
Date of acceptance Grade

Instructor

Comparison of spliced alignment software in analyzing RNA-

Seq data

Anna Kuosmanen

Helsinki October 16, 2013

M.Sc. thesis

UNIVERSITY OF HELSINKI

Department of Computer Science

Faculty of Science Department of Computer Science

Anna Kuosmanen

Comparison of spliced alignment software in analyzing RNA-Seq data

Bioinformatics

M.Sc. thesis October 16, 2013 65 pages + 2 appendices

bioinformatics, RNA-seq, short read mapping

A recently developed protocol for sequencing RNA in a cell in a high-throughput manner, RNA-seq,

generates from hundreds of thousands to a few billion short sequence fragments from each RNA

sample. Aligning these fragments, or �reads�, to the reference genome in a fast and accurate manner

is a challenging task that has been tackled by many researchers over the past �ve years.

In this thesis I review the process of RNA-seq data creation and analysis, and introduce and

compare some of the popular alignment software. As part of the thesis, I implemented an alignment

software based on the novel idea of a limited range BWT-transformed index. This software, called

SpliceAligner, is also introduced in detail. In addition to my own software, I chose for comparison

Tophat, SpliceMap, MapSplice, SOAPsplice and SHRiMP2.

I tested the chosen software on simulated data sets with read lengths of 50, 100, 150 and 250 base

pairs, as well as with data from a real RNA-seq experiment. I ranked the software based on the run-

ning time, number of reads mapped and the accuracy of the alignments. I also predicted transcripts

from the alignments of the simulated data, and measured the correctness of the predictions.

With read lengths of 50 base pairs, 100 base pairs and 150 base pairs, speed, alignment accuracy

and ease of use make Tophat a solid top choice. MapSplice is a comparable choice in speed and

alignment accuracy, and SOAPsplice is only slightly behind, but their user interfaces are much

more complicated. However, Tophat slowed down signi�cantly as the read length increased to 250

base pairs and SOAPsplice completely failed to run with 250 base pairs long reads. This leaves

MapSplice as the top choice for long reads in most cases.

My software SpliceAligner was competitive in the alignment accuracy with the top choices, but

there still remains work to be done on the running speed as well as on multiple small optimizations.

ACM Computing Classi�cation System (CCS):

Applied computing � Bioinformatics[300],

Applied computing � Molecular sequence analysis[500],

Applied computing � Computational transcriptomics[300]

Tiedekunta � Fakultet � Faculty Laitos � Institution � Department

Tekijä � Författare � Author

Työn nimi � Arbetets titel � Title

Oppiaine � Läroämne � Subject

Työn laji � Arbetets art � Level Aika � Datum � Month and year Sivumäärä � Sidoantal � Number of pages

Tiivistelmä � Referat � Abstract

Avainsanat � Nyckelord � Keywords

Säilytyspaikka � Förvaringsställe � Where deposited

Muita tietoja � övriga uppgifter � Additional information

HELSINGIN YLIOPISTO � HELSINGFORS UNIVERSITET � UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 Biological background 3

3 Gene expression analysis 5

3.1 RNA-seq . 5

3.1.1 Sample preparation and library construction 6

3.1.2 Sequencing and imaging . 7

3.2 Analysing RNA-seq data . 9

3.2.1 Read mapping . 11

3.2.2 Transcript identi�cation and other downstream applications . 15

4 Materials and methods 18

4.1 Test data . 18

4.2 Existing mapping software . 19

4.2.1 Tophat . 19

4.2.2 SpliceMap . 21

4.2.3 MapSplice . 23

4.2.4 SOAPsplice . 25

4.2.5 SHRiMP2 . 29

4.3 SpliceAligner . 30

4.3.1 Algorithms . 32

4.3.2 Implementation details . 34

5 Results 37

5.1 Simulated data . 39

5.2 Real data . 49

6 Conclusion 52

iii

7 Acknowledgments 55

References 55

Appendices

1 File formats

2 Transcript prediction 2D plots

1

1 Introduction

Gene expression controls the functions of all the cells in an organism, and therefore

has direct correlation with the condition of each cell. Di�erent types of cells, under

di�erent conditions, can express di�erent sets of genes, or di�erent transcripts for

same genes [DDM+12]. Therefore studying gene expression can give valuable insights

to what is happening inside a cell, and even more importantly, why the cell functions

that way.

Gene expression can be studied with many di�erent techniques. Hybridization-based

approaches, such as microarrays, are popular because of their low price and high

throughput, but they have several limitations [WGS09, CADC10]. For example they

can only identify known sequences in the sample. On the other hand, sequencing

approaches such as Sanger sequencing can �nd novel expressed sequences, but have

very limited throughput and are generally expensive [WGS09, CADC10].

The invention of next-generation sequencing led to a new high-throughput sequencing-

based way of studying gene expression, RNA-seq. In an RNA-seq experiment the

RNA is converted to cDNA (complementary DNA) and hundreds of thousands to a

few billion of these molecules can be sequenced in parallel. Depending on the next-

generation sequencing technology, the sequences, or �reads�, from an RNA-seq exper-

iment can be 35-1000 bases long, with the number of reads inversely correlating with

their length. For example while 454 pyrosequencing creates hundreds of thousands

to a few million of reads with length in 300-1000 bases1, Illumina's sequencing-by-

synthesis creates hundreds of millions to a few billion reads with lengths of 35-250

bases2.

Di�erential expression analysis, discovering fusion genes and studying di�erential

splicing are just a few examples of the topics that RNA-seq data is used for [CADC10,

OM11, THS+13, SHP+10]. As the RNA-seq data is distinctly di�erent from the data

from both hybridization based approaches and earlier sequencing based approaches,

completely new techniques had to be developed to handle the data.

Majority of RNA-seq analysis pipelines start with aligning the reads to the refer-

ence [CADC10, WL09, NPP+12, VHPV13]. Aligning one read to the reference is

trivial, but the sheer number of them created from a single sequencing run makes

many approaches infeasible. The spliced nature of RNA poses another challenge to

1454.com/products
2www.illumina.com/systems

2

the alignment to the reference genome [MW11, CADC10]. Pseudogenes and repet-

itive regions also add to the problem [WL09]. Many tools using various approaches

for solving these problems have been published in the past �ve years, one of the

most well-known being Tophat [TPS09], by Trapnell et al..

As the correct alignment is important for the downstream analysis, this thesis focuses

on analyzing and comparing the performance of short read aligners designed for

aligning RNA-seq reads to the genome. The analysis is based mostly on simulated

data, as the ground truth, that is, the knowledge where the reads originated from,

is not available for real RNA-seq experiment data. To test the scalability of the

approaches, I also use one real RNA-seq data set in the analysis.

In Chapter 2 I introduce some biological concepts necessary for understanding the

rest of the thesis, and in Chapter 3 I talk about methods for studying gene expression

in general, and obtaining and analyzing RNA-seq data in particular. In Chapter 4

I describe the software chosen for this comparison, as well as the test setup. And

�nally the results of the comparisons can be found in Chapter 5, with summary and

discussion following in Chapter 6.

As part of the thesis work, I implemented a short read aligner based on the novel

idea of a limited range index. This tool, called SpliceAligner, is included in the

comparison, and I describe the ideas behind it in detail in Chapter 4.3.

3

2 Biological background

The human genome contains approximately 21,000 protein-coding genes (Ensembl

GRCh37.p10/NCBI Hg19 assembly), which control all the functions of a cell. In

addition there exist several thousand non-coding RNA genes, which for example

help regulate the protein-coding genes.

To create a functional product from the information stored in the gene, the DNA se-

quence of the gene needs to be transcribed to RNA. The RNA can then be translated

to protein, or it can act in the RNA form by binding to other RNA or proteins (e.g.

small interfering RNAs and micro RNAs that regulate gene expression by repressing

translation of certain transcripts).

In transcription, the DNA double-helix opens, RNA polymerase attaches to the gene

area and creates a single-stranded copy of the gene sequence, called the primary

transcript, after which the double-helix closes again. In eukaryotes (e.g. humans),

primary transcripts that will be used in protein synthesis (also called pre-mRNAs)

undergo a series of modi�cations before they exit the cell nucleus and enter the

cytoplasm for translation. The modi�cations are adding a 5'-cap and polyadenyla-

tion (adding a poly-A tail to the 3' end), both of which protect the mRNA from

degradation and help in the translation initiation, and RNA splicing.

Eukaryotic genes consists of exons (for �expressed�) and introns (for �intervening

sequence�). In addition there are some nucleotides at both 5' and 3' ends, which

are transcribed but not translated to proteins. These regions, which are not strictly

introns, are called 5' UTR (untranslated region) and 3' UTR. In RNA splicing

the introns are removed from the pre-mRNA transcript and the exons are spliced

together to form the mature mRNA transcript, which can then be translated into

protein (see Figure 1).

The pre-mRNA can be spliced in multiple ways, which results in multiple distinctly

di�erent mature transcripts (isoforms), and therefore multiple proteins being created

from one gene. This phenomenon is called alternative splicing (see Figure 2 for

some of the common variants). Alternative splicing is the reason why humans can

have only a fraction of the number of genes you would expect based on organism

complexity. Initial estimates for the number of protein-coding genes in humans were

actually in the range of 35,000-150,000 [EG00, RJB+00, LHP+00].

Genes express more than one transcript simultaneously in an organism, and a

higher number of possible transcripts correlates with more transcripts expressed

4

Figure 1: RNA splicing (exons and introns are not to scale). To form a mature

mRNA transcript, introns are removed from the pre-mRNA and the exons are spliced

together.

Figure 2: A few examples of alternative splicing. a) Exon skipping (cassette exon).

Exon is either spliced out or retained. b) Mutually exclusive exons. Only one is

included in the mature transcript. c) Alternative 3' acceptor site.

at a time [DDM+12]. However, for each cell type and condition, expression levels

of one or two transcripts dominate over the others [DDM+12]. As the di�erently

expressed transcripts control the functions of a cell di�erently, studying gene ex-

pression can lead to a better understanding of those functions as well as the causes

leading to a speci�c behavior of a cell (e.g. uncontrolled cell growth in cancer).

5

3 Gene expression analysis

Many techniques exist to study the di�erent transcripts expressed in a cell. They

can be roughly divided into two categories: hybridization based approaches and se-

quencing based approaches [WGS09]. Hybridization based approaches, for example

microarrays, have become popular because they are high-throughput and inexpen-

sive [WGS09]. But they depend on the annotated genome for the probe design, and

are therefore unable to �nd novel transcripts [WGS09, CADC10, NPP+12]. They

also have limited dynamic detection range due to signal saturation at high end and

noise at low end. [WGS09, CADC10, NPP+12].

Of the sequencing based approaches, Sanger sequencing was the �rst, but it was low

throughput, expensive and generally not quantitative [WGS09]. Multiple tag-based

methods were invented to provide data in a high-throughput manner, with more

precise expression levels [WGS09, CADC10]. However, as they were all based on

Sanger sequencing, price was still an issue [WGS09, CADC10]. The development of

next-generation sequencing (NGS) technologies created a new method for analyzing

the transcriptome, RNA-seq.

3.1 RNA-seq

In RNA-seq the RNA is converted to complementary DNA (cDNA), and each

molecule is sequenced in high-throughput manner (either with or without ampli-

�cation). For the next-generation sequencing technologies (also known as second-

generation), the reads can be 35-1000 base pairs (bp) long345, whereas the newer

third-generation platforms can produce reads with lengths in several thousands [LLL+12].

However, even though third-generation systems are being rapidly developed, they

are not yet commonly used [CCHD13, Gle11]. This thesis will focus on the next-

generation sequencing and its data analysis.

Unlike hybridization-based approaches, RNA-seq methods are not limited to �nd-

ing only annotated transcripts, and can �nd transcript boundaries at single-base

resolution [WGS09, WL09, NPP+12]. If the reads are sequenced from both ends

of the fragment (paired-end), the pair information can be used to reveal connec-

tivity between exons. RNA-seq has a low level of background noise compared to

3454.com/products
4www.illumina.com/systems
5https://products.appliedbiosystems.com

6

hybridization-based approaches, and has a high dynamic range of detectable ex-

pression levels thanks to the absence of the upper limit for number of reads se-

quenced [WGS09, WL09, NPP+12].

However, as with any method, RNA-seq has its weaknesses as well. As the reads are

sequenced randomly from the transcriptome, some of the high abundance transcripts

(e.g. housekeeping genes such as ubiquitin) can dominate the results [LLL+11].

Because of this, lowly expressed transcripts often cannot be quanti�ed as reli-

ably [LLL+11]. In addition, while sequencing is not a�ected by certain distortions

that plague microarray experiments (e.g.chemical saturation for hybridization), the

sample preparation protocols for the next-generation systems contain many steps

where experimental conditions can introduce systematic biases [HIW12].

3.1.1 Sample preparation and library construction

Compared to microarrays, a relatively small amount of RNA is required for an RNA-

seq experiment [KQGW12]. Generally the required amount for sequencing ranges

from a few hundred nanograms to a few micrograms of RNA [WL09, VHPV13]. How-

ever, the majority (> 90%) of the RNA present in the cell is ribosomal RNA (rRNA),

which is not very informative for studying the transcriptome [WL09]. Therefore ap-

proximately 100 micrograms of total RNA are required for RNA-seq experiment, and

the �rst step of the sample preparation is to enrich mRNA content by using oligo(dT)

beads [WL09, HBD10] or deplete rRNAs with rRNA removal kits designed for that

purpose [WL09]. The former approach enriches strictly mRNAs with poly-A tails,

whereas in the latter case other types of non-ribosomal RNA (e.g. small regulatory

RNAs) and mRNAs without poly-A tails are also enriched [CADC10, MW11].

As the next-generation sequencing platforms were designed for double-stranded

DNA, after preparing the sample a required step in the library construction is

to reverse transcribe the RNA to complementary DNA (cDNA) [CADC10]. For

reverse transcription either oligo(dT) primers or random hexamer primers can be

used [WL09, CADC10, HBD10]. Oligo(dT) primers have the advantage of target-

ing mRNAs, but the reverse transcriptase randomly falling o� the template during

reverse transcription creates a bias towards the 3'-end [WL09, CADC10]. Random

hexamer primers create fragments starting from all along the transcripts, but they

show clear sequence-speci�c bias, resulting in a distribution that is far from uni-

form [HBD10, RTD+11].

7

Either before or after reverse transciption, the RNA or the cDNA is broken into

short fragments [WL09, CADC10]. These fragments are then size-separated, usually

with agarose gel, and the fragments with the desired length can be separated for

sequencing [CADC10]. As �nal steps before the sequencing, adapters are ligated to

the fragments [WL09, CADC10], and optionally the fragments can be PCR ampli�ed

to achieve the desired coverage [WGS09].

Mistakes in the ampli�cation step can cause PCR artifacts, that is, an overabun-

dance of copies created from a small number of fragments [WGS09]. Determining

whether an abundance of identical short reads really represents an abundant tran-

script or if it is merely a PCR artifact is one of the challenges of RNA-seq [WGS09].

3.1.2 Sequencing and imaging

After the library preparation, the fragments of RNA-converted-to-cDNA can be se-

quenced either from one end of the fragment (single-end reads) or from both ends

(paired-end reads). The speci�cs of the sequencing process depend on the plat-

form, but the basic principle is the same for all next-generation sequencing plat-

forms [WL09, CCHD13]: the library of cDNA fragments is diluted to the point that

each sequencing �unit� contains a single molecule, which is clonally ampli�ed using

PCR. Ampli�cation is required to produce a signal strong enough to measure with

the imaging instruments [Met10, CCHD13]. The resulting populations of identical

fragments can then be sequenced in parallel by either using �uorescent nucleotides

or measuring the reaction when nucleotides are added in some way (e.g. measuring

pH changes) [Met10, Mar08, VDD09, CCHD13]. As nucleotides bind to their com-

plements (A to T and C to G), the incorporation of a particular nucleotide reveals

the nucleotide present at a given position in the read.

The �rst commercial sequencer, the 454 FLX Pyrosequencer introduced in 2005, uses

a sequencing technology called pyrosequencing [Met10, Mar08, VDD09, CCHD13,

WL09]. For pyrosequencing, nucleotides are added to the wells one type (A, C, G or

T) at a time. Incorporation of a matching nucleotide starts a chemical chain reaction

that produces light. The number of incorporated nucleotides can be deduced from

the intensity of the light.

As pyrosequencing has only one type of nucleotide added to the process at a time but

can incorporate multiple nucleotides to the growing chain in one cycle, mismatch

errors are very rare, whereas homopolymer run errors (for example interpreting

8

�AA� as �A� or �AAA�) are the common error type [Mar08, VDD09]. Deletions not

involving homopolymers are also possible, as a single nucleotide might fail to be

incorporated to the chain. The quality scores of 454 reads for homopolymer runs

represent, for each of the same nucleotide after the �rst one, the probability that

the homopolymer was of that length or longer.

