
Creating Minimum Viable Products in

Industry-Academia Collaborations

Jürgen Münch1, Fabian Fagerholm1, Patrik Johnson1, Janne Pirttilahti2, Juha
Torkkel2 and Janne Järvinen2

1 Department of Computer Science, University of Helsinki,
P.O. Box 68, FI-00014 University of Helsinki, Finland,

{juergen.muench,fabian.fagerholm,patrik.johnson}@cs.helsinki.fi

2 F-Secure Corporation,
P.O. Box 24, 00181 Helsinki, Finland,

{janne.pirttilahti,juha.torkkel,janne.jarvinen}@f-secure.com

Abstract. Customer value determines how products and services succeed
in the marketplace. Early assessment of customer value is important for
software startups, spin-o↵ companies, and new product development
in existing companies. Software technology often influences customer
value and typically defines the main competitive advantage in both
entrepreneurial and intrapreneurial settings. Value-related feedback from
real customers is needed during software development and maintenance,
and decision-making should be increasingly based on empirical evidence
acquired through experiments. Getting such value-related feedback usually
requires a so-called minimum viable product (MVP), i.e., an artefact that
may be incomplete in functionality or quality, but displays characteristics
that allows determining its customer value. In this article we report on a
case study which used industry-academia collaboration for creating such
an MVP. Our goal was to identify strengths and weaknesses of such an
approach to creating MVPs while providing practical recommendations
for improvement. The process followed in the case study was found to be
very suitable for creating MVPs, reducing company-specific risks when
testing customer-value, and advancing university education.

Key words: Minimum viable product; prototyping; software start-ups;
entrepreneurship; intrapreneurship; Lean Startup; Software Factory; case
study

1 Introduction

Software engineering experimentation aims at advancing the knowledge on how
software development processes and methods in specific environments impact
results [1]. According to Basili et al., experimentation is performed to help us
better evaluate, predict, understand, control, and improve the software devel-
opment process and product [2]. As with any other experimental procedure,
experimentation in software engineering follows a cycle of building models for

© Springer 2013. This is the author's version of the work. The definite version was published in Proceedings of the Lean 
Enterprise Software and Systems Conference (LESS 2013, Galway, Ireland, December 1-4), LNBIP. Springer-Verlag, 
Heidelberg, 2013. The final version is available at link.springer.com.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/18616619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Jürgen Münch et al.

development processes or products, defining and testing related hypotheses, and
refining models and hypotheses based on experimental results.

Traditionally, the main focus of software engineering experimentation has
been on the technical and managerial aspects; the developer and project manager
perspectives have been emphasized. However, since software engineering is a
field which is often associated with innovative high technology, a vibrant global
community of entrepreneurs, and a customer base with increasing expectations,
it should also take into account the customer-perceived value of its products and
services. While customer value may be simply defined as “whatever the customer
is willing to pay for”, it is not simple to assess or measure this concept while
designing a product or service. In software projects, multiple stakeholders may
have several di↵erent needs that a↵ect how they perceive the value of the end
product [3]. Rather than attempting to fix a single assessment or measure of
customer value, we emphasize the importance of a process of experimentation
and learning which allows empirical discovery of customer value in a specific
context, guided by analytically derived hypotheses.

This perspective is also important in software engineering education. Students
are entering a field which demands not only programming skills, but also the ability
to dynamically consider customer value. They should be equipped with suitable
knowledge of how to participate in software projects where value considerations
drive project activities. It is particularly important that students are exposed to
realistic, current problem settings and learn to analyse and understand value-
related experiments.

Developing innovative software technology requires early testing of customer-
related hypotheses. To make this possible, experimental objects, such as product
prototypes, need to be created. Prototyping is used heavily in Agile software de-
velopment. For example, prototyping is a core technique in the Dynamic Systems
Development Method (DSDM) [4]. DSDM recommends four categories of proto-
types: business, usability, performance and capacity, and capability prototypes.
Early in the development process, business prototypes provide opportunities to
conceptualise and communicate the business processes being automated, while
usability prototypes allow definition, refinement, and demonstration of the system
from a user’s perspective. These two types of prototypes are closest to the notion
of prototyping used in this paper. However, DSDM does not explicitly consider
prototypes as experimental objects for testing the business value of a product
idea during development. In Lean Startup terminology, a value hypothesis and a
minimum viable product (MVP) need to be developed. Following Ries [5], a value
hypothesis “tests whether a product or service really delivers value to customers
once they are using it”. An example of a value hypothesis is that customers of a
specific customer segment will choose to sign up for a service based on a given
set of features being o↵ered. An MVP is an experimental object that allows for
empirical testing of value hypotheses. According to the Lean Startup method, it
should be built with a minimum amount of e↵ort and development time [5].

