
Analysis of Dependence Tracking Algorithms for Task

Dataflow Execution∗

Hans Vandierendonck
Queen’s University Belfast

h.vandierendonck@qub.ac.uk

George Tzenakis
Queen’s University Belfast
gtzenakis01@qub.ac.uk

Dimitrios S. Nikolopoulos
Queen’s University Belfast
d.nikolopoulos@qubac.uk

Abstract

Processor architectures has taken a turn towards many-core processors, which integrate
multiple processing cores on a single chip to increase overall performance, and there are
no signs that this trend will stop in the near future. Many-core processors are harder to
program than multi-core and single-core processors due to the need of writing parallel or
concurrent programs with high degrees of parallelism. Moreover, many-cores have to operate
in a mode of strong scaling because of memory bandwidth constraints. In strong scaling
increasingly finer-grain parallelism must be extracted in order to keep all processing cores
busy.

Task dataflow programming models have a high potential to simplify parallel program-
ming because they alleviate the programmer from identifying precisely all inter-task de-
pendences when writing programs. Instead, the task dataflow runtime system detects and
enforces inter-task dependences during execution based on the description of memory each
task accesses. The runtime constructs a task dataflow graph that captures all tasks and their
dependences. Tasks are scheduled to execute in parallel taking into account dependences
specified in the task graph.

Several papers report important overheads for task dataflow systems, which severely
limits the scalability and usability of such systems. In this paper we study efficient schemes
to manage task graphs and analyze their scalability. We assume a programming model that
supports input, output and in/out annotations on task arguments, as well as commutative
in/out and reductions. We analyze the structure of task graphs and identify versions and
generations as key concepts for efficient management of task graphs. Then, we present three
schemes to manage task graphs building on graph representations, hypergraphs and lists. We
also consider a fourth edge-less scheme that synchronizes tasks using integers. Analysis using
micro-benchmarks shows that the graph representation is not always scalable and that the
edge-less scheme introduces least overhead in nearly all situations.

1 Introduction

The task dataflow model is gaining momentum to fill in an important gap in the parallel pro-
gramming landscape. This model aims to simplify parallel programming by annotating tasks in

∗This paper is accepted for publication in ACM Transactions on Architecture and Code Optimization.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/18615018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a program with the side effects that they incur on memory. To this end, the programmer or
compiler determines the memory footprint of a task and annotates it with the potential side-
effect. Thus, it is made clear what memory a task may touch and whether it will be read or
written. Next, the runtime system tracks dependences between tasks as they are spawned by
analyzing overlap in memory footprints and read/write access modes. Using this information,
it can schedule tasks with maximal parallelism while enforcing an execution order that yields
results identical to serial execution.

The genericity of the task dataflow model has been demonstrated on scientific applications [8,
3, 21], but also on problems in bioinformatics [1] and H.264 video encoding [2] and decoding [11].
The task dataflow model is applied to generic applications such as image analysis, cryptography,
etc. [19]. Moreover, it has been argued that task dataflow is an elegant way to express pipeline
parallelism in general [25].

While the task dataflow model is very appealing in terms of programming simplicity, several
recent research papers have reported significant overheads for dynamic dependence tracking. Best
et al. [6] show up to 40% overhead compared to the task time. Perez et al. [22] report overheads
per task spawn that are often around 100µs, but can be as large as 6.8ms. Such overheads are
clearly limiting the applicability and scalability of the task dataflow model. More importantly,
the number of cores on a chip is quickly outgrowing the available memory bandwidth. As such it
is becoming increasingly important to strive for strong scaling [13]. Strong scaling occurs when
a parallel program is executed on an increasing number of threads while the problem size is kept
constant. Additional parallelism can be found in the program by performing less work per task,
but this work is soon to be overshadowed by the sizeable overheads of the runtime systems cited
above.

This paper contributes to task dataflow scheduling by presenting and analyzing techniques
for dynamic dependence tracking that have overheads as low as 0.20µs per task spawn (about
400 cycles on our evaluation system) and are scalable to task graphs containing over 1 million
outstanding tasks. We arrive at this state-of-the-art performance by carefully analyzing the
algorithms for dynamic task graph management and by presenting a series of improvements on
the basic algorithms.

The main contribution of this paper is to explicitly formulate and evaluate algorithms and
accompanying data structures for dynamic dependence tracking. The literature is gravely failing
to formulate the algorithms used. This is an important shortcoming in the literature as we have
found that naive implementations (including our first attempts which are not reported here)
perform orders of magnitude worse than the highly tuned algorithms presented in this paper.

This paper is structured as follows. Section 2 presents a task dataflow programming model
that provides the typical annotations one would expect to see in these models: input, output,
in/out, commutative in/out and reductions. Section 3 presents the execution model and analyzes
the structure of the task graphs that may be built during execution. We identify two key concepts
that characterize task graphs: versions, capturing renaming of arguments, and generations,
capturing sets of parallel tasks.

Based on our analysis of task graphs, we present and analyze four schemes for dynamic task
graph management in Section 4. The baseline scheme represents the task graph as a graph. An
obvious approach, we show that the scheme is subject to runtime overheads of O(N) per task,
where N is the number of tasks in the task graph. Our second scheme exploits the structure
of the task graph and represent it as a hypergraph, where edges connect sets of nodes instead
of a pair of nodes. This representation is much more economical and scales well to large task
graphs and to large numbers of task arguments. Our third scheme builds on observations made
on the hypergraph scheme, and restyles the hypergraph to a list, using specific properties of task
graphs. This reorganization yields the same performance scalability, but reduces the constant

2

in the performance equation. Besides these edge-centric schemes, we also consider an edge-
less tickets scheme that synchronizes tasks using integers [26]. Our experimental evaluation
in Section 5 shows that, despite our efforts to optimize the edge-centric schemes, edge-centric
schemes cannot match the performance of the tickets scheme in the common cases.

Next, Section 6 discusses related work and Section 7 concludes this paper.

2 Programming Model

We assume a task based programming model that extends the Cilk language with dataflow
annotations and execution [25, 26]. In this language, the spawn keyword is inserted before a
function call to indicate that the call may proceed in parallel with the continuation of the calling
procedure. The sync keyword indicates that the execution of the procedure should be delayed
until all spawned procedures have finished execution. Spawned functions may have arguments
that are annotated with dataflow annotations. These annotations restrict the parallelism between
spawned functions.

2.1 Objects

Objects are special program variables that can be used in task dataflow. Annotated task argu-
ments can only accept objects as arguments (not constants or generic variable types). An object
is an undivisible piece of memory for the purpose of dependence tracking. We assume that all
objects are strictly non-overlapping.

An object may be renamed, which means that its address is changed by the runtime system.
The runtime system performs renaming to increase parallelism. The runtime system also makes
sure that latent pointers to renamed objects are properly translated to the appropriate version
of the object before accessing memory.

The runtime system associates metadata to each object, e.g. to perform dependence analysis
and to recover its most recent version after renaming. The runtime system stores this metadata
side-by-side with the object in order to speedup the retrieval of metadata.

2.2 Memory Usage Annotations

The arguments of spawned procedures may be annotated with memory usage information, i.e.
how the argument is accessed by the task. The memory usage may be input, output, input/output,
commutative in/out or reduction. An input argument is read but not written to. An output
argument is written and may be read, but it is always written before it is read. Consequently, its
value upon initiation of the task is irrelevant. An input/output argument (or in/out for short)
may be read and written and it may be read before it is written.

A commutative in/out annotation extends the in/out semantics with the notion that consecu-
tively spawned tasks may be executed in any order, but not at the same time (mutual exclusion).
Naturally, reordering is subject to the absence of other inter-task dependences.

A reduction is defined as a mathematical group consisting of an associative and commutative
operator, together with a unit.1 The runtime system automatically provides private storage for
reduction arguments in case multiple reductions on the same variable are executing concurrently.
The runtime system also reuses the private storage in order to improve memory locality and
to minimize applications of the reduction operator. When the value of a reduced variable is

1Cilk++ supports reductions using non-commutative operators [15]. As our system is built on Cilk, we assume
that such non-commutative reductions are present. These do not require the dataflow annotations. We provide
the commutative reduction annotation for increased performance as it requires fewer reduction operations.

