Influence of test methodology and probe geometry on nanoscale fatigue mechanisms of diamond-like carbon thin film

Faisal, N. H., Ahmed, R., Goel, S., \& Fu, R. (2014). Influence of test methodology and probe geometry on nanoscale fatigue mechanisms of diamond-like carbon thin film. Surface and Coatings Technology, 242, 42-53. DOI: 10.1016/j.surfcoat.2014.01.015

Published in:
Surface and Coatings Technology

Document Version:

Peer reviewed version

Queen's University Belfast - Research Portal:

Link to publication record in Queen's University Belfast Research Portal

Publisher rights

This is the author's version of a work that was accepted for publication in Surface and Coatings Technology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Surface and Coatings Technology, vol 242, 15th March 2014, DOI: 10.1016/j.surfcoat.2014.01.015.

General rights

Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Influence of test methodology and probe geometry on nanoscale fatigue failure of diamond-like carbon film

N.H. Faisala, ,

N.H.Faisal@rgu.ac.uk
R. Ahmed ${ }^{\text {b }}$

Saurav Goel ${ }^{\text {c }}$
Y.Q. Fu (Please could you alsoinclude Y. Q. Fu's email as one of the two corresponding authors, email-id: RichardY.Fu@uws.ac.uk.) ${ }^{\text {d }}$
${ }^{\text {a }}$ School of Engineering, Robert Gordon University, Garthdee Road, Aberdeen- AB10 7GJ, UK
${ }^{\text {b }}$ School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh- EH14 4AS, UK

${ }^{\text {d }}$ Thin Film Centre, Scottish Universities Physics Alliances (SUPA), University of West of Scotland, Paisley- PA1 2BE, UK
*Corresponding author. Tel.: + 44122426 2438; fax: + 441224262444.

Abstract

 loading/unloading rate differences between the MD and experimental results.

Keywords: Nano-fatigue; Diamond-like carbon; Nanoindentation; Nano-impact; Molecular dynamics; Micromechanics

1 Introduction

 dependent on the scale of measurement [2]. This consideration has motivated research on the nanoindentation behaviour of a variety of work piece and tool material combinations [3].

 Yonezu et al. [20] considered similar evaluation via incorporating acoustic emission investigation.

 evaluated is compared with the experimental findings of modulus using the nanoindentation system.

2 Experimental work

2.1 Test specimen

 profilometer and the residual stress (σ) was calculated from the change in the radius of curvature (R_{1} and R_{2}) of the wafer"s bi-layer structure using Stoney
$\sigma=\frac{E_{s}}{\left(1-v_{s}\right)} \frac{t_{s}^{2}}{t_{f}}\left[\frac{1}{R_{2}}-\frac{1}{R_{1}}\right]$
 applied without any correction [23] since the ratio of $t / t_{s} \leq 0.1$.

2.2 Nanoindentation test

 mode of 10 nm , which corresponded to a penetration depth of $1 / 10$ th of the film thickness.

 film (v_{s}) was considered as 0.22 [26].

2.3 Low cycle nano-fatigue tests

 indenter, F: film, and S: substrate].

 whereas the stress field using the conical indenter did not promote stress concentrations in the contact region due to probe geometry.

elsevier_SCT_19136

 testing instrument and measurement procedures are comprehensively described elsewhere [5-10].

 change in contact stiffness with respect to the contact depth, as opposed to change in contact depth in the current investigation using the NanoTest ${ }^{\mathrm{TM}}$ system.

 nanoscale fatigue mechanism during film failure.

2.4 Molecular dynamics (MD) simulation model

 the atomistic data.

 classical Newtonian equation of motion, a heat sink of 300 K was imposed on the thermostatic atoms in order to dissipate the Joule heat generated as a result of the elastic thermal energy.

Fig. 2 Schematic of molecular dynamics (MD) simulation model.

 functions and their numerical parameters are available in their respective references.

 this work was not to replicate the experiment but to develop a theoretical understanding of the elastic response of filma film-substrate system, albeit at different conditions of indenter velocity and film thickness.

Table 1 Process variables used for the molecular dynamics (MD) simulation.

