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Parkinson’s disease (PD) is a progressive debilitating neurodegenerative disorder characterized 

by resting tremor, rigidity, bradykinesia and postural instability. As the disease progresses there 

is a loss of dopamine (DA) neurons in the substantia nigra projecting to the various forebrain and 

sub-cortical regions. Current treatments for PD are unable to prevent or curtail the 

neurodegenerative process; so rescuing remaining dopamine in the mid-brain has been the recent 

focus of research examining the effectiveness of neurotrophic factors (NTFs) in the treatment of 

PD. In this dissertation, the ability of three novel, recently discovered NTFs to restore DA 

neurons and motor function in a nonhuman primate model of PD was examined. The NTFs were 

Cerebral Dopamine Neurotrophic Factor (CDNF) and two variants of Neurturin (NRTN), N2 and 

N4, that have mutations that prevent binding to heparin sulfate binding sites in the brain.  These 

studies used the unilateral low dose (0.15 ± 0.001 mg/kg) monkey 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) model of PD to cause loss of DA neurons.  Six groups of monkeys 

were studied: vehicle-treated (negative control), Glial Cell-line Derived Neurotropic Factor 

(GDNF, positive control), two groups of CDNF-treated monkeys (450 µg and 150 µg), and N2 

and N4-treated groups. After MPTP, monkeys developed moderate symptoms of PD (PD rating 

scale score=7.9±0.5 on a scale of 0-22, p<0.001), motor dysfunction and increased daytime 

sleepiness. After three months of infusions, all three NTFs (150 µg CDNF, N2 and N4) 

significantly increased the number of DA neurons in the substantia nigra, p=0.03, and improved 

parkinsonian symptoms measured by rating scale, p<0.001. Most motor functions were 
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significantly correlated with the number of DA neurons in the substantia nigra. N4 significantly 

improved daytime sleep duration, bouts and wake-latency (p=0.02, p=0.06 and p=0.02, 

respectively). In summary, CDNF, N2 and N4 trophic factors are neurorestorative to DA 

neurons, motor function is tightly correlated with DA neuronal number, and N4 improved the 

non-motor symptom of increased daytime sleepiness in this monkey PD model. These factors 

hold promise for clinical therapy for PD patients. 
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1.0  GENERAL INTRODUCTION 

1.1 PARKINSON’S DISEASE (PD): OVERVIEW 

1.1.1 Clinical Characteristics of PD 

James Parkinson in 1817 wrote “An essay on the shaking palsy” and was the first person to 

describe in detail the clinical symptoms of this disease that later went on to bear his name 

[Parkinson, 1817]. Jean-Martin Charcot, a famous neurologist at la Salpêtrière hospital in Paris 

who contributed significantly to our understanding of this disease through his lectures sixty years 

later, referred to as Charcot’s lectures, distinguished this disease from other tremor-related 

neurological disorders and gave further details about the manifestation and time course of the 

progression of the disease as it was understood in the late 19th century (called ‘paralysis agitans’) 

[Charcot, 1877].  Charcot gave credit to Parkinson for his pioneering descriptions by referring to 

this disease as “maladie de Parkinson” or Parkinson’s disease (PD), as it is now called [Charcot, 

1877]. However, PD existed long before James Parkinson described six such cases in detail in 

1817. Galen of Pergamon observed a similar disease and wrote an Egyptian papyrus (1350-1200 

BC) that described it, suggesting that parkinsonism was occurring at that time [Forno, 1996]. 

Similarly, characteristics of the disease were also described in Charaka Samhita (400 – 600 BC) 

[Prasad et al., 2004; Nishteswar, 2011], one of the two foundational textbooks of Ayurveda. A 
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detailed description of PD was given in the ayurvedic textbook Basavarajiyam (1400 AD), and 

disease was called “kampa vata” [Nishteswar, 2011]. Leonard da Vinci also described many 

characteristics of the disease between 1489 and 1506 AD [Forno, 1996]. 

The cardinal features of PD are the movement problems of rigidity, resting tremor, and 

bradykinesia (i.e., abnormal slowness of movement). In later stages of the disease, loss of 

postural reflexes leads to postural instability and postural deformities associated with rigidity, 

such as flexed posture of the neck, trunk, elbows and knees are present [Hughes et al., 1992, 

1993; Jankovic, 2008].  Patients with PD also exhibit a variety of secondary motor symptoms 

that affect their functioning such as freezing of gait, blank facial expression and speech disorders 

[Lang et al., 1998].  

Non-motor features of the disease are common and are often considered the most 

debilitating limitations to normal daily functioning of patients [McDowell et al., 2012; 

Videnovic et al., 2012]. Roughly 90% of patients have substantial impact on their quality of life 

because of these non-motor symptoms, yet they are under-recognized because they are not 

considered part of the cardinal clinical features required for diagnosis of this disease [Chaudhuri 

et al., 2010].  These non-motor symptoms include sleep disturbances, anosmia, autonomic 

dysfunction, decreased motivation, depression, anxiety and cognitive dysfunction [Chaudhuri et 

al., 2010]. Interestingly, James Parkinson described the presence of sleep disturbances and other 

non-motor symptoms in his original essay [Parkinson, 1817].  

PD is a progressive neurodegenerative disease of the nervous system [Lang et al., 1998; 

Jankovic, 2008]. There are no biomarkers that are currently recognized for the early ante-mortem 

diagnosis of PD. The motor system manifestations of the disease are only evident after the 

pathology of the disease has reached an advanced stage, with typically over 60-80% of the 
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neurotransmitter dopamine (DA) lost in the striatum of patients before the first motor symptoms 

appear  [Bernheimer et al., 1973; Hornykiewicz, 1998; Jankovic, 2008]. At this time, the 

diagnosis of the disease still relies upon the presence, severity, progression of clinical motor 

symptoms of the disease and confirmation of diagnosis depends on post-mortem neuropathology 

[Hughes et al., 1992, 1993; Litvan et al., 2003; Braak et al., 2003, 2004; Jankovic, 2008]. It is 

currently recognized that development of specific biomarkers for PD, allowing for earlier 

suspicion of the disease, would be useful to identify groups at risk of developing PD and would 

provide patients with an opportunity to start a neurorestorative therapy early in the disease 

[Airavaara et al., 2011; Aron et al., 2011]. 

1.1.2 Etiology of PD 

Several genetic and environmental factors are now considered to play important roles in the 

etiology of the disease. The role of genetic factors in the etiology of PD was first described by 

Gowers [Gowers, 1896], who made the observation that there was an increase in PD occurrence 

among the relatives of PD patients. A minority of the cases, approximately 5-10% of PD 

patients, have a clear familial form of PD with an autosomal-dominant Mendelian form of 

inheritance [Olanow et al., 1999; Schapira, 2006]. Mutations in ∝-synuclein, parkin, UCHL1, 

DJ1, PINK1, and LRRK2 are known to cause genetic forms of PD [reviewed in Moore et al., 

2005]. Some of them, like DJ1 and PINK1, encode for mitochondrial proteins and over-

expression of others, like ∝-synuclein and parkin, induce mitochondrial deficits [Schapira, 

2006].  In most cases, the proteins they encode are involved in cellular responses to oxidative 

stress, mitochondrial function, or affect normal functioning of protein degradation pathways in 

midbrain DA neurons [Schapira, 2006]. The lack of proper elimination of toxic free radicals, by-



 4 

products of oxidation reactions, and accumulation of ∝-synuclein can lead to acceleration of 

neuronal cell death [reviewed in Moore et al., 2005; Schapira, 2006].  

The concept that exposure to exogenous factors might also lead to the development of PD 

began to be recognized in late 1970’s  after drug addicts injecting a synthetic meperidine 

derivative resembling heroin developed remarkably similar anatomical and clinical features of 

PD [Davis et al., 1979]. The compound, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, came to 

be referred to by the abbreviation, MPTP, and was an unintended by-product in the synthetic 

process (see Section 1.4.2 for further details). Since then, a number of epidemiological studies 

have examined the contribution of many environmental factors that increase the risk of 

developing PD. These include rural residency [Rajput et al., 1986; Barbeau et al., 1987], 

drinking well water  [Tanner et al., 1996], exposure to pesticides [Fleming et al., 1994], 

industrial chemicals [Seidler et al., 1996], and farming [Tanner et al., 1996]. We now know that 

exposure to a number of exogenous toxins are associated with an increased risk of developing 

PD due to increased exposure of midbrain DA neurons to environmental toxins. These include 

trace metals, cyanide, organic solvents, carbon monoxide, carbon disulfide, rotenone, paraquat, 

and manganese [Olanow et al., 1999; Schapira, 2006]. These chemicals lead to increased 

oxidative stress in the vulnerable midbrain DA neurons, that are affected in PD (See Section 

1.4.3 for discussion of detailed biochemical changes). 

Post-mortem brain pathology is used to definitively diagnose PD, distinguishing it from 

other similar disorders. The presence of two characteristic changes in brain tissue is required for 

this diagnosis: the presence of evidence to conclusively determine loss of midbrain DA neurons 

that project to basal ganglia and the presence of Lewy pathology [Fahn, 2003; Litvan et al., 

2003]. Lewy pathology is defined as the presence of intra-neuronal inclusions of aggregates of 
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misfolded proteins containing ∝-synuclein [Hawkes et al., 2010].  These inclusions are detected 

using ∝-synuclein immunohistochemistry. Neurons containing these inclusions are typically 

referred to as ‘Lewy bodies’, that are round eosinophilic inclusions in a neuronal cell body or 

pleomorphic inclusions in cell processes that are dot-like, thread-shaped or spindle-shaped within 

axons and dendrites called as ‘Lewy neurites’.  It is now beginning to be accepted that there is a 

long dormant period of time before classic motor signs of PD begin to appear. Braak proposed a 

new staging system with six stages of progression of the disease from the brainstem to the 

neocortex based on neuro-pathological studies of post-mortem brain tissue of PD patients with 

varying degrees of Lewy pathology and severity of the disease [Braak et al., 2003, 2006, 2008]. 

According to the Braak hypothesis, the progression of pathology appears to begin with Stage I, 

in the gut gastric myenteric plexus, followed by pathology in the olfactory bulb and dorsal motor 

nuclear complex of cranial nerves IX and X (DMNC). In Stage II, the Lewy pathology spreads to 

the pons, locus coeruleus, lower raphe and magnocellular parts of reticular formation. Only in 

Stage III is there involvement of the substantia nigra, and other basal mid-brain and forebrain 

regions including the amygdala, tegmental pedunculopontine nucleus, and tuberomamillary 

nucleus. The first two stages, before the spread of the pathology to midbrain and substantia nigra, 

are referred to as the prodromal phase of the disease, before the appearance of clinically-defined 

PD motor symptoms. Henceforth, these stages are referred to in this document as pre-clinical or 

pre-diagnostic stages of PD. In Stage IV, pathology progresses from the allocortex to the 

neocortex and there is presence of Lewy pathology in the thalamic intra-laminar nuclei, 

interstitial nucleus of stria terminalis, temporal mesocortex, and second sector of Ammon’s horn, 

such that the pathology becomes widespread in the brain.  In Stage V, there is intensification of 

the damage in areas already affected from stages I-IV, followed by progression to insular, 
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subgenual mesocortex and anterior cingulate cortex. In the final stage of progression (i.e., Stage 

VI) there is widespread damage affecting the entire topography of the brain including secondary 

sensorimotor areas like sensory association areas and pre-motor areas. In very advanced cases 

primary areas of the neocortex including primary auditory areas, primary motor and sensory 

areas (M1 and S1) are also affected. A dual-hit theory has been proposed by Hawkes, Tredici and 

Braak [Hawkes et al., 2009] as a cause for this disease, where a pathogen enters the body via 

both the nasal and gut route (dual-hit) and spreads to the olfactory cortex and gut neurons (Stage 

I) and spreads eventually up the central nervous system to affect the entire brain.  

1.2 THE BASAL GANGLIA 

1.2.1 Anatomy of basal ganglia circuits 

1.2.1.1 Anatomical connections within basal ganglia structures 

The basal ganglia are comprised of a number of sub-cortical structures that form a complex 

network of connections with several nuclei in the forebrain, midbrain and thalamus (Figure 1). 

The basal ganglia were traditionally thought to be involved in motor control and execution 

[Alexander et al., 1990]. However, with the advancement of our understanding of the different 

nuclei, the basal ganglia are now considered to be important in the processes that underlie the 

learning of both new complex motor behaviors (i.e., movement, goal-directed behaviors), as well 

as a number of non-motor behaviors (i.e., habits, emotions, motivation, sleep and cognitive 

function) [Yin et al., 2006; Graybiel et al., 2008; Haber et al., 2009].  In this section, the 

different component nuclei of the basal ganglia, their anatomical location and how they are 



 7 

connected to the other nuclei, as well as the nature of their output projections (excitatory or 

inhibitory) and the targets of their innervation are described [Alexander et al., 1990; DeLong et 

al., 2007; Haber et al., 2009].   

 The components of the basal ganglia include (see Figure 1):  

A. The striatum, comprised of the caudate nucleus, and the putamen,  

B. The subthalamic nucleus (STN),  

C. The globus pallidus, comprised of the internal segment (GPi), the external segment 

(GPe) and the ventral pallidum,  

D. The substantia nigra, comprised of the pars compacta (SNpc) and the pars reticulata 

(SNpr)   

The major input pathways to the basal ganglia come through the striatum and STN.  All 

inputs are excitatory. The major output pathways of basal ganglia go through GPi and SNpr. All 

outputs from the basal ganglia are inhibitory. 

A. The striatum, 

Inputs: The striatum receives inputs from many distinct functional regions from across 

the entire cerebral cortex (for details, see Section 1.2.1.2). This is the pathway for the 

main input into the basal ganglia. All inputs to the striatum are glutamatergic and 

excitatory in nature.  

Outputs: The main output from the striatum is through the globus pallidus, both GPi and 

GPe. All outputs from striatal neurons are GABAergic and inhibitory.  

B.  The subthalamic nucleus (STN),  

Inputs: The STN receives both glutamatergic excitatory inputs from the cerebral cortex 

and inhibitory GABAergic inputs from the GPe. 

Outputs: The Globus Pallidus is the main output nucleus receiving excitatory outputs 

from the STN. The STN sends excitatory glutamatergic outputs to both GPe and GPi. 
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C. The globus pallidus, comprised of the 

Globus pallidus, internal segment (GPi), 

Inputs: The GPi receives inhibitory GABAergic inputs from both the striatum and the 

GPe, as well as excitatory glutamatergic inputs from the STN. 

Outputs: GPi neurons send inhibitory GABA outputs to the thalamus and brainstem. 

Globus pallidus, external segment (GPe)   

Inputs: The GPe receives inhibitory GABAergic inputs from the striatum and excitatory 

glutamatergic inputs from the STN.  

Outputs: GPe neurons send inhibitory GABAergic outputs back to the striatum, STN and 

the GPi. 

D. The substantia nigra, comprised of  

Substantia Nigra, pars compacta (SNpc)  

Inputs: The SNpc receives inhibitory GABA inputs from the striatum.  

Outputs: SNpc sends its output to the striatum using the neurotransmitter dopamine, DA. 

DA has excitatory effects on D1 receptors contained in striatal neurons that project 

through the direct pathway to the GPi. DA has inhibitory effects on D2 receptors 

contained in striatal neurons that project through the indirect pathway to the GPi via 

connections through the GPe-STN circuit. Thus, the SNpc dopaminergic nigrostriatal 

projection plays an important modulatory role in mediating basal ganglia function 

through both these pathways. 

Substantia Nigra, pars reticulata (SNpr)   

Inputs: The SNpr receives inhibitory GABAergic inputs from the striatum and the GPe, 

as well as excitatory glutamatergic input from STN.  
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Outputs: The outputs from SNpr are inhibitory GABAergic outputs to the thalamus and 

brainstem. These SNpr outputs specifically connect to thalamus that project to cortical 

and to brainstem regions that control eye movements. 
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Figure 1.  Basic circuit diagram of the different interconnected nuclei in basal 

ganglia. The three main neurotransmitter systems are indicated by three different 

arrowheads: glutamate, GABA and DA.  Substantia Nigra, pars compacta (SNpc); 

Substantia Nigra, pars reticulata (SNpr); Globus pallidus, external segment (GPe); 

Globus pallidus, internal segment (GPi); subthalamic nucleus (STN); Supplementary 

motor area (SMA); [based on Figure 31.2, Fundamental Neuroscience, 2002] 
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1.2.1.2 Distinct parallel sub-circuits within and outside the basal ganglia 

The striatum receives input to the basal ganglia from almost the entire cerebral cortex. Cortical 

input is glutamatergic. Projections from the cortex are made on to the dendrites of GABAergic 

medium spiny neurons (MSN), the major type of neuron present in the striatum. The topography 

of projections from the cerebral cortex are somewhat preserved within the basal ganglia through 

distinct ‘parallel loops’ that forms sub-circuits within each sub-cortical basal ganglia structure 

[Alexander et al., 1986, 1990; Middleton et al., 2000]. An example of this sub-circuit is the 

somatomotor circuit that is affected in PD. The neurons from the somatosensory and motor 

cortices project to the putamen. In PD, the putamen is generally first affected before the disease 

spreads to other sub-circuits [Graybiel et al., 2000, 2008]. Not surprisingly then, the putamen is 

the target of our neurotrophic factor infusions after MPTP administration in monkeys (see 

Section 2.2.3). In the later stages of PD, the disease progresses the other sub-circuits including 

the limbic and cognitive circuits. The spread of the disease within the basal ganglia follows a 

dorsolateral to ventromedial path that corresponds roughly to the spread of the dysfunction from 

anterior putamen involved in motor functions to the posterior tail of the caudate nucleus involved 

in higher order functions like cognition [Graybiel et al., 2000, 2008]. There are also basal 

ganglia circuits that are specifically oculomotor, cognitive and limbic in nature. [Middleton et 

al., 2000]. 

 The ventral portion of the striatum is generally not included as part of the traditional 

basal ganglia circuitry. However, the ventral striatum, consisting of the nucleus accumbens and 

the olfactory tubercle, has connections that follow a similar pattern as the traditional basal 

ganglia [Cardinal et al., 2002; Nicola, 2007]. The DA neurons from the mid-brain ventral 

tegmental area (VTA) send projections to the nucleus accumbens. However, unlike the 
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traditional basal ganglia structures that receive glutamatergic input from neocortex, nucleus 

accumbens receives direct input from the amygdala, which is part of the limbic system. The 

limbic system is involved in the control a variety of behaviors including mood, memory, 

motivation and olfaction [Mogenson et al., 1980; Salamone, 1992; Ikemoto et al., 1999; Cardinal 

et al., 2002; Nicola, 2007; Haluk et al., 2009]. Thus, changes to motivation and mood that are 

seen in later stages of PD could be linked to changes in the function of the ventral striatum. Thus, 

increasing the activity of accumbens circuits could lead to improvement of motivation leading to 

better performance in motor tasks (see Section 6.4.2). 

