-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Queen's University Research Portal

QUEEN’S

UNIVERSITY
BELFAST

ESTP1845

Prognostic and therapeutic relevance of FLIP and procaspase-8
overexpression in non-small cell lung cancer

Riley, J. S., Hutchinson, R., McArt, D. G., Crawford, N., Holohan, C., Paul, |, ... Longley, D. B. (2013).
Prognostic and therapeutic relevance of FLIP and procaspase-8 overexpression in non-small cell lung cancer.
Cell, Death & Disease, 4(12), €951. [e951]. DOI: 10.1038/cddis.2013.481

Published in:
Cell, Death & Disease

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights

Copyright 2013 Macmillan Publishers Limited.All rights reserved.

This is an open access article published under a Creative Commons Attribution-NonCommercial-NoDerivs License
(https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the
author and source are cited.

General rights

Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy

The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017


https://core.ac.uk/display/18615058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/prognostic-and-therapeutic-relevance-of-flip-and-procaspase8-overexpression-in-nonsmall-cell-lung-cancer(0251e9ad-b3f7-4caf-9f84-e9b767b06bd3).html

Citation: Cell Death and Disease (2013) 4, €951; doi:10.1038/cddis.2013.481

OPEN © 2013 Macmillan Publishers Limited All rights reserved 2041-4889/13

www.hature.com/cddis

Prognostic and therapeutic relevance of FLIP and
procaspase-8 overexpression in non-small cell lung
cancer

JS Riley', R Hutchinson', DG McArt', N Crawford', C Holohan', | Paul', S Van Schaeybroeck', M Salto-Tellez', PG Johnston',
DA Fennell?, K Gately®, K 0’Byrne®, R Cummins®, E Kay*, P Hamilton, | Stasik' and DB Longley*"

Non-small cell lung carcinoma remains by far the leading cause of cancer-related deaths worldwide. Overexpression of FLIP,
which blocks the extrinsic apoptotic pathway by inhibiting caspase-8 activation, has been identified in various cancers. We
investigated FLIP and procaspase-8 expression in NSCLC and the effect of HDAC inhibitors on FLIP expression, activation of
caspase-8 and drug resistance in NSCLC and normal lung cell line models. Inmunohistochemical analysis of cytoplasmic and
nuclear FLIP and procaspase-8 protein expression was carried out using a novel digital pathology approach. Both FLIP and
procaspase-8 were found to be significantly overexpressed in tumours, and importantly, high cytoplasmic expression of FLIP
significantly correlated with shorter overall survival. Treatment with HDAC inhibitors targeting HDAC1-3 downregulated FLIP
expression predominantly via post-transcriptional mechanisms, and this resulted in death receptor- and caspase-8-dependent
apoptosis in NSCLC cells, but not normal lung cells. In addition, HDAC inhibitors synergized with TRAIL and cisplatin in NSCLC
cells in a FLIP- and caspase-8-dependent manner. Thus, FLIP and procaspase-8 are overexpressed in NSCLC, and high
cytoplasmic FLIP expression is indicative of poor prognosis. Targeting high FLIP expression using HDAC1-3 selective inhibitors
such as entinostat to exploit high procaspase-8 expression in NSCLC has promising therapeutic potential, particularly when

used in combination with TRAIL receptor-targeted agents.

Cell Death and Disease (2013) 4, €951; doi:10.1038/cddis.2013.481; published online 5 December 2013

Subject Category: Cancer

Non-small cell lung cancer (NSCLC) is the leading cause of
cancer-related mortality in the world. Despite developments in
the use of molecular-targeted therapies in stratified patient
populations, chemotherapy remains the mainstay of treatment
for NSCLC, and drug resistance remains a major challenge that
accounts for poor survival outcomes. Novel therapeutic
approaches that exploit tumour dependencies on key pathways
are urgently needed to improve patient prognosis.

Evasion of apoptosis is a hallmark of cancer and a key cause
of therapy. One of the mechanisms by which tumours evade
apoptosis is by overexpression of anti-apoptotic proteins such as
the caspase-8 inhibitor FLIP, which blocks induction of apoptosis
mediated by death receptors such as Fas, DR4 (TRAIL-R1)
and DR5 (TFIAIL-RZ).1 FLIP inhibits homo-dimerization,
self-processing and activation of procaspase-8 at the
death-inducing signalling complexes (DISCs) formed following
activation of these receptors. FLIP also blocks apoptosis
induced by the DISC-related cytoplasmic caspase-8-activating
platforms TNFR1 Complex Il and the Ripoptosome.3

There is emerging pre-clinical and clinical evidence
that histone deacetylase inhibitors (HDACI) are promising

therapeutic agents for several cancers. However, ftrials in
unselected patient populations in solid tumours have been
generally disappointing, highlighting the need for predictive
biomarkers to stratify responsive patient populations and
identification of rational clinical combinations of these agents
with other drugs based on pre-clinical research.* Another
class of anti-cancer agent assessed in NSCLC are those
targeting DR4 and DR5. Both receptors were found to be
highly expressed in NSCLC,® providing support for their
clinical assessment in this disease. Overall, clinical trials using
recombinant forms of human TRAIL (rhTRAIL) and agonistic
antibodies targeting the receptors have been disappointing
(reviewed in den Hollander et al®). It is important to note
however, that these trials were again conducted in unselected
patient populations.

Results

FLIP and procaspase-8 expression in NSCLC. We
previously reported that procaspase-8 was overexpressed
in 85% of a small series (n=20) of NSCLC tumours of mixed
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histology.” Moreover, FLIP was overexpressed in all tumours
that overexpressed procaspase-8. To assess the levels of
procaspase-8 and FLIP expression in a larger NSCLC
patient cohort, we generated a tissue microarray (TMA) of
184 samples, comprising three tumour cores and three cores
of adjacent normal stroma for each patient. The clinicopatho-
logical details of the patient cohort are presented in Table 1.

