dependence).

Prejudice information is based on the analysis of a trustor’s remarkable features
(e.g., brand name and a certain behavior), which allows a trustor to consider a
trustee to be part of some community and which influences the reputation value
given to the trustee [SaS05].

In our system we include information about direct interactions and witness infor-
mation about direct experiences of other members. Thus, we do not include both
local and witness observation information, as it can be quite inaccurate and is not
included in most of the reputation management algorithms [SaS05]. Moreover, we
do not include sociological and prejudice information, as these types of information
sources are also seldom considered in the reputation management algorithms. How-
ever in case they are considered, reputation management algorithm becomes rather
complicated, which also leads to complexity of the agents’ structure and behavior
in the network from the system’s implementation point of view [SaS05].

The second dimension Sabater et. al consider is a visibility type of a trustee’s
reputation. They distinguish global and individual visibility types, which is similar
to the classification presented in Figure 2.4 [SaS05].

22

Global visibility implies that all the agents of the system share the same reputation
value for any other agent. In most cases it is achieved by a central storage, where
the information is updated after every interaction between agents. Every trustor
that requires the reputation information of a service provider contacts this storage.
However, a global reputation view can also be managed without a central storage.
In this case a problem of maintaining the consistency of the data arises. For this
reason, global reputation view is mostly used in centralized reputation management
algorithms or in distributed reputation management algorithms that are meant for
small or medium sized communities [SaS05].

Individual reputation visibility implies that every agent computes the reputation
value of a trustee locally. This reputation view can contain local direct experi-
ences and witness experiences. Reputation management algorithms mainly use the
individual visibility type [SaS05].

Our system implements individual reputation visibility as described in Chapter 2.
However, some distributed reputation management algorithms calculate both global
and local reputation values (e.g., knot-aware trust-based reputation model [GGH08]).
Our system supports this representation as well, viewing external reputation as
global. Figure 2.4 depicts the types of reputation considered in the system.

The next dimension of a distributed communication protocol is model’s granular-
ity. Sabater et. al distinguish single-context and multi-context reputation or trust
management systems [SaS05].

As a service provider can offer different services in different areas (e.g., selling
sportswear and selling beverages), a trustor can assign a general reputation value to
the service provider without distinguishing between their services, or it can assign
different reputation values, one for each service. In the former case we deal with a
single-context reputation value, in the latter with a multi-context [SaS05].

Introducing multi-context values by simply using single-context values for different
services causes information scarcity problem that was discussed in Chapter 2 [SaS05].
Sabater et. al suggest that multi-context values should provide a different structure
of representing various reputation values assigned to different services of the same
service provider [SaS05].

In our system we implement multi-context granularity, which can be also simplified
and used as a single-context. We identify service domains, service types within the
domain and service dimensions. Service domain groups the services that belong

23

to the same area (e.g., books domain and web-sites domain). Service types are
services itself in the specified service domains (e.g., selling books, renewing books
and providing books for reading). Service dimensions are dimensions for rating a
service type (e.g., quality of a service, timeliness and quality of assistance) that can
be assigned differently for different service types. Agents can provide various service
types to each other.

The final dimension for a distributed communication protocol is agents’ behavior
assumptions. Sabater et. al distinguish the following assumptions of agents’ cheat-
ing behavior: agents are always honest; agents can hide or modify the information,
but they do not lie; and agents can lie [SaS05].

These agent’s behavior assumptions are specific to a referrer role of an agent. Cur-
rently our system does not support evaluation of the referrer’s behavior, however
as a part of a future work there can be specified the patterns for the referrers’ be-
havior, which can represent different cheating behavior patterns, including the ones
indicated by Sabater et. al.

3.2.2 Reputation calculation methods

Below we present different reputation calculation methods [JIB07] for our model to
consider their special features and make possible to embed them to our system. If
we deal with a reputation management algorithm only, trust calculation methods
are usually not considered there. However, most commonly reputation management
algorithm is embedded into a trust management system. In this case calculation
methods of reputation and trust go hand in hand, and it may be quite difficult to
separate them.

One calculation method can be used by some authors to identify reputation values,
while the same calculation method can be used by other authors to identify trust.
This mainly depends on the definition of reputation and trust assumed by the au-
thors. For this reason, some authors can also calculate both reputation and trust
by the same method, as the notion of reputation and trust are interchangeable in
their definition.

First we focus on the reputation calculation methods, specifying which of them
are also used for the trust calculation. Second we present general trust calculation
methods that can be applied to any reputation management algorithm in case it
does not specify any of the trust calculation methods.

24

Further we present the following reputation calculation methods: basic calculations,
discrete models, probabilistic models, probability distribution models, belief models,
fuzzy logic models, and flow models. Also we present the threshold and ranking
methods that can be used for making trust decisions.

Basic calculations are the simplest form of an agent’s reputation calculation. One
method of the basic calculations implies summation of positive and subtraction of
negative experiences with an agent. This calculation method was used for example
in the reputation forum of eBay according to 2002 research results [ReZ02].

Another method represents reputation as an average value of all the experiences
with an agent. This method was used for example in such commercial web-sites as
Epinions and Amazon (according to the research of Jøsang et al. in 2007 [JIB07])
or in the system of Jurca et. al [JuF03].

Furthermore, reputation can be represented as a weighted average of all the expe-
riences. In this case different factors (e.g., age of the experience and source cred-
ibility) can be taken as the weights. This method was used for example in FIRE
system [HJS06] and knot-aware trust-based reputation model [Gal11].

Discrete models imply that reputation or trust can be represented in terms of
discrete values. Discrete values can be for example: Very Trustworthy, Trustworthy,
Untrustworthy and Very Untrustworthy [JIB07]. These values are further used for
example for subjective defining local trust in a trustee or referrer [AbH00]. Discrete
trust models include works of Cahill et. al [CGS03] and Yu et. al [CNS03].

Probabilistic models represent reputation score either as a probability of for ex-
ample positive outcome or as a set of probabilities for different possible outcomes
(e.g., positive, negative and unknown effect) which add up to 1. Probability can
represent either a frequency of a certain outcome, degree of belief in a trustee’s ra-
tionality or plausibility of a statement [Ruo12]. Multiagent systems especially use
probability representation of reputation [Ruo12]. The main reason for this is that
probability representation of reputation is not complex yet quite representative and
flexible, taking into account the number of agents and differences between them in
a multiagent system.

In TuBE [Ruo12], which focuses on trust decisions in inter-enterprise collaboration,
risk is represented as a set of probabilities of different outcomes for every asset (mone-
tary, reputation, control and satisfaction) guarded by a trustor enterprise. Managing
the Dynamic Nature of Trust (MDNT) [SBL04] predicts a trustee’s behavior proba-

25

bilistically based on the experience from a specific time period. Maximum Likelihood
Estimation of Peer’s Performance (MLE) [DeA04] uses a probabilistic approach to
identify the probability that a referrer can give an incorrect information.

Probability distribution models view results of transactions as a sample of bi-
nomial or multinomial distribution and apply Bayes’ theorem to define the required
parameters of the selected distribution [Ruo12]. For this reason such models are
also referred as Bayesian reputation models [Ruo12].

Reputation management systems of this kind usually apply the Beta probability
distribution (e.g., [JøI02], [YuS02] and [TPJ06]). The Beta distribution reveals two
challenges for reputation management algorithms [Ruo12]. First, as it is a distribu-
tion of binary events, the format of reputation representation is limited to binary
(e.g., a trustee behaves with a trustor either good or bad). Second, as ordering
of events on the distribution level does not affect the parameters of the distribu-
tion, dealing with dynamism of information (e.g., its aging) should be additionally
considered in the reputation management algorithm.

Beta distribution is a subset of Dirichlet distributions, which are also used in rep-
utation management systems (e.g., [JøH07] and [RRR07]). These distributions can
represent reputation as multiple discrete outcomes [Ruo12].

Belief models are connected with probability theory and can represent the set of
probabilities of the possible outcomes that do not necessarily add up to 1, assigning
the remaining value to uncertainty [Gal11]. For example reputation of an agent
can be represented as a triple 〈b, d, u〉, representing belief (probability of a positive
outcome), disbelief (probability of a negative outcome) and uncertainty respectively;
b, d, u ∈ [0, 1] [JIB07]. Thus, the sum of probabilities of positive and negative
outcomes does not necessarily equals to 1, whereas b+ d+ u = 1.

Yu et. al use belief models to represent reputation in belief space [YuS02]. However,
it is more common to use belief models for trust representation (e.g., Jøsang [Jøs01],
Paradesi et. al [PDS09] and Wang et. al [WHS11]).

A fuzzy logic membership function is used to identify to what extent an agent can
be described as for example trustworthy or untrustworthy [JIB07]. The REGRET
reputation system [SaS02], as well as the scheme proposed by Manchala [Man98]
apply such models.

Flow models compute reputation or trust based on looped or arbitrary long chains
of agents [JIB07]. In terms of graph theory, the network of agents can be represented

26

as a directed graph, where the weights of arcs represent reputation of an agent
or trust placed in it. Generally, an agent’s reputation increases as a function of
incoming arcs and decreases as a function of outgoing ones. To represent trust in
binary terms the model focuses on the existence of the arcs, leaving their weights
out. In case there is an arc from agent A to agent B, agent A trusts B, otherwise
agent A does not trust B.

In some systems (e.g., Advogato [Lev09] and Appleseed [ZiL04]) there is a constant
trust or reputation weight assigned to the whole community. Agents distribute and
redistribute trust or reputation weights between each other. In other systems (e.g.,
EigenTrust [KSG03]) there is no constant trust or reputation weight for the whole
community, however the values are iteratively or repeatedly computed till they are
converged to stable values.

If a reputation management system is not incorporated in a trust management sys-
tem, it should specify an algorithm for making trust decisions. In other words it
should specify an algorithm of choosing a trustee based on the gathered reputation
information. A trustee can be either a service provider to collaborate with or a refer-
rer to request information from. Making trust decisions and performing transactions
is important for a reputation management system, for it to update reputation values
based on the experiences between parties.

The most commonly used method to identify trust placed in an agent in a reputation
management system based on a threshold [RKK07]. Trustor specifies a threshold
of reputation value, and if a trustee’s reputation meets the requirements, the trustor
interacts with it.

Ranking is another method of taking a trust decision [RKK07]. A trustor ranks
trustees according to their reputation values (e.g., local or overall) and based on this
ranking chooses one to interact with [RKK07].

3.2.3 Vulnerabilities of reputation management systems

There are common problems identified for all the reputation management systems.
In other words, these systems contain vulnerabilities that can be used by a trustor,
referrer or a service provider for undermining or bypassing a protection offered by the
system [KeC09]. A trustor can use vulnerabilities of a reputation system while either
rating a service provider or later providing its ratings to other agents, performing a
role of a referrer. For this reason we group system vulnerabilities from a trustor’s

27

and referrer’s points of view, representing a group of system vulnerabilities from the
point of view of a referrer. Namely, if a trustor does not provide its ratings further,
we assume that it does not take advantage of system vulnerabilities and thus does
not perform any attacks.

Attack is a sequence of events with a desired outcome, that is performed at the
level of system usage and aimed to exploit vulnerabilities of the working logic of the
system [KeC09]. An attack can target at multiple vulnerabilities.

Below we present possible vulnerabilities of reputation management systems from a
referrer’s and a service provider’s point of views. Moreover, we highlight most com-
mon problems of reputation management systems. We present also some solutions
that are proposed by different authors to deal with the specified vulnerabilities and
problems. Knowledge of common problems of reputation management systems will
allow us to broaden the comparison of reputation management algorithms in our
system.

Possible system vulnerabilities from the point of view of a referrer are: unfair re-
ferrals and discrimination, and ballot box stuffing. Below we have a closer look on
these vulnerabilities.

As sincerity of referrals provided by referrers can not be controlled in any way,
there arises a common problem of obtaining possibly unfair positive or negative
referrals. Moreover, referrers can discriminate some agents over others, providing
fair referrals to the former and unfair to the latter.

Jøsang et al. group the proposed solutions against this vulnerability into two groups:
endogenous and exogenous discounting of unfair referrals [JIB07]. Endogenous dis-
counting of unfair referrals implies rating of the gathered referrals or referrers them-
selves based on their referrals. Ratings of the referrals or referrers are identified by
the statistical properties of the referrals.

Exogenous discounting of unfair referrals implies rating referrers based on their
reputation as a service providers. The assumption here is that a service provider
with good reputation is likely to provide fair referrals, while a service provider with
bad reputation is likely to provide unfair referrals. Moreover, rating of a referrer
can be done based on comparison of local information about the required service
provider with the referrer’s information.

Ballot box stuffing implies that a referrer submits more than required number
of referrals that can be unfairly positive or negative for a service provider [JIB07].

28

Such vulnerability can appear in reputation management systems, where referrals
are submitted to a store. A reputation management system can protect against this
behavior by controlling a way referrals are provided after completion of transaction.
In case referrals are provided upon request the ballot box stuffing problem does not
appear, as a referrer can only provide one referral per request and the content of
the referral later can affect the referrer’s reputation. However, a referral still can be
unfair, in which case we refer to the previous vulnerability.

Possible system vulnerabilities from the point of view of a service provider are: “re-
entry” problem, behavior variations over time and “exit” problem, value imbalance,
fake transactions, discrimination, low incentives for submitting referrals, and bias
towards positive referrals. Below we have a closer look on these vulnerabilities.