1.2.2 Physiology of the basal ganglia  

The study of the physiology of basal ganglia has been mostly focused on the relationship of its 

component nuclei to behaviors associated with movement. Much of what we know about the 

functions of the different structures within the basal ganglia comes from lesion studies in 

animals, followed by subsequent examination of the firing patterns of the constituent neurons in 

each structure in relation to various forms of movement [Alexander et al., 1990; Hamada et al., 

1992; Chesselet et al., 1996; Middleton et al., 1996; Wichmann et al., 1996; Fundamental 

Neuroscience, 2002; Yin et al., 2004; Clarke et al., 2008; Inokawa et al., 2010; Bostan et al., 

2010].  

A. The striatum,  

In the striatum, 80-90% of neurons are inhibitory GABA-containing medium spiny 

neurons (MSN) that project outside the striatum and fire at 0.1-1 Hz. About 10-15% of 

the neurons in striatum are tonically active, firing at 2-10 Hz, and hence are called 

Tonically Active Neurons (TAN’s). These neurons are differentiated from the MSN’s 
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based on their firing frequency, and they appear to be cholinergic interneurons [Inokawa 

et al., 2010]. An even smaller subset of the neurons within the striatum are parvalbumin-

positive fast-spiking inhibitory local GABAergic interneurons [Inokawa et al., 2010].  

Different regions of the striatum have been linked to different behaviors. In rodents, there 

is just one contiguous structure, and lesions of the dorsolateral portions of this rodent 

striatum disrupt the formation of habits [Yin et al., 2004]. In primates, lesions of the 

medial portions of the striatum, mainly the anterior portion of the head of the caudate 

along with very small lesions in the anterior and medial portions of putamen, lead to 

enhanced preservative behavior [Clarke et al., 2008].  

B. The subthalamic nucleus (STN),  

The neurons in the STN contain the excitatory neurotransmitter glutamate and fire at a 

rate of about 20 Hz. About 90% of these neurons increase their firing rate prior to the 

onset of eye or limb movement. The region is somatotopically organized into different 

functional circuits. Thus, there are different projections from the cortex to distinct parts of 

the STN, that in turn project to other distinct basal ganglia nuclei [Alexander et al., 1990; 

Bostan et al., 2010]. Lesions of STN in normal monkeys induce dyskinesias in the 

contralateral limbs [Hamada et al., 1992].  

C. The globus pallidus, comprised of  

Globus pallidus, internal segment (GPi), 

The neurons in GPi are inhibitory and contain the neurotransmitter GABA, They 

are tonically active and fire at very high rates of 60-80 Hz. The neurons in this region 

are again somatotopically organized with leg and arm regions present in the GPi. 

Approximately 70% of GPi neurons increase their activity and 30% decrease their 

activity during arm movement.  However, lesions of the GPi lead to no discernible 

physical changes to movement in either humans or experimental animals. Most of the 
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findings from lesions of the GPi result in subtle temporary changes in fine motor 

movement, at most [Wichmann et al., 1996], so their particular role in normal behavior 

is still an open question. 

Globus pallidus, external segment (GPe)   

The neurons present in GPe also contain the inhibitory neurotransmitter GABA 

and can be classified into two types based on their firing rates. A majority of these 

neurons fire at a relatively high frequency of around 70 Hz, with their firing interrupted 

by long pauses. A small minority of GPe neurons fire around 10 Hz and have frequent 

spontaneous bursts of activity. Both types of neurons increase their activity during 

movement. Injections of biccuculine to inhibit neuronal activity in GPe, or lesions of 

GPe, induce rigidity or cataplexy [Wichmann et al., 1996]. GPe is also implicated in 

Huntington’s disease, as it is one of the main sites of neuronal degeneration. Chorea, 

which  is comprised of dance-like movements that spread from one muscle to another, 

belongs to a group of neurological disorders called dyskinesias. Chorea is also common 

in Huntington’s disease and abnormal functioning of the GPe is thought to mediate the 

generation of this dyskinetic movement [Chesselet et al., 1996].  

D. The substantia nigra, comprised of  

Substantia Nigra, pars compacta (SNpc)  

The DA neurons in SNpc fire at a constant rate of around 2 Hz and are not organized 

somatotopically. Unlike the rest of the basal ganglia, the neurons in SNpc do not fire with 

relation to movement. However, these DA neurons fire in response to environmentally 

relevant cues such as reward, motivation or salient instructions. Thus, the firing activity 

of these neurons has been suggested to modify striatal neuron outputs based on cortical 

inputs that occur related to a specific environmental context. For instance whenever a 
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tone is paired with the reward of juice after pressing a lever, the dopamine cells initially 

respond to the lever press and eventually the cells increase their firing just upon 

presentation of the rewarding tone.  These DA neurons project to the striatum within 

basal ganglia ‘parallel loops’ that are part of sensorimotor, associative and limbic circuits 

(see Section 1.2.1.2). However, we do not yet fully understand all the specific roles that 

are played by the DA system through its projections to these basal ganglia sub-circuits.  

Substantia Nigra, pars reticulata (SNpr)   

SNpr has GABAergic inhibitory neurons that are tonically active and they provide the 

output for face and eye movement-related activity from the basal ganglia. The neurons 

here are again somatotopically organized. However, unlike GPi neurons the SNpr 

neurons decrease their firing rate during saccadic eye movements. Lesions in the medial 

regions of SNpr produce a characteristic visual hallucination syndrome called 

“peduncular hallucinosis”. In peduncular hallucinosis, patients experience vivid realistic 

images of people and environments familiar to them. It is this characteristic that makes it 

hard for patients to distinguish these images from reality. Most patients experiencing 

“peduncular hallucinosis” also experience abnormal sleep patterns characterized by 

insomnia and excessive daytime sleep, both symptoms present in many PD patients 

also (see Section 1.3.2, Chapters 3 and 4). Similar visual hallucinations are reported in 

patients with other lesions of SNpr or in brainstem compression [Middleton et al., 1996].   
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1.3 SYMPTOMS IN PD 

1.3.1 Motor symptoms in PD 

There are three classical motor symptoms that have been well characterized in PD: bradykinesia, 

rigidity and tremor [Gelb et al., 1999; Fahn, 2003; Jankovic, 2008]. However, at this time there 

is no definitive diagnostic pre-clinical test or biomarker to predict PD before the first appearance 

of any of the motor signs of PD, and the motor symptoms manifest only after there has been a 

significant loss of striatal DA content. The pathological confirmation of nigrostriatal 

degeneration and presence of Lewy bodies on post-mortem analysis represent the gold standard 

for the definitive diagnosis of PD [Hughes et al., 1992, 1993; Olanow et al., 1999; Stern et al., 

2012; Berg et al., 2013]. Currently, the presence of a combination of motor features of the 

disease, asymmetry, and the patient’s response to levodopa, are the main clinical criteria used for 

diagnosing PD.   

‘Bradykinesia’ is derived from combining the Greek word “brady”, meaning slow, and 

“kinesia”, meaning motion. Bradykinesia in patients with PD varies in degree of slowness in all 

aspects of automatic, habitual, voluntary and involuntary movements from mildly slowed to a 

complete absence of movement (“akinesia”) in a minority of patients. Some examples of 

automatic and habitual movements that can be affected include decreased swinging of arms 

during walking, decreased eye blinking, less frequent swallowing of saliva leading to an 

increased probability of drooling [Jahanshahi et al., 1993; Bagheri et al., 1999; Berardelli et al., 

2001; Turner et al., 2003; Tumilasci et al., 2006]. Bradykinesia also affects tasks that require 

fine motor skills such as buttoning cloths and using cutlery. It is one of the most common 

symptoms of the disease affecting almost all PD patients. In fact, the United Kingdom 
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Parkinson’s disease clinical criteria lists bradykinesia as a necessary condition required for the 

diagnosis of PD [Gelb et al., 1999]. The slowness in movement can be either during the 

execution phase of the movement or during the initial preparatory phase before movement. In 

early stages of the disease, bradykinesia usually occurs in the execution phase of movement, with 

a decrease in electromyography signal (EMG) needed to accelerate limb movements [Hallett et 

al., 1980]. However, in later stages of PD the preparatory phase of movement is also affected; 

this is especially evident when patients are asked to self-initiate movements as opposed to 

responding to external cues [Jahanshahi et al., 1993,1995].  

Rigidity is the property of being stiff and resisting the flexion, extension or rotation of a 

joint during passive limb movement [Berardelli et al., 1983; Cantello et al., 1995; Gelb et al., 

1999; Broussole et al., 2007; Jankovic, 2008]. Although rigidity is classified as a cardinal feature 

of PD it does not impair the quality of life as much as the other symptoms, except on occasions 

when it is associated along with pain during joint movement. Normally, when muscles stretch 

there is a naturally-occurring suppression of antagonistic muscles. However, in PD patients there 

is actually an activation of the antagonist muscles during a passive movement that is thought to 

cause rigidity [Berardelli et al., 1983; Cantello et al., 1995]. The lack of suppression of 

antagonistic muscles is believed to result from abnormal inhibitory output of basal ganglia 

circuits in PD [Xia et al., 2004]. In later stages of the disease the constant antagonistic muscle 

activation leads to postural changes such as the flexed elbows, flexed knees, flexion of the trunk 

and neck that leads to the classic parkinsonian posture and gait in PD (i.e., stooped posture with 

small steps) [Parkinson, 1817; Gelb et al., 1999].  

Tremor is the most prominent and noticeable motor symptom in PD. It was this symptom 

that led James Parkinson to initially call this disease ‘Paralysis agitans’, which means shaking 
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palsy in English [Parkinson, 1817].   The most common tremor in PD is the ‘rest tremor’ 

[Jankovic et al., 1999; Shahed et al., 2007; Jankovic, 2008; Hallett et al., 2012]. This tremor has 

a characteristic frequency between 3-7 Hz. When patients perform voluntary movements or 

stretch their limbs the tremor is absent and hence does not affect the performance of daily 

activities. The pure rest tremor frequently occurs in the distal appendages (i.e., the arms and legs) 

and less frequently in the neck, body and head. However, most patients exhibit a range of 

tremors with different characteristics [Deuschl et al., 1998]. Type I tremor is the classic rest 

tremor condition that is described above. Type II tremors are a mixture of both distal rest tremors 

and postural tremors. This type the postural tremor has a higher frequency (>1.5 Hz) than the 

distal rest tremor condition. Type III tremors refer to conditions when there is only the presence 

of pure postural body tremors, with no rest tremors in the distal extremities. The parkinsonian 

tremor arises due to pronation and supination because of an alternate activation of the agonist 

and antagonist muscles, and is thus characteristically different from other essential tremors that 

are caused by co-contraction of agonist and antagonist muscles. Oscillations in the diseased basal 

ganglia circuits are thought to be the primary mechanism underlying tremor development in PD 

[Olanow et al., 1999; Jankovic, 2008; Hallett et al., 2012]. 

There are other changes to the motor system that also occur in later stages of PD. 

Freezing, a variant of akinesia, is another unique characteristic of PD, although it does not occur 

universally in all patients [Giladi et al., 1997, 2001; Schaafsma et al., 2003; Bloem et al., 2004; 

Macht et al., 2007]. It is defined as the sudden and transient inability to move due to complete 

loss of movement, a form of akinesia. This includes freezing of the legs during walking, and 

inability to move arms or eyelids. Freezing of the gait, followed by loss of postural reflexes, is 

one of the most common reasons for patient falls in PD, that leads to other complications such as 
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fractures. This is compounded by problems that normally occur with the aging process, including 

balance problems and a decreased ability to integrate multimodal sensory cues including speech, 

visual, vestibular and proprioceptive cues, [Critchley et al., 1981; Rascol et al., 1989; Hood et 

al., 2007; Jankovic, 2008; Ferrer et al., 2012]. Decreased facial expression (“hypomimia”), 

decreased amplitude of voice and a decrease in size of handwriting from normal to minute 

(“micrographia”) are other common symptoms reported in PD.  

1.3.2 Non-motor symptoms in PD 

It is now well accepted that PD is a disease that affects multiple neuronal systems and has both 

motor and non-motor complications [Braak et al., 2003, 2004; Pfeiffer, 2007; Berg et al., 2013]. 

The non-motor symptoms can be broadly divided into four categories: neuropsychiatric, 

autonomic, sensory and sleep. Among these, some symptoms including a decline in olfactory 

function (anosmia), sleep disorders (e.g., rapid-eye movement (REM) sleep behavioral disorder, 

excessive daytime sleepiness), and constipation can occur years to decades before the appearance 

of clinically diagnosed PD [Abbott et al., 2005; Braak et al., 2006, 2008; Hawkes et al., 2010; 

Gao et al., 2011].  

Neuropsychiatric symptoms can be mild to severe in nature and include anhedonia, 

apathy or decreased motivation (discussed in detail in Section 6.4.2.1), panic attacks, social 

phobias, depression, problems with controlling emotions, visual hallucinations, delusion, 

paranoia, mania, fatigue, mood disorders, cognitive dysfunction, loss of motivation and affect 

[Bayulkem et al., 2010; Grinberg et al., 2010; Korczyn et al., 2010; Pourcher et al., 2010; 

Jellinger et al., 2011; Ferrer et al., 2012]. Many of these behavioral and neuropsychiatric 

symptoms are known to occur with increased severity as the disease progresses. There has been 



 20 

some correlation shown between these symptoms and the different stages of development of PD 

as classified by Braak. (for details see Section 1.1.2) 

Autonomic nervous system failure is also called dysautonomia. It is experienced by about 

75% of PD patients [Claassen et al., 2010]. It is present as a constellation of symptoms that 

affect the autonomic system including: cardiovascular, gastrointestinal, urological, 

thermoregulatory, and respiratory disturbances. Orthostatic hypotension is known to occur in PD 

patients where there is a sudden massive drop in blood pressure when the patient gets up from a 

seated position. It could be due to the degeneration of early stage cardiac sympathetic neurons. 

There are reports which support this based on data that show reduced uptake of I-MIBG- (I-

metaiodobezylguanidine) which measures cardiac sympathetic nervous function peripherally 

[Doorn et al., 2012; Zeimssen et al., 2010].  Additionally, some post-mortem studies have 

reported the presence of alpha-synuclein, beginning in the axons of the cardiac sympathetic 

nervous system before affecting the cell bodies and other sympathetic ganglia [Zeimssen et al., 

2010; Ferrer et al., 2012]. A multiplicity of gastrointestinal (GI) problems including dysphagia 

(difficulty in swallowing), drooling, dry mouth, belching, nausea, abdominal bloating, 

constipation and anismus are also common [Claassen et al., 2010; Jost, 2010]. Some theories 

suggest the GI tract as the origin of degeneration of neurons in PD [Braak et al., 2006; Hawkes et 

al., 2009]. Alpha-synuclein is present in Meissner’s and Auerbach’s plexuses that project axons 

into the gastrointestinal mucosa [Braak et al., 2006; Jost, 2010]. Some of the highest densities of 

alpha-synuclein deposits are found in lower esophagus and submandibular gland [Wakabayashi 

et al., 1988,1990; Braak et al., 2006; Beach et al., 2010; Ferrer et al., 2012]. Urinary tract 

problems, such as increased urgency and frequency to empty, nycturia (excessive urination at 

night) are also present in a majority of PD patients. The disinhibition of the detrusor muscle that 
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contracts before the bladder is full is thought as the reason for this. A bradykinesia that affects 

the spinchter characterized by a delayed relaxing of the muscle also adds to the problem. Apart 

from the symptoms described above, tachycardia (increase in heart rate), papillary dilation and 

other vascular and respiratory disturbances are also reported [Ferrer et al., 2012].   

There are different sensory abnormalities that are present in PD. They include 

disturbances in olfaction, vision and pain [Pfeiffer, 2007; Bayulkem et al., 2010; Korczyn et al., 

2010; Ferrer et al., 2012]. Olfactory disturbances have been reported in the early stages of PD 

[Hawkes et al., 1997]. Anosmia has been reported as an indicator of future risk to develop PD in 

epidemiological studies [Ferrer et al., 2012].  This also correlates well with the proposed 

development of alpha-synuclein aggregates in the anterior olfactory nucleus in the first stage of 

PD (for details see Section 1.1.2). There are dopamine neurons present in the olfactory bulb, 

however whether these are the first to develop these inclusions or are responsible for the 

condition of inability to smell is not clear. Blurred vision is present in many patients [Archibald 

et al., 2009]. Sometimes the loss of DA neurons in the retina also leads to impaired color vision 

[Archibald et al., 2009]. A large number of patients have also consistently reported problems 

with visual acuity (i.e., visual contrast sensitivity) [Pfeiffer, 2007; Archibald et al., 2009]. Some 

patients also experience visual hallucinations (see Section 1.2.2). Various types of pain are 

commonly experienced by PD patients: mucoskeletal pain, dystonia-associated pain, radicular 

pain, akathitic pain, and central pain [Korczyn et al., 2010]. The underlying causes of pain are 

complex and may not be directly related to the cause of the disease. The stooped and altered 

posture can lead to mucoskeletal and radicular pain. The dystonic pain is often associated with 

the non-medicated periods of the day. The central pain is thought to be of thalamic origin and has 

a burning characteristic. 
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Sleep disturbances constitute the most commonly reported non-motor problems occurring 

in PD [Lees et al 1988; Tandberg et al 1999; Arnulf et al 2000; Ondo et al 2001; Hobson et al 

2002; Brodsky et al 2003; Arnulf 2005; Chaudhuri et al., 2010; Knie et al 2011; Schulte et al 

2011; Videnovic et al 2012]. Sleep disturbances have an adverse effect on the quality of life in 

both the patients and their caregivers. A number of problems with sleep, ranging from a change 

in pattern of nighttime sleep to excessive daytime sleepiness, are observed in patients [Knie et al 

2011; Schulte et al 2011; Videnovic et al 2012]. Obstructive sleep apnea can also be present in 

PD patients and continuous positive air pressure (CPAP) devices have been used for treatment. 

Rest tremor occurring during sleep can also awaken the patient. Many prospective studies have 

shown that excessive daytime sleepiness and REM sleep problems can occur several years before 

the first motor symptoms of PD and hence is an important risk factor for the disease [Abbott et 

al., 2005; Gao et al., 2011; Iranzo et al., 2006; Martinez-Martin, 2011; McDowell et al., 2012]. 

REM sleep behavioral disorder, where the patients begin to act out their dreams, is known to 

cause injuries to both the bedmate and the patient [Iranzo et al., 2006, Knie et al., 2011]. 

Nighttime insomnia is also observed in PD patients [Schulte et al., 2011]. Possible causes of 

insomnia include increased sleeping during the day, inability to move in the bed at night, 

nycturia, anxiety and depression. The presence of excessive daytime sleepiness has also been 

reported many years ahead of the development of clinically recognized signs of PD (See Chapter 

3 for more details on daytime sleep). Many neural systems that affect sleep in the brain stem and 

other lower regions in the brain (for detailed discussion see Section 3.4) are affected first 

according to the Braak model of PD progression (see Section 1.1.2). This may well be the reason 

for the appearance of these non-motor symptoms well ahead of the clinical diagnosis of the 

motor problems in PD.     
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1.4 ANIMAL MODELS OF PD 

The use of animal models to investigate the pathophysiology of PD has provided valuable 

insights both of how PD affects the basic physiology of basal ganglia circuits, and identification 

of treatments that may be most efficacious for treating the motor symptoms of PD. The 

development of PD animal models began with the accidental discovery of the role of dopamine 

in reserpine-treated rats. Reserpine administration leads to akinesia and central loss of 

monoamines in rats [Carlsson 1957]. However, only L-dopa, the precursor to dopamine, was 

able to resuscitate motor function in these rats; 5-hyroxytryptophan, the precursor to serotonin, 

was not able to recover motor function. This discovery of the ability of L-dopa to reverse motor 

deficits in the reserpine-treated model paved the way for the hypothesis that dopamine deficiency 

played a key role in PD [Carlsson 1959]. This hypothesis was confirmed shortly thereafter by the 

discovery that there is indeed a loss of striatal dopamine in patients with PD [Carlsson 1959; 

Ehringer et al., 1960], which led to the search for chemical agents that could selectively 

incapacitate dopamine neurons and the first such discovery was of 6-hydroxydopamine (6-

OHDA) to lesion DA neurons in the rat [Porter 1963; Ungerstedt 1968].  