3

consumed by a task with a non-reduction annotation, then all private copies are automatically
reduced to a single value. This reduction is performed serially for scalar reductions and it is
performed using a parallel tree reduction for non-scalar (e.g. matrix) reductions.

We stipulate that all arguments passed to a task are unique objects. This is to avoid circular
dependences of a task on itself.

3 Execution Model

The execution model of a task dataflow language assumes that a sequential thread of execution
steps through the program and, in the process, encounters a sequence of tasks. This sequence,
together with the memory usage annotations, defines dependences between tasks. A dependence
states that a pair of tasks must execute in the order that they were spawned. These tasks are
added one by one to the task graph, where nodes represent dynamic task instances and edges
represent task dependences.

The task graph is a directed acyclic graph (DAG) because tasks can only depend on tasks
that appear before them in (serial) program order. At any moment, the roots of the DAG are
tasks that are either executing or that are ready to execute. We call the list of root tasks that are
ready to execute the ready list. It provides direct access to the ready tasks when one is needed.

3.1 Task Graph Operations: Issue and Release

The two main book-keeping operations on a task are issue and release. Issue occurs when the
task is spawned and implies that the task is linked to all tasks in the DAG on which it directly
depends. If the task is a root of the DAG (no edges inserted for the task), then the runtime
system may continue with the execution of the task; else it executes the continuation of the
parent.

Release happens when the task has finished execution. At this moment, the task is removed
from the DAG and from the ready list and all its dependents that become a root of the DAG
are pushed on the ready list. At this moment, the runtime system selects a task for execution,
which is either the parent procedure or a task on the ready list.

Note that the runtime system may be built such that multiple independent task graphs are
operational for the same program, typically one task graph per procedure instance [19, 26]. As
such, issue operations on the same task graph never occur concurrently as they are performed
by the thread executing the function corresponding to that task graph. On the other hand,
multiple release operations may occur concurrently and they may occur concurrently with an
issue operation.

3.2 The Structure of a Task Graph

Tasks are ordered by true, anti and output dependences [18]. Table 1 shows the dependences
between usage annotations. The entries “none(x)” and “none(r)” indicate that commutative and
reduction annotations require special actions to ensure mutual exclusion and managing private
copies, respectively. We consider these actions as separate steps from dependence tracking, so
for the purpose of this paper we will treat these entries as meaning absence of dependence.

In this paper, we will reduce the overhead of dynamic task graph management by exploiting
properties that follow from Table 1. Here we assume that the tasks have only a single argument,
an assumption that we will make throughout this paper for reasons of simplicity. We claim that
the presented reasoning applies equally well when aggregating our findings over multiple task
arguments.

4

Table 1: Dependences arising between two tasks operating on a common argument.
First task

in
p

u
t

ou
tp

u
t

in
/
o
u

t

co
m

m
u

-
ta

ti
ve

re
d

u
ct

io
n

S
ec

on
d

ta
sk input none true true true true

output anti output output output output
in/out anti true true true true

commutative anti true true none(x) true

reduction anti true true true none(r)

First, we notice that tasks with an output annotation may be easily renamed. Renaming
eliminates anti and output dependences by mapping an object to different storage space. We say
that a new version of the object is created. A new version introduces new data storage for the
object and has fresh metadata for dependence tracking that is initialized to an “unused” state.
As such, distinct versions of the same object behave as if they were entirely distinct objects for
the purpose of dependence tracking.

Figure 1 illustrates versions by means of a sequence of tasks in program order and the resulting
task graph. Task T7 with output usage gives rise to renaming and the creation of version 1.
Tasks younger than T7 operate on version 1 while older tasks operate on version 0.

Second, we find that parallelism between tasks exists only between tasks with the same anno-
tation (“none” occurs only on the diagonal of Table 1). Distinct annotations imply dependences
that must be enforced.

We exploit this property by introducing the notion of generation of an object. A generation
captures a series of successively spawned tasks that apply the same annotation to the object. An
exception are the output and in/out annotations, where only one task is allowed per generation.
Generations are ordered from old to young, where the oldest generation contains tasks that
spawned first.

Generations give us the following semantics for parallel execution of the program: Seri-
alization between generations: generations must execute in program order, i.e. all tasks
from the oldest generation must have finished before tasks from the next generation may issue.
Parallelism within generations: the tasks within a generation may issue in any order.

T0: out
T1: in
T2: in
T3: in
T4: in/out
T5: in
T6: in
T7: out
T8: commut
T9: commut
T10: in
T11: in
T12: in

V
e
rs

io
n

 0
V

e
rs

io
n

 1

T0

T1 T3T2

T4

T5 T6

T7

T8 T9

T10 T12T11

Task sequence Version 0 Version 1

G0
G1

G2
G3

G0
G1

G1

G0

G2

G3

G0

G1

G2

G2

Figure 1: A task graph structured in versions and generations. All tasks access a single object.

5

Figure 1 illustrates the construction of generations: tasks in the same generation are inde-
pendent; those in distinct generations are dependent.

Generations are a property of objects, so different objects may step through generations at a
different rate. Real task graphs have multiple objects and are more complex than depicted in
Figure 1, although we can always identify the structure presented here for each object in the
program.

3.3 Renaming

We demonstrate that renaming of output annotation allows us to further optimize the task graph
scheme by specializing code paths. This optimization performs renaming on output annotation,
but not on in/out. If however, for some reason,2 renaming is not possible, then the output
annotation is modified to an in/out annotation. This retains correctness (an anti-dependence
substitutes for an output dependence) but implies that we can always assume absence of older
tasks accessing an object with output usage. We show in the evaluation that this improves the
code paths measurably.

4 Task Graph Management

Preliminaries A task is stored in two separately allocated pieces of memory: the task structure
and space for arguments and tags. The task structure is a fixed-size structure holding all task
metadata, function pointer to call, pointer to the argument/tags block, etc. The argument/tags
part stores the arguments as well as a variable amount of per-argument tag space. This tag space
can hold any metadata specific to a scheme.

4.1 The Graph Scheme

The first task graph scheme represents the task graph as a graph by explicitly linking every task
with all its direct dependents. As such, the task data structure is extended to contain a list of
dependent tasks (deps), which is basically a list of outgoing edges from the task. The tag space
is unused.

Figure 2 lists the issue and release actions for the graph scheme. The arguments to these
actions are the object metadata and tags for the task argument, the argument annotation and
the task data structure.

Upon task issue, we know that the new task is either added to the youngest generation, or a
new generation is created and it is inserted there. Also, the new task must be linked to all tasks
in the previous generation. To accomplish this, it suffices that this scheme stores the two most
recent generations of an object in a directly accessible way (when adding a task to the youngest
generation, we must know the previous generation to insert the links also). It models the two
most recent generations with a list of tasks and the corresponding annotation.

When releasing a task, it is removed from the lists of tasks from each of the last two genera-
tions (lines 23–28). There is no guarantee that the task is stored on any of those lists, as it may
belong to even older generations.

When all arguments have been released, we walk the list of dependent tasks (line 33) and
decrement their incoming edge counter. If this counter drops to zero, the task becomes ready to
execute and it is added to the ready list.

2SMPSS uses a fixed-size buffer to allocate renamed storage from [4]. Renaming is turned off when all rename
storage has been used. In our runtime system, the programmer can prohibit renaming of specific objects.

6

1 issue(metadata md, tag struct tags , annotation a, task struct task)
2 md.lock()
3 // Start new generation if annotations mismatch
4 if a = in/out or md.annot[md.cur generation] != a then
5 md.cur generation := 1 − md.cur generation
6 md.tasks[md.cur generation]. clear ()
7 md.annot[md.cur generation] := a
8 endif
9 // Add task to current generation

10 md.tasks[md.cur generation]. push back(task)
11 // Link task with tasks in previous generation
12 for task struct prev task in md.tasks[1−md.cur generation] do
13 prev task . lock()
14 ++task.incoming count // atomic add
15 prev task .deps.push back(task)
16 prev task .unlock()
17 done
18 md.unlock()
19 release(metadata md, tag struct tags , annotation a, task struct task)
20 // Remove the task from the generation list that contains it
21 // (if it is in any list). Avoid scanning lists where possible .
22 md.lock()
23 if md.annot[0] = a then
24 md.tasks [0]. delete task (task)
25 endif
26 if md.annot[1] = a then
27 md.tasks [1]. delete task (task)
28 endif
29 md.unlock()
30
31 // Wakeup dependent tasks − this is executed once per task
32 task . lock()
33 for task struct dep task in task .deps do
34 if −−dep task.incoming count = 0 then // atomic substract
35 ready list .push back(dep task)
36 endif
37 done
38 task .unlock()

Figure 2: Actions on a task graph represented as a graph. Note that task issue for output
dependences uses specialized code where the tasks and annot fields are updated unconditionally
and the linking step is skipped.

