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Abstract: 

Purpose: MicroRNAs (miRNAs) are small non-coding RNAs of ~18-22 nucleotides 

in length that regulate gene expression. They are widely expressed in the retina, being 

both required for its normal development and perturbed in disease. The aim of this 

study was to apply new high-throughput sequencing techniques to more fully 

characterise the microRNAs and other small RNAs expressed in the retina and retinal 

pigment epithelium (RPE)/choroid of the mouse. 

Methods: Retina and RPE/choroid were dissected from eyes of 3 month-old 

C57BL/6J mice. Small RNA libraries were prepared and deep sequencing performed 

on a Genome Analyzer (Illumina). Reads were annotated by alignment to miRBase, 

other non-coding RNA databases and the mouse genome. 

Results: Annotation of 9 million reads to 320 microRNAs in retina and 340 in 

RPE/choroid provides the most comprehensive profiling of microRNAs to date. Two 

novel microRNAs were identified in retina. Members of the sensory organ specific 

miR-183,-182,-96 cluster were amongst the most highly expressed, retina-enriched 

microRNAs. Remarkably, microRNA ‘isomiRs’, which vary slightly in length and are 

differentially detected by Taqman RT-PCR assays, existed for all the microRNAs 

identified in both tissues. More variation occurred at the 3′ ends, including non-

templated additions of T and A. Drosha-independent mirtron microRNAs and other 

small RNAs derived from snoRNAs were also detected. 

Conclusions: Deep sequencing has revealed the complexity of small RNA expression 

in the mouse retina and RPE/choroid. This knowledge will improve the design and 
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interpretation of future functional studies of the role of microRNAs and other small 

RNAs in retinal disease. 

Precis 

We show that an extremely diverse set of small regulatory RNAs, specifically 

microRNAs, are expressed in the retina and RPE/choroid. The functional implications 

of the many variants or isomiRs identified must now be considered. 
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INTRODUCTION 

MicroRNAs are small non-coding RNAs of ~18-22 nucleotides in length that regulate 

gene expression1 and play critical roles in development, homeostasis and 

pathogenesis2 of the retina. Their function in retinal development was first suggested 

by the distinctive temporal and spatial expression patterns observed for specific 

microRNAs3-7. This was confirmed by the perturbed differentiation, severe 

malformation and subsequent degeneration of the retina8-10 observed in mouse models 

in which Dicer, an RNase III endonuclease required for the biogenesis of most 

microRNAs, was conditionally knocked out in the retina. The functions of some 

individual microRNAs have been elucidated. For example, miR-24a negatively 

regulates apoptosis during development of the retina in in Xenopus11. Two 

microRNAs highly expressed in the adult retinal pigment epithelium (RPE), miR-204 

and miR-211, have been demonstrated to promote RPE differentiation12, 13. 

Expression of the miR-183/96/182 ‘sensory-organ specific’ microRNA cluster 

increases during retinal development and peaks in the adult photoreceptors (and 

certain ganglion cells) suggesting a role in the normal functioning of the adult retina7, 

14. Indeed, knockout of the miR-183 cluster results in defects in the electroretinogram 

(ERG) and progressive retinal degeneration14. The characteristic changes in 

microRNA expression observed in animal models of retinal degeneration15 are 

consistent with the wider involvement of microRNAs in this process. The microRNAs 

of the miR-183 cluster are amongst several which are regulated by light and mediate 

circadian responses7, 16.  

MicroRNAs have also been associated with retinal vascular function. In a mouse 

model of ocular neovascularisation the levels of three microRNAs were significantly 
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decreased (miR-31, -150, and -184) and it was shown that supplementation of these 

microRNAs could reduce the neovascular response17. MiR-23 and miR-27 modulate 

retinal vascular development and their inhibition can repress laser-induced choroidal 

neovascularisation (CNV)18, 19.  

Most studies of the retina to date have focussed upon individual or groups of 

microRNAs, as defined by the canonical sequences registered in miRBase20. However, 

each microRNA actually comprises a family of sequences differing by several 

nucleotides at either end. These variants or ‘isomiRs’ originate during microRNA 

biogenesis (Fig. 1). MicroRNAs are transcribed by RNA polymerase II21 as 

independent transcripts or are located within introns of coding genes. These primary 

transcripts (pri-microRNAs) are processed by the RNaseIII enzyme Drosha to form 

~70 nt stem-loop ‘pre-microRNAs’22 with 5p and 3p arms and two nucleotide 

unpaired 3′ tails, which are transported from the nucleus to the cytoplasm by exportin-

5. Here they are processed by another RNaseIII enzyme, Dicer to form short duplexes, 

which may undergo further modifications. One strand (this is predominantly either the 

5p or 3p, depending upon the specific microRNA) is then loaded into the RNA-

induced silencing complex (RISC) which comprises Argonaute proteins and other 

accessory factors. Whilst the other strand is degraded, the mature microRNA directs 

RISC-mediated inhibition of translation or degradation of mRNA targets, as 

determined by incomplete complementary base pairing. 

