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Abstract

In many fields of science, researchers are keen to learn causal connections
among quantities of interest. For instance, in medical studies doctors want
to infer the effect of a new drug on the recovery from a particular disease,
or economists may be interested in the effect of education on income.

The preferred approach to causal inference is to carry out controlled exper-
iments. However, such experiments are not always possible due to ethical,
financial or technical restrictions. An important problem is thus the devel-
opment of methods to infer cause–effect relationships from passive observa-
tional data. While this is a rather old problem, in the late 1980s research
on this issue gained significant momentum, and much attention has been
devoted to this problem ever since. One rather recently introduced frame-
work for causal discovery is given by linear non-Gaussian acyclic models
(LiNGAM). In this thesis, we apply and extend this model in several di-
rections, also considering extensions to non-parametric acyclic models.

We address the problem of causal structure learning from time series data,
and apply a recently developed method using the LiNGAM approach to
two economic time series data sets. As an extension of this algorithm, in
order to allow for non-linear relationships and latent variables in time series
models, we adapt the well-known Fast Causal Inference (FCI) algorithm to
such models.
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We are also concerned with non-temporal data, generalizing the LiNGAM
model in several ways: We introduce an algorithm to learn the causal struc-
ture among multidimensional variables, and provide a method to find pair-
wise causal relationships in LiNGAM models with latent variables. Finally,
we address the problem of inferring the causal effect of one given variable
on another in the presence of latent variables. We first suggest an algo-
rithm in the setting of LiNGAM models, and then introduce a procedure
for models without parametric restrictions.

Overall, this work provides practitioners with a set of new tools for dis-
covering causal information from passive observational data in a variety of
settings.

Computing Reviews (1998) Categories and Subject
Descriptors:
G.3 [Probability and Statistics]: Correlation and regression analysis,

Multivariate statistics, Time series analysis
G.4 [Mathematical Software]: Algorithm design and analysis
I.2.6 [Artificial Intelligence]: Learning - Parameter learning

General Terms:
Algorithms, Theory

Additional Key Words and Phrases:
Machine Learning, Causality, Graphical Models, Passive Observational
Data, Latent Variables, Non-Gaussianity
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Chapter 1

Introduction

In the field of machine learning and statistics, scientists are commonly
interested in inferring regularities and features concerning the real world
from data. To model the real world, one may often assume that everything
follows rules (like physical laws), and that the data (i.e. observations) are
generated according to these rules. Researchers are then interested in learn-
ing (parts of) this data generating process, or certain characteristics of it,
from the available observations.

This thesis is concerned with the subfield of causal discovery, aiming
at learning cause-effect relationships from data. In this chapter, we first
discuss the concept of causality and demonstrate the general problems of
inferring causal relationships from data by means of examples. We then
pose two main research questions in the field of causality, parts of which
are addressed in this thesis, give an overview of the organization of the rest
of this document, and list the original publications on which this thesis is
based.

1.1 Correlation, Causation, and Interventions

The specific topic we address in this thesis is how to learn causal rela-
tionships among variables of interest. One central observation is that a
correlation or dependence between two variables typically results from any
(combination) of several causal relationships, as stated in Reichenbach’s
(1956) principle of the common cause: A correlation or dependence be-
tween two variables x and y usually indicates that x causes y, or y causes
x, or x and y are joint effects of a common cause. This is demonstrated in
the following two examples.

1



2 1 Introduction

t = Outside Temperature

s = Swimming Outside i = Icy Streets

f = Falling Down

+ −

+

Figure 1.1: A graph depicting causal relationships. The variables are as-
sumed to be binary, so that t can take the values ‘low’ and ‘high’, and all
other variables can take the values ‘yes’ and ‘no’. For details see Exam-
ples 1.1, 1.2, and 1.3.

Example 1.1 (Correlation due to a Cause-Effect Relationship). Consider
the subgraph over the two variables i and f in Figure 1.1, showing the data
generating process of i =‘icy streets’ and f =‘falling down’. The arrow from
i to f depicts a direct causal effect, i.e. i is the cause and f is the effect.
The ‘+’ indicates a positive causal effect, since the probability of falling is
greater when the streets are icy. This implies a positive correlation between
i and f .

The joint probability distribution over i and f , p(i, f), can be factorized
in two ways, p(i) p(f | i) and p(f) p(i | f), both representing a statistical de-
pendence between i and f . Intuitively, only the former factorization corre-
sponds to the data generating process represented by the graph i→ f : The
value of the cause i is first sampled from p(i), independently of f . Secondly,
the value of the effect f is sampled from p(f | i), which depends on the value
of i.

Example 1.2 (Correlation due to a Common Cause). In the subgraph
over the variables t, s, and i in Figure 1.1, the data generating process
of the variables i =‘icy streets’, s =‘swimming outside’, and t =‘outside
temperature’ is depicted. While t has a positive causal effect on s (if the
temperature is high, people are likely to swim outside), it has a negative
effect on i (if the temperature is low, streets are likely to be icy). As the
data generating process shows, there is no causal effect of i on s, nor of s
on i.

Nevertheless, there is a negative correlation between i and s: Observing
people swimming outside suggests that the streets are not icy. Since this
correlation is not due to a direct cause-effect relationship, but due to the
common cause t, the correlation is called spurious.
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These two examples illustrate that knowledge solely of correlations
among the variables (or a probability distribution over them) is not enough
to infer causal relationships. However, as the influential work of Spirtes
et al. (1993) and Pearl (2000) showed, with appropriate assumptions on
the data generating process, as discussed in detail in later parts of this
thesis, this may well be possible.

The major difference between correlation and causation is that the for-
mer is symmetric, i.e. if variable x is correlated with variable y, then y is
correlated with x. Causation, on the other hand, is (typically) antisym-
metric: if x is a cause of y, then y is not a cause of x. Spirtes et al. (1993)
stated that causation is usually, in addition to antisymmetric, also transi-
tive (if x is a cause of y, and y is a cause of z, then x is an (indirect) cause
of z, see Example 1.3), and irreflexive (a variable is not a cause of itself).

Example 1.3 (Transitivity of Causation, Direct and Indirect Causes). The
arrows in the graph of Figure 1.1 represent direct causal relationships, such
that t is a direct cause of i, and i a direct cause of f , with regard to the
variable set {t, s, i, f}. By transitivity, t is an (indirect) cause of f .

A key tool to discover cause-effect relationships are interventions: Inter-
vening on the cause by setting it to a certain value (as opposed to merely
observing this variable at that value) influences the value of the effect.
However, intervening on the effect has no impact on the value of the cause.
Thus, interventions break the symmetry of correlation, and add a direction
to it.

Example 1.4 (Interventions). In Examples 1.1 and 1.2, by intervening on
i =‘icy streets’, for instance by building a heating or cooling system beneath
the streets, we are able to distinguish between causation and absence of
causation. In Example 1.1, when turning the heating or cooling system on,
the value of the variable f =‘falling down’ is affected: For instance, if we
make sure (by intervention) that the streets are not icy, people are less likely
to fall. This allows us to infer that i is a cause of f . In Example 1.2, on the
other hand, the variable s =‘swimming outside’ will not be affected by the
value of the icy street under the intervention, which implies that i is not a
cause of s. Furthermore, in the former example, intervening on f =‘falling
down’ (for example by building traps), the value of i would not change and
hence, f is not a cause of i.

More realistic applications of inferring causal relations through inter-
ventions are, for example, medical drug trials, where patients are randomly
assigned to either taking the drug or a placebo, and the effect of the drug
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is measured. Another example is testing whether the use of a fertilizer has
a causal effect on the crop yield, for instance by intervening on the dose
of a fertilizer. If such interventions are actively carried out and data are
collected under such an intervention, one talks about experimental data. In
this case, the desired causal effect can be directly inferred from the data.

However, such experiments cannot always be carried out. In Exam-
ple 1.4, for instance, intervening on ‘icy streets’ would be very costly, inter-
vening on ‘falling down’ unethical, and intervening on ‘outside temperature’
simply technically impossible. Other more realistic situations in which such
interventions cannot be carried out are, for instance, in epidemiology, when
evaluating the effect of a potentially dangerous substance (like lead in paint,
PVC in pipes and flooring) on the health of people, or the effect of drinking
alcohol or smoking during pregnancy on the development of the unborn.

In these cases, causal relationships have to be inferred from passive ob-
servational (i.e. non-experimental) data, which are merely observed with-
out performing any interventions. One main concern when using passive
observational data is bias in the causal effect due to confounding, that is due
to variables that are related to both the cause and the effect. For instance,
when inferring the effect of drinking alcohol on the unborn from passive
observational data one has to take into account that women who drink al-
cohol during pregnancy may also be less aware of healthy nutrition. If not
appropriately controlled for, the diet of a pregnant woman can introduce
spurious correlation between the drinking of alcohol and the development
of the unborn, since a poor diet may also have a negative effect on the un-
born. Note that this kind of spurious correlation is removed when carrying
out experiments: In this example, pregnant women would be randomly as-
signed to drink alcohol or not (which is of course ethically not justifiable),
and hence both groups (the drinking and non-drinking one) would contain
women from any background (healthy or unhealthy nutrition).

In this thesis we focus on learning causal relationships from passive
observational data, following the seminal work by Spirtes et al. (1993) and
Pearl (2000). One main reason for concentrating on such data is that
many of the collected data sets are in fact non-experimental rather than
experimental, since it is generally easier to collect passive observational
data.

1.2 Research Questions

There are at least two core research questions in the field of causal discovery,
both of which are partly addressed in this thesis.
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Q1: How can one infer the effect of an intervention?

First, it is important to distinguish between predicting a (future) obser-
vation in a system that remains undisturbed, and predicting the effect of
an intervention. The former is a purely statistical task, relying on common
occurrences (i.e. correlations) of two variables. For instance, in Exam-
ple 1.2, seeing people swimming outside helps in predicting whether the
streets are icy given that the data generating process is not altered. In prac-
tice, prediction problems are often solved using classification or regression
methods (see for example Hastie et al., 2009). In this thesis, however, we
are concerned with the task of predicting the effect of an intervention. For
instance, in the above example, we want to predict what would happen to
the icy streets if we made sure that people are swimming outside. Although
a (negative) correlation exists between these two variables, it is clear that
the condition of the streets would not change under this intervention. Thus,
for answering Q1 knowledge of correlations is not sufficient.

Question Q1 can be posed in several settings. First of all, what is known
about the data generating process? In some cases, the graph of this process
is given, for instance, by expert knowledge (i.e. we know which variables are
involved in the process and how they are connected, but not the strength of
the effects). In other situations, only certain parts of the graph are known,
or the data generating process is completely unknown, and we only assume
that the data are generated by such a graph.

Secondly, what kind of observations do we have? As already mentioned,
the data set can be passive observational or experimental. A further as-
pect to take into account is whether all ‘relevant’ variables of the data
generating process are observed, or if some variables are unobserved (i.e.
no observations are available for these variables).

In the case of experimental data sets, if the intervention of which we
want to predict the effect is carried out, it is possible to infer the effect
directly from the data. However, if the required intervention was not per-
formed, it is interesting to pose Q1 in the various settings above.

In this thesis, however, we will address research question Q1 in the case
of passive observational data when only parts of the relevant variables are
observed. Furthermore, the underlying graph is unknown, though some
other background knowledge on the variables is available (such as a partial
ordering of the variables).

Q2: How can one learn the structure of the underlying causal model?

In many cases, the underlying graph of the data generating process
is not known, and the main interest lies in inferring the graph or certain
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characteristics of it. This may allow answering Q1, but also gives a deeper
insight into how certain dependencies are produced, and helps to under-
stand the system in general.

As for Q1, we can distinguish between the type of data set at hand:
Is it an experimental or passive observational data set? Are all relevant
variables of the data generating process observed?

Furthermore, in some cases several data sets may be available. For in-
stance, experiments may have been carried out under various interventions,
each of which yields a separate data set. Alternatively, data sets (passive
observational or experimental) may only share parts of the variables, result-
ing from different studies on related problems. The aim then is to combine
the information of these data sets to learn a data generating process over
the involved variables.

This thesis addresses research question Q2 in the setting of a single pas-
sive observational data set. In some of the presented work not all relevant
variables of the data generating process need to be observed.

Which of the two research questions should be posed depends on the
problem. In general, if the interest lies on inferring the effect of one specific
intervention then the less general question Q1 is appropriate, since one
should not solve a harder problem (Q2) than needed. However, if the main
task is to better understand the causal connections among the involved
variables and to learn features of the underlying causal system, Q2 is the
appropriate question to pose.

1.3 Outline

In Chapters 2 to 5 we discuss the necessary background and existing work:
Chapter 2 contains basic concepts and notations of graph theory and prob-
ability theory, which are required for the later chapters. The causal models
considered in this thesis as well as related definitions and theorems are intro-
duced in Chapter 3. Relevant existing methods towards answering research
question Q1 are presented in Chapter 4, whereas the relevant existing work
addressing research question Q2 is given in Chapter 5.

The contributions of this thesis to the research field are presented in
Chapter 6. The results are based on the publications listed in the following
section and reprinted at the end of the thesis. Finally, Chapter 7 concludes
the thesis by summarizing the results and pointing out future research
directions.
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1.4 Publications and Authors’ Contributions

The thesis is based on the following publications, referred to as Article I
to Article VI. While the authors’ contributions are listed here below each
article, the content of the articles is discussed in Chapter 6.

I. Moneta, A., Entner, D., Hoyer, P. O., and Coad, A. (2013). Causal
Inference by Independent Component Analysis: Theory and Applica-
tions. Oxford Bulletin of Economics and Statistics, Volume 75, Issue
5, pages 705-730.

The present author implemented the algorithm and performed a large
part of the calculations for the application sections, and assisted in
writing the manuscript. Dr. Moneta drafted most of the article and
performed parts of the data analysis. Dr. Hoyer and Dr. Coad helped
with analyzing the results and with writing the manuscript.

II. Entner, D. and Hoyer, P. O. (2010). On Causal Discovery from Time
Series Data using FCI. In Proceedings of the Fifth European Workshop
on Probabilistic Graphical Models (PGM-2010), pages 121-128. HIIT
Publications 2010-2.

The idea was suggested by Dr. Hoyer, and the algorithm was jointly
developed with the present author. The present author implemented
the method, performed the data analysis, and wrote the section sum-
marizing the results of these experiments, as well as assisted in writing
the other parts of the article.

III. Entner, D. and Hoyer, P. O. (2012). Estimating a Causal Order
among Groups of Variables in Linear Models. In Artificial Neural
Networks and Machine Learning - ICANN 2012, LNCS 7553, pages
84-91, Springer Berlin Heidelberg.

The idea arose from a discussion between M.Sc. Ali Bahramisharif
and the present author. The present author suggested the general
algorithm. Ideas for the trace method and the pairwise measure were
discussed with Dr. Hoyer and Prof. Aapo Hyvärinen. The present
author finalized the methods, performed all simulations, and wrote
the paper. Dr. Hoyer commented on the draft at several stages and
assisted in writing in the final stage.

IV. Entner, D. and Hoyer, P. O. (2011). Discovering Unconfounded Causal
Relationships using Linear Non-Gaussian Models. In New Frontiers in
Artificial Intelligence, JSAI-isAI 2010 Workshops, LNAI 6797, pages
181-195, Springer Berlin Heidelberg.
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Dr. Hoyer proposed the basic idea, which, after further development
jointly with the present author, led to the problem statement of the
article. The present author developed the algorithm and proved the
theorems and lemmas, assisted by Dr. Hoyer. The present author per-
formed all the simulations and wrote the article. Dr. Hoyer provided
valuable comments on the draft at several stages, and helped with
editing in the later stages.

V. Entner, D., Hoyer, P. O., and Spirtes, P. (2012). Statistical Test
for Consistent Estimation of Causal Effects in Linear Non-Gaussian
Models. In Proceedings of the Fifteenth International Conference on
Artificial Intelligence and Statistics (AISTATS 2012), Journal of Ma-
chine Learning Research Workshop and Conference Proceedings 22:
364-372.

The motivation of the underlying problem was given by Dr. Hoyer.
The present author developed the algorithm, stated the theorems and
lemmas, and proved them with the support of Dr. Hoyer. The present
author performed all the simulations and drafted most of the article.
Dr. Hoyer co-edited the manuscript, and Prof. Spirtes gave valuable
comments at several stages.

VI. Entner, D., Hoyer, P. O., and Spirtes, P. (2013). Data-Driven Co-
variate Selection for Nonparametric Estimation of Causal Effects. In
Proceedings of the Sixteenth International Conference on Artificial In-
telligence and Statistics (AISTATS 2013). Journal of Machine Learn-
ing Research Workshop and Conference Proceedings 31: 256-264.

The idea came up in a discussion between Dr. Hoyer and the present
author, who then jointly developed the novel method, and proved its
soundness and completeness. Prof. Spirtes suggested the comparison
algorithm based on FCI. The present author implemented the meth-
ods, and performed all the simulations. Dr. Hoyer and the present au-
thor drafted the article, and obtained valuable comments from Prof.
Spirtes at several stages.



Chapter 2

Background

We first introduce the necessary notation and terminology related to graphs
used in the causal models of this thesis. Furthermore, we summarize some
principles of probability theory and statistics, which are relevant to the
theorems and methods stated in later chapters.

2.1 Graph Terminology

Here, we introduce terms and notation related to graphs, following Spirtes
et al. (1993) and Pearl (2000).