7

The graph scheme shows inefficiency in a number of cases. Assume that a generation of M
tasks is followed by a generation of N tasks. Issuing a task in the first generation is constant-
time, but issuing a task in the second generation takes O(M) time to insert outgoing edges in
each task in the first generation. Thus task issue takes O(MN) steps for M +N tasks.

More importantly, releasing a task in the first generation takes O(M+N) time as the previous
generation list must be traversed to delete the task (O(M)), and because all outgoing edges must
again be traversed (O(N)). Releasing a task in the second generation takes O(N) time to delete
the task from the generation lists. Thus, release takes O((M +N)2) time steps for M +N tasks.
Both issue and release introduce a superlinear overhead when M > 1 or N > 1.

It is important to keep in mind that many research works adopt the graph scheme or a
variation of it [4, 3, 1] that is subject to the same flaws.

4.1.1 Optimization: Embedding Lists in Tags Storage

Task release time is influenced strongly by the deletion of a task from the “cur” and “next”
generation lists. The graph scheme with embedded lists provides a O(1) method to delete a task
from the generation lists.

Assuming a circular doubly-linked list implementation, we provide direct access to the linked
list node corresponding to a particular task. Note that a task is inserted on one generation list
for every task argument. As such, we provision space for a doubly-linked list node in the tags
space of the task, one node for each argument. The location of this node in memory is directly
inferrable from its position in the argument list.

The list node contains previous/next link fields and a pointer to the task. It is initialized
during issue (Figure 2, lines 6 and 10). Deleting a task from the list (lines 23– 28) now takes
O(1) steps as the linked list must no longer be traversed to find the node.

Reconsidering the example with a generation of M tasks followed by a generation of N tasks,
we calculate that task release now takes O(MN) time for M + N tasks. There is still a super-
linear overhead when M > 1 and N > 1. Clearly not a solved problem, but an improvement
over the graph scheme.

4.2 The Hypergraph Scheme

Performance anomalies disappear when we exploit the generational structure of the task graph.
Namely, all tasks in one generation have an outgoing edge to the tasks in the next younger
generation. These edges between tasks can be summarized by edges between generations. Such
a construction is a directed hypergraph [5], hence the name of this scheme.

The hypergraph scheme uses an explicit data structure to represent a generation. This data
structure contains a list of tasks in the generation, a count of the number of tasks and a pointer
to the next younger generation. The generation data structure also contains a mutex variable to
control concurrent accesses.

The metadata for an object now consists of a pointer to the current and previous generations
of that object. Older generations may exist, but are not referenced from the object metadata.
The object metadata does not need mutually exclusive access because it is only accessed by the
thread that issues tasks. Generations are protected by a lock and the locking order is from older
to younger generations.

Figure 3 shows the issue and release algorithms. Where the graph schemes (Figure 2) store two
generations and reuse this storage, the hypergraph scheme dynamically allocates new generations
as they are created (line 5). Note that the incoming edge count for a task is incremented by one
per incoming hyper-edge (line 13), reducing the book-keeping overhead.

8

1 issue(metadata md, tag struct tags , annotation a, task struct task)
2 if (a = in/out or md.cur.annot != a) and md.cur.num tasks > 0
3 then
4 md.prev := md.cur
5 md.cur := new generation(annot := a, next := null)
6 md.prev.next := md.cur
7 else
8 md.cur.annot := a
9 endif

10 if md.prev != null then
11 md.prev.lock()
12 md.cur.lock()
13 task .incoming count++ // atomic add
14 if md.prev.num tasks > 0 then
15 md.cur.tasks .push back(task)
16 endif
17 ++md.cur.num tasks
18 md.cur.unlock()
19 md.prev.unlock()
20 else
21 // Don’t need to build the list , it will not be traversed
22 md.cur.lock()
23 ++md.cur.num tasks
24 md.cur.unlock()
25 endif
26 tags .gen := md.cur
27 release(metadata md, tag struct tags , annotation a, task struct task)
28 tags .gen.lock()
29 −−tags.gen.num tasks
30 // If there is a next generation , then wakeup all those tasks
31 if tags .gen.num tasks = 0 and tags.gen.next then
32 tags .gen.next. lock()
33 for task struct t in tags .gen.next. tasks do
34 if −−t.incoming count = 0 then // atomic substract
35 ready list .push back(t)
36 endif
37 done
38 // We do not need the list from now on
39 tags .gen.next. tasks . clear ()
40 tags .gen.next.unlock()
41 endif
42 tags .gen.unlock()

Figure 3: Issue and release for the hypergraph.

9

This scheme uses the tag space to store a pointer to the generation of each argument that is
used by this task (line 26).

Again, issue for an output annotation has a specialized code path that builds on the knowledge
that both the previous and the current generation are empty. The only necessary actions are to
set the annotation (line 8) and the task count (line 23) of the current generation.

During task release, we decrement the number of tasks in the generation. When the currently
oldest generation becomes empty, then we try to wakeup each of the tasks in the next younger
generation (lines 33-37). The scheme does not investigate the next younger generation as long as
the oldest generation contains tasks. As such, it traverses the list of tasks in a generation only
once per generation, as opposed to once per task in the graph scheme.

Furthermore, by careful structuring of the code, we obviate the need to delete a task from
its generation during release. In fact, during release we erase the list of tasks at once when a
generation is woken-up (line 39). After this, the list of tasks is no longer needed, neither for issue
nor release. Corner cases require that a generation’s task list is not updated when the previous
generation is empty (line 14) or non-existent (line 20).

This design choice has a huge consequence on the time complexity of the issue and release
steps. If we reconsider the example of the task graph with generations of M and N tasks,
respectively, we find that the time complexity of issue and release is now O(1) when amortized
over all tasks in the task graph. Consequently, embedding the storage of linked list nodes in the
tag space of the task arguments now does not improve the performance scalability of the scheme,
although it will have some benefit due to a reduction in memory allocations.

4.3 The List Scheme

Optimizations to the generational scheme have demonstrated several principles that allow an
organization around lists of tasks rather than generations. This results in a simpler organization
of the task graph, but maintains the parallelism.

The algorithm is presented in Figure 4. The key insights behind the list scheme are:

1. At any one time, the task graph is operating on only two generations: the oldest generation,
consisting of the tasks that are currently ready to execute (as far as this particular argument
is concerned) and the youngest generation, where newly issued tasks are added.

2. For the oldest generation, we only need to know how many tasks are still executing (Fig-
ure 4, Line 23). When the last task in a generation has finished we need to wake up tasks
in the next generation (Line 33).

3. For the youngest generation, we only need to know the annotation of the tasks, in order
to switch to a new generation whenever the annotation changes or demands so (in case of
in/out usage) (Line 10).

4. All tasks operating on an object may be kept on a single ordered list, provided that a
marker is inserted on the last task in a each generation. Task issue appends tasks to the
tail of this list. During task release, when moving to a new generation, we traverse the task
list until the end-of-generation marker is reached, or the list runs empty. The task count
in the oldest generation is updated with the number of tasks encountered.

5. Sometimes, the youngest and oldest generations are the same. This special situation must
be properly accounted for by updating the task count in the oldest generation during task
issue when there is one generation in the task graph (Line 23). It also requires resetting of
the annotation in the youngest generation when the task graph runs empty (Line 48).