Each microRNA gene can therefore give rise to multiple mature microRNA isomiRs, 

which vary slightly in length or sequence due to differential processing. It is important 

to investigate isomiRs because they can have different activities23 and stability24. The 

most commonly used techniques for studying microRNA expression, RT-PCR and 
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microarrays, often detect a single canonical isomiR of each microRNA or do not 

discriminate between isomiRs. However, ‘next generation’ sequencing (NGS) 

approaches can provide the individual sequences of millions of cloned microRNAs in 

parallel25. In addition to individual isomiRs, microRNAs derived from both arms of 

the pre-miR (with different target genes) and any other small RNAs of a similar size 

are detected by this ‘RNA-Seq’ technology. 

The aim of this study was to employ RNA-Seq to define the complement of small 

RNAs expressed in the adult retina and RPE/choroid. This revealed that each tissue 

contains a characteristic profile of known and novel small RNAs, both in terms of 

absolute expression and isomiR profiles. The breadth of microRNA interactions 

within the retina is likely to be even more complicated than suggested by the studies 

of canonical microRNAs to date.  

METHODS 

Samples 

C57BL/6J mice were housed in a standard experimental room and exposed to a 12 h: 

12 h light–dark cycle. All the procedures were carried out in compliance with the 

Association for Research in Vision and Ophthalmology statement for the Use of 

Animals in Ophthalmic and Vision Research, and under the regulations of the 

Animals (Scientific Procedures) Act 1986 (UK). 

Sample Collection 

Retina (n=3) and RPE/choroid (n=2) tissues were collected from 3 months old 

C57BL/6J mice. The animals were sacrificed with CO2 inhalation; eyes were 

enucleated, cornea, iris, ciliary body and lens were removed and retina was peeled off 
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and separated from RPE/choroid within 5 mins. The retina and RPE/choroid samples 

were immediately transferred to RNA lysis buffer (Qiazol, Qiagen, UK), snap frozen 

with liquid nitrogen and stored at -80°C for the total RNA extraction. 

RNA extraction and Quality control 

Total RNA was extracted from retina and RPE/choroid samples using a microRNeasy 

Kit (Qiagen, UK) following the manufacturer′s instructions. RNA was quantified  

using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, 

Wilmington, DE) and the integrity evaluated using a RNA 6000 Nano chip on a 

Bioanalyzer (Agilent Technologies, UK); only samples with an RNA integrity 

number (RIN) > 8.0 were used for library preparation.  

Polyadenylation, Reverse Transcription and qPCR  (RT-qPCR) 

RT-qPCR was performed using a modified version of the method described by Shi 

and Chiang26 whereby mature microRNAs are polyadenylated and target sequences 

for a reverse primer are subsequently incorporated into cDNA by use of an oligo dT 

adapter. One microgram of total RNA was polyadenylated using Poly(A) polymerase 

(PAP) (Life Technologies) in a 25 µl reaction mix at 37°C for 1 hour in a 

thermocycler. The polyadenylated RNAs were then reverse transcribed with 200 U 

Reverse transcriptase (SuperScript III; Life Technologies) and 0.5 ng poly (T) adapter 

(3 ′ rapid amplification of complementary DNA ends (RACE) adapter in the 

FirstChoice RLM-RACE kit; Ambion).  

Primers for specific microRNAs were designed that were shorter than the canonical 

mature sequence to facilitate amplification of all the abundant isomiRs identified by 

deep sequencing. The reverse primer was the 3′adapter primer (3′RACE outer primer). 
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PCR was performed for 45 cycles with denaturation at 94°C for 30 seconds, annealing 

at 60°C for 30 seconds, and extension at 72°C for 30 seconds  (LightCycler 480: 

Roche, Mannheim, Germany). The primer sequences are listed in Suppl Table S1. The 

RT-qPCR data were analysed using REST 2009 software27. 

The expression of miR-127 and its isomiR were analysed using a Taqman microRNA 

assay for the mature canonical miR-127-3p (UCGGAUCCGUCUGAGCUUGGCU) 

and a custom Taqman small RNA assay (assay ID CSX0ZZO) for the  miR-127 3' 

isomiR (UCGGAUCCGUCUGAGCUUGG) (Life Technologies). Reverse 

transcription and PCR were performed according to the manufacturer’s instructions. 

cDNA Library Construction and Deep Sequencing 

Small RNA libraries were constructed using a Truseq small RNA sample preparation 

kit (Illumina) following the manufacturer′s protocol. Briefly, 3′ and 5′ adapters were 

ligated to small RNA, followed by reverse transcription, PCR amplification with 

index sequences specific for each sample and purification from 6% polyacrylamide 

gel of 147-157 bp products from pooled indexes. Libraries were validated using a 

DNA 1000 chip on a Bioanalyzer (Agilent Technologies, UK). Cluster generation and 

sequencing on a Genome Analyzer II was performed at the Trinity Genome 

Sequencing Laboratory, Dublin (http://www.medicine.tcd.ie/sequencing).  