A directed graph G is a pair (V, E), with V = {v1, . . . , vn} being a set of
vertices, and E ⊂ V × V a set of edges. A pair (vi, vj) ∈ E is also denoted
as vi → vj . We assume that there is at most one edge between any pair of
vertices, and that there are no self loops, i.e. no edges from any vertex to
itself.

A path π between v1 and vk is a sequence of edges (d1, . . . dk−1), dj ∈ E ,
j = 1, . . . , k−1, such that there exists a sequence of vertices v1, . . . , vk with
edge dj having endpoints vj and vj+1, i.e. (vj , vj+1) ∈ E or (vj+1, vj) ∈ E .
A directed path is a path π such that for all edges dj , j = 1, . . . , k − 1,
(vj , vj+1) ∈ E , i.e. v1 → . . . → vj → vj+1 → . . . → vk. A directed cycle
is a directed path starting and ending in the same vertex, i.e. v1 = vk. A
directed graph not containing any directed cycles is called a directed acyclic
graph (DAG).

If there is an edge vi → vj , then vi and vj are called adjacent, vi is the
parent of vj , and vj the child of vi. A node vi is called a root or source if it
has no parents, and a sink if it has no children. If there is a directed path
from vi to vj , then vi is called an ancestor of vj , and vj a descendant of vi.

A causal (topological) order among the vertices v1, . . . , vn of a DAG G

9
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is a permutation K = (K1, . . . ,Kn) of the indices 1, . . . , n, such that for
every i > j, vKi is not an ancestor of vKj , also denoted as vKj ≺ vKi .

A triple (vi, vk, vj) is called a collider if (vi, vk) ∈ E and (vj , vk) ∈ E ,
i.e. vi → vk ← vj . A collider (vi, vk, vj) is unshielded if there is no edge
between vi and vj .

The skeleton of a DAG G is an undirected graph, i.e. its edges are of the
form vi−vj , which is obtained by removing all arrowheads from the edges of
G. A pattern is obtained from a DAG by removing some of the arrowheads,
meaning that it can contain two types of edges, directed (vi → vj) and
undirected ones (vk − vl), and cannot contain any directed cycles.

A mixed graph is a graph that can contain three kinds of edges: directed
(→), bidirected (↔), and undirected (−); between any pair of vertices,
there can be more than one edge type. Directed paths and cycles, parents,
children, ancestors and descendants are defined as in directed graphs. Ad-
ditionally, if vi ↔ vj in G, then vi is a spouse of vj . If vi − vj in G, then
vi is a neighbor of vj . An almost directed cycle occurs when there exist vi
and vj , i 6= j, such that vi is a spouse and an ancestor of vj (Richardson
and Spirtes, 2002; Zhang, 2008).

An ancestral graph is a mixed graph with no directed cycles, no almost
directed cycles, and for any undirected edge vi − vj , vi and vj have no
parents or spouses. This definition implies that ancestral graphs contain
at most one edge between any pair of vertices. A partial ancestral graph
(PAG) is obtained from an ancestral graph by changing some edge marks
into circles ‘◦’, i.e. it may contain six kinds of edges: −, →, ↔, ◦–, ◦–◦,
and ◦→ (Richardson and Spirtes, 2002; Zhang, 2008).

2.2 Probability Theory and Statistics

We give some basic definitions of probabilities, and introduce statistical
concepts used in this thesis. For further details see for example Wasser-
man (2004), or the introductory chapters of Spirtes et al. (1993) and Pearl
(2000).

2.2.1 Random Variables

Given a (multidimensional) random variable v = (v1, . . . , vn), we denote
the joint probability distribution as p(v) or p(v1, . . . , vn). We will use lower-
case p for probability distributions for both discrete and continuous random
variables. In the former case p is a probability mass function, in the latter
a probability density function.
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Let v = (v1,v2) with v1 and v2 being two (possibly) multidimensional
random variables. The marginal probability distribution of v1 is given by

p(v1) =

{∫
p(v1,v2) dv2 (for continuous variables)∑
v2
p(v1,v2) (for discrete variables).

(2.1)

Given p(v2) > 0, the conditional probability distribution of v1 given v2 is
defined as

p(v1 |v2) =
p(v1,v2)

p(v2)
. (2.2)

The chain rule is a direct consequence of this definition, stating that the
joint probability distribution can be factorized using conditional probability
distributions as follows

p(v1, . . . , vn) =
n∏
i=1

p(vi | v1, . . . , vi−1). (2.3)

We use standard definitions of the expectation of v (denoted as E(v) or
µv), the covariance matrix of v (Σv or cov(v,v), which reduces for scalar
variables to the variance, σ2v), the matrix of (cross-)covariances of v1 and
v2 (cov(v1,v2)), the matrix of correlations of v1 and v2 (ρv1,v2), as well as
the matrix of partial correlations of v1 and v2 given v3 (ρv1,v2·v3).

2.2.2 Statistical Independence

Two (multidimensional) random variables v1 and v2 are said to be statis-
tically independent, denoted as v1⊥⊥v2 (Dawid, 1979), if and only if their
joint probability distribution is equal to the product of their marginals, i.e.

v1⊥⊥v2 ⇔ p(v1,v2) = p(v1) p(v2). (2.4)

Conditional independence of v1 and v2 given v3 is defined similarly:

v1⊥⊥v2 | v3 ⇔ p(v1,v2 |v3) = p(v1 |v3) p(v2 |v3). (2.5)

There exist a variety of statistical tests for independence, some of which
are discussed below. The null hypothesis of such tests is that the variables
v1 and v2 are (conditionally) independent (given v3), i.e.

H0 : v1⊥⊥v2 or H0 : v1⊥⊥v2 |v3. (2.6)

From the obtained p-value of such an independence test we can con-
clude, given a threshold α, whether the null hypothesis should be rejected.
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There are two types of errors: The null hypothesis is true and is rejected
(type 1 error), or the null hypothesis is wrong and is not rejected (type
2 error). The rate of type 1 errors can be directly controlled for by the
threshold α. However, if this threshold is set too low in order to avoid type
1 errors, typically the number of type 2 errors becomes larger.

A central point in several of the methods discussed in this thesis is
to, contrary to standard statistical principles, accept the null hypothesis if
it is not rejected. This can be justified by using consistent tests, i.e. for
growing sample size, and when appropriately decreasing the threshold α,
both the type 1 and the type 2 error rates converge to zero, so that such
methods are correct in the limit of large sample size. More precisely, these
methods are pointwise consistent, meaning that for every ε > 0 and for
every probability distribution p there exists a sample size nε,p such that for
every sample larger than nε,p the probability of making a wrong inference
is smaller than ε. However, they are not uniformly consistent, i.e. there
exists no single sample size nε, which is independent of the probability
distribution p, for which the above holds (Spirtes et al., 1993 (2nd edition,
Ch.12.4); Robins et al., 2003).

For discrete variables Pearson’s χ2 test is often used to test indepen-
dence between variables v1 and v2 given v3. In essence, it compares the
number of observed counts for p(v1,v2 |v3), and the number of expected
counts under H0 (i.e. using that p(v1,v2 |v3) = p(v1 |v3) p(v2 |v3)) to de-
velop a test statistic, which is χ2-distributed under the null hypothesis.

For continuous variables, we distinguish between Gaussian (i.e. normal)
and non-Gaussian (non-normal) ones. For normally distributed variables,
independence is equivalent to zero correlation.1 In this case, Fisher’s Z,
which follows a standard normal distribution under H0, can be used to test
for zero (partial) correlation.

For non-Gaussian variables, we describe here only two ways of test-
ing independence. A recently developed method, termed HSIC (Hilbert
Schmidt Independence Criterion, Gretton et al., 2008), is a kernel-based
test for marginal dependence. In the limit of large sample size this test
will detect any form of statistical dependence. However, due to its compu-
tational complexity it can only be applied to relatively small sample sizes.
Zhang et al. (2011) used a similar kernel-based approach to develop a test
for conditional independence.

The second approach relies on the fact that two variables v1 and v2
are independent if and only if for all functions g and h it holds that

1Note that independence implies uncorrelatedness regardless of the form of the distri-
bution, but the converse is only true for Gaussian distributions.
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E(g(v1)h(v2)) = E(g(v1)) E(h(v2)), see for example Hyvärinen et al. (2001).
Thus, we can test independence by testing for vanishing correlations be-
tween the transformed variables (for which there exist standard tests). The
obvious drawback is that one can never test all functions g and h. However,
a test based on a few carefully selected functions g and h, which detect var-
ious forms of dependence, is a computationally efficient alternative to the
HSIC test.

Finally, the Darmois-Skitovitch Theorem (Darmois, 1953; Skitovitch,
1953) states an interesting property about dependence and independence
of two sums of independent random variables.

Theorem 2.1 (Darmois-Skitovitch Theorem). Let e1, . . . , en be indepen-
dent random variables (n ≥ 2), v1 = β1e1+ . . .+βnen and v2 = γ1e1+ . . .+
γnen with constants βi, γi, i = 1, . . . , n. If v1 and v2 are independent, then
those ej which influence both sums v1 and v2 (i.e. βjγj 6= 0) are Gaussian.

This theorem directly implies that if there exists a j such that βjγj 6= 0
and ej non-Gaussian, then the variables v1 and v2 are dependent.

2.2.3 Linear Regression

As we use linear regression models in several articles of this thesis, we
briefly introduce the ordinary least squares (OLS) estimator and some of
its properties. Let w and v = (v1, . . . , vn) be random variables with zero
mean. The linear regression model of w on v is given by

w =
n∑
i=1

bivi + e (2.7)

with bi, i = 1, . . . , n, constants and e a disturbance term. For the OLS esti-
mator, the vector c = (c1, . . . , cn)T is chosen to minimize the sum squared
error between w and its estimate ŵ = cTv. The estimator has the closed
form solution

c = cov(v,v)−1cov(v, w). (2.8)

The resulting residuals r = w − ŵ are by construction uncorrelated with
the regressors v, i.e. ρr,v = 0.

If the covariance matrix of v is finite and non-singular, and e has zero
mean and is uncorrelated with v, the OLS estimator c is a consistent esti-
mator of the regression coefficients b = (b1, . . . , bn)T (Verbeek, 2008).
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Chapter 3

Causal Models

We formalize the notion of causality using models based on directed acyclic
graphs in which edges represent causal relationships (Spirtes et al., 1993;
Pearl, 2000), as demonstrated in the graph of Figure 1.1 (page 2). We
first introduce models for non-temporal data, in particular causal Bayesian
networks (CBNs) and structural equation models (SEMs), and some basic
concepts and assumptions relating causality to DAGs. In the later part of
this chapter, we generalize these models to time series data.

An alternative approach to causal modeling is the potential-outcome
framework of Neyman (1923) and Rubin (1974). Since Pearl (2000) showed
that this approach is equivalent to SEMs, we do not present the potential-
outcome framework here. Details can be found, for instance, in the recent
book of Berzuini et al. (2012).

3.1 Examples

We start with demonstrating CBNs and SEMs by examples; formal def-
initions are given in the next section. In a CBN or SEM over a DAG
G = (V, E), the set V contains random variables v1, . . . , vn, and there is an
edge vi → vj in E if and only if vi is a direct cause of vj (with respect to
the full set of variables V).1 These models can be seen as data generating
processes, explaining how the real world works. In CBNs conditional prob-
ability distributions are directly linked to the variables, whereas in SEMs
each variable is associated with a deterministic function and an unknown

1Originally, (non-causal) Bayesian networks were introduced to efficiently represent
joint probability distributions, and to facilitate probabilistic reasoning (see for instance
Pearl, 1988, or Koller and Friedman, 2009). In such models, the edges are not interpreted
as causal relationships, but merely reflect statistical dependencies.

15
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p(v4) v4 = 0 v4 = 1

0.7 0.3

p(v3 | v2, v4) v3 = 0 v3 = 1

v2 = 0, v4 = 0 0.9 0.1
v2 = 0, v4 = 1 0.4 0.6
v2 = 1, v4 = 0 0.3 0.7
v2 = 1, v4 = 1 0.2 0.8

v3

v1

v4 v2 p(v2) v2 = 0 v2 = 1

0.8 0.2

p(v1 | v3) v1 = 0 v1 = 1

v3 = 0 0.9 0.1
v3 = 1 0.4 0.6

Figure 3.1: Example of a causal Bayesian network (CBN). Each variable
in the underlying DAG is associated with a conditional probability table.
The variables could for example be v1 = ‘breaking wrist’, v2 = ‘drinking
beer’, v3 = ‘falling down’, and v4 = ‘icy streets’.

error term. In this way, data can be (stochastically) generated along a
causal order K among the variables. The acyclicity assumption implied by
the DAG ensures that at least one such order always exists.

The power of CBNs and SEMs lies in their ability to predict the effects
of interventions. As discussed in the introduction, an intervention occurs
when a variable is forced to take on a specific value, meaning that a causal
system is actively disturbed by setting a variable to some constant value.

Example 3.1 (Causal Bayesian Network). Figure 3.1 shows an example
of a CBN over four binary variables. To each variable vi a (conditional)
probability table is attached, giving the probability distribution p(vi | pai),
i = 1, . . . , 4, with pai the parents of vi in the DAG.

There are two causal orders compatible with this CBN, K = (2, 4, 3, 1),
denoted by v2 ≺ v4 ≺ v3 ≺ v1, and K = (4, 2, 3, 1), i.e. v4 ≺ v2 ≺ v3 ≺ v1.

The data are generated along either of these two causal orders, for in-
stance for K = (2, 4, 3, 1) we

1. draw v2 using the probability table p(v2),

2. draw v4 using the probability table p(v4),

3. draw v3 using the conditional probability table p(v3 | v2, v4), and

4. draw v1 using the conditional probability table p(v1 | v3).
The causal order ensures that the values of the conditioning variables have
been assigned in a previous step of the data generating process. The joint
probability distribution factorizes according to the underlying DAG as

p(v1, v2, v3, v4) = p(v2) p(v4) p(v3 | v2, v4) p(v1 | v3).

If we intervene, for instance, on v3 by setting its value to 1 (instead of
observing v3 taking the value 1) we replace the conditional probability table
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v2 v3 v1

e2 e3 e1

b3,2 b1,3

v1v2
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︸ ︷︷ ︸

e

Figure 3.2: Example of a linear structural equation model (linear SEM).
The variables of the underlying DAG are linked to linear equations, given
here in matrix notation. The connection matrix B contains non-zero en-
tries representing the edges of the DAG. The disturbances ei, following
distributions p(ei), i = 1, 2, 3, are unobserved and mutually independent.

p(v3 | v2, v4) with p(v3 = 1) = 1. This affects the data generating process in
step 3, and the joint probability distribution under the intervention v3 = 1,
termed the postinterventional probability distribution, is given by

p(v1, v2, v4 | do(v3 = 1)) = p(v2) p(v4) p(v1 | v3 = 1),

with do(v3 = 1) indicating the intervention on v3. In the underlying DAG
this translates to deleting the edges from v4 and v2 to v3, since under the
intervention the former two variables are no longer causes of v3.

Example 3.2 (Structural Equation Model). Figure 3.2 shows an exam-
ple of a linear SEM, in which each variable is associated with an equation
defining its value as a linear combination of its parents and an unobserved
disturbance term. These disturbances are assumed to be mutually indepen-
dent.

For this DAG, there is only one compatible causal order, namely K =
(2, 3, 1), i.e. v2 ≺ v3 ≺ v1. The data are generated along this causal order:

1. draw e2 from its corresponding distribution and set v2 = e2,

2. draw e3 from its corresponding distribution and set v3 = b3,2 v2 + e3,

3. draw e1 from its corresponding distribution and set v1 = b1,3 v3 + e1.

Similar to CBNs, the causal order ensures that the values of the variables
occurring in the right hand side of the equations are determined in a pre-
vious step of the data generating process.

The probability distribution of each variable given its parents p(vi | pai)
is determined by the distributions of the disturbances. For example, if for
i = 1, 2, 3, ei ∼ N (µi, σ

2
i ) (a Gaussian distribution with mean µi and vari-

ance σ2i ), then p(vi | pai) also follows a Gaussian distribution:
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p(v1 | v3) ∼ N (µ1 + b1,3 v3, σ
2
1),

p(v2) ∼ N (µ2, σ
2
2),

p(v3 | v2) ∼ N (µ3 + b3,2 v2, σ
2
3).

When intervening, for instance, on v3 by setting its value to a constant
c3, the equation of v3 = b3,2 v2+e3 is replaced with v3 = c3. The implications
on the joint probability under the intervention as well as on the underlying
DAG of the SEM are as explained for CBNs.

3.2 Formal Definitions of CBNs and SEMs

Following Pearl (2000), we here give the formal definitions of CBNs and
SEMs, based on the concept of interventions. As shown in Examples 3.1
and 3.2, changing one conditional probability distribution or structural
equation by intervention does not affect the other distributions or equations.
Formally, an atomic intervention arises when a variable vi is set to some
specific constant value ci without affecting any other causal mechanism.