1.4.1 The 6-OHDA model of PD 

It has been five decades since the development of the rat 6-OHDA model of PD and it still 

continues to be the model for PD that is most routinely utilized in Parkinson’s disease research. 

In 1968, Ungerstedt injected 6-OHDA in the SNpc and was able to demonstrate loss of 

nigrostriatal dopamine neurons [Ungerstedt 1968].  

 

A. Mechanism of action of 6-OHDA 
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The molecular structure of 6-OHDA is very similar to the molecular structure of DA, and 

hence the dopamine transporter has a very high affinity for the neurotoxin and transports 

it into the DA cell [reviewed in Blum et al., 2001]. 6-OHDA accumulates within the DA 

neuron and two main mechanisms have been proposed for its action leading to 

neurotoxicity: oxidative stress and mitochondrial deficits. 

Oxidative stress has been observed after 6-OHDA administration in vivo [Permual 

et al., 1989, 1992; Kumar et al., 1995 ] and in vitro [Tiffany-Castiglioni et al.,  1982; 

Decker et al., 1993; Abad et al., 1995]. An increase in oxidative stress is due to the 

generation of hydrogen peroxide, due to either rapid auto-oxidation of 6-OHDA 

[Heikkila et al., 1972; Seitz et al., 2000; Soto- Otero et al., 2000] or deamination of 6-

OHDA by the enzyme monoamine oxidase (MAO) [Breese et al., 1971; Karoum et al., 

1993]. Hydrogen peroxide, in the presence of iron (present in SNpc giving it the 

charcteristic black appearance in post-mortem tissue), leads to increased formation of 

reactive oxygen species by the Fenton reaction [Ben Shachar et al., 1991; Borisenko et 

al., 2000]. Moreover, increased levels of iron in the striatum and SNpc accumulate after 

administration of 6-OHDA  [Hall et al., 1992; He et al., 1996; Oestreicher et al., 1994]. 

This mechanism of action of 6-OHDA was confirmed through experiments co-

administering 6-OHDA and iron chelating agents resulting in a reduced neurotoxic insult 

of the 6-OHDA [Ben Shachar et al., 1991; Borisenko et al., 2000].  

6-OHDA also inhibits the respiratory chain mechanism in complex I of isolated 

brain mitochondria in vitro [Glinka et al., 1995, 1996, 1998]. In vivo, 6-OHDA leads to 

pathological changes in the mitochondrial membrane potential after an increase in 

intracellular levels of reactive oxygen species [Lotharius et al., 1999]. This can lead an 

increase in intracellular concentration of DA, and DA is toxic to cells when it is not 
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present inside vesicles [Hastings et al., 1996; Zigmond et al., 2002]. Both these changes 

can also lead to cell death [Lotharius et al., 1999; Hastings et al., 1996; Zigmond et al., 

2002].  

 

B. Methods of delivery of 6-OHDA 

There are several 6-OHDA models that have been developed (for review see Deumens et 

al., 2002; Blandini et al., 2008). 6-OHDA does not cross the blood brain barrier. 6-

OHDA injected directly into the two brain hemispheres leads to a non-selective loss of 

neurons in all monoaminergic pathways namely, dopamine, noradrenalin and serotonin 

leading to a complex pathology with some similarities to PD [Deumens et al., 2002; 

Blandini et al., 2008]. However, bilaterally injected animals exhibit severe motor 

dysfunction and require special animal care, such as tube-feeding to overcome aphagia 

(deficit in swallowing) and adipsia (deficit in drinking) [Deumens et al., 2002; Blandini 

et al., 2008]. To develop a more refined PD model, 6-OHDA has been administered after 

pre-treatment with either desipramine (i.e., a blocker of 6-OHDA uptake by 

noradrenergic neurons) or citalopram (i.e., a blocker of 6-OHDA uptake by serotonin 

neurons). A more recently developed method of 6-OHDA delivery is a unilateral 6-

OHDA injection to prevent the high mobidity and mortality caused by bilateral 6-OHDA 

administration. Unilateral injections have been given in the SNpc, the medial forebrain 

bundle (MFB) and the striatum. 

Injection of 6-OHDA in the SNpc leads to a massive and almost complete loss of 

dopamine neurons in the midbrain [Ungerstedt 1968]. The problem with this method is 

the lack of specificity to target the nigrostriatal dopamine neurons, as some loss in the 

other midbrain dopamine structures, such as the VTA, also occurs because it is difficult 
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to only inject in the very small structure of SNpc. SNpc injection leads to an animal 

model that resembles advanced stages of PD, with close to a 90% loss of TH-positive 

neurons. The timecourse of dopaminergic neuronal degeneration is very rapid, with loss 

of SNpc neurons beginning in the first twelve hours after 6-OHDA administration and the 

loss of striatal dopamine terminals being detectable within two to three days after 6-

OHDA administration.  

Injection of 6-OHDA in the MFB also leads to a nearly complete loss of DA 

neurons (> 95% loss of TH-positive cells) in the SNpc, with very few neurons surviving 

the insult [Deumens et al., 2002]. The major drawback of using this method of injection 

is that both VTA and SNpc send axons through this bundle and hence there is a near 

complete loss of midbrain TH-positive neurons. This generates a condition that has more 

severe loss of midbrain DA neurons than observed in PD and hence this model is used to 

quickly generate a severe PD-like animal useful to study the mechanisms present in the 

disease. 

Injection of 6-OHDA in the striatum is the most commonly used model of PD, as 

it produces immediate loss of striatal TH-positive DA terminals and initiates a process 

which leads to the loss of axon terminals first with a delayed, progressive, loss of SNpc 

TH-positive neurons [Zigmond et al., 1990; Deumens et al., 2002; Blandini et al., 2008]. 

Injections of 6-OHDA into the striatum leads to less extensive damage in both SNpc 

neurons (roughly 50-70% loss) and striatal TH-positive terminals (roughly a 60-80% 

loss). Partial lesions of the dopamine system using the striatum as the injection site and a 

moderate concentration of 6-OHDA produces a good model of the early to middle stages 

of PD. This rat model has evolved as the model of choice for testing the mechanisms of 
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action of new treatment paradigms in PD. The time course of 6-OHDA actions in this 

model is described below. The injection of a single dose of 6-OHDA (20 μg/3 μL) leads 

to a one-third loss of TH-positive terminals in the striatum within a day [Deumens et al., 

2002; Blandini et al., 2008]. This is followed by a slow linear progression with a loss of 

about two-thirds of the DA neurons within striatum by the three weeks after the lesion 

[Blandini et al., 2008]. In the SNpc loss of DA neurons is not evident for about a week 

after 6-OHDA injection and DA neuronal loss slowly increases to around 20% two weeks 

post-6-OHDA and then peaks and stabilizes with about a 40-50% loss of DA neurons by 

week four after 6-OHDA injection.  There is inflammation in the striatum associated with 

a 6-OHDA injection that progressively reduces in severity over the first four weeks after 

injection. Similarly, there is a weaker inflammation process in the SNpc also reduces in 

severity four weeks after injection.  

 

C. Functional changes after 6-OHDA 

There are three main phases of response that occur after 6-OHDA administrations [Agid 

et al., 1973; Hefti et al., 1980; Altar et al., 1987; Hudson et al., 1995; Zigmond et al., 

1981,1990, 1997, 2002]. The first phase constitutes acute changes in the striatal 

dopaminergic neurotransmission as a result of the neurotoxin insult. In the second phase, 

there are compensatory changes to accommodate the loss of DA neurotransmission. The 

final third phase encompasses progressive changes to the basal ganglia circuits that occur 

in parallel to the degenerative changes to the SNpc neurons in the midbrain following 6-

OHDA administrations.  

The changes that happen in Phase II and Phase III after this insult are described 

below. After a large initial 6-OHDA insult to striatal DA neurotransmission there are 
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compensatory changes in the function of the remaining neurons to try to maintain the 

same level of dopaminergic influence on striatal function. First, there is an increase in the 

amount of DA that is released from remaining DA terminals after each depolarization to 

maintain the level of DA available to striatal neurons. Second, there is a decrease in the 

high affinity DA reuptake sites resulting in prolonged DA stimulation to the post-synaptic 

DA receptors. These compensatory changes sometimes continue over a long period of 

time leading to a behavioral adaptation to the 6-OHDA insults, so that there appears to be 

a spontaneous recovery of function. This recovery of function can also be partially 

mediated by sprouting from the remaining TH-positive fibers in the striatum. There can 

also be an increase in the production of DA in the remaining terminals. (A detailed 

review of all the biochemical changes is in Section 1.4.3) 

1.4.2 MPTP model of PD 

In the mid-1970’s a new meperidine analog termed ‘synthetic heroin’ that was supposed to 

contain 1-methyl-4-phenyl-4-propionoxy-piperidine (MPPP) was developed in northern 

California. However, the synthesis had gone awry and when the meperidine analog was used 

intravenously by habitual drug addicts they began to develop severe PD-like symptoms [Davis et 

al., 1979].  It was later discovered that this contaminated batch originated from a home-based 

laboratory set up by a 23-year graduate student who had missed one crucial step in the 

biosynthesis of MPPP, and instead had produced 1-methyl-4-phenyl-1,2,5,6-tetrahydro-pyridine 

(MPTP) as a by product of this reaction [Langston et al., 1983]. MPTP was identified as the 

toxin that led to the production of PD-like symptoms in relatively healthy young adults 

[Langston et al., 1983]. Further analysis revealed 1-methyl-4-phenyl-pyridinium ion (MPP+) as 
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the metabolite of MPTP that was selectively toxic to SNpc dopaminergic neurons [Langston et 

al., 1984].  These findings led to the development of the first monkey model of PD, in which 

injection of MPTP in squirrel monkeys caused degeneration of nigral dopaminergic neurons and 

development of symptoms similar to PD [Langston et al., 1984].  

The monkey MPTP model has been utilized since this time to study symptoms of PD that 

are related to dopaminergic neuronal degeneration [Langston et al., 1984; Bankiewicz et al., 

1986; Bergman et al., 1990; Smith et al., 1993; Benazzouz et al., 1993; Ovadia et al., 1995; 

Gash et al., 1996; Bezard et al., 2001; Emborg, 2007; Bove et al., 2012]. PD-like motor 

symptoms in the monkey MPTP model are responsive to levodopa. Like Parkinson’s patients 

treated for an extended time with levodopa, MPTP-treated monkeys receiving L-dopa for 

prolonged periods develop levodopa-induced dyskinesias [Przedborski et al., 2001; Emborg, 

2007].  

 

A. Mechanism of action of MPTP  

MPTP is a highly lipophilic drug that easily crosses the blood-brain-barrier. Within the 

brain, MPTP is converted into its active metabolite MPP+, primarily by glial cells 

[Przedborski et al., 2003]. The enzyme monoamine oxidase B (MAO-B) is responsible 

for its biotransformation, as demonstrated by the protective ability of MAO-B inhibitors 

to prevent this neurotoxicity [Chiba et al., 1984].  MAO-B oxidizes MPTP to form 1-

methyl-4-phenyl-2,3-dihydropyridinium (MPDP+), but MPDP+ is unstable and 

immediately forms the active neurotoxin metabolite MPP+ [Chiba et al., 1985].  After the 

release of MPP+ into the extracellular space it is actively transported into DA neurons 

through the dopamine transporter (DAT), that has high affinity for MPP+ [Javitch et al., 

1985; Bezard et al., 1999]. Inhibition of DAT [Javitch et al., 1985], or its genetic ablation 
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[Bezard et al., 1999], prevents MPTP toxicity in these animals.  MPP+ accumulates in 

cells and can form a complex with neuromelanin or be trapped within synaptic vesicles 

by being taken up through the vesicular monoamine transporters (VMAT) on the surface 

of the vesicles [d’Amato et al., 1987; Takahashi et al., 1997; Staal et al., 2000]. MPP+ 

produces toxic effects through multiple mechanisms. Free MPP+ enters the mitochondria 

and inhibits mitochondrial respiration through NADH-ubiquinone oxireductase of the 

mitochondrial electron chain (mitochondrial complex I) activity, leading to decreased 

production of ATP and ultimately the death of DA neurons [Nicklas et al., 1985]. 

Evidence of cellular protection from MPTP in transgenic animals with an overexpression 

of superoxide dismutase [Przedborski et al., 1992] suggests that MPTP also has toxic 

effects by increasing the intracellular concentration of reactive oxygen species (ROS) that 

are toxic to cells. This is supported by the finding of increased cell loss in mice that lack 

superoxide dismutase or glutathione peroxidase and are treated with MPTP [Klivenyi et 

al., 2000; Zhang et al., 2000]. MPTP can also lead to increased levels of iron in the 

SNpc, accelerating formation of free radicals through the Fenton reaction [Temlett et al., 

1994]. Iron-regulatory element-binding proteins (IRPs) are intracellular RNA-binding 

proteins that respond to changes in cytosolic iron levels to regulate transcription of 

transferring receptor (TfR) and ferritin. MPTP leads to nitration of IRP’s causing it 

degradation through ubiquitin-proteasome pathway that ultimately results in an increase 

in iron levels [Mandel et al., 2004]. MPDP+ also is known to self-oxidize and increase 

formation of other superoxide radicals that are toxic to the DA neurons [Chiba et al., 

1985; Bove et al., 2012]. Nitric oxide synthase has also been implicated in the 

mechanism of MPTP action, as demonstrated by neuroprotection in mice lacking the 
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nitric oxide synthase gene that are given MPTP [Przedborski et al., 1996]. Thus, both 

mitochondrial deficits and oxidative stress contribute to MPTP-induced DA neuronal 

toxicity. Similar to patients with PD where there is progression of the disease over many 

years, some aspects of the toxicity seen in MPTP-treated monkeys has been shown to 

take a long time. For example, the inflammatory reactions in basal ganglia of monkeys 

receiving MPTP can continue for years suggesting that the pathological process follows a 

long time-course of progression even after a single MPTP administration [McGeer et al., 

2003]. 

 

B. Methods of delivery of MPTP   

MPTP has now been used to cause PD-like symptoms in various animal models, 

including monkeys, mice, cats, rats, guinea pigs, dogs, sheep, frog and goldfish [reviewed 

in Blum et al., 2001; Bove et al., 2012]. MPTP can be given either systemically or 

unilaterally, in one or multiple doses and in varying concentrations. The models that 

result from these administration modes are all different. The administration of MPTP 

based on the method of delivery leads to either unilateral or bilateral symptoms of either 

early stage or late stages of the disease. Although the effects of MPTP show considerable 

individual variability it is possible to develop predictable, stable models of the disease. 

The symptoms produced depend on the careful consideration of dosing of MPTP, 

treatment regimen, age, weight and animal species to induce the desired PD symptoms 

without causing adverse health problems [reviewed in Blum et al., 2001; Bove et al., 

2012].  As monkeys will be used in this dissertation, this section will focus on the effects 

of MPTP in monkeys. 
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Short-term systemic administration of MPTP via several dosing regimens produces 

bilateral signs of PD [for review see Emborg, 2007; Bove et al., 2012]. Generally, short-

term systemic dosing involves daily injections of 0.2 mg/kg – 2.0 mg/kg, with lower 

dosages used for intramuscular (IM) and intravenous (IV) administration and higher 

dosages used for subcutaneous (SC) administration to monkeys over a period of four days 

to three weeks. Short-term systemic administration of MPTP has been useful for studying 

the effects of MPTP on neuroinflammation in the basal ganglia and for examining the 

time course of cell death and strategies to prevent cell death. However, the drawback of 

short-term systemic administration is that behavioral recovery has often been observed 

over a period of time, starting from around three to five weeks after MPTP administration 

[Mounayar et al., 2007]. 

A regimen of chronic systemic administration of MPTP was developed to overcome 

these limitations. Again, 0.2 mg/kg – 2.0 mg/kg of MPTP (IM, IV or SC) per injection is 

given, however this is administered once or twice a week every one to two weeks for 

several weeks or months until the desired level of PD symptoms are present [for review 

see Przedborski et al., 2001; Blum et al., 2001; Jenner, 2003; Smeyne et al., 2005; 

Emborg, 2007; Bove et al., 2012]. There are several advantages to using this method 

where a slow chronic progression of symptoms that more closely reflects the progressive 

nature of PD is achieved.  Chronic systemic administration also provides sufficient time 

for the animal to recover general health between each dose, and animals are dosed until a 

specific severity of symptoms is reached which decreases individual variability in the 

final model used for studies. Animals have also been studied during the early time 

periods of chronic systemic MPTP dosing to examine neural changes that would reflect 
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the pre-diagnostic stages of PD in humans including cognitive impairments [Brownell et 

al., 1998] and sleep disturbances [Barraud et al., 2009]. This chronic systemic MPTP 

model is relevant for many scientific inquiries as it replicates some of the non-motor 

features of the disease including cognitive deficits, loss of motivation and change in sleep 

patterns [Emborg, 2007].  Interestingly, in these primate MPTP models it was recently 

observed that the non-motor symptoms like sleep problems develop earlier than motor 

symptoms as seen in human PD [Barraud et al., 2009]. Use of this model also allows 

investigation of compensatory changes that take place during early stages of the disease. 

The age of the animal plays a crucial role in the response to MPTP susceptibility, with 

older animals more significantly affected by MPTP compared to younger animals 

[Ovadia et al., 1995]. In many late stage bilateral models monkeys are so severely 

affected that they cannot care for themselves and need additional attention for housing 

and feeding [Smith et al., 1993]. Also, in some MPTP injection paradigms using this 

method there is no active process of degeneration after cessation of MPTP administration 

once the loss of nigral DA neurons plateaus and hence is not an exact replication of the 

progressive cell loss seen in PD [Garrido-Gil et al., 2009]. 

