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Abstract 

A typical decision problem in an environmental field includes a complex system with 

countless uncertain factors of both nature and human behavior. There are many 

stakeholders with conflicting objectives and a lot of decision alternatives, and results need 

to be communicated clearly to decision makers and stakeholders. Organized analysis is 

needed to tackle these challenges. In an ideal situation, we should analyze the objectives 

of every stakeholder and the responses from different parts of the ecosystem within one 

framework, which integrates the expertise and efforts of many different disciplines. 

Bayesian inference, especially the influence diagram, is a perfect tool to be used in such 

decision problems. 

The main contribution of this thesis is in developing methods for the modeling of 

uncertainties in environmental decision problems. The focus is on having more complete 

decision analyses where more uncertainties are realistically modeled. By including more 

stochastic variables in the analysis, the decision makers get a more realistic picture of the 

uncertainties involved and can account for them in the decision making. The thesis 

consists of five separate research articles, which all contribute to the different parts of the 

Bayesian decision process presented in this summary. The process is divided into four 

steps: (1.) building a decision model, (2.) data gathering and processing, (3.) using the 

model, and (4.) post analysis. The summary presents the research articles and their 

contributions and critically reviews the tools and methods needed in the process. 

The articles include a model for oil spill management, a spatial multispecies stock 

assessment model, a model for the stock assessment of data-poor species, a model to 

estimate uncertainties in environmental valuation and an influence diagram for value of 

information analysis. The methods used cover many aspects of the Bayesian decision 

process, outlining the problem, different ways to define prior distributions, utility 

functions, and finding maximum utility policies and value of information analysis. Hence, 

the tools used are diverse, too. In the models, I have used graphical Bayesian networks, 

numerical MCMC estimation, and Gaussian processes. 

In conclusion, the results found in this thesis are small but important steps toward 

better and more comprehensive Bayesian decision analyses in environmental and fisheries 

management. They show that significant uncertainties exist in many parts of the system. 

Another important factor was the cooperation of scientists from many different disciplines 

with a variety of backgrounds, which is needed in the modeling of complex environmental 

problems. 
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1 Introduction 

Decision analysis as a field of science was founded by Ronald Howard (1966). According 

to his definition it combines system analysis, decision theory, epistemic probability, and 

cognitive psychology. The aim of decision analysis is to provide guidance and information 

to decision makers and thus lead to better and more justified decisions. In complex 

systems there are no certain outcomes, thus there arose a need for a probabilistic approach 

to decision analysis. Howard Raiffa (1968) was the first to formally define Bayesian 

decision analysis, which consists of evaluation of different alternatives in terms of utilities 

and uncertainty. 

Why Bayesian decision analysis? To put it simply, Bayesian inference is about 

updating a prior belief in light of new evidence. It is learning from experience. It sounds 

like a very reasonable and logical thing to do. Every time we observe something new, our 

previous belief about that observation is updated. The more observations we make, the 

more certain we can be about the underlying unobserved phenomenon. In fact, Bayesian 

inference can be used to describe how infants learn (Gopnik, 2012), and to model a human 

decision process (Glymour, 2001). Especially suitable Bayesian inference is for situations 

where there is no data available or where we cannot do repeated experiments. Under the 

frequentist paradigm it is impossible to define probability without these. In the 

environmental field there are many cases where we are predicting something that has not 

happened ever before. We must resort to subjective probabilities. 

The history of Bayesian inference starts from the mid-18th century. It was then when 

Reverend Thomas Bayes came up with his famous rule. His findings were published 

posthumously in 1763 (Bayes & Price, 1763) and the theory was brought to its present 

form by Pierre-Simon Laplace (1774). Since then, Bayes’ rule—the theory of inverse 

probability—remained unused for a long time. At the first half of the 20th century it was 

found again and the theory was improved by several scientists (e.g., de Finetti, 1931; 

Ramsey, 1931; Savage, 1954). At the same time, it was used in urgent real-life problems 

that needed solving, where conventional methods could not be applied. Already in the late 

19th century, Russia and France used Bayes’ rule to improve the hit rate of their artillery, 

and at the beginning of the 20th century it was used to route telephone calls and set 

insurance rates. During and after World War II, Bayes’ rule was used in military 

operations to decipher coded messages and to optimize search patterns. That was a 

significant turning point and since then Bayesian inference has steadily gained more 

footholds in many disciplines (McGrayne, 2011). 

As history shows, Bayes’ rule has always been used to solve practical decision 

problems. However, the founder of both modern Bayesian decision theory and decision 

analysis is Howard Raiffa (Schlaifer, 1959; Raiffa & Schlaifer, 1961; Raiffa, 1968; Pratt et 

al., 1995). The early 1970s was the time when Bayesian decision theory started booming 

in many fields, including engineering, economics and medicine (Gremy et al., 1969; 

Benjamin, 1970; Martz & Waterman, 1978). Practical solutions were scarce, however; 

because of time-demanding computations, it was not possible to solve problems other than 

very simple ones. In 1980 the arrival of personal computers and the invention of 

discretized state Bayesian networks (Pearl, 1985) and efficient propagation algorithm to 

solve them (Pearl, 1986; Shafer et al., 1987; Lauritzen & Spiegelhalter, 1988; Pearl, 1988) 
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made it suddenly possible for everyone to use Bayes to solve complex real-life problems. 

The concept of influence diagrams made the theory even more suitable for decision 

analysis (Smith, 1988; Smith, 1989; Jensen et al., 1990). Soon after appeared the first 

user-friendly computer software implementation of influence diagrams, Hugin (Andersen 

et al., 1989). Around the same time, in the late 1980s, Gelfand and Smith (1990) had the 

idea to combine Markov chains (Metropolis & Ulam, 1949) with a Gibbs sampler (Geman 

& Geman, 1984) to simulate a joint posterior distribution of the Bayesian model, and the 

result was Markov Chain Monte Carlo (MCMC). This computationally highly demanding 

method became feasible with the development of computing power. BUGS (Bayesian 

inference Using Gibbs Sampling), the first software which utilized the method with 

Bayesian networks, became a total success (Lauritzen & Spiegelhalter, 1988; Thomas et 

al., 1992). Both of these innovations together, discretized Bayesian networks and MCMC 

simulation, paved the way for environmental scientists who were keen to use these new 

tools to solve many complex problems of natural resource management using decision 

analysis. 

In fisheries management science, the potential of Bayesian methods were already 

considered in the 1970s (Walters & Hilborn, 1976). The first applications emerged even 

before feasible tools became available (Ludwig & Walters, 1981; Mangel & Clark, 1983; 

Hilborn, 1985). The first simple decision-oriented management models appeared around 

the same time (Mendelssohn, 1980; Fried & Hilborn, 1988). Already in 1988, the first 

applications of influence diagrams for environmental management appeared (Varis & 

Kettunen, 1988). The number of applications started an exponential increase after the 

introduction of MCMC. Unlike in environmental management, in the fisheries field many 

users adopted MCMC simulation techniques (Hilborn & Walters, 1992), not graphical 

discrete state Bayesian networks, although there are some exceptions (e.g., Varis et al., 

1990; Kuikka et al., 1999; Hammond, 2004; Uusitalo et al., 2005; Uusitalo et al., 2012). 