As described in the materials and methods, FLIP and
procaspase-8 expression were assessed by immunohisto-
chemistry and scored using a novel automated image analysis
technique, in which expression in the nuclei and cytoplasm
were individually scored from digitally captured images of
each core (Figures 1a and b and Supplementary Figure 1A).
Both proteins could be detected in the cytoplasm and nuclei
and were scored separately for each of these cellular
compartments. Expression of FLIP and procaspase-8 were
significantly higher in the cytoplasm than the nucleus in both
normal and tumour samples (P<0.0001; Figure 1c). Notably,
FLIP and procaspase-8 were expressed at significantly higher
levels in tumour tissues than in the stroma (P<0.0001;
Figure 1c). Squamous cell carcinomas had significantly higher
cytoplasmic FLIP expression (P<0.05) than adenocarcinomas,

Table 1 Clinicopathological characteristics of NSCLC patients and their
tumours used in this study

Characteristics N (%)
Total 184 (100%)
Median age (range) 66.1 (41-86)
Gender
Male 112 (62.7%)
Female 72 (37.3%)
Smoking history
Former/current 171 (93.5%)
Never 13 (6.5%)
Histology
Adenocarcinoma 83 (43.8%)
Squamous cell carcinoma 83 (46.3%)
Large cell carcinoma 4 (2.5%)
Pleomorphic 7 (3.5%)
Mixed 7 (3.5%)
pTNM stage
| 99 (54.2%)
Il 43 (23.9%)
1 42 (21.9%)
Tumour size
<2cm 20 (11.4%)
>2-3cm 31 (16.9%)
>3-5¢cm 89 (46.3%)
>5-7cm 24 (14.4%)
>7cm 20 (10.9%)

Type of resection

Lobectomy 135 (72.1%)

Bilobectomy 17 (10.4%)

Pneumonectomy 32 (17.4%)
Tumour grade

G1 11 (6.5%)

G2 110 (58.7%)

G3 63 (34.8%)
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although overall, the patterns of FLIP and procaspase-8
expression in squamous and adenocarcinomas were very
similar (Supplementary Figure 1B). Also in agreement with
our previous study, there were significant correlations
between FLIP and procaspase-8 expression in both the
nuclear and cytoplasmic compartments (Figure 1d). There
were no correlations between procaspase-8 and FLIP
expression levels and gender, smoking history or tumour
grade (data not shown).

Comparison of Kaplan—Meier curves for low (less than the
median) versus high (greater than the median) expression
revealed no significant correlation within 5 years of follow-up
for nuclear FLIP, nuclear procaspase-8 and cytoplasmic
procaspase-8, however there was a significant correlation
(P=0.0382) for high cytoplasmic FLIP expression being
associated with shorter OS (Figure 1e; HR=1.59). The
correlation of high cytoplasmic FLIP with poor prognosis was
also apparent in both adenocarcinoma and squamous
histological sub-types and was more marked in the squamous
tumours, although these correlations failed to reach
significance in these smaller sub-groups (adenocarcinoma:
P=0.15, HR=1.54; squamous: P=0.07, HR=1.98;
Supplementary Figure 2).

HDAC inhibitors induce FLIP downregulation and cell
death in NSCLC cells. The high frequency of procaspase-8
and FLIP overexpression and the correlation of high
cytoplasmic FLIP expression with poor prognosis suggested
that a significant proportion of NSCLCs may be vulnerable to
procaspase-8-mediated apoptosis if the inhibitory effects of
FLIP overexpresion could be therapeutically overcome.
Western blot analyses demonstrated that knockdown of both
major FLIP splice forms (FLIPs and FLIP.) in the H460 and
A549 NSCLC cell line models was sufficient to induce PARP
cleavage, indicative of apoptosis (Figure 2a), showing that
these NSCLC cell lines are dependent on FLIP to maintain
viability. Vorinostat and panobinostat are pan-HDAC inhibi-
tors that have been identified by us and others as modulators
of FLIP expression in several pre-clinical cancer models.®~"°
Treatment with either of these HDAC inhibitors for 24 h
resulted in downregulation of FLIP protein expression in
NSCLC cells at clinically achievable doses (Figure 2b and
Supplementary Figure 3A). Moreover, significant downregu-
lation of both major FLIP splice forms was observable 6 h
after vorinostat treatment. FLIP downregulation in response
to both pan-HDAC inhibitors correlated with caspase-3
activation and PARP cleavage at 24h (Figure 2b and
Supplementary Figure 3A-C). The only other major anti-
apoptotic protein downregulated in response to HDAC
inhibitors was XIAP, which was significantly downregulated
after 24h in both cell lines (Supplementary Figure 3B);
interestingly, vorinostat synergized with the XIAP antagonist
Birinapant in H460 and A549 cells (Supplementary
Figure 4D).

Vorinostat potently suppressed FLIP expression for 72h
and decreased procaspase-8 expression (an indication of
processing and activation) was observed (Figure 2c). In a
normal lung fibroblast cell line, 34LU, FLIPs expression was
significantly lower (Figure 2d) and FLIP was only down-
regulated at the highest concentrations of HDAC inhibitor
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Figure 1 FLIP and procaspase-8 expression in tumour samples; clinical correlates. (a) Automated tumour identification (‘region recognition module’) of lung
adenocarcinoma tissue stained with FLIP antibody. (b) The ‘cellular detection module’: nucleus detection, nucleus quantification, cell boundary identification,
segmentation of nucleus and cytosolic compartments and classification of cytosolic expression. (c) Absolute expression of FLIP and procaspase-8 in nuclei and
cytoplasm across all patients. Significance determined by Mann-Whitney non-parametric, two-tailed t-test. (d) Correlations between tumoral expression of FLIP and
procaspase-8 in nuclei (left) and cytoplasm (right), as determined using Pearson’s correlation. (e) Correlations of disease-free survival with the level of nuclear and
cytoplasmic FLIP or procaspase-8 expression in tumour tissue across all patients. Statistical significance of Kaplan—Meier curves was determined by the log-rank

(Mantel-Cox) test

used, and then only after 24 h (Figure 2e and Supplementary
Figure 3D). Compared with the NSCLC models, vorinostat
and panobinostat induced significantly less apoptosis in 34LU
cells as determined by PARP cleavage (Figure 2e and
Supplementary Figure 3D) and flow cytometry (Figure 2f).
Vorinostat downregulated FLIP mRNA levels by ~50% 6 h
post treatment in each cell line (Supplementary Figure 4A). In
H460 cells, FLIP mRNA expression recovered to control
levels by 24 h; whereas in A549 cells, FLIP mRNA expression
remained downregulated. However, in both cell lines, the
downregulation of FLIP mRNA expression was insufficient to
account for the downregulation of FLIP protein expression,
particularly at later timepoints, suggesting that vorinostat
predominantly suppresses FLIP protein expression at a post-
transcriptional level in these models. FLIP is a known
caspase-8 substrate; therefore we investigated whether FLIP
downregulation post-HDAC inhibitor treatment was due to
activation of caspases. Notably, FLIP downregulation in
response to vorinostat was unaffected by co-treatment with
the pan-caspase inhibitor z-VAD-fmk (Supplementary
Figure 4B). However, HDAC inhibitor-induced downregulation

of FLIP was blocked in cells pre-treated with the proteasome
inhibitor MG132 (Supplementary Figure 4C), indicating that
the ubiquitin-proteasome pathway is involved in HDAC
inhibitor-mediated FLIP downregulation in NSCLC.