Equilibrium lattice parameters used (Å)					Diamond: 3.59 A Silicon: $5.43 \AA$ Dimension	
Material		Crystal orientation		Number of atoms		
Silicon substrate	(010)		14,976		$14 \mathrm{~nm} \times 6.642 \mathrm{~nm} \times 3.231 \mathrm{~nm}$	
Carbon thin film	(010)		14,040		$14 \mathrm{~nm} \times 1.8 \mathrm{~nm} \times 3.231 \mathrm{~nm}$	
Diamond indenter	Cubic		669		Height $=1.8 \mathrm{~nm}$ Diameter at the top $=2.7 \mathrm{~nm}$	
Equilibration temperature					300 K	
Loading and unloading velocity of the indenter					$50 \mathrm{~m} . \mathrm{s}^{5}=1$	
Timestep					0.5 fs	

3 Results

elsevier_SCT_19136

3.1 Thin film characterisation

 obtained as $12.5 \pm 0.3 \mathrm{GPa}$, and $153 \pm 4 \mathrm{GPa}$, respectively [21]. The value of pre-existing residual stress by applying the curvature method was obtained as $874 \pm 120 \mathrm{MPa}$ (compressive).

3.2 Nano-impact tests

 Typically, the DLC thin film was observed to fracture with a Berkovich probe within the first few impacts for loads as low as $100-100 \mu \mathrm{~N}$.

 of the residual impression indicated with an arrow to the line TTII in (c).
 topographies of the impact
elsevier_SCT_19136

b

 cycles after which negative depth starts (backward depth deviation)].

3.3 Multiple-load cycle nanoindentation tests

 nanoindentation test using the Berkovich indenter in the load range of $0.1-1 . \theta-\underline{0} \mathrm{mN}$.

```
elsevier_SCT_19136
```


 corresponding AFM images after finish of the process and (c) corresponding cross-sectional topography passing through the centre of residual impression indicated with a dotted TTE line in (b).

 displacement in each 10 incremental cycles during indenter loading (forward depth deviation starts; indentation cycles at 3 and 9 shows significant jump in displacement)].

4 Discussion

4.1 Nano-impact analysis

 were partly overcome by the use of a conical indenter.


```
elsevier_SCT_19136
```


 NanoTest® system. The error bars indicate the standard deviation of the data
elsevier_SCT_19136
i

$h_{c}=$ constant $; \beta=$ constant

$h_{c} \alpha N_{f} ; \beta=1 / N_{f}$

N_{f} (number of fatigue cycles)

 and (ii) schematic relationship between contact stiffness, contact depth and the number of impact fatigue cycles identifying five stages of film failure_IS: substrate, F: film] [21].

elsevier_SCT_19136

 peculiar behaviour of backward depth deviation (or hogging) which was observed in earlier investigations but could not be understood due to the absence of in-situ AFM imaging in previous investigations [35,36].

 duration of the test. Other factors which influence the results are the impact load due to pendulum mechanisms, and the difference in the stress field due to the differences in the shape of indenters used for comparison in Fig. 7 b .

 in contact depth with time or number of impacts (Stagestages 2 to 4 in Fig. 8 (ii)) shown in Fig. 4. This comparison is further strengthened on the basis of multiple-load cycle nanoindentation analysis in the next section.

Relaxed pre-existing compressive residual

 stress in the film, $\sigma \ll \sigma_{c}$

b

Relaxed pre-existing

 compressive residual stress in the film].

 range considered in this investigation. This will give an approximate strain rate (ε) of $\approx 0.35 \times 10^{5} \mathrm{~s}^{=1}$, which is with value orders of magnitude higher.

 other coating substrate systems, where hard and brittle coatings are deposited on relatively softer/ductile substrates.

 transformation in the silicon substrate in the current investigation is very low and not investigated further.

4.2 Multiple-load cycle nanoindentation analysis

 loading force is less than the unloading force (i.e. $P_{L}<P_{U}$) is referred here in the discussion as BDD $[41,42]$.

 as $0.3-3 \mathrm{mN}$ (e.g. Fig. 6).

Table 2 Summary of tisementlone ($P=h$) profile under the conical indenter.