Data Analysis 

The adapter sequences were trimmed and reads aligned to mouse microRNAs in the 

miRBase database (Release 18.0)20 using Genomics Workbench V4.0 software 

(CLCbio, Aarhus, Denmark), allowing 2 mismatches. The number of reads for each 

microRNA were normalised to reads/million mapped (RPMM). The reads which did 
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not match any annotated mouse microRNAs were aligned with other mammalian 

microRNAs to identify potential novel orthologs. To confirm that matching sequences 

represented novel orthologs their genomic location and secondary structure were 

investigated using the UCSC genome browser (http://genome.ucsc.edu) and RNA fold 

webserver (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). Ensembl non-coding RNA 

annotations, including small nucleolar RNAs (snoRNAs), for the mouse genome were 

downloaded using Biomart (www.biomart.org). For the identification of putative 

novel microRNAs, the unannotated unique sequences were converted into FASTA 

format using ‘FASTA manipulation’ in the Galaxy web-based platform 

(https://main.g2.bx.psu.edu) and submitted to mirTools Web server 

(http://centre.bioinformatics.zj.cn/mirtools/)28. The genomic location and potential 

secondary structure of putative novel microRNA sequences were assessed as for 

novel orthologs above. Publicly available small RNA sequencing data from a range of 

mouse tissues was accessed via the Gene Expression Omnibus database (GEO)29, to 

analyse the expression level of novel microRNAs in other mouse tissues. Reads were 

mapped to mirtron sequences downloaded from the Eric Lai lab 

(http://ericlailab.com/mammalian_mirtrons/mm9/)30. The predicted targets and 

involvement in signalling pathways of the highly expressed retina and RPE/choroid 

enriched microRNAs were analysed using DIANA miRPath V2.031, and the predicted 

targets for isomiRs analysed using DIANA microT V3.032. 

RESULTS 

Sequencing data and mapping 

Deep sequencing generated an average of 2.5 million reads from each of the retinal or 

RPE/choroid small RNA libraries (Table 1). Following adapter trimming, most reads 
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were in the range of 20-24 bp as expected for microRNAs (Suppl Fig. S1A). Mapping 

to miRBase revealed the presence of microRNAs derived from 320 and 340 pre-miRs 

from retina and RPE respectively, when considering only microRNAs with >5 reads 

as expressed. The number of reads for each of the microRNAs was normalised to 

reads per million mapped and the mean expression values from replicate libraries in 

the retina and RPE/choroid were calculated (Suppl. Table S2A and S2B). The ten 

most highly expressed microRNAs in retina and RPE/choroid are listed in Table 2. 

Whilst some microRNAs, such as miR-99b-5p and miR-30d-5p, were expressed at 

similar levels others were highly enriched in either the RPE/choroid eg miR-133a-3p 

(1164x), miR-143-3p (30x) miR-22-3p (10x) and miR-27b-3p (6x)  or the retina, eg 

miR-182-5p (95x), miR-183-5p (104x), miR-181a-5p (5x) (Table 2). The relative 

expression of the highly expressed microRNAs which showed the greatest variations 

between retina and RPE was independently validated by SYBR green RT-qPCR 

(which amplifies all isomiRs). This confirmed the pattern of expression both in the 

samples used for deep sequencing and in an additional group of biological replicates 

(Suppl. Fig. S2). 

IsomiRs and IsomoRs 

Each microRNA is not represented by a single sequence but by a series of ‘isomiRs’. 

These vary both at the 5′ and more frequently at the 3′ end due to differential cleavage 

by Drosha or Dicer and/or subsequent processing, such as non-template additions 

catalysed by nucleotidyl transferase enzymes33 (Fig. 1). Whilst one canonical 

sequence often predominates, all the microRNAs detected exhibited isomiRs and in 

many cases they represented a significant proportion of all reads. There were many 

cases in which the most frequent isomiR was not the canonical mature sequence 

defined in miRBase, for example miR-127-3p and miR-143-3p (Fig. 2A, B).  



11 
 

The presence of abundant isomiRs could confound assays which target specific 

sequences, such as the widely used Taqman microRNA arrays. We therefore tested 

the ability of a Taqman assay for the canonical mature sequence from miRBase and a 

custom Taqman small RNA assay designed to target the 3’ isomiR of miR-127-3p, to 

amplify synthetic microRNA sequences mimicking the mature and isomiR sequences. 

Whilst the mature miR-127-3p assay was specific for the mature microRNA, the 

isomiR assay detected both the isomiR and the mature microRNA with similar 

efficiency (Fig. 3). The deep sequencing data indicated that the miR-127-3p mature 

and isomiR sequences are present at similar levels in the retina (Fig. 2A). Consistent 

with its ability to amplify both miR-127-3p sequences, the Ct value for amplification 

from retinal cDNA of the miR-127-3p isomiR assay was consistently one cycle earlier 

than that for the mature assay (0.96 ± 0.23; n=4). The Taqman miR-127-3p assay 

therefore underestimates the total amount of miR-127-3p present in the tissue. 

The seed region of microRNA (nucleotides 2-8) is the main determinant of target 

selection34. IsomiRs which vary at the 5′ end have different seed sequences and 

therefore have the greatest potential functional significance. Many 5’ isomiRs were 

observed in both retina and RPE/choroid. For example, the second most abundant 

microRNA in retina, miR-183-5p, expressed several isomiRs lacking one base at the 

5′ end, presumably due to differential cleavage by Drosha and comprising a quarter of 

all reads (Fig. 2C). More 5’ isomiRs were observed for microRNAs derived from the 

3p arm, possibly due to differential cleavage by Dicer, for example miR-133a-1 (Fig. 

2D). Some microRNAs, including miR-124, are encoded by more than one gene and 

isomiRs may be generated by different processing of the alternative pri- and pre-miRs.  