Definition 3.1 (Causal Bayesian Network). A causal Bayesian network
consists of a DAG G = (V, E), a probability distribution over v = (v1, . . . , vn)
factorizing according to G as in

p(v1, . . . , vn) =

n∏
i=1

p(vi | pai), (3.1)

with pai the parents of vi in G, and postinterventional probability distri-
butions resulting from intervening on a set Vk ⊂ V setting vk = ck defined
by the truncated factorization formula

p(V \ Vk | do(vk = ck)) =
∏

i: vi /∈Vk

p(vi | pai). (3.2)

The second way of defining causal models is via SEMs, which were
first introduced in the fields of genetics (Wright, 1921), and econometrics
(Haavelmo, 1943), and are further discussed for example by Bollen (1989).
Over the years the causal language embodied by SEMs has been partly
forgotten, and was revitalized by Pearl (2000).

Definition 3.2 (Structural Equation Model). A (recursive) structural equa-
tion model consists of a DAG G = (V, E), a set of probability distributions
p(ei), i = 1, . . . , n, and a set of equations

vi = fi(pai, ei), i = 1, . . . , n, (3.3)
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where fi is a function mapping the parents pai of vi in G and an unobserved
disturbance term ei to vi. The disturbance terms ei are assumed to be mu-
tually independent, i.e. p(e1, . . . , en) =

∏n
i=1 p(ei). Under an intervention

vk = ck, the structural equation vk = fk(pak, ek) is replaced with vk = ck.

If all functions fi in a SEM are linear, as in Example 3.2, we refer to
the model as a linear SEM.2 Typically, in these models the disturbances ei,
i = 1, . . . , n, are assumed to have zero mean, i.e. E(ei) = 0.

CBNs are most often used with discrete random variables, as they give
a compact way to represent conditional probability distributions, whereas
SEMs are commonly used with continuous random variables. As Exam-
ple 3.2 shows, SEMs imply a probability distribution over v, which is
uniquely determined by the distributions of the disturbance terms ei, i =
1, . . . , n, so that SEMs can be transformed to CBNs. Furthermore, for every
CBN there exists at least one SEM that generates the same joint probabil-
ity distribution over the involved variables as the CBN, as well as the same
postinterventional distributions (Druzdzel and Simon, 1993; Pearl, 2000).

Thus, in some way SEMs and CBNs are just two alternative ways to
represent the causal relationships among a set of variables, and both can
model interventions equally naturally, as the examples and definitions show.
Note however that SEMs are inherently more powerful than CBNs when
it comes to counterfactual reasoning (Pearl, 2000, 2nd edition Ch. 1.4.4,
Ch. 7). We do not however consider counterfactuals further in this thesis.

3.3 Causal Markov Condition

The data generating process of a CBN or SEM over a DAG G = (V, E)
is characterized by local probability distributions p(vi | pai), so that the
value of a variable vi is determined by the values of its direct causes pai.
Once these are known, the values of the indirect causes and other variables
prior to vi in the causal order are irrelevant. For instance, in Example 3.1,
once we know a person fell down (v3), the conditions of the street (v4) or
whether the person has drunk beer (v2) contain no further information on
the person breaking the wrist (v1). This is stated formally in the causal
Markov condition (Spirtes et al., 1993; Pearl, 2000).

Definition 3.3 (Causal Markov Condition). In the probability distribution
generated by a CBN or SEM over a DAG G = (V, E), each variable vi ∈ V is

2While we use the terms ‘linear SEM’ and ‘SEM’ to distinguish between models with
linear functions fi and arbitrary functions fi, the terms ‘SEM’ and ‘non-parametric SEM
(NPSEM)’, respectively, are sometimes used instead.
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independent of all its non-effects (non-descendants) given its direct causes
pai (parents), for all i = 1, . . . , n.3

While Definitions 3.1 and 3.2 imply the causal Markov condition, this
condition together with the chain rule for probabilities of Equation (2.3)
(page 11), yields that the joint probability distribution p(v1, . . . , vn) over
the variables in V factorizes according to the DAG G, as in Equation (3.1).
Furthermore, Spirtes et al. (1993) assumed the causal Markov condition
and proved the so called manipulation theorem, a generalization of the
truncated factorization formula of Equation (3.2).

3.4 Causal Sufficiency and Selection Bias

So far, the discussion focused on the data generating process, not on the
data itself. If only part of the variables of a CBN or SEM over a DAG
G = (V, E) are observed, the set V is divided into two disjoint sets, W
containing the observed variables, and U containing the latent (i.e. hidden,
unobserved) variables. The causal Markov condition is only assumed to
hold for the set V, i.e. when disregarding, or not observing, some variables,
there can be additional dependencies, also termed spurious correlations,
among the observed variables, see Example 1.2 (page 2) and Example 3.3
below.

The troublesome variables introducing such dependencies are so called
confounders, which are variables not included in W but having a (direct
or indirect) causal effect on two or more of the observed variables in W,
i.e. unobserved common causes of variables in W.4 Towards this end the
following assumption is often made (Spirtes et al., 1993; Pearl, 2000).

Definition 3.4 (Causal Sufficiency). A set W of observed variables is
causally sufficient if and only if every common cause of two or more vari-
ables in W is contained in W. In this case, we also call the CBN or SEM
over the DAG G = (W, E) causally sufficient.

Example 3.3 (Confounder, Causal Sufficiency). In the generating DAG
of Example 1.2, redrawn in Figure 3.3 (a) with v1 = ‘outside temperature’,
v2 = ‘swimming outside’, and v3 = ‘icy streets’, the causal Markov con-
dition holds if all three variables are considered: people swimming (v2) is
independent of the streets being icy (v3) given the outside temperature (v1).

3While the causal Markov condition is stated in terms of non-effects and direct causes,
in non-causal Bayesian networks a similar, purely statistical condition, the local Markov
condition, is stated in terms of non-descendants and parents in the underlying graph.

4A common cause of vi and vj is formally defined as a variable having a causal effect
on vi that is not via vj , and a causal effect on vj that is not via vi (Spirtes et al., 1993).
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(a)

v1

v2 v3

(b)

v2 v3

(c)

v1

v2 v3

Figure 3.3: An example demonstrating causal sufficiency and the causal
Markov condition. In (a) the set {v1, v2, v3} is causally sufficient and the
causal Markov condition holds. When omitting v1 from (a), the set {v2, v3}
shown in (b) is causally not sufficient and the causal Markov condition does
not hold. In (c), the omitted variable v1 is represented by a dashed circle.

On the contrary, setting W = {v2, v3} and U = {v1}, and considering
the graph over W only, as in Figure 3.3 (b), although there is no causal link
between the two variables v2 and v3, they are negatively correlated. This
spurious correlation is due to the unobserved confounder v1.

To represent unobserved confounders (and other unobserved variables)
explicitly in a DAG G underlying a CBN or SEM, we will indicate observed
variables by solid circles, and latent variables by dashed circles, as shown
in Figure 3.3 (c) for Example 3.3.

Another way of introducing spurious correlation among two indepen-
dent variables is selection bias. This rather is a property of the sampling
method or design of a study than of the data generating model. Selection
bias occurs when inclusion of a data point in the sample is affected by a
variable which is causally related to some variable v ∈ V. To put it differ-
ently, the value of a variable influences whether the data point is included
in the data set or not. Selection bias can typically be avoided by appropri-
ately collecting the data. For the rest of this thesis we assume that there
is no selection bias.

3.5 Interventions and Causal Effects

In the introduced models, each variable of the associated DAG is linked to a
(local) conditional probability distribution (in CBNs) or a structural equa-
tion (in SEMs), each representing an autonomous mechanism determining
how the value of the corresponding variable is generated. Intervening on
variable vi only affects the corresponding conditional probability distribu-
tion or structural equation, as stated in the respective definitions. In the
underlying DAG, this intervention simply means removing all edges with
arrows into vi (see Example 3.4 below). The postinterventional distribution
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of y conditional on x, obtained from the truncated factorization formula of
Equation (3.2), is also termed the causal effect of x on y (Pearl, 2000).5

Definition 3.5 (Causal Effect). Given a CBN or SEM, the causal effect
of x on y, denoted as p(y | do(x)), is a function from x to the space of
probability distributions on y, and is defined as the probability of y when
intervening on x.6

This definition of the causal effect marks the total effect of x on y,
combining the direct effect (along the edge x → y) as well as all indirect
effects of x on y (along all directed paths from x to y other than x → y).
The definition of the direct effect requires that all paths between x and
y other than the edge x → y are intervened on, which can in general be
achieved by intervening on all variables other than y, or, if the DAG is
known, by intervening on all parents of y, in addition to x (Pearl, 2000).

In linear SEMs, as in Example 3.2, the causal effect of x on y is typically
not defined using the full postinterventional distribution. Rather, the (to-
tal) causal effect of x on y is defined as the rate of change in the expected
value of y when intervening on x (Pearl, 2000), i.e.

∂

∂x
E(y | do(x)). (3.4)

Causal effects in linear SEMs can also be read off the SEM directly, using
the method of path coefficients (Wright, 1921, 1934), as demonstrated in
the following example.

Example 3.4 (Interventions, Causal Effects). In the linear SEM of Fig-
ure 3.4 (a), intervening on the variable v2 yields the model of Figure 3.4 (b),
where in the DAG the intervened variable is marked with a double circle,
and the updated linear equations are given below the DAG.

The joint probability distribution over v1, v2, and v3 in (a) and (b) are
given by the factorizations of Equations (3.1) and (3.2), respectively:

p(v1, v2, v3) = p(v1)p(v2 | v1)p(v3 | v1, v2) (3.5)

p(v1, v3 | do(v2)) = p(v1)p(v3 | v1, v2). (3.6)

Note that the postinterventional distribution is in general not equal to
the corresponding conditional distribution. Rewriting Equation (3.6) yields

p(v1, v3 | do(v2)) =
p(v1, v2, v3)

p(v2 | v1)
, (3.7)

5We will use the more convenient notation of x and y instead of vi and vj when talking
about causes and effects.

6Note that for every possible assignment xi of x, the causal effect gives a probability
distribution over y, i.e. for each possible assignment yj of y a value p(y = yj | do(x = xi)).



3.5 Interventions and Causal Effects 23

(a)
v1

v2 v3

b2,1 b3,1

b3,2

v1 = e1

v2 = b2,1 v1 + e2

v3 = b3,1 v1 + b3,2 v2 + e3

(b)
v1

v2 v3

b3,1

b3,2

v1 = e1

v2 = c2

v3 = b3,1 v1 + b3,2 v2 + e3

(c)
v1

v2 v3

b3,1

b3,2

v1 = c1

v2 = c2

v3 = b3,1 v1 + b3,2 v2 + e3

Figure 3.4: An example demonstrating interventions. In (a), the DAG and
linear equations of the data generating linear SEM are shown. The DAG
and updated structural equations under intervention of v2 are shown in (b),
and under intervention of v1 and v2 in (c).

whereas the conditional probability distribution of v1 and v3 given v2 is by
Equation (2.2) (page 11) defined as

p(v1, v3 | v2) =
p(v1, v2, v3)

p(v2)
. (3.8)

Using Equation (3.4), the (total) causal effect of v2 on v3 is calculated as

∂

∂v2
E(v3 | do(v2)) =

∂

∂v2
E(b3,1 v1 + b3,2 v2 + e3) =

∂

∂v2
b3,2 v2 = b3,2

since E(b3,1 v1) = b3,1 E(e1) = 0, E(e3) = 0, and E(b3,2 v2) = b3,2 v2 due
to the intervention of v2. Note that in this case the direct and total causal
effects are equal.

Direct causal effects in linear SEMs are given by the corresponding co-
efficients in the structural equations. When intervening on v1 and v2, as
shown in Figure 3.4 (c), we can calculate the direct causal effect of v1 on
v3 as ∂

∂v1
E(b3,1 v1 + b3,2 v2 + e3) = b3,1.

In general, Wright (1921, 1934) stated that the total causal effect of
vi on vj in a linear SEM is the sum of the products of the coefficients
along the various paths from vi to vj. For instance, the total causal effect
of v1 on v3 is given by b3,1 + b3,2 b2,1, i.e. by the direct effect (b3,1) plus
the indirect effect along the path via v2 (b3,2 b2,1). Note that while in linear
SEMs indirect effects have this straightforward interpretation as products of
coefficients along indirect paths, there is no such interpretation in general
for SEMs and CBNs.
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3.6 DAGs and Independencies

The following theorems formally state how the underlying DAG of a CBN or
SEM and the associated probability distribution are connected, as already
illustrated in the examples using the causal Markov condition. Towards this
end we define d-separation (Pearl, 1988), a concept which allows connecting
independencies in a distribution p to a DAG G.7

Definition 3.6 (d-Separation). Given a DAG G = (V, E), a path π between
vi and vj is said to be blocked by a set Z ⊆ V \ {vi, vj} if and only if

• π contains a chain vl → vk → vm or a fork vl ← vk → vm with
vk ∈ Z, or

• π contains a collider vl → vk ← vm with neither vk nor any descen-
dants of vk in Z.

If a path π is not blocked, it is called active or open.
A set Z is said to d-separate two vertices vi and vj, i 6= j, if and only

if all paths between vi and vj are blocked by Z, denoted as vi⊥⊥G vj | Z. If
Z = ∅, we simply write vi⊥⊥G vj. If Z does not d-separate vi and vj, then
vi and vj are called d-connected given Z, denoted as vi /⊥⊥G vj | Z.

A set Z is said to d-separate two disjoint sets Vi and Vj if and only if
all pairs (vi, vj) ∈ Vi × Vj are d-separated by Z, denoted as Vi⊥⊥G Vj | Z.
If Z does not d-separate Vi and Vj, then Vi and Vj are called d-connected
given Z, denoted as Vi /⊥⊥G Vj | Z.

Example 3.5 (d-Separation). In the DAG of Figure 3.1 (Example 3.1) the
following d-separation relationships (among others) hold

v4⊥⊥G v2 (by the second point of Definition 3.6)

{v4, v2}⊥⊥G v1 |{v3} (by the first point of Definition 3.6).

These are also reflected in the causal Markov condition. For example, the
second d-separation relation means that ‘icy streets’ and ‘drinking alco-
hol’ are d-separated from ‘breaking wrist’, given ‘falling down’, as stated
in Section 3.3 in terms of independencies. We also have, for instance,
v4 /⊥⊥G v2 |{v3}, v4 /⊥⊥G v2 |{v1}, and {v4, v2} /⊥⊥G v1.

Denoting d-separation relationships with the symbol ⊥⊥G follows the
notation of conditional (statistical) independence using ⊥⊥p (Dawid, 1979),
since these two concepts are closely related, as the following theorem shows
(Verma and Pearl, 1988; Geiger and Pearl, 1988; Geiger et al., 1990).

7An equivalent formulation of d-separation, termed moralization, has been introduced
by Lauritzen et al. (1990).
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Theorem 3.1. Given a SEM or CBN with underlying DAG G, for any
disjoint sets of random variables Vi,Vj , and Z hold

(i) Vi⊥⊥G Vj | Z ⇒ Vi⊥⊥p Vj | Z in every probability distribution p which
factorizes according to G (Global Markov Condition).

(ii) Vi /⊥⊥G Vj | Z ⇒ Vi /⊥⊥p Vj | Z in at least one probability distribution
p which factorizes according to G.

Statement (i) of Theorem 3.1 is referred to as the global Markov con-
dition and, being a purely statistical property, is equivalent to the local
Markov condition in DAGs (Lauritzen et al., 1990). For linear models,
Spirtes et al. (1998) showed a result similar to Theorem 3.1 for partial
correlations.

Theorem 3.2. Given a linear SEM over a DAG G, for any disjoint sets
of random variables Vi,Vj , and Z hold

(i) Vi⊥⊥G Vj | Z ⇒ ρVi,Vj ·Z = 0 for every parameterization of the SEM
over G.

(ii) Vi /⊥⊥G Vj | Z ⇒ ρVi,Vj ·Z 6= 0 for at least one parameterization of the
SEM over G.

3.7 Faithfulness and Linear Faithfulness

For statement (ii) of Theorem 3.1, one can in fact show a stronger version
saying that the implication holds for almost all probability distributions
factorizing according to G (Spirtes et al., 1993). Those distributions which
entail additional independencies to the ones entailed by the causal Markov
condition (i.e. those distributions for which point (ii) of Theorem 3.1 does
not hold) are said to be unfaithful to the DAG G (Pearl, 1988; Spirtes
et al., 1993; Pearl, 2000). (In Pearl (2000) such distributions are termed
‘unstable’ with respect to the graph.) To get a one-to-one relationship
between the d-separation relations of a DAG and the independencies of a
probability distribution generated by a CBN or SEM over this DAG, the
following assumption is needed.

Definition 3.7 (Faithfulness). Given a CBN or SEM over a DAG G with
probability distribution p, p is said to be faithful to G if and only if every
conditional independence in p is entailed by the causal Markov condition,
i.e. is due to the structure of G.

The following example demonstrates faithfulness, and gives a basic in-
tuition for the fact that almost all distributions are faithful to a DAG.
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Example 3.6 (Faithfulness). Consider the graph in Figure 3.4 (a). Clearly,
in the graph we have v1 /⊥⊥G v3. However, if (and only if) the parameters
b2,1, b3,2, and b3,1 happen to be such that b3,1 + b3,2 b2,1 = 0, we obtain that
v1⊥⊥p v3 in the distribution p due to the canceling paths between the two
variables. Rewriting v3 solely in terms of the disturbances ei, i = 1, 2, 3, as

v3 = b3,1 v1 + b3,2 v2 + e3 = b3,1 e1 + b3,2 (b2,1 v1 + e2) + e3

= (b3,1 + b3,2 b2,1) e1 + b3,2 e2 + e3

shows that if b3,1 + b3,2 b2,1 = 0, the disturbance term e1 has a zero effect
on v3, and hence v3 is independent of e1, and thus of v1.