Typically, the first influence diagrams were used to describe and solve quite complex 

problems like the effects of climate change and lake environment management (Kuikka, 

1998; Varis & Kuikka, 1999). The details of background processes were not important; 

they used discretized variables and relied heavily on expert judgment, whereas there was a 

thorough and very technical guide on Bayesian decision analysis in fisheries stock 

assessment already over 15 years ago (Punt & Hilborn, 1997). That guide concentrated in 

stock assessment only and in the meeting of management reference points, going into the 

details and using MCMC. Since then, a broader view of the problem has been adopted and 

terms like “holistic” (e.g., Espinoza-Tenorio et al., 2013), “ecosystem approach” (e.g., 

Garcia, 2003), “biologically realistic” (e.g., Kuparinen et al., 2012), “multi-objective” 

(e.g., Kim et al., 2003), “interdisciplinary” (e.g., Haapasaari, 2012), and “ecosystem 

services” (e.g., Landuyt et al., 2013) have become common words in the field. The 

advantages of the Bayesian approach are noticed increasingly among ecologists (Ellison, 

1996; Clark, 2005; Aguilera et al., 2011) and environmental scientists (Chen & Pollino, 

2012) though its full potential still remains unexploited (Aguilera et al., 2011). In 

environmental management, the spatial aspect has been recognized and utilized longer 

(e.g., Bannerjee et al., 2003; Latimer et al., 2006) but it is an increasing trend in fisheries 

management, too (e.g., Wyatt, 2003; Ciannelli et al., 2008). Recent developments in 

methods and computational power have also made them feasible in larger-scale 
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applications (Gelfand, 2012; Vanhatalo et al., 2012a). The view is getting broader all the 

time; whereas 15 years ago the stock assessment was considered the unit of decision 

analysis, now we should analyze in the same framework the objectives of all stakeholders 

and responses from every part of the ecosystem (Varkey et al., 2013). The problem is 

complex and there are a lot of details that could and should be modeled better and be 

included in decision analyses of environmental management. 

What makes the Bayesian approach especially suitable for the management of 

environment and its resources? Bayesian inference is based on inverse probability. It 

means that we observe something and want to know what the probability of the cause is. 

This makes the method suitable for modeling natural phenomena where we have only the 

observations but the effects of causes are unclear. Managing environmental resources 

involves many uncertain factors. If the goal is in extensive high-quality decision analysis, 

these uncertain details must be included in the model. To quantify these uncertainties, we 

often need subjective probabilities and expertise from many different fields such as 

biology, chemistry, environmental sciences, politics, law, human geography and 

economics (Adger et al., 2003). Combining different types of knowledge is where 

Bayesian models are at their best (Harwood & Stokes, 2003). Bayesian inference is perfect 

for decision analysis in cases which are complex and involve many uncertain factors, and 

where a multidisciplinary approach is needed. Problems are so complex that all causes and 

effects cannot be understood without organized analysis. To sum it up, a typical decision 

problem in the environmental field: involves a complex system with uncertain factors 

which need to be correctly quantified in one framework; involves many stakeholders; is 

multi-objective; has many decision alternatives; and delivers results that need to be 

communicated understandably to decision makers and other stakeholders. This is a perfect 

challenge to be tackled by Bayesian inference. 
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2 Aims of the study 

The problems of environmental management are complex and involve not only countless 

uncertainties about the nature but also uncertainties in the implementation of management 

actions. The normal hit phrases of Bayesian inference are that it allows an easy way to 

combine different kinds of information, learn from previous experiences, and take 

uncertainty into account in decisions and utilities. In reality, it is not so easy and 

straightforward to combine all that in one framework and find credible prior distributions, 

at least if we want to do it properly using Bayesian inference from the beginning and 

include most of the uncertainties. Of course, there is a common shortcut to use expert 

knowledge in hard parts of the analysis and thus avoid the modeling of true causalities and 

fine details behind the uncertain variables. The main contribution of this thesis is in 

developing methods for modeling those fine details of the system (articles II–IV). 

Decision making can be improved by bringing more detailed knowledge of the system and 

its uncertainties. The aim is in providing better estimates for important variables with 

realistic uncertainty to be used in decision making. Additionally, in decision making we 

must have utilities, and some of them are likely based on the value of environment itself—

it has no market value. There are not too many efforts to model the uncertainty of this 

most basic component of decision analysis using Bayesian inference. Paper IV tries to 

answer that problem. At the same time, when fine-tuning those details, someone must 

make the decisions. Therefore, papers I and V are more oriented toward applied research 

and scientific advice. 

The specific aims of each research article in this thesis were: 

I) To construct a Bayesian network to support decision making in oil spill management 

at the Gulf of Finland. The specific aim was to assess environmental damages in case of 

oil spills, and use scenarios to find optimal decisions. 

II) To model uncertainties related to acoustic surveys complemented with trawl 

surveys. The goal was to predict the abundance of three pelagic species using 

environmental explanatory variables and random spatial effects. 

III) To estimate the stock size of two commercially important species in the Greek 

archipelago. Total catch data was the only available information about these species. We 

needed to construct a biologically realistic age structured model based on prior 

information gathered from other areas and similar species. 

IV) To analyze data from a single binary choice contingent valuation method to 

produce an aggregated willingness-to-pay (WTP) estimate for reduction of possible future 

oil spill damages at the Gulf of Finland. Using the Bayesian approach we wanted to model 

the uncertainties in the estimate. 

V) To conduct the value of information analysis (VoI) to see if perfect knowledge on 

recruitment would increase the value of the Mauritanian octopus fishery. Additionally, we 

compared four different utility functions to see whether the aims of different stakeholders 

could be combined and what the best compromise for management actions would be. 

To better understand the problems of decision making and how the research articles are 

related to it, the following chapters will present the Bayesian decision analysis process in 

short. 
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3 Bayesian networks and decision analysis 

Bayesian decision analysis is normally coined with Bayesian networks and influence 

diagrams. In many cases, simple things are hidden behind fuzzy terminology. There is an 

abundance of different names that are used in relation to Bayesian networks: Bayes 

networks, (Bayesian) belief networks, hybrid Bayesian networks, object-oriented Bayesian 

networks, influence diagrams, dynamic Bayesian networks, and the list continues. Some 

of them are synonyms and some add a minor feature to basic theory. In context of this 

summary, I have used only the term “Bayesian network” and when I have wanted to 

emphasize that there are decision and/or utility variables present, I have used the term 

“influence diagram.” 

Bayesian networks consist of stochastic variables and arcs connecting them and 

indicating the direction of the causality. The network must be specified as a directed 

acyclic graph (DAG). Bayesian rule is used to update probabilities when information is 

inputted into the network (i.e., we have an observation on the variable). The difference 

between Bayesian networks and influence diagrams is that in the latter it is possible to add 

deterministic decision and utility variables that are illustrated differently than stochastic 

variables, thus allowing complete decision analysis (Figure 1). However, it is not in the 

scope of this thesis to go into details of calculation and theory behind Bayesian networks. 

The literature is abundant (e.g., Pearl, 1988; Jensen & Nielsen, 2007; Pearl, 2009; Smith, 

2010; Fenton & Neil, 2012). 

 

Figure 1. An influence diagram with all the basic components with their common shapes. The 

network illustrates a typical decision scenario in environmental resource management, where we 

have a system which has an output (a resource) we are interested in. Both the output and system 

have some utility, and especially the value of the system is uncertain. The system can be controlled 

with decisions in which implementation (control) is uncertain. The decision can come with a cost, 

which negatively affects the utility. The boxes with roman numerals around different parts of the 

network show the parts of decision analysis to which each of the articles of this thesis contributes. 
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3.1 Tools  

The problem with Bayesian networks is that in complex models using continuous 

variables the calculation of posterior distributions using Bayes’ rule becomes hard because 

there are no analytical solutions. We need methods to approximate posteriors. There are 

practically two alternatives, discretizing the distributions or numerical approximation of 

the posteriors. It is possible to implement a Bayesian model starting from scratch but it is 

more convenient to use some of the existing tools. In this chapter, I will represent the tools 

I have used in this thesis. The aim is not to provide an exhaustive review of all available 

tools, but a quick overview of what I have used and how. 