Frequent non-templated additions were observed at the 3′ ends of most microRNAs in 

both retina and RPE/choroid. These were most frequently A or T nucleotides, which 
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is in agreement with previous reports25, 35-37. For example miR-143-3p exhibited both 

an additional T in the most frequent isomiR and an additional A in a minor isomiR 

(Fig. 2B). 

It was notable that the pattern of relative expression of the isomiRs of a specific 

microRNA was very consistent between the retinal samples, but distinct from a 

different, but equally consistent expression pattern observed in the RPE/choroid. This 

was true for most microRNAs and is vividly demonstrated by miR-182-5p (Suppl. Fig. 

S3). MicroRNA offset RNAs (IsomoRs) are short RNAs derived from the regions 

adjacent to the mature and mature star microRNAs. They are by-products generated 

during microRNA processing and their functional significance is unclear38-40. IsomoRs 

were detected for 8 microRNAs in retina and 6 in RPE/choroid. These were mostly 5′ 

isomoRs which clearly define the 5′ end of the mature microRNA, as illustrated by 

miR-96 in the retina and miR-211 in the RPE/choroid (Fig. 4).    

Arm selection of mature microRNAs 

The mature microRNA strand is selected from either the 5p or 3p arm (the choice at 

least partly depending upon the thermodynamic stability of the duplex end41) and 

loaded into an Argonaute protein, while the other ‘star’ strand is degraded (Fig. 1).  

For many microRNAs one mature strand predominates. For both retina and 

RPE/choroid similar numbers of mature microRNAs from each arm were detected 

(retina 47% 5p and 53% 3p; RPE/choroid, 50% from each arm). We then analysed the 

ratios of 5p to 3p sequences for each of the individual microRNAs. For most of those 

expressed in both retina and RPE/choroid the 5p:3p ratio was similar (Fig. 5), but 

some exhibited significant changes in the proportion of sequences from each arm. For 

example, miR-151 and miR-345 exhibited arm switching, i.e., the most common 
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mature sequence was derived from alternate arms in Retina and RPE/choroid. Some 

highly expressed microRNAs had a large number of sequences derived from both 

arms, for example miR-126 had an average of 11,678 RPM from 5p and 5,728 RPM 

from 3p and miR-145 935 RPM from 5p and 961 RPM from 3p in the RPE. In both 

these cases the most abundant sequences are from the opposite arm to that considered 

to be the canonical mature microRNA in miRBase and would therefore not be 

assessed by many assays based upon this annotation. The arm selection of miR-126 

was particularly notable because in other mouse tissues and almost all other species 

present in miRBase, the mature microRNA is derived from the 3p arm.  

In general, much greater numbers of sequences were detected from one arm than the 

other of each microRNA, presumably reflecting preferential loading into RISC.  

Remarkably, the more highly expressed microRNAs tended to be generated even 

more predominantly from one arm than the lower expressed microRNAs, which 

exhibited less extreme ratios between the numbers of reads from 5p and 3p arms (Fig. 

5).  

 

Other small RNAs 

Although the majority of all reads (81%) mapped to known microRNAs there was a 

wide range of other RNAs detected: 12% of unique reads mapped to other non-coding 

and 12% to repeat-associated RNAs, although these each represented only 1% of the 

total number of reads (Suppl. Fig. S1B). Amongst these were matches to tRNAs, 

rRNAs, snoRNA and small nuclear RNA (snRNA). Indeed, miR-1280 was re-

designated as a tRNA-derived small RNA and removed from the latest release of 

miRBase.  
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SnoRNA-derived microRNAs 

SnoRNAs are a class of small RNAs that guide modification of rRNAs, tRNAs, and 

snRNAs.  They can be processed to generate snoRNA-derived small RNAs that 

resemble microRNAs42, 43. The snoRNA ACA45 is processed by Dicer to give a well 

conserved 20-22 nucleotide product which associates with Argonaute proteins44.  

These microRNA-like products have been termed sno-miRNAs45. A considerable 

number of reads (between 0.5-1.5% of all reads) in both retina and RPE/choroid 

mapped to a total of almost 400 different snoRNAs, although there were more in the 

RPE/choroid. Many reads mapping to the same snoRNAs were detected in both 

tissues, with SnoRD85 and SnoRD27 first and second most abundant in retina and 

second and third in RPE/choroid (Suppl. Table S3A & B). However, reads mapping to 

SnoRD58 were the most abundant in RPE/choroid, 85 fold higher than in retina 

(Table 3, Suppl. Table S3A). Sno-miRNAs derived from all the members of the 

polycistronic cluster of snoRNAs located within the introns of the small nucleolar 

RNA host gene 1 (Snhg1) were detected in both retina and RPE/choroid (Fig.  6, 

Suppl. Table S3C). 

Mirtrons 

Mirtrons are a class of microRNAs which differ from canonical microRNAs in their 

biogenesis, which is Drosha-independent because the pre-miR from which they are 

processed is generated directly by the RNA splicing machinery46. Similar mirtrons 

were expressed in all samples, but at lower levels than most canonical microRNAs, 

the highest three in retina being miR-668, miR-1981 and miR-3102 (122; 19; and 19 

reads respectively) and in RPE/choroid uc009kyr.1, miR-3102, miR-6924 (190; 111; 
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and 83 reads respectively). uc009kyr.1 is not in miRBase, but has been reported 

previously as a candidate mirtron30. 