However, the set where this constraint applies to the parameters is of
(Lebesgue) measure zero among all possible parameter values, so for almost
all parametrization b2,1, b3,2, and b3,1 the resulting distribution p will entail
a dependence between v1 and v3.

By adding the faithfulness assumption to Theorem 3.1, we obtain that
d-separation relationships in a DAG G and independencies in a distribution
p factorizing according to G are equivalent (Pearl, 2000), i.e. for all disjoint
sets Vi, Vj , and Z holds

Vi⊥⊥G Vj | Z ⇔ Vi⊥⊥p Vj | Z. (3.9)

This equivalence allows inferring d-separation relations (i.e. information
about the underlying DAG) from testable dependencies and independen-
cies in the observed data, and is used in some structure learning methods
discussed in Chapter 5.

Similarly to the faithfulness assumption, we define linear faithfulness
(Spirtes et al., 1993, 2nd edition p.47).

Definition 3.8 (Linear Faithfulness). Given a CBN or SEM over a DAG
G with probability distribution p, p is said to be linearly faithful to G if and
only if every zero partial correlation in p is entailed by the causal Markov
condition.

In linear SEMs with Gaussian disturbance terms, faithfulness and lin-
ear faithfulness are equivalent; for non-Gaussian disturbance terms, linear
faithfulness is a stronger assumption. In non-linear models, neither implies
the other (Robins, 1999). Adding the linear faithfulness assumption to
Theorem 3.2, we obtain the equivalence of Equation (3.9) for linear SEMs,
such that for all disjoint sets Vi, Vj , and Z holds

Vi⊥⊥G Vj | Z ⇔ ρVi,Vj ·Z = 0. (3.10)
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Figure 3.5: An example of a data generating structure of a time series.

3.8 Time Series Models

In some situations, variables evolve over time, forming a multivariate time
series. We here only consider discrete time processes (as opposed to con-
tinuous time processes) where observations are obtained at regular time
intervals, and each such observation is assumed to be generated by a com-
bination of past and possibly present variables. Effects from variables in the
past are called lagged, and from the present instantaneous effects. These
instantaneous effects are assumed to follow a CBN or SEM.

Example 3.7 (Time Series). In Figure 3.5 we show the data generating
process of a time series with 3 variables. The instantaneous effects are
acyclic, and the model includes lagged effects one and two time steps back.

If we assume linear relationships among the variables (similar to a linear
SEM), the corresponding equations are defined asv1(t)v2(t)

v3(t)


︸ ︷︷ ︸

v(t)

=

 0 0 0

b
(0)
2,1 0 b

(0)
2,3

0 0 0


︸ ︷︷ ︸

B0

v1(t)v2(t)
v3(t)


︸ ︷︷ ︸

v(t)

+

0 b
(1)
1,2 0

0 0 b
(1)
2,3

0 0 b
(1)
3,3


︸ ︷︷ ︸

B1

v1(t− 1)
v2(t− 1)
v3(t− 1)


︸ ︷︷ ︸

v(t− 1)

+

b(2)1,1 0 0

0 0 0
0 0 0


︸ ︷︷ ︸

B2

v1(t− 2)
v2(t− 2)
v3(t− 2)


︸ ︷︷ ︸

v(t− 2)

+

e1(t)e2(t)
e3(t)


︸ ︷︷ ︸

e(t)

, (3.11)

with e(t) unobserved disturbances. As we will shortly introduce, this is
termed a 2nd-order structural vector autoregressive model.

Chu and Glymour (2008) called the kind of structure of Figure 3.5
a repetitive causal graph. It is also closely related to unrolled dynamic



28 3 Causal Models

Bayesian networks (Koller and Friedman, 2009), which typically use only
one time lag, and in addition contain a Bayesian network for the initial
state. Furthermore, this structure is related to time series chain graphs
(Dahlhaus and Eichler, 2003), which represent instantaneous dependencies
as undirected edges. As in the examples of Section 3.1, the data gener-
ating process can be realized either by attaching a conditional probability
distribution to each variable (as done in CBNs), or by using deterministic
functional relationships and unobserved disturbance terms (as in SEMs).
Most of the work on time series in this thesis uses the latter representa-
tion, in particular Structural Vector Autoregressive Models (SVAR), see for
example Hamilton (1994), or Lütkepohl (2005).

Definition 3.9 (Structural Vector Autoregressive Model). A qth-order
structural vector autoregressive model (SVAR), with q < ∞, over a mul-
tivariate time series v(t) = (v1(t), . . . , vn(t)), t = 1, . . . , T, consists of a
graph representing the instantaneous and lagged effects, a set of probability
distributions over the disturbances e, and linear equations

v(t) = B0v(t) +

q∑
i=1

Biv(t− i) + e(t) (3.12)

where B0 is the connection matrix containing the instantaneous effects,
and can be permuted to strictly lower triangular form (by the acyclicity of
the instantaneous effects), and Bi, i = 1, . . . , q, are connection matrices
containing the lagged effects for lags 1, . . . , q. The vector e(t) contains
the unobserved disturbance terms ei(t), i = 1, . . . , n, t = 1, . . . , T , which
are mutually independent both of each other and over time, and identically
distributed over time.

Note that for q = 0 this model reduces to a linear SEM, as shown in
Example 3.2. An example of a 2nd-order SVAR is given in Example 3.7.

All assumptions made in the earlier parts of this chapter are assumed
to apply also to the graphs involving time, and hence the theorems hold as
well. Note however that one has to ‘unroll’ the graph sufficiently far back
in time in order to capture dependencies happening in the past. Also note
that for a first order SVAR the causal Markov condition implies that the
future is independent of the past given the present.



Chapter 4

Causal Effect Identification

In this chapter, we present the relevant existing methods addressing re-
search question Q1. The main focus lies on identifying a causal effect from
passive observational data, i.e. estimating the postinterventional probabil-
ity distribution under a hypothetical intervention. One main obstacle in
this task is bias due to confounding variables which can introduce spurious
correlations, as explained in the introduction by means of examples.

We start with formally defining causal effect identification in Section 4.1.
In Section 4.2 we then discuss existing methods for identifying causal effects
from a causally insufficient CBN or SEM, assuming that the underlying
DAG is known. Finally, in Section 4.3 we present some solutions for esti-
mating the effect of certain interventions when neither the DAG is known,
nor the full set of variables is observed.

Two widely used approaches for estimating causal effects from passive
observational data not further addressed are propensity score matching
(Rosenbaum and Rubin, 1983), and instrumental variables, see for exam-
ple Pearl (2000). Propensity score matching is one way of implementing the
truncated factorization formula (Equation (3.2), page 18) in case of a single
intervention, whereas the method of instrumental variables allows the iden-
tification of causal effects in certain linear SEMs. For recent illustrations
of both approaches see Berzuini et al. (2012).

We use the following notation: We denote with x the cause, and with
y the effect, and want to estimate the causal effect of x on y (with both x
and y observed variables). Observed variables in general are denoted with
w, sets of observed variables with W, latent variables with u, and sets of
latent variables with U . If it is not specified whether a variable is observed
or latent, we continue using v.

29
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4.1 Formal Definition

As formally stated in Definition 3.5 (page 22), the causal effect of x on y is
given by the postinterventional probability distribution p(y | do(x)), which
is, for each value of x, the probability distribution over y when forcing
x to that value. Thus, the preferred way of approaching the problem of
estimating the effect of an intervention is to actually intervene and set
the variable to a certain value, and observe the other variables under this
intervention. The postinterventional distribution can then be estimated
directly from the data set of this experiment. Examples were given in the
introduction.

In many cases such experiments are however not possible, for ethical,
financial, or practical reasons, and researchers have to estimate the effect of
an intervention from passive observational (i.e. non-experimental) data, see
the introduction for examples. The formal way of stating this problem is to
determine whether a causal effect is identifiable from passive observational
data (Pearl, 2000).

Definition 4.1 (Causal Effect Identifiability). The causal effect of x on y is
identifiable from a CBN or SEM over G = (V, E) if and only if p(y | do(x))
can be computed uniquely from any positive probability distribution over the
observed variables W ⊆ V.

4.2 Identifying Effects with DAG Known

In this section, the underlying DAG G over V =W ∪ U of a CBN or SEM is
assumed to be known, yet the parameters of the model are unknown. This
situation may arise when enough knowledge about the domain in question
is available, such that experts have a good understanding of which variables
are causally connected. The goal is to determine whether we can identify a
causal effect p(y | do(x)), for x ∈ W and y ∈ W, and obtain an expression
for it based on the probabilities of the observed variables.

Note that if all variables in V are observed, the causal effect of x on y is
always identifiable by adjusting for the parents of the intervened variable
x, and is given by

p(y | do(x)) =
∑
pax

p(y |x, pax) p(pax), (4.1)

where the sum is over all values of the parents of x. This implies in fact that
it is enough that all parents of x are among the observed variables. Equa-
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tion (4.1) follows from the truncated factorization formula (Equation (3.2),
page 18). Pearl (2000) called this Adjustment for Direct Causes.

4.2.1 Back-Door Adjustment

When some arbitrary variables of the DAG are hidden, the following defini-
tion together with the back-door adjustment in the theorem below (Pearl,
1993a) state one criterion to possibly identify the causal effect.

Definition 4.2 (Back-Door Criterion, Admissible Set). We are given the
underlying DAG G = (V, E) of a CBN or SEM, and a set of observed
variables W ⊆ V. Let x ∈ W, y ∈ W, and Z ⊆ W \ {x, y}. The set Z
satisfies the back-door criterion with regard to the ordered pair (x, y) if and
only if

(i) no variable in Z is a descendant of x, and

(ii) Z blocks every back-door path from x to y, i.e. every path between x
and y that contains an arrow into x (i.e. ‘x←’).

A set Z fulfilling the back-door criterion with respect to a pair (x, y) is
called admissible.

Theorem 4.1 (Back-Door Adjustment). Let x, y and Z be as in Defini-
tion 4.2. If Z satisfies the back-door criterion with regard to (x, y) then the
causal effect of x on y is identifiable and is given by

p(y | do(x)) =
∑
Z
p(y |x,Z)p(Z). (4.2)

The back-door criterion ensures that all paths that would introduce bias
to the estimate of the causal effect of x on y are blocked. If all parents of x
were observed, then Z = pax fulfills the back-door criterion, i.e. this crite-
rion generalizes the adjustment for direct causes to an arbitrary adjustment
set Z.

Example 4.1 (Back-Door Criterion). In Figure 4.1 (a), the back-door cri-
terion with regard to (x, y) holds with Z = {w1, w2}, Z = {w2, w3}, or
Z = {w1, w2, w3}, but no other set Z ⊆ W. In Figure 4.1 (b), the back-
door criterion is not fulfilled by Z = {w} nor by Z = ∅.

In small graphs it is relatively easy to check for a given set Z whether it
fulfills the back-door criterion, and hence, by going through all possible sets
Z to conclude whether an admissible set exists. For larger graphs, Tian
et al. (1998) introduced an algorithm to efficiently search for an admissible
set Z that is minimal, i.e. such that no subset of Z is admissible.
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(a) u w1

w2

w3

x y

(b) u

wx y

Figure 4.1: Adjustment Criterion. In (a) the back-door criterion holds for
instance with Z = {w1, w2}, whereas in (b) the back-door criterion is not
fulfilled.

A special case that proves useful for our results is the back-door adjust-
ment in linear SEMs, stated in the following theorem (Pearl, 1998).

Theorem 4.2 (Back-Door Adjustment in Linear SEMs). Assume that the
underlying DAG G of a linear SEM is known, and let x, y and Z be as in
Definition 4.2. If Z is an admissible set with regard to (x, y), then the total
effect of x on y is identifiable, and given by cx, the coefficient of x in the
regression of y on x and Z using ordinary least squares:

y = cxx+
∑
z∈Z

czz + ry. (4.3)

Note that in general a regression coefficient does not need to be related
in any way to the causal effect, but merely expresses some form of correla-
tion between x and y given Z. The back-door adjustment gives a criterion
for when this expression coincides with the total effect (see Pearl, 2000, 2nd
edition p.161), illustrated in the following example.

Example 4.2 (Adjustment in Linear SEMs). We use the linear SEM of
Figure 3.4 (a) of Example 3.4 (page 22/23), and we want to estimate the
causal effect of v1 on v3. Wright’s method (1934) for path coefficients tells
us that the total causal effect is given by b3,1 + b3,2 b2,1. Since the empty
set Z = ∅ is admissible with regard to (v1, v3), Theorem 4.2 can be used
to calculate the causal effect directly as the regression coefficient c1 of the
following model

v3 = c1v1 + r3,

using the OLS formula of Equation (2.8) (page 13), and assuming that the
variables have zero mean:

c1 =
cov(v1, v3)

σ2v1
and
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cov(v1, v3) = E(v1 v3) = E(v1 (b3,1 v1 + b3,2 v2 + e3))

= E(e1 (b3,1 e1 + b3,2 (b2,1 v1 + e2) + e3))

= b3,1 E(e21) + b3,2 b2,1E(e21)+

b3,2 E(e1)E(e2) + E(e1)E(e3)

= (b3,1 + b3,2 b2,1)σ
2
v1 .

4.2.2 Other Approaches

A similar approach to the back-door adjustment of Theorem 4.1 is the
Front-Door Adjustment (Pearl, 1993b). This adjustment method allows
the covariates in the adjustment set Z to lie between the cause x and
the effect y, potentially yielding identifiability of the causal effect in cases
where back-door adjustment fails (the simplest such example is the graph
of Figure 4.1 (b)).

A more general tool to identify causal effects is provided by the three
rules of the do-calculus introduced by Pearl (1994, 1995). Iteratively ap-
plying these rules may allow transforming a postinterventional distribution
into an expression of observed (conditional) probability distributions only,
and hence identifying the causal effect. Huang and Valtorta (2006), and
Shpitser and Pearl (2006) showed that the do-calculus is complete, in the
sense that a causal effect is identifiable if and only if it can be transformed
into an expression over observed conditional probabilities using the three
rules of the do-calculus.

One drawback of the do-calculus is that it does not directly provide a
procedure specifying how to reach the transformation from the postinter-
ventional distribution to observational probability distributions. Towards
this end, general algorithms for the identification of (conditional) interven-
tional distributions were introduced by Tian and Pearl (2002), Tian (2004),
Shpitser and Pearl (2006), and Shpitser et al. (2011).1

4.3 Identifying Effects with DAG Unknown

In many situations the DAG corresponding to the data generating process
is not known, so the methods of Section 4.2 cannot be applied directly. To
still be able to infer causal effects from passive observational data, typically

1Conditional interventional distributions are defined as p(y |z, do(x)) = p(y,z,| do(x))
p(z | do(x))

(Shpitser and Pearl, 2006), and are causal effects in a subpopulation determined by the
values of z, for instance, the effect of alcohol (x) on mortality (y) in the male population
of a specified country (z).
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some other information is required. One common assumption in the meth-
ods discussed in this thesis is a known partial order among the observed
variables.

Definition 4.3 (Partial ordering assumption). For a CBN or SEM over a
DAG G = (V, E), with V = U ∪W ∪ {x, y}, the variables in U being latent,
and the variables in W, as well as x and y, observed, the partial ordering
assumption W ≺ x ≺ y holds if and only if there exists a valid causal order
in which the variables in W precede x, which in turn precedes y.

Note that this assumption implies that the total causal effect of x on
y is equal to the direct causal effect (with regard to the set of observed
variables W ∪ {x, y}).

This assumption is often reasonable, for example if a (partial) tempo-
ral ordering among the variables is known. Consider the field of medicine,
where one wants to identify the effect of a treatment or exposure variable x
(for example some specific form of surgery) on an outcome variable y (mor-
tality), possibly adjusting for some observed covariates Z ⊂ W (gender,
age, and general health indicators at the time of the surgery).

Furthermore, under the partial ordering assumption, the back-door cri-
terion is complete (Shpitser et al., 2010): If a set is not admissible in a
DAG G, then there exist models with underlying graph G in which adjust-
ing for this set yields a biased (and inconsistent) estimator of the causal
effect. Thus, finding admissible sets Z among the observed covariatesW is
an appropriate approach. This approach is taken in the methods discussed
in the following two subsections.

4.3.1 Simple Approaches

We first discuss three simple methods for creating a possible adjustment set,
given the partial ordering assumption. These strategies are (i) including
all of the covariates in W, (ii) including none of the covariates, and (iii)
including all observed common causes of x and y (i.e. variables which are
causes of x and also causes of y not via x). While for the first two strategies
no background knowledge is needed, for the last approach it is necessary
to identify causes of x and y using background information. In practice,
especially the first strategy of adjusting for all covariates is commonly used.
However, all these simple approaches may lead to an adjustment set that is
not admissible, i.e. that does not block all back-door paths, as the following
example shows (Spirtes et al., 1998; Greenland et al., 1999; Spirtes, 2000;
VanderWeele and Shpitser, 2011).
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Figure 4.2: Figures (a) to (c) demonstrate simple adjustment criteria (for
details see Example 4.3), with admissible sets with regard to (x, y) given
by (a) Z = {w}, (b) Z = ∅, and (c) Z = {w}. Figures (d) and (e) are used
to illustrate the method of Section 4.3.2.