A third method of MPTP administration is the unilateral, intracarotid administration 

of MPTP [Bankiewicz et al., 1986; Ovadia et al., 1995; Gash et al., 1996; Zhang et al., 

1997; Grondin et al., 2002; Gash et al., 2005; Emborg, 2007; Bove et al., 2012]. There 

are several advantages to using this model including the ability of monkeys to care for 

themselves after a unilateral lesion. The calculation for dosing intracarotid MPTP is 

based on age, weight and species of monkeys to produce a very high rate of success in 

inducing either early or late stage symptoms of PD that are stable for many years 
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[Emborg, 2007; Bove et al., 2012]. In this method, surgical isolation of the internal 

carotid artery is made and MPTP is injected [Bankiewicz et al., 1986; Bergman et al., 

1990; Ovadia et al., 1995; Gash et al., 1996; Bezard et al., 2001; Emborg, 2007; Bove et 

al., 2012].  The production of symptomatology within days makes this model useful for 

studying neuroprotective and neurorestorative strategies, as well as for studying the 

pathophysiology within basal ganglia circuits that occurs secondary to loss of 

dopaminergic input. For example, the unilateral intracarotid MPTP monkey model was 

used for testing the effectiveness of deep brain stimulation for alleviating Parkinson 

symptoms [Benazzouz et al., 1993], which was successfully transferred from pre-clinical 

research to testing and use in patients very rapidly [Limousin et al., 1998]. One of the 

concerns using this low dose unilateral model could be that it may not affect non-motor 

symptoms and is a mild form of lesion compared to the chronic treatment. However, in 

later chapters in this dissertation I have found significant changes to non-motor 

symptoms using this model on sleep and motivational parameters in monkeys. (see 

Chapter 4) 

1.4.3 Biochemical changes in PD 

A. Changes to the DA neurotransmitter systems 

The role of DA in PD, ever since its first description in 1960 by Ehringer and 

Hornykiewicz in post mortem brain, has had a profound impact on our understanding of 

the disease process. The research into the dopamine deficit aspect of PD was a tipping 

point which led to a series of investigations into the biochemical aspects of the disease, 

the pathophysiology of dopamine deficit and this deficit in dopamine became the 
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rationale for treating PD patients with levodopa the synthetic precursor to dopamine. This 

successful transformation of a basic science biochemical finding into clinical practice 

helped establish a new branch of investigation into biochemical processes detectable of 

post-mortem brain tissue to learn more about the neuroscience of brain diseases.  

 The entire nigrostriatal dopamine neuron is affected in the severely affected PD 

patient [Olanow et al., 1999; Dauer et al., 2003]. The changes in the DA system in PD 

are distinct from the patterns of cell loss observed in normal aging [Fearnley et al., 1991; 

Dauer et al., 2003]. In PD, the ventrolateral and caudal portions of the SNpc are first 

affected, whereas in normal aging the dorsomedial aspects of the SNpc are first affected. 

The changes to the nigrostriatal DA system begin with reduced DA content in the 

striatum and this reduction is always higher than that observed in the midbrain DA 

neurons [Bernheimer et al., 1973]. This implies that the degenerative process in this 

disease begins in the striatum and proceeds later to the midbrain region. This process is 

sometimes referred to as the ‘dying back’ process of nigrostriatal DA system. There is 

also a strong correlation between the progressive worsening of the motor problems in the 

disease with reduced dopamine function in striatum and midbrain.  This is also supported 

by research in experimental models of PD that closely follow the changes observed in 

clinical PD, where in MPTP-treated primates there is first a reduction of TH-positive 

terminals in the striatum before a loss is evident in the midbrain DA neurons [Przedborski 

et al., 1996, 2001; Schmidt et al., 2001].  

The presence of different concentrations of DAT, the main transporter of DA, 

from the terminals in striatum differ across the SNpc population in midbrain region is 

proposed as the reason for the differential vulnerability of DA neurons in the midbrain 
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[Olanow et al., 1999; Przedborski et al., 1996, 2001]. There is some evidence that the 

decrease in mRNA concentration of DAT closely parallels the decrease in striatal DA 

content [Bernheimer et al., 1973; Uhl et al., 1994].  

 There is around a 60-80% loss of striatal DA content before the first motor signs 

of PD appear [Hornykiewicz, 1998; Zigmond et al., 2002; Dauer et al., 2003]. This 

implies that there is a long period of time when the disease slowly progresses in the brain 

before the appearance of external symptoms.  It has been proposed that during this 

dormant period of progression there is internal compensation in the nigrostriatal DA 

system that takes place [Bernheimer et al., 1973; Zigmond et al., 1990,1992, 1997, 2002; 

Bezard et al., 2003; Obeso et al., 2004]. The ability of the diseased nigrostriatal DA 

pathway to internally compensate for the increasing loss of DA from the striatum until 

there is around 60-80% loss shows a dynamic compensatory process. This compensation 

may be mediated directly by changes in the nigrostriatal DA neuron, the pathways it 

influences and/or other circuits that are extrinsic and do not directly influence the DA 

pathway. 

 The changes to the nigrostriatal DA pathway could primarily result from the 

following mechanisms [Agid et al., 1973; Hefti et al., 1980; Altar et al., 1987; 

Stachowiak et al., 1987; Snyder et al., 1990; Hudson et al., 1995; Sherman et al., 1995; 

Harsing et al., 1996, 1997, 1998; Garris et al., 1997; Zigmond et al., 1981,1990, 1997, 

2002]. After a loss of TH-positive fibers in the striatum there is a concurrent loss DAT. 

This results in an increased concentration of DA in the synaptic cleft that compensates for 

the loss of DA terminals. There is also a proposed increase in the synthesis of DA by the 

remaining DA neurons that could maintain the influence of nigrostriatal DA on its 
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targets. This compensatory mechanism was proposed based on the changes to the ratio of 

DA and its metabolite, homovanillic acid (HVA) [Zigmond et al., 1990]. Similar 

increases in dihydroxyphenylacetic acid (DOPAC) to DA ratio provide another indicator 

of increased DA turnover in the diseased striatum [Zigmond, 1997]. There is also 

evidence of an increase in postsynaptic receptors for DA during the pre-clinical phase of 

PD, to also help compensate for the decrease in secreted DA [Zigmond et al., 1990, 

1997]. Different amounts of DA loss could lead to different levels of compensations with 

moderate lesions not having much of a functional change, a large lesion leading to 

increased DA synthesis and release, and an extensive lesion leading to rapid 

compensatory processes [Zigmond et al., 1990,1997].  

Apart from the compensatory changes described above, electrophysiological 

changes to the activity of the different basal ganglia nuclei can internally compensate for 

the changes in activity resulting from nigrostriatal DA deficit [Grace, 1991]. It has been 

shown that there is an increase in activity of the STN and GPi, by way of an increase in 

firing of these neurons before the appearance of motor symptoms during the preclinical 

phase in the disease [Greenamyre, 1993; Albin et al., 1995]. It is proposed that the 

increase in firing of STN maintains the GPe physiological function and compensates for 

the abnormal processing of DA within the striatum in the initial stages of the disease. 

These changes in electrophysiological firing are found to occur after the changes to the 

DA receptor compositions in neurons [Zigmond et al., 1990, 1997]. There is a correlation 

between increasing loss of DA and an increase in activity of the structures described 

above [Greenamyre, 1993]. These electrophysiological abnormal outputs from the basal 

ganglia are propagated through the output circuits to thalamus and cortex. Further 
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research is needed to determine if there is plasticity in these external circuits that do not 

directly influence the DA pathway, to maintain the homeostasis of normal function 

during the long pre-symptomatic period in PD, although there is a clear abnormal output 

from basal ganglia. 

 

B. Lewy bodies in PD 

PD, which was earlier more or less thought of as just an isolated disorder of the 

dopaminergic system, is becoming more complex as we learn more about the pathology 

of the disease [Braak et al., 2000, 2003 and 2004].  It now beginning to be widely 

accepted that the loss of neurons in PD follows a non-random pattern and the changes 

involve a widespread degeneration affecting the human central, peripheral and enteric 

nervous systems. 

 

Lewy bodies are composed of abnormal intra-neuronal protein aggregates that are present 

in cells as cytoplasmic inclusions. Lewy first described these abnormal protein aggregates 

in detail, within the substantia inominata and dorsal vagal nucleus in PD [Lewy, 1912]. 

Tretiakoff was the first to observe these inclusions in substantia nigra [Tretiakoff, 1919]. 

He gave these inclusions the name ‘Lewy bodies’. Since then, Lewy bodies have been 

consistently found in post-mortem brain tissues of PD patients. These inclusions are 

found in a number of regions [Braak et al., 2000]. It is proposed that all the neurons that 

are susceptible to have Lewy body inclusions share two common properties [Braak et al., 

2004]. First, all the affected neurons are projection neurons that have very long and thin 

axons in comparison to their cell body size. Second, neurons with Lewy bodies have 

long, thin axons that are unmyelinated or poorly myelinated. In PD, during the long 
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preclinical duration of the disease, the pathological process is thought to begin in the 

brainstem within the dorsal motor nucleus of IX/X and progresses upward reaching the 

neo-cortex in the final advanced stages of the disease.  Lewy bodies have been found not 

only within the central nervous sytem but also within the enteric nervous system [Braak 

et al., 2006]. These changes are thought to account for the autonomic symptoms that are 

frequently seen in PD patients.  

 

C. Changes to other non-DA neurotransmitter systems 

There are changes to other neurotransmitter systems besides the dopaminergic system 

with PD. The most prominent among these are noradrenalin, serotonin, GABA and 

glutamate [Ohama et al., 1976; Greenamyre et al., 1993; Blandini et al., 1996; 

Hornykiewicz, 1998]. However, in contrast to the consistent presence of nigrostriatal DA 

loss in the post-mortem brain tissue of PD patients, changes to other neurotransmitter 

systems are variable and have not been studied as extensively. There have been reports of 

inclusion of Lewy bodies in dorsal raphe nucleus and locus coeruleus neurons, along with 

a concurrent reduction of both serotonin and noradrenalin levels in the post-mortem 

brains of PD patients [Bethlem et al., 1960; Ohama et al., 1976]. However, only recently 

have these changes in other non-dopaminergic regions in PD have gained recognition 

[Braak et al., 2000,2003,2006; Hawkes et al., 2010]. Changes to GABAergic MSN 

neurons in the striatum have been observed, that could be due to the secondary effects of 

nigrostriatal DA loss [Hornykiewicz, 1998]. There is a direct correlation between the 

losses of DA innervation of striatum which projects to its primary target of striatal 

GABAergic medium spiny neurons and increase in GABA levels in the striatum [Kish et 

al., 1986; Hornykiewicz, 1998].  Similarly, there is increased glutamatergic activity in the 
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striatum, which constitutes the main input to the basal ganglia, that occurs secondary to 

DAergic loss [Greenamyre, 1993]. An increase in the activity of STN, that contains 

glutamatergic connection to the basal ganglia output structures, is also observed together 

with changes to the glutamate receptors in these regions [Blandini et al., 1996]. It is also 

important to note that glutamate can act as a neurotoxin in the cases of impaired cellular 

functioning [Blandini et al., 1996; Hornykiewicz, 1998]. One of the proposed mechanism 

through which this might occur is that a loss of DA influence in the striatum that contains 

GABA inhibitory projection neurons after DA loss, that can lead to increased activity in 

excitatory glutamate-containing STN neurons. These changes in GABA and glutamate 

neurotransmission have also been observed in animal models of PD [Greenamyre, 1993; 

Blandini et al., 1996,2000; Hornykiewicz, 1998]. The non-motor symptoms that are seen 

in PD before the appearance of motor symptoms could be related to changes in many of 

the monoaminergic neurotransmitter systems that extensively innervate the CNS before 

degeneration of the DA system [Braak et al., 2000, 2006, 2008; Hawkes et al., 2008, 

2009, 2010]. 

1.5 NEUROTROPHIC FACTORS THAT SUPPORT DA NEURONS 

Neurotrophic factors are proteins that support the growth, survival and function of specific 

neuronal populations during the course of development [Thoenen, 1995; Barbacid, 1995; 

Ibanez,1995; Saarma et al., 1999, 2002, 2003]. There is interest in the use of these molecules as 

therapeutic agents in the treatment of a wide variety of neurological disease conditions. Stanley 

Cohen and Rita Levi-Montalcini discovered the first identified neurotrophic factor that affects 
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nerve cells [Cohen et al., 1954]. They called it Nerve Growth Factor (NGF), and received the 

Nobel Prize in 1986 for its discovery. Since that time a number of neurotrophic factors have been 

identified. Neurotrophic factors can be grouped into different families based on homology of the 

molecules, receptors they bind to, and common transduction pathways. NGF belongs to the 

Neurotrophin family. There are three main families of neurotrophic factors that have been 

discovered, the Neurotrophin family [Cohen et al., 1954], the Glial cell-line Derived 

Neurotrophic Factor (GDNF) family [Lin et al., 1993] and the Mesencephalic Astrocyte-derived 

Neurotrophic Factor (MANF) family [Petrova et al., 2003 and Lindholm et al., 2007]. The two 

families that are most directly relevant to supporting dopamine neurons that degenerate in 

Parkinson’s disease are the GDNF and MANF families [for review see Peterson et al., 2008; 

Lindholm et al., 2010; Aron et al., 2011]. Specifically, GDNF and Neurturin (NRTN), that 

belong to the GDNF family, and Cerebral Dopamine Neurotrophic Factor (CDNF), that belongs 

to the MANF family, show both neuroprotection and neurorestoration of DA neurons after toxic 

insults in animal models of PD [Lindholm et al., 2007,2008, 2010; Voutilainen et al., 2011; 

Airavaara et al., 2012]. 

1.5.1 Glial Cell-line Derived Neurotrophic Factor, GDNF 

Lin et al. discovered GDNF in 1993 in a rat glial cell-line (B49), as a soluble factor released by 

the cell culture. GDNF is a glycosylated, disulfide bonded homodimer whose molecular weight 

is approximately 33–45 kDa, while the monomer has a molecular weight of 16 kDa after 

deglycosylation [Lin et al., 1993,1994]. GDNF is synthesized as an inactive 211 amino acid pre-

pro-GDNF secretory protein that is cleaved into the mature GDNF protein of 134 amino acids. 

The regional distribution and cellular localization of GDNF was identified using PCR techniques 
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in the central nervous system of rats and humans [Lin et al., 1993; Schaar et al., 1993, 1994; 

Stromberg et al., 1993; Springer et al., 1994]. GDNF protein was found to be present in a 

number of brain regions in the rat central nervous system, including the striatum, hippocampus, 

cortex, cerebellum and spinal cord. In the human central nervous system, GDNF transcripts were 

identified in the striatum, caudate, hippocampus, cortex and spinal cord. More importantly, 

GDNF message was expressed in the substantia nigra and basal forebrain type I astrocytes 

[Schaar et al., 1993, 1994]. Addition of GDNF to cultured primary dopaminergic neurons in 

vitro increases DA cell number, neurite length, cell size, and dopamine uptake [Lin et al., 

1993,1994]. GDNF also reduces the rate of apoptosis and prolongs neuronal survival in cultured 

dopaminergic neurons [Clarkson et al., 1995, 1997]. 

In PD, there is selective loss of nigrostriatal dopaminergic neurons and there is evidence 

that GDNF can play a therapeutic role in rescuing DA neurons in animal models of PD [Gash et 

al., 1995; Hou et al., 1996; Martin et al., 1996; Opacka-Juffry et al., 1995; Schults et al., 1996]. 

In vivo animal models that mimic symptoms of PD are produced using selective dopaminergic 

neurotoxins, such as 6-hyroxy-dopamine (6-OHDA) and MPTP. GDNF has been shown to 

rescue injured dopaminergic neurons in these models [Hoffer et al., 1994; Tomac et al., 1995; 

Beck et al., 1995; Bowenkamp et al., 1995; Bjorklund et al., 1997]. After intranigral 

administration of GDNF in the 6-OHDA-treated rat model there is neurochemical and behavioral 

improvement of PD-like motor symptoms [Bjorklund et al., 1997]. In addition, intra-striatal 

injection of GDNF also prevents dopaminergic loss after 6-OHDA induced nigrostriatal lesions 

[Opacka-Juffry et al., 1995; Sauer et al., 1995; Schults et al., 1996]. GDNF has also been shown 

to rescue dopaminergic neurons in animal models receiving the DA toxin, MPTP [Tomac et al., 

1995; Hou et al., 1996; Gash et al., 1996]. GDNF when injected in the substantia nigra or 
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striatum of monkeys before administration of MPTP significantly protected the dopaminergic 

system, while GDNF when injected after MPTP administration significantly restored dopamine 

levels and dopamine fiber density [Gash et al., 1996; Zhang et al., 1997; Connor et al., 1998]. 

Recombinant Adeno-Associated-Viruses (AAV) that carry the gene encoding human GDNF, 

also have been shown to protect DA neurons from progressive neurodegeneration when injected 

near the substantia nigra or in the striatum of both mice and primates prior to MPTP 

administration [Choi-Lundberg et al., 1997; Bilang-Bleuel et al., 1997; Kordower et al., 2000; 

Eslamboli et al., 2005]. Thus AAV-GDNF gene therapy may also be a treatment option for PD. 

Thus, GDNF shows both neuroprotection and neurorestoration of DA neurons [Tomac et al., 

1995; Hou et al., 1996; Gash et al., 1996; Hoffer et al., 1994; Beck et al., 1995; Bowenkamp et 

al., 1995; Bjorklund et al., 1997].  

 There have been four clinical trials that have been conducted with GDNF [Nutt et al., 

2003; Gill et al., 2003; Patel et al., 2005; Slevin et al., 2005]. There was no significant 

improvement in motor symptoms when GDNF was injected into the cerebrospinal fluid (CSF) in 

the first clinical trial [Nutt et al., 2003]. The authors suggested that this may reflect poor 

penetration of GDNF into the brain from CSF [Nutt et al., 2003]. In order to achieve better brain 

penetration and targeting, GDNF was directly infused in the putamen using minipumps in the 

subsequent trials [Gill et al., 2003; Patel et al., 2005; Slevin et al., 2005]. The second and third 

open label trials led to significant clinical improvements in patients [Gill et al., 2003; Patel et al., 

2005; Slevin et al., 2005]. However, in the fourth double-blind placebo controlled trial there was 

no improvement seen [Lang et al., 2006]. Some patients in that clinical trial developed anti-sera 

against GDNF, although there were no adverse consequences detected. Around the same time as 

the fourth study, in a parallel study in monkeys, cerebellar lesions were detected in animals that 
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received three to four times the dose of GDNF used in human trials [Hovland et al., 2007]. The 

findings of no clinical improvement, coupled with development of antisera to GDNF and 

cerebellar lesions, led Amgen, the company that licensed the use of GDNF for the treatment of 

PD, to decide to stop all clinical testing of GDNF.  However, there has been a lot of discussion 

about this decision [Barker, 2006, 2009; Evans et al., 2008]. The reason for the failure in the 

fourth clinical trial could be due to the dose of GDNF that was used, properties of the catheter 

used to administer GDNF, the choice of patients included in the trials, the duration of study in 

the clinical trial or the inability of GDNF to reach the intended target regions in the brain [Barker 

, 2006, 2009; Evans et al., 2008; Deierborg et al., 2008]. A common failure in all the above 

experiments is inability to delivery bioactive GDNF that can diffuse to the entire target region in 

the brain [Deierborg et al., 2008; Bjorklund et al., 2009]. The reason for this main setback that is 

common to all four clinical trials could be due to the binding of GDNF to heparin-like binding 

sites in the brain for which GDNF has high affinity [Rider, 2006]. 

1.5.2 Neurturin, NRTN 

Neurturin (NRTN), the second member of the GDNF family of neurotrophic factors, was 

discovered three years later in Jeffrey Milbrandt’s lab [Kotzbauer et al., 1996]. Mature NRTN is 

100 amino acids long and shares 42% sequence homology with GDNF [Kotzbauer et al., 1996]. 