Vorinostat-induced cell death is dependent on the
extrinsic apoptotic pathway. In both H460 and A549 cells,
downregulation of procaspase-8 rescued the cell death
phenotype induced by vorinostat (Figure 3a), demonstrating
that the apoptosis induced by this agent is dependent on
activation of caspase-8. Notably, vorinostat-resistant 34LU
fibroblasts expressed significantly lower levels of procas-
pase-8 than the NSCLC cell lines (Figure 2d). Treatment
of FLIP-overexpressing cells with vorinostat resulted in
significantly less apoptosis compared with the empty vector
(EV) control line (Figure 3b). Collectively, these data show
that vorinostat-induced cell death is critically dependent on
FLIP downregulation and caspase-8 activation. Furthermore,
we found that vorinostat-induced apoptosis after 24 and 48 h
was significantly attenuated in H460 and A549 cells in which
either DR4 or DR5 (but not Fas) was downregulated

w
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Figure 2 HDACI induce FLIP downregulation and apoptosis in NSCLC cell lines. (a) Wester blot analysis of FLIP expression and PARP cleavage in H460 and A549 cells
transfected with FLIP-targeted siRNA (FT) for 24 h. (b) Westem blot analysis of FLIP expression and PARP cleavage in H460 and A549 cells treated with the indicated doses of
vorinostat for 6 or 24 h. (¢) Western blot analysis of FLIP and procaspase-8 expression and PARP cleavage in H460 and A549 cells treated with 5 M vorinostat for the indicated
timepoints. (d) Westem blot analysis of basal FLIP, procaspase-8 and FADD expression in H460 and A549 NSCLC cells and 34LU normal lung fibroblasts. (e) Western blot
analysis of FLIP and procaspase-8 expression and PARP cleavage in 34LU cells treated with vorinostat for 24 h. (f) Flow cytometric analysis of apoptosis (sub-G1 population) in
H460, A549 and 34LU cells treated with vorinostat for the indicated times. Significant differences were determined by Student's ttest: *P<0.05; **P<0.01; ***P<0.001

(Figure 3c and data not shown), providing further evidence
for the involvement of the extrinsic apoptotic pathway in
mediating vorinostat-induced apoptosis.

Loss of expression of BAK has been observed in 34—47% of
surgically resected NSCLC tumours, and loss of BAX
expression in 42-59%.'" As these proteins are potent
apoptosis activators, this downregulation could potentially
mediate profound chemo-resistance. We assessed whether
BAX/BAK-deficient tumours were resistant to treatment with
HDAC inhibitors by analysing two H460 daughter cell lines
stably expressing shRNAs targeting BAX and BAK
(Figure 3d). Notably, the levels of apoptosis induced by
vorinostat in the BAX/BAK-deficient cells were comparable to
those in a control cell line expressing non-targeting shRNA
(Figures 3e and f).

Vorinostat potentiates the effect of cisplatin in NSCLC
cells. Cisplatin is a DNA-damaging agent used as first-line
treatment for patients with stage IV NSCLC, although only
~20% of patients respond.’?'® Co-treatment with vorinostat
and cisplatin increased PARP cleavage and processing of
procaspase-3 into its active form compared with treatment
with each agent individually (Figure 4a). In addition,
vorinostat and cisplatin co-treatment dramatically reduced
long-term clonogenic survival compared with either of the

Cell Death and Disease

drugs alone in both cell lines (Figure 4b and Supplementary
Figure 5C), and short-term cell viability assays clearly
demonstrated strong synergy between the two drugs, with
combination indices (Cls) for nearly all dose combinations
<1, with many of them faling between 0.3 and 0.7
(Figure 4c). Mechanistically, FLIP overexpression reduced
PARP cleavage and processing of procaspase-8 to its p18
form in response to combined cisplatin/vorinostat co-treat-
ment (Figure 4d), whereas RNAi-mediated procaspase-8
depletion blocked the additional apoptosis induced when
vorinostat was co-administered with cisplatin (Figure 4e).
Thus, the synergy between cisplatin and vorinostat is
dependent on FLIP downregulation and caspase-8 activa-
tion; although it should be noted that neither FLIP over-
expression nor procaspase-8 depletion inhibited the
apoptosis induced by cisplatin alone (Figures 4d and e).

Vorinostat synergizes with TRAIL in NSCLC cells. As
FLIP is a potent inhibitor of TRAIL-mediated apoptosis, we
postulated that pre-treating cells with HDAC inhibitors to
downregulate FLIP would overcome resistance to TRAIL in
NSCLC. Indeed, co-treatment of H460 and A549 cells with
vorinostat and TRAIL resulted in significant apoptosis
induction as assessed by PARP cleavage and caspase-3
processing (Figure 5a). This combination also synergistically
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decreased long-term clonogenic survival (Figure 5b and
Supplementary Figure 5C) and short-term cell viability as
determined by the CI method (Figure 5c). Furthermore,
H460 cells that have acquired resistance to cisplatin'
still undergo apoptosis in response to FLIP downregulation
and vorinostat (Supplementary Figure 5A—C). Moreover,
these cisplatin-resistant cells are as sensitive as the parental
cells to combined treatment with vorinostat and TRAIL;
however vorinostat did not reverse their acquired resistance
to cisplatin (Supplementary Figure 6D). Mechanistically,
overexpression of FLIP protected cells from apoptosis
induced by TRAIL alone, vorinostat alone and the combina-
tion as assessed by PARP cleavage and processing of
procaspase-8 to its p18 subunit (Figure 5d). Similarly,
RNAi-mediated procaspase-8 depletion significantly pro-
tected cells from apoptosis induced by TRAIL and vorinostat
(Figure 5e).