Example 4.3. Consider the DAGs of the three data generating models in
Figure 4.2 (a)-(c). Each of the simple methods for finding an adjustment
set discussed above fails for one or more of these models: Adjusting for all
observed covariates yields an admissible set for (a) and (c), however not
for (b). In contrast, by adjusting for none of the variables we obtain an
admissible set for (b), though not for (a) and (c). Finally, adjusting for all
common causes, given the required background knowledge, yields in (a) the
set Z = {w} and in (b) the set Z = ∅, which are admissible in the respective
models. However, in (c) the resulting adjustment set is the empty set, since
w causes y only via x. This adjustment set is not admissible.

VanderWeele and Shpitser (2011) introduced a criterion always yielding
an admissible set, when such a set truly exists. In addition to the partial
ordering assumption, they require that it is known which covariates are
causes of x or y (as for the strategy of including all common causes). They
show that the set of all those observed covariates which are causes of x,
or of y, or of both yields an admissible set, i.e. blocks all back-door paths.
For the graphs in Figure 4.2 (a)-(c) this criterion indeed yields the correct
adjustment sets. However, in case there does not exist an admissible set,
the criterion of VanderWeele and Shpitser (2011) fails to detect this.

4.3.2 Methods Based on Dependencies and Independencies

Statistical dependencies and independencies among the observed variables
can be used to identify causal effects without knowing the underlying DAG.
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We first want to point out one theoretical limitation of this approach.
Even with the partial ordering assumption, some models entail the same
set of independencies over the observed variables, even though they imply
different admissible sets. For instance, the DAGs of Figure 4.2 (a) and
(b) both do not entail any independencies among w, x, and y, and it is
thus impossible to conclude from dependencies and independencies alone
whether the variable w should be adjusted for to identify the causal effect.
However, in some models it may well be possible to reach a conclusion.

Using the faithfulness and partial ordering assumptions, Spirtes and
Cooper (1999), and Chen et al. (2007) both gave a simple criterion to iden-
tify a causal effect with an empty admissible set.2 In essence, they require
an exogenous variable w, i.e. a variable w which is a root in the underlying
generating graph, and that x, y and w fulfill the following properties:

(i) x /⊥⊥ y,

(ii) w /⊥⊥ y, and

(iii) w⊥⊥ y |x.

If these conditions hold, then x is a cause of y and there is no confounder
(neither latent nor observed) between x and y. Hence, the effect of x on y
is identifiable, and equal to the conditional probability p(y |x) (which can
be seen using the back-door criterion with the admissible set Z = ∅).

This criterion is most easily understood with an example. The simplest
DAG in which these conditions hold is given by the graph in Figure 4.2 (d).
When adding a (latent) confounder between x and y, as in Figure 4.2 (e),
the conditional independence of condition (iii) is destroyed. In general, if
there is an active back-door path between x and y, conditions (i) to (iii)
cannot all hold, and hence confounding can be detected.

2In fact, they only assume that x and y are the last two variables in the causal order,
but they do not require any specific order among x and y.



Chapter 5

Structure Learning

In this chapter, the relevant existing work addressing research question Q2
is presented. We explain methods for learning the underlying DAG of a
CBN or SEM from passive observational data. For this task clever search
algorithms are needed, since the number of DAGs grows superexponen-
tially in the number of nodes: for 3 nodes there are 25 DAGs (shown in
Figure 5.1), for 4 nodes 543 DAGs, for 5 nodes 29281 DAGs, and for 6
nodes already 3781503 DAGs.

There is a vast literature on this topic, and we will only discuss the
methods relevant for understanding the novel methods introduced in this
thesis. These include the constraint based approach, and methods for esti-
mating linear non-Gaussian acyclic models, as well as applications of these
methods in SVAR models. One large bundle of alternative methods not
considered here are score based methods (Heckerman et al., 1995; Meek,
1997; Chickering, 2002; Koivisto and Sood, 2004; Silander and Myllymäki,
2006). Furthermore, much attention has rather recently been devoted to
the problem of learning non-linear models (Hoyer et al., 2009; Mooij et al.,
2009; Zhang and Hyvärinen, 2010; Peters et al., 2011), as well as com-
bining information from several (experimental or non-experimental) data
sets (Tillman, 2009; Claassen and Heskes, 2010; Tillman and Spirtes, 2011;
Tsamardinos et al., 2012; Hyttinen et al., 2012). These methods are how-
ever out of the scope of this thesis.

5.1 Constraint Based Methods

Here, we discuss methods for structure learning based on statistical de-
pendencies and independencies among the observed variables. We start
with the PC algorithm (after its inventors’ first names, Peter and Clark,

37
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Figure 5.1: The left part of the figure shows all 25 DAGs over three variables
v1, v2, and v3, indicated as numbers 1, 2, and 3 in the graphs. These are
grouped into the 11 equivalence classes in which these 25 DAGs can be
divided, given by the rows of the figure. The pattern of each equivalence
class and the d-separation relations entailed by the DAGs contained in this
class are shown in the right part of the figure.

Spirtes and Glymour, 1991), a structure learning method for the causally
sufficient case. We then move on to the FCI algorithm (Fast Causal In-
ference, Spirtes et al., 1993, 1999), which allows for latent variables and
selection bias. These methods are suited for both discrete and continuous
data (linear/non-linear, Gaussian/non-Gaussian), as all that is required is
an appropriate independence test, some of which were reviewed in Sec-
tion 2.2.2.

5.1.1 PC Algorithm

We assume that we are given a data set generated by a CBN or SEM
over a DAG G = (V, E), in which all variables V are observed (i.e. the
set of observed variables is causally sufficient), and that the probability
distribution p associated with the model is faithful to G.

Since the PC algorithm is based on independencies, we first point out
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an important property of DAGs, termed Markov equivalence, which limits
the amount of information one can learn using this approach.

Definition 5.1 (Markov equivalence). Two DAGs are Markov equivalent
if and only if they entail the same d-separation relations.

To judge whether two DAGs are Markov equivalent, the conditions of
the following theorem can be used (Verma and Pearl, 1990).

Theorem 5.1 (Markov equivalence). Two DAGs are Markov equivalent if
and only if they have the same skeleton and the same unshielded colliders.

Based on this theorem, Markov equivalent DAGs can be represented by
a pattern, termed the Markov equivalence class.

Example 5.1 (Markov equivalence). In Figure 5.1, all DAGs with three
variables are shown. The DAGs are collected in rows according to their
equivalence classes, which are shown next to the graphs, as are the d-
separation relationships holding in each graph of the corresponding equiva-
lence class. For example, all graphs with three edges form one equivalence
class (bottom row in the figure), since they do not entail any d-separation
relations and hence cannot be distinguished from each other. DAGs con-
taining two edges can be divided into 6 equivalence classes: First of all, the
condition of having the same skeleton narrows down the size of each equiv-
alence class (for example having an edge between v1 and v2, and v2 and
v3, but not between v1 and v3). Furthermore, the condition of having the
same unshielded colliders yields that there is an equivalence class containing
only one graph (v1 → v2 ← v3). However, it is not possible to distinguish
between v1 → v2 → v3, v1 ← v2 → v3, and v1 ← v2 ← v3, yielding the
equivalence class v1 − v2 − v3.

The aim of the PC algorithm is to, under the given assumptions, learn
the pattern of the data generating graph solely from the dependencies and
independencies in the data. The PC algorithm proceeds in two phases: the
adjacency phase and the orientation phase, as schematically demonstrated
in Figure 5.2, and further explained below. Two closely related but less
efficient algorithms are the IC algorithm (Inductive Causation, Verma and
Pearl, 1990), and the SGS algorithm (after its inventors’ last names, Spirtes,
Glymour and Scheines; Spirtes et al., 1990).

In the adjacency phase, the PC algorithm finds the skeleton of the pat-
tern of the underlying DAG. This is based on the fact that there is an edge
between two variables vi and vj in the DAG G if and only if vi and vj are
d-connected given every possible set Z ⊆ V \{vi, vj}. Since we assume that
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Figure 5.2: Demonstration of the PC algorithm. The data set is gener-
ated by an unknown causal model. The PC algorithm uses the (testable)
independencies from the data to generate the skeleton of the underlying
DAG in the adjacency phase, and then to orient as many edges as possi-
ble in the orientation phase to obtain the pattern representing the Markov
equivalence class of the DAG.

the probability distribution p is faithful to G, i.e. d-separation relations in
G and (conditional) independencies in p are equivalent (see Equation (3.9),
page 26), we thus can remove the edge between two variables vi and vj if
we can find even a single set Z for which they are (conditionally) indepen-
dent. Going through all these independencies is (roughly) done by starting
with the empty conditioning set Z, removing any possible edges, and then
continuing with conditioning sets of cardinality one, two, and so on.

In the orientation phase, the skeleton of the adjacency phase together
with Theorem 5.1 can be used to derive orientation rules, which allow
orienting some of the edges to obtain the pattern of the Markov equivalence
class of the underlying DAG. The first rule orients the unshielded colliders
of the pattern: For any triple (vi, vk, vj), with vi − vk − vj in the skeleton
and vi not adjacent to vj , we can orient vi → vk ← vj if and only if vk
is not in the conditioning set Z yielding vi⊥⊥ vj | Z (by the definition of
d-separation). In addition to these colliders, the orientation of some other
edges may be determined uniquely for the equivalence class. For example,
by the acyclicity assumption, if vi → vk → vj and vi−vj are in the skeleton,
we must orient vi → vj . In total there are three such additional rules.

Meek (1995) showed that these orientation rules are sound and com-
plete, i.e. the pattern contains all and only those orientations which are
common to all the elements of the equivalence class. It is also straightfor-
ward to incorporate background knowledge into the PC algorithm, such as
existence or non-existence of some edges, orientation of some edges, or a
time order among the variables (Meek, 1995; Spirtes et al., 1993).
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5.1.2 FCI Algorithm

We here assume again that the data are generated by a CBN or SEM over
a DAG G = (V, E). However, as opposed to the setting of the previous
section, the set of observed variables may here only be a subset of V, i.e.
V =W ∪U withW observed, and U latent variables. This typically yields a
setW of observed variables which is not causally sufficient. Note that we do
not need to know the set U of latent variables, but only need to assume that
such a set exists. Furthermore, we assume that the distribution associated
with the model is faithful to G. We can thus discuss the FCI algorithm
(Fast Causal Inference, Spirtes et al., 1993, 1999), an extension of the PC
algorithm to the causally insufficient case.1

As working explicitly with latent variables can be cumbersome (see
for example Richardson and Spirtes (2002) for a list of reasons), the FCI
algorithm is based on so called maximal ancestral graphs (MAGs, Richard-
son and Spirtes, 2002) over the observed variables W.2 MAGs are ances-
tral graphs, in which for any two non-adjacent nodes there exists a set of
vertices that m-separates them, where m-separation is a generalization of
the d-separation criterion for DAGs to ancestral graphs (Richardson and
Spirtes, 2002). Furthermore, MAGs not only can represent latent variables
(using bidirected arrows ↔), but can also account for selection bias (using
undirected arrows −). However, for simplicity, we will exclude selection
bias from all following descriptions.

The interpretation of the edges of a MAG is as follows:

• A directed edge w1 → w2 is interpreted as w1 being a (direct or
indirect) cause of w2, and w2 not being a cause of w1, and

• a bidirected edge w1 ↔ w2 is interpreted as neither w1 being a cause
of w2 nor w2 being a cause of w1.

First of all, note that every DAG is a special case of a MAG (simply
not containing any bidirected edges). Furthermore, for every causal model
over a DAG G = (V, E) with V = W ∪ U as above, there exists a MAG
over the observed variables W representing the same independencies (m-
separation relations) among the observed variables W as in the DAG, and
retaining ancestral relationships of the DAG. For example, the MAG over
the observed variables w, x and y of the DAG in Figure 4.2 (e) (page 35)

1Verma and Pearl (1990) introduced a variant of the IC algorithm also accounting
for latent variables (later termed IC* (Pearl, 2000)). Since the FCI algorithm is more
efficient as well as further developed, we will only consider the FCI algorithm here.

2Earlier versions of the algorithm are based on so called inducing path graphs (Spirtes
et al., 1993). The algorithm is essentially the same but the interpretation of the output
differs.
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Figure 5.3: Demonstration of the FCI algorithm, MAGs and PAGs. For
details see Example 5.2.

is given by the fully connected graph containing the three edges w → x,
x→ y, and w → y, since (i) there are edges in the DAG from w to x, and
from x to y, and (ii) w and y are always d-connected when disregarding u,
and w is an ancestor of y. An algorithm to transform a DAG over observed
variablesW and hidden variables U into a MAG over the observed variables
W is given by Richardson and Spirtes (2002). A further example of a MAG
is given in Figure 5.3.

Similarly to the PC algorithm, the FCI algorithm uses dependencies
and independencies among the observed variables to construct in two steps
(adjacency and orientation phase) a so called partial ancestral graph (PAG,
Richardson, 1996), which corresponds to the equivalence class of the under-
lying MAG. Uncertainty about the orientation of an edge is indicated with
a circle mark ‘◦’ in the PAG. We illustrate FCI in the following example.

Example 5.2 (FCI Algorithm). In Figure 5.3, the graph in the mid-
dle depicts the (unknown) data generating process over observed variables
W = {w1, . . . , w5}, and latent variables U = {u1, u2}. This DAG can be
transformed into a MAG over the observed variables, which is shown in the
left graph of the figure.

The FCI algorithm uses the testable independencies among the observed
variablesW to infer the PAG representing the equivalence class of the MAG
(shown in right graph of the figure). Circle-marks represent unknown ori-
entations; for instance, the circle at w2 implies that from independencies
alone it is not possible to infer whether w2 is an ancestor of w3.

While Theorem 5.1 gives a simple necessary and sufficient graphical
criterion for two DAGs to be Markov equivalent, this condition is only
necessary for two MAGs to be equivalent. There are different graphical
criteria to define Markov equivalence for MAGs (Spirtes and Richardson,
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1997; Zhao et al., 2005; Ali et al., 2009), however describing these is out of
the scope of this thesis.

Furthermore, Zhang (2008) augmented the rules in the orientation phase
(there are in total 11 rules, including the ones handling selection bias) such
that FCI is sound and complete, i.e. all and only those edge marks which
are common to all MAGs of the equivalence class represented by the PAG
are oriented. As for the PC algorithm, it is straightforward to include
background knowledge about a temporal ordering in FCI. However, it is
not known whether FCI remains complete when including such knowledge.

5.2 Linear Non-Gaussian Acyclic Model
Estimation

The methods presented in the previous section can only identify the under-
lying DAG/MAG of a causal model up to Markov equivalence. Here, we
review a class of methods for linear SEMs with non-Gaussian error terms,
also termed Linear Non-Gaussian Acyclic Models (LiNGAM, Shimizu et al.,
2006). These methods exploit higher order statistics yielding full identifi-
ability of the model when no latent variables are present. We start with
reviewing two approaches to estimate such models. We then present a mea-
sure to infer the causal direction among only two variables, and how it can
be used to estimate a LiNGAM model over several variables. Towards the
end of this section we discuss extensions of these methods for models with
latent variables, as well as with multidimensional variables.

5.2.1 ICA-LiNGAM

Given a LiNGAM model over a DAG G, and assuming causal sufficiency for
the observed variables, the ICA-LiNGAM algorithm (Shimizu et al., 2006)
outputs, in the large sample limit, the underlying DAG G. Note that the
faithfulness assumption is not needed for this approach.

Estimating a LiNGAM model basically consists of two steps: obtaining
a causal order among the variables, and estimating the connection strengths
of the causal effects given the causal order. The second step is simple, and
can be done using OLS by regressing the second variable in the causal
order on the first, the third variable on the first and the second, and so
on (or alternatively by using the Cholesky decomposition of the covariance
matrix of the variables). Additionally, some of the causal effects (regression
coefficients) might be set to zero if they are not statistically significant,
which means that some of the edges in the DAG are cut out. The crucial
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point in the algorithm thus is the first step of obtaining a causal order.
Towards this end, we write a linear SEM using the matrix equation as
shown in Example 3.2 (page 17)

v = Bv + e. (5.1)

In this section we only consider models where the distribution of the dis-
turbances e are non-Gaussian, which is essential for full identification of
the model.

In ICA-LiNGAM, Equation (5.1) is rewritten in its reduced form, corre-
sponding to an ICA (Independent Component Analysis, Hyvärinen et al.,
2001) model

v = Ae (5.2)

with A = (I−B)−1, so that the observed variables v can be seen as a linear
mixture of the independent disturbances e, termed sources in the ICA
literature. In essence, ICA identifies a matrix A by whitening and rotating
the data such that A−1v yields independent sources e. In this step, non-
Gaussianity is required, since Gaussian distributions are rotation symmetric
(once they are whitened), and hence any rotation of white Gaussian data
yields independent (uncorrelated) sources.

The matrix A inferred from ICA is unique up to arbitrary scaling, sign
change and permutation of the columns. These ambiguities can be resolved
using the acyclicity assumption of the underlying model (Shimizu et al.,
2006), so that we obtain a unique matrix A, which in turn yields a unique
connection matrix B. Note that the residuals e are only independent when
estimating the matrix B in a correct causal order (which is found using the
ICA matrix A), as demonstrated in the following example.