In this paper, we argue that industry-academia collaborations are especially
well suited for developing such MVPs and thereby support the rapid understanding



Creating Minimum Viable Products in Industry-Academia Collaborations 3

of customer value in software development. More specifically, we address the
following research questions in the context of industry-academia collaborations:

RQ1: How should a product owner define a value hypothesis from which a
minimum viable product is derived?

RQ2: How should an implementation team create a minimum viable product
based on a value hypothesis?

RQ3: What are the main advantages and challenges for industry partners?

RQ4: What are the main advantages and challenges for academic partners?

The remainder of this paper is organised as follows. In Section 2, we describe
work related to technology transfer and value-based software engineering. In
Section 3, we describe our research and development infrastructure (i.e., the so-
called Software Factory) for creating MVPs together with industry. In Section 4,
we describe our case study, including the research design, method, and context,
as well as the execution and results. In Section 5, we describe the limitations
that apply when attempting to generalize the results. Finally, in Section 6, we
summarize our findings and outline future directions for this work.

2 Related Work

As software is increasingly at the core of all kinds of innovations, the customer
perspective comes more into focus. Rombach and Achatz [6] define innovation
in software engineering as both invention and successful implementation. They
present a 6-step generic process model for transferring an innovative technology
from its creators to organizations which are able to make them a business success.
There are many other similar technology transfer models proposed in the software
engineering literature. Very often they are organized so that the technological
invention comes first and the invention of a business case comes later. This is
based on the implicit assumption that customers do perceive the invention as
valuable or that the value can be identified later. In addition, it is often assumed
that the link to business goals and strategies can be defined later or is obvious.

Although these assumptions might be true in some domains, they become
questionable in domains of high uncertainty and highly competitive markets,
such as start-up companies and companies entering new business segments.
Here, business value is unclear or needs to be learned during the invention
process. It is often more critical for business success to understand the perceived
value for a real customer than to immediately bring an invention into technical
perfection. Vice versa, perceived customer value might influence what innovative
software technology is needed, i.e., the business drives the inventions. In such high-
uncertainty environments, innovative software technologies and the understanding
of their perceived customer value need to be integrated early in the software life
cycle. Due to the fact that inventions often combine both innovative software
technologies and innovative business models, it seems promising to analyse
both experimentally. We argue that this approach is viable not only for new



4 Jürgen Münch et al.

development, but also for evolution of existing software-based products and
services. We also argue that the approach is viable both for new, entrepreneurial
start-up companies as well as for existing companies which face a need for renewal
through internal entrepreneurship, or intrapreneurship.

Several approaches exist that integrate the business and the product de-
velopment functions of organizations. One prominent approach is the “Lean
Startup” [5] that leverages experimentation on the business level by rapid proto-
typing, testing value hypotheses, and very early feedback for product development.
Another approach that focuses on considering value during the software process is
“Value-based Software Engineering” (VBSE) [7]. This approach provides di↵erent
elements, such as techniques for determining value by analytical means, and
methods for including value considerations into management activities [8, 9].
Other related approaches exist, e.g. user-centered design [10], where design de-
cisions are made based on empirical evidence gathered from user experiments
and involvement. The approach presented in this article addresses the need to
rapidly elicit and test value hypotheses through an empirical feedback cycle. The
elements of VBSE and the experimental approaches in user-centered design can
be seen as complementary to this approach.

3 Development and Usage of Minimum Viable Products in

the Software Factory

Conducting experiments with customer value in the context of industry-academia
collaborations requires a suitable infrastructure. The infrastructure we are using
for this purpose is the co-called Software Factory. In this section, we sketch
the concept of the Software Factory as an approach to MVP creation, outline
some possible variations, and provide examples of how customer value can be
operationalised and tested.

The Software Factory is a university laboratory that has been designed and
implemented at the Department of Computer Science, University of Helsinki [11,
12, 13]. The main unique characteristics of the Software Factory are the integration
of engineering- and business-level experimentation, a standardized laboratory
infrastructure which supports conducting joint or comparative studies as well as
the exchange of experience, the global network of Software Factories, which allows
for running experiments in distributed settings, and the periodic conduction of
projects several times a year, which allows e�cient study set-up, rapid learning,
and conducting longitudinal studies.