GDNF and NRTN share intracellular signaling pathways [Kotzbauer et al., 1996]. NRTN, like 

GDNF, promotes DA neuronal survival, and both factors have distinct functional roles in the 

developing and adult midbrain dopaminergic neurons [Akerud et al., 1999]. GDNF and NRTN 

are expressed sequentially as endogenous trophic factors to the developing DA neurons. During 

post-natal development NRTN plays a vital role in DA innervation of the striatum. The post-
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natal expression profile of NRTN is thought to sustain this dopaminergic innervation of striatum 

[Trupp et al., 1996; Akerud et al., 1999]. Thus, the selective DA neuron survival-promoting 

activity of NRTN is complementary to the earlier expression of GDNF that induces sprouting 

and increases cell-body size of dopaminergic neurons [Lin et al., 1993; Bowenkamp et al., 1995; 

Sauer et al., 1995]. The combined sequential expression of GDNF and NRTN, and their distinct 

functional roles suggest a complimentary coordinated activity during development [Trupp et al., 

1996; Akerud et al., 1999]. 

 NRTN, like GDNF, also prevents the degeneration of substantia nigra dopamine 

neurons by being neuroprotective in 6-OHDA injected rats [Horger et al., 1998; Akerud et al., 

1999; Rosenblad et al., 1999]. NRTN has also shown neuro-restorative effects in 6-OHDA 

injected rats [Oiwa et al., 2002]. One of the main problems, as for GDNF, is continuous delivery 

of NRTN to intracerebral targets in the brain over long periods of time. There have been 

advances made with use of safe viral vectors (recombinant Adeno-Associated Viruses rAAV and 

recombinant Lentivirus rLV) for transfection and delivery of neurotrophic factors in vivo 

[Bilang-Bleuel et al., 1997; Lapchak et al., 1997; Bensadoun et al., 2000; Rosenblad et al., 2000; 

Connor et al., 2001; Kordower et al., 2003]. Lentiviral delivery of NRTN to the striatum of 6-

OHDA lesioned rats resulted in protection of over 90% of nigral DA cells compared to vehicle 

treatment [Fjord-Larsen et al., 2005]. Ceregene Inc. developed an Adeno-associated virus type-2 

(AAV2) vector that encodes a modified form of human NRTN, called CERE-120. When injected 

into 6-OHDA lesioned rats CERE-120 prevented motor deficits and loss of nigral neurons that 

was equipotent to GDNF and significantly improved from vehicle-treated group which had close 

to 70% decrease in number of TH-positive DA neurons [Gasmi et al., 2007]. The above 

experiment was independently confirmed along with another series of experiments in 
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collaboration with the Kordower lab. CERE-120 was shown to provide protection to both 

structure and function of nigral DA neurons in both rat and monkey models of PD [Kordower et 

al., 2006; Gasmi et al., 2007; Herzog et al., 2007; Herzog et al., 2008; Herzog et al., 2009]. 

 There have been three clinical trials using CERE-120 [Marks et al., 2008; Marks 

et al., 2010, MJFF press release, 2013]. Intraputamenal administration of CERE-120 improved 

motor function in a Phase I clinical trial and was found to be safe at one-year post-administration 

[Marks et al., 2008]. In this open label trial, 12 patients with advanced PD were injected 

bilaterally with CERE-120 in the putamen. This resulted in significant improvement in the 

Unified Parkinson’s Disease Rating Scale (UPDRS) motor score when they were “off” 

medication [Marks et al., 2008]. Importantly, none of the patients experienced dyskinesias 

during the trial.  These initial positive results led to a Phase II double-blind randomized clinical 

trial with CERE-120 [Marks et al., 2008, 2010]. Like GDNF, the CERE-120 phase II testing in a 

larger cohort of 58 PD patients failed to show any significant improvements in motor function. 

Post-mortem data collected from two patients from this cohort who had died of other 

complications, indicated that NRTN showed poor diffusion into the brain parenchyma and no 

NRTN was found in cell bodies of nigral DA neurons [Marks et al., 2010; Vastag, 2010].  This 

data from post-mortem brain tissue led to refinement of the dosing of CERE-120 to both enhance 

and accelerate the effects of NRTN by injecting directly both into the substantia nigra and 

putamen at the same time. A Phase I open-label clinical trial with six PD patients was again 

successful [Ceregene press release 2013; MJFF press release, 2013]. This was followed by a 

Phase II clinical trial with fifty-one patients with PD, monitoring them for fifteen to twenty-four 

months to test the benefits and safety of using CERE-120 [Ceregene press release 2013; MJFF 

press release, 2013]. Ceregene Inc. recently announced the results from its second Phase II 
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clinical trial, where there was no significant improvement to the UPDRS motor scores in the 

absence of medication in CERE-120 administered patients compared to sham-control patients 

[MJFF press release, 2013]. However, CERE-120 showed improvement in other measures like 

the “diary-off score” (daily diaries that assess motor function throughout the day) that measures 

qualitative motor function throughout the day for these patients, and this trial also provided 

further evidence for the safety of CERE-120, the dosing and viral vector delivery methods used. 

The data from this trial is still being analyzed [MJFF press release, 2013]. NRTN that belongs to 

the same family of neurotrophic factor as GDNF is known to bind to heparin-like binding sites in 

the brain with high affinity. Hence, poor diffusion of NRTN within the brain could again be the 

reason for the statistically insignificant improvement in the above clinical trials [Marks et al., 

2010, Vastag, 2010; Ceregene press release 2013; MJFF press release, 2013].  

Mutations in the NRTN molecule at the sites that putatively bind to these extracellular 

matrix components were generated and tested in vitro [Runeberg, Saarma and Penn, unpublished 

data]. Four such NTRN variants were generated, two molecules out of them i.e., N2 and N4 were 

found to give better yields, were more stable and easy to handle. N2 and N4 also showed 

improved resistance to proteolytic cleavage in vitro. 

N2 and N4 were tested in vivo in a rat 6-OHDA model of the disease. N2 and N4 were treated 

groups improved significantly in motor function tests. In particular, N4 showed increased 

diffusion compared to N2 and GDNF. N4 was also significantly better than GDNF in rescuing 

both DA neurons and improving motor functions. This could be both due to the widespread 

diffusion of N4 and the increased proteolytic stability of the molecule. In a pilot study, N4 

diffused the maximum with almost twice the diffusion volume of GDNF although N4 was 
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infused in a 10% smaller volume [Runeberg, Saarma and Penn, unpublished data]. Thus N2 and 

N4 have the potential to restore DA neurons and motor functions in PD. 

1.5.3 Cerebral Dopamine Neurotrophic Factor, CDNF 

In 2007, Lindholm et al. discovered a novel trophic factor, CDNF, which belongs to the newly 

identified MANF family of neurotrophic factors [Lindholm et al. 2007].  CDNF contains eight 

conserved cysteine residues and is a secreted protein with a strong homology to MANF 

[Lindholm et al. 2007]. In mice and humans, CDNF is encoded as a 187 amino acid protein with 

no ‘pre’ or ‘pro’ sequence and has a molecular weight of 18 kDa. The presence of CDNF 

messenger RNA and protein in the adult mouse was detected using RT-PCR and western blotting 

techniques respectively, in the brain, heart muscle and testis. In the brain, the CDNF message is 

present in embryonic, post-natal and adult stages of development [Lindholm et al. 2007]. CDNF 

protein has been detected in neuronal cell somas in the adult layers two to six of the cortex, 

hippocampus layers CA1 to CA3, and in the thalamus, striatum and non-dopaminergic solitary 

cells in the substantia nigra midbrain region, purkinje cells in the cerebellum and in other brain 

stem regions.  CDNF and MANF are conserved through evolution with a 49% homology 

between the human peptides and those of the fruit fly (Drosophilia melanogaster) and 46% 

homology with worm (Caenorhabditis elegans) [Lindholm et al. 2007].  Unlike GDNF that 

supports motorneurons in the enteric, sensory, parasympathetic and sympathetic neurons in the 

peripheral nervous system, CDNF does not support the survival of these peripheral neurons 

[Lindholm et al. 2007]. Although CDNF is present endogenously in the adult brain it has not 

been found to promote neurite outgrowth or sprouting of axons in culture [Lindholm et al. 2007]. 

When CDNF is infused into normal mouse brain, no changes were observed in endogenous 
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levels of DA, DAT or TH, and no detectable changes in mouse behavior were present; there was 

only an increase DA metabolism in the striatum [Airavaara et al., 2012].  

 In animal models of PD with loss of nigrostriatal DA neurons, CDNF has been shown to 

be both neuroprotective and neurorestorative [Lindholm et al. 2007; Airavaara et al., 2012]. In a 

unilateral 6-OHDA rat model of PD, injection of CDNF prior to administration of the neurotoxin 

6-OHDA led to significant neuroprotection of the midbrain DA neurons [Lindholm et al. 2007; 

Airavaara et al., 2012]. This protection was comparable to that offered by GDNF, however the 

CDNF-treated animals continued to show significant behavioral recovery at four weeks after 

injection but GDNF did not have this effect [Lindholm et al. 2007]. To test if CDNF was also 

neurorestorative, rats were injected with 6-OHDA unilaterally and CDNF, GDNF or vehicle was 

infused four weeks later and the animals were tested for behavioral recovery and post-mortem 

measurements of recovery in nigrostriatal DA system [Lindholm et al. 2007; Airavaara et al., 

2012]. CDNF-treated animals showed a less than a 50% loss of DA neurons in the lesioned side 

of the brain and also significantly reduced the amphetamine-induced rotation behavior by about 

33% [Lindholm et al. 2007; Airavaara et al., 2012]. In a mouse model of PD, where MPTP was 

administered as a neurotoxin, CDNF again showed both neuroprotection and neurorestoration 

[Airavaara et al., 2012].  More recently, CDNF was successfully transfected into the rat brain 

using AAV vector-mediated delivery [Back et al., 2013]. The expression of CDNF using AAV-

mediated delivery into the striatum of rats provided significant recovery of behavior and 

nigrostriatal DA system both when measured in a short-term study of ten weeks duration where 

AAV-CDNF was tested as a neuroprotective agent [Back et al., 2013] and also in a 

neurorestorative study when AAV-CDNF offered protection fifty-four weeks after transfection in 

a 6-OHDA rodent model of PD [Ren et al., 2013]. In a comparative study of diffusion of trophic 
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factors, both CDNF and MANF were shown to diffuse over a greater volume than GDNF 

initially after administration of the neurotrophic factors [Lindholm et al., 2010; Voutilainen et 

al., 2011]. Thus, CDNF has been shown to be neuroprotective and neurorestorative in two 

different rodent models of PD using different method of delivery of the trophic factor into the 

brain. 

1.6 SPECIFIC AIMS 

The main setback that has thus far prevented the translation of neurotrophic factors (i.e., GDNF 

and NRTN) into the clinic for the treatment of PD has been the failure of NTFs (GDNF and 

NRTN) in large Phase II double blind clinical trials [Barker, 2006, 2009; Evans et al., 2008; 

Marks et al., 2010, Vastag, 2010]. This failure has been attributed to several possible reasons, 

however there is one major common underlying theme. It is the lack of ability for these trophic 

factors to diffuse to reach intended targets in the brain. In order to overcome this limitation two 

mutant forms of NRTN that have mutations in the sites of the molecule that putatively bind to 

these sites in the extra cellular matrix but still maintains bioactivity for its trophic capabilities 

were developed [discussed in detail in Section 1.5.4], N2 and N4. Along with these two mutants, 

another recently discovered trophic factor, CDNF [Lindholm et al., 2007], also diffuses widely 

in the brain. CDNF can spread easily in the brain as it belongs to a novel class of trophic factors 

with different structural properties. In this dissertation I address test whether these three NTFs, 

CDNF, N2 and N4, which readily diffuse in brain parenchyma, are effective in restoring 

dopaminergic function in the MPTP primate model of PD. 
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1.6.1 Specific Aim 1 

To determine if CDNF and NRTN mutants that do not bind to heparin-like binding sites in the 

brain stimulate restoration of motor function in the unilateral MPTP monkey model of PD.  

The motor aspects of PD including tremor, rigidity, bradykinesia and postural instability,  

were induced in rhesus monkeys unilaterally on the left side of the body by a single low-dose 

unilateral MPTP injection in the right carotid artery. Motor function was assessed and quantified 

using five separate measures of gross motor function and fine motor function, before and after 

MPTP administration, and in response to three neurotrophic factor/vehicle infusions into the 

putamen. 

1.6.2 Specific Aim 2 

To determine if CDNF and NRTN mutants that do not bind to heparin-like binding sites in the 

brain stimulate restoration of normal sleep patterns in monkeys receiving unilateral MPTP 

infusions. 

Non-motor problems are present in almost all PD patients, with a very high prevalence of 

sleep pattern disturbances. Increased daytime sleepiness is one of the chief complaints of PD 

patients. The Cameron laboratory has validated actigraphic methods to noninvasively measure 

sleep in nonhuman primates. Actigraphy was used to assess the changes in sleep patterns before 

and after MPTP and after neurotrophic factor infusions. The changes in sleep patterns after 

MPTP were analyzed and compared with the sleep patterns after three infusions of the three 

NTFs (i.e., N2, N4 or CDNF). Results were compared to animals who received vehicle infusions 

or GDNF infusions. 
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1.6.3 Specific Aim 3 

Identification of changes in the nigrostriatal dopamine system after monkeys with unilateral 

MPTP lesions receive intraputamenal infusions of, CDNF, N2, N4, GDNF or vehicle  

Post-mortem brain tissue from unilateral MPTP-treated monkeys was collected after three 

months of neurotrophic factor administration and analyzed for degenerative changes in midbrain 

dopamine neurons. The total numbers of DA neurons present after four monthly infusions of 

vehicle or neurotrophic factors were counted. Changes the tissue levels of DA and DA 

metabolites, homovanillic acid (HVA) and DOPAC, in the terminal fields of nigrostriatal DA 

neurons (i.e., the caudate, putamen, and nucleus accumbens) will be measured in upcoming 

analyses (however, these assessments have been delayed due to the need to get permission to 

send the brain tissue out of the country for analysis so this information is not part of this 

dissertation).  
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2.0  EFFECTS OF CDNF, N2 AND N4 ON RECOVERY OF MOTOR FUNCTION IN 

MPTP-TREATED MONKEYS 

2.1 INTRODUCTION 

Since the first reports that GDNF could rescue dopamine neurons after toxic insult [Lin et al., 

1992; Schaar et al., 1993, 1994; Stromberg et al., 1993; Springer et al., 1994; Tomac et al., 

1995; Hou et al., 1996; Gash et al., 1996] there has been considerable interest in the 

development of trophic factors as a treatment option for PD. GDNF has been found to be both 

neuroprotective [Choi-Lundberg et al., 1997; Bilang-Bleuel et al., 1997; Kordower et al., 2000; 

Eslamboli et al., 2005] and neurorestorative [Opacka-Juffry et al., 1995; Sauer et al., 1995; 

Schults et al., 1996] in toxin-induced rodent and primate models of PD.  GDNF when given 

either before or after toxin insult has been shown to lead to greater survival of DA neurons in the 

substantia nigra [Hoffer et al., 1994; Beck et al., 1995; Bowenkamp et al., 1995; Bjorklund et 

al., 1997], and better motor function [Tomac et al., 1995; Hou et al., 1996; Gash et al., 1996]. 

However, clinical trials of GDNF have been more mixed, with the most recent Phase II clinical 

trials not showing significant improvement of motor function in PD patients [Patel et al., 2005; 

Slevin et al., 2005; Lang et al., 2006]. One of the main reasons attributed to the failure in clinical 

trials is the poor diffusion of GDNF in brain tissue possibly due to its high affinity binding to 
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extracellular heparan sulphates [Rickard et al., 2003; Saarma et al., 2003; Rider, 2006; Barker, 

2006, 2008; Deierborg et al., 2008; Bjorklund et al., 2009; Pitonen et al., 2009]  

  Another member of the GDNF family of ligands, NRTN, has also shown potential as a 

therapeutic option for PD. Similar to GDNF, NRTN showed promising therapeutic efficacy in 

rodent and monkey models of PD [Horger et al., 1998; Akerud et al., 1999; Rosenblad et al., 

1999; Kordower et al., 2006; Gasmi et al., 2007; Herzog et al., 2007; Herzog et al., 2008; 

Herzog et al., 2009]. An AAV vector-containing the gene for NRTN (CERE-120) was 

successfully tested in a small Phase I clinical trial with PD patients [Marks et al., 2008; Marks et 

al., 2010]. A larger phase II trial was carried out recently to test the effectiveness and safety of 

viral vector-based delivery of NRTN (CERE-120) in the brain to treat PD [Marks et al., 2008; 

Marks et al., 2010, MJFF press release, 2013]. However, in a very recent press release CERE-

120 effectiveness in this Phase II clinical trial was reported to have little success [MJFF press 

release, 2013]. One of the main concerns that may account for the failure of the clinical trial was 

the inability of NRTN produced at the site of CERE-120 injection to diffuse to the various target 

locations that experience neurodegenerative changes in PD. GDNF and NRTN are both 

neurotrophic factors that belong to the GDNF family of ligands, and it is well known that both 

NTF’s have a strong affinity to bind to heparin-like binding sites in the brain [Rider, 2006]. As a 

result of this binding, both GDNF and NRTN when given in the striatum are known to diffuse to 

fewer target regions in the large human brain compared to the much smaller brains of 

experimental animals [Barker, 2006, 2009; Evans et al., 2008; Marks et al., 2010].  

The problem with diffusion of the GDNF family ligands led to the search for novel 

trophic factors. In 2007, CDNF was identified; a NTF that belongs to a new family of trophic 

factors, the MANF family [Lindholm et al., 2007]. MANF family trophic factors, unlike GDNF 
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family trophic factors, do not bind to heparin-like binding sites, thus they have a greater 

distribution in the brain compared to GDNF and NRTN [Lindholm et al., 2010; Voutilainen et 

al., 2011]. The effectiveness of CDNF was tested in rodent toxin models of PD. CDNF was 

shown to be both neuroprotective and neurorestorative [Lindholm et al., 2007; Airavaara et al., 

2012]. Moreover, CDNF was effective for a longer duration than GDNF in these animal models, 

with CDNF showing significantly improved behavioral recovery four weeks after injection, 

while GDNF-treated animals showed behavioral recovery for only two weeks [Lindholm et al., 

2007; Airavaara et al., 2012]. CDNF has not been tested in animals with larger brains and one 

goal of the current study was to determine if CDNF is neurorestorative in the larger brain of a 

nonhuman primate. 