Solexa released their Genome Analyzer the following year. Solexa was acquired by

Illumina soon after, so this technology is commonly referred to as Illumina tech-

nology. Compared to 454, this sequencer was a �short read� sequencer: Where the

�rst 454 machine produced hundreds of thousands of reads of lengths in hundreds of

nucleotides, Illumina/Solexa Genome Analyzer produced billions of reads of length

approximately 36 nucleotides (nt) [Met10, Mar08, VDD09]. Illumina technologies

use an approach called sequencing-by-synthesis [Met10, Mar08, VDD09, CCHD13,

WL09].

Sequencing-by-synthesis uses nucleotides combined with �uorescent reversible ter-

minators. All four types of nucleotides (A, C, G and T) are added into the �owcell

where the read clusters reside, matching nucleotides incorporate and the reaction

terminates. Excess nucleotides are washed o�, �uorescence is imaged and the ter-

minators are cleaved o�, then the next cycle can start. The primary error type on

Illumina platforms is substitution [Gle11]. Illumina also provides quality scores for

the reads that represents the probability of the base called in a given position to be

correct.

The third major competitor in the NGS market is Applied Biosystems's SOLiD

(Supported Oligonucleotide Ligation and Detection) system. SOLiD's sequencing

approach is radically di�erent from the other two systems: instead of DNA poly-

merase adding single nucleotides to the growing chain, SOLiD uses DNA ligase to

bind probes to the chain [Met10, Mar08, VDD09]. A probe consists of a dinucleotide

pair, six degenerate nucleotides, that is, nucleotides that pair with any nucleotide,

and a �uorescent marker. A cDNA fragment is sequenced �ve times with vary-

ing starting positions for the �rst probe, so that every position is covered by two

overlapping dinucleotides [Mar08].

SOLiD uses a four color system to encode bases, with each color coding for four

di�erent dinucleotides. As each nucleotide is interrogated by two dinucleotides, with

SOLiD data it is easier to distinguish sequencing errors from true single nucleotide

variations (SNVs) in aligned data [Met10, Mar08]. Sequencing error occurs only

in one of the dinucleotides, whereas for an SNV both of the dinucleotides have to

9

be di�erent, and the sequence must match the reference around the dinucleotide

pair [Met10, Mar08]. However, this sequence interpretation that depends on the

previous nucleotide makes SOLiD data unsuitable for de novo assembly, as calling

one base incorrectly results to the misinterpretation of the rest of the read.

As each sequencing platform has its own unique characteristics, (e.g. read length,

throughput and error pro�le), there is no best platform for all purposes [MW11,

Met10, Gle11]. For example, long 454 reads are often more suitable for de novo

assembly of small transcriptomes than shorter Illumina reads [MW11], and SOLiD's

ability to di�erentiate base call errors from SNVs makes it excellent for SNV calling

on low coverages [Met10]. The di�erent characteristics of the platforms have to also

be taken into account in the development of the analysis tools.

3.2 Analysing RNA-seq data

Because of weak or mixed signals during sequencing, not all the reads are of good

quality [WL09]. Therefore before beginning the data analysis, the data should be ran

through quality �lters [WL09, VHPV13]. For example, reads containing many N's

(which mean that the base could have been any of the A, C, G or T) [WL09] as well

as very short reads featuring sequence repeats [MW11] can be removed to make the

analysis faster. Most platforms also give each read a quality score which measures

their con�dence of each base being correct, and there are multiple software available

for visualization of read qualities for easy quality control (e.g. FastQC [And10] and

RSeQC [WWL12]). For an example of viewing quality scores in FastQC see Figure 3.

After removing the low-quality reads, the remaining short reads are mapped to a

reference or assembled de novo into contigs [CADC10, MW11]. As de novo assembly

for higher eukaryotes is very challenging because of the complexity of the transcrip-

tome [MW11] and the di�erences in the expression levels of transcripts that usually

vary by �ve orders of magnitude [RLSG12], in most cases de novo assembly is only

done when there exists no suitable reference, or the reference is not of high enough

quality.

Following the alignment of the reads, a common downstream analysis task is to

identify the various genes and transcripts present in the sample and to quantify

their expression levels [MW11, VHPV13, RPTP11, LFJ11]. The expression levels

can then be compared between samples to study the changes in gene and transcript

expression between two or more conditions [VHPV13, RKL+13, THS+13, RMS10,

10

Figure 3: Screenshot of quality scores in FastQC. This example has bad base qualities

towards the end of the reads, which suggests that trimming the ends of the reads

might be appropriate before attempting to map them to the reference.

Short reads

Reference

 genome

Mapping software

Uniquely mappable

reads

Multi-location

mappable reads
Unmapped reads

Quantifying gene expression

Gene expression
Transcript

identification

Testing for differential expression

Figure 4: Example of RNA-seq analysis pipeline. Figure based on [CADC10].

GHR12].

In addition to transcript prediction, the aligned data can also be examined to de-

tect fusion genes [SHP+10, GLJ+11, LCSM11] or allele-speci�c expression [TSG+11,

RAW+11, PFFS13], to name just a few other examples for analysing RNA-seq data.

One example of an RNA-seq data analysis pipeline is shown in Figure 4.

11

3.2.1 Read mapping

While mapping one read to a reference using for example BLAST or BLAT may

be trivial, the sheer number of the reads (from tens of millions to a few billions)

makes such strategies infeasible [WL09]. As this step is critical for many RNA-

seq applications, much research has gone into developing e�cient mapping algo-

rithms [GFP+11, LH10].

For e�cient searching, the short read mapping algorithms create auxiliary data

structures called indexes from the reference, the reads or both [GGGT11, LH10].

Depending on the properties of the index, most algorithms can be classi�ed to

two types [GGGT11, LH10]: those using hash tables (for example, Bfast [HMN09],

MAQ [LRD08] and GSNAP [WN10]) and those using compressed variants of su�x

trees (for example, Bowtie [LTPS09], BWA [LD09] and readaligner [Mäk10]).

A hash table for a reference sequence is created by indexing all the k -mers, that

is, segments of the reference of length k, so that the hash values of these k -mers

act as keys that point to all the positions where the given k -mer occurs in the

reference [LH10]. An example of a hash table is shown in Figure 5).

The reference sequence from which the hash table is created can be either the refer-

ence genome or the reads, while the query sequence is the other [LH10]. However,

as the number and length of the short reads has been steadily increasing with the

improvements in the sequencing technology, the approaches that index the reads

have become infeasible for many applications because the size of the index grows

too large [LH10].

The query sequence can then be split into seeds of length k and the hash table queried

with these seeds to �nd the positions for exact match in the reference [LH10]. When

a match for the seed is found, it can be extended to check if the whole query sequence

matches the reference around the given position [LH10].

A su�x tree is a data structure that stores all the su�xes of a given string. The

structure of the su�x tree allows for fast exact string matching [LH10] (see Figure 6

for an example). Inexact string matching in a su�x tree can be thought of as

enumerating over all the possible positions for mismatches and doing an exact match

search around them [LH10]. This causes the search to branch, of which an example

for one mismatch case is shown in Figure 7.

However, su�x tree, as well as its close relatives su�x trie and enhanced su�x

array, are impractical choices for indexing large genomes, as they require several

12

AAAA

AAAC

AAAG

AAAT

.

.

TTTA

TTTC

TTTG

TTTT

X

X

X

X

1

2, 10

6

5

Figure 5: A hash table for string �AAAATTTTCAAAT� using 4-mers. All sub-

strings of length 4 are hashed (blue box being the hashing function), and the hash

values are used as pointers to lists containing all the positions where the 4-mer

occurred. (All 4-mers are not shown in the �gure.)

AAAATTTTCAAAT

AAAATTTTCAAAT

AAATTTTCAAAT
AATTTTCAAAT
ATTTTCAAAT
TTTTCAAAT
TTTCAAAT
TTCAAAT
TCAAAT
CAAAT
AAAT
AAT
AT
T

Reference Query

AAT

(1)

(2)

A C T

A T A C T

A T T A A C

A A A A T T T T C A A A T

Figure 6: Searching for exact match for string �AAT� in string

�AAAATTTTCAAAT� using su�x tree. All the su�xes of the reference

string (1) are inserted into the tree (2). Each node points to the location(s) in the

reference where the string spelled out by the path to the node ends. Exact matches

for string �AAT� in the reference are found by �nding the path corresponding to

the string and checking the pointers to the reference positions (red-colored path,

with end node pointing to positions 5 and 13).

bytes or more of memory for each base [LH10]. The invention of FM-index, a

compact Burrows-Wheeler transform -based data structure, by Paolo Ferragina and

Giovanni Manzini [FM00] improved the memory e�ciency of su�x-tree variant -

based approaches to 0.5-2 bytes per base [LH10]. In principle many algorithms

using a su�x tree work with a su�x trie, a su�x array or an FM-index, and vice

13

A C T

A T A C T

A T T A A C

A C T

A T A C T

A T T A A C

A C T

A T A C T

A T T A A C

A C T

A T A C T

A T T A A C

A C T

A T A C T

A T T A A C

A C T

A T A C T

A T T A A C

A C T

A T A C T

A T T A A C

X

X

A C T

A T A C T

A T T A A C

A C T

A T A C T

A T T A A C

A C T

A T A C T

A T T A A C

Figure 7: Searching for match for string �AAT� in string �AAAATTTTCAAAT�

while allowing one mismatch. Search branches at every node as long as there are

allowed mismatches left. Branches are rejected once the mismatch limit is exceeded

(marked with X). A total of three matches are found for string �AAT�: �AAT�, �AAA�

and �ATT�.

versa [LH10].

For more information about hash tables see for example [MS08], and for more in-

formation about su�x trees see for example [Gus97].

Compared to hash tables, algorithms based on su�x trees have the advantage that

identical sub-sequences in the reference collapse to a single path in the tree [LH10,

GGGT11]. This means the alignment only needs to be handled once, whereas in the

hash based approaches every exact match to the seed has to be checked separately

for complete alignment [LH10]. This simple fact makes su�x tree based approach

many times faster, when no mismatches are allowed [GGGT11].

The performance of su�x tree based approaches decrease when more errors are

allowed in the search, as the search space grows exponentially [GGGT11, YMW+12].

Hash based methods that require an exact match for the seed are not a�ected in

this way [GGGT11]. The speed of extending the alignment decreases very little

as the number of errors allowed increases. However, aligners based on su�x trees

can use various heuristics to limit the search space and thus make the alignment

process faster at the expense of possibly missing some alignments [LD09, LTPS09,

YMW+12].

Independent of the implementation details of the index, alignment software can

14

Figure 8: When aligning an RNA-seq read to a reference genome, some reads will

map fully, but others will contain a splice junction, resulting to a gap in the align-

ment (dark gray blocks are exons, black blocks are reads, and dashed line signi�es

a gap in the alignment).

be classi�ed as either unspliced read aligners or spliced read aligners [GGGT11,

CADC10]. Unspliced read aligners simply align the read to the reference without

allowing large gaps, and as such are suited for aligning DNA reads to the genome

or aligning RNA reads to the transcriptome [GGGT11]. Spliced read aligners on

the other hand allow gaps and are suited for aligning RNA reads to the reference

genome [GGGT11].

In this thesis I concentrate on the problem of aligning reads to the reference genome,

therefore my software comparison will include only spliced read aligners. However,

many of the spliced read aligners are built on top of unspliced (core) aligners, so

that the spliced read aligner modi�es the reads by trimming or segmenting them

in di�erent ways and uses the core aligner to map these segments to the refer-

ence genome [GGGT11, CADC10]. While mapping, some mismatches or indels

(insertions or deletions) have to be allowed because of genomic variation as well as

sequencing errors, but there is a �ne balance between allowing as many reads as

possible to map while keeping the quality of the alignments high [CADC10].

Repetitive regions, which make up nearly 50% of the genomes of higher eukaryotes

(for example human and mouse), present an added di�culty, as the reads can map

perfectly to multiple positions in the genome. [WL09, RLSG12]. This di�culty can

be partially alleviated with paired-end reads [WL09, ORY10, RLSG12]. If one read

of the pair maps to a repetitive region, but the other does not, the uniquely mapping

read gives an anchor to �nd the correct location of its mate [WL09, ORY10]. Reads

that align to the proximity of the candidate alignment positions can also be used

to locate the correct position, as the �anking areas should have roughly the same

amount of aligned reads [BCZF12].

15

Figure 9: Screenshot of genomic view in IGV genome browser. Each colored block

is one read. Chromosome positions are shown at the top, and known RefSeq genes

at the bottom.

3.2.2 Transcript identi�cation and other downstream applications

After aligning the reads to the reference, a common next step in the RNA-seq anal-

ysis is to identify the di�erent features present and to quantify their expression

levels [VHPV13, MW11, CADC10, RLSG12]. Genome browsers, for example UCSC

Genome Browser and IGV (see Figure 9), allow for visual inspection of the align-

ments, which can be a useful starting point for inspecting speci�c features based on

annotation and mapped reads, as well as checking the alignment quality [CADC10].

However, visual inspection can only give a qualitative picture of the feature of in-

terest and the sheer amount of data makes it di�cult, if not impossible, to �nd all

the relevant features.

Computationally quantifying the expression level of a single non-overlapping exon

(i.e. an exon that does not share any genomic positions with another exon in either

strand) from RNA-seq data aligned to the reference genome is in principle a simple

process. For example, the number of reads falling between the start and end of

each exon can be counted, and this value can then be normalized by dividing by

the length of the exon [VHPV13, YMW+12]. But as transcripts can be formed

from various combinations of the exons (see Chapter 2), identifying which exons

belong to which transcript(s), and consequently dividing the reads correctly among

16

them is a much more di�cult task [VHPV13, YMW+12]. This task is made even

more di�cult by the presence of multimapping reads, as the uncertainty for their

true location is high. Once the transcripts have been identi�ed and their expression

levels quanti�ed, the expression level of the gene can be calculated as the sum of

the expression levels of its transcripts [WWZ10].

Because of the ease of calculating exon expression, and the gene expression level fol-

lowing from the transcript expressions levels, a lot of the software development has

gone into identifying transcripts and/or quantifying their expression levels [RPTP11,

LFJ11, LJB+11, TKRM13b, LD11]. At their core, many transcript identi�cation

and quanti�cation methods solve some variation of a graph problem, whether it be

an overlap graph with each read as a node (e.g. Cu�inks [RPTP11]); or splicing

graph (also known as connectivity graph) with each node being a continuous stretch

of DNA and each edge derived from overlaps or spliced read alignments (e.g. Iso-

lasso [LFJ11], Traph [TKRM13b]). The identi�cation and quanti�cation problem

then reduces to �nding paths in this graph and splitting the coverage of nodes and

edges between the paths, according to various error models (see Figure 10 for an

example of a splicing graph).

After identifying all the transcripts present in the samples, one of the fundamental

tasks in RNA-seq analysis is to identify a set of transcripts that are di�erentially ex-

pressed between two or more samples [RKL+13, THS+13, GHR12, RMS10]. Because

of the variation from both biological and technical sources, statistical algorithms are

required for detecting di�erential expression based on the identi�ed transcripts and

the aligned read data [RKL+13, THS+13]. Some of the popular software for detect-

ing di�erential expression are cu�di� [THS+13], edgeR [RMS10] and DEseq [AH10],

which all have their own strategies for normalizing the count data, modeling gene

expression statistically and testing for di�erential expression [RKL+13].

Instead of identifying and quantifying the transcripts present in the sample, the

aligned read data can be used to for example �nd fusion genes [SHP+10, LCSM11,

GLJ+11] or study allele-speci�c gene expression [RAW+11, PFFS13].

Fusion gene candidates are often identi�ed by searching for paired-end reads where

the mates, that is, the reads sequenced from the opposite ends of the same fragment,

map to di�erent genes [SHP+10, LCSM11]. While the software are designed to

attempt to �lter out likely mismappings [SHP+10, LCSM11], it is clear that incorrect

alignments make it more likely for the software to give false positive results.

Correct alignment is also important for studying allele-speci�c gene expression.

17

Figure 10: Transcript identi�cation and quanti�cation as graph problem. A) The

coverages of nodes (exons) and edges between them (reads spanning two consecutive

exons). B) Splitting the node and edge coverages to paths that best explain the

graph.

As a common �rst step for the analysis of allele-speci�c expression is to identify

the di�erent alleles and construct a polymorphism-aware diploid reference from

them [PFFS13, RAW+11], incorrect alignments can yield incorrectly constructed

reference.

18

4 Materials and methods

4.1 Test data

As no ground truth is known for real data, the �rst step in any performance eval-

uation is to use simulated data where ground truth is known and can be compared

against. As Illumina HiSeq is the currently most commonly used platform for RNA-

seq [VHPV13], I decided to test the software with the type of reads this sequencer

produces: 50 bp, 100 bp and 150 bp long reads in both single-end and paired-end

modes. Based on Illumina MiSeq sequencer, I also added 250 bp long reads (both

single-end and paired-end) to the test setup.