3.1.1  Graphical modeling 

After the implementation of efficient propagation algorithms for calculating discrete state 

Bayesian networks, there came a large variety of different software tools. The first ones 

were simple spreadsheet solutions but soon a variety of tools with graphical user interfaces 

emerged. Nowadays, there are both commercial (e.g., Hugin1, AgenaRisk2, Lumina 

Analytica3, BayesiaLab4) and open source alternatives (e.g., Genie5). There are also 

freeware versions of commercial tools with limited functionality. A good review of the 

eleven earlier tools was done by Varis (1997) and another ten years later by Uusitalo 

(2007), although new tools with improved features are emerging continuously. 

The propagation algorithm gives exact answers only with variables with discrete states. 

Each variable (node) has a conditional probability table, which defines the probability of 

each state of the variable given its parent node(s). With continuous variables, we must use 

discretized variables with classified states. Most graphical Bayesian network tools work 

only with stochastic discrete state variables, but some tools allow the use of deterministic 

variables and continuous variables. There is at least one tool (AgenaRisk) that allows 

specifying continuous distributions and discretizes them dynamically. Posteriors are 

discretized similarly to maximize information content. Another tool (Lumina Analytica) 

uses MCMC to simulate the posteriors of continuous variables. In conclusion, nowadays 

there are plenty of different graphical, easy-to-use Bayesian network tools from which to 

choose. They are the best tools starting experimentation with Bayesian decision analysis. 

In addition, they are useful in defining the problem field and later in the final decision 

making for collecting all the pieces of the problem and communicating the results. 

We used Hugin in the implementation of the Bayesian network in paper I. In paper V, 

Hugin was used to construct a discretized state Bayesian network and to learn the 

conditional probabilities from the outputs of a simulation model. Hugin was also used to 

                                                 

 
1 http://www.hugin.com 

2 http://www.agenarisk.com 

3 http://www.lumina.com 

4 http://www.bayesia.com 

5 http://genie.sis.pitt.edu 
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find the maximum utility policies. With the present version (Hugin Researcher 7.6) it was 

not possible to calculate VoI with multiple decision variables so that was done by hand. 

3.1.2  Numerical estimation 

In many models, tools based on the propagation algorithm with discrete states are 

insufficient. With the discretization of variables, we lose information and conditional 

probability tables can become very large. Also with very large networks having temporal 

or spatial dimensions, many graphical tools are probably not the best alternatives. The 

number of variables can grow very large, although recent developments in the features of 

graphical software tools that allow object-oriented designs and dynamic discretization 

have made them more feasible. However, if we want to use continuous variables and the 

posteriors cannot be solved analytically, instead of the discretization of variables we can 

simulate the joint posterior using MCMC (Gilks et al., 1995; Gelman et al., 2003). 

It is possible to implement necessary algorithms for MCMC in any programming 

language (e.g., Hilborn & Mangel, 1997). Fortunately, there are tools for that, so there is 

no need to go into the very details of the mathematics behind the Bayesian inference. 

Nowadays, many common statistical analysis tools like SAS6 and R7 have procedures and 

packages for MCMC and they can be used very easily without any deeper knowledge of 

the subject. However, maybe the most popular and oldest tool is BUGS. The success of 

BUGS is likely in that models can be specified both by drawing directed graphs and by a 

dialect of S language (Lunn et al., 2012). WinBUGS started in 1989 (the last version was 

in 2007) but further development is now focused on the open source version of the 

software OpenBUGS8 (Thomas et al., 2006). Functionalities and appearance are more or 

less the same. However, as WinBUGS is no longer updated, it is wise to use OpenBUGS. 

Although software has a graphical user interface (GUI) and quite a sophisticated 

environment for analysis and plotting, it is possible and quite common to use it from R. 

Many statisticians prefer this as they are accustomed to using R, and it offers a better 

environment for data management, analysis, and plotting (Kruschke, 2010). 

JAGS9 (Just Another Gibbs Sampler) is another implementation of MCMC to model 

Bayesian networks (Plummer, 2003). It has no graphical user interface but it uses a similar 

S dialect to BUGS. However, BUGS models do not directly work in JAGS and some 

manual adjustments are normally needed. JAGS is platform independent where 

OpenBUGS is not. It is programmed with C++ and Java compared with the outdated 

Object Pascal used in BUGS. That makes it easier for users to write their own extensions. 

Also, JAGS supports a 64-bit platform.  

Nowadays, there is an abundance of different sampling algorithms other than the 

original Gibbs sampler. For example, Hybrid Monte Carlo (HMC) (Duane et al., 1987) 

                                                 

 
6 http://www.sas.com 

7 http://www.r-project.org 

8 http://www.openbugs.info 

9 http://mcmc-jags.sourceforge.net 
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was used in paper II to simulate parameters that could not be solved analytically. Both 

OpenBUGS and JAGS implement many different algorithms and automatically assign the 

most suitable for each variable. 

A common term coined with models solved using MCMC is “hierarchical Bayesian 

model.” For some reason, it is not so widely used with graphical Bayesian network 

models. Actually almost all but the simplest Bayesian networks are hierarchical in a sense, 

so I do not see the point in emphasizing it. To my mind, a hierarchical model has different 

levels of hierarchies, where the first level is occupied by variables we are interested in 

(outcomes), then on the next level comes variables explaining these, on the third level 

variables explaining variables on the second level, and so on (Figure 2). The priors of the 

second- and higher-order variables are sometimes called hyperpriors, when on the first 

level of hierarchy they are referred to simply as priors. However, to my knowledge there is 

no standardized nomenclature and we must just live with very a diverse and sometimes 

erroneous use of terms. For another definition of hierarchical Bayesian model in 

ecological context see Clark (2005). 

Initially, all the models in papers II—IV were implemented with OpenBugs, but in the 

end, we ended up using JAGS in papers III and IV and the GPstuff package (see the next 

chapter) in paper II. OpenBUGS has more features, is better documented, and more user 

friendly, but it seems that especially in many stock assessment exercises, which include 

long repeated deterministic calculations, JAGS is superior in speed. 

 

Figure 2. A Bayesian network describing a model similar to that used in paper III. Unlike in the 

paper, the variables are arranged into hierarchies to clarify the concept of a hierarchical model. 

The outcome variables are on the lowest level. 
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3.1.3  Gaussian processes 

The problem of numerical estimation is that it is computationally demanding and solving 

complex models can take a considerable amount of time. That is why there is a continuous 

search for more efficient methods for solving complex Bayesian models with continuous 

variables. One of these methods is the Gaussian process. It can be used to define prior 

distributions for unknown functions in Bayesian models (Rasmussen & Williams, 2006). 

In addition to its speed, it is useful in nonparametric modeling and there are many possible 

uses for it in the environmental field. In fisheries science there are already several 

applications. For example, Sigourney et al. (2012) model the temporal variability of 

growth function with the Gaussian process and Munch et al. (2005) use it in stock-

recruitment analysis. The Gaussian process is especially suitable for spatial applications. 