“Re-entry problem” implies the following. Reputation management systems as-
sume that agents of a multiagent system are long-lived, which makes possible for a
reputation algorithm to identify a service provider’s (or referrer’s) reputation based
on its past actions. However, it is easy to register a new identity in a multiagent
system. For this reason it may be in a service provider’s interests to register itself
as a newcomer, if previously it gathered poor reputation. It is not in the interests
of the entire community though, as agents are expecting a reputation management
system to be effective. This vulnerability implies that a service provider can improve
its reputation without even being involved in any transaction [KeC06].

Possible solution to such “re-entry” problem includes penalizing newcomers (e.g.,
financially). However, such approach can discourage “good” newcomers from joining
the system [JIB07].

Behavior variations vulnerability implies the following. The quality of services
can vary over time either due to the deliberate policy of a service provider or due
to uncontrolled factors [JIB07]. These quality variations lead to the changes in a
reputation of service providers in such a way that when the quality has changed,
erroneous previous reputation will still be relied on for some time lag. It applies
as well to the “exit” problem [KeC06], when a service provider wants to leave a
network. From the point of time when decision to leave a network is taken till the
actual leaving a service provider can still use its previous good reputation to cheat on
other agents of the system. After deciding to leave the network, the service provider
is not interested in keeping its good reputation. Instead, it can take advantage from
this leaving.

Possible solutions to the behavior variations and “exit” problem include discounting

29

past referrals connected with a particular service provider or specifying for referrals
time to live [JIB07]. Discounting past referrals can be based on time, frequency of
transactions or combination of both. However, discounting past referrals involves
storing each referral with a timestamp, which can be either costly or can steadily
lose past information [Ruo12]. Moreover, as the main goal of identifying behavior
changes over time is to quickly react to these changes (e.g., not allow good history
of interactions to overweigh bad recent behaviour), time is not an effective measure
to identify behavior changes [Ruo12]. Instead, reputation epochs can be applied
[RHK11], where the measure of changes in behavior is the new information about
service provider’s behavior that was previously unknown. The number of reputation
epochs shows the consistency of a service provider’s behavior, while the weight
assigned to the current epoch identifies how quickly the system reacts to the changes
in a service provider’s behavior.

Value imbalance vulnerability appears when reputation management systems do
not bind a referral to the significance of the transaction that caused it [KeC06].
However there can be small and big transactions between entities. Small transaction
can be for example financially cheap or not very important, while big transactions
can be financially expensive or be a core of a business process. Thus, a service
provider can gain good reputation performing some small transactions and then
use this reputation to cheat other agents in big transactions. One possible solution
to this value imbalance vulnerability is to bind referral with the significance of
transaction that caused this referral.

Good reputation of a server provider attracts trustors. Thus, service providers are
willing to obtain good reputation [KeC06]. As service providers can perform a role
of trustor as well, they can organize fake transactions between each other to
increase their reputation. This vulnerability points to the above-mentioned ballot
box stuffing vulnerability from the point of view of a referrer, as service providers
become referrers when providing their referrals in this case.

Service providers, similarly to referrers, can discriminate some agents over others,
providing good service to the former and bad to the latter. While the proportion of
discriminated agents is small, their opinion about service providers can be assumed
as unfair by other agents. Thus, a reputation management system should have an
algorithm for identifying discrimination behavior of the service providers or be able
to identify their victims [JIB07].

One possible solution to this vulnerability is to make a collaboration contract every

30

time a trustor interacts with a service provider. After collaboration the trustor
states whether the relevant contract was followed or not, supporting its statement
with the non-repudiable receipts [RKK12].

Common problems of reputation management systems include low incentives for
submitting referrals and bias towards positive referrals. Below we have a closer look
on these problems.

Problem of low incentives for submitting referrals implies the following. After
collaborating with a service provider a trustor should either submit its referral to
a store, or provide it only when other agents request. In both cases incentives for
providing a referral are low, as in a generic scenario there are no rewards for doing
that or punishments otherwise. Along with a number of other possible reasons, that
may result in not submitting a referral. Other reasons may include for example
general positiveness of a referrer and unwillingness to spoil reputation of any service
provider; or if a service provider has limited capacity, referrer may be not interested
in attracting extra clients to this server provider by providing its good referrals.

In order to solve this problem, specific incentive mechanisms can be considered in
the reputation management systems. Miller et al. and Jurca et al. propose incentive
mechanisms based on financial rewarding or connected with other financial interests
of the referrers [MRZ02, JuF03]. Ruohomaa et al. propose making it a part of the
collaboration contracts [RKK12].

As referrers tend to provide mostly positive referrals, there appears bias towards
positive referrals problem. It can be explained for example by unwillingness to
spoil reputation of others or by expectation of obtaining good referrals in return.

In order to solve this bias problem, Ismail et al. suggest providing anonymous infor-
mation [IBJ03]. However, in this case it will be difficult to rely on such information,
and there will be no way to define its credibility and extent to which it can be
trusted.

It is specific to a reputation management algorithm whether it considers possible
vulnerabilities and common problems for such systems or not. Our model includes
these solutions as long as they are built in a reputation management algorithm.
Our model does not support any algorithm-independent solution to deal with pos-
sible vulnerabilities and common problems of such systems. Instead, we use this
knowledge to broaden the comparison of reputation management algorithms in our
system.

31

3.3 Testbeds for the comparison of reputation management

algorithms

This section represents related work of the systems that aim to compare reputa-
tion management algorithms and exposes their drawbacks in comparison with our
system. Below we present two testbeds for comparing reputation and trust manage-
ment systems in a marketplace scenario: the ART and TREET [ART12, KeC09].
Moreover, we present a model for a testbed for evaluating and comparing reputation
and trust management systems [ChE11].

3.3.1 The Agent Reputation and Trust (ART) testbed

The ART testbed simulates a market environment where different agents can pursue
different trust strategies. The testbed aims at comparing these strategies [ART12].
In the ART service providers are presented as painting appraisers [FKM06]. Sim-
ilarly to our system, they can play a role of either a trustor or a referrer between
each other. Additionally to these roles, ART defines also a role of a client of a
service provider. Clients can only request and obtain the service. Thus, only service
providers share the reputation information.

Service providers evaluate paintings presented by clients as accurately as possible in
order to increase the number of their clients. Paintings can belong to different eras,
and service providers can have different expertise in these eras. Service providers
are aware of their own expertise and are not aware of the expertise of other service
providers. In case a service provider realizes its expertise is not enough for evaluating
a painting, it can request a service from other service providers, becoming a client
in this case. Service providers do not necessarily expose accurate service to other
providers as their competitors. Thus, service providers can also request reputation
information about each other.

The ART model adds monetary relationships to our model. The final aim of the
simulation is to identify a service provider with the highest bank account balance
and analyze its behavior (e.g., accuracy and consistency of the provided service).

While the testbed presents a reasonable tool for comparing trust strategies in a com-
petitive environment, it does not suit our purpose of evaluating reputation manage-
ment algorithms for several reasons. First, representation of reputation and quality
of a service is limited, as the main focus is paid to the trust strategies. Our model,
in contrast, places greater emphasis on flexible representation of reputation.

32

Second, when choosing a service provider a trustor can only request for a particular
service provider’s reputation from the other providers at a time, which limits the
real world’s settings. In other words a trustor cannot request reputation values of
several service providers at a time, neither it can specify the service to collect the
reputation values of all the service providers that other agents had interactions with
concerning this service. Thus, a service provider can only go through the whole
list of other providers in searching for an acceptable reputation of one of them in
a particular era. In our model, in contrast, an agent specifies a particular service
(e.g., painting era) about which it wants to gather information. Requested agents
can provide reputation information of all the service providers they had experience
with concerning the specified service.

Finally, the marketplace scenario and monetary relationships between the actors
from our point of view add an overhead to the model, if its main purpose is to
evaluate and compare different reputation management algorithms. In our model
agents also provide services to each other, which can be argued to be a marketplace
scenario as well. However, we assume that evaluation of reputation management
algorithms can be based on the relationships of service providing without monetary
and contract conditions, which can bias the evaluation results.

3.3.2 The Trust and Reputation Experimentation and Evaluation Testbed
(TREET)

TREET is a testbed for evaluating reputation and trust management systems against
various behavior attacks in the marketplace scenario [KeC09]. Service providers are
presented as sellers, that can belong to honest, randomly cheating agents or those
that pursue a special cheating strategy. Trustors and referrers are presented as
buyers. So, the roles of a service provider and a buyer are separated, meaning for
example that a service provider cannot perform a role of a buyer. Thus, only buyers
share reputation information between each other.

In the scenario of the system service providers can advertise products from a fixed
set. Trustors, based on reputation information, decide whether to buy products or
not and from which service provider. After a service provider obtains payment from
a trustor, it can either deliver a product or cheat on the trustor by not shipping the
product within the system’s equivalent of 14 days. The trustor after obtaining the
product or realizing that he/she was cheated, updates his/her experience information
concerning the service provider.

33

The testbed considers the following attack scenarios that can be performed by ser-
vice providers [KeC09]: playbook, re-entry and proliferation attack, reputation lag
attack, and value imbalance attack. Further we have a closer look on these attacks.

Playbook attack implies that a service provider has a “book” of “plays” or strategies,
including sequence of malicious actions. At any given moment a service provider
chooses a certain strategy and performs it.

In the re-entry attack a service provider creates its identity, uses it for cheating
during some time and finally removes it to create the next one. In the proliferation
attack a service provider creates different independent identities to offer its products
through all of them.

The reputation lag attack implies the following. Let us suppose that the contracts
of the multiagent system allocate 14 days for the products’ shipping. In case of
cheating during this time reputation of a service provider will not change, as the
trustor can provide its referral only after obtaining the product. Thus, a service
provider can behave honestly before shipping the product, then it starts to behave
dishonest during the shipping time of 14 days, after which it removes its current
identification and creates a new one.

The value imbalance attack implies that a service provider gains a good reputation
behaving honestly in insignificant transactions and then cheats in performing more
valuable transactions.

Different reputation and trust management algorithms were evaluated in the testbed
(e.g., TRAVOS, Basic Trunits and the Beta Reputation System) [KeC09]. TREET
testbed overcomes many of the ART limitations and presents a new more flexible
platform for evaluation and comparison of trust and reputation management sys-
tems in a marketplace scenario. Features of TREET include for example adjustable
and flexible representation of reputation and trust between agents, eased monetary
relationships between agents, variety of considered attacks, ability to use different
reputation and trust management systems between different agents in the same
simulation run, and possible collusion behavior among agents [KeC10].

However, the TREET does not suit our purpose of evaluating different reputation
management algorithms for several reasons. First, the environment still implements
the pure marketplace scenario, including monetary relationships, which from our
point of view narrows the application perspective of trust and reputation manage-
ment systems. Thus, the effectiveness of a certain agent strategy is evaluated as the

34

sum of all the monetary gains and losses. Furthermore, agents are assumed to have
unlimited budget, which is questionable for the real market environment.

Second, the testbed focuses on evaluating systems against different attacks from
service providers. Thus, on the one hand, the testbed considers only attacks from
service providers, assuming that buyers are perfectly honest. On the other hand, the
testbed does not evaluate any other characteristics of the system, however it allows
to plug in users’ own tests that can aim at any characteristics of the system. Our
model, in contrast, enables to specify behavior patterns for both service providers
and referrers, making possible to set up dishonest behavior patterns for the referrers
as well. Moreover, we evaluate a set of characteristics of reputation management
systems that are meant to compare these systems in their intended, non-vulnerable
environment (e.g., trustor’s reactivity to changes in a behavior of a referrer and
recovery of a service provider’s reputation if it fails to provide a service for a while).

3.3.3 A model for a testbed for evaluating reputation systems

Chandrasekaran et al. introduce an application-independent model for a testbed for
evaluating reputation systems and comparing them against different attacks [ChE11].
The model represents a generic workflow of graph transformations. The workflow
includes feedback history graph, reputation graph and trust graph.

The feedback history graph includes all the feedbacks provided in the system. The
graph represents a single feedback as a value in [0, 1], indicating a referrer’s satis-
faction in a service.

Reputation algorithm of a reputation system defines the transformation from the
feedback history graph to the reputation graph. The reputation graph in the model
can represent either global or local reputation values. Reputation value is repre-
sented as a weight of an incoming arc. In the case of a global reputation graph,
reputation values of an agent are the same. In other words, weights for all the in-
coming arcs are identical. In case of local reputation graph, the arcs’ weights can
be different from different agents. The model allows arcs also to close to the same
agent, representing trust value that an agent places in itself for a certain task. The
reputation graph in the model can be obtained either directly from the feedback
history graph, or through an intermediate graph, which is built in some reputation
algorithms [ChE11].

Trust algorithm of the reputation system defines the transformation from the repu-

35

tation graph to the trust graph. The trust graph represents boolean values of trust
between agents. Thus, a directed arc from one agent to another appears only if the
former agent trusts the latter.

Moreover, the testbed models slandering, behavior changes, and Sybil agents’ at-
tacks and evaluates systems’ behavior against them. Slandering attack implies that
an agent provides false negative feedback concerning another agent that may be-
have honestly. An attacker can also provoke other agents to give negative feedback
towards the same victim. Behavior changes attack means that first an agent be-
haves honestly till it gains trust from other agents, after which it starts dishonest
behavior. When dishonest behavior causes a decrease of trust from other agents, an
attacker starts to behave honestly again. In the Sybil attack an agent creates fake
identities, aiming at maximizing the number of the identities among them that are
trusted by the other agents. Chandrasekaran et al. also include to their model met-
rics for evaluating a combination of Sybil with either behavior changes or slandering
attack [ChE11].