For simulating data for this comparison I chose the UCSC human genome version

hg19 (NCBI GRCh37) chromosome 2 and the corresponding hg19/GRch37 version

of the annotation of both coding and non-coding transcripts for this chromosome.

Chromosome 2 contains 3,831 annotated genes, with total of 13,391 transcripts. To

allow for better sampling of long paired-end reads, I discarded all the transcripts

that had the length of less than one kilobase. After this �ltering there remained a

total of 4,839 transcripts.

I used RNASeqSimulator6 to draw expression levels for all the chosen transcripts

from a log-normal distribution with mean of -4.0 and standard deviation of 1.0.

Based on these expression levels I created two single-end data sets (one million

reads each) and two paired-end data sets (2x one million reads each) for each read

length. Depending on the read length, this corresponds to 3.5x-17.5x average depth

of coverage for single-end and 7x-35x average depth of coverage for paired-end. First

data set simulated the ideal conditions with no sequencing errors, and the second

data set simulated the conditions where each base had 1% chance to be miscalled.

For simulating the paired-end data sets, I set the fragment mean size parameter to

200 bp for 50 bp reads, 300 bp for 100 bp reads, 400 bp for 150 bp reads and 500

bp for 250 bp reads. This equals to 100 bp between the mates for 50 bp, 100 bp

and 150 bp data sets. Illumina recommends fragment sizes no longer than 500 bp,

therefore the distance between mates for the 250 bp paired-end reads is zero. I set

the fragment size standard deviation to 20 bp for all the data sets.

I also tested the software with real RNA-seq data set generated from human em-

bryonic stem cells (Caltech RNA-Seq track from the ENCODE project, NCBI SRA

6http://alumni.cs.ucr.edu/�liw/rnaseqreadsimulator.html

19

accession number SRR065504). This data set consists of 50 million 75 bp paired-end

reads sequenced with Illumina Genome Analyzer II.

4.2 Existing mapping software

In this section I will describe the algorithms behind the software chosen for this com-

parison: Tophat [TPS09] (version 2.04), SpliceMap [AJL+10] (version 3.3.5.2), Map-

Splice [WSZ+10] (version 2.1.5), SOAPsplice [HZL+11] (version 1.9) and SHRiMP2 [DDL+11]

(version 2.2.3).

Tophat, SpliceMap and MapSplice use a �core� genomic aligner to do the alignment

of the reads or their segments. Their current implementations use Bowtie [LTPS09],

but any core aligner is theoretically suitable for this purpose. Both Bowtie and

SOAPsplice use FM-index for aligning the reads. SHRiMP2 uses a hash-table-based

approach.

4.2.1 Tophat

Tophat's [TPS09] mapping algorithm consists of three main phases: mapping all

reads to the reference, assembling putative exons and mapping the remaining un-

mapped reads to concatenations of the putative exons (see Figure 11). In addition

to the mappings BAM �le, Tophat provides a BED �le describing the resulting

junctions (see Appendix 1 for details on the �le formats).

In the �rst phase, all the reads are mapped to the genome using Bowtie, a short

read aligner created by Langmead et al. [LTPS09]. For each read Bowtie reports

one or more alignments (default: 10 alignments) with no more than a given number

of mismatches (default: 2 mismatches). Bowtie suppresses the alignments for reads

with more than given number of possible alignments. The reads that did not map

in this stage are referred to as initially unmappable (IUM) reads.

In the second phase, Tophat uses MAQ [LRD08] to assemble a consensus of all

regions covered by the mapped reads. This assembly contains both called bases and

their corresponding reference bases. In the case of con�ict, Tophat will choose the

reference base. The islands of continuous sequences are then inferred to be putative

exons.

However, the putative exons are likely to be missing a small amount of sequence

on both ends because most reads mapping near the ends of exons will probably

20

Figure 11: Schematic representation of Tophat work�ow. Whole RNA-seq reads

are mapped to the reference, putative exons are inferred and potential splice sites

are created by enumerating over all combinations of the putative exons. Initially

unmapped reads are indexed and matched against the potential splice sites. [TPS09]

also contain a splice. Tophat will include a small amount of �anking sequence from

each end to capture the missing bases as well as the donor and acceptor sites of the

�anking introns. Because the assembly might have gaps within exons, Tophat will

also merge putative exons that are very close together (default < 70 bp).

In the �nal step, Tophat considers all pairings of donor and acceptor sites in the

putative exons that could form canonical (GT-AG, or their reverse complements)

introns, with intron length within speci�ed bounds (default longer than 6 bp and

shorter than 20,000 bp). The user can decrease the maximum intron size to decrease

the running time, but this might cause Tophat to miss some alignments.

To map the IUM reads to the junction candidates, Tophat creates seeds by concate-

nating k bases from each side of the junction (default: 6 bp). These seeds are then

queried against an index table where each 2k-mer is associated with the reads whose

high-quality region at the 5'-end contain the 2k-mer (see Figure 12). The default

length s of the high-quality region is 28 bp. Increasing s will improve sensitivity and

lowering it will decrease running time and possibly reduce sensitivity. Increasing k

will also decrease running time but might cause Tophat to miss alignments in lowly

21

Figure 12: Tophat's seed-and-extend strategy. A small amount of sequence is com-

bined from two exons and the resulting seed is used to query the index made from

initially unmapped reads. If the seed matches, the complete alignment to the pair

of exons is checked. [TPS09]

expressed genes.

By default, Tophat �lters alignments based on read coverage to reduce the number

of false positive junctions. It does this by checking the average read coverage depth

of �anking regions and comparing this to the number of reads crossing the junction.

If the number of alignments crossing the junction is less than 15% of the more deeply

covered �ank, the alignment is not reported. This behavior can be turned o� by the

user.

4.2.2 SpliceMap

Short reads with lengths of 25-36 bases in the early days of RNA-seq experiments

were not suitable for de novo detection of exon-exon junctions, so Tophat's clustering

to create exon islands was a natural way of approaching the problem of spliced reads.

SpliceMap [AJL+10] takes advantage of the increase in read sequence lengths (from

subsequent improvement in sequencing technologies) to directly map the exon-exon

junctions without �rst inferring the putative exons.

At the time of SpliceMap's creation, most second-generation sequencing platforms

could create reads of at least length 50-100 bp. SpliceMap's approach exploits the

property that a read containing one splice junction will most likely have a match in

the reference genome that is at least half of the read's length. With half the read

being at least 25 bp long, it can with high probability be reliably aligned to reference

genome.

22

Half-read mapping

Figure 13: Splicemap's work�ow consists of four phases: half-read mapping, seeding

selection, junction search and paired-end �ltering. Based on [AJL+10]

SpliceMap's algorithm has four parts: half-read mapping, seeding selection, junction

search and paired-end �ltering (see Figure 13). Junction search consists of seed ex-

tension and locating the partner splicing site. In addition to these steps, SpliceMap

infers the junctions present from the alignments, and also provides the user infor-

mation for assessment of their reliability in the form of counts of reads supporting

the junction and the �anking exons.

In the half-read mapping step SpliceMap splits 50 bp reads into two halves and maps

them using an unspliced read-mapping tool. If the reads are longer than 50 bp, they

might contain multiple splice junctions. In that case SpliceMap will split the reads

into several overlapping 50 bp reads (for example, split 100 bp into 1-50, 25-75 and

50-100). These partial mappings will be �ltered in the post-processing step to verify

that the mappings are consistent.

Next SpliceMap picks the best seed alignments. This is done on a chromosome

by chromosome basis. Unique mappings are preferred, but multimappings are also

accepted as long as they are at least 400,000 bp away from each other. This �ltering

of multilocation alignments is done to prevent false splice predictions. Selected seeds

are extended base by base until a splicing junction signal (canonical dinucleotide

AG-GT or its reverse complement) is found, or the number of allowed mismatches

is exceeded.

After seeding selection and extension, SpliceMap tries to �nd the remaining segments

within a user speci�ed distance (default 400,000 bp) by querying a chromosome-wide

hash table for the �rst 10 nucleotides of the segment and extending the alignment

from there. Naturally, the segments must be at least 10 bp long for this process. In

23

addition, the mapped segment must reside next to the canonical dinucleotides. If

the segment mapped to multiple locations, the alignment is discarded to avoid false

positives.

If the reads are paired-end, junction detection speci�city can be improved. Read

pairs that are mapped more than 400,000 bp away from each other, or in direction

or positional order con�icting with the experimental design, can be discarded. Also

pairs where only one read quali�es as a good hit, i.e. either an exonic hit (positions

of segments di�er by exactly one segment's length), extended hit (seed was extended

beyond 40 bp, but less than 50 bp) or junction hit, as de�ned above, can be discarded.

4.2.3 MapSplice

Unlike the software introduced previously, Tophat and SpliceMap, MapSplice [WSZ+10]

does not require the canonical dinucleotides or limit the search by a set intron length.

Therefore it is able to �nd non-canonical junctions as well as other novel splicing

events. MapSplice works in two phases: a tag alignment phase, where it maps the

reads to the reference genome, and a splice inference phase, where the junctions cre-

ated during the alignment phase are analyzed to choose the junctions with highest

overall quality and con�dence.

In the tag alignment phase (see Figure 14), the reads, or tags as the authors call

them, are �rst partitioned into segments t1, ...tn, that are no longer than half of the

read length. Typically the length of a segment is 20-25 bp for reads of length 50 bp

or more. These segments are then aligned with any unspliced short read aligner, for

example Bowtie [LTPS09]. Segments failing to map might cross a splice junction

or they might have exonic alignments with more errors than the allowed threshold.

Generally, if the segments are of length k and the minimum exon length is at least

2k, at least one segment out of every pair of consecutive segments should map to

the reference. Therefore, the neighbors of the unmapped segment can be used to

localize its alignment.

MapSplice splits the unmapped segments to two categories, single anchored (only

one neighbor mapped) and double anchored (both neighbors mapped). For double-

anchored spliced alignment, MapSplice checks all the possible splice positions be-

tween the two neighboring alignments. Each candidate splice alignment is given a

score based on the Hamming distance between the read sequence and corresponding

genomic sequence. The alignment(s) with minimum score is then reported.

24

Figure 14: Tag Alignment phase consists of segmentation of the reads, mapping

the segments and assembling the alignments of the segments to form continuous

alignment for the whole read. Based on [WSZ+10].

Single anchored spliced alignments have a boundary only for one side, so the extent

of the search is limited by the maximum intron size D (default: 50,000 bp). The

alignment is found by searching for an h-mer su�x or pre�x, respectively for up-

stream and downstream anchor, of the unmapped segment within a sliding window

of length D. To speed up the search, MapSplice resolves all the single anchored

spliced alignments with one pass of a sliding window over the reference.

If the transcripts contain an exon or exons shorter than 2k bp, where k is the length

of the segments, two adjacent segments mapping to this area might both contain

a splice junction. For exons shorter than k bases, a single segment might contain

multiple splice junctions. MapSplice divides the sequence S, consisting of one or

two missed segments between anchors ti and tj into a set of h-mers and indexes

S with them. These h-mers can all be searched at once in the same way as with

25

the single-anchored spliced alignments. When a match is found, double-anchored

spliced alignments between ti and the 5'-site of the h-mer, and between 3'-site of the

h-mer and tj can be performed. If the exon is no shorter than 2h, this method is

guaranteed to �nd the spliced alignment. However, reducing h to shorter than 6-8 bp

will increase the probability of the segment randomly aligning to the reference.

Finally the segments must be assembled into complete read alignments. When each

segment aligns uniquely, the assembly is easy. But whenever any segment ti has

mapped to multiple locations, all the possible combinations must be considered for

the best overall alignment. Fortunately most combinations can be ruled out based on

the order and orientation of the consecutive segments. In this step MapSplice �rst re-

checks all the non-consecutive segments' splice sites using a double-anchored spliced

alignment method, and corrects possible inaccuracies caused by error tolerance in

the segment mapping. Then a mismatch score is calculated for all valid assemblies,

i.e. assemblies that conform to expected order and orientation of the consecutive

segments. This mismatch score is the Hamming distance between the tag and the

reference genome, modi�ed so that the base call qualities (when available) are taken

into account. If this mismatch score is lower than or equal to the allowed number

of mismatches, the alignment candidate is accepted.

In the splice junction inference phase (see Figure 15), MapSplice evaluates all the

proposed junctions for quality based on two statistical measures: anchor signi�-

cance and entropy. Then these junction quality values are used with the alignment

quality values to determine the best alignment for each tag. The anchor signi�cance

measures how long the anchors are on each side of the junction and the (Shannon)

entropy measures the diversity of the splice junction positions in the set of reads

crossing the junction. The �nal score for each junction is the weighted sum of anchor

signi�cance, entropy and average alignment quality for reads crossing the junction.

4.2.4 SOAPsplice

Like Tophat, SOAPsplice [HZL+11] �rst tries to map the reads fully to the reference

genome (Step 1 in Figure 16) and collects the initially unmappable reads (IUM

reads). In this �rst step, either at most �ve mismatches or one continuous gap

that is no longer than two bp can be allowed (user can specify lower values). The

gap can be either an insertion or a deletion, depending whether it is on the query

or the reference sequence. SOAPsplice gives preference to ungapped hits, as single

nucleotide polymorphisms are much more frequent than small indels. Given multiple

26

Anchor significance

Entropy

Long anchors =

High confidence
Short anchor =

Low confidence

Uniform distribution in splice site

position = High confidence

Non-uniform distribution in splice site

position = Low confidence

Figure 15: Two measures for quality of the junction. Longer anchors on both sides

of the junction give more con�dence to it being correct, as a short segment can ran-

domly align to multiple positions. Random sampling along the length of transcript

should result in the position of the splice site within the tag following a uniform dis-

tribution. The higher the entropy, the closer to uniform the distribution is, which

makes it more likely to be a true splice junction. Based on [WSZ+10].

mappings with either mismatches or indels, the one with the least mismatches or

smallest gap is chosen. If a read did not map in this stage, SOAPsplice trims several

bp from the 3' end, as the call quality of these bases might be low, and attempts to

align the read again. As with Tophat, reads that failed to map as a whole, with the

trimming applied, are called initially unmappable (IUM) reads.

Next SOAPsplice attempts to �nd a spliced alignment for the IUM reads. In the

�rst step of this phase, SOAPsplice searches for the longest 5' segment of a read

that can be mapped to the reference. However, if the remaining segment is shorter

than the threshold (default: 8 bp), the alignment is not accepted. No more than

one mismatch is allowed on each segment, and gaps are not allowed at all within

a segment. Distance between the segments is also limited to 50-50,000 bp, and

the canonical dinucleotide pair �GT-AG�, �GC-AG� or �AT-AC� is required at the

exon-intron borders of the segments. Priority is given to the alignments with the

dinucleotide pair in that order. Additionally, either one of the segments has to map

uniquely, or each of the segments can have at most three hits to the reference. If

27

Map reads fully

Initially Unmapped Reads

Attempt splice alignment

Unmapped reads

(if longer than 50 bp)

Segment

Figure 16: The work�ow of SOAPsplice. In step 1, complete reads are mapped to the

reference genome and in step 2 initially unmapped reads are aligned to reference by

using two-segment alignment strategy. For reads longer than 50 bp, the remaining

unmapped reads are split into segments that are no more than 50 bp long and steps

1 and 2 are applied on these segments. Based on [HZL+11].

there are multiple valid pairs of segments, the combination with the shortest distance

is selected.

The approach of mapping a read in two segments is only able to �nd at most one

junction, so SOAPsplice incorporates an additional alignment step for reads that

are longer than 50 bp. This is important because at least some of the reads of that

length are likely to contain multiple splice junctions. For reads that are shorter than

100 bp, SOAPsplice splits them into two �sub-reads� of equal size. For reads longer

than 100 bp, 50 bp long segments are taken from the 5' end of the read till the

remaining segment is between 50 bp and 100 bp long, then the remaining segment

is divided in two. The search for intact alignment, and spliced alignment if intact

alignment cannot be found, is then done for these sub-reads as above. If at least

two-thirds of the sub-reads can be aligned uniquely, SOAPsplice checks whether the

sub-read alignments are consistent in the position and orientation of the original

segments, and if so, concatenates them to create a complete alignment.

The second part of SOAPsplice's work�ow consists of �ltering the junctions inferred

from the alignments to remove false positives. If paired-end or mate-pair information

is available, the �rst step in the �ltering is to ensure that the aligned positions and

orientations of the pair are consistent with the experimental design. For example,

28

Highly reliable junctions

No segmentation Segmentation, all

sub-read alignments

compatible

Non-reliable junctions

Segmentation, sub-read

alignments not compatible

Figure 17: Junctions inferred from alignments are classi�ed as either highly reliable

or non-reliable. Based on [HZL+11].

if the experimental design is sequencing from both ends inward, and the �rst read

contributing to the junction is in forward orientation, the second read of the pair

needs to be in reverse orientation.