SI. no.	Indentation load range (mN)	Forward depth deviation (FDD) repeats out of 3	Backward depth deviation (BDD) repeats out of 3
1	$0.15=1$	2	1
2	1-=10	1	2
3	$10=100$	3	0

 the indenter (Fig. 6).

 film=substrate (stress magnitude scale $\times 10 \mathrm{GPa}$).

4.3 MD simulation analysis

 the $P_{-=} h$ plot during loading.

Fig. 11 Force_displacement profile obtained from molecular dynamics simulation.

 stages captured from the simulation during the loading stage of the indenter.

 was substantially larger than the cohesive force and hence a force hysteresis in the form of negative force on the indenter was seen between point E and point F.

 therefore originated from the cohesive dynamics between the carbon thin film and the diamond tip.

elsevier_SCT_19136

 film-substrate system, where a crystalline carbon film is deposited on a Si wafer. Had it been considered as an amorphous DLC film having bulk traces of sp^{2}, the E value would have been closer to 153 GPa.

 force-_displacement loading and unloading curves in MD simulation provide useful quantitative and qualitative insights, and an understanding of film deformation atomic level.

5 Conclusions

 and depth sensing approach. The main findings of the work can be concluded as follows.
 indenter provided meaningful results of nanoscale fatigue in the current investigation.
 findings using closed loop integrated stiffness and depth sensing approach. Hence both test methods provide complimentary information on the failure mechanism, however, the shape of the indenter plays a dominant role in ascertaining this comparison.
c) Backward depth deviation of the film only occurred at lower loads with the conical indenter. This was attributed to the presence of maximum stress field near the film/substrate interface leading to coating delamination at this interface.
 crystalline structure, residual stress, indenter geometry and loading/unloading rate differences between the MD and experimental results.

Acknowledgements

Authors are grateful for the support of Alfaisal University, Riyadh, Saudi Arabia in conducting part of the experimental work.

References

[1]
M. Moseler, P. Gumbsch, C. Casiraghi, A.C. Ferrari and J. Robertson, Science 309, 2005, 1545
[2]
U. Landman, W.D. Luedtke, N.A. Burnham and R.J. Colton, Science 248, 1990, 454.
[3]
B. Bhushan, J.N. Israelachvili and U. Landman, Nature 374, 1995, 607.
[4]
X.D. Li and B. Bhushan, Scr. Mater. 47, 2002, 473.
[5]
B.D. Beake, M.J.I. Garcia and J.F. Smith, Thin Solid Films 398-399, 2002, 438.
[6]
B.D. Beake, S.P. Lau and J.F. Smith, Surf. Coat. Technol. 177-178, 2004, 611.
[7]
B.D. Beake, S.R. Goodes, J.F. Smith, R. Madani, C.A. Rego, R.I. Cherry and T. Wagner, Diamond Relat. Mater. 11, 2002, 1606.
[8]
G.S. Fox-Rabinovich, B.D. Beake, J.L. Endrino, S.C. Veldhuis, R. Parkinson, L.S. Shuster and M.S. Migranov, Surf. Coat. Technol. 200, $2006,5738$.
[9]
B.D. Beake, G.S. Fox-Rabinovich, S.C. Veldhuis and S.R. Goodes, Surf. Coat. Technol. 203, 2009, 1919.
[10]
K.D. Bouzakis, M. Batsiolas, G. Malliaris, M. Pappa, E. Bouzakis and G. Skordaris, Key Eng. Mater. 438, 2010, 107.
[11]
K.D. Bouzakis, M. Pappa, G. Skordaris, E. Bouzakis and S. Gerardis, Surf. Coat. Technol. 205, 2010, 1481.
[12]
B. Bhushan and X. Li, Int. Mater. Rev. 48, 2003, 125.
[13]
B. Bhushan, Wear 259, 2005, 1507.
[14]
S. Zhang, D. Sun, Y.Q. Fu and H. Du, Surf. Coat. Technol. 198, 2005, 74.
[15]
JJ.J. Wang, AJA.J. Lockwood, ¥Y. Peng, \#X. Xu, MSM.S. Bobji and BJB.J. Inkson, Nanotechnology 20, 2009, 1, (art no. 305703)
[16]
T.D. Raju, K. Nakasa and M. Kato, Acta Mater. 51, 2003, 457.
[17]
B. Bhushan and X. Li, Inter. Mater. Rev. 48, 2003, 125.
[18]
J.L. Liou, P.J. Wei, W.L. Liang, C.F. Ai and J.F. Lin, J. Appl. Phys. 103, 2008, 103505.
[19]
J.M. Cairney, R. Tsukano, M.J. Hoffman and M. Yang, Acta Mater. 52, 2004, 3229.
[20]
A. Yonezu, B. Xu and X. Chen, Thin Solid Films 518, 2010, 2082.
[21]
RR. Ahmed, YQY.Q. Fu and NHN.H. Faisal, ASME J. Tribol. 134, 2012, (art no. 012001).
Y.Q. Fu, J.K. Luo, A.J. Flewitt and W.I. Milne, Appl. Surf. Sci. 252, 2006, 4914, (2006).