In the Software Factory laboratory, a company brings the vision about a
new product or service and an initial value hypothesis. The company has the
responsibility to test the value hypothesis whereas the Software Factory has the
responsibility to create the MVP. The interaction between the Software Factory
and the company can be seen as a learning cycle (Figure 1). The company
provides an initial value hypothesis as input to a Software Factory project and
acts as product owner. The Software Factory then creates an MVP that serves as
an experimental object for testing the value hypothesis. During this development,



Creating Minimum Viable Products in Industry-Academia Collaborations 5

the company provides feedback so that the MVP will be aligned with the value
hypothesis. The MVP is used by the company to test the value hypothesis with
real customers. Based on the results of this experiment, the company modifies
the value hypothesis if necessary. Subsequently, the Software Factory develops
a new version of the MVP that aims at testing the modified value hypothesis.
The same applies for a set of multiple hypotheses to be tested simultaneously.
One might consider this as a process consisting of developing first and testing
afterwards, but actually the process is in the reverse order: the value hypothesis
initially defines what needs to be developed in the Software Factory. Results from
the evaluation guide further iterations of the MVP.
























 


Fig. 1. Learning cycle: the Product Owner defines a Value Hypothesis (VH), which is
used as input for the Software Factory to create a minimum viable product (MVP).
The MVP is used to evaluate the VH in a customer test, resulting in an evaluation
result (ER) that is fed back to refine or redefine the VH for the next cycle.

3.1 Variations in the learning cycle

The interaction between the company and the Software Factory is a crucial
element of the experimental process, and there are several ways in which the
interaction can occur. Depending on the context and constraints of the project,
a company might replace testing the value hypothesis with qualitative expert
feedback. This may occur especially in initial iterations when the customer is
not ready to conduct potentially costly user experiments – but caution should
be exercised here in order not to develop the product too far without empirical
feedback. Another option could be to use the Software Factory project for the
creation of the first MVP without testing the value hypothesis during this project.



6 Jürgen Münch et al.

In this case, experimentation with customers would start after project completion.
It could also be possible that the company needs to pivot and start again with a
new value hypothesis and a new MVP in case the initial value hypothesis has
been proven significantly wrong.

3.2 Techniques for customer-related experiments

There are several techniques by which to perform customer-related experiments
to validate value hypotheses of software-based products and services. Suitability
of techniques depend on how far the software has been developed. Simpler
techniques can yield coarse-grained insights quicker early on in the process, while
more mature products and services can benefit from techniques which permit
fine-grained analysis and linkage to business strategies. While this study does not
cover the validation of the value hypothesis, we briefly explain three examples of
techniques for conducting customer-related experiments: cohort analysis, A/B
testing, and GQM+Strategies.

Cohort analysis refers to studies comparing groups of people on one or several
attributes over time (e.g. [14, 15]). A cohort is a group of people who share a
common characteristic over a certain period of time. In medical research, cohort
studies are used to assess the association between an event, such as the presence
of a disease risk factor, and some outcome, such as actually developing the disease.
Analysis of subgroups within a cohort can yield important insights that may
confirm existing hypotheses or create new ones. Cohort analysis may be used,
e.g., to determine whether users of di↵erent age groups signing up for a software
service at a specific time are more or less likely to be frequent users of the service.

A/B testing is a technique where subjects are randomly assigned to two
groups receiving di↵erent treatments (e.g. [15]). The groups are then compared
with respect to some outcome. For example, group A may be shown a certain
kind of feature in a mobile application, while group B is shown another feature.
The groups are then compared to see which feature is more likely to attract the
user to make a purchase decision. Such information can support the decision to
focus implementation on one feature or the other.

For more elaborate needs, GQM

+
Strategies [16] is an approach to system-

atically break down business-level goals into sub-goals and strategies for imple-
menting them, and to link these with software measurement. GQM+Strategies
allows companies to streamline metrics collection to support business decisions.
For customer-related experiments, GQM+Strategies allows companies to express
the desired goal of measurement (e.g. to increase sales), construct strategies for
reaching those goals, and devise metrics that determine how the actions taken
are contributing to the realization of the goals.

Besides the mentioned techniques, many other techniques can be used for
conducting customer-related experiments such as multivariate testing, big data
technologies, live customer feedback analyses, etc. All of these methods require
significant expertise to properly select and apply.