The second �ltering step categorizes the junctions based on whether the reads were

segmented to �sub-reads� or not. The junctions inferred from alignments without

segmentation to sub-reads are considered to be highly reliable and are reported

without �ltering as are junctions inferred from segmented reads where all the sub-

reads alignments are compatible with each other, that is, they mapped to the genome

in correct positional order and orientation and with all the segments connecting. The

remaining spliced alignments are those where the reads were segmented, and some of

the sub-reads were incompatible (see Figure 17). For these alignments SOAPsplice

requires that the number of reads supporting the junction should be more than 25%

of the average number of reads supporting the highly reliable junctions.

29

4.2.5 SHRiMP2

Unlike the four su�x-tree-based software introduced previously, SHRiMP [RLD+09,

DDL+11] (for SHort Read Mapping Package) uses hash-table-based approach. The

original SHRiMP package [RLD+09] indexed the reads, whereas the newer version

SHRiMP2 [DDL+11] indexes the genome. Indexing the genome instead of the reads

decreases the running time, and allows the use of paired-end mode and the use of

multi-threading.

SHRiMP2 employs the basic hashing idea of �nding matches for short subsequences

of the reads, called seeds, in the genome index and then attempting local alignment

in the areas around the seeds, with a few modi�cations. Instead of requiring a

completely exact match for the seeds, SHRiMP2 uses so-called spaced seeds. Spaced

seeds have predetermined positions where mismatches are allowed. They are usually

represented as strings of 0s (position may have mismatch) and 1s (position must

match). The weight of the seed is de�ned as the number of 1s in the string.

As mentioned in Chapter 3.2.1, hash-table-based approaches require a lot of memory,

and SHRiMP2 is no exception. SHRiMP2's genome index requires k×(4w×12+n×4)
bytes, where n is the length of the genome, and k is the number of seeds of weight

w. With the default parameters(k=4, w=12), this results to memory requirement

of 48 GB for the index of the human genome (hg19). However, in practice this

does not pose a problem as SHRiMP2 o�ers utilities to split the genome into pieces

that �t into target RAM size. Reads can then be matched against each piece index

sequentially or in parallel.

Unlike older hash-based alignment tools (for example BLAST [AGM+90]) that

search for local alignment based on a single seed, SHRiMP2 requires multiple matches

within a window of the genome before commencing a local search. This requirement

allows SHRiMP2 to use shorter seeds with smaller weights (i.e. allowing more mis-

matches at the predetermined positions in the seeds). This follows the idea of q-gram

�lters introduced by Rasmussen et al. [RSM06].

SHRiMP2 uses Smith-Waterman algorithm [SW81] for rapid alignment of the read

and the area around the seed mapping location. To speed up the computation,

SHRiMP �rst computes only the score for each alignment, and not the alignment

itself, and stores the top hits for each read. As SHRiMP supports both letter-space

and color-space, the �nal alignment phase depends on the choice of the sequencer.

While regular Smith�Waterman algorithm works for letter-space, the nature of color-

30

space (see Chapter 3.1.2 for details) introduces certain complexities for direct appli-

cation of the Smith�Waterman algorithm. Translating a color-space read to letter-

space has the problem that any mismatches in the read would cause every base after

the error to be mistranslated. Conversely translating the genome from letter-space

into color-space leads to any given reference subsequence no longer being unique, as

a string of colors can code for several di�erent letter sequences, depending on the

preceding base pair. To solve these issues, SHRiMP uses a dynamic programming

approach to align all four possible translations of the read to the genome simul-

tanously. Moving from one translation to another mid-read is allowed by paying the

�crossover� cost, which is equal to the penalty for a sequencing error.

As the �nal step after aligning all the reads, SHRiMP2 calculates mapping con�dence

statistics for every read. These statistics measure the probability that the read

aligned to certain position by chance and the probability that the read was generated

by the genome at that position while taking into account observed variations and

error rates. For paired-end data, SHRiMP2 also calculates the probabilities that

the alignment locations of the mates were paired by chance by using the observed

distribution of insert sizes in the library.

4.3 SpliceAligner

SpliceAligner is the software I implemented as part of the thesis work. In this section

I will �rst give a general overview of the software, then describe the algorithms used

in more detail in Section 4.3.1 and the implementation details in Section 4.3.2.

SpliceAligner's approach is based on splitting the reads into subsegments and at-

tempting to map them, but it takes a slightly di�erent approach than SpliceMap,

MapSplice and SOAPsplice. SpliceAligner's algorithm has three main parts: (i)

mapping full reads and �nding seeds, (ii) mapping spliced reads and (iii) creating

junctions and using them to map yet unmapped segments (Figure 18). SpliceAligner

also o�ers quality controls such as trimming the reads as pre-processing, and various

�ltering criteria as post-processing.

In the �rst phase, SpliceAligner, like Tophat and SOAPsplice, attempts to map the

reads fully to the reference genome. Reads that failed to map fully are then recur-

sively split into smaller segments, till one or more segments map, or the minimum

segment size threshold is reached.

In the second phase, aligned segments, or seeds, are extended base by base until the

31

Figure 18: SpliceAligner's work�ow. Reads are �rst mapped wholly in the reference,

then unmapped reads are split into segments (seeds), seeds mapped to the reference,

extended maximally and then the remaining segments are searched for in the limited

range. Extension and remaining segment search are repeated as many times as

necessary. After alignment phase, junctions are inferred from spliced alignments,

and the junctions are then used to �ne-tune alignments.

�rst mismatch (the current implementation does not support indels) is encountered

and the extended mapping is saved for next phase. The extension is then continued

until the error threshold is reached, and this alignment is saved as well. SpliceAligner

also examines the sequence near the extension stop points to determine additional

splice site candidates using canonical dinucleotides.

After extension, SpliceAligner attempts to map the remaining segment. If the seg-

ment does not map fully, it is split and the subsegment closest to the aligned part

is used for attempting a new alignment. Remaining segment is split into smaller

pieces until subsegment either maps or is too short to map reliably. If the smallest

subsegment of acceptable length did not map, the alignment candidate is discarded.

The mapped subsegment is then extended as above, and the process is repeated till

32

either the whole read is mapped or the remaining segment(s) are too short. This

approach allows SpliceAligner to �nd an alignment consisting of arbitrarily many

segments, as long as all the middle segments are su�ciently long.

SpliceAligner �lters alignment candidates after every limited range query to pre-

vent the number of candidates from growing too large with long (> 150 bp) reads.

Alignments that have canonical dinucleotides at the splice site are preferred. If no

alignments for the given read have canonical dinucleotides at the splice site, then

all the candidates are accepted.

In the third phase, SpliceAligner attempts to create a list of the supported junctions.

The reads with too short segments at the ends that were saved in the previous phase

are then compared to the junctions. If the border of the extended seed matches one

side of the junction, the short segment is matched against the sequence on the other

side of the junction. If the total Hamming distance for the alignment candidate is

less than the error threshold, the alignment is adjusted to include the mapping of

the segment.

4.3.1 Algorithms

In this section I will describe the algorithms for two of the main parts of SpliceAligner,

limited range search and junction inference, in detail.

While SpliceAligner's strategy for searching for spliced reads might seem similar

to SpliceMap and SOAPsplice, there are major di�erences in the search for the

remaining segment after a part of the alignment is anchored via seed search. Whereas

SpliceMap uses a genome-wide hash table and SOAPsplice searches for the segment

in the whole index, SpliceAligner uses a novel limited range BWT-transformed index

collection created by concatenating the chromosomes, splitting the result into pieces

that overlap by read length or more, and creating an index for each piece (Figure

19). The overlap in the indexes makes sure that no alignment will be missed because

it spans the breakpoint between indexes.

Two bit vectors that support rank and select operations in constant time are used

in navigating the indexes, one with 1-bit set at the start of each index within the

concatenation and one with 1-bit set at the start of each chromosome. For a bit vec-

tor B, operation rank-1(B, pos) gives the number of 1-bits occurring in B[0, ..., pos],

and operation select-1(B, n) gives the position of the nth 1-bit. The pseudocode for

navigating the indexes is shown in Algorithm 1 and Algorithm 2. An example of

33

1) Concatenate chromosomes

2) Cut concatenation to pieces

3) Burrows-Wheeler transform

 each piece into index

Figure 19: Creation of limited range index collection.

navigating the indexes is shown in Figure 20.

Algorithm 1 Map chromosome and genomic position to index
Input: Chromosome chrom and position in genomic coordinates pos

Output: Number of index

Require: Bit vector of chromosome starts in concatenation of chromosomes chrom-

starts

Require: Bit vector of index start positions in concatenation of chromosomes index-

starts

Require: List of the ordering of the chromosomes in the concatenation chrom-order

chrom-index = chrom-order.index(chrom)

abs-loc = chrom-starts.select-1(chrom-index) + pos

return index-starts.rank-1(abs-loc) - 1

By default SpliceAligner limits the search for the remaining segment to range of

three indexes. The search is progressive, i.e. SpliceAligner looks �rst in the closest

index, and only if there was no match found will it continue on to the next index.

In the junction inference phase, SpliceAligner �rst creates a chromosome-wide cov-

erage table for each chromosome, and then matches all spliced alignments to the

34

Algorithm 2 Map position in index to chromosome and genomic position
Input: Index number index-number and position within index index-pos

Output: Chromosome and position in genomic coordinates

Require: Bit vector of chromosome starts in concatenation of chromosomes chrom-

starts

Require: Bit vector of index start positions in concatenation of chromosomes index-

starts

Require: List of the ordering of the chromosomes in the concatenation chrom-order

abs-loc = index-starts,select-1(index-number) + index-pos

chromosome = chrom-order[chrom-starts.rank-1(abs-loc)]

genomic-pos = abs-loc - chrom-starts.select-1(chrom-order.index(chromosome))

return chromosome, genomic-pos

coverage table to infer the junctions (Figure 21). For a junction candidate to qualify,

it must have a certain number of bases covered in the �anking exons and optionally

have certain number of reads spanning the junction.

4.3.2 Implementation details

The current implementation of SpliceAligner uses readaligner [Mäk10] as its core

mapper.

For the seeding phase I followed the example of MapSplice's recommendation of

18-25 bp long segments and set the minimum segment size threshold default to 25

bp.

For the limited range search, following the example of the other software I set the

maximum range default to be 300,000 bp. This equals to each index covering 100,000

bp by default. As there are 4l di�erent combinations for a sequence of length l,

excluding repetitive regions, sequences at least 9 bp long are likely to map uniquely

within three indexes (49 = 262, 144bp), which sets the minimum segment size for

the limited range search to 9 bp.

For the junction inference phase I set the default requirements for junction candidate

to be accepted to 20 bp for the number of bases covered on each side and one read

for the number of spanning reads.

35

Figure 20: Navigating SpliceAligner's limited range indexes for �nding the remaining

segment.

36

Figure 21: Inferring the junctions in SpliceAligner. First all reads are used to create

chromosome wide coverage table. Each spliced read is then aligned to the coverage

table to �nd the junction candidates. A junction candidate must have a su�cient

number of spanning reads as well as a su�cient number of bases covered on each

side to be accepted.

37

5 Results

For analyzing the performance of the chosen short read mapping software, I used

sixteen simulated data sets and one data set from a real RNA-seq experiment (Cal-

tech RNA-Seq track from the ENCODE project, NCBI SRA accession number

SRR065504).

Simulated data sets were created from all the transcripts in chromosome 2 that

were at least one kilobase long. Following the specs of Illumina HiSeq and MiSeq

sequencers, single-end and paired-end data sets were created for read lengths of 50,

100, 150 and 250 bp. For every read length and mode, one data set was created

with no sequencing errors and one data set was created using 1% error rate in calling

each base. Single-end data sets consisted of one million reads and paired-end data

sets of 2x one million reads.

For the simulated data, I measured the running times of all the tools as well as

calculated the number of uniquely mapped reads, the number of multimapped reads

(i.e. reads that aligned to multiple locations) and the number of unmapped reads

(i.e. reads that failed to align anywhere). Then I scored all the alignments given

by each tool based on the predicted chromosome, strand, start and end locations,

and predicted splice sites. First I converted all the SAM/BAM alignment �les the

tools outputted to BED format (see Appendix 1 for detailed descriptions of the

�le formats). For uniquely mapping reads I de�ned perfect match as the alignment

BED line matching exactly with the ground truth, and fuzzy match as matching

the chromosome, strand, and start and end locations of the alignment to the ground

truth. Block number, block sizes and block starts did not need to match to qualify as

a fuzzy match, that is, the splice site location could be approximate. By de�nition,

every perfect match also counts as a fuzzy match. For reads that mapped to multiple

locations, I de�ned perfect match for multimap as one of the alignments matching

the ground truth perfectly, and fuzzy match for multimap as one or more of the

alignments matching chromosome, strand, and start and end locations of ground

truth.

Alignment �les from all tools were given to Traph [TKRM13b], a transcript predic-

tion tool created by our group7.

Following the example of Tomescu et al. [TKRM13b, TKRM13a], to compare the

predicted transcripts to the annotated transcripts I extracted the corresponding

7Genome-scale Algorithmics, Department of Computer Science, University of Helsinki

38

sequences and created a bipartite graph with annotated transcripts on one side and

the predicted transcripts on the other side. It should be noted that I extracted all

the sequences for the comparison from the forward strand for both annotated and

predicted transcripts, regardless of whether the annotated transcript was in forward

or reverse strand, because not all the tools use the SAM format splice junction tags

(XS:A tags) required to infer the strand in the transcript prediction.

As done in [TKRM13a], the edge weights in the bipartite graph are a combined

measure of sequence dissimilarity and relative expression di�erence. Sequence dis-

similarity between a true transcript Ti and a predicted transcript Pj is the edit

distance between Ti and Pj divided by max(|Ti|, |Pj|), and relative expression dif-

ference between the expression level of true transcript e(Ti) and the expression level

of predicted transcript e(Pj) is |e(Ti) − e(Pj)|/e(Ti). Computing minimal weight

perfect matching for this graph �nds the best pairs of annotated and predicted

transcripts. Pairs with sequence dissimilarity and relative expression di�erence un-

der given threshold are considered to be true positives. The remaining sequences

are considered false positives or false negatives, depending on which side of the

graph they were. I then calculated f-score for the predicted transcripts to see if the

di�erences in the alignments between the tools a�ect transcript prediction accuracy.

F-score, or f-measure, is the harmonic mean of precision and recall, and has been

used as the measure for the goodness of the model [LDH+12, LFJ11, TKRM13b].

f-score = 2× precision× recall
precision+ recall

Precision is the number of correctly predicted transcripts out of all the predicted

transcripts (TP
TP+FP

), and recall (also known as sensitivity) is the number of correctly

predicted transcripts out of all the annotated transcripts (TP
TP+FN

).

The real RNA-seq data set consisted of 50 million 75 bp paired-end reads from

human embryonic stem cells. Without the ground truth, alignment positions cannot

be veri�ed, therefore for the real data I calculated the number of reads the tools

gave the same alignment for, as well as the total number of reads each tool aligned.

I also measured the running time and RAM required by each tool.

Unless noted otherwise, all the tools were ran with default parameters. Tophat

allows a total of two mismatches or indels for the whole read, whereas SpliceAligner

allows two mismatches but no indels. SOAPsplice accepts three mismatches or two

indels for a segment, MapSplice allows for one mismatch in the �rst or last segment

of the read and two in each of the middle segments, and SpliceMap one mismatch

39

per segment or two mismatches in a read without splice junction. SHRiMP2 does

not set a threshold for the number of mismatches or indels but instead uses a scoring

scheme featuring matches, mismatches and gaps.

SHRiMP2 index was split to three parts beforehand to allow it to �t to RAM, as I

did not have a machine with 48 GB of RAM available, and the reads were mapped

against the part indexes sequentially.

5.1 Simulated data

As the running time di�erences for the simulated data between no error and 1% error

rate cases were under 10%, I calculated the average running time in CPU hours for

each tool, read length and mode (single- or paired-end). The running times are

shown in Table 1. SOAPsplice failed to run on all the 250 bp data sets, and Tophat

on 250 bp paired-end data was terminated after running for longer than 100 CPU

hours.

With 50 bp long reads, SOAPsplice was the fastest of the tools, but MapSplice,

SpliceMap and Tophat were not far behind. As the read length increased, running

times of SOAPsplice and Tophat increased faster than MapSplice's and SpliceMap's.

Tophat and SOAPsplice especially had problems with 250 bp long reads. SOAPsplice

was unable to run on both single-end and paired-end 250 bp data sets, and Tophat

took approximately 43 CPU hours to process the single-end reads and over 100

CPU hours before the process was terminated for the paired-end reads. As the test

data sets were only one million and two million reads for single-end and paired-end

respectively, and Illumina MiSeq system produces 24-50 million paired-end reads

that pass the quality �lter (depending on the reagent kit), Tophat's running time

for a real RNA-seq data set of 250 bp paired-end reads would be over 1200 CPU

hours, or approximately 25 days running on dual-core system, at minimum.