Inhibition of HDACs 1, 2 and 3 is required for FLIP
downregulation. HDACs 1, 2 and 3 were found to be more
highly expressed in the NSCLC cell lines than in the normal
fibroblasts, whereas HDAC6 (detected as two bands) was
higher in the fibroblasts (Figure 6a). While vorinostat and
panobinostat inhibit a broad spectrum of HDACs,'® HDAC

inhibitors with greater specificity have been developed, such
as entinostat (MS-275), which inhibits HDACs 1, 2 and 3, but
not HDAC6, and ACY-775, which is highly selective for
HDACS but has no activity against HDACs 1-3."®"7 Notably,
entinostat, but not ACY-775, induced significant downregula-
tion of FLIP protein expression in H460 and A549 cells
(Figure 6b), suggesting that HDACs 1-3, but not HDACS, are
important for regulating FLIP expression in NSCLC. Entino-
stat also downregulated FLIP expression in 34LU cells
(Figure 6c). Co-treatment with entinostat enhanced cispla-
tin-induced apoptosis in A549 cells (albeit to a lesser extent
than vorinostat), but not H460 cells as determined by PARP
cleavage and caspase-3 activation (Figure 6¢) and flow
cytometry (Figure 6d). However, similar to vorinostat,
entinostat synergistically enhanced TRAIL-induced apoptosis
in both NSCLC cell lines (Figures 6¢c and d). Of note,
entinostat was significantly less toxic than vorinostat to 34LU
cells, either as a single agent or in combination with
TRAIL (Figures 6¢c and d); although similar to vorinostat, it
enhanced cisplatin-induced apoptosis in the normal lung
cells (Figures 6¢c and d). Like vorinostat, the effects of
entinostat on TRAIL- and cisplatin-induced apoptosis
were caspase-8-dependent (Figure 6e), consistent with a
FLIP-dependent mode of cell death induction.

o
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media added. (c) Viability of H460 and A549 cells was assessed 48 h after co-treatment with cisplatin and vorinostat. The cell viability data was used to assess synergy using the
Cl method. (d) Western blot analysis of FLIP expression, procaspase-8 processing and PARP cleavage in control (EV) and FLIPs overexpressing H460 cells treated as indicated for
48h. (e) Sub-G1 analysis of apoptosis in H460 and A549 cells treated with vorinostat alone, cisplatin alone or co-treated for 48 h with both agents (combo). Cells were transfected with
20 nM procaspase-8-targeted siRNA (siCaspase-8) or control sSIRNA (SC) for 48 h before cisplatin/vorinostat treatment. Significance was determined using Student’s test: *P<0.05

Discussion

NSCLC is particularly resistant to chemotherapy. Mutations
or alterations in expression of proteins regulating apoptosis
often arise during carcinogenesis or during treatment; this
can be a major cause of clinical drug resistance, therefore
therapies that specifically target these proteins are being
actively sought.'®2" One of these anti-apoptotic proteins is
FLIP, which is overexpressed in several cancer types and
has been associated with drug resistance and poor
prognosis,’ but for which there are currently no direct
inhibitors.

In this study, we used a novel automated scoring technique
to assess nuclear and cytoplasmic expression of FLIP and
procaspase-8 in tumour and adjacent stroma tissue from a
cohort of 184 stage Il patients with mixed histology NSCLC.
Unlike small cell lung cancer in which procaspase-8 expres-
sion is frequently downregulated or deleted,?® NSCLC
tumours expressed significantly higher levels of procaspase-
8 compared with surrounding stromal tissue. FLIP was also
frequently overexpressed, and we observed positive correla-
tions between the levels of FLIP and procaspase-8 expres-
sion within the tumour tissues. Notably, we found a significant
correlation between high cytoplasmic FLIP expression and
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poor OS that was not apparent for nuclear FLIP expression,
consistent with the primary function of FLIP as a caspase-8
inhibitor being cytoplasmic.! Further analyses in an expanded
patient cohort are now required to assess whether high
cytoplasmic FLIP expression as assessed using this auto-
mated scoring approach has clinical utility as a biomarker of
poor prognosis in NSCLC.

We have previously shown that RNAi- and antisense-
mediated FLIP downregulation induces apoptosis in NSCLC
cell lines in vitro and in vivo’?® and that the sensitivity of
NSCLC cells to FLIP downregulation is dependent on their
elevated expression of procapase-8.” Thus, FLIP represents
an attractive therapeutic target in this disease. There have
been a number of in vitro studies in a range of malignancies
showing FLIP downregulation in response to HDAC inhibi-
tors.8 192427 Although FLIP downregulation following treat-
ment with pan-HDAC inhibitors has been documented, it is not
known which particular HDACs are responsible for mediating
this effect in different tumour types. Our results show that
inhibition of HDAC1, 2 and/or 3, but not HDACS, is necessary
for efficient FLIP downregulation in NSCLC. This is interesting
given the predominantly (but not exclusively) nuclear expres-
sion of these HDACs.?®
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Figure 5 HDACI synergize with TRAIL. (a) FLIP expression, cleavage of PARP and processing of procaspase-3 in H460 and A549 cells were determined by western
blotting. Cells were pre-treated with 5 M vorinostat for 6 h prior to treatment with TRAIL for a further 18 h. (b) Colony formation was assessed 2 weeks following treatment of
H460 and A549 cells with vorinostat alone, TRAIL alone or co-treatment with both agents at the concentrations indicated. After 24 h of treatment, the media was removed, cells
washed in PBS, and fresh media added. (c) Viability of H460 and A549 cells was assessed 72 h after co-treatment with TRAIL and vorinostat. The cell viability data was used
to assess synergy using the Cl method. (d) Western blot analysis of FLIP expression, procaspase-8 processing and PARP cleavage in control (EV) and FLIPs overexpressing
H460 cells treated as indicated for 24 h. (e) Sub-G1 analysis of apoptosis in H460 and A549 cells treated with vorinostat alone, TRAIL alone or co-treated with both agents
(combo). Cells were transfected with 20 nM procaspase-8-targeted siRNA (siCaspase-8) or control siRNA (SC) for 48 h before TRAIL/vorinostat treatment. Significance was