Creating Minimum Viable Products in Industry-Academia Collaborations 7

4 Industry case

We use one of our projects in the Software Factory laboratory at the University
of Helsinki to illustrate the experimental cycle. The main objective of the project
was to validate a value hypothesis given by a customer. The project was initiated
as a rapid-feedback development e↵ort that would proceed from an initial value
hypothesis to an initial MVP that could then be subjected to separate evaluation
with real users. Consistently with the objective, there were no requirements to use
any legacy code or perform potentially di�cult integration into existing systems.

We focus here on the two first steps of the learning cycle shown in Figure 1
(definition of value hypotheses and creation of MVP). Intermediate versions of the
MVP were subjected to expert evaluation and the value hypothesis and project
priorities modified accordingly. The project completed two major cycles but did
not include evaluation with specific customer experiments. We expect to study
those separately.

4.1 Research Design and Method

This study can be characterized as a single-case study using multiple-researcher
triangulation [17, 18]. Case studies can be said to study “contemporary phenom-
ena in their natural context” [19] and to “generalise from specific contexts” [18].
There are several types of case studies [17], some of which have been used and
described specifically for software engineering [19]. However, case studies do not
constitute a homogeneous class of studies, but display considerable variation.
Since cases can vary arbitrarily, researchers must adapt their designs and methods
to truthfully represent the case, while balancing considerations of generalisability.

In this study, we took an open-ended, participatory approach. Two persons
from the Department of Computer Science, University of Helsinki, and one person
from the case company, were present and participated to varying degrees in the
project. Data sources included participatory and direct observation, notes taken
during the course of the project, and analysis of project artefacts such as produced
software, documentation, and other materials. In particular, the project coach
kept a diary of project events and provided substantial input for this study. The
other participating researcher organised meetings and performed open-ended,
interview-like discussions with the project participants in the beginning, middle,
and end of the project. The company representative was the project’s product
owner and interacted closely with the student team.

Our analysis method can be described as narrative and inductive. From the
data and experiences gathered, we build a chronological story of the project,
including di↵erent perspectives and considerations, and attempt to trace causal
relationships that allow us to abstract from the case material to more general
findings.

4.2 Goal and Context

The main goal of the project was to develop an MVP that could be used to test the
end-user value of a cloud service. The MVP was a game that generated metadata



8 Jürgen Münch et al.

regarding a set of objects in a cloud storage system as a by-product of playing.
The overall value hypothesis was that the game would be satisfying to play and
that users would consider the generated metadata to be valuable. To validate the
overall value hypothesis, the customer wanted to find out i) whether users are
motivated to use the software, ii) whether users perceive fun in using the software,
iii) whether using the software creates valuable metadata, and more specifically,
iv) whether the created metadata is usable for providing additional services. From
an engineering perspective, the goal was to test v) if and how the game concept
includes key elements of good game design. As a related goal, the execution of
the project itself was expected to reveal valuable information regarding industry-
academia collaboration. Finally, since the project team consisted of students, a
separate goal of the project was to provide an educational experience.

The customer company was the Innovation and New Concepts division at
F-Secure Corporation. The project team consisted of four students, with every
student working 24-30 hours per week during the seven-week project. In addition
to the students, a project coach was present with the team on a daily basis, and
a customer representative in the product owner role was present at least once a
week. The product owner was also available on demand over teleconference and
email. The product owner was technically skilled, was one of the originators of
the project idea, and was empowered to make all decisions regarding the project.

To determine which features would be implemented first to attempt to satisfy
the value hypotheses, the product owner experimented with paper prototypes
of the game. A question posed early in the project was whether to develop a
single game with a tightly defined feature set, or to develop a configurable game
platform. After some consideration, the team and product owner decided not
to embark on the platform option, since it would lead to e↵ort being spent on
platform features which would not necessarily be needed for testing the value
hypotheses. Instead, the decision was to make a game with a tightly defined
feature set but with configuration options for testing the specific variations that
the product owner had reason to believe would a↵ect the playability of the
game. These variations could then be exploited in subsequent testing of the value
hypotheses.

The project team used Scrumban, a combination of Scrum and Kanban
[20, 21], to coordinate its work. The team was given a training session on the
process during the first days of the project. Otherwise, no tightly controlled
process was used, as the project was aimed to promote creativity and exploration.
This is also in line with the process itself, as described by Kniberg [21], since it
allows a team to develop and tune its own process.