Another strategy to obtain greater tissue distribution of trophic factors has been to make point 

mutations in NRTN in the region of the heparin-like binding site to decrease binding and thereby 

increase diffusion within the brain [Runeberg, Saarma and Penn, unpublished data]. Runeberg et 

al. made point mutations, based on the consensus sequence in a positively charged area 

containing arginine residues at the surface of NRTN molecule known to bind to the heparin-like 

binding sites. Four such mutant variants of NRTN (N1 to N4) were created [Runeberg, Saarma 

and Penn, unpublished data]. These four mutants were tested in vitro for bioactivity, ease of 

production, binding to heparin, and stability and effectiveness as a trophic factor to DA neurons 

[Runeberg, Saarma and Penn, unpublished data]. After extensive testing, two of these mutants 

(N2 and N4) that showed the best efficacy were tested in rodent models of PD. N2 and N4 were 

found to be more effective than GDNF in improving motor behaviors. In a preliminary test to 

check the distribution of N2 and N4 in the larger monkey brain, equimolar quantities of GDNF, 

N2 and N4 were injected in one monkey [Penn, unpublished data]. N4 showed the maximum 
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distribution followed by N2, even though the NRTN mutants were injected in smaller volumes 

than GDNF (N2: a 25% smaller volume, N4: a 10% smaller volume). A second goal of the 

current experiment was to test the effectiveness of N2 and N4 in restoring motor function and 

maintaining DA neurons in a primate model of PD. 

2.2 MATERIALS AND METHODS 

2.2.1 Animals 

Thirty female rhesus monkeys (Macaca mulatta) were used in this study. The animals were 

between the ages of 17 and 20 years, with a mean age of 18.2 ± 0.2 years. Average weight was 

8.3 ± 0.2 kg. All monkeys were housed in social living pens (1.6m x 2.3m x 3.5m) that had 

multiple perches, toys, and a thick layer of sawdust bedding with overhead skylights that 

provided natural lighting, as well as artificial lighting that turned on at 0700 h and off at 1900 h. 

This housing facility has 20 pens in a wing, and pens have wire mesh fencing fronts so that 

monkeys in each pen could see and hear other monkeys in a number of other pens. Monkeys 

were pair-housed. Monkeys were fed Purina Monkey Chow (#5038; Ralston Purina Co., St. 

Louis, MO) once daily and given fresh fruit, vegetables, nuts and seeds to encourage foraging, as 

well as ad libitum access to drinking water.  All monkeys were observed daily for health and 

menstrual status.  All procedures were performed in accordance with the NIH Guide for the Care 

and Use of Laboratory Animals and were approved by the University of Pittsburgh Institutional 

Animal Care and Use Committee. 
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2.2.2 MPTP Administration 

Prior to MPTP administration, baseline assessments of motor and non-motor functions (for an 

average of 3.2±0.2 weeks) were made for each monkey. All monkeys then underwent a surgery 

to expose the right carotid artery and each received a right internal intracarotid injection of 

MPTP-HCl (Sigma Chemical Co., St. Louis MO), at a concentration of 0.14-0.16 mg/kg 

(0.15±0.001 mg/kg), delivered at 1 mL/min, using previously published techniques [Ovadia et 

al., 1995; Gash et al., 1996; Grondin et al., 2002]. The dose was adjusted based on each animal’s 

age and weight, as these factors have been previously shown to affect response to MPTP in 

macaques [Ovadia et al., 1995; Ding et al., 2008]. After surgery, animals were allowed to 

recover in quarantine for 4 days to allow for excretion of MPTP.  

2.2.3 Experimental design 

Group Size: Monkeys were assigned to six experimental groups (n=4-6/group). In the 

first seven monkeys tested, NTF injections were given starting at twelve weeks post-MPTP. 

However, in these first seven monkeys PD-like symptoms were stable from six weeks to twelve 

weeks post-MPTP. Hence, in all subsequent cohorts of animals in this study, NTF injections 

were given starting at six weeks post-MPTP. In the first seven monkeys a standard dose of 0.15 

mg/kg MPTP was given. However, three monkeys receiving this dose had very little reaction to 

MPTP so they could not be used to test NTF’s; this led to the subsequent adjustment of MPTP 

dosage for individual monkeys based on age and weight (as noted above in section 2.2.2). One 

monkey died in surgery from a toxic reaction to the anesthesia (isoflurane). Experimental groups 

were treated with four monthly injections of vehicle (n=4), CDNF (450 µg; n=5), CDNF (150 
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µg; n=6), GDNF (450 µg; n=5), N2 (337.5  µg; n=6), or N4 (280 µg; n=5), all in a 225 µL 

volume (Vehicle, 450 µg CDNF, 150 µg CDNF, 450 µg GDNF) and 337.5 µL volume (337.5  

µg N2, 280 µg N4) of phosphate-buffered saline (CDNF, N2, N4) or citrate buffer (GDNF), pH 

7.4.   

Neurotrophic Factor Dosing: Many trophic factors and pharmacological agents have 

“inverted U” dose response curves, with lower efficacy at both lower and higher concentration 

levels [Gash et al., 1995, 1996; Zhang et al., 1997], and this was taken into consideration when 

choosing doses of NTFs to test in this study. The CDNF doses that were utilized for the current 

study were chosen based on previous work demonstrating that a 450 µg dose of GDNF, 

delivered intraputamenally, was effective in improving DA function in MPTP-treated monkeys 

[Ovadia et al., 1995; Gash et al., 1996; Grondin et al., 2002]. We chose to test this same dose of 

CDNF in monkeys in one experimental group. However, CDNF had been shown to be more 

effective than GDNF in a rodent model of PD [Lindholm et al., 2007], so there was concern that 

if the same was true for monkeys we may be on the diminishing slope in an “inverted U” dose 

response curve. Thus, a lower dose of CDNF was also tested (150 µg). A dose of N2 (337.5  µg) 

that was the molar equivalent of the 450 µg dose of GDNF, was tested. N4 was less soluble than 

N2 and hence a 280 µg dose, that could be dissolved in the same volume as the N2 solutions 

tested was used. 

Convection Enhanced Delivery (CED) Infusion: CDNF, GDNF, N2, N4 and vehicle were 

given as stereotactic needle injections (using a 26 g side-port needle) into the putamen a total of 

four times, at 6, 10, 14 and 18 weeks post-MPTP, in MRI-guided surgeries. CED involved a 

slow infusion rate of 2 µL/min, that has previously been shown to distribute trophic factors in a 

spherical fashion within the target tissue [Gash et al., 1996; Grondin et al., 2002]. Each monthly 
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injection was made in a different location within the putamen, such that by the end of the fourth 

injection the entire putamen was covered, and no injection tracks crossing paths [Grondin et al., 

1998; Gash et al., 2005]. Post-injection, the injection needle was left in place for twenty minutes, 

and then the needle was withdrawn from the brain at a slow rate of 1 mm/min. At the initial 

stages of the experiment, we used MRI to visualize the intraputamenal distribution of the 

infusate after each monthly injection by co-infusing Magnevist that could be detected by MRI 

immediately after the termination of the infusion (see Figure 2).   

Motor function assessments: Motor function assessments were carried out throughout the 

duration of the study (see Figure 3). Motor function was evaluated using five methods:  the 

monkey Parkinson’s rating scale [Ovadia et al., 1995]; measurement of minute-by-minute 

activity measured by omnidirectional accelerometers [Sullivan et al., 2006; Hunnel et al., 2006; 

Papailiou et al., 2008; Sullivan et al., 2010]; automated movement tracking using EthoVision 

software to assess changes in motor behaviors in a controlled environment [Grondin et al., 2002; 

Walton et al., 2006]; testing of fine motor function using the monkey Movement Assessment 

Panel (mMAP) [Gash et al., 1999; Maswood et al., 2002; Kastman et al., 2012]; and detailed 

analysis of naturally-occurring gross and fine motor function in videotapes of monkey homepen 

behavior [Papillaou et al., 2008]. For each measurement, raters who scored the behavior were 

blind to the treatment groups that monkeys were in. 

A. Monkey Parkinsonian Rating Scale: The monkey Parkinson’s rating scale was 

developed at the Kentucky Udall Center and was patterned after the human 

UPDRS [Ovadia et al., 1995].  In the current study, behavior was videotaped 

while monkeys were given the opportunity to forage after seeds and nuts were 

scattered in the sawdust bedding in the pen. Assessments were made once a 

week throughout the study. Motor functions were scored from 0 (normal) to 3 
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(severe disability) in the following categories: rigidity, bradykinesia, posture, 

balance, tremor, and hand dexterity. The left side and right side were scored 

separately for rigidity, bradykinesia and tremor. The maximum score possible 

was 22. Two independent raters scored each videotaped session and assigned 

ratings for each video session. If variability between the two independent raters 

was greater than 15%, a third rater scored the session. Overall, inter-rater 

reliability was 88.6 ± 2.9%. 

B. Activity Monitoring: Activity was measured in each animal using an 

omnidirectional Actical accelerometer (Respironics, Phoenix, AZ) mounted on a 

loose-fitting collar (Primate Products, Immokalee, FL), using previously published 

methods [Sullivan et al., 2006; Hunnel et al., 2006; Papailiou et al., 2008; 

Sullivan et al., 2010]. Monkeys adapted quickly to the collars, which did not 

interfere with activities such as feeding or sleeping. Activity monitors were set to 

collect activity counts on a per minute basis. Activity was measured for 13±0.6 

days pre-MPTP. Then, monkeys did not wear collars with activity monitors for the 

first two weeks after MPTP surgery to allow healing of the surgical incision in the 

carotid region that was made for the intracarotid MPTP injection. Subsequently, 

activity was measured continuously for the rest of the study. For activity 

calculations, the start of the daytime was determined as the time of sunrise or 

0700 h, depending on which occurred first; similarly the end of daytime was 

calculated as 1900 h or the time of sunset, depending on which occurred last.  

Monkeys were sedated with Ketamine HCl (0.1-0.2 mg/kg, i.m.) and activity 

monitors were downloaded every 2-3 weeks, calibrated and reset.  

C. Automated Movement Tracking System, Ethovision: Throughout the study, 

monkeys were moved once a week from their homepen to a cage in a novel 

room and videotaped for a one-hour period, while white noise played in the 
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background. The Ethovision program, developed by Noldus, Inc (Wageningen, 

NL) was then used to track the center of gravity of each monkey over the one 

hour time period. Distance travelled, speed of movement and time spent with the 

monkey’s center of gravity in the top or bottom of testing cage was quantified.  

D. Monkey Movement Analysis Panel (mMAP): This apparatus and testing protocol 

was developed by the Kentucky Udall Center [Gash et al., 1999]. Briefly, mMAP 

testing was performed from two to six weeks pre-MPTP (mean=3.0±0.2 weeks 

pre-MPTP), for 5 weeks post-MPTP (starting 10.7+0.7 days post-MPTP), and 

during the entire duration of the NTF infusions.  For each testing session, 

monkeys were transferred from their homepen to a testing room and placed in a 

testing cage with the mMAP apparatus attached to the front.  Monkeys had been 

acclimated to the testing cage for at least 1 week prior to the onset of testing.  

Each day of mMAP testing consisted of 12 trials total, 6 trials for each hand. This 

allowed us to compare motor function between the left hand (i.e., the side that 

would be affected by right intracarotid MPTP administration) and the right hand 

(i.e., the unaffected side).  During mMAP testing, monkeys were required to 

reach through an opening (one opening for the left hand and another opening for 

right hand) to retrieve a small food reward placed on a platform the animal could 

see [Gash et al., 1999].  The openings were each equipped with photodiodes to 

monitor arm/hand movements of the monkey, thereby recording with millisecond 

accuracy the latency to retrieve the food reward [Gash et al., 1999].  Monkeys 

were given one minute to retrieve each treat. For each trial, on the right or left 

side, monkeys were given a total of five chances to respond before the trial 

ended. For each trial, the latency to retrieve the treat was recorded. If the 

monkey did not retrieve a treat at the end of five chances the trial was scored as 

a balk. The trials alternated between the right and left hands. The testing was 
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stopped if a monkey balked for three consecutive trials. Before testing, all 

monkeys were trained to use the mMAP apparatus until they routinely retrieved 

food from the receptacle with each hand.  After the training period, baseline 

measurements were collected before MPTP administration. Monkeys were then 

tested twice a week after MPTP injection. Importantly, mMAP testing was carried 

out only twice per week so that monkeys did not become over-trained in this 

procedure as training, itself, leads to an improvement in motor function 

[Matsuzaka et al., 2007].  

E. Monkey Homepen Assessments: Once a week monkeys were videotaped for a 

seventy-five minute period in their normal homepen environment. The videotaped 

sessions were used to quantify the various naturally-occurring motor activities 

displayed by the monkeys using The Observer Program (Noldus, Inc) [Papillaou 

et al., 2008]. Behaviors scored included eating, grasping, grooming, circling, 

moving, jumping, and sleeping. 

Post-mortem collection of brain tissue: Eighteen weeks after unilateral MPTP injection, 

immediately following their fourth NTF infusion, monkeys were sacrificed and their brain tissue 

collected for post-mortem analysis (as indicated in Figure 3). Monkeys were deeply sedated with 

Ketamine HCl (20-25 mg/kg, SC) and sodium pentobarbital (30 mg/kg, i.v.) was administered. 

When the monkey completely lost reflexes, it was placed on its back and a midline incision made 

in the chest wall. The pericardium was opened, a cannula is inserted into the aorta through a 

small incision in the left ventricle, and the right auricle cut. The descending aorta was clamped to 

direct perfusate only to the head, and the vascular system was perfused with ice-cold 

physiological saline containing 5,000 IU sodium heparin and 2% sodium nitrite to remove blood 

from the brain. When the perfusate ran clear, the perfusion was stopped, the skull quickly opened 

using a bone saw, and the brain immediately removed. The brain was put in a brain mold 
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(immersed in ice-chilled DEPC saline), and the brain was cut every 4 mm rostral to caudal 

(placing the first blade just caudal to the optic chiasm), and slabs were removed and placed on 

glass slides. All sections containing putamen, caudate and globus pallidus were snap frozen on 

dry ice. Slabs containing the mid-brain dopamine regions were immediately fixed in 

paraformaldehyde. The fixed sections were used for post-mortem DA cell counts and the frozen 

sections were used for collecting tissue punches for later biochemical measurements. Each slab 

that had been frozen and had punches removed was wrapped in foil and all frozen slabs from 

each brain were placed into a single sealed plastic bag and stored at -80°C. Consistent use of 

these procedures provided a mean postmortem interval 48.7±2.4 min from the chest incision to 

collection of the last brain slab. 

Staining and Counting Substantia Nigra DA neurons: 4 mm slabs containing the mid-

brain dopamine regions were immersion-fixed in 4% paraformaldehyde solution at 4°C for three 

days. Following this, the brain slabs were transferred to a 15% sucrose solution and allowed to 

stay in it until the brain sunk to the bottom of the jar. The brain slabs were then transferred to 

30% sucrose and the same procedure was followed. Once the brain slabs sank in the 30% 

solution they were wrapped in foil, snap frozen and processed so that 40 μm thick coronal 

sections could be cut on a sliding knife microtome through the substantia nigra. As described 

elsewhere [Gash et al., 1996; Grondin et al., 2002], SN sections were processed for 

immunohistochemical staining for tyrosine hydroxylase, (TH monoclonal antibody, 1:1000; 

Chemicon International, Temecula, CA). The number of TH+ midbrain DA neurons was 

measured using an optical fractionator method for unbiased stereological cell counting [Gash et 

al., 1996; Grondin et al., 2002]. Briefly, the substantia nigra is defined as consisting of all 

midbrain TH+ neurons except those interspersed with the oculomotor nerve rootlets. Using an 
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optical fractionator method for unbiased stereological cell counting, the number of TH+ neurons 

in the substantia nigra was estimated. On each section, a 200 μm X 200 μm grid was randomly 

superimposed with a 150 μm X 150 μm counting chamber placed on each fifth intersection. A 20 

μm deep fraction of the counting chamber was determined by a stage encoder attached to the 

microscope to measure the z-axis. All neurons completely within the boundaries of the chamber 

or crossing the upper or right side of the chamber within the 20 μm depth were counted and their 

perimeter (minus neurites) measured. 
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Figure 2. MRI of monkey brain after administration of 150 µg CDNF + Magnevist into the 

putamen. 

 

 

 

Figure 3. Experimental design. Motor and non-motor assessments were made throughout 

the study starting with baseline measures before MPTP administration, followed by post-

MPTP, and after each infusion of NTF. The six experimental groups and sample sizes are 

also listed. 
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2.2.4 Statistical Analysis 

For all analyses, normality and homogeneity of variance were first tested. If these criteria were 

met, parametric statistical tests were used. Comparisons across the five time points in the study 

(pre-MPTP, post-MPTP, post-infusion 1, post-infusion 2 and post-infusion 3) were made using 

repeated measures analysis of variance, while comparisons between two time points (pre-MPTP 

vs. post-MPTP, post-MPTP vs. post-infusion 3) were subsequently made using paired Student’s 

t-tests. If normality or homogeneity of variance criteria were not met, data was transformed to 

normalize the data prior to statistical analyses, if possible. Cell count data was normalized by a 

log transformation before being analyzed using Pearson’s correlations. A non-parametric 

statistical test, specifically the two sample Kolmogrov-Smirnov test, was used to compare the 

raw cell count data. Pearson’s correlation coefficients, or Spearman’s correlation coefficients if 

normality criteria were not met, were used to calculate the relationship between DA cell counts 

and all motor measurements made. Statistical analyses were performed using MATLAB (The 

MathWorks Inc., Natick, MA). Values are presented as means ± SEM. P < 0.05 was considered 

significant. 

 

 

 

 



 67 

2.3 RESULTS 

2.3.1 Effect of MPTP Administration on Motor Movement 

 

Parkinson’s Rating Scale: Monkeys at baseline had a rating scale score of 0, as the monkeys did 

not exhibit any PD-like symptoms. After MPTP administration the monkey Parkinson’s rating 

scale score increased significantly to 7.9 ± 0.5, p<0.001 (data not shown).  

Activity: There was a 57.1% decrease in the average daily activity counts, with mean activity 

counts decreasing from 113,472±10,055 pre-MPTP to 48,682±6,995 post-MPTP (Figure 4). 

Correspondingly, the daytime activity reduced by 58.4% from 105,097±14,854 pre-MPTP to 

43,705±9,240 post-MPTP, p<0.001 and the nighttime activity reduced by 33.2% from 

5,980±1990 pre-MPTP to 3997±996 post-MPTP, p=0.03 (Figure 4). 

Ethovision: There was a significant decrease, p<0.005, from pre-MPTP to post-MPTP for all 

parameters measured using the Ethovision program [total distance moved, duration of time spent 

in top of cage, and distance moved in top of cage]. The total distance moved by the monkeys 

decreased significantly post-MPTP by 23.6% (p=0.004). The duration of time spent in top of 

cage significantly decreased from pre-MPTP to post-MPTP by 50.9% (p=0.0004). The 

corresponding decrease in the distance moved in the top of the cage was also significantly 

reduced by 48.6% (p=0.0001; Figure 5). 

mMAP: After right-side unilateral MPTP injection there was a significant increase in time taken 

to retrieve a treat with the left hand from 1.17 ± 0.08 sec pre-MPTP to 2.03 ± 0.26 sec post-

MPTP (p=0.002; n=13; data not shown). However, 57% of the monkeys completely stopped 
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using their left-hand after MPTP injection (n=17). There was no significant change in the time 

taken to retrieve a treat with the right hand and all of the monkeys continued to use their right 

hand in the task at least some of the time, 1.21 ± 0.04 sec pre-MPTP to 1.24 ± 0.09 sec post-

MPTP (p=0.32). Balking with the left hand increased from 2.1% of the trials pre-MPTP to 69.8% 

of the trials post-MPTP, p<0.001 (Figure 6). Balking with the right hand increased from 1.5% 

pre-MPTP to 11.7% post-MPTP, p=0.008, but this was a significantly smaller increase in balking 

than occurred on the left side, p<0.001 (Figure 6).  