There are examples from the spatiotemporal modeling of discards (Viana et al., 2012), the 

spatial prediction of bycatches (Aldrin et al., 2012), and distribution of stock or 

reproduction areas (Gutiérrez et al., 2011; Vanhatalo et al., 2012b). 

In paper II, we first fitted the spatial models (abundance, length, species composition) 

using the conditional autoregressive (CAR) method for spatial random effects and 

Bayesian kriging (i.e., spatial prediction) to predict over all grid cells. With this approach, 

to keep computation time reasonable, our grid had 203 cells with 20 x 20 km spatial 

resolution. For better spatial resolution, the same models were consequently fitted using 

Gaussian process with the GPStuff toolbox (Vanhatalo et al., 2012a) in MatLab10 for both 

spatial random effects and prediction. With this approach, we could use 8515 cells with 2 

x 2 km resolution. Gaussian process models have become very fast due to algorithmic 

advances (Vanhatalo, 2010); a great example is where a seemingly overdemanding 

computation task was resolved when researchers from different fields cooperated. 

The problem of Gaussian process is that at the moment there are not yet any user-

friendly software applications which would allow their usage by environmental scientists 

without a considerable mathematical background. Algorithms and calculations must be 

implemented by the researchers themselves. Another alternative is to use some package 

(e.g., GPStuff). As in all software, which is not properly tested and widely used, there is 

considerable probability for the presence of bugs, which may go unnoticed and lead to 

incorrect results. 

                                                 

 
10 http://www.mathworks.com 
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4 Bayesian decision analysis process 

There are a great variety of different descriptions for a Bayesian decision analysis process. 

Most of them are tailored to some specific field or problem. For example, see Punt and 

Hilborn (1997), Peterman and Anderson (1999) and McAllister et al. (1999) for fisheries 

management and Eleye‐Datubo et al. (2006) for oil spill management. However, 

essentially all of them contain the same steps. Here, I divide a Bayesian decision analysis 

process into the following four steps (Figure 3):  

1. building a model 

2. data gathering and processing 

3. using the model 

4. post analysis 

One important difference from conventional decision analysis is that here I have the 

building of the model before data gathering. In Bayesian inference, the variables, their 

causal dependencies, and priors are determined before looking at the data. The complexity 

of the problem is not dependent on available data and if the data is scarce, then we must 

rely more on priors. Additionally, I consider it reasonable to combine testing and usage of 

the model in a single step (3.), as especially in graphical Bayesian software tools, these 

tasks are done more or less simultaneously. 

Simplification of the problem is always necessary in any realistic environmental 

decision analysis. The boundaries of analysis are defined when building the model. 

Gathering data involves the collection and elicitation of prior information and the actual 

data used to update the model. It is important to notice that a Bayesian model can be used 

without any data (simulated or real). Without data it is still possible to use different 

scenarios and observe joint distributions of priors without updating. Using the model 

involves finding answers to the questions set in the first step and confirming that the 

model works coherently. Post analysis involves communicating results and finding future 

uses and parts that need improvement. These four steps are discussed in more detail in the 

following chapters. 

 

Figure 3. An illustration showing different steps and their connections in the decision analysis 

process. It is important to note that if there are problems or a need for improvement in steps 3 or 4 

we should go back in the process. 
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4.1 Building a decision model 

No matter what kind of decision analysis we are making and with what tools, it is good to 

first graphically define the problem. After the problem is defined, we need to select the 

most suitable tools for analysis. 

4.1.1  Defining a decision model 

Every decision analysis must begin by defining a decision problem. Especially important 

is to think about for whom we are doing the analysis. For example, the decision model of 

fisheries manager and fisherman are probably very different. The differences are seen in 

decision and utility variables, although otherwise the basic structure could be the same; 

both models share similar variables describing the status of the stock. However, even the 

causalities can be different and that is important to consider (Henriksen et al., 2007; 

Mäntyniemi et al., 2013). It is possible to construct several structurally different models 

and compare or combine results later on (Maxwell et al., 2006). For decision makers the 

objectives are normally quite clear, but a researcher seeking to give scientific advice 

should be aware of what the goals are and within which frames the decision is made. 

There may be conflict when a researcher, advisory in mind, has constructed a decision 

model for a situation that is useless in decision making or answers a wrong question (Liu 

et al., 2008). Of course, this problem arises only in applied research because academic 

research is free of outside influence. 

The definition of a decision model can be divided into four parts. First, we start by 

finding our objectives—what are the questions we need to answer? For example, what is 

the maximum sustainable yield of a fish stock? What oil-combating measures are the most 

efficient and worth investing in? These questions help in finding proper decision and 

utility variables in part 2. After the objectives and related utilities and decisions are clear, 

we must define the system and relevant variables in it (part 3). A model is always a 

compromise and the level of detail is dependent on how much resources can be put into 

development. However, the most important variables should be identified and included in 

the model. After all the relevant variables describing the system are collected, the 

causalities between them are defined (part 4). Using expert knowledge in the description 

of the system and definition of causalities is recommendable. 

1. Define the objective(s) of the analysis. 

2. Define decision variables and alternatives. 

3. Define relevant variables describing the system. 

4. Define causalities between the variables. 

In papers I and V I present decision models (although in paper I there are no utility 

variables) both looking at the problem from a resource manager’s point of view. In 

defining the relevant variables of paper I, I consulted the experts of both oil spill 

management and ecology. The final model structure was approved by the person in 

administrative charge of coordinating the oil spill recovery efforts of Finland. The 
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decision model in paper V combines different objectives of stakeholders and compares 

their utilities under different management scenarios and environmental hypotheses. 

4.1.2  Selecting methodology and tools 

It is very important first to define the decision problem and only after that decide what 

methodologies and tools are used. The complexity of the problem and amount of 

uncertainty are important things to consider when selecting proper tools. In some cases, a 

simple deterministic decision tree could do the work most efficiently. It is important to 

constantly check for new tools and solutions, and not stick to an old and comfortable one. 

A few days spent learning the secrets of a new tool could save weeks or even months of 

work; I have personal experience in that matter, when after weeks of fighting with 

convergence problems and error messages with BUGS, the model in paper IV ran 

immediately without problems in JAGS. 

In this thesis, we are interested only in Bayesian methods. Fortunately, it is very well 

suited to the environmental field, which is full of uncertainties. There are still a variety of 

tools to choose from and the choice is dependent on the complexity and type of problem. 

In problems where expert elicitation is needed, graphical Bayesian networks and influence 

diagrams are more easily communicated to experts. In addition, graphical tools have some 

inbuilt features that can cut down the amount of manual programming, such as VoI and 

other sensitivity analyses, finding optimal decisions and maximum utilities. Bayesian 

networks work well with binary, ordinary, and nominal variables, whereas with 

continuous variables MCMC is a logical choice. In complex cases it may be useful to 

divide the problem into submodels and analyze each of them separately using a suitable 

tool for that particular problem. Tools used in this thesis were presented in the previous 

section. 

4.2 Data gathering and processing 

In Bayesian decision analysis it is good to make a distinction between observed data and 

information and data gathered to form priors. Observed data should not affect our priors 

and should be looked at only after the priors are formed. Bayes’ rule is applied after 

observed data is inputted into the model. Especially in many risk assessment applications, 

where we are modeling something that has never happened before or that happens rarely, 

there is no observed data and the model is built based solely on prior information. Serious 

efforts should be put toward the gathering of all available data and information for priors. 

However, it is good to remember that while priors are important, reliable observed data is 

even more informative. Data gathering and observation programs should not be 

overlooked. That is the only way to observe changes in the system. 