Of the su�x-tree-based tools, my SpliceAligner was the slowest in the 50, 100 and 150

bp cases, as well as nearly ten times slower than SpliceMap and MapSplice on the 250

bp cases. This grouping leads me to suspect that the di�erences in the running times

are at least partially caused by the underlying core aligners having di�erent running

speeds. Because readaligner [Mäk10] faithfully solves the k-mismatches problem

while Bowtie [LTPS09] uses various speed-up heuristics, readaligner is much slower

when using the SpliceAligner default parameter of two mismatches.

As expected of a hash table -based approach, SHRiMP2 was by far the slowest of

40

Table 1: Running times on simulated data sets of one million single-end and two

million paired-end reads (average CPU hours between no error and 1% error rate

cases)
Tophat SpliceMap MapSplice SOAPsplice SHRiMP2 SpliceAligner

Single-end

50 bp 0.29 0.31 0.18 0.12 1.73 0.70

100 bp 0.61 0.49 0.32 0.55 5.10 2.37

150 bp 1.05 0.69 0.39 1.42 11.04 3.95

250 bp 42.81 0.95 0.56 � 37.38 8.98

Paired-end

50 bp 0.65 0.42 0.41 0.32 3.43 1.74

100 bp 1.50 0.78 0.64 1.23 9.95 3.07

150 bp 2.52 1.17 0.83 3.02 21.58 5.87

250 bp > 100 1.82 1.14 � 74.75 15.47

all the tools in all categories. Having to split the index into three pieces to �t in the

RAM, and therefore do the alignment process three times might add some overhead,

but as the local alignment part of the query is signi�cantly slower than matching

the seeds to the hash table, this should not a�ect the running time signi�cantly.

From the alignment �les given by each tool, I calculated the number of uniquely

mapped reads, multimapped reads and unmapped reads for all the data sets (shown

in Table 2 and Table 3). It should be noted that while the results can be compared

in the no sequencing error cases, they are not directly comparable in the 1% error

rate cases because the tools accept varying number of mismatches per read.

In the no sequencing errors cases MapSplice and Tophat had a very low number of

unmapped reads (under 2% in all the cases). The number was slightly higher in

the paired-end mode, which is probably caused by simulating poly-A tails in the

paired-end mode but not in the single-end mode, as a read containing mostly A's is

unlikely to map anywhere.

MapSplice, Tophat and also SOAPsplice showed little variation for the number of

unmapped reads as read length increased. On the contrary, the number of unmapped

reads increased sharply as read length increased with SpliceMap, SHRiMP2 and

SpliceAligner. With SpliceMap and SpliceAligner a possible reason could be the

preference toward choosing a larger aligned segment: if a large segment aligned

incorrectly, that is, the alignment could not be fully extended, a smaller segment

that would be required to �nd the correct location will not be searched for. The

description of the algorithms behind SHRiMP2 are too vague to hypothesize about

the reason for missing a larger portion of alignments with read length increasing.

41

Table 2: Percentage of uniquely mapped reads (QM), multimapped reads (MM) and

unmapped reads (UM) each tool reported for data set with no sequencing errors.
Single-end 50 bp Paired-end 50 bp

QM MM UM QM MM UM

Tophat 95.26% 4.03% 0.71% 95.28% 3.74% 0.98%

SpliceMap 89.93% 2.32% 7.75% 43.89% 0.94% 55.17%

MapSplice 96.33% 3.67% 0.00% 97.69% 1.47% 0.85%

SOAPsplice 96.69% 0.19% 3.12% 92.35% 0.20% 7.45%

SHRiMP2 80.53% 15.68% 3.79% 80.28% 16.07% 3.65%

SpliceAligner 90.20% 5.14% 4.66% 83.82% 3.77% 12.41%

Single-end 100 bp Paired-end 100 bp

QM MM UM QM MM UM

Tophat 97.06% 2.21% 0.73% 96.77% 1.93% 1.30%

SpliceMap 91.47% 2.78% 5.75% 44.94% 1.05% 54.01%

MapSplice 97.95% 2.05% 0.00% 99.24% 0.67% 0.09%

SOAPsplice 96.53% 0.52% 2.95% 94.46% 0.55% 4.99%

SHRiMP2 79.28% 13.20% 7.52% 78.87% 13.76% 7.37%

SpliceAligner 87.41% 5.31% 7.28% 83.82% 3.77% 12.41%

Single-end 150 bp Paired-end 150 bp

QM MM UM QM MM UM

Tophat 97.23% 1.73% 1.05% 96.88% 1.51% 1.61%

SpliceMap 83.67% 1.67% 14.66% 41.22% 0.66% 58.11%

MapSplice 98.43% 1.58% 0.00% 99.56% 0.39% 0.05%

SOAPsplice 96.41% 0.57% 3.02% 94.73% 0.59% 4.68%

SHRiMP2 74.97% 11.57% 13.46% 74.37% 12.31% 13.32%

SpliceAligner 83.98% 6.58% 9.45% 80.51% 5.24% 14.25%

Single-end 250 bp Paired-end 250 bp

QM MM UM QM MM UM

Tophat 96.81% 1.36% 1.82% � � �

SpliceMap 37.44% 0.35% 62.21% 17.84% 0.04% 82.12%

MapSplice 98.83% 1.17% 0.00% 99.69% 0.25% 0.06%

SOAPsplice � � � � � �

SHRiMP2 62.33% 9.30% 28.37% 60.55% 11.24% 28.21%

SpliceAligner 77.69% 8.99% 13.31% 74.95% 7.32% 17.74%

In addition, the number of unmapped reads for SpliceMap was many times higher for

the paired-end data than single-end data in 50, 100 and 150 bp cases. It is likely that

the simulated pair conditions somehow con�icted with SpliceMap's expectations.

The number of unmapped reads between single-end and paired-end data sets also

show a larger di�erence with SpliceAligner than the other four tools, but not to the

degree displayed by SpliceMap's alignments.

Except for SHRiMP2, all of the tools mapped the vast majority of the reads uniquely.

SHRiMP2 did slightly worse with this metric, but still mapped the majority of the

reads uniquely. However, it is interesting to note that the number of uniquely

mapped reads compared to the number of multimapped reads stayed approximately

the same for SpliceMap and SHRiMP2 across the di�erent read lengths, increased for

42

Table 3: Percentage of uniquely mapped reads (QM), multimapped reads (MM) and

unmapped reads (UM) each tool reported for data set with 1% base call error rate.

+ means the tool was ran with higher error threshold.
Single-end 50 bp Paired-end 50 bp

QM MM UM QM MM UM

Tophat 93.68% 3.93% 2.40% 95.28% 3.74% 0.98%

SpliceMap 85.80% 2.20% 12.00% 41.68% 0.97% 57.35%

MapSplice 96.38% 3.62% 0.00% 96.60% 1.55% 1.85%

SOAPsplice 95.45% 0.17% 4.39% 91.19% 0.20% 8.61%

SHRiMP2 80.56% 15.20% 4.24% 80.35% 15.57% 4.08%

SpliceAligner 88.55% 5.17% 6.28% 84.54% 2.77% 12.69%

Single-end 100 bp Paired-end 100 bp

QM MM UM QM MM UM

Tophat 88.86% 2.07% 9.08% 88.55% 1.79% 9.66%

SpliceMap 83.25% 2.43% 14.31% 40.77% 0.90% 58.33%

MapSplice 98.15% 1.85% 0.00% 99.20% 0.66% 0.15%

SOAPsplice 94.49% 0.38% 5.13% 92.82% 0.46% 6.72%

SHRiMP2 78.75% 12.79% 8.46% 78.48% 13.27% 8.25%

SpliceAligner 79.97% 4.93% 15.10% 68.45% 7.16% 24.39%

Single-end 150 bp Paired-end 150 bp

QM MM UM QM MM UM

Tophat 78.29% 1.41% 20.31% 77.84% 1.28% 20.88%

Tophat+ 94.52% 1.67% 3.82% 94.17% 1.50% 4.33%

SpliceMap 65.98% 1.20% 32.82% 32.46% 0.48% 67.06%

SpliceMap+ 78.73% 1.60% 19.66% 38.77% 0.64% 60.60%

MapSplice 98.69% 1.31% 0.00% 99.47% 0.40% 0.13%

SOAPsplice 91.53% 0.33% 8.14% 90.52% 0.40% 9.08%

SOAPsplice+ 95.06% 0.33% 4.61% 93.92% 0.40% 5.68%

SHRiMP2 74.00% 11.18% 14.82% 73.62% 11.75% 14.63%

SpliceAligner 67.57% 5.18% 27.25% 49.79% 11.36% 38.86%

SpliceAligner+ 75.35% 5.47% 19.18% 62.61% 8.94% 28.45%

Single-end 250 bp Paired-end 250 bp

QM MM UM QM MM UM

Tophat 52.56% 0.74% 46.71% � � �

Tophat+ 88.79% 1.21% 10.00% � � �

SpliceMap 19.42% 0.14% 80.44% 9.16% 0.01% 90.83%

SpliceMap+ 32.86% 0.31% 66.83% 15.62% 0.03% 84.36%

MapSplice 98.90% 1.10% 0.00% 99.62% 0.28% 0.10%

SOAPsplice � � � � � �

SOAPsplice+ � � � � � �

SHRiMP2 61.21% 8.96% 29.82% 60.22% 10.21% 29.56%

SpliceAligner 41.93% 4.64% 53.42% 25.38% 11.56% 63.07%

SpliceAligner+ 54.56% 5.50% 39.94% 36.79% 12.40% 50.81%

Tophat, MapSplice and SOAPsplice, but decreased for SpliceAligner. That is, con-

trary to the assumption that longer reads are easier to map uniquely, SpliceAligner

mapped more reads to multiple locations as the read length increased. However, it is

likely that these are not distinct genomic locations, but instead varying predictions

for the exact splice sites within the read.

43

Examining the results of the 1% error rate cases, it is clear that the default parameter

of two errors in the whole read is insu�cient for longer reads. While the number

of unmapped reads for 50 bp case (0.5 errors per read on average) are on the same

level as for the data with no sequencing errors and at a tolerable level of 15% or less

when the reads are 100 bp long (one error per read on average), for the 250 bp case

from 45% to 80% of the reads do not map for Tophat, SpliceMap and SpliceAligner.

This is unacceptable for most applications. However, Tophat performed well in the

sense that it mapped nearly as many reads as theoretically possible given the read

length and the default error parameters, whereas SpliceMap and SpliceAligner did

not. SOAPsplice and SHRiMP2 that allow more than two errors per read perform

better. MapSplice that only limits errors per segment (with each segment having

static length) is not a�ected by the increase in read length.

To test the limits of the software, I attempted to run Tophat, SpliceMap, SOAPsplice

and SpliceAligner for the 150 bp and 250 bp data sets with a higher number of errors

allowed. Documentation of SHRiMP2 is unclear on how to allow a higher number

of errors, so I could not attempt to run it with higher error tolerance.

SOAPsplice has hard limit of �ve mismatches or 3 bp gap for the error model, so

I used those parameters. SpliceMap can �nd at most two mismatches per 25 bp

segment, so I set the limit for segment mismatches to two and no limit for the total

number of mismatches in the read. For Tophat I set the maximum number of allowed

errors to �ve. This did not increase the running time signi�cantly, so it is likely that

the error tolerance parameters could be set higher. As with the default parameters,

Tophat could not �nish running on the 250 bp paired-end data set within 100 CPU

hours. SpliceAligner could only run with three mismatches at most without going

over the 100 CPU hours limit.

As expected, the number of mapped reads increased for all four tools when more

errors were allowed. Tophat and SOAPsplice reached roughly the same level of

mapped reads as with the 50 bp and 100 bp cases. SpliceMap did not map as many

reads as could have been expected from the amount of errors allowed. It is possible

that with high error tolerance SpliceMap mapped some of the seeds into too many

locations and therefore discarded those reads. SpliceAligner's performance also rose

slightly in this category, but three mismatches allowed seems to still be too strict

for longer reads.

As the plain number of mapped reads does not necessarily equate to good per-

formance, the next step was to investigate how correct the predicted alignments

44

Table 4: Correctness of predicted alignments for each tool for the data sets with no

sequencing errors. PMU = perfect match for uniquely mapped read, FMU = fuzzy

match for uniquely mapped read, PMM = perfect match for multimapped read,

FMM = fuzzy match for multimapped read. All the values are out of the number

of aligned reads. TC = total correct, percentage of total number of reads that was

mapped perfectly.
Single-end 50 bp Paired-end 50 bp

PMU FMU PMM FMM TC PMU FMU PMM FMM TC

Tophat 99.03% 99.05% 92.56% 92.59% 98.06% 98.49% 98.52% 84.10% 84.14% 96.98%

SpliceMap 96.73% 96.73% 95.99% 95.99% 89.22% 48.49% 48.49% 48.28% 48.28% 21.74%

MapSplice 97.11% 97.12% 93.22% 93.23% 96.96% 96.95% 96.97% 90.07% 90.07% 96.03%

SOAPsplice 90.30% 90.33% 88.08% 90.16% 87.48% 92.07% 92.09% 87.24% 89.40% 85.20%

SHRiMP2 83.91% 83.93% 86.93% 86.94% 81.21% 83.00% 83.02% 85.50% 85.52% 80.38%

SpliceAligner 95.05% 96.09% 90.40% 91.57% 90.38% 88.93% 93.14% 90.81% 94.45% 77.97%

Single-end 100 bp Paired-end 100 bp

PMU FMU PMM FMM TC PMU FMU PMM FMM TC

Tophat 99.30% 99.36% 96.03% 96.10% 98.51% 98.73% 98.79% 86.12% 86.24% 97.20%

SpliceMap 85.76% 85.77% 83.90% 83.91% 80.78% 42.81% 42.82% 41.87% 41.87% 19.68%

MapSplice 97.36% 97.41% 92.94% 92.97% 97.27% 96.13% 96.18% 93.23% 93.23% 96.02%

SOAPsplice 91.10% 91.22% 90.15% 91.54% 88.41% 91.47% 91.60% 90.11% 91.50% 86.90%

SHRiMP2 69.33% 69.36% 75.61% 75.63% 64.94% 67.77% 67.80% 74.43% 74.48% 63.70%

SpliceAligner 93.66% 96.01% 92.24% 94.80% 86.77% 88.93% 93.14% 90.81% 94.45% 77.97%

Single-end 150 bp Paired-end 150 bp

PMU FMU PMM FMM TC PMU FMU PMM FMM TC

Tophat 99.43% 99.50% 96.48% 96.67% 98.34% 98.85% 98.93% 88.42% 88.65% 97.10%

SpliceMap 86.21% 86.22% 84.85% 84.86% 73.55% 43.06% 43.07% 41.95% 41.96% 18.03%

MapSplice 97.02% 97.09% 91.14% 91.22% 96.92% 95.75% 95.83% 94.32% 94.32% 95.70%

SOAPsplice 32.32% 34.23% 91.47% 92.44% 31.68% 33.32% 35.24% 90.36% 91.37% 32.10%

SHRiMP2 61.86% 61.92% 69.90% 69.92% 54.47% 60.18% 60.23% 69.51% 69.57% 53.31%

SpliceAligner 92.60% 96.06% 89.24% 93.53% 83.63$ 87.60% 93.70% 88.93% 94.00% 75.19%

Single-end 250 bp Paired-end 250 bp

PMU FMU PMM FMM TC PMU FMU PMM FMM TC

Tophat 99.55% 99.65% 97.15% 97.29% 97.70% � � � � �

SpliceMap 85.91% 85.92% 53.15% 53.15% 32.35% 86.34% 86.35% 75.60% 75.60% 15.43%

MapSplice 95.53% 95.64% 84.32% 84.74% 95.39% 94.11% 94.23% 93.49% 93.51% 94.05%

SOAPsplice � � � � � � � � � �

SHRiMP2 63.24% 63.98% 68.79% 69.31% 45.82% 61.33% 62.00% 68.47% 69.92% 44.83%

SpliceAligner 90.89% 96.23% 85.26% 93.25% 78.28% 85.52% 94.47% 86.82% 94.69% 70.45%

were (see Table 4 and Table 5). I considered uniquely mapped and multimapped

reads separately for this comparison. For an uniquely mapped read, a perfect match

matches the ground truth perfectly, whereas a fuzzy match matches the ground truth

approximately, that is, the splice sites within the read do not need to be exact. For

multimapped read to be considered a perfect match, one of the alignments needs to

match the ground truth perfectly, and to be considered a fuzzy match, one or more

of the alignments need to ful�ll the criteria for fuzzy match.