Novel microRNAs  

Sequence reads which were not annotated by alignment to known mouse microRNAs 

in miRBase were aligned to all microRNAs from 10 other mammalian species in an 

attempt to detect orthologs not previously reported in mouse. Three sequences present 

in both retina and RPE/choroid were similar to the miR-1260 family, but no plausible 

microRNA gene with the required stem loop structure could be identified in the 

mouse genome.  A possible explanation for this is that they are derived from the 3′ 

end of a tRNA as proposed by Schopman et al for several other microRNAs47; they 

are indeed very similar to several tRNAleu sequences (Suppl. Fig. S4).  

Analysis using miRTools web server (http://centre.bioinformatics.zj.cn/mirtools/)28 

identified many putative novel microRNAs, but manual inspection revealed that most 

of these mapped to previously annotated ncRNAs. Two strong candidate novel 

microRNAs were identified amongst the sequences from retina; sequences from the 

other arm of the putative pre-miRs were also detected, an important criterion for 

designation of microRNAs. The novel microRNAs (named Novel_Retina1 and 

Novel_Retina2) are located in potential stem-loop regions with predicted minimum 

free energies of -56.52 and -44.50 kcal/mol, within introns of the Mcf2l and Hspb6 

genes (Fig. 7). Although the numbers of reads representing the two novel microRNAs 

were small (11-15), their expression in other tissues, albeit at low levels, was 

confirmed by analysis of publicly available small RNA sequencing data from the 

GEO database29 (Suppl. Table S4). The existence of two putative novel microRNAs 

which overlapped snoRNA genes (named Sno_Retina1 and Sno_RPE1, Suppl. Fig. 
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S5) was also confirmed in a range of tissues (Suppl. Table S4). (Note: In accordance 

with miRBase policy, we will submit these sequences to miRBase for assignment of 

an accession number following acceptance of this manuscript for publication). 

Target predictions 

To suggest some of the most important potential cellular functions regulated by 

microRNAs in retina and RPE/choroid we focussed on the 10 most highly expressed 

microRNAs in each tissue.  Those microRNAs enriched > 5 fold between the tissues, 

miR-181a, miR-182 and miR-183 in retina and miR-133a, miR-143, miR-22 and 

miR- 27b in RPE/choroid, were selected. The predicted targets of these microRNAs 

and the pathways in which they are over-represented were assessed by 

DIANAMirPath v2.031.  Amongst the four pathways significantly enriched for the 

combined genes predicted to be targeted by the retinal microRNAs (p<0.01; Suppl. 

Table S5A), the neurotrophin signalling pathway (P<0.006) had the most genes 

targeted (Fig. 8A). No pathways were significantly enriched amongst the predicted 

targets of the RPE/choroid microRNAs (Suppl. Table S5B), although several genes 

involved in extracellular matrix receptor interaction were targeted (Col4a5 by miR-

133a-3p and Lamc2 by miR-22-3p).  

Amongst the most highly expressed microRNAs (Table 2), both miR-183-5p in retina 

and miR-133a-3p in RPE/choroid, express abundant 5′ isomiRs (Fig. 2C and D). To 

suggest the potential functional consequences of this pattern of expression, target 

predictions for both the canonical mature sequence and the 5′ isomiR were performed 

(Dianamir microT). For both microRNAs, each isomiR was predicted to target 

distinct genes but with some overlap (Fig. 8B). The predicted targets for both the 

canonical and isomiR sequences are listed in Suppl. Table S6A and S6B.   
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DISCUSSION 

The detection of over 300 microRNAs in both the retina and RPE/choroid 

demonstrates that deep sequencing is an effective approach to profile the small RNA 

repertoire of the retina and RPE/choroid. The sensitivity of NGS is limited primarily 

by read number, explaining why the only previously published data from the retina 

(also in C57Bl/6 mice), which contained tens of thousands rather than millions of 

reads, detected fewer than 250 microRNAs48. However, despite the use of a different 

platform (454, Roche) the most highly expressed microRNAs detected were 

consistent, with half of the top 20 most highly expressed microRNAs in the retina the 

same in both studies.  NGS can provide greater sensitivity than microarray studies, 

which have detected, for example, 78 microRNAs in mouse adult retina7 and 138 

microRNAs (developing retina and in all the stages of retina i.e. from embryonic and 

postnatal stages in mouse retina3). This is the first study to report the microRNA 

profile of the RPE/choroid as determined by deep sequencing.   

The finding of miR-182 and miR-183 as the most highly expressed microRNAs in the 

retina supports their previously reported critical role in this tissue7, 14, 16, 48, 49. They are 

processed from a single polycistronic miR-183/182/96 cluster, which has been 

described as sensory organ specific and involved in regulation of circadian rhythm in 

the mouse7 (miR-96 is the 12th most highly expressed microRNA in retina). A 

potential role in regulation of neuronal communication is suggested for the very 

highly expressed and retina-enriched microRNAs because their predicted target genes 

are over-represented in the neurotrophin signalling pathway.  