The main contribution of the thesis is in this step of decision analysis. How do we 

attain more reliable priors for variables in the decision model? Papers II—IV are dedicated 

to this theme. Actually, paper III goes into very fine details of stock assessment and tries 
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to improve survey results that are used as indices to stock size. However, there may be 

significant uncertainties involved in these processes and they should transfer to the upper 

level and finally cumulate into the result of a decision model which is used in decision 

making or advice. In addition to observed data and prior information, information is 

needed to form utility functions, which are an essential part of the decision analysis. Paper 

IV is about accounting for uncertainty in environmental valuation, of which results are 

used as utilities in decision models. 

4.2.1  Prior information 

In principle, there are two options for prior information: non-informative or informative. 

Non-informative priors bring only vague information about a variable. The line between 

informative and non-informative is not always clear and terminology is not fully 

established. In this thesis the focus is on using the best possible and available information 

in forming prior distributions and non-informative priors are not discussed deeper (e.g. 

Berger & Bernardo, 1992). Weakly informative priors (i.e., very wide distributions) are 

needed, for example, in variance parameters of models (Gelman et al., 2003; Gelman, 

2006). Generally, fat-tailed distributions are favored as informative priors, as they are 

more robust to outliers and misspecification (Chen et al., 2000). According to the views of 

some, only non-informative priors should be used; in their minds, informative priors are 

distorted by the subjective beliefs of scientists (Walters & Ludwig, 1994). Thus it is 

important that elicitation is done carefully, whether distributions are from experts or 

literature. In the following chapters, I will discuss different methods for forming prior 

distributions. 

4.2.1.1 Expert elicitation 

Elicitation of probabilities from experts is not a simple task and requires careful design 

and expertise. There are many guidelines and protocols for the elicitation of expert 

knowledge (e.g. Meyer & Booker, 2001; O'Hagan et al., 2006). A good elicitation 

procedure should not be just a sequential order of steps but should have a feedback cycle 

where both elicitator and elicitee can adjust the probabilities. It is also recommended to 

use several experts. After the probabilities are elicited they should be validated somehow. 

A common procedure is to use scoring to adjust experts’ probabilities based on their 

previous performance and creditability. 

Expert elicitation is widely used in environmental decision analysis. Varis and Kuikka 

(1997) presented a framework, Bene-Eia, for expert elicitation in environmental decision 

making and León et al. (2003) used a Bayesian framework for elicitation in an application 

of benefit transfer of environmental goods. In fisheries management, which is more data-

oriented, there are not so many research papers utilizing expert knowledge. In analyses 

which incorporate a lot of biological details or in integrative models, it is used to 

formulate informative priors to substitute otherwise heavy data gathering (Uusitalo et al., 

2005; McAllister et al., 2010; Haapasaari et al., 2010; Mäntyniemi et al., 2013). 
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However useful and convenient the expert elicitation is, at the same time it is infested 

with pitfalls and problems (Wolfson et al., 1996). Problems were recognized already 

decades ago and there is abundant literature about them (Tversky & Kahneman, 1974; 

Kahneman et al., 1982; Kynn, 2008). Researchers eliciting expert knowledge must be 

aware of these problems and somehow address them, otherwise the results may be 

seriously biased (Clemen, 2008). In environmental decision analysis, there are no standard 

commonly accepted procedures for elicitation. Experts of behavioral sciences should be 

consulted and involved in elicitation to guarantee that it is done properly (Clemen, 2008; 

Flander et al., 2012). One frequent problem in elicitation is to familiarize the expert with 

the Bayesian technique and priors. Additionally, many experts are very busy and cannot 

dedicate too much of their time, and can reside on the other side of the globe. One solution 

is to use web-based tools, which offer easy and fast ways for the gathering of expert 

knowledge (Bastin et al., 2011; Truong et al., 2013). Although there are many problems 

and pitfalls in elicitation, at the same time it is that where the power Bayesian inference 

comes: ability to incorporate subjective expert probabilities in models and thus produce 

more realistic results to decision analysis. 

I have used expert knowledge when formulating priors in paper I. The environmental 

effects are based on that work. There was one expert who had several months to do the 

work. The basic idea of discrete Bayesian networks was introduced to the expert and she 

was given the probability tables (quite large and numerous), which she filled in based on 

her expert opinion and exhaustive literature review. Nowadays the tools are improved and 

the same job could be done faster, for example by eliciting continuous distributions, and 

discretizing them later on (or using continuous distributions). Thus it becomes 

unnecessary to fill in thousands of separate conditional probabilities. 

4.2.1.2 Literature and previous studies 

The Bayesian inference is based on learning from previous experience and updating it 

with new observations. Using previous studies and existing knowledge in forming priors 

should be self-evident. In fisheries science meta-analytic approaches are well known and 

there are many efforts to further usage of existing knowledge (Hilborn & Liermann, 1998; 

Myers, 2001; Millar, 2002). Primarily, information from the same population should be 

used, but in its absence, it is still possible to use information from other areas and related 

species. To maximize the use of existing information, the posteriors of every Bayesian 

study should be reported in some standardized, easy-to-use format to be used as priors in 

forthcoming studies. One possible location to store that data is Fishbase. It is a project 

which aims to collect basic biological data on all fish species of the world (Pauly & 

Froese, 1991; McCall & May, 1995; Pauly, 1997; Froese & Pauly, 2013). However, there 

are problems in its data quality and researchers should pay extra attention when retrieving 

information from it (Courtney et al., 2011). 

In paper I, the environmental impact part was based on a meta-analytic approach 

combined with expert knowledge. Also, many other priors (e.g., spill size, weather 

conditions, oiled coastline) were formed using existing literature. The model in paper III 

was an exemplary case, where priors of biologically realistic age-structured stock 
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assessment models were gathered using only information from other areas and species. 

Finding relevant priors for every variable was a considerable job. It was quite easy to find 

mean or median values for priors, but finding justified distributions for them was a 

challenge. 

4.2.1.3 Submodels 

A decision model should be easy to understand and at the same time as complete as 

possible. Therefore it may be useful to include only the most important variables in the 

final decision model, which is used to find maximum utility policies and in 

communication of results. Details can be hidden in submodels or modeled with other 

tools. Influence diagrams are suitable for the presentation and analysis of a final model, 

whereas many subproblems are maybe easier to implement using other tools. In complex 

problems which combine knowledge from many different disciplines, it is only natural 

that submodels are separately implemented by dedicated teams of experts. Of course, the 

integration of a final model and coordination of the development of submodels are 

considerable tasks. Even combining all the details of a stock assessment model is not 

straightforward (Michielsens et al., 2008). 

Papers II, III and IV are examples of submodels dedicated to solve one or a few 

specific variables to be used in an actual decision model. Two of them contribute to a 

more accurate estimation of stock size. The results of paper IV were later used in a 

decision model, which was a cost-benefit model to find cost-efficient methods for the 

mitigation of oil spill-related damages to the environment. 

4.2.2  Utility functions 

Utility functions, measures of value, are needed in decision analysis. Without them it is 

impossible to find maximum utility, which is part of the definition of decision analysis. 