Homepen movement: Monkeys displayed significant motor impairments naturally-

occurring movement in the homepen after MPTP administration. Spontaneous circling towards 

the side of the lesion (circling to the right) increased significantly after MPTP, p<0.001 (Figure 

7 A). There was a significant decrease in the total movement of monkeys after MPTP, p=0.003 

(Figure 7 B). There was a significant decrease in fine motor movement the time to use the left 

hand post-MPTP, p<0.001 (Figure 7 C).  
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Figure 4. Mean daily activity counts before (open bars) and after (closed bars) MPTP 

administration, measured by accelerometer (n=30). A. Total Activity (p<0.001 

compared to pre-MPTP), B. Daytime activity (p<0.001 compared to pre-MPTP), C. 

Nighttime activity (p=0.03 compared to pre-MPTP). Asterisks indicate a significant 

difference, p<0.05, from pre-MPTP values.  
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Figure 5. Movement measured by Ethovision. ). A. Total distance moved (p<0.005 

compared to pre-MPTP), B. Duration of time spent in top of cage (p<0.005 compared to 

pre-MPTP), C. Distance moved in top of cage (p<0.005 compared to pre-MPTP). 

Asterisks indicate a significant difference, p<0.005, from pre-MPTP period. 
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Figure 6. Balk rate during mMAP testing.  Asterisks indicate a significant difference, 

p<0.001, from the pre-MPTP period. 
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Figure 7. Changes in motor behavior by homepen assessments. Asterisks indicate a 

significant difference, p<0.005, from Pre-MPTP period. 
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2.3.2 Effect of GDNF, CDNF, N2 and N4 Infusions on Motor Movement 

 

Monkey Parkinsonian Rating Scale: Monkeys receiving intraputamenal infusions of GDNF, 150 

µg CDNF, N2 and N4 showed significant improvement in the monkey Parkinson’s rating scale 

scores after three monthly NTF infusions (Figure 8A). The rating scale scores for the 150 µg 

CDNF, N2 and N4 groups were significantly different than the rating scale scores for the 

vehicle-treated group at the end of the three-month infusion period (Figure 8B). The 150 µg 

CDNF group showed progressive improvement in the rating scale score after each infusion, 

while the N2 and N4-treated groups had a maximal improvement in rating scale score after the 

first infusion and then the rating scale score remained at the same until the end of the study 

(Figure 8B). 

Activity Monitoring: Monkeys activity did not recover significantly after three months of 

infusions in any of the six treatment groups back to the daily level of activity before MPTP 

administration. Similarly, both daytime and nighttime activity also did not recover back to 

baseline (data not shown). 

Automated Movement Tracking System, Ethovision: Monkeys did not change 

significantly after three monthly infusions of the NTFs or vehicle compared to post-MPTP 

values in the different parameters [total distance moved, duration of time spent in top of cage, 

and distance moved in top of cage] measured using Ethovision (data not shown).  

Monkey Movement Analysis Panel (mMAP):  

Vehicle - Pre-MPTP the mean time taken to retrieve a treat using the left hand was 1.34 ± 

0.37 sec (n=4). However, post-MPTP only one out of the four monkeys would use its left hand, 

i.e. 75% of the monkeys in the vehicle group did not work. The one monkey that did work was 
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43% slower using its left hand compared to pre-MPTP.  After three months of vehicle infusions, 

the monkey that worked post-MPTP stopped working completely, however, there was another 

monkey that would use its left hand during this period, and this monkey was 41.5% slower than 

its pre-MPTP values.  The use of the right hand was also similar from the post-MPTP period 

(1.46 ± 0.16 sec) to the period after the third infusion (1.00 ± 0.10 sec, p=0.14 compared to post-

MPTP). 

450 µg CDNF - Pre-MPTP, the mean time taken to retrieve a treat using the left hand was 

1.20 ± 0.26 sec (n=3). One monkey refused to work, even in the control pre-MPTP state. Post-

MPTP, two of the three monkeys continued to use their left hand, with one monkey balking. 

Post-MPTP, the 2 monkeys that used their left hands did so in 1.93 ± 1.03 sec (p=0.33 compared 

to pre-MPTP). However, after three months of 450 µg CDNF infusions only one out of the three 

monkeys would use its left hand with a speed of 1.22±0.28 sec that was not different from pre-

MPTP (p=0.99).  The use of the right hand was similar from the post-MPTP period (1.41 ± 0.39 

sec) to the period after the third infusion (1.54 ± 0.44 sec, p=0.83 compared to post-MPTP). 

150 µg CDNF - Pre-MPTP, the mean time taken to retrieve a treat using the left hand was 

1.18 ± 0.19 sec (n=6). Post-MPTP, two of the six monkeys worked using their left hand, with 

four monkeys balking during left hand testing. Post-MPTP, the average time taken by the two 

monkeys that used their left hands was 1.65 ± 0.09 sec (p=0.15 compared to their pre-MPTP 

speeds). After three months of CDNF infusions four of the six monkeys used their left hand in 

mMAP testing. However, the two monkeys that worked throughout the study had a non-

significant improvement in their total time taken with the left hand (13.5% increase in speed, 

p=0.35). However, the four monkeys using their left hands post-infusion no longer showed a 

significant decrease in speed from pre-MPTP levels, although they did show a trend toward 
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being slower (2.16 ± 0.54 sec, p =0.07 compared to pre-MPTP). The use of the right hand in this 

group was similar from the post-MPTP period (1.23 ± 0.24 sec) to the period after the third 

infusion (0.81 ± 0.04 sec, p=0.10). 

450 µg GDNF - Pre-MPTP, the mean time taken to retrieve a treat using the left hand 

was 0.81 ± 0.08 sec (n=4). Post-MPTP only one monkey used its left hand (1.11 ± 0.26 sec), 

with three monkeys balking. After three months of GDNF infusions three out of the four 

monkeys would use their left hand but continued to be slow (2.16 ± 0.54 sec, p=0.22, compared 

to post-MPTP). In contrast, the use of the right hand was similar from the post-MPTP period 

(0.92 ± 0.12 sec) to the period after the third infusion (1.17 ± 0.41 sec, p=0.38).  

N2 - Pre-MPTP, the mean time taken to retrieve a treat using the left hand was 1.24 ± 

0.11 sec (n=6). Post-MPTP, three of the six monkeys used their left hand and three monkeys 

balked. Post-MPTP, the three monkeys who used their left hands did so in 1.39 ± 0.08 sec, which 

was not a significant slowing from their pre-MPTP speed of 1.29 ± 0.17 sec  (p=0.39). However, 

after three months of N2 infusions the mean time for left hand use was significantly improved for 

the same three monkeys from the post-MPTP speed (1.01 ± 0.10 sec, p=0.04 compared to post-

MPTP). In contrast, the use of the right hand was similar from the post-MPTP period (1.38 ± 

0.28 sec) to the period after the third infusion (1.27 ± 0.21 sec, p=0.18 compared to post-MPTP).  

N4 - Pre-MPTP, the mean time taken to retrieve a treat using the left hand was 1.20 ± 

0.11 sec (n=5). Post-MPTP, four monkeys used their left hand, with one monkey balking. There 

was a significant slowing of left hand use in these four monkeys from 1.20 ± 0.11 sec pre-MPTP 

to 2.61 ± 0.35 sec post-MPTP for three monkeys (p=0.01). However, after three months of N4 

infusions the mean time for left hand use was significantly decreased to 1.60 ± 0.40 sec for the 
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three monkeys that continued to work (p=0.0003 compared to post-MPTP; p=0.18 compared to 

pre-MPTP). Similarly, the use of the right hand showed a trend towards decrease from the post-

MPTP period  (1.12 ± 0.12 sec) to the period after the third infusion (0.85 ± 0.04 sec, p=0.07 

compared to post-MPTP). 

Homepen Assessments:  After infusions, there were no significant change in circling, fine 

motor, and stationary in homepen sessions for any of the treatment groups. However, for total 

movement after post-infusions of NTFs the N2 treatment group showed a trend towards a 

significant improvement in total movement, p=0.06 (Figure 9). 
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Figure 8. A.  Changes in monkey Parkinson’s rating scale from Post-MPTP (black bars) to Post-

Infusions (grey bars) for each experimental group. Asterisks indicate a significant difference, 

p<0.05, from pre-MPTP B. Monkey Parkinson’s rating scale scores for each experimental group, 

normalized to the post-MPTP mean score for each group. Vehicle: black line, p>0.05 post-

infusion 1, 2 and 3; 450 µg CDNF: blue line, p>0.05 post-infusion 1, 2 and 3; 150 µg CDNF: red 

line, p=0.02 post-infusion 1, p=0.002 post-infusion 2, and p=0.0002 post-infusion 3; 450 µg 

GDNF: yellow line, p>0.05 post-infusion 1, 2 and p=0.06 post-infusion 3; 337.5 µg N2: brown 

line, p=0.01 post-infusion 1, 2, and 3; 280 µg N4: purple line, p=0.03 post-infusion 1, p=0.04 

post-infusion 2  and p=0 02 post-infusion 3  
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Figure 9. Changes to the total motion scored in homepen after three months of N2 

(337.5 µg) infusions, p=0.06. Plus sign indicates a trend. 
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2.3.3 Post-mortem cell count data and prediction of post-infusions motor measures based 

on cell counts measures 

 

 

 

 

 

 

 

 

 

 

There was a significant increase in the number of midbrain SNpc dopamine cells in monkeys 

receiving GDNF, 150 ug CDNF, N2, and N4 treatments compared to the vehicle group (Figure 

10). The number of dopamine neurons was significantly correlated with a number of measures of 

motor function. There was a significant correlation between the Parkinson’s Rating Scale score 

measured in the last month of the study and the number of DA neurons present at the end of the 

study (r= -0.72 p<0.001, Figure 11A). For fine motor function, the time taken to retrieve a treat 

with left hand in the last month of the study in mMAP testing was significantly correlated with 

the DA neuron cell counts (r=-0.53 p=0.002, Figure 11B). Another measures of gross motor 

activity, activity measured by accelerometer, showed a trend towards significance (Activity: 

r=0.30, p=0.059; Figure 12A). Total distance moved as measured by Ethovision analysis was 

significantly correlated to the DA neuron cell counts (r= 0.45 p=0.009, Figure 12B). Circling, a 

    

Figure 10. Number of dopamine neurons post-infusion 4. Asterisks indicate a 

significant difference from the vehicle-treated group, p<0.05.  
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gross motor function, at the end of the NTF infusions, was significantly correlated with the 

number of DA cell counts (r=-0.32 p=0.05, Figure 13A). And left fine motor values measured in 

the homepen assessments showed a trend towards significance (r=0.30 p=0.06, Figure 13B). 

 A median split of monkeys divided by the number of DA cells they had in the post-

mortem analysis (Figure 14A) showed significant differences in monkey Parkinson’s rating 

scale score (bottom half: 6.88 ± 0.58, top half: 3.14 ± 0.58, p<0.001, Figure 14B),  total distance 

moved in Ethovision assessments (bottom half: 80.62 ± 12.47, top half: 116.27 ± 16.24, p=0.05, 

Figure 14C), and time taken to retrieve a treat with the left hand in mMAP testing (bottom half: 

39.57 ± 7.60, top half: 22.22 ± 7.81, p=0.04, Figure 14D).  
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Figure 11. Correlation between DA cell counts and (A) Monkey Parkinson’s rating scale 

score, and  (B) left hand time to retrieve a treat in the mMAP. Vehicle (open diamond), 450 

µg GDNF (open square), 450 µg CDNF (open circle), 150 µg CDNF  (closed circle), 337.5 

µg N2 (closed square), 280 µg N4 (closed diamond) 
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Figure 12. Correlation between DA cell counts and A. Percent change in activity from post-

MPTP to post-Infusions of NTFs, B. Percent change in total distance moved measured by 

Ethovision. Vehicle (open diamond), 450 µg GDNF (open square), 450 µg CDNF (open circle), 

150 µg CDNF  (closed circle), 337.5 µg N2 (closed square), 280 µg N4 (closed diamond) 

 
 

 

Figure 13. Correlation between DA cell counts and A. Circling, and B. Left fine motor 

measured in the homepen. Vehicle (open diamond), 450 µg GDNF (open square), 450 µg 

CDNF (open circle), 150 µg CDNF  (closed circle), 337.5 µg N2 (closed square), 280 µg N4 

(closed diamond) 
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Figure 14. Comparison of A. Number of DA neurons, B. monkey Parkinson’s rating scale 

score, C. Total distance moved measured in ethovision, and D. Time taken to retrieve treat 

with left hand measured in mMAP, in animals that had DA cell counts in the bottom half 

(Blue bars) and top half (Red bars) of the population in post-mortem analysis (p<0.001, 

p<0.001, p=0.05, p=0.04 respectively). Asterisks indicate a significant difference, p<0.05 
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2.4 DISCUSSION 

2.4.1 Effects of unilateral low-dose MPTP on motor movement 

There were significant PD-like symptoms, that represented early to mid-stage severity of the 

disease, in monkeys that received a single unilateral low-dose MPTP intracarotid injections 

(0.15±0.001 mg/kg). This study used multiple strategies to carefully define the extent of 

impairments that developed in gross and fine motor function. Gross motor impairments were 

assessed using the monkey Parkinson’s rating scale, activity monitoring by accelerometer, an 

automated program to track movement (i.e., Ethovision), and homepen scoring of naturally-

occurring motor assessments. Fine motor movements were measured using the monkey 

movement assessment panel (mMAP) and by homepen scoring of fine motor behaviors. 

Monkeys had an average Parkinson’s rating scale score of 7.9 ± 0.5 out of a possible score of 0-

22. This level of impairment was similar to what was previously reported by Ding et al. [2008], 

using the same animal model.  Locomotion, measured by Ethovision scoring showed an 

approximate 50% reduction post-MPTP, comparable to the loss seen in previous studies using 

this monkey model [Ding et al., 2008; Grondin et al., 2008]. Locomotion was also measured for 

the first time in this monkey model using accelerometers, which similarly showed about a 50% 

reduction in gross motor activity. Fine motor performance, measured using mMAP, showed a 

significant increase in balking (~75% with the left hand) after MPTP. This was comparable to 

the decrease in naturally-occurring fine motor performance scored for the first time in this animal 

model in homepen assessments (~70%).  Overall, moderate impairments in both gross motor 

function and fine motor function were comprehensively characterized for the first time in this 

dissertation, showing that this nonhuman primate model of PD reliably shows approximately a 
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50% impairment in total gross motor function and 70% impairment in fine motor function on the 

affected side. 

Although the two quantitative measures of gross motor function made in this study, using 

accelerometers and Ethovision assessments, showed about a 50% reduction post-MPTP, this was 

not outside of the normal range of gross motor function seen in normal populations of rhesus 

monkeys. Previous studies in rhesus monkeys have shown that there can be an 8-10-fold 

variation in naturally-occurring activity level in monkeys in a variety of housing conditions 

ranging from single animal cages to large group living pens [Sullivan et al., 2006; Hunnel et al., 

2006; Papailiou et al., 2008; Sullivan et al., 2010]. After MPTP, activity levels for monkeys 

uniformly fell close at the low end of the naturally-occurring spectrum for this species. This is 

the first time behavior of MPTP-treated monkeys in their normal home environments has been 

comprehensibly assessed. Interestingly, this comprehensive analysis also showed that post-

MPTP there was a significant increase in spontaneous circling towards the side of the lesion (i.e. 

circling to the right side). This behavior has been characterized in detail in rodent models of PD 

and is regularly used to assess the effectiveness of treatment in these models [Hefti et al., 1980, 

Lindholm et al., 2007; Voutilainen et al., 2011]. However, very little is known about this 

characteristic in primates [reviewed in detail in Blum et al., 2001; Bove et al., 2012]. Similarly, 

the Ethovision assessments measured in this study during the pre-MPTP baseline period were in 

the normal range of locomotion activity in adult rhesus monkeys, as previously reported [Walton 

et al., 2006]. However, after MPTP administration the measures of locomotion in our 17-20 year 

old monkeys resembled that of older aged monkeys, 25-30 year old, that was significantly slower 

than locomotor activity in younger monkeys [Walton et al., 2006; Grondin et al., 2008]. Thus, 
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locomotor activity tracked by Ethovision also showed MPTP-treated animals lying close to the 

low-end of the naturally-occuring spectrum of locomotor activity [Walton et al., 2006].  

2.4.2 Effects of neurotrophic factors CDNF, N2 and N4 on motor movement 

After three months of infusions, the GDNF, 150 µg CDNF, N2 and N4-treated groups of 

monkeys showed significant improvement in the monkey Parkinson’s rating scale scores. 

Correspondingly, these same treatment groups showed significantly increased numbers of 

dopamine neurons in the substantia nigra in post-mortem analyses. Moreover, the number of 

dopamine neurons was significantly correlated with the rating scale score measured at the end of 

three monthly NTF infusions. There were also significant correlations in gross motor activity 

measured by accelerometer, Ethovision tracking, and in the homepen assessments of naturally-

occurring activity. The number of dopamine neurons was also significantly correlated with fine 

motor function measured by both mMAP testing and naturally-occurring use of the left hand in 

the homepen. A median split of the monkeys into those with lower numbers of dopamine 

neurons vs. higher numbers of dopamine showed significant differences in these groups in rating 

scale scores, and measures of both gross and fine motor function. Interestingly, 100% of the 

monkeys in the control and 450 µg CDNF groups fell into the bottom half of the post-mortem 

DA neuron cell group, whereas nearly 70% of the monkeys in the three effective treatment 

groups (150 µg CDNF, N2 and N4) fell into the top half of the post-mortem DA neuron cell 

group. The improvements in these three treatment groups were comparable to the effects of 

GDNF that was previously reported (~ 30 % improvement in rating scale) [Zhang et al., 1997; 

Grondin et al., 1998, 2002; Gash et al., 2005]. Together, these studies provide three lines of 

evidence that the low-dose CDNF treatment and the N2 and N4 treatments provide significant 
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therapeutic value in the monkey MPTP model of PD. First, all three NTFs significantly increased 

the number of surviving DA neurons in the substantia nigra. Second, all three NTFs significantly 

improved motor function measured using the monkey Parkinson’s rating scale. Third, the 

findings that DA neuron count significantly correlated with a number of measures of both gross 

and fine motor movement, and that GDNF, 150 µg CDNF, N2 and N4-treated groups had 

significantly higher DA neuron counts compared to vehicle-treated animals provides strong 

evidence for neurorestorative properties of these four neurotrophic factors. 

This study was initially designed as a pilot study undertaken to provide a first assessment 

of whether CDNF, N2 and N4 could provide neurorestoration in a primate model of PD. As a 

pilot study, the sample sizes for each treatment group were smaller than would be optimal to 

comprehensively assess the impact of these neurotrophic factors on motor function. Power 

analyses at the end of the experiment indicate that if there had been 8-10 animals/group it is 

likely that low dose CDNF would have shown significant improvements in both gross and fine 

motor function, whereas many more animals would have been needed to see significant results 

with N2 and N4 on gross and fine motor functions.  