4.3 Execution

The time-line shown in Figure 2 illustrates milestones and events during the
project, and shows a classification of the overall focus of project activities. Since
the development of the prototype had no initial technological restrictions, sig-
nificant time was spent on deciding which technology the new prototype should
use. Aside from organization and initial training, most of the first two weeks



Creating Minimum Viable Products in Industry-Academia Collaborations 9

of the project were spent evaluating technology choices. The team evaluated
several options from multiple perspectives, including ease of use and speed of
development, licensing, technological options, and prior experience of team mem-
bers. The most promising alternatives were then further analysed by developing
small proof of concept implementations of the product idea. During the second
week, two platforms were developed in parallel until the final choice could be
made with established knowledge and taking the whole project context into
consideration. A modern HTML5-based browser platform was chosen, and the
main implementation was made using JavaScript and HTML5 web technologies.

Week
1 2 3 4 5 6 7

Milestones

& Events

Project

Activities

Organization,
Kanban
training,
Initial
idea and
outline,
Goal
alignment
team /
customer,
Common
vocabulary,
User
interaction
definition

Bootstrap
version
ready

Focus on inter-
mediate demo

Integrate
feedback
from inter-
mediate
demo, sig-
nificant
functional
expansion

Final goals
decided,
significant
functional
expansion

Focus on final
demo, demo
designed to
demonstrate
MVP capabil-
ity to validate
value hypothe-
ses

�
Intermediate demo

�
Final demo

�
Feature freeze

Technology evaluation

Development Stabilization

Feature Development Stabilization
and polish-
ing

Decision point for project scoping

Fig. 2. Milestones, events, and activities per week.

Throughout the project, there was a clear backlog of features generated by
the team in conjunction with the product owner. Goals of both the product
owner and development team were aligned, which aided discovery of new features
that could potentially contribute to the value hypothesis. The product owner
o↵ered an opinion on how to prioritize high level features, but the final choice
was left to the team, as well as breakdown of features into practical tasks.

Since the product owner was available on demand, the team was able to apply
rapid prototyping of the MVP and validate first draft solutions close to the time
of inception. This “fail fast” approach allowed the product owner to immediately
influence the direction of the project based on tangible evidence from a product
increment.

The initial MVP was delivered, and the first major learning cycle completed,
approximately two and half weeks after the technology choice had been made.
An intermediate demo was given at the customer’s premises roughly half-way
through the project. The fact that this demo was scheduled already at the
start of the project gave the team a clear focus for its e↵orts. The project then
proceeded in very iterative expansions of the functionality, which meant that the
customer was provided with product variations that could be used for testing the



10 Jürgen Münch et al.

value hypotheses. Code structure and architecture were expanded and developed
iteratively, using several explorative solutions.

4.4 Results and Lessons Learned

In this section, we discuss the results of the study and list essential lessons
learned from the project. We present each research question in turn, along with
the lessons related to that particular question.

The most important lessons learned are concerned with i) the role of the
product owner and ii) the close connection between the product owner and the
team, but we also report some lessons regarding iii) technological choices and
iv) demonstrations.

The role of the product owner RQ1 asks how a product owner should define
a value hypothesis from which a minimum viable product is derived. In our
case, the product owner succeeded in defining the value hypothesis by not only
presenting the hypothesis itself, but working with the implementation team to
iteratively define the variation points in the MVP that would support testing the
hypothesis. The result was a software prototype that did in fact support testing
of the value hypotheses that the company had defined. We therefore propose that
the product owner should define an overall value hypothesis on the business level,
but be prepared to interpret the value hypothesis in increasingly refined and
technical detail, in order to ensure that proper variation points are implemented
for subsequent hypothesis testing.

We also found that being in close connection with the team allowed the
product owner to correct misunderstandings and give further expansion on
details that were not covered during active meeting time. This tight interaction
with the team was essential for understanding and guidance, and therefore, the
performance of the project. The product owner had both the technical and
business-level skills to evaluate the product increments. The increments would
not display stunning visual features immediately but would rather demonstrate
some important behaviour in the software. The product owner’s ability to see
the essential characteristics of the feature under development was crucial. Being
regularly present, the product owner facilitated continuous knowledge transfer,
and no separate transfer process was required at the end of the project.

Technological choices RQ2 asks how an implementation team should create a
minimum viable product based on a value hypothesis. In our case, the team was
able to interpret the value hypothesis and produce the desired MVP by e�cient
down-scoping of immediate next steps and by thoroughly experimenting with
technology choices early in the project.