Although the presented model is claimed to be generic, it reveals the following
drawbacks. First, a feedback can be only represented as a single value. In all the
systems presented as an example a feedback either can be identified as a single value
(e.g., PeerTrust and ManagingTrust) or is not identified altogether [ChE11]. How-
ever, there are many reputation systems that represent feedback by more than one
value. For example in Travos [TPJ06] a feedback includes two counters, representing
positive and negative experiences. In Pinocchio [FKO04] every service provider is
associated with the set of properties, that are later evaluated and communicated by
the agents. Our model is similar to Pinocchio in this sense, providing a possibility of
defining theoretically unlimited number of service dimensions that can be different
for different services. Agents rate provided service of the service provider according
to the service dimensions and supply the ratings as a referral.

Second, feedback information does not include timestamps, excluding the possi-
bility of mapping reputation systems that contain temporal discount factors or
other temporal information. For example the knot-aware trust based reputation
model [GGH08] includes time intervals with their relative weights and changes over
time. The maintenance-based trust model [KGB09] discounts past experiences with
the timely relevance factor. Even though it is claimed that the model can be easily
expanded with the timestamps [ChE11], the logic of the reputation graph construc-
tion will also need to be reconsidered. Our model includes timestamps (which may

36

be omitted, though) for reputation values of a service provider and a referrer. These
timestamps may be used for discounting information or performing any other dy-
namism over the data.

Furthermore, the reputation graph can either represent global or local reputation
values at a time, lacking possibility of representing both of them simultaneously.
This means that in order to get full evaluation results of a system that considers
both of these reputation values, we have to simulate a reputation system in the model
twice with the same input characteristics. Chandrasekaran et al. presented exam-
ples using EigenTrust and PeerTrust systems that consider only global reputation
values [ChE11]. Our model can contain local, external and subjective reputation
values for a service provider or a referrer.

37

4 Tool for simulating reputation management algo-

rithms

This chapter presents the main purpose and design solutions for our tool. To generic
purpose of the tool is to simulate, evaluate and compare reputation management al-
gorithm. However comprehensive evaluation of a reputation management algorithm
includes various factors that are represented in Section 4.1. We identify our focus
of the reputation management algorithm evaluation, which is the first and the main
step for further development of the system. According to the identified purpose of
the tool we further present system’s architecture and design solutions.

4.1 Behavior evaluation of a reputation management algo-

rithm

Behavior evaluation of a reputation or trust management algorithm consists of the
following main parts [RuK13]:

1. Evaluation of the feasibility of the system, as well as other possible char-
acteristics such as usability, portability or adjustability to different business
situations.

2. Evaluation of trust or reputation update policy.

3. Evaluation of attack resistance of the system.

4. Evaluation of the system’s incentives.

Evaluation of the system’s feasibility includes for example scalability and efficiency
analysis. Among other characteristics, efficiency analysis can include the storage
load during the simulation process or speed of the algorithm’s processing. Evaluation
of trust or reputation update policy implies applying different representative loads
to the system and tracking the results of trust or reputation evolution. Evaluation
of attack resistance of the system implies applying different attack loads to the
system and identifying the possibility for the attackers to succeed. Evaluation of
the system’s incentives implies evaluation of the system’s ability to promote desirable
behavior and eliminate misbehavior among agents.

38

Our current work focuses on evaluation of trust or reputation update policy. Evalu-
ation of the system’s feasibility can be performed by the users of the tool according
to their particular interests. The possibility of the tool to support analysis of some
characteristics (e.g. speed of algorithm’s processing) is a future possible improve-
ment to the system.

Evaluation of attack resistance of the system first of all includes constructing a
comprehensive list of possible attacks from both service provider’s and referrer’s
perspectives. Possible attacks are based on the vulnerabilities of the systems. Sec-
tion 3.2.3 considers some of the possible systems’ vulnerabilities. However, evalua-
tion of attack resistance of the trust or reputation management system implies two
main challenges. First, it is hard to identify all the possible systems’ vulnerabilities
and simulate all the possible attacks, as systems are quite diverse, and attackers
can constantly come up with the new behavior patterns. Second, to represent the
attack resistance of the system, possible actions of the attackers should be tied with
cost of the impact of the action [RuK13]. The aim of the attackers then would be
to maximize gains and to minimize losses. Then the attack resistance of the system
can be evaluated by the extent to which attackers’ aim is achieved.

Thus, evaluation of the attack resistance of the system implies introducing a level
of monetary relationships to our model. Evaluation of the attack resistance of the
reputation or trust management algorithm is out of scope of the current work and
can become a future improvement of the system.

Evaluation of the system’s incentives requires more research [RuK13]. However users
of the tool can come up with their own evaluation method, as it does not require
any special loads generation in the system.

Evaluation of trust or reputation update policy can be performed in two differ-
ent scenarios: the agents follow the rules, and their behavior is expected; and the
agent(s) follow the rules, however their behavior can be unexpected and possibly
assumed as misbehavior. For both scenarios it is crucial to identify the rules of the
system. For example there is a multiagent system that includes travel agencies as
service providers. One of the accepted behavior patterns assumed in the system
for the service providers can follow for example parabola pattern. So that when
the customers’ demand increases in summer time for example, the quality of travel
agency’s service goes down, while when the demand decreases in winter, the service
quality goes up. This happens periodically according to the seasons.

39

The first scenario assumes that all the agents behave according to the specified
behavior patterns. The second scenario assumes that agents of interest behave
according to these patterns, but there are detected some rapid or unexpected changes
in the pattern, which can be assumed as misbehavior. For example according to the
parabola pattern in winter time the service of travel agency should be better than
in summer. But travel agency can have a company’s reorganization during winter
which can lead to its service quality deterioration for a while. This behavior is still
obedient, but can be assumed as misbehavior by other members of the multiagent
system that do not know that this is a temporal sole action. However later the travel
agency resumes its ability to follow the known behavior pattern in an expected way.

In the above described scenarios evaluation of trust or reputation update policy can
be performed from the perspectives of a service provider or referrer. Figure 4.1
depicts the scenarios and perspectives of the possible evaluations.

Point of view

Service provider Referrer

Scenarios
Agents follow rules, behavior is expected A C

Agents follow rules, behavior is unexpected B D

Figure 4.1: Evaluation of trust or reputation update policy.

Example evaluations that correspond to Section A in Figure 4.1 are: evaluation
of the reputation evolution of the service provider that suddenly has changed its
behavior; comparison of the reputation evolution of the service providers of the
same service that pursue different service providing strategies; and evaluation of the
reputation evolution of the service provider that provides a high-quality service but
there is a burst of negative referrals concerning this provider.

Example evaluations that correspond to Section B in Figure 4.1 are: evaluation
of the reputation evolution of the service provider that for a while fails to provide
good service; and comparison of the reputation evolution of the service providers
that provide the same service using different service providing strategies and fail to
provide the expected service for a while.

Example evaluations that correspond to Section C in Figure 4.1 are: evaluation of
the reputation of the referrer that pursues a certain strategy; and evaluation of the
reputation of the referrer that suddenly changes its behavior.

40

Example evaluations that correspond to Section D in Figure 4.1 are: evaluation of
the reputation evolution of the referrer that fails for a while to provide true referrals,
providing false instead; and comparison of the reputation evolutions of the referrers
that pursue different referring strategies concerning the same service for different
service providers, but fail for a while to provide expected referrals according to the
pattern.

Current work focuses on the evaluation of the reputation update policy from a
service provider perspective, which corresponds to Sections A and B in Figure 4.1.
Evaluation of the trust or reputation update policy from a referrer’s perspective is
a possible future improvement of the system.

4.2 Tool architecture and interface

This section presents environment and assumptions considered for the system’s im-
plementation. Moreover, it presents information flow of the system with the detailed
look on the input configurations and possible configurable reports.

4.2.1 Assumptions for the system

Here we present architecture and interface of our tool for simulating reputation
management algorithms. Architecture of the tool is based on our notation of trust
and reputation management concepts presented in Chapters 2 and 3. Here we
summarize our terminology, assumptions for a multiagent system, assumptions for
an agent in a multiagent system, and general scenario of an agent’s behavior in a
multiagent system.

Agent in a multiagent system can perform one of the three different roles at a time:
trustor TR, service provider SP or referrer RF . Trustors obtain services S from
service providers and referrals R from referrers. There are two main evaluation pa-
rameters that can be calculated either referring to a service provider or to a referrer:
reputation and trust. While calculating these parameters we can take into account
credibility of the information obtained for these calculations. First we identify rep-
utation value with the possibility of considering credibility of the information used
for this calculation. An agent can identify reputation values separately for referrers
and service providers. Further based on the reputation values and optionally overall
credibility of these reputation values agent identifies its trust either in a referrer or in
a service provider. Trust values are required for choosing a party to collaborate with

41

in a given context. For this reason trust values are not stored in the system. They
are calculated when it is required. Based on the calculated values an agent chooses a
party to collaborate with. After the collaboration reputation values are updated to
consider the experience for further deals. Figure 4.2 schematically depicts a notion
of multiagent system assumed in our tool.

Multiagent system

Agent

Trustor
(TR)

Service
Provider

(SP)

Referrer
(RF)

Referral (R)

Service (S)

Stored parameters:

- Reputation
(of a service provider or
referrer)

- Credibility (of
information used for
calculating reputation or
of reputation values
themselves)

Not stored parameter:
(for decision taking in a
given context)

- Trust (in a service
provider or referrer)

Figure 4.2: A notion of multiagent system used in our tool.

By default the tool stores local, external and subjective reputation values. Depend-
ing on the algorithm, external reputation value can be represented as a global repu-
tation. A trustor TRi keeps information about any other agent x from two different
points of view: as a service provider and referrer. A trustor identifies the following
parameters for any service provider x in a multiagent system: local reputation of x
LRSP (TRi, x); external reputation of x ERSP (TRi, x); and subjective reputation of
x SRSP (TRi, x). A trustor identifies the following parameters for any referrer x in
a multiagent system: local reputation of x LRRF (TRi, x); external reputation of x
ERRF (TRi, x); and subjective reputation of x as a referrer: SRRF (TRi, x).

For each of these reputation values the system can store credibility value, as well as
credibility value can be stored for any parameter used in calculation of these values.
That is, the system allows specifying any number of parameters used for calculating

42

reputation values, stores values of these parameters, stores credibility information
for any of these parameters, and stores all the above-presented reputation values
and their credibility information.

There are four assumptions for our model of a multiagent system:

1. There is no central trusted authority, no central server.

2. Agents are autonomous or behave as if they are autonomous. This assumption
implies that even if agents are not autonomous (e.g., they are created by the
same entity), the purpose of their multiple creation is for them to behave au-
tonomously (e.g., a service provider creates another entity to hide its previous
bad reputation or to try another behavior pattern). The tool does not support
any algorithm-independent features for tracking down such behavior.

3. Agents are identified prior to simulation and cannot arbitrary leave or enter
the system.

4. Agents are heterogeneous. They can be either real (humans or enterprises) or
virtual.

There are three following assumptions for an agent in our multiagent system: agents
use the same trust and reputation management system; agents’ behavior is not
different towards different participants; and agents’ behavior type can change at
any point.

Algorithm 4.1 presents general scenario of an interaction from a trustor’s point of
view in a multiagent system. From a referrer’s point of view whenever it gets a
request about service S, it checks its local database. In case it obtained S with any
number of service providers greater than zero, it sends its local reputation values for
all the found service providers. From a service provider’s point of view whenever it
gets request about particular service S, it provides it with the specified pattern for
the service providing.

43

Algorithm 4.1 General scenario of an interaction from a trustor’s point of view
Input: LRRF (TR,RFi) = 0; i = 1, 2, ..., N ; i ∈ {1, 2, ...,m}

LRSP (TR, SPj) = 0; j ∈ {1, 2, ..., n}
Output: LR′RF (TR,RFi); i = 1, 2, ..., N ; i ∈ {1, 2, ...,m}

LR′SP (TR, SPj); j ∈ {1, 2, ..., n}
1: TR desires service S.
2: TR requests all the agents about available information about service S.
3: TR receives referrals which contain reputation values from m referrers about
n service providers that can provide service S, RRSP (RFp, SPq), where p =

1, 2, ...,m, q = 1, 2, ..., n.
4: TR identifies its trust in referrers, TRF (TR,RFp) and deals only with those

which it trusts above some threshold or according to the specific algorithm of
the reputation management system.

5: TR adjusts referrals according to their credibility value, which is local to TR,
LcRF (TR,RFp).

6: TR collects referrals information about every service provider SPq into external
reputation value ERSP (TR, SPq).

7: TR combines credibility values into external credibility value EcSP (TR, SPq).
8: Based on LRSP (TR, SPq) and ERSP (TR, SPq) TR calculates subjective reputa-

tion value for every SPq, SRSP (TR, SPq), taking into account credibility values
if algorithm supports it (in case credibility value c lies in [0, 1], credibility value
of local information Lc is always 1).

9: TR calculates its trust value placed in every service provider TSP (TR, SPq).
10: Based on the trust values, TR chooses one service provider SPj which it trusts

the most in the given context.
11: After obtaining the service, TR updates its local and subjective reputation values

of the service provider, LR′SP (TR, SPj) and SR′SP (TR, SPj)
12: Based on the new subjective reputation value TR updates its local reputa-

tion values for the referrers that provided referrals for SPj. That is, TR up-
dates N local reputation values of referrers, LR′RF (TR,RFi); i = 1, 2, ..., N ;
i ∈ {1, 2, ...,m}.

Algorithm 4.1 is a generic algorithm of a trustor’s behavior. Reputation management
algorithms can omit different steps of the algorithm. However, reputation manage-
ment algorithms differ mainly in the calculation methods of reputation, trust and
credibility values.