determined using Student’s ttest: *P<0.05; **P<0.01

HDAC inhibitors are a novel class of agents with a variety
of chemical structures that are thought to exert their anti-
cancer effects by epigenetically altering gene expression.>®
However, it is becoming increasingly apparent that effects on
the epigenome may not be the only (or indeed primary) anti-
cancer mechanism of action of HDAC inhibitors, which in turn
has implications for how these drugs should be rationally
combined with other agents to maximize their therapeutic
potential.>*3! There are many HDAC inhibitors at various
stages of clinical development and, to date, vorinostat and
Istodax/romidepsin have been approved for use in cutaneous
T-cell lymphoma.®2"3% The benzamide entinostat (MS-275/
SNDX-275) is an HDAC1/2/3-selective inhibitor that has been
in numerous clinical trials, including several in NSCLC most
often combined with the demethylatng agent azacitidine.®®
Entinostat is generally well tolerated and has a significantly
longer plasma half-life in man than the hydroxamic acid HDAC
inhibitors such as vorinostat and panobinostat.®®

Cisplatin, in combination with pemetrexed, is currently
the first-line standard-of-care chemotherapy for patients
with NSCLC.'>'® Notably, co-treatment with vorinostat,

synergistically enhanced cisplatin-induced apoptosis in
NSCLC cells, and this increased apoptosis was atte-
nuated by FLIP overexpression or caspase-8 silencing.
There is already clinical evidence for combining platinum
drugs with HDAC inhibitors: a phase Il trial of carboplatin/
paclitaxel with or without vorinostat in NSCLC reported
significantly improved response rates and a trend towards
improved survival for the vorinostat arm.®” This suggests that
there is a cohort of NSCLC patients who will benefit
from addition of an HDAC inhibitor to platinum-based
chemotherapy.

TRAIL and agonistic TRAIL receptor antibodies are currently
being assessed for use as anti-cancer agents.3® Although well
tolerated, the results of clinical trials in solid tumours have been
disappointing so far; however, it is important to note that all
trials to date have been conducted in unselected patient
populations due to lack of predictive biomarkers for this class of
agent.® We found that co-treatment with vorinostat or entinostat
sensitized NSCLC cells to TRAIL in a FLIP- and caspase-8-
dependent manner. This result is in agreement with other
studies; for example, Frew et al.>* reported that vorinostat
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Figure 6 The HDAC1-3 inhibitor entinostat phenocopies the pan-HDAC inhibitor vorinostat. (a) Basal expression of HDAC1, 2, 3 and 6 in A549, H460 and 34LU cell lines was
assessed by westemn blotting and quantified by densitometry relative to GAPDH. (b) Effect of different HDAC inhibitors on FLIP expression was determined by westemn blotting. The
cells were treated for 24 h with 5 M vorinostat, 50 nM panobinostat (pan-HDAC inhibitors), 5 M entinostat (HDAC1-3-selective inhibitor) or 5 uM ACY-775 (HDACG6-selective
inhibitor). (¢) Western blot analysis of FLIP expression and PARP cleavage in H460, A549 and 34LU cell lines treated with combinations of entinostat and cisplatin for 48 h or
entinostat and TRAIL for 24 h. (d) H460, A549 and 34LU cells were treated with entinostat or vorinostat in combination with cisplatin for 48 h or TRAIL for 24 h as indicated. Apoptosis
was determined by sub-G1 analysis. Significance was assessed by two-way ANOVA. (e) A549 cells were either co-treated with entinostat and cisplatin for 48 h, or pre-treated with
entinostat for 6 h, followed by TRAIL addition for a further 18 h. Cells were transfected with 20 nM procaspase-8-targeted sSiRNA (siCaspase-8) or control siRNA (SC) for 48 h before
cisplatin/entinostat and TRAIL/entinostat treatment. Significance was determined using Student's +test: *P<0.05; **P<0.01; ***P<0.001

acted synergistically with MDS-1 (an anti-TRAIL-R agonistic
monoclonal antibody) in a panel of cancer cell lines and
caused tumour regression in a mouse breast cancer model.
We have previously demonstrated increased TRAIL sensitivity
following treatment with vorinostat in mesothelioma and
colorectal cancer models, which was also FLIP- and
caspase-8-dependent.®'® We postulate that resistance to
TRAIL agonists in NSCLC is mediated by high levels of
cytoplasmic FLIP expression and may therefore be overcome
by co-treatment with HDAC inhibitors. Notably, unlike addition
of cisplatin, the addition of TRAIL to vorinostat did not further
increase apoptosis in normal lung fibroblasts, suggesting that
there may be a wider therapeutic window for this combination.
In this regard, entinostat was as effective as vorinostat at
enhancing TRAIL-induced apoptosis in the NSCLC models,
but this combination had no effect at all on the normal lung
cells. Moreover, entinostat alone was less toxic to the normal
cells than vorinostat, suggesting that this more selective
HDAC inhibitor would be the better tolerated, in agreement
with clinical observations.3®
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To maximize the therapeutic impact of HDAC inhibitors in
NSCLC, predictive biomarkers for their targeted use in
selected patient populations are urgently needed. TRAIL
receptor-targeted therapeutics also currently lack predictive
biomarkers of response. Our data suggest that tumours with
high cytoplasmic FLIP and/or procaspase-8 expression may
be particularly responsive to HDAC inhibitor-based combina-
tion therapies, in particular combinations with TRAIL receptor-
targeted agents. To begin to assess this, automated scoring
techniques of the type described herein could be used to
retrospectively assess whether cytoplasmic FLIP and/or
procaspase-8 expression in tumours correlates with sensitivity
or resistance in clinical trials of HDAC inhibitors®” and
TRAIL-targeted therapeutics (reviewed in den Hollander
et al®) in NSCLC.

Materials and Methods

Patients. This is a retrospective study of patients who underwent curative-intent
surgical resection of a primary tumour at St. James’s Hospital, Dublin between
February 2001 and February 2005. A cohort of 184 stage I-lIl NSCLC patients,



staged according to the International System of Staging for Lung Cancer, was
randomly selected. Information on baseline demographics, clinicopathological
characteristics and surgical approach was collected after review of clinical notes
and histopathology reports. Outcome data, including peri-operative mortality and
long-term survival, was updated prospectively. Patients’ characteristics are
detailed in Table 1. This study was approved by the St. James’s Hospital Ethics
Committee.