As previously noted, the team spent the first two weeks on evaluating technol-
ogy choices. After the project, the team considered this appropriate, taking the
project length into account. Also, the fact that the product owner knew the im-
portance of making this choice helped the team to develop trust. The technology
choice was not a simple feature list comparison, but was actually taken to the



Creating Minimum Viable Products in Industry-Academia Collaborations 11

point where the candidate platforms were used to develop simple proof-of-concept
programs. This ensured that the team and product owner made decisions based
on a real evaluation for this particular case, not general information given by a
third party.

The project had a critical dependency on the customer’s cloud storage platform.
This posed an unnecessary development risk for the project, since the objective
was not integration into the platform but production of the MVP. Therefore,
the team and product owner decided very early that the storage API would be
abstracted using a mock implementation. This had multiple positive e↵ects for
the project: not only was the prototype development technically independent
from the platform, but the project also depended only on the product owner.
The customer provided an API specification with the same characteristics as the
real platform, ensuring that integration would be possible later. Besides serving
as an MVP, the prototype revealed potential improvement needs in the platform
API.

The team The small size of the team ensured little or no communication
overhead, since team members could develop individual relations with each other,
the customer, and other stakeholders. Task generation was initially di�cult for
the team, but became easier later in the project when high level features could
be split into concrete development tasks for each part of the product (front end,
game logic, back end). Clearly visible tickets on the Kanban board allowed for
interactive prioritisation by the team together with the product owner.

Together, the observations on technological choices and the team link research
questions 1 and 2: while the responsibility of the product owner is the definition
of the value hypothesis, and the responsibility of the team is the creation of the
MVP, both need to approach each other in interpreting how the value hypothesis
should be operationalised and turned into a technological artefact. We propose
that both product owners and team members require both special knowledge and
skills to be able to function e↵ectively when developing an MVP from a value
hypothesis.

Demonstrations One way to facilitate the interpretation process between
product owner and implementation team is to perform demonstrations. During
the project, the team held weekly demonstrations for the product owner. In
addition to this, an intermediate demo was scheduled for the middle of the project,
and a final demo at the end. These were more comprehensive demonstrations
held at the customer’s premises and the audience included not only the product
owner and team coach, but also experts from the customer organization.

The weekly demos provided clear intermediate deadlines for the team, and
allowed it to focus on creating a tangible result. It also allowed the team to
demonstrate functionality that had been defined during the development process
in order to get feedback from the product owner. The demos made questions
concrete and the product owner could base decisions on visible alternatives.



12 Jürgen Münch et al.

An interesting question arose after the intermediate demo: there was a trade-o↵
between expanding the project scope and refining existing features (see Figure 2).
For the customer, this decision highlighted the importance of defining what value
was most important to test: whether the test should be more about comparing
the viability of many features or about comparing the quality of a few features.
The product owner chose to lean more towards comparing a larger set of features,
since the concept was still in an early stage. In later stages, after the value
proposition has been field-tested, the choice could lean more towards the details
of a few promising features.

Advantages and challenges RQ3 and RQ4 ask what the main advantages and
challenges of creating MVPs in industry-academia collaborations are for industry
and academic partners, respectively. In our case, three particular advantages were
clearly visible for industry partners. First, it is beneficial for industry partners to
be able to conduct MVP creation in a relatively low-risk environment. Since the
amount of company resources that are tied to the project is limited, the impact
of project failure in terms of lost resources is also limited. Second, industry
partners can benefit from the use of measurement experience that exists in
academia. Researchers working in the Software Factory context are trained to
design, conduct, and analyse experiments, and they can be utilised to assist in
di↵erent stages of the project. Third, and more broadly, industry partners can
utilise other kinds of research capabilities inherent in the academic environment.
An MVP-creation project may be embedded in a larger research project, or it
can be expanded into one.

For academia, we found a number of benefits. Collaboration projects can
provide real cases for research, as is evident in this article. Also, the benefit for
students in the form of valuable learning experiences was clearly visible. As an
example, one student who worked as a software developer remarked after the
project that “I now understand much better what I’m doing at work”. We also
found that the project brought contemporary realism into the world of academia,
and we were challenged to keep up to date with relevant problems from practice.