The objectives and thus utility functions of different stakeholders might be very different 

(Borsuk et al., 2001). The utility is always dependent on a decision maker and in many 

cases it is not the scientists’ job to assign them, but the decision maker decides the 

importance and value of different variables and assigns utilities accordingly. Paper IV is 

an important improvement toward better utility functions, where the utility itself is 

uncertain. In paper V, we use multiple utility functions to describe the goals of different 

stakeholders. In applied research and scientific advice it is normal to use money as a 

measure of utility, because the users of information are managers and politicians, who 

understand things best when measured in money. Therefore, the next chapter is about 

environmental valuation. 
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4.2.2.1 Environmental valuation 

When a variable of interest does not have a clear monetary value or its utility is non-

market, we need valuation to convert it to the same units with other utilities, which are 

normally monetary. Especially in environmental decision analyses, where we have to 

consider the utilities of all stakeholders, we need tools for valuing environment. 

Contingent valuation is maybe the most used method in the field (Hanemann, 1994; 

Bateman & Willis, 2001) and there is a widely accepted guideline on how to use it (Arrow 

et al., 1993). The results of contingent valuation studies can be used directly in decision 

making, as in the case of the Exxon Valdez oil spill (Carson, 1992; Carson et al., 2003). 

This incident made the method popular and it was used later in similar cases when valuing 

environmental losses after an oil spill (Biervliet et al., 2005; Loureiro et al., 2009). In 

fisheries science, it is used especially in the valuation of recreational fisheries (Daubert & 

Young, 1981; Hoehn, 1987; Carson et al., 1990; Layman et al., 1996; Roth et al., 2001; 

Parkkila, 2005). 

There has been a lot of critique and controversy around contingent valuation (Diamond 

& Hausman, 1994; Hausman, 2012). Nevertheless, it is increasingly used in many 

applications, mostly because there are no better alternatives. As the trend is now moving 

toward an ecosystem approach in the use of environmental resources, it may become 

frequently necessary to valuate non-market utilities of the ecosystem and these values 

should be part of the complete decision analysis. Paper IV presents an approach where 

uncertainties of contingent valuation are clearly formalized and modeled in one 

framework. The goal was to have the uncertainty of final value presented in one 

distribution, which is causally and logically justifiable and thus useful for decision 

makers. 

4.3 Using the model 

Once the model is ready, it is time to experiment with it and test that it produces logically 

correct results. In a decision model, the goal is in finding the optimal decision or 

combination of decisions yielding maximum utility. After performing the actual analysis, 

the model should be tested somehow to be sure that results are coherent and stable. 

Sensitivity analysis is maybe the most common way to test a Bayesian decision model. 

Value of information is one type of sensitivity analysis and is discussed later on. If serious 

defects are detected, then it may be necessary to go back to step 1 or 2 of the decision 

analysis. 

4.3.1  Obtaining results 

The result of a decision model is the decision yielding maximum expected utility. Finding 

it is straightforward and automated in many software tools. In research-oriented decision 

models it is typical to play different scenarios and observe outcomes. In fisheries 

management science it is common to find an optimal decision (e.g., level of fishing 
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mortality) that corresponds to the maximum sustainable yield (MSY) or some other 

reference point. There are a set of common reference points (Caddy & Mahon, 1995) that 

are typically used on management of fish stocks. 

In paper I, we used different oil spill accident scenarios to compare and predict 

possible effects on the ecosystem both immediately and ten years after the accident. It is 

common to include the “worst case scenario,” which tries to mimic the worst possible 

outcome. With the decision model of paper V we found optimal decisions in four different 

scenarios and used the value of information analysis to find the expected utility if we had 

perfect information on recruitment. 

4.3.2  Model testing and sensitivity analysis 

With more data-oriented applications and models used in decision support and advice, it is 

typical to test different model structures using different combinations and effects of 

explanatory variables. Model validation with data not used in model construction is 

normal to test the prediction capabilities of the model. In influence diagrams prior 

sensitivity analysis is used to find variables having the largest effect on the utility. For 

details in model testing and sensitivity analysis readers should refer to abundant literature 

(Pratt et al., 1995; Smith, 2010; Fenton & Neil, 2012; Marcot, 2012). 

The models in papers I and V are closest to complete decision models, which can be 

used to support decision making. However, in paper I, there are no utilities and in paper 

V, the model is designed to be used for VoI analysis, and we do not do any other model 

testing. However, the next chapter is dedicated to VoI, which is one type of sensitivity 

analysis. 

4.3.3  Value of information 

In a complete decision analysis model, with decision variables and utilities, we could 

perform VoI analyses. VoI tells how much at most a decision maker should pay to resolve 

some uncertainty. The full theory behind VoI is explained by Smith (2010). In 

environmental research literature, VoI analyses are rare. In the context of fisheries 

management there are some examples (Varis & Kuikka, 1990; Varis et al., 1990; 

McDonald & Smith, 1997; Link & Peterman, 1998; Kuikka et al., 1999; Punt & Smith, 

1999; Kim et al., 2003). The concept of VoI in fisheries management is described by 

Kuikka (1998) and later with a good step-by-step guide on how to use it by Mäntyniemi et 

al. (2009). In paper V, we make a more complex VoI analysis to show its potential in 

fisheries management. Researchers of environmental economics are too interested in VoI 

analyses (Moxnes, 2003; Forsberg & Guttormsen, 2006; Hansen & Jones, 2008). Yet 

again, a place where cooperation between different fields of scientists should be used to 

produce realistic and high-quality VoI analyses into decision models. Economics could 

provide the utilities and cost functions whereas biologists should produce the realistic 

description of biological systems. If one or the other part is poor, the results will also be. 
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In addition to the value of information, the Value of Control (VoC) is a useful decision 

analytic tool. It tells expected utility gained from having perfect (or better) control over 

uncertain variables. Using both VoI and VoC, we could determine where resources are 

used most efficiently, in data gathering or improving control. An example of VoC analysis 

in lake management is given by Varis et al. (1990) and in fisheries management by Link 

and Peterman (1998). 

4.4 Post analysis 

Post analysis is an important step in every decision problem. After the results are ready 

and found to be consistent they need to be clearly communicated. Things needing 

improvement and problematic parts need to be honestly reported to be improved in further 

analyses. 

4.4.1  Communicating results 

Scientific advice is very different from actual decision making, where a decision maker 

must make a decision based on the best available information. This is a very important 

difference. Where decision makers are often held responsible for their decisions, scientists 

are seldom held responsible for their advice. However, there is a recent case, where Italian 

scientists were convicted of manslaughter due to their “false” advice concerning the 

probability of an earthquake which eventually happened and killed over 300 people 

(Nosengo, 2012). The story is a tragic reminder that scientists must be careful when giving 

advice and especially how they give it. Proper communication of uncertainty and 

probability plays a very important part in scientific advice. 

Bayesian decision models are fortunately very useful in the communication of results. 

When presented in graphical format, it is clearly visible where uncertainty cumulates and 

what the assumptions are behind the model. The model is not just a black box where 

something goes in and something comes out and where the uncertainty is dug out of 

fractions of variance, which itself is derived so complicatedly that the decision maker 

could not ever grasp the idea behind it. Understanding the reasoning behind a decision 

model should improve the quality of decisions and provide some comfort to the decision 

maker. Communication is its own field of study, and yet another place where the skills of 

experts from other fields should be used. A review by Spiegelhalter et al. (2011) is a good 

starting point to the visualization and communication of uncertainty. 

4.4.2  Reuse of the model 

The idea is that every decision model should be documented so that it can be reused; it is 

absolute ludicrous to reinvent the wheel again and again. At the same time, it is good to 

collect ideas on how to improve the model in further analyses and report flaws honestly. 
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For example, in fisheries management many stocks are assessed yearly. There is a good 

possibility to improve the model iteratively and every time to reflect how the last version 

succeeded in predicting the stock size of the present year. However, if there is clear 

evidence that better alternatives are available and management results have been poor, 

there needs to be courage to discard the present model and start with a new one. 