10

Accesses to the task graph metadata in the list scheme must be protected by mutual exclusion
as in the other edge-centric schemes. We have experimented with a version of the scheme with
a single lock and one with two locks. In the first version, the lock protects both the youngest
and oldest generations. In the second version, distinct locks are used to provide access to the
youngest and oldest generations. However, both locks must be acquired when there are two or
fewer generations. Overall, we found the single-lock variation more performant. We attribute
this to the fact that our scheduler executes most often in a scenario where only part of the task
graph is instantiated at a time.

4.4 The Tickets Scheme

The ticket scheme was originally described for a model with input, output and in/out annota-
tions [25, 26]. In this paper, we make a minor extension to the scheme to include commutative
in/out and reductions. We provide a slightly different exposition of the algorithm which is rooted
in our terminology of generations.

The scheme resembles a ticket-based queuing system such as operated in, e.g., a butcher’s
store. The ticket queuing system uses two counters: a global counter and a next counter. The
next counter serves to serialize all clients: each client gets a successive value of the next counter,
which is called a ticket. The global counter is incremented for every client that has been served.
At any time, the client to be served is the one whose ticket equals the global counter.

The ticket scheme that implements task graphs uses 4 ticket queues per version of an object
called R (input), W (output and in/out), C (commutative in/out) and P (reductions). We use
different ticket queues per annotation because we need to synchronize between generations but
not within generations. When a task issues, it increments the next counter in the queue that
corresponds to its annotation and it copies the next counter from each of the other queues (it
takes 3 tickets). It becomes ready for execution when the global counters in the other queues
match the corresponding tickets. This means that any task with a different annotation and
that issued earlier must have finished execution before the task can execute. There is however
no synchronization with other tasks with the same annotation, because we want these tasks to
execute in parallel.3 After serving a task, the global counter in the queue that matches the task’s
annotation is incremented.

Tasks with in/out annotations must also serialize with other tasks with in/out annotation.
We enforce this synchronization by making these tasks wait also on the W queue, such that they
take/return tickets from the same queue that they wait on.

Figure 5 shows the issue and release operations under the ticket algorithm. The object
metadata consists of 8 counters (4 ticket queues of 2 counters each). The tag space for an
argument is used to store ticket values that must be waited on. As such, the tags for an input,
commutative and reduction annotation contain 3 values, the tags for an output annotation are
empty and the tags for an in/out annotation contain 4 values.

The issue and release actions must not execute in exclusion from related actions on the
same versions, provided that every increment in the release operations is performed atomically.
Increments in the issue operations need not be atomic because the issue and release actions modify
different variables and because the task graph is generated by a single thread of execution.

The ticket scheme has one peculiarity: as tasks do not contain pointers to the task that they
may wake up, it is not possible to populate a ready list. Instead, the ticket scheme keeps all
tasks in a pool and searches through this pool for ready tasks when a new task to execute is

3Note that tasks with the same annotation and that belong to different generations must be synchronized.
This is accomplished by transitivity: there must be a generation in between with a different annotation which is
synchronized with the other two generations.

11

1 issue(metadata md, tag struct tags , annotation a, task struct task)
2 tags . task := task // tags are nodes in a linked list
3 tags . last in generation := false
4 tags .next := null
5 md.lock()
6 if md.num gens = 0 then
7 md.num gens := 1
8 md.oldest num tasks := 1
9 md.youngest annot := a

10 else if (a = in/out or md.youngest annot != a) and md.youngest annot != empty then
11 md.youngest annot := a
12 ++md.num gens
13 ++task.incoming count // atomic add
14 if md.tasks. tail != null then // append to linked list
15 md.tasks. tail . last in generation := true
16 md.tasks. tail .next := tags
17 else
18 md.tasks.head := tags
19 endif
20 md.tasks. tail := tags
21 else
22 if md.num gens = 1 then
23 ++md.oldest num tasks
24 else
25 ++task.incoming count // atomic add
26 md.tasks. tail .next := tags // append to linked list
27 md.tasks. tail := tags
28 endif
29 endif
30 md.unlock()
31 release(metadata md, tag struct tags , annotation a, task struct task)
32 md.lock()
33 if −−md.oldest num tasks = 0 then
34 if md.tasks.head != null then
35 do
36 tag struct t := md.tasks.head
37 if −−t.task.incoming count = 0 then // atomic substract
38 ready list .push back(t . task)
39 endif
40 ++md.oldest num tasks
41 md.tasks.head := t.next
42 while t . last in generation = false and md.tasks.head != null
43 endif
44 −−md.num gens // generation moved to ready list
45 if md.tasks.head = null then
46 md.tasks. tail := null
47 if md.num gens = 0 then
48 md.youngest annot := empty
49 endif
50 endif
51 endif
52 md.unlock()

Figure 4: Issue and release for the scheme organized around a task list.
12

1 issue input(metadata md, tag struct tags , task struct task)
2 ++md.R.next // take ticket
3 tags .w := md.W.next // copy ticket
4 tags .c := md.C.next // copy ticket
5 tags .p := md.P.next // copy ticket
6 ready check input(metadata md, tag struct tags , task struct task)
7 return tags .w = md.W.global and tags.c = md.C.global
8 and tags.p = md.P.global // wait (3 queues)
9 release input(metadata md, tag struct tags , task struct task)

10 ++md.R.global // return ticket
11
12 issue output(metadata md, out tags tags, task struct task)
13 ++md.W.next // take ticket
14 ready check output(metadata md, out tags tags, task struct task)
15 return true // output never waits
16 release output(metadata md, out tags tags, task struct task)
17 ++md.W.global // return ticket
18
19 issue in/out(metadata md, inout tags tags , task struct task)
20 tags . r := md.R.next // copy ticket
21 tags .w := md.W.next++ // copy and take ticket
22 tags .c := md.C.next // copy ticket
23 tags .p := md.P.next // copy ticket
24 ready check in/out(metadata md, inout tags tags , task struct task)
25 return tags . r = md.R.global and tags.w = md.W.global
26 and tags.c = md.C.global and tags.p = md.P.global // wait
27 release in/out(metadata md, inout tags tags , task struct task)
28 ++md.W.global // return ticket

Figure 5: Actions for the tickets scheme. The commutative in/out and reduction annotations
are similar to the case of input annotation.

13

demanded [26]. To this end, a ready check must be defined for every argument annotation. This
ready check consists of comparing the appropriate global counters in the object metadata to the
tickets stored in the tag space of an argument. The tasks in the pool are organized by their
depth in the task graph in order to limit overhead when searching for a successor. The pool
is organized as a resizable hash table with chaining where each chain stores the tasks with a
particular depth.

5 Evaluation and Analysis

We evaluate the task graph schemes using micro-benchmarks. The evaluation platform is a 48-
core AMD Opteron 6172 at 2.1 GHz. The codes are compiled using gcc 4.7.3 at optimization
level -O4.

We measure time in the micro-benchmarks using the cpuid/rdtsc instruction sequence to
measure delay in cycles. Although this instruction sequence disturbs execution time somewhat
by serializing all instructions, it is an appropriate way to measure time delays on the order of
100s of cycles. Moreover, we measure multiple occurences of an event and present the average
delay over those events to mitigate this source of imprecision.

The task graph schemes determine what tasks are ready to execute. The scheduler must
choose which of these tasks to execute and on what core. These are two distinct problems. We
assume a greedy scheduler in this work, such that the first task on the ready list is scheduled
on the first core that becomes idle. The scheduler is a work-stealing task dataflow scheduler [26]
that implements the work-first principle, as in [16].

5.1 Fast Execution Path: All Tasks are Ready

We constructed a micro-benchmark that measures the fastest path in our system to spawn a
task. It contains a single thread of execution that spawns and immediately executes a number
of one-argument tasks. All tasks are passed the same object. Task issue operates on an empty
task graph and task release never wakes up dependent tasks. The micro-benchmark by-passes
queueing of tasks as our system immediately executes a task when it is ready at the moment
of the spawn. This behavior is similar to Cilk’s work-first principle [16], which is implemented
in our scheduler. Consequently, this fast execution path is an important and common behavior,
also for dependence tracking.

Figure 6 shows the delay of the fast execution path measured in processor clock cycles, aver-
aged over 10 million spawns. We show results for the task graph schemes discussed in this paper
and all supported annotations. The spawn delays are broken down in three parts: the baseline
spawn time equals the time to spawn and execute an empty task that has no arguments. The
generic overhead is the overhead that is incurred due to task dependence tracking. These over-
heads are the largest in the graph schemes; they are smallest in the tickets scheme. Embedding
generation lists hardly affects the delay of the fast execution path because the generation lists
contain at most one task.