Example 5.3 (ICA-LiNGAM). We use the linear SEM of Example 3.2
over the DAG v2 → v3 → v1 (Figure 3.2, page 17), with the disturbances
ei, i = 1, 2, 3, following a uniform distribution with mean 0 and variance 1.
The data are shown in Figure 5.4 (a). In (b) we show the estimated residuals
r when estimating the matrix B using the correct causal order. These are
independently and uniformly distributed, representing the distribution of the
underlying disturbances e. The independence of these residuals can be seen
from the figure since the cube is aligned with the axes. Thus, for any given
value of r1, for instance, the values of r2 and r3 do not depend on this value.
In contrast, in (c) we plot the residuals when estimating the matrix B along
the order v1 ≺ v3 ≺ v2, and can see that these are not independent, even
though they are uncorrelated. The dependence of the residuals is indicated
by the rotated cuboid, such that, for instance, for large values of r1, the
values of r3 are restricted to be around 0.
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(a) Data generated by the
model in Figure (3.2)

(b) Residuals when esti-
mating B in the correct
causal order v2 ≺ v3 ≺ v1

(c) Residuals when esti-
mating B in a wrong
causal order v1 ≺ v3 ≺ v2

Figure 5.4: Demonstration of ICA-LiNGAM. The schematic plots show the
distributions of the data (a), and the residuals when estimating the model
in two different orders, (b) and (c). The cuboid of each plot indicates the
area in which the distribution is non-zero. Inside the cuboid the data are
distributed uniformly.

5.2.2 DirectLiNGAM

Under the same assumptions as for ICA-LiNGAM, DirectLiNGAM (Shimizu
et al., 2011) tackles the problem of learning a causal order in an iterative
manner. First, the algorithm searches for an exogenous variable (i.e. a root
variable in the underlying model, which always exists due to the acyclicity
assumption). Then, the effect of this exogenous variable is regressed out
from all other variables, and the whole process is repeated on this smaller
data set.3 We restate two theorems by Shimizu et al. (2011), formalizing
this method. The first one gives a criterion to find an exogenous variable.

Theorem 5.2. Given that v follows a LiNGAM model, let r
(j)
i = vi−cijvj,

i 6= j, be the residuals when regressing vi on vj using OLS. Then, vj is

exogenous if and only if vj ⊥⊥ r(j)i for all i 6= j.

For this theorem it is essential that the residuals are non-Gaussian, since

vj and r
(j)
i are always uncorrelated (by construction of the OLS estimator)

and hence for Gaussian variables they are also independent. The second
theorem of Shimizu et al. (2011) states that when regressing out the effect of

an exogenous variable vj from all other variables to obtain the residuals r
(j)
i ,

i 6= j, these residuals follow also a LiNGAM model with the same induced

3Note that for finite sample sizes the result of ICA-LiNGAM may depend on the
initialization of the parameters in the ICA-algorithm, whereas DirectLiNGAM always
yields the same solution.
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(a) First Iteration of DirectLiNGAM (b) Second Iteration

Figure 5.5: Demonstration of DirectLiNGAM, plotting schematically the
regressor versus the resulting residuals to find an exogenous variable, see
Example 5.4 for details.

causal order. This allows searching for an exogenous variable among r
(j)
i

to find a second variable in the causal order. By iterating this process a
full causal order can be found.

Theorem 5.3. Given that v follows a LiNGAM model, and vj is exoge-

nous, the obtained residuals r
(j)
i = vi − cijvj, i 6= j, follow a LiNGAM

model with the same induced causal order.

Example 5.4 (Direct-LiNGAM). We demonstrate the algorithm using the
same model as in Example 5.3. To find an exogenous variable, all pairwise

OLS regressions are performed: For all i 6= j we obtain vi = cijvj+r
(j)
i and

test whether vj ⊥⊥ r(j)i . Plots of vj versus r
(j)
i are shown in Figure 5.5 (a).

The plots show that independence with both residuals only holds for v2
(since both rectangles are aligned with the axes). Thus, v2 is exogenous and
is chosen to be the first variable in the causal order.

To find the second variable in the causal order, we repeat this step with
the residuals of the regressions on v2. We perform the pairwise regressions

of r
(2)
1 and r

(2)
3 in both directions meaning that we estimate r

(2)
3 = c̃31r

(2)
1 +

r
(2,1)
3 , and r

(2)
1 = c̃13r

(2)
3 + r

(2,3)
1 . The corresponding plots are shown in

Figure 5.5 (b). These plots show that r
(2)
3 is exogenous among r

(2)
1 and

r
(2)
3 , yielding v3 as the second variable in the causal order.

As now only v1 is left, we found the causal order to be v2 ≺ v3 ≺ v1.
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5.2.3 Pairwise Measure of Causal Direction

Hyvärinen (2010) discussed the problem of inferring the causal order for a
two variable LiNGAM model

x = ex (5.3)

y = bx+ ey (5.4)

i.e. determining which of the variables x and y is the cause and which is
the effect. The introduced measure is based on the likelihood ratio of the
two possible models x → y and y → x, and various ways of calculating
this ratio based on differential entropy approximations, cumulants, and
first-order approximations are suggested (Hyvärinen, 2010; Hyvärinen and
Smith, 2013).

The pairwise measure can also be used to infer a causal order among
n variables v1, . . . , vn following a LiNGAM model, using a DirectLiNGAM
style approach (Hyvärinen, 2010). Since for an exogenous variable vj , the
causal model vj → vi holds for all i 6= j (by marginalizing out all other
variables), this measure can be used to find an exogenous variable. As in
DirectLiNGAM, once an exogenous variable is found, its effect is regressed
out from all other variables, and the procedure is repeated on this smaller
set of variables.

5.2.4 Latent Variable LiNGAM

So far we have only discussed methods for LiNGAM models without la-
tent variables. Hoyer et al. (2008) introduced the latent variable LiNGAM
model (lvLiNGAM) and a method to estimate it. The generating equations
can again be rewritten as an ICA like model, such that w = Ae, with w
the observed variables, and e the disturbances of the observed variables as
well as the hidden variables. Note that the matrix A has now more columns
than rows (as opposed to the case without latent variables where A is a
square matrix), termed an overcomplete ICA basis. However, with latent
variables the model is in general not fully identifiable, and estimation of
the overcomplete ICA basis is computationally very challenging (only up to
3 observed variables and one hidden variable were used in the simulations
in Hoyer et al., 2008).

Recently, Tashiro et al. (2012) introduced a DirectLiNGAM style ap-
proach, searching for exogenous variables, as well as sink variables, to esti-
mate a partial order among the observed variables in lvLiNGAM models.
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5.2.5 GroupLiNGAM

Kawahara et al. (2010) generalized the LiNGAM model to multidimen-
sional variables, also termed groups of variables, i.e. instead of having
v = (v1, . . . , vn) being a vector of scalar random variables, they assume
v = (v1, . . . ,vn) being a vector of multidimensional variables. The linear
equations can again be written in matrix form as

v = Bv + e (5.5)

with B the connection matrix, which can be permuted to being lower block
triangular, such that a causal order among the multidimensional variables
v1, . . . ,vn exists, and e = (e1, . . . , en) multidimensional, non-Gaussian dis-
turbance terms, such that ei⊥⊥ ej , i 6= j. However, the components of each
ei, that is, the disturbances within group i, can be correlated.

In their algorithm, termed GroupLiNGAM, Kawahara et al. (2010)
aimed at learning the partition of the variables v, and with it the causal or-
der among these variables. This results in statistically and computationally
challenging algorithms (exponential in the number of variables).

5.3 Trace Method

In this section, we describe the basic idea of the Trace Method of Janzing
et al. (2010), a method designed to infer the causal order among two mul-
tidimensional variables x and y, given linear relationships. The model is
given as

y = Bx + e (5.6)

where B is an arbitrary connection matrix, which is independently chosen
of the covariance matrix Σ of the regressors x, and the disturbances e are
independent of x. No assumptions are made on the distribution of e.

The underlying idea is, intuitively, that in the correct causal direction,
i.e. x → y in Equation (5.6), p(x) and p(y |x) originate from some ‘inde-
pendent mechanisms’, whereas p(y) and p(x |y) show some form of depen-
dence. (Janzing and Schölkopf (2010) formally stated this in terms of algo-
rithmic information theory.) The trace method gives an easily computable
criterion to detect such dependencies for two multidimensional variables in
linear models. Janzing et al. (2010) pointed out that the trace method does
not yield any results for scalar variables, and the performance increases for
higher dimensional variables.
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5.4 SVAR Identification

SVAR models are introduced in Definition 3.9 (page 28) as

v(t) = B0v(t) +

q∑
i=1

Biv(t− i) + e(t), (5.7)

and we here assume that all variables v(t) are observed (i.e. the system is
causally sufficient). SVAR models can be used for policy analysis such as
forecasting the effect of an intervention in the system, or analyzing causal
influences of shocks to some variables, i.e. predicting the response (effect) of
one variable to an impulse (change) in another variable. Before discussing
these in more detail, we explain how SVAR models can be estimated.

Estimation of SVAR models can be done in three steps (see for example
Hamilton (1994), Demiralp and Hoover (2003), Moneta (2003), Lütkepohl
(2005), Moneta and Spirtes (2006), and Hyvärinen et al. (2010)):

(i) Estimation of the lagged effects using the reduced form Vector Au-
toregressive model (VAR)

v(t) =

q∑
i=1

Aiv(t− i) + d(t) (5.8)

which is connected to the SVAR model of Equation (5.7) by Ai =
(I−B0)

−1Bi, and d(t) = (I−B0)
−1e(t).

(ii) Estimation of the instantaneous effects matrix B0 using the error
terms d(t) of Equation (5.8)

d(t) = B0d(t) + e(t). (5.9)

(iii) Correction of the estimates for the lagged effects using

Bi = (I−B0)Ai. (5.10)

We now discuss steps (i) and (ii) in more detail. In (i), since the VAR
model does not contain instantaneous effects (i.e. the right hand side of
Equation (5.8) does not include v(t)), the matrices Ai, i = 1, . . . , q, can be
relatively straightforwardly estimated from the data. One typical require-
ment is stability of the VAR process.
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Definition 5.2 (Stability). The VAR model in Equation (5.8) is called
stable if and only if det(In −A1z − . . . −Aqz

q) 6= 0 for all |z| ≤ 1 (with
det() denoting the determinant of a matrix), i.e. all roots of this expression
lie outside the unit circle.

From the stability condition follows that the time series is stationary,
i.e. the first and second moments are time invariant (Lütkepohl, 2005). In a
stable VAR we can thus estimate the coefficient matrices of Equation (5.8)
using OLS.

For non-stationary time series with roots of det(In−A1z− . . .−Aqz
q)

on the unit circle, taking differences of the variables may yield a stable VAR
model. Such processes are termed integrated. However, in some other cases,
for so called co-integrated processes, it is necessary to estimate the coeffi-
cients using a Vector Error Correction Model (VECM, Engle and Granger,
1987), from which the estimates of the matrices Ai, i = 1, . . . , q, of Equa-
tion (5.8) can be inferred.

Step (ii) of the estimation of an SVAR model is the crucial point to
identify the model. Since the matrix B0 is assumed to be acyclic and the
disturbances e(t) to be independent, Equation (5.9) is a linear SEM, and we
can apply the techniques discussed in Sections 5.1 and 5.2, on the residuals
d(t) of the VAR model, to obtain the instantaneous effects.4

In the case of Gaussian disturbances, the PC algorithm of Section 5.1
can be used to identify the DAG up to Markov equivalence, typically re-
quiring background knowledge for full identification of the matrix B0. In
contrast, for non-Gaussian disturbances, the LiNGAM estimation of Sec-
tion 5.2 allows full identification of the matrix B0. Combining VAR estima-
tion with the PC algorithm is for example demonstrated by Demiralp and
Hoover (2003), Moneta (2003), and Moneta and Spirtes (2006), whereas
VAR estimation combined with LiNGAM was introduced by Hyvärinen
et al. (2010), and termed VAR-LiNGAM.

For forecasting a time series based on observations of the past, given
that the system does not change (i.e. no interventions or shocks), VAR
models are sufficient. However, for policy analysis it is important to identify
the matrix B0: For predicting the effect of an intervention it is essential
to obtain the correct matrices Bi = (I − B0)Ai, i = 1, . . . , q, and for
predicting the effect of shocks in the disturbances it is important to obtain

4In econometrics it is common to use background knowledge to select a causal order
among the variables and estimate the matrix B0 using the Cholesky decomposition of the
covariance matrix of the estimated residuals d(t) along this causal order. However, since
in many cases the theory is not sufficient to determine a causal order unambiguously,
approaches such as the ones of Sections 5.1 and 5.2 may be required.
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the independent disturbances e(t) = (I − B0)d(t), such that the shocked
disturbance is not correlated with any other disturbances.

The effect of a unit shock in the disturbances e(t − τ), τ ≥ 0 on the
variables v(t) is given by the impulse response functions Ψτ (Hamilton,
1994; Lütkepohl, 2005). Identification of these matrices Ψτ requires the
matrix B0, which can be seen from the Wold moving average representation
of the VAR model of Equation (5.8) (Hamilton, 1994; Lütkepohl, 2005), as
explained below:

v(t) =

∞∑
τ=0

Φτd(t− τ) (5.11)

=
∞∑
τ=0

Φτ (I−B0)(I−B0)
−1d(t− τ) =

∞∑
τ=0

Ψτe(t− τ). (5.12)

The matrices Φτ of Equation (5.11) are the moving average coefficients of
the VAR model, which can be transformed to the impulse response func-
tions Ψτ only if we know the matrix B0 yielding independent disturbances
e(t), as can be seen from Equation (5.12).

5.5 Granger Causality

A commonly used concept for causal analysis in time series is Granger
causality (Granger, 1969). The idea is that a cause x precedes its effect y
in time, and hence, x should help in predicting y. More formally, assuming
that we are given all the information in the universe up to and including
time point t, we predict the value of y(t + h), h ≥ 1, once using all this
information, and once using this information excluding x(τ) for all τ ≤ t.
If for some h ≥ 1 the prediction error (in the least square sense) of y(t+h)
is smaller for the former estimate than the latter, the time series x Granger
causes y (Lütkepohl, 2005). In Example 3.7 (page 27), v3 is a Granger
cause of v2, and v2 is a Granger cause of v1, whereas v2 is not a Granger
cause of v3.

However, in general we do not observe all the information in the uni-
verse, i.e. the system may not be causally sufficient. In this case, Granger
causality is only a necessary, but not sufficient condition for a time series x
to be a ‘real’ cause of a time series y. Unobserved confounding time series
can introduce spurious correlation between x and y, and hence, x may help
in predicting y, even though it is not a cause of y.
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Chapter 6

Contributions to the Research
Field

After introducing the necessary background on the relevant existing work
in Chapters 2 through 5, we are now ready to describe the contributions of
the publications of this thesis to the research field. Throughout the Ph.D.
studies, linear non-Gaussian models played a prominent role (Articles I,
III, IV and V), but also more general models were used (Articles II and
VI), extending the work on LiNGAM models to non-parametric settings.
An overview of which research question the articles address, as well as the
required model assumptions, is given in Figure 6.1.

VI

V IV

I

II

III

nonparam.

LiNGAM

Q1 Q2

causal sufficiency

(linear)} faithfulness{
model

Figure 6.1: Overview of the articles. The two circles indicate the two re-
search questions: Q1 (effect identification) and Q2 (structure learning).
The articles in the intersection (partly) address both questions. The up-
per line separates the articles according to the used model (non-parametric
model or LiNGAM model), the lower line according to additional assump-
tions (faithfulness or linear faithfulness but no causal sufficiency, and causal
sufficiency but no faithfulness).

53
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6.1 Structure Learning in Time Series Models

Articles I and II focus on causal inference from time series data. In Ar-
ticle I, we introduce the VAR-LiNGAM method for SVAR identification
(Section 5.4) to the econometrics community, and apply it to a micro- and
a macroeconomic data set. Article II generalizes the FCI algorithm (Sec-
tion 5.1.2) to time series data, which allows learning the structure of a time
series in the presence of latent variables. Both articles address the problem
of structure learning (Q2) from time series data. In addition, the method
used in Article I gives estimates of the causal effects (i.e. addresses Q1 as
well).

6.1.1 SVAR Identification in Econometrics using LiNGAM

In Article I the SVAR model of Definition 3.9 (page 28) is used, assum-
ing that the model is causally sufficient, and given that the probability
distributions of the disturbances are non-Gaussian (which can be tested
using standard statistical tests). The aim is to demonstrate the character-
istics and the potential of the VAR-LiNGAM method to the econometrics
community by applying it to two economic data sets.

The first time series data set consists of four variables: employment,
sales, research and development (R&D) expenditure, and operating income.
The data points are observed annually for manufacturing firms in the US
for the years 1972 to 2004, with some years missing for some firms, yielding
an unbalanced panel data set. (The data set is discussed in more detail by
Coad and Rao (2010).) Under the standard panel assumption that all firms
follow the same process, the firms are pooled together in our analysis.

As the process over these four variables is not stationary, we take log-
differences yielding a stationary process over the growth rates of the vari-
ables, i.e.

vi(t) = log(ṽi(t))− log(ṽi(t− 1)) (6.1)

with ṽi(t) denoting any of employment, sales, R&D expenditure, and oper-
ating income at time point t, and vi(t) denoting the respective growth rates.
Furthermore, statistical tests show that the variables are non-Gaussian,
such that the VAR-LiNGAM method can be applied.