Generation and staining of TMAs. A 4-um section was cut from
formalin-fixed, paraffin-embedded tissue blocks from the 184 patients. This section
was stained with hematoxylin-eosin for light microscopic examination by a
pathologist (EK) to confirm areas of tumour. Three to four areas of tumour were
marked on each section. Three cores, each 2mm in diameter, were removed
from each patient ‘donor’ block and inserted into a ‘recipient’ TMA block. A series
of sections were cut from each TMA block, the first and last sections being
stained with hematoxylin-eosin with tumour content confirmed by a pathologist.
TMAs were assessed for FLIP and procaspase-8 expression as previously
reported.®

TMA machine scoring and analysis. Slides were scanned using an
Aperio ScanScope CS (Aperio, San Diego, CA, USA) at a resolution of x 40
using the objective x 40/0.75 Plan Apo with a doubler and loaded onto the local
drive for storage. The digitized TMA slides were imported into Definiens Tissue
Studio, v2.1 (Definiens AG, Munich) for image analysis. The digital images were
‘dearrayed’ within Tissue Studio to generate individual core images with registered
coordinates matching the original TMA layout. Twelve of the dearrayed cores were
used in a training set to define a completely novel cytonuclear algorithm for the
quantitative analysis of FLIP and procaspase-8 expression. An automated region
recognition module was applied to the training set to initially identify and
distinguish regions of tumour, stroma and background at a magnification of x 20
(Figure 1a). Nuclear detection was subsequently carried out independently on both
tumour and stroma. Thresholds were identified to distinguish between positive and
negative nuclei expression for each protein using an image object information
table. In addition, a nuclei filter was used to remove over-segmented nuclei. Cell
simulation based on growing boundaries around the nuclei was used to model and
identify the cytoplasmic compartment (Figure 1b). This allowed automatic
identification of cytonuclear compartments, within which protein expression
density was then calculated. Results were reviewed by an experienced pathologist
(MS-T). Nuclear and cytoplasmic expression of FLIP and procaspase-8 were
objectively measured automatically across all TMA cores. Statistical analyses were
performed using GraphPad Prism version 5. Comparisons between matched
tumour and stroma were analysed using Mann-Whitney non-parametric t-test.
Correlations were assessed using Pearson’s correlation coefficient method.
Disease-free survival between the groups was compared using Kaplan-Meier
method and log-rank (Mantel-Cox) analysis.

Cell lines and cell culture. H460, A549 and 34LU cell lines were obtained
from ATCC (Teddington, UK) and maintained as previously described.” Al cell
lines were regularly screened for presence of mycoplasma using the MycoAlert
Mycoplasma Detection Kit (Lonza, Basel, Switzerland). Cisplatin-resistant and
Bax/Bak-shRNA H460 cells''® were described previously.

Generation of stable overexpressing cell lines. FLIPg coding region
was PCR amplified and ligated into the pBABEpuro vector, according to standard
protocols. Phoenix GP cells (Nolan Lab, Stanford University) were co-transfected
with 4 g of the pBABEpuro vector and VSVG coat-protein plasmid. After 24 h, the
virus-containing media was removed, filtered and added to H460 cells; stable
transfectants were selected in 1 pg/ml puromycin (Sigma).

Reagents. Vorinostat (SAHA), panobinostat (LBH-589), entinostat (MS-275)
and birinapant (TL32711) were purchased from Selleck Chemicals (Newmarket,
UK); ACY-775 was obtained from Acetylon Pharmaceuticals, Boston, MA, USA;
cisplatin (Hospira, UK) was obtained from the Belfast City Hospital Pharmacy.
Recombinant human TRAIL and z-VAD-fmk were purchased from Calbiochem
(Watford, UK) and MG132 (Z-Leu-Leu-Leu-Leu-al) from Sigma-Aldrich (Gillingham,
Dorset, UK).

Western blotting and antibodies. Cells were harvested and lysed in
RIPA buffer. Western blotting was carried out as previously described.® FLIP
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(NF6) and caspase-8 (12F5) antibodies were obtained from Alexis Biochemicals
(San Diego, CA, USA), PARP antibody was from eBioscience (San Diego, CA,
USA), B-actin, HDAC3 and HDAC6 were from Sigma-Aldrich. Antibodies for
acetylated alpha-tubulin, acetylated histone H4, caspase-3, XIAP, clAP1, BAX,
BAK, BCL-2, MCL-1, BID, HDAC1 and HDAC2 were from Cell Signaling
Technology (Hitchin, UK).

Clonogenic assays. H460 and A549 cells were seeded at 500 cells per well
on six-well plates. The following day, cells were treated as required. At the end of
treatment, the media was replaced with fresh medium and allowed to grow until
colonies formed. Cells were fixed in ice-cold methanol, stained with crystal violet
solution and colonies counted.

MTT cell viability assays. Cells (4000) were seeded per well on 96-well
plates. After 24 h, cells were treated for the appropriate time, after which MTT
(0.5mg/ml) was added to each well and the cells incubated at 37 °C for a further
2 h. The culture medium was removed and formazan crystals reabsorbed in 200 ul
DMSO. Cell viability was determined by reading each well at 570nm on a
microplate reader (Molecular Devices, Wokingham, UK).

siRNA transfections. Scrambled control (SC) siRNA, FLIP, caspase-8,
DR4, DR5 and Fas siRNAs were obtained from Dharmacon (Chicago, IL, USA) as
previously described.*° siRNA transfections were carried out using OligofectAMINE
(Invitrogen), according to the manufacturer's instructions.

Quantitative PCR (Q-PCR). RNA was isolated from harvested cells using
GeneJET RNA purification columns (Thermo Scientific, St. Leon-Rot, Germany)
and reverse transcribed using Moloney murine leukaemia virus-based reverse
transcriptase kit (Invitrogen). Q-PCR analysis of FLIP gene expression was
performed using Real Time Ready probes and the Roche LightCycler 480 system
(Roche Diagnostics, Burgess Hill, UK).

Flow cytometry. Cell death was determined as previously described.®
Harvested cells were stained with propidium iodide (Sigma-Aldrich) and
their DNA content evaluated on a BD FACS Calibur flow cytometer
(BD, Oxford, UK).