44

4.2.2 Information flow in the system

Figure 4.3 presents information flow in the system. The simulation module is con-
sidered as a single block here. The information flow in the simulation module is not
of an interest in the diagram. Instead, we aim to illustrate the broaden information
flow that includes input and output modules for the whole system.

Figure 4.3: Information flow in the system.

Config.properties file serves the purpose of user ’interface’ for configuring the sim-
ulation process. Simulation system then simulates a multiagent system behavior
according to the specified parameters. As a result of simulation process user get a
main log file multiagentSystem.log which logs every step of the simulation process.
Moreover, there are generated text files that combine all the required information
for the graphical reports. Graphical reports are configured in the config.properties
file, representing interests of the user. Whenever system’s servlet is started, the web
page with the url of the servlet displays all the options for graphical reports that
can be generated by user at any moment of the simulation process.

Configuration of the system in the config.properties file includes the set up of fol-
lowing aspects: general environment; system’s simulation behavior; the plugged-in
reputation management algorithm; and system’s reports. Further we take a closer
look on these configuration aspects.

General set up includes defining rate of the service requesting in the system; defining

45

list of all the distribution patterns that are used in the simulation; defining list of
all the possible services that agents can provide in the system; and specifying the
number of agents in the system.

Setting up system’s simulation behavior includes assigning request patterns for all
the services of the system; identifying service providers in the system and whether
they can be trustors themselves or not; and assigning patterns for service provid-
ing. Below we take a closer look on the configurations for setting up the system’s
simulation behavior.

Request pattern for a service should be one of the patterns specified in the general
set up. Request patterns for services can be assigned in an absolute manner, i.e.
request patterns are mapped to the service ids. Otherwise request patterns can be
assigned to the percentage of the services.

To identify service providers in the system we need to assign services to the agents
that are assumed to be service providers. Services can be assigned in an absolute
manner, i.e. services’ ids are mapped to the agents’ ids or service providers’ ids.
Otherwise services can be assigned to the percentage of service providers. In the
latter case we first specify the percentage of all the agents that are service providers.

We can also assign patterns for service providing in an absolute or relative manner.
To assign a service providing pattern for a service provider in an absolute manner,
we need to map service id and pattern id to the service providers’ ids. Otherwise a
service providing pattern can be mapped to the percentage of service providers, i.e.
service id and pattern id are mapped to the percentage of service providers.

Set up of the plugged-in reputation management algorithm tells the system which
reputation management algorithm to use and what are the parameters values needed
for this algorithm. Prior to that set up, the algorithm should have been implemented
in the system or plugged into the system.

Setting up system’s reports include specifying service providers whose reputation
analysis is of interest and specifying groups of the service providers whose reputation
values comparison is of interest.

According to the specified system’s configurations, simulator models the overall
system’s behavior, ’telling’ to the right agents their actions at a given rate. Moreover,
at a run-time the simulator stores in the separate text files the information that is
required for the specified reports.

46

5 Representation of the example algorithm in our

system

This chapter describes the probabilistic approach for maintaining trust based on
evidence [WHS11] according to our notation presented in Chapter 2. Moreover, it
presents implementation of the algorithm in our system. The probabilistic approach
for maintaining trust based on evidence was chosen for several reasons. First of all,
the algorithm presents cutting edge research of the trust and reputation management
algorithms. Thus the algorithm is quite comprehensive and considers many features
that are only partly implemented in other algorithms [WHS11]. For this reason
a lot of other algorithms can be described and implemented in the similar way.
Second, from our point of view the algorithm presents one of the biggest and most
interesting group of reputation and trust management algorithms using probability
for the reputation update.

We have implemented the probabilistic approach in the system as a separate pack-
age. Appendix A represents some implementation decisions for the probabilistic
algorithm in our system. There are four main classes that are used in the algorithm.
Table A.1 describes these classes. Table A.2 presents main methods of the API for
the algorithm.

5.1 Main concepts of the algorithm

The probabilistic approach for maintaining trust based on evidence [WHS11] con-
siders agents in a multiagent system, specifying the following possible roles: service
provider SP , referrer RF , and a trustor TR. In the approach a trustor maintains its
trust historically, in other words in service providers, and socially, in other words in
referrers. The approach represents trust placed in a service provider, which accord-
ing to our notation is actually representation of the service provider’s reputation.
Similarly, representation of trust in a referrer in the approach maps to our repre-
sentation of the referrer’s reputation. However, the approach does not specify an
algorithm for making trust decisions. In other words, it does not specify an al-
gorithm for choosing a trustee based on the gathered reputation information. In
Section 3.2.2 we specified common algorithms for making trust decisions - either
using a threshold or ranking the trustees. Here we apply the ranking method. We
rank trustees according to their overall reputation values and choose one of them

47

with the highest rank. In case there are several possible alternatives, we choose
one of them randomly. The probabilistic approach does not support calculation of
credibility of reputation values.

In comparison with our model for a multiagent system the probabilistic approach
broadens possible actions of the referrers by introducing the following scenario. If
a referrer does not have any direct experience with a service provider, it can point
to another referrer that potentially has such experience. Thus a trustor for example
asks about a service S1 from three of its neighbors RF1, RF2, and RF3. It obtains
three replies: RF1 and RF2 refer to one service provider SP1, while RF3 refers to
another service provider SP2. After aggregating information about service providers
from different sources and its own experience, the trustor decides for example to
collaborate with SP2. After interaction with SP2 the trustor updates local reputa-
tion of SP2, as well as reputation of RF3. However, to enable the aforementioned
scenario the trustor should also store the fact that referrers RF1 and RF2 have direct
experience with SP1. Our model does not consider this scenario, assuming that a
referrer can only provide a referral of a service provider with which it had direct
experience. However, the scenario can be introduced in the model in future work.

5.1.1 Reputation representation

Wang et al. define reputation in terms of two dimensions: probability and certainty
of a good outcome [WHS11]. Certainty of a good outcome is introduced to differ-
entiate equal probabilities obtained out of completely different experiences. Thus,
probabilities of a good outcome are equal if we have experienced one good outcome
out of two interactions and 100 good outcomes out of 200 interactions. However
intuitively reputation of the service provider based on these experiences should not
be identical. Thus, certainty is important for measuring the amount of information
which is used for defining reputation. Wang et al. base the certainty computation on
the following assumptions: with the fixed probability and increasing total number
of experiences, the certainty should also increase; and with the fixed total number
of experiences and increasing number of negative experiences within them, certainty
should decrease [WHS11].

The probabilistic approach represents reputation in both the evidence and belief
spaces [WaS06]. In the evidence space reputation is represented as a binary event
〈r, s〉. Here, r ∈ R, r ≥ 0 is the number of positive experiences; s ∈ R, s ≥ 0 is the
number of negative experiences of a trustor with a trustee. The total number of

48

experiences t = r+ s ≥ 0. Wang et. al. claim that although the number of positive
and negative experiences can be represented as natural numbers including zero, it
is important to bear in mind the possible need for discounting the reputation values
(e.g., due to their aging) or introducing other required dynamism for them [WaS10].
For this reason, number of experiences are represented as real numbers.

The anticipated value of a probability α of a positive outcome is represented in the
following way:

α =
r

r + s
=
r

t
(1).

In case r + s = 0, it can be considered as 0.5 [WHS11].

The certainty based on the binary event 〈r, s〉 is represented in the form:

c(r, s) =
1

2

∫ 1

0
| xr(1− x)s∫ 1

0 x
r(1− x)sdx

− 1 | dx (2).

Thus, c(r, s) = 1 in the case of perfect knowledge and c(r, s) = 0 in the case of
complete ignorance. Based on (1), r can be represented as tα and s - as t(1 − α).
Thus we can represent c(r, s) also in the following way:

c(r, s) = c(tα, t(1− α)) (3).

Thus, when α is fixed, certainty becomes a function of t, c(t), while when t is fixed,
certainty becomes a function of α, c(α).
In the belief space, a binary event is modeled in the form 〈b, d, u〉, where b, d
and u represent probability of a positive outcome, probability of a negative outcome
and uncertainty, correspondingly. Each of b, d and u is a real number in (0, 1) and
b+ d+ u = 1 [WaS07].

Reputation values can be transferred between the evidence and belief spaces. We
transfer reputation value from the evidence to belief space in the following way:

b = αc = c
r

r + s
, d = (1− α)c = c

s

r + s
, u = 1− c (4),

where c is the certainty based on the binary event 〈r, s〉. Further, given b = αc and
d = (1− α)c, we represent α in the belief space as follows:

α =
b

b+ d
(5).

To transfer reputation value from the belief to evidence space, we have a fixed α

value, given in (5). Thus, certainty in (3) becomes a function of t and we need
to find such t that c(t) = 1 − u. Algorithm 5.1 finds t, and further 〈r, s〉, given

49

〈b, d, u〉 [WaS07]. We assume e > 0 is a necessary precision and tmax > 0 is the
maximum number of possible experiences.

Algorithm 5.1 Calculation of 〈r, s〉 given 〈b, d, u〉 [WaS07]
1: α = b

b+d

2: t1 = 0

3: t2 = tmax

4: c = u− 1

5: while t2 − t1 ≥ e do
6: t = t1+t2

2

7: if c(t) < c then
8: t1 = t

9: else
10: t2 = t

11: end if
12: end while
13: return r = tα, s = t− r

In our implementation of the algorithm, the default value for e is 0.01, for tmax
is 1000. Below we explain our decisions.

As r and s represent the number of positive and negative experiences respectively,
and in most cases these experiences can be represented as natural numbers, we do
not need a high precision for these values. However, in case there is a need for
performing any kind of dynamism over these data, the number of experiences can
be represented as real numbers and precision of 0.01 should be enough for such
purposes.

Value of tmax greatly affects the calculation results. For example we applied the
algorithm to the reputation value in the belief space 〈b, u〉 = 〈0.405, 0.448〉 with
the precision set to 0.01 with different values of tmax. Thus if tmax equals to 100,
500 and 1000, the algorithm produces the following values for r and s respectively:
〈10.97, 3.98〉, 〈366.84, 133.15〉 and 〈733.69, 266.30〉. According to the results, with
the growing value of tmax, values of r and s also grow. Our default value for tmax is
set to 1000, which we suppose is enough for the number of maximum possible ex-
periences between trustor and trustee. After reaching the limit of 1000, the counter
is set to zero again. In this case reputation value in the belief space is saved and
further calculations are based on this value.

50

5.1.2 Concatenation and aggregation of reputation

In order to obtain a subjective reputation value that a trustor TRi places in a
service provider SPj given direct experience of TRi with a referrer RFn and a
referral provided by RFn for SPj, Wang et al. suggest using a concatenation
operator (⊗) [WaS06]. The idea behind the operator lies in concatenating lo-
cal reputation value that TRi places in RFn and local reputation value that RFn
places in SPj. Given local reputation value of referrer that TRi places in RFn,
LRRF (TRi, RFn) = 〈b, d, u〉 and local reputation value of service provider that RFn
places in SPj, LRSP (RFn, SPj) = 〈b′, d′, u′〉, the subjective reputation value of ser-
vice provider that TRi places in SPj equals

SRSP (TRi, SPj) = LRRF (TRi, RFn)⊗LRSP (RFn, SPj) = 〈b·b′, b·d′, 1−b·b′−b·d′〉
(6).

Suppose there are N reputation values LRSP (RFN , SPj) provided by RFN for SPj,
where N is a natural number. Let local reputation values that TRi places in each
of the referrers be LRRF (TRi, RFN). In this case in order to obtain a subjective
reputation value that TRi places in a service provider SPj, Wang et al. suggest
using an aggregation operator (⊕) in the evidence space [WaS06]. The idea
behind the aggregation operator lies in simply summing up available positive and
negative experiences accordingly. Thus, given N concatenated reputation values be-
tween TRi and referrers RFN , R1 = LRRF (TRi, RF1)⊗LRSP (RF1, SPj) = 〈r1, s1〉,
R2 = LRRF (TRi, RF2)⊗LRSP (RF2, SPj) = 〈r2, s2〉, ..., RN = LRRF (TRi, RFN)⊗
LRSP (RFN , SPj) = 〈rN , sN〉, aggregated reputation value that TRi places in SPj

equals R1 ⊕ R2⊕...⊕RN . Aggregation is performed in the following order: first R1

and R2 are aggregated resulting for example in R; then R3 is aggregated with R,
providing a new value for R; then in the same fashion all the rest values are ag-
gregated with R, providing a new value for it. Aggregation of a pair of reputation
values for example R1 and R2 is defined as follows:

R1 ⊕R2 = 〈r1 + r2, s1 + s2〉 (7).

Below we illustrate the reputation representation, reputation concatenation and
aggregation in the probabilistic approach [WaS10]. In this example we consider
tmax = 100 and e = 0.01. Suppose there are two referrers Anne and Bill, one service
provider Carl and trustor Dennis. Anne has eleven good and four bad transactions
with Carl. That is, Anne’s local reputation value of Carl in the evidence space is
〈11, 4〉. Bill has two good and eight bad transactions with Carl. That is, Bill’s local

51

reputation value of Carl in the evidence space is 〈2, 8〉. Suppose Dennis in the belief
space has a reputation value of Anne as 〈b, u〉 = 〈0.2, 0.5〉, of Bill - 〈b, u〉 = 〈0.9, 0.05〉.