Based on our experience, a number of challenges apply when creating MVPs in
industry-academia collaboration projects. A first challenge relates to synchronisa-
tion of schedules. University course calendars, in our case especially the Software
Factory project schedule, needs to be positioned in an appropriate time window
where a partner company has the willingness and available resources to test inno-
vations. Second, technological infrastructure presents a challenge: MVPs must be
deployable on either existing platforms, which may include legacy components,
or on new platforms, which may be under development. In some cases, the MVP
may need to be deployed on end-user systems, which requires careful considera-
tion of platform compatibility and data security. Finally, properly conducting
value-based experiments requires measurement competence. Appropriate training
and competence is needed when defining value hypotheses, design appropriate
experiments, derive necessary measures, conduct experiments, and reason from
analysis results. Especially the customer should have adequate competences in
defining value hypotheses and be able to draw conclusions from analysis results.



Creating Minimum Viable Products in Industry-Academia Collaborations 13

5 Limitations

Despite the case project having many realistic features, this study has a number
of limitations. First, the produced MVP was not subject to field evaluation with
real users. Therefore, lessons learned with respect to appropriate experimental
instruments for customer validation are missing. On the other hand, this was
precisely the intended scope of the project: to demonstrate how a concept idea
can be developed into a prototype implementation for subsequent evaluation. We
expect to evaluate the end result separately.

Second, since the project team consisted of students, the results may not
be applicable to professional software development. Furthermore, the team was
new, and with repeated cycles of execution, they may change their approach.
Also, another team may have done things di↵erently. However, we argue that
these limitations are not as severe as they may first appear. It is well known
that the programmer productivity can vary considerably [22]. The fact that
this programming team was able to implement the prototype with unfamiliar
technology in the given time-frame indicates that a professional team should be
able to do the same in a similar amount of time, with the limitation imposed
by varying individual degrees of productivity. In the formation of the team, a
simple, single-task programming test was administered before team members
were admitted to the project. There were no indications that the team members
would all have been unusually skilled. In addition, the goal of of an MVP is to
test value hypotheses. Therefore, the main criterion is that the MVP is suited for
such testing, regardless of who has developed it. A more experienced team may
have reached better results, but even at this baseline, the result was acceptable.

A final limitation relates to rapid prototyping. Many technologies are ill-suited
to rapid prototyping and thus the proposed approach may not be applicable when
using such technologies. However, it may be possible to set aside the less flexible
tools and prototype with other technologies only for the purpose of testing a
value hypothesis. Once the value has been determined, a production version can
be implemented with another technology, thus avoiding potentially long and
costly implementation projects when the value is uncertain. As demonstrated
in this project, it is often possible to abstract away parts of the system that
are not relevant for testing the value proposition, and address them at a later
stage. A potential risk with this approach is that the technology to be used in the
production version can cause significantly di↵erent cost of implementation than
the prototyping technology for the chosen feature set. However, this question
is di↵erent from the question of customer value. Also, the prototyping itself is
likely to reveal important requirements for implementation technology.

6 Summary and Future Work

This paper presents experience with creating an MVP in the context of an
industry-academia collaboration. The experience is based on a concrete case
study. In summary, rapid prototyping for getting value-related feedback can



14 Jürgen Münch et al.

be systematically conducted using a simple framework process, in which the
implementation team is given freedom to explore the concept design space in
short, incremental cycles in close cooperation with the customer. Factors critical
for success are i) the role of the product owner, who should come from the
customer organization, have enough technical and domain knowledge to make
correct design decisions, and be empowered to make those decisions, ii) taking
the proper time to investigate technology options with the goal of selecting an
implementation technology that supports rapid prototyping, iii) abstracting away
parts of the target platform to keep the project focused on testing the value
proposition, not the integration into the platform, iv) systematically employing a
light-weight process in which the implementation team and the product owner can
prioritize high-levels features and the team has autonomy to decide on feature
decomposition into tasks, and v) having frequent demonstrations, including
demonstrations with an audience that is not directly taking part in the project.

Our study provided several insights on how the development of MVPs with
value-related feedback can be organized in short iteration cycles. The following
questions illustrate some interesting future directions. First, testing value hy-
potheses in the field requires a suitable experimental infrastructure. What are the
requirements for such an infrastructure in di↵erent contexts? How can software
products and services be integrated into such an infrastructure? These questions
are also relevant for supporting design decisions on how to evolve existing prod-
ucts or services. Second, an open question is how to integrate experimentation
on the business level with experimentation on the technical level. Sustainable
innovations require technological advantages that also need to be evaluated by
experimental means. This warrants further research. Third, can experiment-based
software development be aligned with organizational and legal constraints? For
example, contractual issues may need special consideration in experiment-based
software development. Finally, how should customer value be evaluated in cases
where the value creation is part of an ecosystem? For example, the value could
come from the number and type of apps available in an ecosystem.