Caspase activity assays. A volume of 25 yl Caspase-8 or caspase-3/7-GLO
reagent (Promega, Southampton, UK) were added to 1-10 ug of protein lysate
and incubated for 1h at room temperature. Luciferase activity was determined
using a luminometer.

Statistics for in vitro analyses. Student’s ttest and two-way analysis of
variance (ANOVA) were used for statistical analysis; * denotes P<0.05;
** denotes P<0.01; *** denotes P<0.001. Drug interactions were determined
by calculating Cl values calculated from isobolograms generated using the
CalcuSyn software. A Cl value of 0.85-0.9 is slightly synergistic, 0.7-0.85
is moderately synergistic, 0.3-0.7 is synergistic and 0.1-0.3 is strongly
synergistic.*!

Conflict of Interest
Professor DA Fennell has worked as a consultant for Merck, who
manufacture Vorinostat. The other authors declare no conflict of interest.

Acknowledgements. JSR was supported by a studentship from the
Department of Education and Learning, Northern Ireland. NC and IS were
supported by grants from the British Lung Foundation. CH and SVS were supported
by CRUK.

. Shirley S, Micheau O. Targeting c-FLIP in cancer. Cancer Lett 2013; 332: 141-150.

2. Micheau O, Tschopp J. Induction of TNF receptor -mediated apoptosis via two sequential
signaling complexes. Cell 2003; 114: 181-190.

3. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F et al.
The Ripoptosome, a signaling platform that assembles in response to genotoxic stress
and loss of IAPs. Mol Cell 2011; 43: 432-448.

4. Bots M, Johnstone RW. Rational combinations using HDAC inhibitors. Clin Cancer Res

2009; 15: 3970-3977.

o

Cell Death and Disease



G

Targeting FLIP in procaspase-8 overexpressing NSCLC
JS Riley et al

10

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Spierings DC, de Vries EG, Timens W, Groen HJ, Boezen HM, de Jong S. Expression of

TRAIL and TRAIL death receptors in stage Ill non-small cell lung cancer tumors.
Clin Cancer Res 2003; 9: 3397-3405.

. den Hollander MW, Gietema JA, de Jong S, Walenkamp AM, Reyners AK, Oldenhuis CN

et al. Translating TRAIL-receptor targeting agents to the clinic. Cancer Lett 2013; 332:
194-201.

. Wilson TR, Redmond KM, McLaughlin KM, Crawford N, Gately K, O'Byrne K et al.

Procaspase 8 overexpression in non-small-cell lung cancer promotes apoptosis induced by
FLIP silencing. Cell Death Differ 2009; 16: 1352-1361.

. Kerr E, Holohan C, McLaughlin KM, Majkut J, Dolan S, Redmond K et al. Identification of

an acetylation-dependant Ku70/FLIP complex that regulates FLIP expression and HDAC
inhibitor-induced apoptosis. Cell Death Differ 2012; 19: 1317-1327.

. Bangert A, Cristofanon S, Eckhardt |, Abhari BA, Kolodziej S, Hacker S et al.

Histone deacetylase inhibitors sensitize glioblastoma cells to TRAIL-induced apoptosis by
c-myc-mediated downregulation of cFLIP. Oncogene 2012; 31: 4677-4688.

Hurwitz JL, Stasik I, Kerr EM, Holohan C, Redmond KM, McLaughlin KM et al. Vorinostat/
SAHA-induced apoptosis in malignant mesothelioma is FLIP/caspase 8-dependent and
HR23B-independent. Eur J Cancer 2012; 48: 1096-1107.

Paul I, Chacko AD, Stasik |, Busacca S, Crawford N, McCoy F et al. Acquired differential
regulation of caspase-8 in cisplatin-resistant non-small-cell lung cancer. Cell Death Dis
2012; 3: e449.

Belani CP, Langer C. First-line chemotherapy for NSCLC: an overview of relevant trials.
Lung Cancer 2002; 38(Suppl 4): 13-19.

Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J et al. Comparison of
four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002;
346: 92-98.

Crawford N, Chacko AD, Savage KI, McCoy F, Redmond K, Longley DB et al.
Platinum resistant cancer cells conserve sensitivity to BH3 domains and obatoclax induced
mitochondrial apoptosis. Apoptosis 2011; 16: 311-320.

Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T et al. Chemical
phylogenetics of histone deacetylases. Nat Chem Biol 2010; 6: 238-243.

Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and
perspectives. Mol Cancer Res 2007; 5: 981-989.

McLornan D, Hay J, McLaughlin K, Holohan C, Bumett AK, Hills RK et al. Prognostic and
therapeutic relevance of c-FLIP in acute myeloid leukaemia. Br J Haematol 2013; 160:
188-198.

Ashkenazi A. Directing cancer cells to self-destruct with pro-apoptotic receptor agonists.
Nat Rev Drug Discov 2008; 7: 1001-1012.

Fulda S, Vucic D, Targeting IAP. proteins for therapeutic intervention in cancer. Nat Rev
Drug Discov 2012; 11: 109-124.

Juin P, Geneste O, Gautier F, Depil S, Campone M. Decoding and unlocking the BCL-2
dependency of cancer cells. Nat Rev Cancer 2013; 13: 455-465.

Letai AG. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev
Cancer 2008; 8: 121-132.

Shivapurkar N, Toyooka S, Eby MT, Huang CX, Sathyanarayana UG, Cunningham HT et al.
Differential inactivation of caspase-8 in lung cancers. Cancer Biol Ther 2002; 1: 65-69.
Logan AE, Wilson TR, Fenning C, Cummins R, Kay E, Johnston PG et al. In vitro and
in vivo characterisation of a novel c-FLIP-targeted antisense phosphorothioate
oligonucleotide. Apoptosis 2010; 15: 1435-1443.

Frew AJ, Lindemann RK, Martin BP, Clarke CJ, Sharkey J, Anthony DA et al. Combination
therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor
agonist. Proc Nat/ Acad Sci USA 2008; 105: 11317-11322.

Schuchmann M, Schulze-Bergkamen H, Fleischer B, Schattenberg JM, Siebler J,
Weinmann A et al. Histone deacetylase inhibition by valproic acid down-regulates

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

c-FLIP/CASH and sensitizes hepatoma cells towards CD95- and TRAIL receptor-mediated
apoptosis and chemotherapy. Oncol Rep 2006; 15: 227-230.