The annotation-specific overhead is the overhead that is introduced to track a particular
dependence type on top of the generic infrastructure. Output dependences incur the least
annotation-specific overhead because task issue is optimized to the situation where no prior
tasks are operating on the same object. The commutative in/out annotation incurs somewhat
more overhead than the in/out annotation because the runtime system implements exclusion by
means of a mutex that is stored in the object metadata. The reduction annotations are also
more expensive because of the management and reduction of private versions of the object.

14

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

in
pu

t	

ou
tp
ut
	

in
/o
ut
	

co
m
m
ut
	

sc
al
	 re

d	

ob
j	 r
ed

	

in
pu

t	

ou
tp
ut
	

in
/o
ut
	

co
m
m
ut
	

sc
al
	 re

d	

ob
j	 r
ed

	

in
pu

t	

ou
tp
ut
	

in
/o
ut
	

co
m
m
ut
	

sc
al
	 re

d	

ob
j	 r
ed

	

in
pu

t	

ou
tp
ut
	

in
/o
ut
	

co
m
m
ut
	

sc
al
	 re

d	

ob
j	 r
ed

	

in
pu

t	

ou
tp
ut
	

in
/o
ut
	

co
m
m
ut
	

sc
al
	 re

d	

ob
j	 r
ed

	

in
pu

t	

ou
tp
ut
	

in
/o
ut
	

co
m
m
ut
	

sc
al
	 re

d	

ob
j	 r
ed

	

graph	 embed.	 graph	 hypergraph	 embed.	 hypegraph	 embed.	 lits	 Ackets	

Sp
aw

n	
'm

e	
(c
yc
le
s)
	

annotaAon-‐specific	 overhead	
generic	 overhead	
baseline	 spawn	

Figure 6: Delay of fast execution path when spawning and immediately executing a task with
one ready argument. The abbreviations ’commut’ stands for the commutative annotations, ’scal
red’ is a reduction using serial accumulation of results while ’obj red’ is a reduction using parallel
tree reduction.

Overall, the tickets scheme introduces the least generic overhead, and the least annotation-
specific overhead. The task spawn delay in the tickets scheme can be as low as 400 cycles or
0.20µs on our evaluation machine.

5.2 Slow Execution Path: All Tasks Require Wakeup

The slow path for executing a task involves an initial ready check, issue, execute and release.
We measure the slow path with a micro-benchmark that artificially inserts an active task in the
metadata of an object and then spawns N tasks that access the same object. These tasks have
a variable annotation (output, in/out, etc.) but perform no work. Next, the micro-benchmark
releases the artificial task and then waits for all issued tasks to wakeup and complete. This process
is repeated several times to capture variance on the measurements. The micro-benchmark uses
one thread of execution to factor out multi-threading overheads.

Figure 7 shows the spawn overhead in this micro-benchmark for a representative set of the
annotations. Other annotations lead to similar results. The number of tasks in a generation
is varied on the horizontal axis. The vertical axis shows the average delay per task spawn.
These results confirm that the graph scheme introduces a super-linear overhead when N > 1
(see Section 4.1). Moreover, the embedded graph scheme does not suffer super-linear overheads
because the first generation consists of just one task (M = 1). The hypergraph schemes have no
scalability problems.

Note that N = 1 for output and in/out annotations because a new generation is constructed
for every task. Thus, for this micro-benchmark, all graph scheme are scalable. Also, renaming
is applied for the output annotations, so the tasks are spawned at a speed close to the fast-path
speed.

Three Generation Variant of the Micro-Benchmark We also constructed a micro-benchmark
with 3 generations: one in/out task that is artificially delayed, a sequence (generation) of N tasks
with input annotation and a sequence of N tasks with variable annotation. Figure 8 illustrates
the shape of the task graph of this micro-benchmark. Figure 9 shows the performance of the

15

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

1.4	

1.6	

1.E+00	 1.E+01	 1.E+02	 1.E+03	 1.E+04	 1.E+05	 1.E+06	

Sp
aw

n	
'm

e	
(k
-‐c
yc
le
s)
	

Number	 of	 tasks/genera'on	

output	 graph	

embed.	 graph	

hypergraph	

embed.	 hypergraph	

embed.	 lists	

;ckets	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

1.E+00	 1.E+01	 1.E+02	 1.E+03	 1.E+04	 1.E+05	 1.E+06	

Sp
aw

n	
'm

e	
(k
-‐c
yc
le
s)
	

Number	 of	 tasks/genera'on	

in/out	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

1.E+00	 1.E+01	 1.E+02	 1.E+03	 1.E+04	 1.E+05	 1.E+06	

Sp
aw

n	
'm

e	
(k
-‐c
yc
le
s)
	

Number	 of	 tasks/genera'on	

commuta've	 in/out	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

1.E+00	 1.E+01	 1.E+02	 1.E+03	 1.E+04	 1.E+05	 1.E+06	

Sp
aw

n	
'm

e	
(k
-‐c
yc
le
s)
	

Number	 of	 tasks/genera'on	

scalar	 reduc'on	

Figure 7: Spawn time for the slow-path microbenchmark with two annotations.

input

in/out

input input input

dep dep dep dep

Figure 8: Task graph constructed in the three-generation slow path micro-benchmark for N = 4.

16

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

1.4	

1.6	

1.E+00	 1.E+01	 1.E+02	 1.E+03	 1.E+04	 1.E+05	 1.E+06	

Sp
aw

n	
'm

e	
(k
-‐c
yc
le
s)
	

Number	 of	 tasks/genera'on	

output	 graph	

embedded	 graph	

hypergraph	

embed.	 hypergraph	

embed.	 lists	

;ckets	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

1.E+00	 1.E+01	 1.E+02	 1.E+03	 1.E+04	 1.E+05	 1.E+06	

Sp
aw

n	
'm

e	
(k
-‐c
yc
le
s)
	

Number	 of	 tasks/genera'on	

in/out	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

1.E+00	 1.E+01	 1.E+02	 1.E+03	 1.E+04	 1.E+05	 1.E+06	

Sp
aw

n	
'm

e	
(k
-‐c
yc
le
s)
	

Number	 of	 tasks/genera'on	

commuta've	 in/out	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

1.E+00	 1.E+01	 1.E+02	 1.E+03	 1.E+04	 1.E+05	 1.E+06	

Sp
aw

n	
'm

e	
(k
-‐c
yc
le
s)
	

Number	 of	 tasks/genera'on	

scalar	 reduc'on	

Figure 9: Spawn time for the slow-path microbenchmark with three generations.

17

0	

5	

10	

15	

20	

25	

30	

0	 500	 1000	 1500	

Av
er
ag
e	
ex
ec
u+

on
	 d
el
ay
	

(k
-‐c
yc
le
s)
	

Task	 +me	 (k-‐cycles)	

graph	
embed.	 graph	
hypergraph	
embed.	 hypergraph	
embed.	 list	
6ckets	
1:48	 6.0	

6.5	

7.0	

7.5	

8.0	

8.5	

9.0	

9.5	

10.0	

0	 5	 10	 15	 20	 25	

Av
er
ag
e	
ex
ec
u+

on
	 d
el
ay
	

(k
-‐c
yc
le
s)
	

Task	 +me	 (k-‐cycles)	

graph	 embed.	 graph	
hypergraph	 embed.	 hypergraph	
embed.	 list	 9ckets	
1:1	

Figure 10: The impact of task size on scalability when executing with 48 threads. The graph on
the right zooms-in on the graph on the left.

task graph schemes for a representative set of the annotations.
The graph scheme shows a scalability problem on output and in/out annotations when the

number of tasks approaches 10,000. This is due to deleting the input tasks from the generation
lists.

With the commutative in/out and scalar reduction annotations, the task graph is structured
as two generations of N tasks each. In this case, our analysis (Section 4.1.1) has already shown
that the graph and embedded graph schemes are not scalable.