Given aforementioned conditions we first obtain reputation values in the belief space
that Anne and Bill place in Carl independently. In Anne’s case we have t = 15,
α = 0.733 according to (1), and c = 0.552 according to (2). Based on (4), we obtain
the following reputation value: 〈0.405, 0.448〉. In Bill’s case we have t = 10, α = 0.2,
and c = 0.522. Further, we obtain the following reputation value: 〈0.104, 0.478〉.
Dennis performs the following steps in order to identify the reputation value of Carl:

1. Based on (6) Dennis concatenates reputation values of Anne and reputation
value that Anne places in Carl. Thus, we obtain one concatenated reputa-
tion value that Dennis places in Carl: 〈0.081, 0.89〉. Similarly, we obtain an-
other concatenated reputation value based on Dennis’ and Bill’s experiences:
〈0.094, 0.531〉.

2. Based on Algorithm 5.1, Dennis transfers above concatenated reputation val-
ues into the evidence space. That is, for Anne’s report we obtain 〈0.501, 0.179〉,
for Bill’s report - 〈1.443, 5.756〉.

3. Based on (7), Dennis combines these reputation values, calculating the repu-
tation value of Carl in the evidence space: 〈1.944, 5.935〉.

4. Based on (2) and (4), Dennis transfers this reputation value into the belief
space: 〈0.113, 0.541〉.

With this example, we have illustrated both the concatenation and aggregation
operations. Concatenation operation combines reputation value that trustor places
in referrer and reputation value that the referrer places in the service provider.
Aggregation operation combines concatenated results with different referrers into a
single reputation value that the trustor places in the service provider. This value can
now be used to make a trust decision for example by comparing it to some defined
threshold. As the next step, we will look at updating the referrer’s reputation based
on how well their referrals have matched with the trustor’s own observations in the
past concerning particular service provider.

5.1.3 Update of referrer’s reputation

Suppose there is a trustor, referrer and a service provider. The trustor identifies
〈rRF , sRF 〉 reputation of the referrer, the referrer identifies 〈r′, s′〉 reputation of the

52

service provider. After obtaining the service, the trustor defines an actual reputa-
tion value of the service provider as 〈rSP , sSP 〉. Further, the trustor needs to update
its reputation value of the referrer based on the comparison between referrer’s com-
municated and actual reputation values of the service provider. The Algorithm 5.2
(lines 7-10) represents the general reputation update logic, which is common among
various approaches [WHS11].

Algorithm 5.2 Update of referrer’s reputation [WaS11]
Input: 〈rSP , sSP 〉, 〈r′, s′〉, 〈rRF , sRF 〉, β
Output: 〈r′RF , s′RF 〉

//Average-β

1: α = rSP

rSP +sSP

2: c = c(rSP , sSP)

3: q = 1−
√
(α− r′+1

r′+s′+2
)2 + (r′+1)(s′+1)

(r′+s′+2)2(r′+s′+3)

4: p = 1− q
5: c′ = c(r′, s′)
6: c′ = cc′

//General update
7: δrR = c′q

8: δrS = c′p

9: r′RF = δrR + (1− β)rRF
10: s′RF = δsR + (1− β)sRF

Instead of interpreting a referral from the referrer as either good or bad, it is repre-
sented as q good and p bad “referrals”. Q in this interpretation is 0 ≤ q ≤ 1, ranging
from a completely inaccurate to a completely accurate referral; p is assumed to
be 1 − q. Thus, q defines the proximity between the referral 〈r′, s′〉 and the actual
reputation 〈rSP , sSP 〉.

However, along with the accuracy of the estimation, we should also include the
weight of the accuracy that depends on the certainty of the referrer. Thus, sup-
pose we have two referrals 〈0, 1〉 and 〈0, 100〉 for a service provider, whose actual
reputation is 〈10, 0〉 [WHS11]. Both referrals report that a service provider is not
trustworthy, however the certainty of the first referrer is c(0, 1) = 0.25, while the
certainty of the second one is c(0, 100) = 0.99. That is why the second referrer
should be either punished or rewarded more than the first one, depending on the ac-
tual reputation of the service provider calculated by the trustor. That is, the weight
assigned to the accuracy of the estimation should increase when the certainty of the

53

referrer increases. Further, we estimate each referral as c′q good and c′(1− q) = c′p

bad “referrals”. This is covered by lines 7 and 8 in the Algorithm 5.2. Moreover,
previous experience 〈rRF , sRF 〉 is discounted by its age, assuming β as a temporal
discount factor (lines 9 and 10). Various approaches differ in terms of q calculation.
In the probabilistic approach Average-β algorithm is used for updating the repu-
tation value of a referrer. Lines 1-6 in the Algorithm 5.2 represent the Average-β
approach.

Initial reputation values assumed in the probabilistic approach follow. Initial repu-
tation value that the trustor places in the service provider 〈rSP , sSP 〉 is set to 〈0, 0〉,
indicating that the trustor has no prior experience with the service provider. Initial
reputation value that the trustor places in the referrer 〈rRF , sRF 〉 is set to 〈1, 1〉,
indicating the trustor’s willingness to consider the referrer’s feedback. The trustor
updates its reputation value placed in the referrer only after obtaining service from
the service provider, thus leading to rSP + sSP > 0. In other words, in case
〈rSP , sSP 〉 = 〈0, 0〉 the trustor can not update its reputation value of the referrer.

We will now illustrate Algorithm 5.2. Suppose in terms of the previous example, after
obtaining service from Carl, Dennis estimated his actual reputation value as 〈1, 0〉.
In the evidence space, Dennis’ reputation value of Anne equals to 〈5.34, 8.01〉, rep-
utation value of Bill equals to 〈1894.73, 105.26〉. Suppose for example β = 0.01,
then according to the Algorithm 5.2 updated reputation that Dennis places in Anne
equals to 〈5.29, 7.93〉, in Bill - 〈1875.78, 104.21〉. Results show us that as Anne’s re-
port was somewhat accurate for both rSP and sSP , Dennis enlarged the reputation
value of Anne by increasing rSP and decreasing sSP . Similarly, as Bill’s report was
somewhat inaccurate for rSP , but to some extent accurate for sSP , Dennis decreased
both rSP and sSP in his reputation value of Bill.

In our tool value of β can be tuned by the users in the config.properties file. The de-
fault value is set to 0.01 according to usage by the authors of the algorithm [WHS11].

5.1.4 Update of service provider’s reputation

Suppose a trustor has experienced 〈r, s〉 outcomes with a service provider, placing a
reputation value of 〈b, u〉 in this experience. Suppose also that after interacting with
the service provider, the trustor estimates the provider’s current behavior as 〈r′, s′〉.
Given these conditions, the trustor needs to update its reputation value of the service
provider, obtaining an updated reputation value 〈b′, u′〉 for 〈b, u〉.

54

Algorithm 5.3 presents the Average-α algorithm used in the probabilistic approach
for updating reputation of a service provider. Initial values for the algorithm are
the following: 〈b, u〉 is set to 〈0.9, 0.1〉, indicating that the trustor trusts its past
experience with high confidence; 〈r, s〉 is set to 〈0, 0〉. Reputation value 〈b, u〉 is
updated only after the trustor’s interacting with the service provider, resulting in
r′ + s′ > 0.

Algorithm 5.3 Average-α: update of reputation of a service provider [WaS11]
Input: 〈r, s〉, 〈r′, s′〉, 〈b, u〉
Output: 〈b′, u′〉
1: α = r′

r′+s′

2: c = c(r, s)
3: c′ = c(r′, s′)

4: q = 1−
√∫ 1

0
xr(1−x)s(x−α)2dx∫ 1

0
xr(1−x)sdx

5: b′′ = b+ cc′(1− q)
6: u′′ = u+ cc′q

7: β = b′′

b′′+u′′

8: b′ = r′ + βr

9: u′ = s′ + βs

Average-α compares past behavior of a service provider 〈r, s〉 with its current behav-
ior 〈r′, s′〉 [WHS11]. The reputation of the service provider increases if its current
behavior is close to its past behavior. Otherwise, reputation of a service provider
decreases. Thus the reputation of a service provider is based on the consistency
of its behavior. For example if 〈b, u〉 = 〈0.9, 0.1〉, 〈r, s〉 = 〈3, 4〉 and we experience
〈r′, s′〉 = 〈4, 4〉, then the updated value for 〈b, u〉 equals to 〈1, 0〉. However, if we
experience 〈r′, s′〉 = 〈3, 5〉, 〈b′, u′〉 = 〈0, 1〉. Temporal discount factor β is automati-
cally computed in the algorithm, eliminating the need for its hard-coding or manual
adjusting.

55

6 Evaluation and analysis

This chapter presents some evaluation and analysis examples that can be performed
using our system. The reputation management algorithm that is used in the exam-
ples is the probabilistic approach for maintaining trust based on evidence described
in Chapter 5.

The goal of our tool was to evaluate reputation update policy of the single algorithm
or to compare reputation update policies of different algorithms. In the current work
we have implemented only one algorithm that is why here we illustrate possible
evaluations of the reputation update policy.

Reputation update policy can be evaluated from the perspective of either a service
provider or a referrer. This chapter illustrates examples of the evaluation of the
reputation update policy from a service provider’s point of view. The logic of the
evaluations from different perspectives stays the same. The differences are in the
results of reputation update for a service provider or a referrer. However the purpose
of the current work is not to evaluate comprehensively the chosen algorithm, instead
we are aiming at illustrating our tool’s features.

Examples of the possible scenarios for evaluation reputation update policy from
a service provider’s point of view are presented in Section 4.1. We illustrate the
following scenarios:

1. Agents’ reactivity to changes in the behavior of a service provider.

2. Recovery of a service provider’s reputation if it fails to provide a service for a
while.

3. Reputation evolution of different service providers of the same service that
pursue different strategies.

The generic configurations to our evaluation runs for a multiagent system that uses
probabilistic approach for maintaining trust based on evidence follow.

1. Number of agents in the system: 1000.

2. Service providers can be trustors themselves.

3. Rate of the services’ requesting is 10 seconds.

56

4. There is one service that can be provided in the system. The service’s domain
is IT, the service’s type is Printing. The service has one dimension that can
be evaluated: quality of paper. The values of the dimension are: bad, okay,
good, perfect.

5. Agent 0 is a service provider.

The configurations for the probabilistic approach for maintaining trust based on
evidence are the same for all the evaluation runs. The configurations include:

1. Possible maximal number of experiences between two agents t_max=1000.

2. Precision of the calculations e=0.1.

3. Deviation to number of positive or negative experiences when updating service
provider’s reputation is set to positive.

4. Discounting factor when updating the referrer’s reputation beta=0.01.

5. Threshold for trust decision is belief=0.8, uncertainty=0.2.

With the presented system’s configurations, we will illustrate some system’s features
of analyzing reputation and trust management algorithms. Namely, we are going
to analyze reputation update policy of service providers. We have chosen several
scenarios for such analysis. Section 6.1 presents analysis of the agents’ reactivity
to changes in the behaviour of a service provider. Section 6.2 presents analysis of
the recovery of a service provider’s reputation if it fails to provide a service for a
while. Finally, Section 6.3 presents analysis of differences in reputation evolution
for different service providers that provide the same service but pursue different
strategies.

6.1 Agents’ reactivity to behavior changes

To evaluate agents’ reactivity to changes in the behavior of a service provider, let
us consider the pattern of the service providing as a Weibull curve, specified as a
following function: f(x) = e(−x50). Figure 6.1(a) represents the distribution function.

We have chosen a power of x as 50 to make the pattern change sharper, so that the
service provider’s behavior changes quickly from the best to the worst. Let us choose
a piece of the distribution that will be in use as a pattern for service providing from

57

x = −0.6 to x = 2. Figure 6.2(a) highlights the selected part. In this case we can
track for some time the service provider’s reputation evolution when it provides the
best service only, as well as we can track the change in the reputation when the
service quality rapidly worsens, and finally we can track reputation evolution when
the service quality is the worst. Next let us consider the step for the service providing
pattern. The bigger the step is, the quicker the round of the whole selected piece
will take place. However at the same time the less amount of reputation updates
will be tracked. To compromise on that, we have chosen a step of 0.07.

(a) Weibull curve. (b) Part of the Weibull curve in use.

Figure 6.1: Service providing pattern.

Let us choose a simple pattern for a service requesting, for example f(x) = 3. Thus,
every 10 seconds 3 random agents will request the service one by one. After every
interaction with the service provider its reputation will be updated and will affect
the choice of the next agent. However for the representative results we have only
one service provider so that every agent deals with this provider.

Appendix B represents parts of the multiagentSystem.log that reflect agents’ reac-
tivity to changes in the behavior of the service provider. Listing B.1 represents the
multiagent system initialization Listing B.2 represents original best service provid-
ing pattern. Listing B.3 represents agents’ reactivity to the rapid worsening of the
service providing pattern.

Figure 6.2 represents the agents’ reactivity in terms of belief and uncertainty values
to changes in the behavior of the service provider. Figure 6.3 represents the number
of positive and negative experiences with the service provider.

58

Figure 6.2: Belief and uncertainty evolution when service providing pattern is rapidly
changed from providing the best service to providing the worst.

Figure 6.3: Number of positive and negative experiences with the service provider.

From x = −0.6 to approximately x = 0.9 service providing pattern is stable and
service providing characteristics are the best. Number of positive experiences at this
interval increases by 3 with every interaction with the service provider. However, we
can see that the belief in the service provider is growing slowly, increasing by 0.55
after around 24 interactions. Uncertainty for this period decreases by 0.45 from 1
to 0.55. Then the service provider rapidly changes the behavior pattern. Belief in
the service provider slowly decreases by 0.3 after next 14 interactions. Uncertainty
for that period increases by around 0.15.