45

Table 5: Correctness of predicted alignments for each tool for the data sets with

1% base call error rate ran with default parameters. PMU = perfect match for

uniquely mapped read, FMU = fuzzy match for uniquely mapped read, PMM =

perfect match for multimapped read, FMM = fuzzy match for multimapped read.

All the values are out of the number of aligned reads. TC = total correct, percentage

of total number of reads that was mapped perfectly. + means the tool was ran with

higher error threshold.
Single-end 50 bp Paired-end 50 bp

PMU FMU PMM FMM TC PMU FMU PMM FMM TC

Tophat 99.17% 99.20% 92.52% 92.54% 96.54% 98.70% 98.73% 84.58% 84.62% 95.55%

SpliceMap 97.06% 97.06% 96.07% 96.07% 85.39% 48.68% 48.68% 48.37% 48.37% 20.76%

MapSplice 95.98% 96.00% 91.61% 91.61% 95.82% 96.95% 96.96% 88.06% 88.06% 95.01%

SOAPsplice 90.46% 90.48% 88.97% 91.31% 86.49% 92.18% 92.24% 75.18% 84.56% 84.21%

SHRiMP2 84.36% 84.38% 86.92% 86.93% 81.17% 83.42% 83.43% 85.53% 85.55% 80.35%

SpliceAligner 95.45% 96.49% 90.62% 91.72% 89.21% 90.87% 92.79% 92.87% 94.54% 79.40%

Single-end 100 bp Paired-end 100 bp

PMU FMU PMM FMM TC PMU FMU PMM FMM TC

Tophat 99.47% 99.51% 96.45% 96.53% 90.38% 99.00% 99.06% 87.66% 87.77% 89.23%

SpliceMap 82.49% 82.50% 79.94% 79.94% 70.62% 41.18% 41.18% 39.74% 39.74% 17.15%

MapSplice 96.36% 96.40% 90.00% 90.01% 96.24% 95.47% 95.51% 93.58% 93.58% 95.31%

SOAPsplice 89.99% 90.09% 91.52% 93.51% 85.38% 90.02% 90.20% 79.84% 90.73% 83.92%

SHRiMP2 70.09% 70.13% 76.03% 76.05% 64.93% 68.51% 68.54% 74.69% 74.72% 63.68%

SpliceAligner 94.37% 96.88% 93.46% 95.78% 80.08% 87.82% 92.25% 92.74% 96.11% 66.75%

Single-end 150 bp Paired-end 150 bp

PMU FMU PMM FMM TC PMU FMU PMM FMM TC

Tophat 99.55% 99.61% 98.01% 98.12% 79.31% 99.16% 99.23% 87.65% 87.89% 78.31%

Tophat+ 98.50% 98.58% 92.55% 92.79% 94.64% 97.73% 97.82% 82.94% 83.17% 93.27%

SpliceMap 83.27% 83.28% 81.03% 81.03% 55.92% 41.58% 41.58% 39.70% 39.71% 13.69%

SpliceMap+ 83.56% 83.58% 80.79% 80.79% 67.09% 41.83% 41.84% 39.47% 39.48% 16.47%

MapSplice 95.48% 95.55% 85.07% 85.07% 95.34% 94.86% 94.92% 93.03% 93.03% 94.72%

SOAPsplice 69.60% 73.08% 93.07% 94.51% 64.01% 69.36% 73.01% 78.56% 92.89% 63.09%

SOAPsplice+ 70.10% 74.66% 93.01% 94.47% 66.95% 69.88% 74.64% 77.66% 92.81% 65.95%

SHRiMP2 62.92% 62.98% 70.67% 70.69% 54.46% 61.25% 61.30% 69.78% 69.83% 53.29%

SpliceAligner 93.38% 97.20% 91.03% 95.28% 67.81% 86.16% 92.62% 91.88% 96.54% 53.33%

SpliceAligner+ 93.68% 96.73% 91.75% 94.91% 75.61% 88.46% 94.05% 91.63% 96.09% 63.57%

Single-end 250 bp Paired-end 250 bp

PMU FMU PMM FMM TC PMU FMU PMM FMM TC

Tophat 99.60% 99.68% 96.29% 97.22% 53.05% � � � � �

Tophat+ 99.11% 99.20% 92.12% 92.29% 89.11% � � � � �

SpliceMap 83.64% 83.65% 47.35% 47.35% 16.31% 84.33% 84.33% 72.55% 72.55% 7.73%

SpliceMap+ 84.67% 84.68% 49.61% 49.61% 27.98% 85.15% 85.16% 71.93% 71.93% 13.32%

MapSplice 69.75% 69.79% 51.88% 51.88% 69.55% 69.77% 69.83% 85.37% 85.37% 69.74%

SOAPsplice � � � � � � � � � �

SOAPsplice+ � � � � � � � � � �

SHRiMP2 64.64% 65.38% 69.64% 70.16% 45.81% 62.96% 63.65% 67.55% 68.98% 44.82%

SpliceAligner 91.83% 97.63% 86.89% 95.70% 42.54% 85.41% 94.34% 90.32% 97.26% 32.11%

SpliceAligner+ 93.17% 97.45% 88.30% 95.12% 55.69% 87.8% 94.77% 91.37% 97.21% 43.37%

46

Tophat had by far the most correct predictions, with over 98.5% of the predicted

unique mappings being perfect matches and vast majority of the multimappings also

qualifying as a perfect match with all the data sets. There were only a fraction of

a percent more fuzzy matches than perfect matches, therefore the splice sites that

Tophat predicted were very accurate. Tophat also had either the highest or second

highest total number of correctly mapped reads (TC in the tables) with all the data

sets, as long as the given error parameters took the read length and error rate into

account.

None of the other tools had as consistent good performance as Tophat in this cat-

egory. MapSplice scored over 94% perfect matches for unique mappings and over

84% perfect matches for multimappings with all the data sets except 250 bp with

1% error rate, where the values sunk to 69% and 51% for single-end and 69% and

85% for paired-end, respectively. The results for MapSplice did not have signi�-

cant di�erence between perfect match and fuzzy match values either, pointing to

splice sites being predicted accurately as well. MapSplice shared the �rst place with

Tophat in the total number of correctly mapped reads.

For overall correctness, SpliceAligner ranked the third: over 90% of the unique map-

pings and over 85% of the multimappings quali�ed as perfect matches. In addition,

over 96% of the unique mappings and over 92% of the multimappings quali�ed as

fuzzy matches. These values point to SpliceAligner actually being more accurate in

its predictions than MapSplice when the exact splice site is not as important. Con-

sidering the fuzzy matches, SpliceAligner's performance was also consistent over all

the read lengths. As SpliceAligner could not be ran in a reasonable time with er-

ror parameters higher than three mismatches for the whole read, with longer reads

it could not map as many reads, and therefore fell behind on the total number of

correctly mapped reads.

SpliceMap started with excellent performance of approximately 96% of both uniquely

mapped and multimapped reads being perfect matches in the 50 bp single-end case,

but the performance dropped around 10% when read length increased to 100 bp. As

mentioned above, the simulated reads most likely somehow con�ict with the paired-

end assumptions of SpliceMap, as under half the alignments SpliceMap predicted in

the paired-end data sets quali�ed as even fuzzy matches.

SOAPsplice and SHRiMP2 also started with a decent to good performance with

short reads, but the percentage of the alignment predictions being correct sunk with

the read length increasing. SOAPsplice completely failed to run on the 250 bp data

47

sets. Combined with SpliceMap and SHRiMP2 mapping less of the longer reads,

the total number of correctly mapped reads also decreased sharply as read length

increased.

As a �nal test, I gave the alignment �les for 50 bp (with default parameters) and

150 bp (with higher error thresholds) single-end 1% error rate data sets from each

mapping software to transcript prediction tool Traph and calculated f-scores for the

predicted transcripts at various sequence dissimilarity and relative expression level

di�erence thresholds (see Figure 22 and Figure 23 for 3D plots, and Appendix 2 for

2D plots).

0 0.2 0.4 0.6 0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.1

0.2

0.3

0.4

relative expression
level di�erence

sequence dissimilarity

F
-m

ea
su
re

Tophat
SpliceMap
MapSplice
SOAPsplice
SHRiMP2

SpliceAligner

Figure 22: F-measure at di�erent sequence dissimilarity and relative expression level

di�erence thresholds for transcripts predicted from aligned 50 bp single-end reads

data set.

As could be hypothesized from the alignment accuracy, transcripts predicted from

the alignments of Tophat and MapSplice had the highest f-measure in both of the

cases. With 50 bp long reads the scores were near even at all thresholds, whereas

48

0 0.2 0.4 0.6 0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.1

0.2

0.3

0.4

0.5

relative expression
level di�erence

sequence dissimilarity

F
-m

ea
su
re

Tophat
SpliceMap
MapSplice
SOAPsplice
SHRiMP2

SpliceAligner

Figure 23: F-measure at di�erent sequence dissimilarity and relative expression level

di�erence thresholds for transcripts predicted from aligned 150 bp single-end reads

data set.

with 150 bp long reads Tophat was better at high relative expression level di�erences.

SOAPsplice and SpliceMap were slightly behind in the case of 50 bp long reads, with

the gap growing for the 150 bp case. However, SOAPsplice on the case of 50 bp

long reads and SpliceMap on both cases approached Tophat's and MapSplice's level

at higher sequence dissimilarity thresholds.

SHRiMP2 and SpliceAligner performed badly in this category. However, it should be

noted that because SHRiMP2 uses the mapping quality scores di�erently than Traph

had been designed for, I had to disable some of the multimapping handling heuristics

that were dependent on the mapping quality score to produce any transcripts for

these tests. Therefore the higher number of multimappings from SpliceAligner and

SHRiMP2 could have skewed the expression level estimates.

49

5.2 Real data

The running time and max memory usage of each tool, as well as the number of reads

mapped out of the 50 million reads, for the real RNA-seq data are shown in Figure 6.

Surprisingly the order of the tools from fastest to slowest on real data di�ers from

the order on 50 bp and 100 bp long simulated data sets. Whereas on simulated 50

bp long paired-end data SOAPsplice was the fastest and on simulated 100 bp long

paired-end data MapSplice was the fastest, on real data SpliceMap and Tophat were

much faster than MapSplice and SOAPsplice. SHRiMP2 and SpliceAligner stayed

behind, and their relative di�erences in the running times stayed approximately

same as with the simulated data. The di�erences between the real and simulated

data might have been caused by how the tools handle multiple chromosomes at the

same time, since the simulated data is created from a single chromosome.

Table 6: Running time (in CPU hours), RAM usage (in gigabytes) and the per-

centage of reads mapped for real RNA-seq experiment data consisting of 50 million

paired-end reads.
Runtime Max RAM % reads mapped

Tophat 21.9 3.4 74.9%

SpliceMap 15.1 3.2 59.8%

MapSplice 47.3 5.1 85.9%

SOAPsplice 58.6 5.4 69.8%

SHRiMP2 337.9 13.0 87.8%

SpliceAligner 108.2 9.3 35.0%

As the ground truth is not known for a real RNA-seq experiment, the alignment

positions cannot be veri�ed. However, some information can be gained by examining

the similarities and di�erences on the alignments between the tools. For all the tools

I calculated the number of alignments they agree on. Pairwise set intersections are

shown in Table 7, and some of the four-set Venn diagrams in Figure 24, Figure 25

and Figure 26.

As the criteria for the tools to agree on alignment(s) I de�ned that the set of align-

ments, whether it be a single alignment or multiple alignments, for a given read must

be exactly the same. This naturally causes some arti�cial di�erences, as some of the

tools use various heuristics to choose one from equally good alignment candidates,

whereas some report all the good candidates. With these criteria, there were a total

of 119,920,876 di�erent alignment sets for 50 million reads.

Tophat, MapSplice and SOAPsplice shared vast majority of their alignments, ap-

proximately 27.4 million reads out of 37.4 million (Tophat), 43.0 million (Map-

50

Table 7: The number of alignments shared between pairs of tools. Alignments

between two tools are considered shared either if for a given read they both output

the same unique alignment or exactly the same set of multiple alignments (sharing

some alignments within the set but not all is not su�cient). The numbers on the

diagonal from top left to bottom right show how many reads total each tool mapped.
Tophat SpliceMap MapSplice SOAPsplice SHRiMP2 SpliceAligner

Tophat 37,447,821 11,435,070 33,831,219 27,880,033 14,388,748 13,387,054

SpliceMap 11,435,070 29,911,890 11,760,019 11,028,572 6,594,841 10,305,087

MapSplice 33,831,219 11,760,019 42,965,528 29,553,257 15,658,513 13,224,874

SOAPsplice 27,880,033 11,028,572 29,553,257 34,914,840 15,018,971 12,442,911

SHRiMP2 14,388,748 6,594,841 15,658,513 15,018,971 43,878,802 6,894,268

SpliceAligner 13,387,054 10,305,087 13,224,874 12,442,911 6,894,268 17,493,880

Splice) and 34.9 million (SOAPsplice) had the same alignment for all three of the

tools. SpliceAligner only aligned approximately 17.5 million reads, but also vast

majority of those alignments were shared with Tophat, MapSplice and SOAPsplice.

SpliceMap and SHRiMP2 gave more di�erent alignments, as only roughly one third

to one half of alignments (counting from the smallest number of mapped reads

among the tools being compared) were shared with any other tool.

51

Figure 24: Shared alignments between the

four tools that aligned the most reads.

Figure 25: Shared alignments between the

four tools that aligned the least reads.
SHRiMP2

Figure 26: Shared alignments between two

tools that aligned the most reads and two

that aligned the least reads.

52

6 Conclusion

In this thesis I analyzed and compared the performance of six spliced read aligners,

Tophat, SpliceMap, MapSplice, SOAPsplice, SHRiMP2 and SpliceAligner, each with

their own approach to aligning split reads. Tophat creates exon �islands� from the

reads that map fully to the reference genome, then uses these islands to map the split

reads to the junctions. SpliceMap, SOAPsplice and SpliceAligner all split the reads

into pieces, attempt to align as large a piece as possible fully and then search for

the remaining segment(s). Implementation details for searching for the remaining

segment(s) vary between the tools. MapSplice uses a tag-alignment approach, where

each read is segmented to short segments, or �tags�, and tags that mapped intact

can be used to pinpoint the candidate positions for tags that are likely to contain a

splice junction. Whereas these �ve software use a su�x-tree-based core aligner to

map the segments, SHRiMP2 uses a hash table to locate k -mers from the reads in the

reference, and then uses Smith�Waterman algorithm to attempt a local alignment.

For performance comparison I used 16 simulated data sets created from genes in

human chromosome 2 and one real RNA-seq experiment data set. Following the

specs of Illumina HiSeq and MiSeq sequencing machines, I created both single-end

and paired-end data sets with read lengths of 50, 100, 150 and 250 bp. For each

read length and mode, I created two data sets: one without any errors and one

simulating 1% error rate for calling each base.

I evaluated the tools based on running time, number of reads mapped (uniquely

and multimappings) and alignment accuracy. In addition I gave the alignments

from each software to transcript prediction tool Traph, and measured correctness

of each set of predicted transcripts by calculating f-score with varying sequence

dissimilarity and relative expression di�erences allowed between the annotated and

predicted transcripts.

Tophat, MapSplice and SOAPsplice were all very fast in most cases and mapped

vast majority of the simulated reads uniquely in most cases as well. Tophat slowed

down signi�cantly when read length exceeded 150 bp, to the point of being near

unusable for 250 bp long paired-end reads. SOAPsplice failed to process both 250

bp long reads data sets.

For the data with 1% error rate Tophat and SOAPsplice ran with default parameters

naturally mapped less of the long reads, as their error tolerances were exceeded.

However, they mapped almost as many reads as theoretically possible for the given

53

read length and error parameters. As MapSplice allows 1-2 errors per segment and

the segments are a static length, it mapped 100% of the reads in all the cases with

the default parameters. When the error parameters of Tophat and SOAPsplice were

raised to a level more �t for the known error rate, they mapped nearly as many of

the long reads as the short reads.

Only Tophat kept a near perfect record on the alignments it gave being correct over

all the simulated data sets. SOAPsplice's performance dropped heavily when the

read length exceeded 100 bp. MapSplice did well with reads up to 150 bp, but only

69.8% of its unique alignments were correct with 250 bp long single-end reads with

1% error rate, compared to Tophat's 99%.

SpliceMap was not signi�cantly slower than the three top contenders, but it was

lacking in both the number of reads mapped (even with higher error parameters,

and especially in the paired-end cases that mapped less than half of the reads) and

the correctness of the given alignments for reads longer than 50 bp. SpliceAligner

su�ered from the smaller number of mapped reads at longer read lengths as well, but

the correctness of its alignments was high. Part of the problem with failing to align

as many longer reads than shorter reads might be because if a large seed segment

aligns incorrectly, a smaller seed segment will not be searched for. SpliceAligner

seemed to also have a minor issue with �nding the exact splice site, as it found

the exact splice site less often Tophat and MapSplice in all the cases, but found

the approximate correct alignment (where the splice site can be approximate) more

often than MapSplice.