Overall, the tickets scheme introduces least overhead. The hypergraph schemes perform
well also and introduce up to around 30% and 15% slowdown over the tickets scheme for the
hypergraph and embedded hypergraph schemes, respectively, when N ≤ 1000. The embedded
lists scheme has an average overhead of 5% compared to the tickets scheme.

5.3 Slow Execution Path: Work Stealing

We measure the runtime system overhead in the presence of work stealing using a micro-
benchmark that issues several thousand tasks with an input annotation. We pass the same
object to each task’s argument. We execute this benchmark using 48 cores. Figure 10 shows the
observed delay of a task spawn in the micro-benchmark. We vary the size of the tasks on the
horizontal axis. In each case, the number of tasks is chosen such that the total execution time
remains in the 1-10s range.

The results show that the scheduler obtains linear scaling at a task size of about 190–230µs
(around 400K cycles). The task graph scheme used has little impact hereon. This is expected,
as the task graph schemes show performance differences in the sub-microsecond range.

The task graph scheme has a noticeable impact when the scheduler does not achieve linear
scaling. In this case, the tickets scheme is 10-20% faster than the graph scheme and up to 8%
faster than the embedded lists scheme. Note that the majority of the 8000-cycle task execution
delay measured here is due to the scheduler and the way it performs task stealing. This is not
affected by the task graph scheme.

We have performed this experiment also when using up to twice as many objects as there
are threads. Objects are accessed in round-robin manner such that subsequently spawned tasks
operate on distinct objects. The results are similar to Figure 10, showing that the objects and
the taskgraph data structures are not a point of contention.

18

0	

2	

4	

6	

8	

10	

12	

14	

0	 5	 10	 15	 20	
Sp
aw

n	
de

la
y	
(k
-‐c
yc
le
s)
	

Number	 of	 task	 arguments	

graph	
embed.	 graph	
hypergraph	
embed.	 hypergraph	
embed.	 lists	
8ckets	

Figure 11: Varying number of task arguments.

5.4 Number of Task Arguments

Figure 11 shows the spawn delay of the slow-path micro-benchmark where the number of argu-
ments per task is varied. A different object is passed to each argument. The overhead of the
edge-centric schemes becomes more pronounced as tasks have more arguments. At 20 arguments,
the best edge-centric scheme is over 30% slower than the tickets scheme. The graph scheme shows
unacceptable slowdowns.

While 20 arguments for a task seems high, it is not unreasonable as the programming model
discourages the use of global variables. Global variables cannot participate in dataflow depen-
dences. Our implementation of the PARSEC Blackscholes benchmark, e.g., has a task with 8
arguments of which 7 are annotated. Here, the tickets scheme already outperforms the other
schemes by 25%.

5.5 Micro-Benchmarks with Realistic Task Graphs

We evaluate the task graph schemes on micro-benchmarks that exhibit the same task graph as real
codes: matrix multiply and cholesky factorization. The actual tasks in these micro-benchmarks
are configurable, as in the experiment of Section 5.3.

5.5.1 Task Graph: Matrix Multiply

The matrix multiply mimicked is a block matrix multiply where the result matrix is divided in
DxD blocks of a fixed size, in this case 16x16 blocks (Figure 12). For matrices of DxD blocks,
the program generates D3 tasks, where disjoint groups of D tasks update the same block of the
C matrix, which causes serialization of these tasks. As there are D2 distinct blocks in the C
matrix, the task graph shows D2 strands of D tasks each. In the experiments presented here,
D = 128. Due to the regularity of the taskgraph, matrix multiply is not a key motivator for task
dataflow languages. This benchmark is, however, helpful for performance analysis.

Figure 13 shows the average task execution time for varying amounts of work per task and
also for two loop orderings of matrix multiply. On the left hand side the ’ijk’ loop order is used.
Here, the inner-most k-loop computes the product for one block of the result matrix. Tasks are
traversed one strand of the task graph at a time. Consequently, each task in the inner loop is
dependent on the previous one and the scheduler must scan ahead in the program to the next
iteration of the j-loop to expose parallelism. Based on the properties of the scheduler, we can
calculate that execution of this program uses O(D2) work stealing events, i.e., one per strand

19

1 typedef float (∗block t)[16]; // 16x16 tile
2 typedef versioned<float[16][16]> vers block t ;
3
4 void matmul(vers block t A [], vers block t B [],
5 vers block t C [], unsigned D) {
6 for(unsigned i=0; i < D; ++i) {
7 for(unsigned j=0; j < D; ++j) {
8 for(unsigned k=0; k < D; ++k) {
9 spawn mul add(indep A[i∗D+k],

10 indep B[k∗D+j],
11 inoutdep C[i∗D+j]);
12 }
13 }
14 }
15 sync;
16 }

0,0,0

0,0,1

0,0,2

0,0,3

0,1,0

0,1,1

0,1,2

0,1,3

0,2,0

0,2,1

0,2,2

0,2,3

3,3,0

3,3,1

3,3,2

3,3,3

...

......

...

...

Task i,j,k computes Ci,j=Ci,j+Ai,kBk,j

Figure 12: Left: Task dataflow program for matrix multiply over DxD matrices of 16x16 blocks
using an ’ijk’ loop order. Adapted from [26]. Right: The task graph of matrix multiply when
D=4.

in the task graph. Note that work stealing is significantly more expensive than creating and
initiating a pending task.

With the ’ijk’ loop order, the graph scheme shows a performance anomaly where tasks shorter
than 150 k-cycles incur increased delay. The tickets scheme performs worse than the other
schemes. As the structure of the program forces construction of nearly the full task graph,
additional pressure is put on the pool to locate the next ready task.

On the right hand side in Figure 13, a ’kij’ loop order is used. This loop order launches one
task for every block in the result matrix before launching the second task on the first block. As
such, tasks are traversed by visiting each strand in the task graph in round-robin fashion and the
program has a great deal of readily exploitable parallelism. However, this task traversal order
also implies that O(D3) work stealing events are used to execute the program, assuming that
D2 � P , where P is the number of processors.

The tickets scheme outperforms the other task graph schemes, typically by about 400 cycles
or 3.5% of the total task delay. Note that the average task delay is in the best case about 4600
cycles larger for ’kij’ loop order than for the ’ijk’ loop order. This is a side effect of the design
of the scheduler and the cost of work stealing, in combination with an increase in work stealing
events by O(D).

We have not shown the embedded graph and hypergraph schemes as they perform nearly as
well as the embedded lists scheme.

5.5.2 Task Graph: Cholesky Factorization

Figure 14 shows the performance of the task graph schemes on the task graph for Cholesky
factorization of a matrix divided in 128x128 blocks. The results confirm previous findings: the
tickets scheme is inherently faster than the edge-centric task graph schemes at very small task
sizes. It outperforms the embedded lists scheme by 10-15% for task times of 250k cycles and
less. However, Cholesky factorization has a complex task graph and the pool fails to locate the
next ready task sufficiently fast. For 500k cycle tasks, the tickets scheme is 3% slower than the

20

0	

2	

4	

6	

8	

10	

12	

0	 100	 200	 300	 400	 500	

Av
er
ag
e	
ex
ec
u+

on
	 d
el
ay
	 (k

-‐
cy
cl
es
)	

Task	 +me	 (k-‐cycles)	

'ijk'	 loop	 order	

graph	
embed.	 list	
8ckets	
1:48	

0	

2	

4	

6	

8	

10	

12	

0	 100	 200	 300	 400	 500	

Av
er
ag
e	
ex
ec
u+

on
	 d
el
ay
	 (k

-‐
cy
cl
es
)	

Task	 +me	 (k-‐cycles)	

'kij'	 loop	 order	

graph	
embed.	 list	
8ckets	
1:48	

Figure 13: Impact of the task graph schemes on the performance of blocked matrix multiply.

0	

2	

4	

6	

8	

10	

12	

14	

16	

0	 100	 200	 300	 400	 500	 600	 700	 Av
er
ag
e	
ex
ec
u+

on
	 d
el
ay
	 (k

-‐c
yc
es
)	

Task	 +me	 (k-‐cycles)	

graph	

embed.	 lists	

9ckets	

1:48	

Figure 14: Impact of the task graph schemes on the performance of the cholesky facctorization
skeleton.

task graph schemes. The performance of all schemes converges as task time increases.