For the first step in the SVAR identification, we use a VAR model with
q = 2 time lags, and estimate the coefficients of Equation (5.8) (page 49)
using an estimator based on least absolute deviations, since Dasgupta and
Mishra (2004) and Coad and Rao (2010) suggested that these estimators
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Figure 6.2: Graph over a subprocess of the firm growth data of (a) the VAR
estimation, and (b) the SVAR estimation of the model, over the variables
employment growth, operating income growth, and sales growth.

are more robust for non-Gaussian variables.1 Estimating the instantaneous
effects of Equation (5.9) is done with the ICA-LiNGAM approach (Sec-
tion 5.2.1). Finally, the corrected lagged effects are calculated as in Equa-
tion (5.10).

Comparing the simple VAR coefficients A1 and A2, which disregard
the instantaneous effects, to the SVAR coefficients B1 and B2, which are
corrected for the instantaneous effects, reveals substantial differences in
some of the estimates. Consider the subprocess depicted in Figure 6.2.
In (a), the coefficient of the VAR estimation for employment growth at
time t on operating income growth at time t + 1 is positive. However,
in (b), the same coefficient turns into a negative effect in the corrected
SVAR estimates. In addition, there is an indirect large positive effect from
employment growth at time t on operating income growth at time t + 1
via sales growth at time t+ 1 (and some other smaller indirect effects), so
that the total effect is positive, but the direct effect is truly negative. Thus,
using the SVAR estimates B0, B1, and B2 direct and indirect effects can
be distinguished, giving a better understanding of the underlying system.

The second data set used in Article I consists of six variables: three
macroeconomic variables (GDP, GDP deflator, and the Dow-Jones index
of spot commodity prices), and three policy variables (borrowed bank re-
serves, non-borrowed bank reserves, and the federal funds rate), based on
the data set of Bernanke and Mihov (1998).2 The variables are observed

1Note that the OLS estimator is only equal to the maximum likelihood estimator in
case of Gaussian variables.

2In the original data set of Bernanke and Mihov (1998), instead of the borrowed
reserves, the total reserves were included. However, an important assumption of the
VAR-LiNGAM method is independent shocks (disturbance terms). Since non-borrowed
reserves are part of the total reserves, it is likely that a shock to one of them is correlated
with a shock to the other. Hence, to make the independence assumption more plausible,
we replace total bank reserves with borrowed bank reserves.
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for the US, monthly in the period of January 1965 to December 1996. The
main objective in this application is to analyze the effect of changes in the
monetary policy of the Federal Reserve System, the central banking system
of the US, on the macroeconomic variables. The goal is to find the best
indicator among the policy variables for the monetary policy of the Fed,
requiring the impulse response functions.

The variables form a co-integrated process, and hence, a VECM model is
used to estimate the VAR coefficients in the first step of the VAR-LiNGAM
procedure, using q = 7 time lags. The instantaneous effects matrix B0 re-
quired for the impulse response functions is obtained using ICA-LiNGAM.

As the results of this data set are less intuitive to understand than
the ones of the first data set, we restrict ourselves here to state that the
impulse response functions reflect economic theories on how the shocks to
the policy variables affect the GDP and GDP deflator. Furthermore, an-
alyzing sub-intervals of the time series reveals that the Fed has changed
its policy instruments across the years, reflected in the fact that the pol-
icy variable corresponding most closely to the (by theory) expected policy
shock changes.

In summary, Article I illustrates that the VAR-LiNGAM method may
be a suitable approach for analyzing economic time series data. The ob-
tained results from the two applications do not only make intuitive sense,
but also reflect established economic theories.

6.1.2 FCI for Time Series Data

The VAR-LiNGAM method used in Article I is designed for linear models
with non-Gaussian disturbances and no latent variables, i.e. for the causally
sufficient case. In Article II, we present a method for time series data
analysis, based on the FCI algorithm (Section 5.1.2), dropping all these
assumptions, while however requiring faithfulness. Hence, in some sense
Article II can be seen as a non-parametric extension of the VAR-LiNGAM
method used in Article I.

The original FCI algorithm is designed for data generated by models
such as CBNs and SEMs, not including a time dimension. To generalize
this algorithm to time series models, such as the SVAR model, one possible
approach is to ‘unroll’ the underlying graph for a certain ‘window’ length
τ , and incorporate background knowledge given by the assumptions of a
time series into the FCI algorithm. For instance, in the graph of Figure 3.5
(page 27), the model is shown in the window from time points t−3 to t+1.
Typically, we consider windows between time points t− τ to t, τ > 0.

In contrast to Article I, we allow latent variables, i.e. v(t) = (w(t),u(t))
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with w(t) observed, and u(t) unobserved variables. Note that the full set
of variable-time point nodes fulfill the causal Markov condition in the com-
pletely unrolled graph. However, on a finite window of length τ additional
dependencies can occur, even in the case of no latent variables u(t), due to
the marginalization over the variables outside the window. For instance,
in Figure 3.5, for any window of length τ , v2(t − τ) and v3(t − τ) are de-
pendent since all conditioning sets Z for which v2(t − τ)⊥⊥ v3(t − τ) | Z
holds lie outside the window (for instance Z = {v3(t − τ − 1)}). Further-
more, when marginalizing out latent variables inside the window, depen-
dencies may go back arbitrarily far in time: In the graph of Figure 3.5 with
w(t) = (v1(t), v2(t)) and u(t) = v3(t), v2(t) and v2(t−k) are dependent for
all k due to the latent variable v3.

In this sense, FCI is precisely the right tool, since it can handle marginals
of DAGs, represented by MAGs, and infer their equivalence class in form
of PAGs. We thus apply a modified FCI algorithm (see below) to samples
over the observed variables w(t− τ), . . . ,w(t), which are obtained using a
‘sliding window’ approach, i.e. for observations over a period of length T
we obtain T − τ samples (w(1), . . . ,w(τ + 1)), . . ., (w(T − τ), . . . ,w(T )).

To ensure that the distribution over the variables p(v(t − τ), . . . ,v(t))
is well-defined, we assume that the whole process has a strictly positive
time invariant probability distribution, as for example is the case for stable
VAR models. Furthermore, we assume that p(v(t− τ), . . . ,v(t)) is faithful
to the unrolled graph.

Even though FCI was originally designed for data without a time dimen-
sion, it is straightforward to incorporate temporal knowledge: As already
mentioned by Spirtes et al. (1993), all edges can be oriented ‘forward in
time’ (i.e. adding arrowheads pointing into the nodes in the future), since
the cause must precede the effect. This can be implemented in the orien-
tation phase of FCI (see below). In Article II, we additionally incorporate
the knowledge of having a time invariant structure, i.e. a variable vi(t− t1)
is a cause of vj(t), t1 ≥ 0 if and only if the same applies for vi(t − t1 − k)
and vj(t − k) for all k. This knowledge can be included in the adjacency
phase and the orientation phase of FCI, resulting in the tsFCI (time series
FCI) algorithm introduced in Article II, and summarized next.

In the adjacency phase, an edge between wi(t − t1) and wj(t − t2),
0 ≤ t2 ≤ t1 ≤ τ , is removed if and only if we find a set Z ⊆ {w(t −
τ),w(t− τ + 1), . . . ,w(t− t2)} \ {wi(t− t1), wj(t− t2)} such that

wi(t− t1)⊥⊥wj(t− t2) | Z. (6.2)

Note that the set Z only needs to contain variables up to and including
time point t−t2 (or, if it is assumed that there are no instantaneous effects,
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only up to and including time point t− t2− 1). If such a set Z is found, by
the time invariant structure, we also know that there exists a set Zk such
that

wi(t− t1 − k)⊥⊥wj(t− t2 − k) | Zk, (6.3)

with Zk containing the ‘same’ variables as Z but k time steps earlier. Thus,
for all k for which Zk lies inside the window the edge between wi(t− t1−k)
and wj(t−t2−k) can be removed (which follows from Lemma 1 of Article II).

Example 6.1 (Adjacency Phase in tsFCI). Taking the time series of Fig-
ure 3.5 on a window of length τ = 3, we find that

v1(t)⊥⊥ v1(t− 1) |{v2(t− 1), v1(t− 2)}

and hence we can remove the edge between v1(t) and v1(t− 1). By the in-
variant time structure we thus know that in the unrolled graph the following
also holds:

v1(t− k)⊥⊥ v1(t− 1− k) |{v2(t− 1− k), v1(t− 2− k)}.

However, only for k = 1 the conditioning set Z1 = {v2(t − 2), v1(t − 3)}
lies inside the window, and hence we can only additionally remove the edge
between v1(t−1) and v1(t−2), but not between v1(t−2) and v1(t−3) (since
in the considered window these two variables are not independent).

In the orientation phase, we start by orienting all edges forward in time,
i.e. if there is an edge between wi(t− t1) and wj(t− t2) with t1 > t2, then
we orient it as wi(t − t1) ◦→wj(t − t2). This simply follows from the fact
that the cause precedes the effect, and in a PAG (the output of FCI) the
arrowhead means that wj(t− t2) is not a cause of wi(t− t1). Furthermore,
when applying the complete set of orientation rules of FCI (Zhang, 2008),
whenever an endpoint of an edge between wi(t−t1) and wj(t−t2) is oriented,
we orient the endpoint in the same way for the edge between wi(t− t1− k)
and wj(t− t2 − k), for all k (by Lemma 2 of Article II).

The advantage of using the tsFCI algorithm over applying the origi-
nal FCI algorithm to a data set as explained above (including background
knowledge about a temporal ordering) is twofold. In both the adjacency and
the orientation phase tsFCI reduces the computation time using the time in-
variant structure by (i) restricting the number of independence tests carried
out and (ii) reducing the number of orientation rules applied. Secondly, the
output PAG of tsFCI always represents a time invariant structure, whereas
for FCI this is not necessarily true due to finite sample effects.

Compared to SVAR identification (Section 5.4) as well as Granger
causality (Section 5.5), the clear advantage of tsFCI is its ability to handle
latent variables.
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6.2 Structure Learning in Extended LiNGAM
Models

Articles III through VI address both effect identification (Q1) and structure
learning (Q2) in the case of static data. Most methods continue along
the line of Article I, using linear SEMs with non-Gaussian error terms.
Although designed for static data, using the ‘sliding window’ approach as
explained for tsFCI in Article II, these methods may also be applied to
time series data. In this section we discuss the work towards answering Q2,
while the work addressing Q1 will be presented in the next section.

6.2.1 LiNGAM for Multidimensional Variables

In Article III, we introduce a set of methods to estimate the causal or-
der among multidimensional variables v = (v1, . . . ,vn), assuming that the
data are generated by a similar model to the one in GroupLiNGAM (Sec-
tion 5.2.5). The only difference in our model is that the matrix B is assumed
to be strictly lower block triangular (as opposed to lower block triangular).
However, any model following the definition of the GroupLiNGAM model
can be transformed into an observationally equivalent model following the
model definition of Article III. An important difference to the work by
Kawahara et al. (2010) is that we assume to know a priori the partition of
the variables in v into the vectors (also referred to as groups) v1, . . . ,vn.

The general algorithm follows the idea of DirectLiNGAM (Section 5.2.2),
i.e. first finding an exogenous group, then regressing out the effect of the
exogenous group on all other groups, and repeating the process on the
resulting residuals. We introduce three alternatives to find an exogenous
group.

In the first approach of finding an exogenous group, we generalize The-
orem 5.2 (page 45) to multidimensional variables, stating that a group of
variables vj is exogenous if and only if it is independent of all the residuals

r
(j)
i resulting from OLS regressions of vi on vj (Lemma 1 of Article III). As

this result is based on independencies, it is essential that the disturbance
terms ei are non-Gaussian.

The second approach is based on the pairwise measure explained in
Section 5.2.3, which also requires non-Gaussian disturbances. The näıve
approach of utilizing this measure would be to test for each pair (vi, vj) of
scalar variables, with vi in group vi and vj in group vj , i 6= j, whether vi is a
cause of vj . If the error terms within each group were independent then for
any variable vj of an exogenous group vj the pairwise measure would infer
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the correct causal direction between vi and vj . However, since correlated
error terms within each group are allowed, it is necessary to transform the
variables of the pair (vi, vj) appropriately to meet the model assumptions
of the pairwise measure. After this transformation, we obtain a measure
for each pair (vi, vj), indicating which variable is exogenous among the two.
By combining these measures appropriately it is then possible to find an
exogenous group.

Lastly, in the third approach we utilize the Trace Method (Section 5.3)
to find an exogenous group. This method is designed to find a causal
order among two multidimensional variables, and can be generalized to
find an exogenous group among several groups by applying it to each pair
(vi,vj), i 6= j. For an exogenous group vj , the model vj → vi holds for
all i (by marginalizing out intermediate groups). Appropriately combining
these measures yields an exogeneity measure for each group. Note that
this approach does not require non-Gaussian disturbances, so can also be
applied to Gaussian data.

After finding an exogenous group, a direct generalization of Theorem 5.3
(page 46) shows that after regressing out this group from all other variables,
the resulting (multidimensional) residuals follow again the same model
(Lemma 2 of Article III).

Comparing the three approaches on simulated data shows that the
method based on the pairwise measure performs very well, also for small
sample sizes, whereas the generalization of DirectLiNGAM requires more
data points to reach the same performance. The approach based on the
trace method always makes more mistakes than the former two methods.
The simulations also show that for large models and small data sets it
may even be advantageous to use the pairwise measure in the näıve way
explained above. All three variants outperform the simple approach of re-
placing each group with an aggregate, such as the mean over all variables,
and then applying methods for scalar variables, like DirectLiNGAM.

The methods introduced in Article III are closely related to the work
by Kawahara et al. (2010), both using a DirectLiNGAM-style approach for
the overall algorithm. However, there are some clear distinctions and ad-
vances in the methods of Article III. The major difference of our approach
to GroupLiNGAM is, as mentioned above, that in our method we assume
to know how the vector v is partitioned into the variables v1, . . . ,vn, yield-
ing efficient algorithms to infer the causal order among these variables.
In GroupLiNGAM, on the other hand, Kawahara et al. (2010) aimed at
learning this partition, which results in computationally and statistically
more challenging algorithms. Furthermore, we give three strategies to find
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v4

v1 v5

v2v3

b1,4 b5,4

b5,1

b3,1 b2,1

b2,3

Figure 6.3: An lvLiNGAM model with U = {v4} and W = {v1, v2, v3, v5}.

an exogenous group, whereas Kawahara et al. (2010) only considered the
linear non-Gaussian case.

6.2.2 Pairwise Causal Relationships in lvLiNGAM

In Article IV we assume that we are given data over the observed variables
W, generated by a faithful lvLiNGAM model (Section 5.2.4) over variables
V = W ∪ U . As already mentioned, it is in general impossible to infer
the whole lvLiNGAM model (since generally it is not identifiable), and
estimation of models, up to equivalence, is computationally very challeng-
ing. Thus, the goal here is to develop more efficient techniques to learn
(identifiable) parts of the underlying model.

The basic idea is that there might be subsets Z ⊆ W for which a
LiNGAM model (without latent variables) fits. More precisely, as shown
in Lemma 1 of Article IV, the variables in Z follow a LiNGAM model if
and only if every confounder of any two variables zi ∈ Z and zj ∈ Z lies
in Z (i.e. the set Z is causally sufficient). In Article IV we call such sets
unconfounded.

Example 6.2 (Confounded and Unconfounded Sets). For the graph in
Figure 6.3, the sets {v1, v5}, {v2, v5}, {v1, v2, v3, v5}, for instance, are con-
founded by the latent variable v4, and the set {v2, v3} is confounded by the
observed variable v1. When estimating a LiNGAM model for any of these
sets, the resulting residuals are not independent of each other (no matter
which causal order is learned). For instance, for v1 and v5 we may obtain
that v1 = r1, and v5 = c5,1 v1 + r5. Expressing r1 and r5 in terms of the
disturbance terms e1, e4, e5 of variables v1, v4, v5 yields

r1 = b1,4 e4 + e1

r5 = v5 − c5,1 v1 = (b5,1 b1,4 + b5,4 − c5,1 b1,4) e4 + (b5,1 − c5,1) e1 + e5.
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By the non-Gaussianity assumption of the disturbances and the Darmois-
Skitovitch Theorem (Section 2.2.2), for independence between r1 and r5 we
require b1,4 = 0 (yielding b5,1 = c5,1), or b5,1 = c5,1 and b5,1 b1,4 + b5,4 −
c5,1 b1,4 = 0, which is only possible when b5,4 = 0. A similar calculation
shows that if the LiNGAM model was estimated in the reverse direction,
the residuals would also be dependent.

Thus, by testing independence between the residuals, it is possible to
detect confounding in the case of non-Gaussian variables. Note that for
Gaussian variables the residuals r1 and r5 are always independent since
these two residuals are by construction of the OLS estimator (and also by
definition of ICA) uncorrelated.

In contrast, the sets {v1, v3}, {v1, v2}, and {v1, v2, v3} are unconfounded
(and no other sets of two or more observed variables are), and a LiNGAM
model fits.

However, going through all subsets of W to test whether they follow
a LiNGAM model is in general not feasible, as their number grows expo-
nentially in the number of variables in W. Fortunately, as the previous
example hints at, unconfounded sets with three or more variables have un-
confounded subsets. Thus, an incremental search approach could be used
to find all maximally unconfounded sets, i.e. when adding any variable to
the set its unconfoundedness is destroyed. However, even the number of
these sets grows exponentially in the worst-case graphs.