Being a hash-based approach, SHRiMP2 was naturally many times slower than any

of the FM-index-based software. On the data with no sequencing errors SHRiMP2

generally mapped either the smallest or second smallest number of reads. On the

long reads with 1% error rate SHRiMP2 mapped more than Tophat, SpliceMap and

SpliceAligner when ran with default parameters, because it does not set limits to

the errors per read. But when the other tools were ran with more �tting error pa-

rameters, SHRiMP2 fell behind Tophat on the number of mapped reads. SHRiMP2

also had the highest number of multimapped reads, as well as the lowest number of

correct alignments for all single-end data sets and second lowest for all paired-end

data sets.

For the sets of transcripts predicted from the alignments of 50 bp long reads, f-

scores at all sequence dissimilarity and relative expression level di�erence thresholds

were near identical for Tophat and MapSplice. SOAPsplice was slightly behind at

54

low relative expression di�erence levels, with the gap growing toward high relative

expression di�erence and low sequence dissimilarity. With the sets of transcripts

predicted from the alignments of 150 bp long reads, Tophat and MapSplice had sim-

ilar f-scores at low relative expression di�erence levels, but Tophat was signi�cantly

better at high relative expression di�erences levels. SOAPsplice also did signi�cantly

worse on the transcripts predicted from 150 bp long reads.

Transcripts predicted from SpliceMap alignments were competitive on f-score with

Tophat, MapSplice and SOAPsplice on 50 bp long reads, but like SOAPsplice,

SpliceMap fell behind compared to Tophat and MapSplice on 150 bp long reads

at low sequence dissimilarity threshold. However, on 150 bp long reads SpliceMap

was better than SOAPsplice. Neither SpliceAligner nor SHRiMP2 did well in this

category, most likely because of their higher number of multimapped reads, as I had

to disable some of the multimapping heuristics of Traph to account for SHRiMP2

using SAM mapping quality score di�erently than the other tools.

Tophat holds well to its reputation of the most popular aligner on commonly used

50-100 bp long Illumina type reads because of its speed, high number of mapped

reads and the high accuracy of the alignments, combined with the ease of use. Based

on the tests on the simulated data Tophat is also the top choice for 150 bp long reads,

as long as the error parameters are set accordingly.

MapSplice and SOAPsplice would be good candidates for the top choice as well,

being at comparable level on speed, number of mapped reads and their accuracy. But

their many required parameters, and in SOAPsplice's case lacking documentation,

can be intimidating for a casual user. However, Tophat is not a good choice for

reads longer than 150 bp, as based on the simulated data, it would take over three

weeks to process a single 250 bp long reads data set produced by Illumina MiSeq on

a dual core machine. SOAPsplice also has problems with longer reads. This leaves

MapSplice, which is not a�ected by read length because its approach is based on

segmenting the reads to pieces with static length, as the top choice for reads longer

than 150 bp.

From the results of the experiments on both simulated and real data it is clear

that while my software SpliceAligner can be reasonably competitive in the overall

performance, it could use improvements on several areas. Two of the main concerns

are the running time and memory requirement. SpliceAligner is several times slower

than its FM-index -based competitors and requires over 3.5 GB more memory, for

a total of 9.3 GB required.

55

I attempted to address the running time problem by plugging in Bowtie as SpliceAligner's

core aligner, but creating the limited range index collection using Bowtie's index

building tool (bowtie-build) turned out to require over 250 GB of disk space for the

human genome. As for the memory requirement, in addition to the two indexes

(approximately 3 GB each), SpliceAligner reads the sequence of the whole genome

to memory when attempting to �nd exact splice sites. Therefore the memory re-

quirement could be dropped to the same level as MapSplice and SOAPsplice using

random access to the chromosome sequence �les.

Some of the smaller improvements for future work include attempting to address

the problem of a larger segment aligning incorrectly and �ne-tuning the splice site

detection.

7 Acknowledgments

I'd like to thank Antti Honkela and Veli Mäkinen for giving me the opportunity to

work in a research group, without which this thesis would not have been possible,

and for supervising the writing of the thesis. I'd also like to thank Niko Välimäki for

coding help when developing SpliceAligner, and Alexandru Tomescu, Simon Puglisi

and Esa Pitkänen for discussions and helpful comments during the writing process.

And �nally, thanks to Leena Salmela and Sirkka-Liisa Varvio for master's thesis

seminar and all the support during the MBI studies.

References

AGM+90 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J.,

Basic local alignment search tool. J. Mol. Biol., 215,3(1990), pages 403�

410. URL http://dx.doi.org/10.1016/S0022-2836(05)80360-2.

AH10 Anders, S. and Huber, W., Di�erential expression analysis for sequence

count data. Genome Biol., 11,10(2010), page R106. URL http://dx.

doi.org/10.1186/gb-2010-11-10-r106.

AJL+10 Au, K. F., Jiang, H., Lin, L., Xing, Y. and Wong, W. H., Detection of

splice junctions from paired-end RNA-seq data by SpliceMap. Nucleic

Acids Res., 38,14(2010), pages 4570�4578. URL http://dx.doi.org/

10.1093/nar/gkq211.

56

And10 Andrews, S., FASTQC. A quality control tool

for high throughput sequence data. URL

http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Ans09 Ansorge, W. J., Next-generation DNA sequencing techniques. N

Biotechnol, 25,4(2009), pages 195�203. URL http://dx.doi.org/10.

1016/j.nbt.2008.12.009.

BCZF12 Bonfert, T., Csaba, G., Zimmer, R. and Friedel, C. C., A context-based

approach to identify the most likely mapping for RNA-seq experiments.

BMC Bioinformatics, 13 Suppl 6, page S9. URL http://dx.doi.org/

10.1186/1471-2105-13-S6-S9.

CADC10 Costa, V., Angelini, C., De Feis, I. and Ciccodicola, A., Uncovering

the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol,

2010, page 853916. URL http://dx.doi.org/10.1155/2010/853916.

CCHD13 Casey, G., Conti, D., Haile, R. and Duggan, D., Next generation se-

quencing and a new era of medicine. Gut, 62,6(2013), pages 920�932.

URL http://dx.doi.org/10.1136/gutjnl-2011-301935.

CFZ+13 Chung, L. M., Ferguson, J. P., Zheng, W., Qian, F., Bruno, V.,

Montgomery, R. R. and Zhao, H., Di�erential expression analysis for

paired RNA-Seq data. BMC Bioinformatics, 14, page 110. URL

http://dx.doi.org/10.1186/1471-2105-14-110.

DDL+11 David, M., Dzamba, M., Lister, D., Ilie, L. and Brudno, M.,

SHRiMP2: sensitive yet practical SHort Read Mapping. Bioinformat-

ics, 27,7(2011), pages 1011�1012. URL http://dx.doi.org/10.1093/

bioinformatics/btr046.

DDM+12 Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mor-

tazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., Xue,

C., Marinov, G. K., Khatun, J., Williams, B. A., Zaleski, C., Ro-

zowsky, J., Röder, M., Kokocinski, F., Abdelhamid, R. F., Alioto, T.,

Antoshechkin, I., Baer, M. T., Bar, N. S., Batut, P., Bell, K., Bell,

I., Chakrabortty, S., Chen, X., Chrast, J., Curado, J., Derrien, T.,

Drenkow, J., Dumais, E., Dumais, J., Duttagupta, R., Falconnet, E.,

Fastuca, M., Fejes-Toth, K., Ferreira, P., Foissac, S., Fullwood, M. J.,

Gao, H., Gonzalez, D., Gordon, A., Gunawardena, H., Howald, C., Jha,

57

S., Johnson, R., Kapranov, P., King, B., Kingswood, C., Luo, O. J.,

Park, E., Persaud, K., Preall, J. B., Ribeca, P., Risk, B., Robyr, D.,

Sammeth, M., Scha�er, L., See, L.-H., Shahab, A., Skancke, J., Suzuki,

A. M., Takahashi, H., Tilgner, H., Trout, D., Walters, N., Wang, H.,

Wrobel, J., Yu, Y., Ruan, X., Hayashizaki, Y., Harrow, J., Gerstein, M.,

Hubbard, T., Reymond, A., Antonarakis, S. E., Hannon, G., Giddings,

M. C., Ruan, Y., Wold, B., Carninci, P., Guigó, R. and Gingeras, T. R.,

Landscape of transcription in human cells. Nature, 489,7414(2012),

pages 101�108. URL http://dx.doi.org/10.1038/nature11233.

EG00 Ewing, B. and Green, P., Analysis of expressed sequence tags indicates

35,000 human genes. Nat. Genet., 25,2(2000), pages 232�234. URL

http://dx.doi.org/10.1038/76115.

FC11 Fang, Z. and Cui, X., Design and validation issues in RNA-seq ex-

periments. Brief. Bioinform., 12,3(2011), pages 280�287. URL http:

//dx.doi.org/10.1093/bib/bbr004.

FM00 Ferragina, P. and Manzini, G., Opportunistic data structures with ap-

plications. Foundations of Computer Science, 2000. Proceedings. 41st

Annual Symposium on. IEEE, 2000, pages 390�398.

GFP+11 Grant, G. R., Farkas, M. H., Pizarro, A. D., Lahens, N. F., Schug,

J., Brunk, B. P., Stoeckert, C. J., Hogenesch, J. B. and Pierce, E. A.,

Comparative analysis of RNA-Seq alignment algorithms and the RNA-

Seq uni�ed mapper (RUM). Bioinformatics, 27,18(2011), pages 2518�

2528. URL http://dx.doi.org/10.1093/bioinformatics/btr427.

GGGT11 Garber, M., Grabherr, M. G., Guttman, M. and Trapnell, C., Compu-

tational methods for transcriptome annotation and quanti�cation us-

ing RNA-seq. Nat. Methods, 8,6(2011), pages 469�477. URL http:

//dx.doi.org/10.1038/nmeth.1613.

GHR12 Glaus, P., Honkela, A. and Rattray, M., Identifying di�erentially ex-

pressed transcripts from RNA-seq data with biological variation. Bioin-

formatics, 28,13(2012), pages 1721�1728. URL http://dx.doi.org/

10.1093/bioinformatics/bts260.

GHY+11 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson,

D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q.,

58

Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma,

F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N. and

Regev, A., Full-length transcriptome assembly from RNA-Seq data

without a reference genome. Nat Biotechnol, 29,7(2011), pages 644�

652. URL http://dx.doi.org/10.1038/nbt.1883.

Gle11 Glenn, T. C., Field guide to next-generation DNA sequencers. Molec-

ular Ecology Resources, 11,5(2011), pages 759�769.

GLJ+11 Ge, H., Liu, K., Juan, T., Fang, F., Newman, M. and Hoeck, W.,

FusionMap: detecting fusion genes from next-generation sequencing

data at base-pair resolution. Bioinformatics, 27,14(2011), pages 1922�

1928. URL http://dx.doi.org/10.1093/bioinformatics/btr310.

Gus97 Gus�eld, D., Algorithms on strings, trees and sequences: computer sci-

ence and computational biology. Cambridge University Press, 1997.

HBD10 Hansen, K. D., Brenner, S. E. and Dudoit, S., Biases in Illumina

transcriptome sequencing caused by random hexamer priming. Nu-

cleic Acids Res, 38,12(2010), page e131. URL http://dx.doi.org/

10.1093/nar/gkq224.

HIW12 Hansen, K. D., Irizarry, R. A. and Wu, Z., Removing technical vari-

ability in RNA-seq data using conditional quantile normalization. Bio-

statistics, 13,2(2012), pages 204�216. URL http://dx.doi.org/10.

1093/biostatistics/kxr054.

HMN09 Homer, N., Merriman, B. and Nelson, S. F., BFAST: an alignment tool

for large scale genome resequencing. PLoS One, 4,11(2009), page e7767.

URL http://dx.doi.org/10.1371/journal.pone.0007767.

HZL+11 Huang, S., Zhang, J., Li, R., Zhang, W., He, Z., Lam, T.-W., Peng,

Z. and Yiu, S.-M., SOAPsplice: Genome-wide ab initio detection of

splice junctions from RNA-Seq data. Front Genet, 2, page 46. URL

http://dx.doi.org/10.3389/fgene.2011.00046.

KLS12 Kvam, V. M., Liu, P. and Si, Y., A comparison of statistical methods

for detecting di�erentially expressed genes from RNA-seq data. Am J

Bot, 99,2(2012), pages 248�256. URL http://dx.doi.org/10.3732/

ajb.1100340.

59

KQGW12 Kogenaru, S., Qing, Y., Guo, Y. and Wang, N., RNA-seq and microar-

ray complement each other in transcriptome pro�ling. BMC Genomics,

13, page 629. URL http://dx.doi.org/10.1186/1471-2164-13-629.

LCSM11 Li, Y., Chien, J., Smith, D. I. and Ma, J., FusionHunter: identify-

ing fusion transcripts in cancer using paired-end RNA-seq. Bioinfor-

matics, 27,12(2011), pages 1708�1710. URL http://dx.doi.org/10.

1093/bioinformatics/btr265.

LD09 Li, H. and Durbin, R., Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics, 25,14(2009), pages 1754�

1760. URL http://dx.doi.org/10.1093/bioinformatics/btp324.

LD11 Li, B. and Dewey, C. N., RSEM: accurate transcript quanti�cation

from RNA-Seq data with or without a reference genome. BMC

Bioinformatics, 12, page 323. URL http://dx.doi.org/10.1186/

1471-2105-12-323.

LDH+12 Lin, Y.-Y., Dao, P., Hach, F., Bakhshi, M., Mo, F., Lapuk, A., Collins,

C. and Sahinalp, S., CLIIQ: Accurate comparative detection and quan-

ti�cation of expressed isoforms in a population. Proc Algorithms in

Bioinformatics - 12th International Workshop, WABI 2012, Volume

7534 of Lecture Notes in Computer Science, pages 178�189.

LFJ11 Li, W., Feng, J. and Jiang, T., IsoLasso: a LASSO regression approach

to RNA-Seq based transcriptome assembly. J Comput Biol, 18,11(2011),

pages 1693�1707. URL http://dx.doi.org/10.1089/cmb.2011.0171.

LH10 Li, H. and Homer, N., A survey of sequence alignment algorithms for

next-generation sequencing. Brief Bioinform, 11,5(2010), pages 473�

483. URL http://dx.doi.org/10.1093/bib/bbq015.

LHP+00 Liang, F., Holt, I., Pertea, G., Karamycheva, S., Salzberg, S. L. and

Quackenbush, J., Gene index analysis of the human genome estimates

approximately 120,000 genes. Nat Genet, 25,2(2000), pages 239�240.

URL http://dx.doi.org/10.1038/76126.

LJB+11 Li, J. J., Jiang, C.-R., Brown, J. B., Huang, H. and Bickel, P. J.,

Sparse linear modeling of next-generation mRNA sequencing (RNA-

Seq) data for isoform discovery and abundance estimation. Proc. Natl.

60

Acad. Sci. U. S. A., 108,50(2011), pages 19867�19872. URL http:

//dx.doi.org/10.1073/pnas.1113972108.

LLL+11 Labaj, P. P., Leparc, G. G., Linggi, B. E., Markillie, L. M., Wiley,

H. S. and Kreil, D. P., Characterization and improvement of RNA-Seq

precision in quantitative transcript expression pro�ling. Bioinformat-

ics, 27,13(2011), pages i383�i391. URL http://dx.doi.org/10.1093/

bioinformatics/btr247.

LLL+12 Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L. and

Law, M., Comparison of next-generation sequencing systems. J Biomed

Biotechnol, 2012, page 251364. URL http://dx.doi.org/10.1155/

2012/251364.

LRD08 Li, H., Ruan, J. and Durbin, R., Mapping short DNA sequencing

reads and calling variants using mapping quality scores. Genome Res,

18,11(2008), pages 1851�1858. URL http://dx.doi.org/10.1101/gr.

078212.108.

LTPS09 Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L., Ultrafast

and memory-e�cient alignment of short DNA sequences to the human

genome. Genome Biol, 10,3(2009), page R25. URL http://dx.doi.

org/10.1186/gb-2009-10-3-r25.

Mar08 Mardis, E. R., Next-generation DNA sequencing methods. Annu Rev

Genomics Hum Genet, 9, pages 387�402. URL http://dx.doi.org/

10.1146/annurev.genom.9.081307.164359.

McG13 McGettigan, P. A., Transcriptomics in the RNA-seq era. Curr Opin

Chem Biol, 17,1(2013), pages 4�11. URL http://dx.doi.org/10.

1016/j.cbpa.2012.12.008.

Met10 Metzker, M. L., Sequencing technologies - the next generation. Nat Rev

Genet, 11,1(2010), pages 31�46. URL http://dx.doi.org/10.1038/

nrg2626.