59

6.2 Recovery of a service provider’s reputation

To illustrate evaluation of the recovery of a service provider’s reputation if it fails to
provide a service for a while we can use the same service providing pattern presented
in Figure 6.1(b). First the service is provided with the best dimension value, then
the service providing pattern is rapidly changed to providing the worst service. The
worst service is provided from x = 1 to x = 2. With the step 0.07 and 3 service
requests at a time, around 14 interactions will result in the negative experience with
the worst service provided. After that the service will be provided again the best
from x = −0.6 to x = 0.9. Figure 6.4 represents belief and uncertainty evolution
when the service provider fails to provide the best service for a while. Figure 6.5
represents the number of positive and negative experiences with the service provider.

Figure 6.4: Belief and uncertainty evolution when the service provider fails to provide
the best service for a while.

Figure 6.5: Number of positive and negative experiences with the service provider.

60

Belief recovery of the service provider after it fails to provide the best service for
a while appears to be much slower than the initial belief growth for the service
provider. Thus, initially when providing only the best service, the belief in the ser-
vice provider grows from 0 to 0.55 after 25 interactions. However after failing to
provide the best service for 14 interactions and then starting to provide the best
service again, the belief in the service provider grows from 0.25 to 0.45 after 25 in-
teractions of providing the best service. Likewise, uncertainty in the service provider
decreases by 0.55 after 25 initial best service providing interactions. However after
failure to provide the best service the uncertainty in the service provider decreases
by 0.1 from 0.6 to 0.5 after 25 best service providing interactions.

6.3 Reputation evolution of different service providers

Here we illustrate the feature of comparing and analyzing reputation of different
service providers of the same service that pursue different strategies. Let us assume
there are two service providers in a multiagent system. The first service provider
is the same as described above: agent 0 with the Weibull distribution as a service
providing pattern. This service providing pattern means providing the best service
with some periods of failing to provide the best service. Let us compare this pattern
with a pattern that includes constant variation from providing the worst to providing
the best service. This pattern can be described for example by the function of the
standard normal distribution: f(x) = 1√

2Π
· e−x2

2 . Figure 6.6(a) represents the
distribution function.

(a) Standard Normal distribution. (b) Part of the Standard Normal dis-
tribution in use.

Figure 6.6: Service providing pattern.

Let us choose a piece of the distribution from x = −3 to x = 3 that will be in use as

61

a pattern for the service providing. Figure 6.6(b) highlights the selected part. Step
for the service providing is 0.5.

To compare reputations of the service providers, the service providers should provide
the same service and the requesting patterns for the services from both service
providers should be the same. However if two agents provide the same service with
the service providing patterns described above, only agent 0 will be asked for the
service, as it starts providing the best service from the beginning and agents will give
good referrals about agent 0 only. For this reason we will fake the existence of only
one service in the multiagent system. Thus, we will initialize two identical services
with different ids. Agent 0 is the only service provider for one of the services. Agent
1 is the only service provider for another service. Requesting patterns for both
services are identical. In this case we can track the evolution of reputations of the
service providers and compare them.

Let us take the time period for the comparison when the pattern of both of the
patterns complete one round. The first pattern which includes Weibull distribution
starts from x = −0.6 to x = 2 with the step 0.07. This means that the whole
round will take around 37 interactions. The second pattern which includes Standard
Normal distribution starts from x = −3 to x = 3 with the step 0.5. For this
pattern the whole round will take 12 interactions. Thus, the minimum number
of the traced interactions should be 37. Figure 6.7 represents belief values of the
service providers’ reputations. Figure 6.8 represents uncertainty values of the service
providers’ reputations. Figure 6.9 represents the number of positive experiences with
the service providers. Figure 6.10 represents the number of negative experiences with
the service providers.

Figure 6.7: Belief values of the service providers’ reputations.

62

Figure 6.8: Uncertainty values of the service providers’ reputations.

Figure 6.9: Number of positive experiences with the service providers.

Figure 6.10: Number of negative experiences with the service providers.

There are approximately 40 traced interactions. For the agent 1 we can see that even
it constantly changes the service providing pattern, the belief in it has an increasing

63

trend. It has increased from 0 to 0.15 after the traced interactions. For the agent 0
we can also observe increasing trend of the belief value in it. Thus, the belief value
has increased from 0 to 0.29 after the same amount interactions. We can see that at
any point the belief in the service provider 0 is higher than the belief in the service
provider 1.

Uncertainty values for both service providers have a decreasing trend. For the
agent 0 uncertainty value decreases from 1 to 0.59 after the traced interactions.
For the agent 1 uncertainty value decreases from 1 to 0.6 after the same number of
interactions. Thus, we can see that eventually the uncertainty values in the service
providers are almost the same. However in total there were around 27 positive
and 14 negative experiences with the agent 0, while 15 positive and 24 negative
experiences with the agent 1.

64

7 Conclusion

This section concludes the results of the thesis work and outlines the future work.

Technology-isolated inter-enterprise collaboration is more beneficial compared to
the conventional way of collaborating where enterprises are technology-dependent.
However such technology-isolated collaboration increases the number of the potential
partners and thus can lead to the market deterioration. For this reason it is crucial to
create or configure a multiagent system for the agents’ collaboration that can serve
the guard purpose, supporting acceptable behavior from the agents and neglecting
misbehavior among them.

There are many trust and reputation management algorithms that have been sug-
gested in the research community for this purpose. These algorithms can differ in
their assumptions, possible scenarios, reputation update policies and so on, however
the main purpose stays the same. In the thesis we have come up with our general
model of a multiagent system behavior.

The goal of the thesis was to implement a generic tool that can be used for evaluation
and comparison of different trust or reputation management algorithms. To achieve
this goal first we have studied the state of the art in the field of both trust and
reputation management algorithms and existing tools for evaluating and comparing
these algorithms. Analysis of the cutting-edge trust and reputation management
algorithms allowed us to come up with our own generic model of a multiagent system
behavior. Moreover, this analysis was crucial for making design decisions for our
tool that must be generic enough to be able to embed as many different existing
algorithms as possible. Analysis of the existing tools for evaluating and comparing
trust and reputation management algorithms allowed us to come up with the design
of the tool that overcomes existing tools’ limitations.

Second, we have come up with the comprehensive list of the evaluation characteris-
tics for the algorithms and identified the target characteristic that can be estimated
using our system. Namely, the main characteristic that can be evaluated using our
system is a service provider’s reputation update policy. Future improvements of the
system include implementation of all the other identified evaluation characteristics
in the system. These characteristics include: referrer’s reputation update policy,
trust update policy, attack resistance of the algorithm, incentives of the algorithm,
performance characteristics of the tool itself (e.g. feasibility, usability or scalability).

Third, we have implemented and described the tool for simulating a multiagent

65

system behavior. In the tool all the agents follow the same trust and reputation
management algorithm. The system was meant to be generic enough to be able to
plug in any trust and reputation management algorithm.

Fourth, we have described probabilistic approach for maintaining trust based on
evidence according to our terms and above-presented vision. Moreover, we have
embedded this algorithm into our tool and presented some implementation solutions.

Finally, we have illustrated evaluation of the service provider’s reputation update
policy of the probabilistic approach for maintaining trust based on evidence using
our tool. To evaluate service provider’s reputation update policy when the behav-
ior of a service provider is normal and expected, we have illustrated the following
aspects: agents’ reactivity to changes in the behavior of a service provider and repu-
tation evolution of different service providers of the same service that pursue pursue
different strategies. To evaluate service provider’s reputation update policy when the
behavior of a service provider is normal however possibly assumed as misbehavior,
we have illustrated the following aspect: recovery of a service provider’s reputation
if it fails to provide a service for a while.

To outline the future work for the current system we need to remember that the
main purpose of the system is a complete behavior evaluation of a trust or reputation
management algorithm and support for the algorithms’ comparison. Our vision of
the complete behavior evaluation of a trust or reputation management system is
presented in Section 4.1. According to that vision future work for in the priority
order includes: implementing support for the evaluation of the update reputation
policy from a referrer’s point of view; implementing support for the evaluation of
the attack resistance of the system; implementing support for the evaluation of the
incentives the algorithm creates; and implementing support for the evaluation of the
system’s feasibility, usability, scalability and other performance parameters.

Currently we have implemented the system’s support for the evaluation of the up-
date reputation policy from a service provider’s point of view. This support includes
design and implementation of the generic logic for the service providers’ reputation
update. Based on this defined generic logic different reputation management algo-
rithms with their special features can be plugged into the system. Moreover, the tool
provides a graphical representation of the reputation evolution of a single provider
or a group of service providers on the same graph. However the current system
is partly missing the support for evaluation of the update reputation policy from
a referrer’s point of view. The design part of the generic logic for the referrers’

66

reputation update is presented in the current paper, however the system lacks the
implementation part and graphical representation of the results.

Support for the evaluation of the attack resistance of the system requires first of
all identifying a comprehensive list of possible attacks from service provider’s and
referrer’s sides. Attacks are based on the possible vulnerabilities of the systems.
Section 3.2.3 presents known to us at the moment possible vulnerabilities of the
systems from both service provider’s and referrer’s directions.

However the most important part of the evaluation of the attack resistance of the
system lies in the design solution. How to evaluate an attack resistance of the
system? What should be the criteria? Should the criteria be connected with the
gains of the attackers or losses of the benevolent agents? How to evaluate the
gains or losses? Should monetary relationships between agents be introduced to
the environment for obtaining more representative results of the evaluations? These
are just some questions that should be considered to find a solid solution for the
evaluation of the attack resistance of the system.

Current research does not provide any good solution for the evaluation of the incen-
tives the algorithm creates. One of such incentives can be for example rewarding
participants more for many small transactions rather than for a few larger ones.
Thus future work in this direction implies first researching the possible ways for
the system’s incentives evaluation and second coming up with a solid design and
implementation solution.

Most of the performance parameters (e.g. scalability or usability) can be evalu-
ated regardless of the system’s implementation features. However the system can
still provide some support. For example for the usability evaluation of the par-
ticular algorithm in the system, the tool could automatically calculate how many
steps are required from the user to get a desired algorithm simulated. This could
mean for example how many parameters of the algorithm must be specified in the
config.properties file. The more parameters must be specified, the less usable the
particular algorithm in the system appears to the user, as it will require from the
user certain knowledge of the algorithm’s logic.

67

References

Ake70 Akerlof, G. A., The market for ’Lemons’: Quality uncertainty and the
market mechanism. The Quarterly Journal of Economics, 84,3(1970),
pages 488–500. URL http://EconPapers.repec.org/RePEc:tpr:

qjecon:v:84:y:1970:i:3:p:488-500.

AbH00 Abdul-Rahman, A. and Hailes, S., Supporting trust in virtual com-
munities. Proceedings of the 33rd Hawaii International Conference
on System Sciences-Volume 6 - Volume 6, HICSS ’00, Washington,
DC, USA, 2000, IEEE Computer Society, page 6007, URL http:

//dl.acm.org/citation.cfm?id=820262.820322.

ART13 The agent reputation and trust (ART) testbed. October 2013, URL
http://megatron.iiia.csic.es/art-testbed/. [01.10.2013].

ChE11 Chandrasekaran, P. and Esfandiari, B., A model for a testbed for eval-
uating reputation systems. Proceedings of the 2011 IEEE 10th Inter-
national Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), Changsha, Hunan Province P.R. China,
November 2011, pages 296–303, URL http://ieeexplore.ieee.org/

xpl/articleDetails.jsp?arnumber=6120832.

CGS03 Cahill, V., Gray, E., Seigneur, J.-M., Jensen, C. D., Chen, Y. and et. al,
Using trust for secure collaboration in uncertain environments. IEEE
Pervasive Computing, 2,3(2003), pages 52–61. URL http://dx.doi.

org/10.1109/MPRV.2003.1228527.

Cha05 Chadwick, D. W., Operational models for reputation servers. iTrust,
volume 3477 of Lecture Notes in Computer Science. Springer, 2005,
pages 108–115, URL http://dx.doi.org/10.1007/11429760_8.

CNS03 Carbone, M., Nielsen, M. and Sassone, V., A formal model for trust
in dynamic networks. In proc. of International Conference on Soft-
ware Engineering and Formal Methods (SEFMâ03). Society Press, 2003,
pages 54–63.

DeA04 Despotovic, Z. and Aberer, K., Maximum likelihood estimation of peers’
performance in P2P networks. The Second Workshop on the Economics
of Peer-to-Peer Systems, 2004.

68

FKM06 Fullam, K., Klos, T., Muller, G., Sabater, J., Schlosser, A., Topol,
Z., Barber, S., Rosenschein, J., Vercouter, L. and Voss, M., The
agent reputation and trust (ART) testbed game description (version
2.1). Technical Report, 2006. URL http://megatron.iiia.csic.es/

art-testbed/pdf/SpecSummary.pdf.

FKO04 Fernandes, A., Kotsovinos, E., Ostring, S. and Dragovic, B., Pinoc-
chio: Incentives for honest participation in distributed trust manage-
ment. In Trust Management, Jensen, C., Poslad, S. and Dimitrakos, T.,
editors, volume 2995 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2004, pages 63–77, URL http://dx.doi.org/10.

1007/978-3-540-24747-0_6.

Gal11 Gal-Oz, N., Models for trust-based reputation in and across virtual
communities. Doctoral thesis, Ben-Gurion University of the Negev,
Department of Computer Science, Beer-Sheva, March 2011.

GGH08 Gal-Oz, N., Gudes, E. and Hendler, D., A robust and knot-
aware trust-based reputation model. In Trust Management II, vol-
ume 263 of The International Federation for Information Process-
ing, Springer US, 2008, pages 167–182, URL http://dx.doi.org/10.

1007/978-0-387-09428-1_11.