5.6 Benchmarks

We study the impact of performance on two benchmarks with higher complexity, namely ferret
and dedup, taken from the PARSEC benchmark suite [7]. We have analysed the performance
of these benchmarks using our runtime system in other work [24], where we have also proposed
new programming language concepts to accelerate these applications and improve their pro-
grammability. In this work, we evaluate the baseline versions using input, output and in/out
annotations.

5.6.1 Ferret

The parallelism exploited in ferret consists of a 5-stage pipeline where images are processed
and compared in successive steps. Ferret’s performance scales nearly linearly with an increasing
number of cores [24]. Ferret has fine-grain tasks, which causes differences between the dependence
tracking schemes to show up in the overall execution time. Figure 15 shows the cumulative

21

0.0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1.0	

35.4	 35.6	 35.8	 36	 36.2	 36.4	 36.6	 36.8	

Cu
m
ul
a&

ve
	 D
is
tr
ib
u&

on
	 F
un

c&
on

	

Execu&on	 &me	 (seconds)	

-ckets	

hypergraph	

embed.	 hypergraph	

embed.	 list	
0.0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1.0	

35.4	 35.6	 35.8	 36	 36.2	 36.4	 36.6	 36.8	

Cu
m
ul
a&

ve
	 D
is
tr
ib
u&

on
	 F
un

c&
on

	

Execu&on	 &me	 (seconds)	

-ckets	

graph	

embed.	 graph	

embed.	 list	

Figure 15: Cumulative distribution function of the execution times of ferret over 30 executions,
when using each of the dependence tracking schemes. The left and right graph show different
subsets of the results. The graph and hypergraph schemes incur similar execution times, causing
their curves (shown in distinct graphs for clarity) to overlap.

distribution function of overall execution time of ferret on 48 cores over 30 runs, when executing
the native input set supplied with PARSEC.

The tickets scheme results in lower execution times than the other schemes, although the
difference with the lists scheme is negligible. The main result of this experiment is that the
graph and hypergraph schemes are clearly slower than their embedded graph and embedded
hypergraph counterparts. Given the overlap of measured execution times between different
schemes, we validate this result statistically.

We use the two-sided Wilcoxon rank sum test [12], a non-parametric test, to establish equality
of means. We test the null hypothesis that two schemes yield the same mean execution time
with a significance level of 5%. The difference between the tickets scheme and the graph scheme
is statistically significant (µ = 35.74s and σ = 0.19s for tickets vs. µ = 35.96s and σ = 0.13s
for the graph scheme) with a Wilcoxon value of W (30) = 132 and p = 2.58e− 6, with failure to
accept the null hypothesis. A similar statistically significant difference can be measured between
the tickets and hypergraph schemes.

The tickets scheme does not differ from the remaining schemes in a statistically significant way.
E.g., comparing to the embedded graph scheme (µ = 35.82s, σ = 0.19s) we find W (30) = 321
and p = 5.75%, so we cannot reject the null hypothesis.

In summary, we find that the graph and hypergraph schemes are slower than the other
schemes with statistical significance, but there is no statistically significant difference in average
performance between the tickes scheme and the embedded variants. These results demonstrate
that the embedding optimisation is crucial as it minimizes the operations in the dependence
tracking scheme, especially those involving extra memory alloations and de-allocations.

5.6.2 Dedup

Dedup is an application with nested pipelines, i.e., one pipeline stage in the outer pipeline is
decomposed as another pipeline with finer-grain parallelism [7]. As such, dedup is an example of
a program with nested task graphs. The version we test here is slightly different from the baseline
version in [24], as we have collapsed three stages in the inner pipeline (hash computation, hash
table access and compression) as this gives better performance.

22

Table 2: Range of execution times measured for 30 runs of dedup when executing on 16 cores,
using each of the dependence tracking schemes. Threads are packed and pinned on the cores of
3 processors.

mean (s) std.-dev. (s) min (s) max (s)

tickets 6.60 0.27 6.11 7.23
graph 6.65 0.23 6.33 7.23
embedded graph 6.71 0.29 6.13 7.45
hypergraph 6.72 0.34 6.25 7.75
embedded hypergraph 6.60 0.42 5.97 7.47
embedded lists 7.22 1.42 6.24 10.85

The performance ranges of dedup are summarised in Table 2 when 16 cores are utilized.
Dedup quickly runs out of parallelism. The measurements on 16 cores reflect a situation where
threads are essentially idle and engaging in work stealing. We observe that the performance
of dedup is independent of the dependence tracking scheme. Although some difference on the
average execution time can be observed, these are much less than the standard deviations. As
such, the Wilcoxon test does not validate these differences as statistically significant.

All schemes have fairly heavy tails which is probably typical for programs engaging frequently
in locking. Some executions with the embedded lists scheme are much slower (up to 73% larger
than the shortest execution time). We do not have enough data to conclude whether this is an
artefact of the implementation or whether it is typical for the embedded lists scheme, as it only
shows up with this severity in dedup.

6 Related Work

6.1 Programming model

The literature presents many variations of the task dataflow model. Several papers use the basic
model with input and output annotations [1, 17], supplemented with the in/out annotation [10].
CnC considers only inputs and outputs and calls them producers and consumers [9]. What
SMPSS calls a reduction [4] is in fact commutativity in our model, except that SMPSS requires
the programmer to lock the reduction variable when it is accessed. The annotation is renamed to
’concurrent’ in OmpSs [14], the successor to SMPSS. In this work it is the runtime that ensures
exclusive access. This work also implements a real reduction annotation that automatically
manages multiple copies of the reduction variable. In this respect, the annotation is as strong
as a Cilk++ reducer [15]. Cilk++ reducers allow non-commutative operators, but our system
assumes commutativity for practical reasons.

6.2 Task Graph Management

Most papers that discuss runtime systems for task dataflow languages are vague about the
implementation of the dependence tracking algorithms. The underlying rationale being that there
is no risk of scalability problems, or the assumption that the advantages of exposing additional
parallelism will always outweigh its cost. This paper has shown that these assumptions are false:
there is a risk of lack of scalability if the task dependence tracking is implemented using a graph
representation of the task graph.

23

We were able to determine through analysis of source code that some systems construct a
graph that explicitly contains edges for every pair of dependent tasks [4, 3, 1], as in the graph
scheme. As such, they are prone to the pitfalls of this scheme.

SuperMatrix implements Tomasulo’s algorithm in software [10]. The presented scheme is
limited to one output or one in/out argument per task and does not support commutativity or
reductions. As such, the programmability of the system is reduced. More importantly, Toma-
sulo’s algorithm as designed with a hardware implementation in mind. This imposes certain
restrictions on the algorithm that are irrelevant for a software implementation.

OoOJava [19] uses heap dependence queues. These queues operate using generations as in
this work. It is however more complex as generations may be organized as hash tables, where
each bucket in the hash table holds a chain of dependent tasks. Chains in different buckets may
execute concurrently.

Best et al. [6] present a generation-based scheme with one program-wide queue. Tasks are
added to a generation when they are proven to have non-overlapping memory footprints; oth-
erwise a new generation is started. The scheduler processes one generation at a time. This,
however, limits parallelism when generations are small and is prone to unbalance within gener-
ations.

Gupta and Sohi [17] present a scheme where each object has a wait-list of tasks that will
operate on that object. This is a variation on the list scheme. However, their scheme requires
that tasks with an input dependence issue in program order (although they may complete in any
order). This may reduce parallelism measurably. This restriction is necessary because they do
not move tasks in the oldest (ready) generation to a ready list.

Instead of following edges in a graph, some schemes scan the list of all spawned tasks to find
common arguments [20]. This consumes time proportional to the size of the task graph and
appears necessary only for handling aliased task arguments [22].

7 Conclusion

This paper studies data structures and algorithms for the efficient implementation of task
dataflow scheduling. Efficiency is key in the context of strong scaling, where scheduler over-
heads must be minimized. Our algorithms are based on the notions of versions and generations
of objects. We defined schemes based on graphs, hypergraphs and lists. We also presented an
optimization to embed a linked list of tasks in the task representation which dramatically re-
duces runtime system overhead. Besides the three edge-centric schemes, we analyzed an edge-less
scheme based on ticket locks.