In the RPE/choroid, the most highly expressed microRNA is miR-143, which has 

previously been implicated in inhibition of several types of cancer formation and 
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metastasis50-55. Of the top ten most highly expressed microRNAs, miR-204 is perhaps 

the best characterised in the RPE, having been implicated in the maintenance of blood 

retinal barrier56 and, together with miR-211, promoting RPE differentiations12. 

The use of a sequencing-based approach facilitated discovery of two novel 

microRNAs not present in miRBase. Many small RNAs derived from snoRNAs, 

sometimes called ‘sno-miRNAs’44 were also detected. Further reads were mapped to 

other classes of non-coding RNAs, underlining the complexity of the small RNA 

populations in both retina and RPE/choroid.  It remains to be determined to what 

extent this complexity is reflected in individual cells or results from the combining of 

much less diverse RNA populations present in each of the multiple cell types present 

in these tissues. 

NGS has revealed not only the wide range of small RNAs expressed in both the retina 

and RPE/choroid, but also a remarkable diversity within individual microRNAs. For 

every microRNA detected, multiple isoforms or isomiRs which vary slightly in 

sequence were identified. Many of these are likely to have been generated by 

differential processing by the RNAseIII enzymes Dicer and Drosha; the greater 

abundance of 5′ isomiRs in mature microRNAs derived from the 3p arm is consistent 

with the previously reported lower fidelity of Dicer cleavage38 (Fig. 1).  These 5′ 

isomiRs differ in their seed regions from the canonical mature microRNA, which 

almost certainly alters their interactions with target genes. For example, the two 5′ 

isomiRs of miR-183 retained some predicted target genes in common, whilst many 

were unique to one isomiR. A similar overlap in target genes was predicted for the 5′ 

isomiRs of miR-133a and different functional effects have been reported for these 

isomiRs36, 57.  
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The most common isomiRs were those exhibiting variations at the 3′ end, presumably 

generated by differential cleavage and possibly nuclease activity. In addition, non-

templated additions of A or T were observed, consistent with previous reports of non-

templated additions mediated by nucleotidyl transferases35. The functional effects of 

3′ isomiRs are poorly understood, but there are specific examples of effects on 

stability and activity. For example, adenylation of miR-122 by the RNA nucleotidyl 

transferase PAPD4 increased the stability of this microRNA58.  In contrast, uridylation 

of miR-26a by the RNA nucleotidyl transferase ZCCHC11 had no effect on 

microRNA stability, but rather reduced its ability to inhibit its mRNA target24.   

The isomiR profiles for a specific microRNA are very consistent between biological 

replicates of retina or RPE/choroid. However, for microRNAs present in both tissues 

the isomiR profile is often distinct for each tissue. This is particularly true for 

microRNAs highly expressed in one of the tissues (eg miR-182). This suggests that 

different isomiRs are expressed in different cell types. This variation is not detectable 

by many techniques, which either do not distinguish between isomiRs or detect only 

the canonical sequence, as we demonstrated with the Taqman assay for miR-127-3p. 

Whilst Taqman assays have been widely used in the eye6,7 and elsewhere to accurately 

measure relative microRNA expression, it is important to be aware that they do not 

reflect total miRNA expression and may be significantly underestimating the levels of 

abundant microRNAs such as miR-127-3p.  

Another source of variation for microRNA expression is the choice of arm from 

which the mature microRNA is derived. An intriguing phenomenon we observed was 

that those microRNAs for which the mature sequence was derived almost exclusively 

from one arm tended to be more highly expressed. Amongst the other microRNAs 
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many had significant numbers of mature microRNAs derived from each arm and in 

some cases the proportions varied significantly between retina and RPE/choroid.  

The main conclusion of this study is that the small RNA profiles of both the retina and 

RPE/choroid are extremely complex. The range of functions in which microRNAs 

have been implicated is expanding rapidly and although the functional roles of many 

of the RNA classes and variants observed in this study remain to be elucidated, it 

seems likely that they are significant. The differing patterns of isomiR expression 

observed between retina and RPE/choroid should direct future functional and 

expression studies to specifically target these sequences, rather than the common ones 

presented in miRbase and/or observed in other tissues. We must now consider the 

regulatory mechanisms that determine individual isomiR expression in addition to 

gross microRNA expression, if we wish to more fully understand the role of small 

RNAs in these tissues.  
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Tables and Figures:  

Table 1. Annotation report of the retina and RPE/choroid libraries. 

Table 2. The ten most highly expressed microRNAs in retina and RPE/choroid.  

Table 3. The ten snoRNAs from which most small RNAs were derived in retina and 

RPE/choroid. 

Figure 1. MicroRNA biogenesis. MicroRNAs can either be transcribed as independent 

transcripts or be located within introns of protein-coding genes. In the canonical 

pathway, the primary transcript (pri-miR) forms a stem loop structure which is 

cleaved by the RNaseIII enzyme Drosha to form a pre-miR. This is exported to the 

cytoplasm where it is cleaved by another RNaseIII enzyme, Dicer, to form a duplex 

comprising one strand from the 5p arm of the pre-miR and one from the 3p arm. 

There can be some variation in the lengths of the strands due to differential cleavage 

or non-templated addition of ribonucleotides; this is the source of isomiRs. One strand 

of the duplex is incorporated into the RISC complex to become the mature microRNA 

which directs inhibition of target genes via partially complementary target sites in 

their 3′ UTRs. The other strand, referred to as the ‘star’ sequence is degraded. The 

mature microRNA is often predominantly from one arm of the pre-miR, but the 

proportion of 5p and 3p can vary.  