HJS06 Huynh, T. D., Jennings, N. R. and Shadbolt, N. R., An integrated
trust and reputation model for open multi-agent systems. Autonomous
Agents and Multi-Agent Systems, 13,2(2006), pages 119–154. URL
http://dx.doi.org/10.1007/s10458-005-6825-4.

IBJ03 Ismail, R., Boyd, C., Jøsang, A. and Russel, S., Strong privacy in rep-
utation systems. Proceedings of the 4th international Workshop on In-
formation Security Applications (WISA), August 2003.

JuF03 Jurca, R. and Faltings, B., An incentive compatible reputation mecha-
nism. Proceedings of the second international joint conference on Au-
tonomous agents and multiagent systems, AAMAS ’03, New York, NY,
USA, 2003, ACM, pages 1026–1027, URL http://doi.acm.org/10.

1145/860575.860778.

JøH07 Jøsang, A. and Haller, J., Dirichlet reputation systems. Proceedings of
the The Second International Conference on Availability, Reliability and

69

Security, ARES’07, Washington, DC, USA, 2007, IEEE Computer So-
ciety, pages 112–119, URL http://dx.doi.org/10.1109/ARES.2007.

71.

JøI02 Jøsang, A. and Ismail, R., The Beta reputation system. In Proceedings
of the 15th Bled Electronic Commerce Conference, 2002, pages 324–337.

JIB07 Jøsang, A., Ismail, R. and Boyd, C., A survey of trust and reputation
systems for online service provision. Decis. Support Syst., 43,2(2007),
pages 618–644. URL http://dx.doi.org/10.1016/j.dss.2005.05.

019.

Jøs01 Jøsang, A., A logic for uncertain probabilities. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., 9,3(2001), pages 279–311. URL http:

//dl.acm.org/citation.cfm?id=565980.565981.

KBR05 Kinateder, M., Baschny, E. and Rothermel, K., Towards a generic trust
model – comparison of various trust update algorithms. Trust Man-
agement, volume 3477 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2005, pages 119–134, URL http://dx.doi.org/

10.1007/11429760_13.

KeC06 Kerr, R. and Cohen, R., Modeling trust using transactional, numerical
units. Proceedings of the 2006 International Conference on Privacy,
Security and Trust: Bridge the Gap Between PST Technologies and
Business Services, PST ’06, New York, NY, USA, 2006, ACM, pages
21:1–21:11, URL http://doi.acm.org/10.1145/1501434.1501460.

KeC09 Kerr, R. and Cohen, R., Smart cheaters do prosper: defeating trust and
reputation systems. Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems - Volume 2, AAMAS ’09,
Richland, SC, 2009, International Foundation for Autonomous Agents
and Multiagent Systems, pages 993–1000, URL http://dl.acm.org/

citation.cfm?id=1558109.1558151.

KeC10 Kerr, R. and Cohen, R., TREET: the Trust and Reputation Exper-
imentation and Evaluation Testbed. Electronic Commerce Research,
volume 10. Springer Netherlands, 2010, pages 271–290, URL http:

//dx.doi.org/10.1007/s10660-010-9056-y.

70

KGB09 Khosravifar, B., Gomrokchi, M., Bentahar, J. and Thiran, P.,
Maintenance-based trust for multi-agent systems. Proceedings of
The 8th International Conference on Autonomous Agents and Mul-
tiagent Systems - Volume 2, AAMAS ’09, Richland, SC, 2009, In-
ternational Foundation for Autonomous Agents and Multiagent Sys-
tems, pages 1017–1024, URL http://dl.acm.org/citation.cfm?id=

1558109.1558154.

KRR08 Kutvonen, L., Ruokolainen, T., Ruohomaa, S. and Metso, J.,
Service-oriented middleware for managing inter-enterprise collabora-
tions. Global Implications of Modern Enterprise Information Sys-
tems: Technologies and Applications. Advances in Enterprise Informa-
tion Systems (AEIS). IGI Global, December 2008, pages 209–241, URL
http://www.igi-global.com/reference/details.asp?id=9648.

KSG03 Kamvar, S. D., Schlosser, M. T. and Garcia-Molina, H., The Eigentrust
algorithm for reputation management in P2P networks. Proceedings of
the 12th international conference on World Wide Web, WWW ’03, New
York, NY, USA, 2003, ACM, pages 640–651, URL http://doi.acm.

org/10.1145/775152.775242.

Lev09 Levien, R., Attack-resistant trust metrics. Computing with social trust.
Springer, 2009, pages 121–132.

Man98 Manchala, D. W., Trust metrics, models and protocols for electronic
commerce transactions. Proceedings of the The 18th International
Conference on Distributed Computing Systems, ICDCS ’98, Wash-
ington, DC, USA, 1998, IEEE Computer Society, pages 312–, URL
http://dl.acm.org/citation.cfm?id=850926.851678.

MMH02 Mui, L., Mohtashemi, M. and Halberstadt, A., A computational model
of trust and reputation for e-businesses. Proceedings of the 35th An-
nual Hawaii International Conference on System Sciences (HICSS’02) -
Volume 7, Washington, DC, USA, 2002, IEEE Computer Society, pages
188–, URL http://dl.acm.org/citation.cfm?id=820745.821158.

MRZ02 Miller, N., Resnick, P. and Zeckhauser, R., Eliciting honest feedback
in electronic markets. Working paper series, Harvard University, John
F. Kennedy School of Government, 2002. URL http://ideas.repec.

org/p/ecl/harjfk/rwp02-039.html.

71

PDS09 Paradesi, S., Doshi, P. and Swaika, S., Integrating behavioral trust in
web service compositions. Proceedings of the 2009 IEEE International
Conference on Web Services, ICWS ’09, Washington, DC, USA, 2009,
IEEE Computer Society, pages 453–460, URL http://dx.doi.org/

10.1109/ICWS.2009.106.

PPK05 Papagelis, M., Plexousakis, D. and Kutsuras, T., Alleviating the
sparsity problem of collaborative filtering using trust inferences. In
Trust Management, volume 3477 of Lecture Notes in Computer Sci-
ence, Springer Berlin Heidelberg, 2005, pages 224–239, URL http:

//dx.doi.org/10.1007/11429760_16.

RHK11 Ruohomaa, S., Hankalahti, A. and Kutvonen, L., Detecting and re-
acting to changes in reputation flows. In Trust Management V, vol-
ume 358 of IFIP Advances in Information and Communication Tech-
nology, Springer Berlin Heidelberg, 2011, pages 19–34, URL http:

//dx.doi.org/10.1007/978-3-642-22200-9_5.

RuK05 Ruohomaa, S. and Kutvonen, L., Trust management survey. Proceed-
ings of the iTrust 3rd International Conference on Trust Management,
23-26, May, 2005, Rocquencourt, France, volume 3477 of Lecture Notes
in Computer Science. Springer-Verlag, May 2005, pages 77–92, URL
http://dx.doi.org/10.1007/11429760_6.

RuK08 Ruohomaa, S. and Kutvonen, L., Making multi-dimensional trust de-
cisions on inter-enterprise collaborations. Seventh International Con-
ference on Availability, Reliability and Security, pages 873–880. URL
http://doi.ieeecomputersociety.org/10.1109/ARES.2008.32.

RuK13 Ruohomaa, S. and Kutvonen, L., Behavioural evaluation of reputation-
based trust systems. In Enterprise Interoperability, volume 144 of Lec-
ture Notes in Business Information Processing, Springer Berlin Hei-
delberg, 2013, pages 158–171, URL http://dx.doi.org/10.1007/

978-3-642-36796-0_14.

RKK07 Ruohomaa, S., Kutvonen, L. and Koutrouli, E., Reputation manage-
ment survey. Proceedings of the 2nd International Conference on Avail-
ability, Reliability and Security (ARES 2007), Vienna, Austria, April
2007, IEEE Computer Society, pages 103–111, URL http://dx.doi.

org/10.1109/ARES.2007.123.

72

RKK12 Ruohomaa, S., Kaur, P. and Kutvonen, L., From subjective reputation
to verifiable experiences augmenting peer-control mechanisms for open
service ecosystems. In Trust Management VI, volume 374 of IFIP Ad-
vances in Information and Communication Technology, Springer Berlin
Heidelberg, 2012, pages 142–157, URL http://dx.doi.org/10.1007/

978-3-642-29852-3_10.

RKZ00 Resnick, P., Kuwabara, K., Zeckhauser, R. and Friedman, E., Rep-
utation systems. Commun. ACM, 43,12(2000), pages 45–48. URL
http://doi.acm.org/10.1145/355112.355122.

RRR07 Reece, S., Roberts, S., Rogers, A. and Jennings, N. R., A multi-
dimensional trust model for heterogeneous contract observations. Pro-
ceedings of the 22nd national conference on Artificial intelligence -
Volume 1, AAAI’07. AAAI Press, 2007, pages 128–135, URL http:

//dl.acm.org/citation.cfm?id=1619645.1619666.

Ruo06 Ruohomaa, S., Trust management concepts and methodology. Pro-
ceedings of FDPW’2005 – Advances in Methods of Modern Information
Technology, volume 7. Petrozavodsk State University, 2006, pages 180–
193.

Ruo12 Ruohomaa, S., The effect of reputation on trust decisions in inter-
enterprise collaborations. Doctoral thesis, University of Helsinki, De-
partment of Computer Science, Helsinki, May 2012.

ReZ02 Resnick, P. and Zeckhauser, R., Trust among strangers in internet
transactions: Empirical analysis of ebay’s reputation system. In
The Economics of the Internet and E-Commerce, volume 11 of Ad-
vances in Applied Microeconomics, Elsevier Science, 2002, pages 127–
157, URL http://www.si.umich.edu/~presnick/papers/ebayNBER/

index.html.

SBL04 Staab, S., Bhargava, B., Lilien, L., Rosenthal, A. and et. all, The pud-
ding of trust. IEEE Intelligent Systems, 19,5(2004), pages 74–88. URL
http://dx.doi.org/10.1109/MIS.2004.52.

Sin03 Singh, M., Trustworthy service composition: challenges and research
questions. Trust, Reputation, and Security: Theories and Practice, vol-
ume 2631 of Lecture Notes in Computer Science. Springer Berlin Heidel-

73

berg, 2003, pages 39–52, URL http://www.csc.ncsu.edu/faculty/

mpsingh/papers/mas/trust-deception-02.pdf.

SaS02 Sabater, J. and Sierra, C., Reputation and social network analysis in
multi-agent systems. Proceedings of the first international joint con-
ference on Autonomous agents and multiagent systems: part 1, AA-
MAS ’02, New York, NY, USA, 2002, ACM, pages 475–482, URL
http://doi.acm.org/10.1145/544741.544854.

SaS05 Sabater, J. and Sierra, C., Review on computational trust and rep-
utation models. Artif. Intell. Rev., 24,1(2005), pages 33–60. URL
http://dx.doi.org/10.1007/s10462-004-0041-5.

TPJ06 Teacy, W. T. L., Patel, J., Jennings, N. R. and Luck, M., TRAVOS:
Trust and Reputation in the Context of Inaccurate Information Sources.
Autonomous Agents and Multi-Agent Systems, 12, pages 183–198. URL
http://dx.doi.org/10.1007/s10458-006-5952-x.

WHS11 Wang, Y., Hang, C.-W. and Singh, M., A probabilistic approach for
maintaining trust based on evidence. Journal of Artificial Intelligence
Research, 40,1(2011), pages 221–267. URL http://www.jair.org/

media/3108/live-3108-5411-jair.pdf.

WaS06 Wang, Y. and Singh, M., Trust representation and aggregation in a
distributed agent system. Proceedings of the 21st National Conference
on Atrificial Intelligence (AAAI), Boston, MA, USA, 2006, AAAI Press,
pages 1425–1430.

WaS07 Wang, Y. and Singh, M., Formal trust model for multiagent systems.
Proceedings of the 20th International Joint Conference on Atrificial In-
telligence (IJCAI), Hyderabad, India, 2007, IJCAI, pages 1551–1556.

WaS10 Wang, Y., and Singh, M., Evidence-based trust: A mathematical model
geared for multiagent systems. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 5,4(2010), pages 14:1–14:28.

XiL04 Xiong, L. and Liu, L., PeerTrust: Supporting reputation-based trust
for peer-to-peer electronic communities. IEEE Trans. on Knowl. and
Data Eng., 16,7(2004), pages 843–857. URL http://dx.doi.org/10.

1109/TKDE.2004.1318566.

74

YuS02 Yu, B. and Singh, M. P., An evidential model of distributed reputation
management. Proceedings of the first international joint conference on
Autonomous agents and multiagent systems: part 1, AAMAS ’02, New
York, NY, USA, 2002, ACM, pages 294–301, URL http://doi.acm.

org/10.1145/544741.544809.

ZiL04 Ziegler, C.-N. and Lausen, G., Spreading activation models for trust
propagation. Proceedings of the 2004 IEEE International Conference
on e-Technology, e-Commerce and e-Service (EEE’04), Washington,
DC, USA, 2004, IEEE Computer Society, pages 83–97, URL http:

//dl.acm.org/citation.cfm?id=987681.987786.

Appendix A. Representation of the probabilistic ap-

proach in our system

This Appendix shows some implementation decisions of the probabilistic approach
for maintaining trust based on evidence [WHS11] in our system. Table A.1 describes
main classes created for the algorithm implementation. Table A.2 presents main
methods of the API for the algorithm.