Thus, to obtain a computationally efficient algorithm, in Article IV we
address the problem of determining all pairwise causal relations, for which
there exists an unconfounded set Z containing this pair. Such pairs are
called unconfounded with respect to Z, and for each such pair the introduced
algorithm returns which variable is the cause and which the effect, and the
total effect of the former on the latter. The resulting method is termed the
‘pairwise lvLiNGAM’ algorithm.

Example 6.3 (Pairwise lvLiNGAM). Given a data set generated from
the model of Figure 6.3 with observed variables W = {v1, v2, v3, v5}, the
proposed algorithm iteratively searches for all pairs which are part of an
unconfounded set.

First, it searches for pairs (vi, vj), i 6= j, vi ∈ W and vj ∈ W, which
are unconfounded by estimating a LiNGAM model over (vi, vj) and testing
its fit. As explained in Example 6.2, the only pairs for which the LiNGAM
model fits are (v1, v2) and (v1, v3), yielding the causal directions from v1
to v2, and from v1 to v3, and total causal effects b2,1 + b2,3 b3,1, and b3,1,
respectively.
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Next, for any pair (vi, vj) which was not found to be unconfounded yet,
the algorithm tries to build up a set Z∪{vi, vj} such that the pair is uncon-
founded with regard to this set. The set Z includes all those variables vk
for which (vk, vi) and (vk, vj) were found to be unconfounded in a previous
iteration of the algorithm (i.e. any potential confounders of vi and vj). To
test whether Z ∪ {vi, vj} is unconfounded, a LiNGAM model is estimated
and its fit is evaluated. In the example, for the pair (v2, v3) we obtain the
set Z = {v1}, and a LiNGAM model fits to {v1, v2, v3}, as mentioned in
Example 6.2. Furthermore, this LiNGAM model reveals that v3 is the cause
of v2 with total causal effect b2,3.

The algorithm iterates this step until no more new pairs are found to be
unconfounded with regard to some set.

As the main result of Article IV, we prove in Theorem 1 that, in the
large sample limit, the pairwise lvLiNGAM algorithm is sound (i.e. when-
ever a pair is judged to be unconfounded with regard to a set, this is correct,
and the estimate of the total causal effect converges to the true total ef-
fect) and complete (i.e. any pair which is part of an unconfounded subset
is discovered). The completeness in particular means that any pairwise
causal effect which is detectable by fitting a LiNGAM model to a subset of
variables and testing its fit is detected.

Fitting a LiNGAM model as done in Example 6.3 to find unconfounded
sets is computationally inefficient. In Lemma 3 of Article IV, a more effi-
cient procedure is suggested to find such sets: For a set Z and a pair (vi, vj)
as in Example 6.3, we estimate the following two regression models

vj = cj,ivi + cTj z + rj (6.4)

vi = ci,jvj + cTi z + ri (6.5)

and conclude as follows:

(i) If rj ⊥⊥ vi and ri /⊥⊥ vj , then vi is a cause of vj with total effect cj,i.

(ii) If rj /⊥⊥ vi and ri⊥⊥ vj , then vj is a cause of vi with total effect ci,j .

(iii) If rj ⊥⊥ vi and ri⊥⊥ vj , and cj,i = ci,j = 0, then vi⊥⊥ vj | Z.

(iv) If none of the above holds, then (vi, vj) is not unconfounded with
respect to Z ∪ {vi, vj}.

In simulations we evaluate the algorithm using two independence tests
(HSIC, and non-linear correlations, see Section 2.2.2), and compare the re-
sults to ICA-LiNGAM (which does not account for latent variables). For
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pairwise lvLiNGAM, the larger the sample size grows, the closer the es-
timated total effects are to the true effects. On small sample sizes, the
method performs better with HSIC as the independence test, whereas on
larger sample sizes using the test based on non-linear correlations seems
beneficial. ICA-LiNGAM, on the other hand, keeps making a significant
number of mistakes even for large sample sizes.

In some sense, the pairwise lvLiNGAM algorithm straddles both re-
search questions, structure learning (Q2) and effect identification (Q1).
If a LiNGAM model was actually estimated to find unconfounded pairs
with regard to some set Z ⊂ W, this would reveal parts of the underlying
structure if this model fit. However, in the computationally more efficient
approach, only two simple regression models need to be estimated to test
for unconfoundedness of a pair with regard to a given set, and only the
total effect between the variables of the corresponding pair is returned.

The approach of estimating regressions and testing for independence
among the residual and the regressor, taken in Article IV, partly motivated
the work in Article V, discussed in the next section.

6.3 Effect Identification under the Partial
Ordering Assumption

In Articles V and VI we address the problem of effect identification (Q1)
when the generating DAG G of the causal model is not known and the set
of observed variables W ∪ {x, y} is not assumed to be causally sufficient.
For both articles we require the partial ordering assumption W ≺ x ≺ y
(Definition 4.3, page 34), and aim at inferring the direct causal effect of x
on y (which is equal to the total causal effect under the partial ordering
assumption). In Article V, we further assume that the data generating
process follows an lvLiNGAM model (Section 5.2.4) and that the resulting
probability distribution is linearly faithful to G, whereas in Article VI we
do not have any restrictions on the model (i.e. it can be any CBN or SEM)
except that we need to assume faithfulness.

6.3.1 Consistency Test for Causal Effects in lvLiNGAM

Under the just mentioned assumptions, in Article V we introduce a statis-
tical test for lvLiNGAM models to infer whether adjusting for a given set
Z ⊆ W yields a consistent estimator of the causal effect of x on y. The
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test for the given set Z is based on two simple OLS regressions:

x = cTx z + rx, and (6.6)

y = cy,xx+ cTy z + ry. (6.7)

If the residual rx is Gaussian (which can be tested using standard tests),
the test terminates without conclusion. For non-Gaussian rx, we perform
a statistical test of dependence between rx and ry, and conclude as follows
(based on Theorem 1 of Article V):

(i) If independence is rejected, the estimated effect cy,x of x on y is in-
ferred to be inconsistent.

(ii) If independence is not rejected, the effect is inferred to be consistent.

The main result of Article V is that, under the given assumptions,
the just described test will, in the large sample limit, correctly identify
sets Z which yield a consistent estimator of the causal effect (Theorem 1 of
Article V). The reason why non-Gaussianity is required becomes clear when
looking at the residuals rx and ry: By construction of the OLS estimator
cov(rx, ry) = 0, and hence rx and ry are always independent for Gaussian
variables.

Example 6.4 (Statistical Test for Consistency in lvLiNGAM models).
We demonstrate the method using lvLiNGAM models over the DAGs in
Figures 4.2 (a) and (b) (page 35). We first consider the model in (a), with
linear equations w

x
y

 =

 0 0 0
bx,w 0 0
by,w by,x 0

 w
x
y

 +

 ew
ex
ey

 . (6.8)

Using Z = ∅ in Equations (6.6) and (6.7), the resulting residuals rx and ry
are dependent, which can be seen when expressing these residuals in terms
of the disturbances e = (ew, ex, ey)

T :

rx = x = (bx,w , 1 , 0) e

ry = y − cy,xx = (by,xbx,w + by,w , by,x , 1) e− cy,x(bx,w , 1 , 0) e

= ((by,x − cy,x)bx,w + by,w , by,x − cy,x , 1) e.

Using the formula for the OLS estimator (Equation (2.8), page 13) or the
back-door criterion (Definition 4.2, page 31), one can show that cy,x 6= by,x
in the large sample limit,3 and thus the coefficients of ex in both represen-
tations rx and ry, marked in bold, are non-zero. By the non-Gaussianity of

3To be more precise, cy,x does not converge in probability to by,x.
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ex and the Darmois-Skitovitch Theorem (Section 2.2.2) it then follows that
rx and ry are dependent, allowing us to detect the inconsistent estimator.

On the other hand, using Z = {w} in Equations (6.6) and (6.7) yields
that rx = ex and ry = ey (using a similar calculation as before, and that
cy,x = by,x by the OLS estimator). These residuals are by assumption
independent, and hence we can detect the consistent estimator.

In (b) the situation is reversed: Z = ∅ yields independent residuals rx
and ry, and a consistent estimator cy,x of the causal effect by,x, whereas
for Z = {w} the residuals are dependent and the estimator is inconsis-
tent. The calculations are a bit more cumbersome, and can be found in the
Supplementary Material of Article V.

When searching in small models for an admissible set Z among all
possible subsets of the observed covariates W, it is possible to perform
a brute force search by applying the statistical test for consistency to all
subsets. However, for larger models this is not feasible as the number of
subsets grows exponentially in the number of covariates. Hence, we suggest
in Article V simple forward and backward selection procedures, which are
quadratic in the number of covariates. In essence, for the forward selection
we first apply the statistical test to the empty set. Then, we apply the
test to all subsets Z with one variable, and pick the ‘best’ subset, i.e. the
one yielding the most independent residuals. We then augment this best
subset by one variable, and find among those sets again the ‘best’ one,
and repeat this process until there are no more variables to add. The
backward elimination starts with the full set of variables as adjustment set,
and removes in a similar fashion variables from this set.

In simulations on rather small models (up to ten covariates) these ap-
proaches have performed equally well as the brute force procedure. How-
ever, with the forward and backward selection there is no guarantee that
an admissible set is found, in the large sample limit, even if one exists.
We also compare the average error in the estimate given by our procedure
(when the estimate was deemed consistent) and given by the simple ad-
justment criteria of including all or none of the covariates, as well as using
ICA-LiNGAM. While for our procedure the error decreases substantially for
growing sample size, the control methods keep making, on average, much
larger errors. Performance differences due to the used independence test
(HSIC or non-linear correlations) are negligible.

6.3.2 Non-parametric Approach

Article VI can be seen as a non-parametric version of Article V, and as
an extension of the work by Spirtes and Cooper (1999), and Chen et al.
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(2007) (Section 4.3.2) allowing for non-empty admissible sets. Under the
stated assumptions, Article VI gives conditions solely based on dependen-
cies and independencies among the observed variables to determine whether
an effect is identifiable.

The aim is to reach one of the following decisions:

‘±’ The causal effect is non-zero and can be estimated using a found
admissible set Z by back-door adjustment (Theorem 4.1, page 31).

‘0’ The causal effect is zero.

‘?’ We do not know, i.e. we cannot infer ‘±’ or ‘0’.

Note that when inferring ‘±’ or ‘0’ the causal effect of x on y is identified.
Towards this end, we introduce two simple rules:

R1: If there exists a variable w ∈ W and a set Z ⊆ W \ {w} such that

(i) w /⊥⊥ y | Z, and

(ii) w⊥⊥ y | Z ∪ {x}
then infer ‘±’ and give Z as an admissible set.

R2: If there exists a set Z ⊆ W such that

(i) x⊥⊥ y | Z,

or, if there exists a variable w ∈ W and a set Z ⊆ W \{w} such that

(ii) w /⊥⊥x | Z, and

(iii) w⊥⊥ y | Z,

then infer ‘0’.

If neither R1 nor R2 applies, infer ‘?’.

The idea of R1 is as follows: Condition (i) ensures that there exists at
least one active path from w to y, given Z. By condition (ii) these paths
must pass through x, since including x in the conditioning set blocks all
these paths. This implies that there is at least one active path π from
w to x given Z (pointing into x by the partial ordering assumption). If
there existed an active back-door path from x to y, condition (ii) could not
hold, since concatenating this back-door path with the active path π at x
would yield an active path from w to y given Z ∪ {x}, with a collider at
x. An example for which R1 applies is given by the graph of Figure 4.1 (a)
(page 32) with w = w1 and Z = {w2, w3}.

Rule R2 consists of two parts: First, if condition (i) holds, then, by the
faithfulness assumption, there is no edge between x and y in the underlying
DAG and hence, the causal effect is 0. Secondly, condition (ii) and (iii)
together also ensure that there is no edge between x and y: By condition



68 6 Contributions to the Research Field

(ii) there exists at least one active path π from w to x given Z. If there
existed an edge from x to y, appending this edge to the path π would yield
an active path from w to y given Z such that condition (iii) could not hold.
Note that the second part of R2 may allow us to detect a zero effect of x
on y even in the case of latent confounding.

The main result of Article VI is that these two simple rules are, in
the large sample limit, both sound (i.e. whenever we make a decision, it
is correct) and complete (i.e. whenever we infer ‘?’, it is impossible to
reliably infer ‘±’ or ‘0’ based on dependencies and independencies alone),
as stated in Theorems 2 and 3 of Article VI.

The rules are also related to the FCI algorithm (Section 5.1.2). In fact,
when incorporating the background knowledge of the partial ordering, the
PAG output by FCI over the observed variablesW∪{x, y} may be utilized
to reach the same decisions as with our rules. However, for FCI with
background knowledge it is not known whether it is complete, whereas our
rules are.

On finite sample data, combining the (possibly conflicting) results when
applying the rules with different pairs (w,Z) or sets Z is done using an ad-
hoc procedure based on a Bayes classifier. In simulations, the novel rules
and the approach based on the FCI algorithm clearly outperform the simple
adjustment criteria presented in Section 4.3.1, as the former two procedures
may output ‘?’ if no admissible set exists, or if there is not enough evidence
to make decisions ‘±’ or ‘0’. The simple adjustment criteria, on the other
hand, always output an estimate.

Neither of the two approaches of Articles V and VI subsumes the other.
While the two simple rules of Article VI can be applied to any kind of
model (not only to lvLiNGAM models), the statistical test of Article V
may be able to reach conclusions for models, under the given assumptions,
in which the rules of Article VI cannot yield a decision: For the two mod-
els of Example 6.4, the statistical test of Article V successfully identifies
whether w should be adjusted for. However, the two models imply the same
independencies over the observed variables (there are none), and hence, the
two models cannot be distinguished based on the rules of Article VI.



Chapter 7

Conclusions

In this thesis we provided novel methods addressing two important prob-
lems in the field of causal discovery: causal effect identification (research
question Q1) and structure learning (research question Q2). After describ-
ing the existing work related to Articles I to VI in Chapters 2 through
5, we discussed the contributions of these articles in Chapter 6. Common
themes to the articles were the LiNGAM model and the handling of latent
variables. All introduced methods were developed for passive observational
data.

The main contribution of this thesis is twofold: In Articles I, III, IV and
V we used the LiNGAM model and extended it in various directions (partly
including latent variables). These articles provide powerful tools addressing
Q1 and Q2 in situations where the data are linear and non-Gaussian. If
these assumptions are not met, Articles II and VI present solutions to some
of the addressed problems in the nonparametric setting.

In particular, in Article I we discussed the application of an SVAR
identification method based on LiNGAM requiring the causal sufficiency
assumption. To overcome this limitation, Article II introduced the tsFCI
algorithm, which does not rely on the parametric assumptions of a LiNGAM
model nor on causal sufficiency. Article III extended the LiNGAM model
to multidimensional variables, and introduced a bundle of methods to learn
a causal order among these variables. In Article IV, we then presented a
complete algorithm to identify pairwise total causal effects in lvLiNGAM
models. Finally, in Article V we aimed at identifying one specific direct
causal effect in lvLiNGAM models, given the partial ordering assumption;
article VI addressed the same problem in the non-parametric setting.

While some gaps in the literature were filled by the contributions of
Articles I to VI, there are many open questions. All methods were based
on models over acyclic causal structures, which in some applications may
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not be suitable. It would thus be interesting to develop and apply methods
which allow for cyclic connections among the variables.

For the problem of SVAR identification, for instance, instead of us-
ing the LiNGAM method one could use the LiNG algorithm (Linear non-
Gaussian, Lacerda et al., 2008), a generalization of the LiNGAM model to
cyclic models. Similarly, the approach using the PC algorithm for SVAR
identification could be modified by replacing the PC algorithm by the
CCD method (Cyclic Causal Discovery, Richardson, 1996; Richardson and
Spirtes, 1999), which is a constraint based method similar to PC for cyclic
models.

Additionally, in Articles V and VI cyclic connections among the ob-
served covariates W could be allowed, even when keeping the partial or-
dering assumption, i.e. the assumption that the covariates W precede the
treatment x, which precedes the outcome y. On the other hand, relaxing
the partial ordering assumption in Articles V and VI would also be an in-
teresting topic for future research. One such possible scenario is to allow
(some of) the observed covariates to lie between x and y. This could yield
additional possibilities to identify a (direct or indirect) causal effect by, for
instance, utilizing front-door adjustment (Section 4.2.2).

In terms of algorithms, in Article IV it would be interesting to combine
the introduced method with other approaches, such as the ones by Tashiro
et al. (2012), or Kawahara et al. (2010), as these methods may learn dif-
ferent parts of the model, for example identify a sink, and the combination
could help to better understand the underlying model. Furthermore, re-
placing the forward and backward search procedures of Article V by more
sophisticated approaches could be investigated, as the current methods,
although working well in simulations, are only heuristics.

Finally, as most of the presented work has focused on theoretical issues
of model identifiability, much work remains in terms of investigating the
performance of the presented methods in various real-world applications.
For instance, it would be interesting to apply the method introduced in
Article III to functional magnetic resonance imaging (fMRI) data to analyze
functional connectivity in the brain, or the algorithms of Articles V and VI
to estimate causal effects in various problems in epidemiology or economics.
In such applications, it would be important to evaluate to what extent
model violations may affect the result, as well as to further investigate
statistical issues due to small sample sizes and potentially large numbers
of variables.
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