Figure 2. MicroRNA isomiRs. A) miR-127-3p was highly expressed in the Retina and 

exhibited many isomiRs at the 3′ end, with the most common sequence observed 

being shorter than the mature sequence present in miRBase. IsomiRs with non-

templated addition of both A and T nucleotides were present. B) miR-143-3p was 

highly expressed in RPE/choroid and exhibited many isomiRs at the 3′ end. The most 
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common sequence observed was one nucleotide longer than the mature sequence 

present in miRBase due to non-templated addition of a T nucleotide. C) The most 

highly expressed microRNA in Retina, miR-183-5p, showed both 5′ and 3′ isomiRs. 

One third of all mature miR-183 reads were one nucleotide shorter at the 5′ end than 

the canonical sequence. D) Both 5′ and 3′ isomiRs were also detected for miR-133a-1-

3p. 

Figure 3. Taqman RT-qPCR of miR-127-3p mature and 3′ isomiR sequences. A 

Taqman assay for miR-127-3p (mature assay) and a custom small RNA Taqman assay 

targeting the 3′ isomiR were used to quantify dilution series of either the mature 

microRNA (solid line) or the isomiR (dotted line). Whilst the mature assay was 

specific for the mature sequence (only non-specific products detected at high Ct 

values that did not correlate with template concentration were amplified from the 

isomiR sequence), the isomiR assay amplified both the isomiR and mature sequences 

with similar efficiency (red lines). 

Figure 4. Offset microRNAs (isomoRs). These are generated during microRNA 

biogenesis and define the ends of the mature microRNAs. We observed 5′ isomoRs in 

both the retina (eg miR-96-5p) (A) and in the RPE/choroid (eg miR-211-5p) (B). Both 

microRNAs exhibited 3′ isomiRs, including non-templated additions. 

Figure 5. Ratios of mature microRNAs derived from 5p and 3p pre-miR arms. For all 

microRNAs represented by >20 RPM the ratios of the numbers of reads derived from 

the 5p and 3p arms were calculated. A plot of the log2 values of the 5p:3p ratios from 

Retina against those from RPE/choroid demonstrated that the ratios were generally 

highly conserved (R2=0.966) although there were individual examples of arm 

switching. Division of the microRNAs according to expression level revealed that the 
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more highly expressed half (diamonds) tended to have mature microRNAs 

predominantly from one arm whereas the lower expressed half (dots) had a greater 

proportion of microRNAs derived from the minor arm. Several individual 

microRNAs of interest are named. 

Figure 6.  SnoRNAs are often transcribed as polycistronic transcripts. For example 

SNORD-25,-26, -27,-28,-29,-30,-31 and -21 are located in the introns of a snoRNNA 

host gene (Snhg1). The snoRNAs are highly conserved among mammalian species. 

The sequences observed for SNORD-27 (sno-microRNAs) are mapped against the 

predicted secondary for this snoRNA. 

 Figure 7. Putative Novel microRNAs detected in retina mapped with the mouse 

genome shows conservation among mammalian species and location within introns of 

Mcf2l and Hspb6. The putative pre-miRs have stable predicted secondary structures.  

Figure 8. Predicted targets for top highly expressed retina and RPE/choroid enriched 

microRNAs and isomiRs A) miR-181a-5p,-182-5p,-183-5p co-ordinately involved in 

the regulation of the neurotrophin signalling pathways. B) miR-183-5p and miR-

133a-3p 5’ isomiRs showed the differential targeting with some overlap in the 

targeting. 

Supplementary Tables: 

Supplementary Table S1. Primer sequences 

Supplementary Table S2A. MicroRNAs in Retina. 

Supplementary Table S2B. MicroRNAs in RPE/choroid. 

Supplementary Table S3A. snoRNAs in Retina. 
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Supplementary Table S3B. snoRNAs in RPE/choroid. 

Supplementary. Table S3C. Polycistronic snoRNA cluster from which sno-RNAs are 

derived.  

Supplementary Table S4. Expression of novel microRNAs in other mouse tissues and 

cells. 

Supplementary Table S5A. Predicted significantly altered pathways for highly 

expressed, retina-enriched microRNAs by DIANAmiRPath V2.0. 

Supplementary Table S5B. Predicted significantly altered pathways for highly 

expressed, RPE/choroid-enriched microRNAs by DIANAmiRPath V2.0. 

Supplementary Table S6A. Predicted target genes for canonical and isomiR sequence 

of miR-183-5p. 

Supplementary Table S6B. Predicted target genes for canonical and isomiR sequence 

of miR-133a-1-3p. 

Supplementary Figures: 

Supplementary Figure S1. A) Length distribution of sequence reads from retina; most 

reads were between 21-23 nt. B) Pie charts indicating the percentages of unique 

sequences or total raw reads mapping to different classes of ncRNAs. Although only a 

quarter of the unique sequences mapped to microRNAs, these accounted for 81% of 

the total number of reads, meaning that microRNAs are generally represented by 

more reads (ie. expressed at a higher level) than the other RNA species in our libraries. 

Supplementary Figure S2. RT-qPCR validation of microRNA expression. 