Table A.1: Main classes for the probabilistic algorithm.
Class name Class description Field

type
Field name Field description

RepBelief
represents reputation
value in the belief
space

double belief belief value (b)
double uncertainty uncertainty value

(u)

RepEvide-
nce

represents reputation
value in the evidence
space

double positiveExperi-
ences

represents positive
experiences (r)

double negativeExperi-
ences

represents negative
experiences (s)

Service-
Provider-
Rep_PA

represents service
provider’s reputation
(PA stands for
Probabilistic
Algorithm)

RepEvi-
dence

evidenceRep service provider’s
reputation in the
evidence space

RepBe-
lief

beliefRep service provider’s
reputation in the
evidence space

Referrer-
Rep_PA

represents referrer’s
reputation

RepEvi-
dence

evidenceRep referrer’s reputation
in the evidence
space

RepBe-
lief

beliefRep referrer’s reputation
in the evidence
space

Ta
bl
e
A
.2
:
M
ai
n
m
et
ho

ds
of

th
e
A
P
I
fo
r
th
e
pr
ob

ab
ili
st
ic

al
go

ri
th
m
.

O
w
ne

r
cl
as
s

M
et
ho

d
na

m
e

M
et
ho

d
de

sc
ri
pt
io
n,

re
tu
rn

va
lu
e

P
ar
am

et
er

P
ar
am

et
er

de
sc
ri
pt
io
n

R
ep

B
el
ie
f

fr
om

B
el

ie
fT

oE
vi

d
en

ce
tr
an

sf
er
s
re
pu

ta
ti
on

re
pr
es
en
ta
ti
on

fr
om

th
e
be

lie
f
to

th
e
ev
id
en

ce
sp
ac
e,

R
ep

E
vi
de

nc
e

do
ub

le
t_

m
ax

po
ss
ib
le

m
ax

im
al

nu
m
be

r
of

ex
pe

ri
en

ce
s

be
tw

ee
n

tw
o

ag
en
ts

do
ub

le
e

pr
ec
is
io
n
of

th
e
ca
lc
ul
at
io
ns

R
ep

E
vi
de

nc
e

fr
om

E
vi

d
en

ce
T
oB

el
ie

f
tr
an

sf
er
s
re
pu

ta
ti
on

re
pr
es
en
ta
ti
on

fr
om

th
e
ev
id
en

ce
to

th
e
be

lie
f

sp
ac
e,

vo
id

R
ep

B
el
ie
f
re
su
lt

th
e
re
su
lt

ob
je
ct

th
e
va
lu
e
of

w
hi
ch

w
ill

be
up

da
te
d

Se
rv
ic
e

P
ro
vi
de

r-
R
ep

_
PA

u
p
d
at

e
R

ep
u
ta

ti
on

up
da

te
s
re
pu

ta
ti
on

va
lu
e
fo
r
th
e

se
rv
ic
e
pr
ov

id
er
,v

oi
d

do
ub

le
ne

w
P
os
it
iv
eE

x-
pe

ri
en

ce
va
lu
e
of

th
e
ob

ta
in
ed

po
si
ti
ve

ex
pe

ri
en

ce

do
ub

le
ne

w
N
eg
at
iv
eE

x-
pe

ri
en

ce
va
lu
e
of

th
e
ob

ta
in
ed

ne
ga
ti
ve

ex
pe

ri
en

ce

Se
rv
ic
e

P
ro
vi
de

r-
R
ep

_
PA

co
n
ca

te
n
at

ed
R

ep
co
nc

at
en

at
es

di
ffe

re
nt

re
pu

ta
ti
on

va
lu
es
,S

er
vi
ce
P
ro
vi
de

rR
ep

_
PA

R
ep

B
el
ie
f
T
R
_
in
_
R
F

re
pu

ta
ti
on

va
lu
e
in

th
e
be

lie
f

sp
ac
e
th
at

tr
us
to
r
pl
ac
es

in
a

re
fe
rr
er

R
ep

B
el
ie
f
R
F
_
in
_
SP

re
pu

ta
ti
on

va
lu
e
in

th
e
be

lie
f

sp
ac
e
th
at

re
fe
rr
er

pl
ac
es

in
a

se
rv
ic
e
pr
ov

id
er

Se
rv
ic
e

P
ro
vi
de

r-
R
ep

_
PA

ag
gr

eg
at

ed
R

ep
ag

gr
eg
at
es

di
ffe

re
nt

re
pu

ta
ti
on

va
lu
es
,S

er
vi
ce
P
ro
vi
de

rR
ep

_
PA

R
ep

B
el
ie
f[]

T
R
_
in
_
R
F

an
ar
ra
y

of
re
pu

ta
ti
on

va
l-

ue
s
in

th
e
be

lie
f
sp
ac
e
th
at

N
tr
us
to
rs

pl
ac
e
in

a
re
fe
rr
er

O
w
ne

r
cl
as
s

M
et
ho

d
na

m
e

M
et
ho

d
de

sc
ri
pt
io
n,

re
tu
rn

va
lu
e

P
ar
am

et
er

P
ar
am

et
er

de
sc
ri
pt
io
n

R
ep

B
el
ie
f[]

R
F
_
in
_
SP

an
ar
ra
y
of

re
pu

ta
ti
on

va
lu
es

in
th
e
be

lie
f
sp
ac
e
th
at

re
fe
r-

re
rs

pl
ac
e
in

a
se
rv
ic
e
pr
ov
id
er

R
ef
er
re
rR

ep
_
PA

u
p
d
at

eR
ep

u
ta

ti
on

up
da

te
s
re
pu

ta
ti
on

va
lu
e
fo
r
th
e

re
fe
rr
er
,v

oi
d

R
ep

E
vi
de

nc
e

SP
_
pr
ev
_
re
p

re
pu

ta
ti
on

va
lu
e
of

th
e
se
rv
ic
e

pr
ov
id
er

in
th
e
ev
id
en

ce
sp
ac
e

be
fo
re

th
e
ne

w
ex
pe

ri
en

ce
R
ep

E
vi
de

nc
e

SP
_
ne

w
_
re
p

re
pu

ta
ti
on

va
lu
e
of

th
e
se
rv
ic
e

pr
ov
id
er

in
th
e
ev
id
en

ce
sp
ac
e

af
te
r
th
e
ex
pe

ri
en

ce
R
ep

E
vi
de

nc
e

R
ef
_
pr
ev
_
re
p

re
pu

ta
ti
on

va
lu
e
of

th
e
re
fe
r-

re
r
in

th
e
ev
id
en

ce
sp
ac
e
be

-
fo
re

th
e
ex
pe

ri
en

ce
do

ub
le

be
ta

di
sc
ou

nt
in
g
fa
ct
or

Appendix B. Agents’ reactivity to changes in the be-

havior of a service provider

This Appendix shows some simulation results for a multiagent system that is con-
figured according to the Section 6.1. The main purpose of the simulation run is to
illustrate system’s features for tracking agents’ reactivity to changes in the behavior
of a service provider. Listing B.1 presents system’s initialization. The format of
the further listings is shortened for the compacting purposes and to point out the
main places of interest. Listing B.2 presents initial service providing pattern with
the best service providing characteristics. Listing B.3 presents changed behavior of
the service provider.

Listing B.1: Initialization of the multiagent system
21-Aug -2013 19:47:21 INFO SimulationManager -68
Initializing a multiagent system ...
21-Aug -2013 19:47:22 INFO SimulationManager -71 Initializing patterns ...
21-Aug -2013 19:47:22 INFO Initializer -63
Pattern index: 0, pattern name: Weibull curve , function:
Math.exp(-Math.pow(x ,50)); xMin = -0.6; xMax = 2.0;
xCurrent = -0.6; step = 0.07
21-Aug -2013 19:47:22 INFO Initializer -63
Pattern index: 1, pattern name: Vertical line , function:
3; xMin = 3.0; xMax = 3.0; xCurrent = 3.0; step = 0.0
21-Aug -2013 19:47:22 INFO SimulationManager -73
... Initializing patterns [OK]
21-Aug -2013 19:47:22 INFO SimulationManager -74 Initializing services ...
21-Aug -2013 19:47:22 INFO Initializer -79
ServiceId: 0, domain: IT , type: Printing
21-Aug -2013 19:47:22 INFO Initializer -86
ServiceId: 0, dimension: Quality of paper
21-Aug -2013 19:47:22 INFO Initializer -100
ServiceId: 0, values: [Bad , Okay , Good , Perfect]
21-Aug -2013 19:47:22 INFO Initializer -150
Service id: 0, requesting pattern: Vertical line
21-Aug -2013 19:47:22 INFO SimulationManager -76
... Initializing services [OK]
21-Aug -2013 19:47:22 INFO SimulationManager -77 Initializing agents ...
21-Aug -2013 19:47:22 INFO Initializer -310
Agent 0 [serviceId = 0, service domain: IT, service type:
Printing , service providing pattern: Weibull curve;]
21-Aug -2013 19:47:22 INFO Initializer -301

Agent 1 [service domain is empty]
21-Aug -2013 19:47:22 INFO Initializer -301
Agent 2 [service domain is empty]
...
21-Aug -2013 19:47:22 INFO Initializer -301
Agent 998 [service domain is empty]
21-Aug -2013 19:47:22 INFO Initializer -301
Agent 999 [service domain is empty]
21-Aug -2013 19:47:22 INFO Initializer -313
Total number of service instances: 1
21-Aug -2013 19:47:22 INFO SimulationManager -79
... Initializing agents [OK]
21-Aug -2013 19:47:22 INFO SimulationManager -80
Preparing new reports ...
21-Aug -2013 19:47:31 INFO SimulationManager -82
... Preparting new reports [OK]
21-Aug -2013 19:47:31 INFO SimulationManager -83
... Initializing a multiaget system [OK]

Listing B.2: Initial service providing pattern
19:47:31
Requesting the services. Every 10 second(s)...
Requesting ServiceId = 0, domain = IT , type = Printing.
Number of requesting agents = 3
19:47:32
Number of service providers: 1 for the serviceId: 0.
Requesting agent is a service provider itself: false
Agent 500 collected referrals for 0 service provider(s)
Selecting service provider based on local information.
Agent 500 requests service (id = 0) from the Agent 0...
Provided service: Dimension = Quality of paper , value = Perfect.
Service provider ’s␣0␣reputation␣before␣update:
Number␣of␣positive␣experiences:␣0.0,␣number␣of␣negative␣experiences:␣0.0.
Belief:␣0.0,␣uncertainty:␣1.0
Update␣of␣reputation␣for␣a␣service␣provider ,
agentId:␣500,␣serviceProviderId:␣0
Service␣provider ’s 0 reputation after update:
Number of positive experiences: 1.0, number of negative experiences: 0.0.
Belief: 0.25, uncertainty: 0.75
...
19:48:47
Number of service providers: 1 for the serviceId: 0.
Requesting agent is a service provider itself: false
For the service provider id: 0 number of referrals: 18.

Agent 449 collected referrals for 1 service provider(s)
Concatenating 18 experience(s) for the service provider id = 0
19:48:54
Aggregating 18 experiences for the service provider id = 0
Selecting service provider based on gathered information.
Agent 449 requests service (id = 0) from the Agent 0...
Provided service: Dimension = Quality of paper , value = Perfect.
Service provider ’s␣0␣reputation␣before␣update:
Number␣of␣positive␣experiences:␣0.0,␣number␣of␣negative␣experiences:␣0.0.
Belief:␣0.0,␣uncertainty:␣1.0
Updating␣reports␣for␣the␣service␣provider(s)␣reputations
Update␣of␣reputation␣for␣a␣service␣provider ,
agentId:␣449,␣serviceProviderId:␣0
Service␣provider ’s 0 reputation after update:
Number of positive experiences: 1.0, number of negative experiences: 0.0.
Belief: 0.25, uncertainty: 0.75

Listing B.3: Changed behavior of the service provider
19:48:54
Number of service providers: 1 for the serviceId: 0.
Requesting agent is a service provider itself: false
For the service provider id: 0 number of referrals: 19
Agent 158 collected referrals for 1 service provider(s)
Concatenating 19 experience(s) for the service provider id = 0
19:49:02
Aggregating 19 experiences for the service provider id = 0.
Selecting service provider based on gathered information ...
Agent 158 requests service (id = 0) from the Agent 0...
Provided service: Dimension = Quality of paper , value = Good
Service provider ’s␣0␣reputation␣before␣update:
Number␣of␣positive␣experiences:␣0.0,␣number␣of␣negative␣experiences:␣0.0.
Belief:␣0.0,␣uncertainty:␣1.0
Updating␣reports␣for␣the␣service␣provider(s)␣reputations
Update␣of␣reputation␣for␣a␣service␣provider ,
agentId:␣158,␣serviceProviderId:␣0
Service␣provider ’s 0 reputation after update:
Number of positive experiences: 1.0, number of negative experiences: 0.0.
Belief: 0.25, uncertainty: 0.75
...
19:49:35
Number of service providers: 1 for the serviceId: 0.
Requesting agent is a service provider itself: false
For the service provider id: 0 number of referrals: 24
Agent 662 collected referrals for 1 service provider(s)

Concatenating 24 experience(s) for the service provider id = 0
19:49:45
Aggregating 24 experiences for the service provider id = 0
Selecting service provider based on gathered information ...
Agent 662 requests service (id = 0) from the Agent 0...
Provided service: Dimension = Quality of paper , value = Okay
Service provider ’s␣0␣reputation␣before␣update:
Number␣of␣positive␣experiences:␣0.0,␣number␣of␣negative␣experiences:␣0.0.
Belief:␣0.0,␣uncertainty:␣1.0
Updating␣reports␣for␣the␣service␣provider(s)␣reputations
Update␣of␣reputation␣for␣a␣service␣provider ,
agentId:␣662,␣serviceProviderId:␣0
Service␣provider ’s 0 reputation after update:
Number of positive experiences: 0.0, number of negative experiences: 1.0.
Belief: 0.0, uncertainty: 0.75
...