Paper I is an example of a decision model that is improved step by step in further 

studies. In all papers, I have reported the parts that are most problematic and need 

improvements. Additionally, every stochastic variable is updated in the Bayesian model 

and these posteriors can be used as priors in future analyses by other researchers. 

Therefore, it is important to make posteriors available. For example, in paper III, we 

reported posteriors for key population parameters, so that they can be used as priors in 

further analyses. In general, it would be good if researchers would submit more of their 

models and codes as the electronic appendices of journals. I am ashamed to admit that this 

is something I have not done. 
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5 Results and contribution 

I have contributed to all four steps of the decision analysis process. Paper I is where every 

decision analysis starts (step 1), a simple presentation of the problem at hand where the 

most important variables and their causalities are defined. This elementary model can be 

used to find the subjects that need more study. Papers II, III and IV are examples of how 

Bayesian methods can be used to produce more accurate information to decision makers to 

be used in their decision analysis (step 2). Paper V is about using the decision model to 

estimate VoI and finding decision policies yielding maximum utilities (step 3). Finally, 

paper I is an example of how the model is reused and improved, in part by others and in 

part by me (step 4). I am not going to replicate the results of each research article in more 

than a few sentences but will describe their most important contributions and how the 

research relates to the bigger picture in decision analysis. 

In paper I, the aim was to make a simple decision analysis framework for analyzing 

the environmental effects of an oil spill. The model was based on prior information and 

done with Hugin. It allowed for testing of different accident and mitigation scenarios and 

their effects on the environment. The original model was not peer-reviewed but was later 

published as part of a more complete model (Lecklin et al., 2011), which improved the 

environmental impact part of the model. The model is very simple, priors are not very well 

justified, and expert elicitation is implemented inadequately. However, this was a very 

significant first step in a series of research projects, which incrementally improved this 

basic framework, and that is why I included it in this thesis. This case is an excellent 

example of how the fourth step in the decision analysis process is properly utilized and 

shows how every decision analysis starts from a simple outline of the problem. This first 

model revealed the most problematic parts that needed more research. One problem was 

the recovery efficiency, which is now modeled in detail by Lehikoinen et al. (2013). Yet 

another problem was that it was hard to model the whole Gulf of Finland at one time and 

Helle et al. (2011) made a more specific assessment in one area. This first decision model 

also revealed that for a more complete analysis it is very important to involve scientists 

from different fields to get better results (Klemola et al., 2009). Now engineers are 

involved in the modeling of accident probability and outflow scenarios (Hänninen et al., 

2012; Sormunen et al., 2013). One shortcoming of this simple model was that there were 

no utilities. The first step to correct this flaw was a conventional valuation study to get an 

approximate value for the oil-free nature of the Gulf of Finland (Ahtiainen, 2007). Later 

we wanted to have an estimate for uncertainty in that WTP estimate and it was then 

implemented in paper IV. At some point, these improvements should be again integrated 

into one decision model, which would provide an updated and more accurate view of the 

problem. 

In any stock assessment model the stock size is the single most important variable 

(Hoggarth et al., 2006). In fisheries decision analysis, a good estimate of stock size is 

maybe the most important variable. Typically, it is linked to all outcome variables that 

interest us in decision analysis. So it is very important to develop methods that could lead 

to more accurate estimates and with realistic levels of uncertainty. The method presented 

in paper II is one step toward more accurate stock estimates and thus contributes to more 

realistic results in decision analysis and most importantly accounts for the uncertainty in 
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the estimate. To get biomass estimates for the three most common pelagic fish, we 

combined three spatial model layers, abundance, length, and relative proportion of species. 

The model showed that predicting the results of acoustic surveys over a large spatial grid 

leads to significant uncertainty in the results. That is why acoustic surveys are normally 

used only as relative indices in stock assessment to tune stock estimates (Simmonds, 

2003). Additionally, in the paper we used spatial Bayesian methods, which allow fast 

inference and thus applications with better spatial accuracy and coverage. 

Paper III presents a case study where the stock sizes of two poorly studied species 

were modeled and contributes to the same theme as paper II. The main result of the paper 

is the stock estimates for these two Mediterranean species using a biologically realistic 

Bayesian model, where prior information was collected from other areas and species. A 

variety of different methods were used in formulating prior distributions. Both species are 

hermaphroditic, which adds its own problems in the age-structured model. Essentially the 

model accounts for biological uncertainty (Kuparinen et al., 2012) that would be otherwise 

dismissed in simpler model structures used to analyze data-poor fisheries. Sometimes 

simpler is more effective and produces results but at the same time omits important 

sources of uncertainty. The decision makers get a more realistic picture of the status of 

stock and most importantly the uncertainty in that estimate. However, in this case the 

model was deemed to be insufficient for use in decision analysis. Another implication was 

that a more comprehensive data gathering program should be established and the behavior 

of fish in the area should be studied better. It is important to recognize when the data or 

model are not sufficient for decision analysis and thus knowingly provide overly specific 

false advice for management. 

Paper IV is an important step toward a more comprehensive Bayesian decision 

analysis in environmental sciences where some of the utilities reflect non-market value. 

We presented in the paper a Bayesian method for analyzing the results of commonly 

applied valuation methodology, contingent valuation. Using a Bayesian model, we 

accounted for the most important sources of uncertainties in the result. The approach is 

unique in that it includes uncertainties from all levels of analysis and presents results 

straight in a population level, which is important in decision analysis. The paper uses 

novel methodology in addressing the common nuisance in valuation studies: non-

response. Bayesian analysis is not commonly applied in this field of economics and in that 

way, the contributions of this paper are significant. The developed method was used in 

analysis of contingent valuation data on willingness to pay for improved oil spill 

preparedness at the Gulf of Finland (Ahtiainen, 2007). One of the results was that non-

respondents’ WTP may be significantly lower than respondents’. The results of the paper 

are readily available for decision makers. The final result, WTP in population, was used in 

a Bayesian cost-benefit analysis, where different oil spill mitigation measures were 

compared and WTP was used as a measure of benefit from a cleaner environment. 

The decision model in paper V is the closest one to a complete and usable decision 

model in this thesis. Its results are straightforward and useful in fisheries management 

advice. Value of information analysis showed that the knowledge of recruitment is not 

needed in the successful management of the Mauritanian octopus fishery. Additionally, we 

presented maximum utility decision policies for 40 different scenarios (10 recruitment 

hypotheses and four utility functions), and based on these we recommended boundary 
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values for fishing mortality and the minimum landing weight of octopuses. Other than 

being useful in management, the paper contributes to the increasing common knowledge 

of VoI analysis and its possibilities. Finally, this paper demonstrates how stock assessment 

modeling could be further used in more thorough decision analysis. 
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6 Discussion and conclusions 

The contribution of this thesis is mostly in details, which are commonly discarded from a 

decision model as insignificant. In environmental decision making, we must consider 

sociocultural, economic, and biophysical aspects (Matthies et al., 2007). Ideally, all these 

components should be in one modeling framework. It is true that simpler models could be 

more suitable for management (Butterworth & Punt, 1999; Hilborn, 2003). However, the 

aim of science is not in simplicity—applied research is different than academic research. It 

is important to find simpler solutions and provide useful scientific advice. At the same 

time we must try to achieve a better understanding about the true processes and causalities 

of the system, which includes not only the ecosystem but also humans. It is hard to 

combine these two things, giving decision makers what they want, while at the same time 

producing novel scientific methods (Kraak et al., 2010). 