Pathil A, Armeanu S, Venturelli S, Mascagni P, Weiss TS, Gregor M et al. HDAC inhibitor
treatment of hepatoma cells induces both TRAIL-independent apoptosis and restoration of
sensitivity to TRAIL. Hepatology 2006; 43: 425-434.

Rao-Bindal K, Koshkina NV, Stewart J, Kleinerman ES. The histone deacetylase inhibitor,
MS-275 (entinostat), downregulates c-FLIP, sensitizes osteosarcoma cells to FasL, and
induces the regression of osteosarcoma lung metastases. Curr Cancer Drug Targets 2013;
13: 411-422.

Dickinson M, Johnstone RW, Prince HM. Histone deacetylase inhibitors: potential
targets responsible for their anti-cancer effect. Invest New Drugs 2010; 28(Suppl 1):
§3-20.

Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic
(and more) treatments for cancer. Nat Rev Cancer 2006; 6: 38-51.

Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms
of action. Oncogene 2007; 26: 5541-5552.

Frew AJ, Johnstone RW, Bolden JE. Enhancing the apoptotic and therapeutic effects of
HDAC inhibitors. Cancer Lett 2009; 280: 125-133.

Kelly WK, O’Connor OA, Krug LM, Chiao JH, Heaney M, Curley T et al. Phase | study of an
oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with
advanced cancer. J Clin Oncol 2005; 23: 3923-3931.

Blumenschein GR Jr., Kies MS, Papadimitrakopoulou VA, Lu C, Kumar AJ, Ricker JL et al.
Phase Il trial of the histone deacetylase inhibitor vorinostat (Zolinza, suberoylanilide
hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer.
Invest New Drugs 2008; 26: 81-87.

Kelly WK, Richon VM, O’Connor O, Curley T, MacGregor-Curtelli B, Tong W et al. Phase |
clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered
intravenously. Clin Cancer Res 2003; 9(10 Pt 1): 3578-3588.

Kavanaugh SM, White LA, Kolesar JM. Vorinostat: A novel therapy for the treatment of
cutaneous T-cell lymphoma. Am J Health Syst Pharm 2010; 67: 793-797.

Knipstein J, Gore L. Entinostat for treatment of solid tumors and hematologic malignancies.
Expert Opin Investig Drugs 2011; 20: 1455-1467.

Ramalingam SS, Maitland ML, Frankel P, Argiris AE, Koczywas M, Gitlitz B et al.
Carboplatin and Paclitaxel in combination with either vorinostat or placebo for first-line
therapy of advanced non-small-cell lung cancer. J Clin Oncol 2010; 28: 56-62.
Johnstone RW, Frew AJ, Smyth MJ. The TRAIL apoptotic pathway in cancer onset,
progression and therapy. Nat Rev Cancer 2008; 8: 782-798.

McLornan DP, Barrett HL, Cummins R, McDermott U, McDowell C, Conlon SJ et al.
Prognostic significance of TRAIL signaling molecules in stage Il and IIl colorectal cancer.
Clin Cancer Res 2010; 16: 3442-3451.

Wilson TR, McLaughlin KM, McEwan M, Sakai H, Rogers KM, Redmond KM et al.
c-FLIP: a key regulator of colorectal cancer cell death. Cancer Res 2007; 67:
5754-5762.

Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined
effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22:
27-55.

QOO Cell Death and Disease is an open-access journal

published by Nature Publishing Group. This work is

licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/3.0/

Supplementary Information accompanies this paper on Cell Death and Disease website (http://www.nature.com/cddis)

Cell Death and Disease


http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.nature.com/cddis

	title_link
	Results
	FLIP and procaspase-8 expression in NSCLC
	HDAC inhibitors induce FLIP downregulation and cell death in NSCLC cells

	Table 1 
	Vorinostat-induced cell death is dependent on the extrinsic apoptotic pathway

	Figure™1FLIP and procaspase-8 expression in tumour samples; clinical correlates. (a) Automated tumour identification (’region recognition moduleCloseCurlyQuote) of lung adenocarcinoma tissue stained with FLIP antibody. (b) The ’cellular detection moduleCl
	Vorinostat potentiates the effect of cisplatin in NSCLC cells
	Vorinostat synergizes with TRAIL in NSCLC cells

	Figure™2HDACi induce FLIP downregulation and apoptosis in NSCLC cell lines. (a) Western blot analysis of FLIP expression and PARP cleavage in H460 and A549 cells transfected with FLIP-targeted siRNA (FT) for 24thinsph. (b) Western blot analysis of FLIP ex
	Inhibition of HDACs 1, 2 and 3 is required for FLIP downregulation

	Figure™3HDACi-induced apoptosis of NSCLC cells is dependent on the extrinsic apoptotic pathway. (a) Flow cytometric analysis of apoptosis (sub-G1 population) in H460 and A549 cells treated with 1 or 5thinspmgrM vorinostat for 24 or 48thinsph. Cells were t
	Discussion
	Figure™4HDACi synergize with cisplatin. (a) FLIP expression, cleavage of PARP and processing of procaspase-3 in H460 and A549 cells were determined by western blotting. Cells were co-treated with the indicated concentrations of vorinostat and cisplatin fo
	Figure™5HDACi synergize with TRAIL. (a) FLIP expression, cleavage of PARP and processing of procaspase-3 in H460 and A549 cells were determined by western blotting. Cells were pre-treated with 5thinspmgrM vorinostat for 6thinsph prior to treatment with TR
	Materials and Methods
	Patients

	Figure™6The HDAC1-3 inhibitor entinostat phenocopies the pan-HDAC inhibitor vorinostat. (a) Basal expression of HDAC1, 2, 3 and 6 in A549, H460 and 34LU cell lines was assessed by western blotting and quantified by densitometry relative to GAPDH. (b) Effe
	Generation and staining of TMAs
	TMA machine scoring and analysis
	Cell lines and cell culture
	Generation of stable overexpressing cell lines
	Reagents
	Western blotting and antibodies
	Clonogenic assays
	MTT cell viability assays
	siRNA transfections
	Quantitative PCR (Q-PCR)
	Flow cytometry
	Caspase activity assays
	Statistics for in™vitro analyses

	A4
	B21

	ACKNOWLEDGEMENTS