Quantitative RT-PCR was performed upon equal quantities of RNA from retina and 
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RPE/choroid to measure the relative expression of miR-182-5p; miR-183-5p; miR-

181a-5p; miR-143-3p; miR-22-3p; and miR-133a-3p. A) Ct values were analysed 

using REST2009 software (miR-99b-5p which was shown by deep sequencing to 

have similar expression in retina and RPE/choroid was used as a reference). The 

relative expression of the microRNAs in the original retina and RPE/choroid RNA 

samples matched the pattern determined by deep sequencing. The expression was 

remarkably consistent in a set of biological replicates (retina: n=3; RPE/choroid=3). 

(* p<0.05; ** p<0.01).  B) Normalisation of the RT-qPCR data to account for 

apparently lower efficiency of amplification in the RPE/choroid samples highlights 

the similarity with the relative microRNA expression values detected by deep 

sequencing. 

Supplementary Figure S3. The frequencies of individual isomiRs of miR-182-5p 

differed between retina and RPE/choroid. 

Supplementary Figure S4. Alignment of sequences detected in both retina and 

RPE/choroid (seq1-3) with primate miR-1260 orthologs and mouse tRNAleu. 

Supplementary Figure S5. Two putative novel microRNAs overlapped snoRNAs 

(Sno_Retina1 and Sno_RPE1).  Mapping to the mouse genome showed conservation 

among mammalian species. The putative pre-miRs have stable predicted secondary 

structures. 
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Retina 

RET 1 2,047,447 1,822,622 21.8 1,723,849(91.5) 54,402 15,720 193(46) 223(54) 417

RET 2 1,449,040 1,337,687 21.7 1,254,794(93.8) 38,386 12,544 187(49) 198(51) 385

RET 3 1,192,071 984,981 21.8 927,539(94.1) 31,489 10,970 180(47) 202(53) 382

RPE/ 
Choroid 

R/C 1 3,886,781 3,687,115 23.9 2,808,481(76.1) 212,322 25,581 229(49) 237(51) 466

R/C 2 3,681,869 3,491,303 24.8 2,365,902(67.7) 221,368 24,051 237(51) 230(49) 467
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Table 2 

RETINA RPE/CHOROID

Name  
C57BL6  Normalised 

Mean Expression Values 
(RPM)  

Ratio of    Retina 
and RPE/choroid 
normalised mean 

  
Localisation by 

ISH* Name 
C57BL6 

Normalised Mean 
Expression Values 

(RPM)  

Ratio of 
RPE/choroid and 
Retina normalised 

mean 
Localisation by 

ISH* 

miR-182-5p 385,280(±50272) 94.9 GCL, INL, ONL, 

PHOT
4,5,7 miR-143-3p 105,258(±7505) 30.3 IR

4,5 
miR-183-5p 139,435(±35988) 104.1 GCL, INL, ONL, 

PHOT
4,5,7 miR-22-3p 99,317(±6027) 9.8 - 

miR-181a-5p 124,750(±23969) 5.2 GCL, INL
4,5 miR-26a-5p 90,849(±8064) 3.1 - 

miR-26a-5p 29,022(±4158) 0.3 - miR-204-5p 66,569(±2178) 3.3 INL
4,5

RPE
55 

miR-127 -3p 24,017(±3458) 3.5 GCL, INL ONL, 

PHOT, RPE
4,5 miR-133a-3p 51,214(±3249) 1164.9 - 

miR-204-5p 20,101(±726) 0.3 INL
4,5

 RPE
55 miR-27b-3p 46,840(±2837) 6.2 - 

miR-125a-5p 15,818(±6047) 0.5 - miR-125a-5p 32,443(±2181) 2.1 - 
miR-99b-5p 15,532(±3401) 0.8 INL, PHOT

4,5 miR-30a-5p 30,652(±626) 2.2 GCL, INL
4,5 

miR-30d-5p 14,956(±3840) 0.7 GCL, INL, PHOT, 

RPE
4,5 miR-30d-5p 20,033(±1686) 1.3 GCL, INL, 

PHOT, RPE
4,5

miR-211-5p 13,950(±582) 0.8 - miR-99b-5p 19,312(±3595) 1.2 INL, PHOT
4,5

 

*Numbers refer to references. GCL-Ganglion cell layer, INL-inner nuclear layer, ONL-outer nuclear layer, PHOT-photoreceptor, RPE-Retinal pigment epithelium. 

MicroRNAs highly enriched in either retina or RPE/choroid are indicated in red.
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Table 3 

RETINA RPE/CHOROID 

Small RNA - Name 

Normalised Mean Expression 

Values  

(RPM) Small RNA - Name 

Normalised Mean Expression 

Values  

(RPM) 

SNORD27 426(±29) SNORD58 2971(±377) 

SNORD85 406(±89) SNORD27 1126(±41) 

SNORD57 328(±16) SNORD85 1051(±17) 

SNORD31 306(±22) SNORD68 793(±53) 

SNORD32A 209(±37) SNORD81 608(±18) 

SNORD45C 157(±21) SNORD57 420(±54) 

SNORD81 145(±4) SNORD12 405(±91) 

SCARNA17 139(±20) SNORD30 375(±34) 

SNORD11 122(±53) SNORD25 341(±52) 

SNORD118 122(±15) SNORD2 332(±5) 
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