Both start-up companies and innovative intrapreneurial divisions in estab-
lished companies can benefit from insights into these questions. We expect more
systematic experimentation with customer value in software development and
evolution to significantly speed up the pace of innovation and help release more
disruptive software-based solutions. Through industry-academia collaboration,
companies can reduce the barriers to experimenting with MVP creation.

References

1. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experi-
mentation in software engineering. 2012 edn. Springer (2012)

2. Basili, V.R., Selby, R.W., Hutchens, D.H.: Experimentation in software engineering.
IEEE Trans. Softw. Eng. 12(7) (July 1986) 733–743

3. Boehm, B., Jain, A.: Developing a process framework using principles of value-based
software engineering. Software Process: Improvement and Practice 12(5) (2007)
377–385



Creating Minimum Viable Products in Industry-Academia Collaborations 15

4. Howard, A.: A new RAD-based approach to commercial information systems
development: the dynamic system development method. Industrial Management +
Data Systems 97(5) (1997) 175–177

5. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation
to Create Radically Successful Businesses. Crown Publishing Group (2011)

6. Rombach, D., Achatz, R.: Research Collaborations between Academia and Industry.
In: 2007 Future of Software Engineering. FOSE ’07, Washington, DC, USA, IEEE
Computer Society (2007) 29–36

7. Boehm, B.: Value-based software engineering. ACM SIGSOFT Software Engineering
Notes 28(2) (2003) 4–

8. Rönkkö, M., Frühwirth, C., Bi✏, S.: Integrating value and utility concepts into a
value decomposition model for value-based software engineering. Lecture Notes in
Business Information Processing 32 LNBIP (2009) 362–374

9. Ra↵o, D., Mehta, M., Anderson, D., Harmon, R.: Integrating Lean principles with
value based software engineering. In: Technology Management for Global Economic
Growth (PICMET), 2010 Proceedings of PICMET ’10. (2010) 1–10

10. Greenbaum, J., Kyng, M.: Design at work: cooperative design of computer systems.
Lawrence Erlbaum Associates, Inc. (1991)

11. Fagerholm, F., Oza, N., Münch, J.: A Platform for Teaching Applied Distributed
Software Development: The Ongoing Journey of the Helsinki Software Factory.
Collaborative Teaching of Globally Distributed Software Development Workshop
(CTGDSD), 2013 (2013)

12. Software Factory: Software Factory Web Site. Online: http://www.

softwarefactory.cc/ Last visited: 2013-04-12.
13. Abrahamsson, P., Fagerholm, F., Kettunen, P.: The Set-Up of a Valuable Software

Engineering Research Infrastructure of the 2010s. The 11th International Conference
on Product Focused Software Development and Process Improvement (PROFES
2010) / Workshop on Valuable Software Products (VASOP 2010) (11) (2010)

14. Porta, M., ed.: A Dictionary of Epidemiology. Oxford University Press, New York,
NY, USA (2008)

15. Croll, A., Yoskovitz, B.: Lean Analytics: Use Data to Build a Better Startup Faster.
O’Reilly Media, Inc., Sebastopol, CA, USA (2013)

16. Basili, V., Heidrich, J., Lindvall, M., Münch, J., Regardie, M., Trendowicz, A.:
GQM+Strategies – Aligning business strategies with software measurement. Pro-
ceedings of the 1st International Symposium on Empirical Software Engineering
and Measurement, ESEM 2007 (2007) 488–490

17. Yin, R.: Case study research: design and methods. 4 edn. SAGE Publications, Inc.
(2009)

18. Eisenhardt, K.M.: Building Theories from Case Study Research. The Academy of
Management Review 14(4) (1989) pp. 532–550

19. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14(2) (2009) 131–164

20. Ladas, C.: Scrumban – Essays on Kanban Systems for Lean Software Development.
Modus Cooperandi Press (2009)

21. Kniberg, H., Skarin, M.: Kanban and Scrum – making the most of both. C4media
(2010)

22. Endres, A., Rombach, D.: A Handbook of Software and Systems Engineering.
Empirical Observations, Laws and Theories. The Fraunhofer IESE Series on
Software Engineering. Addison Wesley (2003)