An unanticipated result of our evaluation is that a straightforward implementation of the task
graph as a graph is susceptible to bad scaling behavior. This is true if the language supports
annotations such as commutative or reduction operands.

Evaluation with micro-benchmarks consistently showed that the edge-less tickets scheme out-
performs the edge-centric schemes. The tickets scheme allows single-argument task spawns in as
little as 0.20µs and is at least 5-10% faster than the best edge-centric scheme. Some experiments
reveal substantially larger improvements.

The tickets scheme has one shortcoming, which is in the design of the task pool. The task
pool holds all pending tasks and is searched for ready tasks by idle processors. It is organized as
a hash table where the depth of a task in the task graph is used as a key to speed up searches.
In contrast, edge-centric schemes are able to locate ready tasks more efficiently. The task pool
however only adds latency to the scheduler when it holds a large task graph. This is not always
the case in our scheduler.

24

It is an open question whether the edge-less ticket scheme can be extended to store successor
tasks efficiently, without incurring the overhead of the edge-centric schemes. Such a scheme could
avoid the need for a task pool.

In future work we will study dependence tracking in the context of array sections, which
would lead to partially overlapping address ranges. There exist schemes that allow this [23, 22],
or where uncertainty in the address ranges plays a role [6, 19]. The overheads for these schemes
has been reported as substantial, up to milliseconds per task spawn.

Acknowledgments

The authors which to express their gratitude towards Giorgis Giorgakoudis and Babis Chalios for
their technical support towards this research. The research leading to these results has received
funding from The Research Foundation Flanders (FWO) and from the European Communitys
Seventh Framework Programme [FP7/2007-2013] under the People Programme (Marie Curie
Actions), grant agreement no 327744, the ENCORE Project (http://www.encore-project.eu),
grant agreement no 248647, the TEXT Project (http://www.project-text.eu/), grant agreement
no 261580, the SCoRPiO Project (http://www.scorpio-project.eu/), grant agreement no 323872
and under the European Network of Excellence on High Performance and Embedded Architecture
and Compilation (HiPEAC, http://www.hipeac.net), grant agreement no 217068.

References

[1] Agrawal, K., Leiserson, C. E., and Sukha, J. Executing task graphs using work-
stealing. In Proceedings of the 24th IEEE International Parallel and Distributed Processing
Symposium (IPDPS) (Atlanta, GA, USA, Apr. 2010), pp. 1–12.

[2] Alvanos, M., G., T., Bilas, A., , and Nikolopoulos, D. S. Design and Evaluation
of a Task-based Parallel H.264 Video Encoder for Heterogeneous Processors. In Proceedings
of SAMOS XI: International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation (SAMOS) (July 2011), pp. 217–224.

[3] Augonnet, C., Thibault, S., Namyst, R., and Wacrenier, P.-A. StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. Concurrency and
Computation: Practice and Experience 23, 2 (2010), 187–198.

[4] Barcelona Supercomputing Center. SMP Superscalar (SMPSS) User’s Manual,
2.2 ed., Sept. 2008.

[5] Berge, C. Graphs and Hypergraphs. North-Holland, 1973.

[6] Best, M. J., Mottishaw, S., Mustard, C., Roth, M., Fedorova, A., and
Brownsword, A. Synchronization via scheduling: techniques for efficiently managing
shared state. In PLDI ’11 (2011), pp. 640–652.

[7] Bienia, C. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University, Jan.
2011.

[8] Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., and
Dongarra, J. Dague: A generic distributed dag engine for high performance computing,.
Tech. rep., Innovative Computing Laboratory, 2010.

25

[9] Budimlić, Z., Burke, M., Cavé, V., Knobe, K., Lowney, G., Newton, R., Pals-
berg, J., Peixotto, D., Sarkar, V., Schlimbach, F., and Taşirlar, S. Concurrent
collections. Sci. Program. 18 (August 2010), 203–217.

[10] Chan, E., Quintana-Orti, E. S., Quintana-Orti, G., and van de Geijn, R. Super-
matrix out-of-order scheduling of matrix operations for smp and multi-core architectures.
In SPAA ’07 (2007), pp. 116–125.

[11] Chi, C. C., and Juurlink, B. A QHD-capable parallel H.264 decoder. In Proceedings
of the international conference on Supercomputing (New York, NY, USA, 2011), ICS ’11,
ACM, pp. 317–326.

[12] Conover, W. J., and Iman, R. L. Rank transformations as a bridge between parametric
and nonparametric statistics. The American Statistician 35, 3 (1981), 124–129.

[13] Dongarra, J., Beckman, P., and et al. The international exascale software project
roadmap. International Journal of High Performance Computer Applications 25, 1 (2011),
3–60.

[14] Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L., Martorell,
X., and Planas, J. OmpSs: A proposal for programming heterogeneous multi-core archi-
tectures. Parallel Processing Letters 21, 2 (2011), 173–193.

[15] Frigo, M., Halpern, P., Leiserson, C. E., and Lewin-Berlin, S. Reducers and other
Cilk++ hyperobjects. In SPAA ’09: Proceedings of the twenty-first annual symposium on
Parallelism in algorithms and architectures (2009), pp. 79–90.

[16] Frigo, M., Leiserson, C. E., and Randall, K. H. The implementation of the Cilk-5
multi-threaded language. In PLDI ’98: Proceedings of the 1998 ACM SIGPLAN conference
on Programming language design and implementation (1998), pp. 212–223.

[17] Gupta, G., and Sohi, G. S. Dataflow execution of sequential imperative programs on
multicore architectures. In Proceedings of the 44th Annual IEEE/ACM International Sym-
posium on Microarchitecture (2011), MICRO-44 ’11, pp. 59–70.

[18] Hennessy, J. L., and Patterson, D. A. Computer architecture: A Quantitative Ap-
proach, 3rd ed. Morgan Kaufmann, 2003.

[19] Jenista, J. C., Eom, Y. h., and Demsky, B. C. Ooojava: software out-of-order exe-
cution. In Proceedings of the 16th ACM symposium on Principles and practice of parallel
programming (New York, NY, USA, 2011), PPoPP ’11, ACM, pp. 57–68.

[20] Kurzak, J., and Dongarra, J. Fully dynamic scheduler for numerical computing on mul-
ticore processors. Tech. Rep. UT-CS-09-643, University of Tennessee, June 2009. LAPACK
Working Note 220.

[21] Perez, J. M., Badia, R. M., and Labarta, J. A dependency-aware task-based pro-
gramming environment for multicore architectures. In Proceedings of the IEEE International
Conference on Cluster Computing (CLUSTER) (Sept. 2008), pp. 142–151.

[22] Perez, J. M., Badia, R. M., and Labarta, J. Handling task dependencies under strided
and aliased references. In ICS ’10 (2010), pp. 263–274.

26

[23] Tzenakis, G., Papatriantafyllou, A., Kesapides, J., Pratikakis, P., Vandieren-
donck, H., and Nikolopoulos, D. S. BDDT: block-level dynamic dependence analysisfor
deterministic task-based parallelism. In Proceedings of the 17th ACM SIGPLAN symposium
on Principles and Practice of Parallel Programming (New York, NY, USA, 2012), PPoPP
’12, ACM, pp. 301–302.

[24] Vandierendonck, H., Chronaki, K., and Nikolopoulos, D. S. Deterministic scale-
free pipeline parallelism with hyperqueues. In Proceedings of SC13: International Conference
for High Performance Computing, Networking, Storage and Analysis (New York, NY, USA,
2013), SC ’13, ACM, pp. 32:1–32:12.

[25] Vandierendonck, H., Pratikakis, P., and Nikolopoulos, D. S. Parallel program-
ming of general-purpose programs using task-based programming models. In Proceedings of
the 3rd USENIX Workshop on Hot Topics in Parallelism (HotPar) (May 2011), p. 6.

[26] Vandierendonck, H., Tzenakis, G., and Nikolopoulos, D. S. A unified scheduler for
recursive and task dataflow parallelism. In PACT ’11: Proceedings of the 20th international
conference on Parallel architectures and compilation techniques (Oct. 2011), pp. 1–11.

27