Decision analysis is multidisciplinary by definition and environmental decision 

analysis is even more so. “Divide and conquer” has long been known as the key to success 

in decision analysis (Keeney, 1982), but it involves more than dividing problems into 

subproblems. The experts of different fields should be assigned to each subproblem 

needing special expertise and someone should put all this information together. Often a 

decision maker is left alone to put up different pieces of the whole decision problem. In 

complex cases it is impossible for a decision maker to combine all the information and 

come up with an optimal decision. A decision maker has to consider economic efficiency, 

environmental effectiveness, equity, and political legitimacy of the decision (Adger et al., 

2003). There is an evident need for decision support tools that could help in putting all the 

information together. 

Bayesian decision analysis is not yet common in the environmental field, nor among 

researchers, and even less among decision makers (Aguilera et al., 2011). One of the 

reasons is the availability of suitable tools. A review of Bayesian networks in 

environmental and resource management (Barton et al., 2012) and many stock assessment 

models (Hilborn, 2012) show that there is a great diversity of good models available. 

However, hardly any of them can be considered an off-the-shelf type of environmental 

decision support system, which could be directly used by a decision maker. There is an 

apparent need for the productization of dedicated user-friendly Bayesian decision tools for 

environmental management. Most of the dedicated environmental decision support 

systems are deterministic (Christensen & Walters, 2004; Smith et al., 2007; Jakeman et 

al., 2008; Huang et al., 2011). Uncertainty in environmental processes is acknowledged 

but a common solution is to recommend improved data-gathering programs or uncertainty 

is accounted for using scenario analyses (Matthies et al., 2007). Another reason is that 

managers may have problems using complex models and prefer simpler ones they can 

understand (Hilborn, 2012). One widely used decision tool for aquatic ecosystem 

management, Ecopath with Ecosim11 (EwE), has one Bayesian component, but it is rarely 

used, because it is a very demanding task to describe prior distribution for all input 

parameters (Christensen & Walters, 2004). I made exactly the same observation when 

                                                 

 
11 http://www.ecopath.org/ 
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gathering prior information for the model constructed in paper III, where the description 

of the system was still quite simple and the number of priors moderate. 

Many graphical Bayesian networks software tools are very capable and user-friendly. 

However, for managers they are too general and for researchers they offer only limited 

features and capabilities. Complex model structures with continuous variables need other 

methods. Software tools for these are not user-friendly. Both JAGS and BUGS need 

substantial knowledge of Bayesian statistics and familiarity to programming. Also, it 

remains unclear how well they are tested against errors. Longer history and a larger user 

group favor BUGS. In addition, it is more user-friendly but common users can easily run 

into problems with the software or use it in the wrong way. For some reason the authors 

have not considered it necessary to restrict mathematically or logically incorrect actions 

(Lunn et al., 2009). A good tool should not only provide correct results but should also 

prevent users from performing wrong actions. It is not a reasonable assumption that every 

user of Bayesian methodology is an expert in it. There are no remarkable improvements in 

sight to present MCMC, and the future methodological developments in Bayesian 

inference probably come from the field of machine learning (Lunn et al., 2009). In the last 

20 years most of the advances in the complexity of Bayesian models are thanks to the 

increased computation power of desktop PCs more than advances in the methodology. 

However, new tools such as Gaussian processes can change this, as application of it in 

paper II showed. Not only Gaussian processes but also spatial applications in general are 

gaining more interest all the time. Integrating discrete Bayesian networks with 

geographical information systems (GIS) produces interesting results that are easy to 

visualize and communicate (Burgman et al., 2010; Chen & Pollino, 2012) and are not 

computationally demanding. 

There is still a lot to be done to improve Bayesian decision analysis. Bayesian methods 

are used increasingly in stock assessment to give scientific advice (Hilborn, 2012; 

Maunder & Punt, 2013) but the problem is much larger and decision makers cannot make 

decisions based only on the size of stock. Basic research should concentrate on producing 

better and more complete models of the whole ecosystem and related stakeholders. There 

are some examples of decision analytic Bayesian models that try to combine not only 

biological but also ecological and economic dimensions (Levontin et al., 2011, Varkey et 

al., 2011) or social dimensions and human behavior (Fulton et al., 2011; Haapasaari, 

2012) of fisheries management. At the same time, the goal of scientific decision analysis 

should be in direct support of management and policy development. The results need to be 

clearly communicated and visualized. Booshehrian et al. (2012) give an excellent example 

of how complicated models and uncertainty should be communicated. In addition, a risk 

analysis framework could be useful in the communication of results. It can be regarded as 

a special case of decision analysis, where the aim is to model factors affecting the risk 

event and its outcome (Fenton & Neil, 2012). The goal of risk analysis is to find the best 

decisions in order to mitigate both probability of a risk event and its negative 

consequences. For example, the risk event can be the collapse of a fish stock (Collie et al., 

2012) or consequences of an oil spill (Carriger & Barron, 2011). The results of risk 

analysis are maybe more easily communicated to decision makers and make problems 

more apparent. Policy analysis is another closely related concept to decision analysis, but 
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its scope is in larger-scale policies and their effect on the system (Power & McCarty, 

1997). 

Although the scope of this thesis is not in full decision analysis, but in improvement of 

details, there has still been a need for interdisciplinary work. My co-authors have a very 

diverse background. They include several fish biologists, applied mathematicians, a 

statistician, an engineer, and an environmental economist. Additionally, an even wider 

range of scientists was used as the source of expert knowledge and my own background is 

divided between fisheries and computer science. How is interdisciplinary research 

accomplished? Interdisciplinarity is most fruitful in situations where experts of different 

fields work together. They have to understand each other’s fields of expertise to some 

degree, though not thoroughly. If a subproblem is possible to separate and be done by the 

experts of some field, it should be done. Then all they need to know is how their work 

relates to a bigger picture and what is needed as output from their work. In making this 

thesis I have been mostly responsible for both method and subject. I had to learn a lot. It is 

a privilege but has taken a considerable amount of time. However, in my opinion this is 

not how interdiscpilinarity should be handled. When making a fisheries decision model, it 

is not a biologist’s work to do economic analyses or go into specific problems of acoustic 

surveys. For interdisciplinarity to be efficient, a leader of the work should master the 

subject and consult the necessary experts regarding the method. In many cases, I found 

myself consulting different experts (of method and subject) and acting as interpreter 

between them but at the same time not understanding either of them. In the end, I had to 

master both subject and method to be able to produce any reasonable scientific output. 

Scientific research is not about being “the jack of all trades” but concentrating in one 

subject or method and mastering it thoroughly. 

In my opinion, decision analysis alone will not solve the problems of environmental 

management. Especially in fisheries management, where the problem is overfishing and 

that is because of politics, policies, and poor control. However, a comprehensive decision 

support system that captures all the essential aspects of the whole decision problem, 

quantifies uncertainties credibly, and predicts correctly responses from the system, could 

assure managers, stakeholders, and politicians that fisheries could be managed more 

optimally. At the moment, we are still far away from that. 

In conclusion, the results found in this thesis are small but important steps toward 

better and more comprehensive Bayesian decision analyses in environmental and fisheries 

management. I do not try to offer one correct and complete way to make Bayesian 

decision analysis. I hope that I have opened some eyes to see how complex and full of 

uncertainties the decision problems are. One important thing in this thesis was the 

cooperation of scientists from many different disciplines with a variety of backgrounds. 

Interdisciplinarity is the key to comprehensive and high-quality decision analysis. 
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