[23]

C.A. Klein, J. Appl. Phys. 88, 2000, 5487.

[24]

V.A.C. Haanappel, D.V.D. Vendel, H.S.C. Metselaar, H.D. van Corbach, T. Fransen and P.J. Gellings, Thin Solid Films 254, 1995, 153.
[25]
W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1992, 1564, (1992).
[26]
S.J. Cho, K.R. Lee, K.Y. Eun, J.H. Hahn and D.H. Ko, Thin Solid Films 341, 1999, 207.

[27]

N.H. Faisal and R. Ahmed, Recent Patents Mech. Eng. 4, 2011, 138.

[28]

S. Plimpton, J. Comput. Phys. 117, 1995, 1.

[29]

W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph. 14, 1996, 33.
[30]
A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 2010, 1.
[31]
P. Erhart and K. Albe, Phys. Rev. B 71, 2005, 035211.
[32]
D.W. Brenner, Phys. Rev. B 42, 1990, 9458
[33]
N.H. Faisal, J.A. Steel, R. Ahmed and R.L. Reuben, J. Therm. Spray Technol. 18, 2009, 525
[34]
NHN.H. Faisal, PLR.L. Reuben and R. Ahmed, Meas. Sci. Technol. 22, 2011, 1, (art no. 015703)
[35]
M.D. Drory and JWJ.W. Hutchinson, Proc. R. Soc. Lond. A 452A, 1996, 2319.
[36]
M.J. Cordill, D.F. Bahr, N.R. Moody and W.W. Gerberich, IEEE Trans. Device Mater. Rel. 4, 2004, 163.
[37]
J.R. Trelewicz and C.A. Schuh, AppI. Phys. Lett. 93, 2008, 171916.
G. Constantinides, C.A. Tweedie, N. Savva, J.F. Smith and K.J. VanVliet, Exp. Mech. 49, 2009, 511.
[39]
J.M. Wheeler and A.G. Gunner, Surf. Coat. Technol. 232, 2013, 264.
[40]
B.D. Beake, T.W. Liskiewicz and J.F. Smith, Surf. Coat. Technol. 206, 2011, 1921.
[41]
N.H. Faisal, R. Ahmed, Y.Q. Fu, Y.O. Elakwah and M. Alhoshan, Mater. Sci. Technol. 28, 2012, 1186.
[42]
AHN.H. Faisal, PR. Ahmed, YQY.Q. Fu, AMM. Hadfield and M. Alhoshan, WIT Trans. Eng. Sci. Tribol. Des. II ISSN: 1743-3533, 76, 2012, 43, (on-line)
[43]
A.A. Zavitsas, J. Phys. Chem. A 107, 2003, 897.
[44]
M.A. Hopcroft, W.D. Nix and T.W. Kenny, J. Microelectromech. Syst. 19, 2010, 229.

Highlights

- Test strategies and probe geometry on nanoscale fatigue of DLC film investigated
- Nano-impact and multiple-loading cycle nanoindentation tests investigated
- Test results are sensitive to applied load, load mechanism, test and probe-type,
- Molecular dynamics/finite element analysis of DLC nanoindentation was performed
- Choice of testing should be determined by the tribological conditions,

Queries and Answers

Query: Please confirm that given names and surnames have been identified correctly.
Answer: Yes.