MS08 Mehlhorn, K. and Sanders, P., Algorithms and data structures: The

basic toolbox. Springer, 2008.

Mäk10 Mäkinen, V., Välimäki, N., Laaksonen, A. and Katainen, R., Uni�ed

view of backward backtracking in short read mapping. T. Elomaa, H.

61

Mannila, and P. Orponen Eds., Algorithms and Applications (Ukkonen

Festschrift), Volume 6060 of Lecture Notes in Computer Science, pages

182�195.

MW11 Martin, J. A. and Wang, Z., Next-generation transcriptome assembly.

Nat Rev Genet, 12,10(2011), pages 671�682. URL http://dx.doi.

org/10.1038/nrg3068.

NPP+12 Nookaew, I., Papini, M., Pornputtapong, N., Scalcinati, G., Fagerberg,

L., Uhlén, M. and Nielsen, J., A comprehensive comparison of RNA-

Seq-based transcriptome analysis from reads to di�erential gene expres-

sion and cross-comparison with microarrays: a case study in Saccha-

romyces cerevisiae. Nucleic Acids Res, 40,20(2012), pages 10084�10097.

URL http://dx.doi.org/10.1093/nar/gks804.

OM11 Ozsolak, F. and Milos, P. M., RNA sequencing: advances, challenges

and opportunities. Nat Rev Genet, 12,2(2011), pages 87�98. URL

http://dx.doi.org/10.1038/nrg2934.

ORY10 Oshlack, A., Robinson, M. D. and Young, M. D., From RNA-seq reads

to di�erential expression results. Genome Biol, 11,12(2010), page 220.

URL http://dx.doi.org/10.1186/gb-2010-11-12-220.

PFFS13 Pandey, R. V., Franssen, S. U., Futschik, A. and Schlötterer, C., Allelic

imbalance metre (Allim), a new tool for measuring allele-speci�c gene

expression with RNA-seq data. Mol Ecol Resour, 13,4(2013), pages

740�745. URL http://dx.doi.org/10.1111/1755-0998.12110.

RAW+11 Rozowsky, J., Abyzov, A., Wang, J., Alves, P., Raha, D., Harmanci,

A., Leng, J., Bjornson, R., Kong, Y., Kitabayashi, N., Bhardwaj, N.,

Rubin, M., Snyder, M. and Gerstein, M., AlleleSeq: analysis of allele-

speci�c expression and binding in a network framework. Mol Syst Biol,

7, page 522. URL http://dx.doi.org/10.1038/msb.2011.54.

RJB+00 Roest Crollius, H., Jaillon, O., Bernot, A., Dasilva, C., Bouneau, L.,

Fischer, C., Fizames, C., Wincker, P., Brottier, P., Quétier, F., Saurin,

W. and Weissenbach, J., Estimate of human gene number provided

by genome-wide analysis using Tetraodon nigroviridis DNA sequence.

Nat. Genet., 25,2(2000), pages 235�238. URL http://dx.doi.org/10.

1038/76118.

62

RKL+13 Rapaport, F., Khanin, R., Liang, Y., Pirun, M., Krek, A., Zumbo,

P., Mason, C. E., Socci, N. D. and Betel, D., Comprehensive evalua-

tion of di�erential gene expression analysis methods for RNA-seq data.

Genome Biol, 14,9(2013), page R95. URL http://dx.doi.org/10.

1186/gb-2013-14-9-r95.

RLD+09 Rumble, S. M., Lacroute, P., Dalca, A. V., Fiume, M., Sidow, A. and

Brudno, M., SHRiMP: accurate mapping of short color-space reads.

PLoS Comput Biol, 5,5(2009), page e1000386. URL http://dx.doi.

org/10.1371/journal.pcbi.1000386.

RLSG12 Ribeca, P., Lacroix, V., Sammeth, M. and Guigo, R. Analysis of

RNA Transcripts by High-Throughput RNA Sequencing, pages 544�

554. Wiley-VCH Verlag GmbH & Co. KGaA, 2012. URL http:

//dx.doi.org/10.1002/9783527636778.ch50.

RMS10 Robinson, M. D., McCarthy, D. J. and Smyth, G. K., edgeR: a Bio-

conductor package for di�erential expression analysis of digital gene

expression data. Bioinformatics, 26,1(2010), pages 139�140. URL

http://dx.doi.org/10.1093/bioinformatics/btp616.

RPTP11 Roberts, A., Pimentel, H., Trapnell, C. and Pachter, L., Identi�cation

of novel transcripts in annotated genomes using RNA-seq. Bioinfor-

matics, 27,17(2011), pages 2325�2329. URL http://dx.doi.org/10.

1093/bioinformatics/btr355.

RSC+10 Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman,

S. D., Mungall, K., Lee, S., Okada, H. M., Qian, J. Q., Gri�th, M.,

Raymond, A., Thiessen, N., Cezard, T., Butter�eld, Y. S., Newsome,

R., Chan, S. K., She, R., Varhol, R., Kamoh, B., Prabhu, A.-L., Tam,

A., Zhao, Y., Moore, R. A., Hirst, M., Marra, M. A., Jones, S. J. M.,

Hoodless, P. A. and Birol, I., De novo assembly and analysis of RNA-

seq data. Nat Methods, 7,11(2010), pages 909�912. URL http://dx.

doi.org/10.1038/nmeth.1517.

RSM06 Rasmussen, K. R., Stoye, J. and Myers, E. W., E�cient q-gram �lters

for �nding all epsilon-matches over a given length. J Comput Biol,

13,2(2006), pages 296�308. URL http://dx.doi.org/10.1089/cmb.

2006.13.296.

63

RTD+11 Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L. and Pachter, L.,

Improving RNA-Seq expression estimates by correcting for fragment

bias. Genome Biol, 12,3(2011), page R22. URL http://dx.doi.org/

10.1186/gb-2011-12-3-r22.

SHP+10 Sboner, A., Habegger, L., P�ueger, D., Terry, S., Chen, D. Z., Ro-

zowsky, J. S., Tewari, A. K., Kitabayashi, N., Moss, B. J., Chee,

M. S., Demichelis, F., Rubin, M. A. and Gerstein, M. B., FusionSeq:

a modular framework for �nding gene fusions by analyzing paired-end

RNA-sequencing data. Genome Biol, 11,10(2010), page R104. URL

http://dx.doi.org/10.1186/gb-2010-11-10-r104.

SVMC09 Scott, C. P., VanWye, J., McDonald, M. D. and Crawford, D. L., Tech-

nical analysis of cDNA microarrays. PLoS One, 4,2(2009), page e4486.

URL http://dx.doi.org/10.1371/journal.pone.0004486.

SW81 Smith, T. F. and Waterman, M. S., Identi�cation of common molecular

subsequences. J Mol Biol, 147,1(1981), pages 195�197.

THS+13 Trapnell, C., Hendrickson, D. G., Sauvageau, M., Go�, L., Rinn, J. L.

and Pachter, L., Di�erential analysis of gene regulation at transcript

resolution with RNA-seq. Nat Biotechnol, 31,1(2013), pages 46�53.

URL http://dx.doi.org/10.1038/nbt.2450.

TKRM13a Tomescu, A. I., Kuosmanen, A., Rizzi, R. and Mäkinen, V., A novel

combinatorial method for estimating transcript expression with RNA-

Seq: Bounding the number of paths. Proc Algorithms in Bioinformatics

- 13th International Workshop, WABI 2013, Volume 8126 of Lecture

Notes in Computer Science, pages 85�98.

TKRM13b Tomescu, A. I., Kuosmanen, A., Rizzi, R. and Mäkinen, V., A novel

min-cost �ow method for estimating transcript expression with RNA-

Seq. BMC Bioinformatics, 14 Suppl 5, page S15. URL http://dx.

doi.org/10.1186/1471-2105-14-S5-S15.

TPS09 Trapnell, C., Pachter, L. and Salzberg, S. L., TopHat: discovering splice

junctions with RNA-Seq. Bioinformatics, 25,9(2009), pages 1105�1111.

URL http://dx.doi.org/10.1093/bioinformatics/btp120.

64

TSG+11 Turro, E., Su, S.-Y., Gonçalves, n., Coin, L. J. M., Richardson, S. and

Lewin, A., Haplotype and isoform speci�c expression estimation using

multi-mapping RNA-seq reads. Genome Biol, 12,2(2011), page R13.

URL http://dx.doi.org/10.1186/gb-2011-12-2-r13.

VDD09 Voelkerding, K. V., Dames, S. A. and Durtschi, J. D., Next-generation

sequencing: from basic research to diagnostics. Clin Chem, 55,4(2009),

pages 641�658. URL http://dx.doi.org/10.1373/clinchem.2008.

112789.

VHPV13 Van Verk, M. C., Hickman, R., Pieterse, C. M. J. and Van Wees,

S. C. M., RNA-Seq: revelation of the messengers. Trends Plant

Sci, 18,4(2013), pages 175�179. URL http://dx.doi.org/10.1016/

j.tplants.2013.02.001.

WGS09 Wang, Z., Gerstein, M. and Snyder, M., RNA-Seq: a revolutionary tool

for transcriptomics. Nat Rev Genet, 10,1(2009), pages 57�63. URL

http://dx.doi.org/10.1038/nrg2484.

WL09 Wilhelm, B. T. and Landry, J.-R., RNA-Seq � quantitative measure-

ment of expression through massively parallel RNA-sequencing. Meth-

ods, 48,3(2009), pages 249�257. URL http://dx.doi.org/10.1016/

j.ymeth.2009.03.016.

WN10 Wu, T. D. and Nacu, S., Fast and SNP-tolerant detection of com-

plex variants and splicing in short reads. Bioinformatics, 26,7(2010),

pages 873�881. URL http://dx.doi.org/10.1093/bioinformatics/

btq057.

WSZ+10 Wang, K., Singh, D., Zeng, Z., Coleman, S. J., Huang, Y., Savich,

G. L., He, X., Mieczkowski, P., Grimm, S. A., Perou, C. M., MacLeod,

J. N., Chiang, D. Y., Prins, J. F. and Liu, J., MapSplice: accurate

mapping of RNA-seq reads for splice junction discovery. Nucleic Acids

Res, 38,18(2010), page e178. URL http://dx.doi.org/10.1093/nar/

gkq622.

WWL12 Wang, L., Wang, S. and Li, W., RSeQC: quality control of RNA-

seq experiments. Bioinformatics, 28,16(2012), pages 2184�2185. URL

http://dx.doi.org/10.1093/bioinformatics/bts356.

65

WWZ10 Wang, X., Wu, Z. and Zhang, X., Isoform abundance inference provides

a more accurate estimation of gene expression levels in RNA-seq. J

Bioinform Comput Biol, 8 Suppl 1, pages 177�192.

YMW+12 Young, M. D., McCarthy, D. J., Wake�eld, M. J., Smyth, G. K., Osh-

lack, A. and Robinson, M. D., Di�erential expression for RNA se-

quencing (RNA-seq) data: Mapping, summarization, statistical anal-

ysis, and experimental design. In Bioinformatics for High Through-

put Sequencing, RodrÃguez-Ezpeleta, N., Hackenberg, M. and Aransay,

A. M., editors, Springer New York, 2012, pages 169�190, URL http:

//dx.doi.org/10.1007/978-1-4614-0782-9_10.

ZB08 Zerbino, D. R. and Birney, E., Velvet: algorithms for de novo short

read assembly using de Bruijn graphs. Genome Res, 18,5(2008), pages

821�829. URL http://dx.doi.org/10.1101/gr.074492.107.

Appendix 1. File formats

SAM format: SAM stands for Sequence Alignment/Map format. It is a tab-

delimited text format for storing alignment data. Many alignment software output

SAM format. It consists of 11 �elds:

1. QNAME: The name of the query template (i.e. read ID)

2. FLAG: Bitwise �ag containing for example the strand of the alignment and

whether the read is paired or not.

3. RNAME: Name of the reference sequence to which the read aligned.

4. POS: Leftmost mapping position (1-based).

5. MAPQ: Mapping quality

6. CIGAR: String that represents the alignment consisting of '=' (match), 'X'

(mismatch), 'M' (match or mismatch), 'I' (insertion), 'D' (deletion), 'N' (intron)

and 'S' and 'H' (soft and hard clip).

7. RNEXT: Name of the reference where mate aligned (not applicable for single-

end reads).

8. PNEXT: Leftmost mapping position where mate aligned (not applicable for

single-end reads).

9. TLEN: Observed template length. For paired-end reads, the distance between

leftmost mapping position and rightmost mapping position. 0 for single-end reads.

10. SEQ: The sequence.

11. QUAL: The basewise qualities of the sequence.

Example:

read.1 16 17 2094475 255 26M972N49M * 0 0

GGTTGATTCAAATTGCCAACTCTCTCATGATAGCTGGAAAGTCCAGGATA

*

BAM format: BAM format is the compressed, binary form of SAM. It can be

indexed to allow for fast retrieval of data at any given position.

BED format: BED �le is a tab-delimited text �le that de�nes a feature track (e.g.

gene, exon or junction). It consists of three required and nine optional �elds. The

required �elds are:

1. chrom: Name of the chromosome or sca�old.

2. chromStart: Starting position of the feature in the chromosome or sca�old

(0-based).

3. chromEnd: Ending position of the feature in the chromosome or sca�old.

Exclusive (i.e. if chromEnd=100, last base of the feature is 99.)

And the optional �elds are:

4. Name: Name of the feature.

5. Score: A score between 0 and 1000. De�nes the shade of the feature in IGV

genome browser.

6. Strand: The strand of the feature, + (forward), - (reverse) or . (unknown).

7. thickStart: Start position of thickly-drawn feature.

8. thickEnd: End position of thickly-drawn feature.

9. itemRGB: Display color of the feature in IGV genome browser in form of value

tuple (R, G, B).

10. blockCount: The number of blocks in the feature (e.g. exons).

11. blockSizes: Sizes of the blocks in the feature.

12. blockStarts: Starts of the blocks in the feature compared to the starting

position of the feature.

Example:

10 71923616 7193724 JUNC1 + 71923616 7193724 255,0,0

2 46,20 0,129

Appendix 2. Transcript prediction 2D plots

0.1 0.3 0.5 0.7 0.9
0

0.1

0.2

0.3

0.4

relative expression di�erence

F
-m

ea
su
re

Tophat

SpliceMap

MapSplice

SOAPsplice

SHRiMP2

SpliceAligner

(a) sequence dissimilarity threshold 0.1

0.1 0.3 0.5 0.7 0.9
0

0.1

0.2

0.3

0.4

relative expression di�erence

F
-m

ea
su
re

Tophat

SpliceMap

MapSplice

SOAPsplice

SHRiMP2

SpliceAligner

(b) sequence dissimilarity threshold 0.4

0.1 0.3 0.5 0.7 0.9
0

0.1

0.2

0.3

0.4

relative expression di�erence

F
-m

ea
su
re

Tophat

SpliceMap

MapSplice

SOAPsplice

SHRiMP2

SpliceAligner

(c) sequence dissimilarity threshold 0.7

0.1 0.3 0.5 0.7 0.9
0

0.1

0.2

0.3

0.4

relative expression di�erence

F
-m

ea
su
re

Tophat

SpliceMap

MapSplice

SOAPsplice

SHRiMP2

SpliceAligner

(d) sequence dissimilarity threshold 0.9

Figure 27: F-measure for the transcripts predicted from 50 bp single-end data at

various sequence dissimilarity levels. Corresponds to 3D plot Figure 22.

0.1 0.3 0.5 0.7 0.9
0

0.1

0.2

0.3

0.4

relative expression di�erence

F
-m

ea
su
re

Tophat

SpliceMap

MapSplice

SOAPsplice

SHRiMP2

SpliceAligner

(a) sequence dissimilarity threshold 0.1

0.1 0.3 0.5 0.7 0.9
0

0.1

0.2

0.3

0.4

relative expression di�erence

F
-m

ea
su
re

Tophat

SpliceMap

MapSplice

SOAPsplice

SHRiMP2

SpliceAligner

(b) sequence dissimilarity threshold 0.4

0.1 0.3 0.5 0.7 0.9
0

0.1

0.2

0.3

0.4

0.5

relative expression di�erence

F
-m

ea
su
re

Tophat

SpliceMap

MapSplice

SOAPsplice

SHRiMP2

SpliceAligner

(c) sequence dissimilarity threshold 0.7

0.1 0.3 0.5 0.7 0.9
0

0.1

0.2

0.3

0.4

0.5

relative expression di�erence

F
-m

ea
su
re

Tophat

SpliceMap

MapSplice

SOAPsplice

SHRiMP2

SpliceAligner

(d) sequence dissimilarity threshold 0.9

Figure 28: F-measure for the transcripts predicted from 150 bp single-end data at

various sequence dissimilarity levels. Corresponds to 3D plot Figure 23.