We conclude that 150 µg CDNF, N2 and N4 treatments rescue DA neurons from cell 

death and recover gross and fine motor functions in monkeys treated with MPTP. These three 

trophic factors are potential candidates for future clinical trials of novel therapeutic strategies for 

treating PD. Further studies with larger sample sizes and sufficient power would help identify the 

best treatment option. Moreover, as discussed in Chapter 5, testing alternative treatment 

strategies with combinations of these NTFs, given together or sequentially, may provide even 

more effective treatment for the motor symptoms of PD. 

 



 88 

3.0  EFFECTS OF UNIRLATEAL MPTP INJECTIONS ON SLEEP 
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3.1 INTRODUCTION 

Excessive daytime sleep (EDS) is common in patients with Parkinson’s disease (PD) [Knie et al., 

2011; Schulte et al., 2011; Videnovic et al., 2012]. Although increased daytime sleepiness 

becomes more common with age [Pal et al., 2001; Arnulf 2005; Rye et al., 2006; Wolkove et al., 

2007], EDS is fifteen-fold more frequent in Parkinson’s patients than in age-matched controls 

[Knie et al., 2011; Tandberg et al., 1999]. The Epworth Sleepiness Scale (ESS) is the most 

widely used scale to assess the tendency to fall asleep in patients [Johns et al., 1991]. 

Epidemiological studies conducted in multiple centers have consistently found ESS scores that 

are about 50% higher in PD patients compared to age- and gender-matched controls [Ondo et al., 

2001; Hobson et al., 2002; Brodsky et al., 2003; Arnulf 2005].  

Increased daytime sleep has also been reported in animal models of PD created by 

administration of dopaminergic neurotoxins [Hartmann et al., 1971; Garcia et al., 2005; Yi et al., 

2007; Friedman et al., 2008; McDowell et al., 2010, 2012]. 1-Methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) is a dopamine neurotoxin which primarily affects the dopamine-

containing neurons of the SNpc (Substantia Nigra pars compacta) and has been used in mice and 

monkeys [Burns et al., 1983; Heikkila et al., 1984; McDowell et al., 2012]. In MPTP-treated 

mice that experience a 65% loss of dopamine in the striatum, sleep duration during the normal 

waking period has been reported to increase about 50% compared to saline-treated mice, and the 

mean duration of these sleep episodes was also significantly longer [Monaca et al., 2004; Laloux 
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et al., 2007, 2008]. In rats given the DA neurotoxin, rotenone, leading to a 75% decrease in 

number of DA neurons in SNpc, there was about a two-fold increase in percent time spent 

sleeping when rats are most active [Yi et al., 2007]. Daytime sleep problems have also been 

reported in monkeys that received multiple systemic injections of the neurotoxin MPTP [Barraud 

et al., 2009]. A five-fold increase in percent time spent in daytime sleep duration was observed 

in MPTP-treated monkeys with a greater than 95% loss of dopamine and dopamine metabolites 

[Barraud et al., 2009].  

Interestingly, recent clinical studies have reported increased daytime sleepiness occurring 

even before the motor symptoms of PD manifest [Gjerstad et al., 2006, Dhawan et al., 2006, 

Iranzo 2011]. This suggests that EDS may be able to serve as a diagnostic tool for detecting PD 

[Abbott et al., 2005]. However, it is unknown whether decreasing levels of dopamine are causing 

increased daytime sleepiness in the early stages of PD, or whether there are other neural systems 

whose functions are altered in early PD that could be influencing sleep. Studies examining the 

effects of mild decreases in dopamine, similar to those occurring in early PD, have not been 

reported in animal models. To address this question, the current study in which a single low-

dose, unilateral injection of MPTP was given to monkeys to mimic the early stages of loss of 

dopamine in PD  [Ovadia et al., 1995, Gash et al., 1996, Grondin et al., 2002], examined 

whether there were changes in daytime sleepiness. 
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3.2 MATERIALS AND METHODS 

3.2.1 Animals 

Twenty eight female rhesus macaques (Macaca mulatta), 16-20 years of age (mean age: 

18.3+0.2 years) were housed in social living pens (1.6m x 2.3m x 3.5m) that had multiple 

perches, toys, and a thick layer of sawdust bedding with overhead skylights that provided natural 

lighting. In addition to the natural lighting, artificial lighting turned on at 0700 h in the morning 

and lights turned off at 1900 h at night. For sleep calculations, the start of the daytime was 

determined as the time of sunrise or 0700 h, depending on which occurred first; similarly the end 

of daytime was calculated as 1900 h or the time of sunset, depending on which occurred last.  

This housing facility has 20 pens in a wing, and pens have wire mesh fencing fronts such that 

monkeys in each pen could see and hear other monkeys in a number of other pens. Monkeys 

were pair-housed. Monkeys were fed Purina Monkey Chow (#5038; Ralston Purina Co., St. 

Louis, MO) once daily and given fresh fruit, vegetables, nuts and seeds to encourage foraging, as 

well as ad libitum access to drinking water.  All monkeys were observed daily for health and 

menstrual status.  All procedures were performed in accordance with the NIH Guide for the Care 

and Use of Laboratory Animals and were approved by the University of Pittsburgh Institutional 

Animal Care and Use Committee. 

3.2.2 MPTP Administration 

Prior to MPTP administration, baseline assessments of motor function and sleep were made for 

approximately a two-week period (13.2+0.5 days) for each monkey. All monkeys then 
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underwent a surgery to expose the right carotid artery and each received a right intracarotid 

injection of MPTP-HCl (Sigma Chemical Co., St. Louis MO), at a concentration of 0.14-0.16 

mg/kg (average dose=0.15±0.001 mg/kg), delivered at 1 mL/min, using previously published 

techniques [Ovadia et al., 1995; Gash et al., 1996; Grondin et al., 2002]. After surgery, animals 

were allowed to recover in quarantine for 4 days to allow for excretion of MPTP. Monkeys did 

not wear collars with activity monitors for the first two weeks after surgery to allow healing of 

the surgical incision that was made for the intracarotid injection. Activity was measured from 3-6 

weeks post-MPTP administration. 

3.2.3 Experimental design 

Group Size: Monkeys were assigned into six experimental groups (n=4-6/group). At six 

weeks post-MPTP, when stable symptoms of PD were established, monkeys were assigned to an 

experimental group, taking care to make sure the distribution of PD-like symptoms was uniform 

across the six experimental groups. In the treatment groups, each monkey received four 

intraputamenal infusions of trophic factor or vehicle at monthly intervals (see Figure 2). 

Experimental groups were treated with four monthly injections of vehicle (n=4), GDNF (450 µg; 

n=5), CDNF (450µg; n=5), CDNF (150 µg; n=6), N2 (337.5  µg; n=6), or N4 (280 µg; n=5). 

Vehicle, GDNF and CDNF were given in a 225 µL volume and N2 and N4 were given in a 337.5 

µL volume of phosphate-buffered saline (vehicle, CDNF, N2, N4) or citrate buffer (GDNF), pH 

7.4.   

Activity Monitoring: Activity was measured in each animal using an omnidirectional 

Actical accelerometer (Respironics, Phoenix, AZ) mounted on a loose-fitting collar (Primate 

Products, Immokalee, FL), using previously published methods [Sullivan et al., 2006; Hunnel et 
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al., 2006; Papailiou et al., 2008; Sullivan et al., 2010]. Monkeys adapted quickly to the collars, 

which did not interfere with activities such as feeding or sleeping. Activity monitors were set to 

collect activity counts per minute. Activity was measured for approximately two-week periods in 

each monkey prior to MPTP (13.2+0.5 days), 3-4 weeks post-MPTP (10.6+0.7 days), and 5-6 

weeks post-MPTP administration (11.0+0.4 days).   

3.2.4 Sleep Assessments 

Sleep Measurement from Actigraphic Records: Analysis parameters for defining actigraphic 

sleep were developed in a previous study in which sleep was measured by EEG and actigraphy 

and validated by infra-red videography [Herringa et al., 2009]. Sleep was defined as twelve 

minutes of continuous zero activity counts. Various sleep parameters were calculated including: 

nighttime sleep latency (time from lights off to first sleep episode overlapping with or after lights 

off), number of nighttime awakenings, total night sleep duration, morning wake latency (time 

from lights on to beginning of first wake episode after or overlapping with lights on), total 

daytime sleep duration, and number of daytime sleep bouts. 

Validation of Sleep Measurement Post-MPTP by Videography: After MPTP 

administration monkeys had reduced mobility and in order to ensure that our algorithm for 

quantifying actigraphy-defined sleep (i.e., twelve minutes of zero activity counts) was still valid 

post-MPTP, monkeys were videotaped for a twenty-four hour period by infra-red videography. 

Videotapes were manually scored for sleep behavior (i.e., monkeys sitting in a hunched sleep 

position not moving) in thirteen monkeys for at least thirty minutes of daytime sleep (detected by 

actigraphy) both before and after MPTP administration. Videographically-defined sleep was 

compared to actigraphy-defined sleep.  
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3.2.5 Assessment of Motor Function 

To confirm previously reported findings that a single, low-dose intracarotid injection of MPTP 

results in stable mild motor dysfunction [Ovadia et al., 1995, Ding et al., 2008], we assessed 

monkeys on the primate version of the Unified Parkinson’s Disease Rating Scale [the monkey 

Parkinson’s rating scale; Smith et al., 1993, Ovadia et al., 1995] once a week for 4 weeks pre-

MPTP and 6 weeks post-MPTP. Motor functions were scored from 0 (normal) to 3 (severe 

disability) in the following categories: rigidity, bradykinesia, posture, balance, tremor, and hand 

dexterity. The left side and right side were scored separately for rigidity, bradykinesia and 

tremor. The maximum score possible was 22. Two independent raters scored each videotaped 

session and assigned ratings for each video session. If variability between the two independent 

raters was greater than 15%, a third rater scored the session. Overall, inter-rater reliability was 

88.6 ± 2.9%. 

3.2.6 Statistical Analysis  

For all analyses, normality and homogeneity of variance criteria were met, and a repeated 

measures analysis of variance (ANOVA) was used to identify significant changes in each sleep 

parameter across the pre-MPTP, 3-4 weeks post-MPTP and 5-6 weeks post-MPTP periods. Post-

hoc comparisons were made using paired Student’s t-tests. A repeated measures analysis of 

variance (ANOVA) was also used to identify significant changes in each sleep parameter across 

the four quartiles across the day and if it was significant post-hoc t-tests, with bonferroni 
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corrections, were used to identify specific significant pair wise comparisons. Pearson’s 

correlation coefficients were used to calculate the relationship between daytime sleep duration 

and daytime sleep bouts and the monkey Parkinson’s rating scale score. Statistical analyses were 

performed using MATLAB (The MathWorks Inc., Natick, MA). Values are presented as means 

± SEM. P < 0.05 was considered significant. 

3.3 RESULTS 

The specificity of actigraphy-defined sleep for the current MPTP study was plotted on the plot of 

the receiver-operating characteristic (ROC) analysis from our previous study in normal monkeys 

that defined twelve minutes of zero activity as sleep (Herringa et al., 2009; Figure 15). The 

specificity for post-MPTP daytime sleep was validated using videography to determine if the 

criteria for identifying sleep remained reliable post-MPTP. Using the same criteria to identify 

sleep that had been optimal in monkeys pre-MPTP (actigraphy-defined sleep=12 min of zero 

activity counts), the specificity of post-MPTP sleep fell directly on the pre-MPTP ROC curve 

(Figure 15). 

Pre-MPTP, the average sleep duration during the day was 91.03 ± 10.16 minutes and 

the mean number of daytime sleep bouts was 4.93 ± 0.44 bouts/day. Daytime sleep duration 

increased significantly by three to four weeks post-MPTP to 210.71 ± 21.49 minutes (p<0.001; 

Figure 16A). Daytime sleep duration remained stable at five to six weeks post-MPTP (200.50 ± 

17.89 minutes, p<0.001; Figure 16A). The number of sleep bouts during the day also 

significantly increased post-MPTP to 9.97 ± 0.82 bouts/day by three to four weeks post-MPTP, 

and remained elevated five to six weeks post-MPTP at 9.80 ± 0.68 bouts/day (p<0.001; Figure 

16B). Correspondingly, the average awake duration during the day significantly decreased from 
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628.97±10.16 minutes pre-MPTP to 509.29 ± 21.49 minutes (p<0.001) three to four weeks post-

MPTP administration, and to 519.50 ± 17.89 minutes (p<0.001) five to six weeks post-MPTP 

administration (data not shown). The mean latency to wake up in the morning pre-MPTP was 

4.74 ± 1.99 minutes after lights on. At three to four weeks after MPTP administration the latency 

to wake showed a trend toward increasing to 7.79 ± 2.55 minutes (p=0.08; Figure 16C). And 

there was a significant increase (8.44 ± 2.30 minutes; p=0.05; Figure 16C) at five to six weeks 

post-MPTP administration.   

The increase in daytime sleep was apparent throughout the day after MPTP 

administration. The average daytime sleep duration during the four quarters of a day pre-MPTP 

was: first quartile: 34.70 ± 3.92, second quartile: 10.84 ± 2.06, third quartile: 18.39 ± 3.51, fourth 

quartile: 25.51 ± 3.75. Daytime sleep was greatest in the first quartile of the day, and there was 

a significant difference in the daytime sleep across the quartiles for both daytime sleep duration 

and daytime sleep bouts between the first quartile and second quartile of the day (p<0.001). 

Daytime sleep duration increased during each quartile of the day in a uniform manner by three 

to four weeks post-MPTP and stayed significantly elevated at five to six weeks post-MPTP 

(p<0.001, for all quartiles): first quartile: 72.60 ± 6.72 (2.1-fold increase), second quartile: 38.58 

± 6.00 (3.2-fold increase), third quartile: 36.10 ± 5.26 (2-fold increase), fourth quartile: 50.12 ± 

5.93 (2-fold increase). Similarly, the daytime sleep bouts increased significantly for all four 

quartiles from pre-MPTP to five to six weeks post-MPTP (p<0.001, for all quartiles): first quartile: 

1.90 ± 0.19 to 3.52 ± 0.25 bouts, second quartile: 0.70 ± 0.13 to 2.05 ±0.29 bouts, third quartile: 

1.00 ± 0.15 to 1.89 ±0.24 bouts, fourth quartile: 1.02 ± 0.13 to 2.11 ± 0.18 bouts.  

Average nighttime sleep duration pre-MPTP was 521.16 ± 16.22 minutes and the mean 

sleep bouts during the night was 18.38 ± 0.53 bouts/night. There was no change in the nighttime 

sleep duration of monkeys after MPTP administration (548.38 ± 16.11 minutes, five to six weeks 
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post-MPTP; p>0.05). The number of sleep bouts during the night also did not change post-MPTP 

(18.11 ± 0.57 bouts/night, five to six weeks post-MPTP; p = 0.23). Similarly, there were no 

significant changes to the nighttime awake duration and the number of wake bouts during the 

night at any time after MPTP administration.  

The Monkey Parkinson’s rating scale was used to determine the severity of motor 

impairments after MPTP administration. There was a significant correlation between daytime 

sleep duration 5-6 weeks post-MPTP administration and the rating scale score (r=0.31, p=0.05; 

Figure 17).  
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Figure 15.  The receiver-operator characteristic (ROC) curves with varying duration 

thresholds for sleep criteria for nighttime sleep (open triangles) and daytime sleep 

(closed circles) as measured in a normal population of rhesus monkeys by 

actigraphy, EEG and validated by videography. The red circle indicates the 

specificity for identifying sleep from actigraphy data during the daytime in monkeys 

in this study post-MPTP. 
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Figure 16. A. Mean daytime sleep duration, B. mean daytime sleep bouts, and C. mean latency to 

wake, pre-MPTP (open bar) and at 3-4 weeks and 5-6 weeks post-MPTP (closed bars). Asterisks 

indicate a significant difference from pre-MPTP values (p<0.001). Plus sign indicates a significant 

trend from pre-MPTP values (p=0.08)  
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Figure 17. Correlation between, monkey Parkinson’s rating scale score and 

daytime sleep duration post-MPTP. Vehicle (open diamond), 450 µg GDNF (open 

square), 450 µg CDNF (open circle), 150 µg CDNF  (closed circle), 337.5 µg N2 

(closed square), 280 µg N4 (closed diamond) 
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3.4 DISCUSSION 

 

Monkeys that received a single low-dose unilateral MPTP injection had a significant increase in 

daytime sleepiness measured by actigraphy at two weeks after the DA lesion, suggesting that this 

primate model will be useful for future studies aimed at understanding the role of DA in the 

development of this prevalent non-motor symptom that occurs in the early stages of PD. This 

increase in daytime sleepiness occurred throughout the day. Interestingly, there was no 

accompanying decrease in nighttime sleep in this model. Thus, the sleep changes apparent in this 

low dose, unilateral MPTP nonhuman primate model are similar to what is seen clinically in 

early stage PD where there is a decrease in daytime sleepiness prior to impairment of nighttime 

sleep [Schulte et al., 2011; Knie et al., 2011; Videnovic et al., 2012 ]. 

Actigraphy allows assessment of sleep in more natural conditions than are easily 

measured by EEG, such as in this study where monkeys were housed in group-living pens with a 

social partner. However, we were concerned that the increase in daytime sleepiness that was 

measured by actigraphy may be confounded by the motor problems that developed subsequent to 

MPTP. To address this concern, thirteen monkeys were videotaped for a twenty-four hour time 

period using a camera with an infrared light source (allowing visualization of monkeys during 

both the day and night) and the efficiency of actigraphically-defined sleep was compared to the 

human observer-rated sleep. Results of this analysis were also compared with the results from a 

previous study using EEG, actigraphy and infrared videography to define sleep in normal rhesus 

monkeys [Herringa et al., 2009]. Receiver-operator curve (ROC) analysis was used to determine 

the efficiency and specificity of actigraphy-defined sleep compared to EEG-defined sleep in the 

previous study, and the specificity of actigraphy-defined sleep for the current MPTP study fell 
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right within the range of the previous study in normal monkeys (see Figure 11), providing strong 

evidence that the 2.5-fold increase in daytime sleep occurring soon after MPTP was not the result 

of an increase in false positive sleep measured by actigraphy.  

There was a greater than two-fold increase in daytime sleep duration and number of 

daytime sleep bouts three to four weeks after MPTP. Similarly, the latency to wake up in the 

morning was also significantly increased by about two-fold at five to six weeks after MPTP. 

Daytime sleepiness was directly correlated with the severity of PD motor symptoms. This is 

strong evidence that only a moderate decrease in overall brain dopamine leads to increase in 

daytime sleepiness, corresponding to similar observations of increased daytime sleepiness 

preceding motor symptoms at PD onset [Abbott et al., 2005; Gao et al., 2011].  

There have been reports of increased daytime sleepiness reported in animal models of PD 

after large, bilateral experimental lesions of the nigrostriatal dopamine pathway [Hartmann et al., 

1971; Garcia et al., 2005; Yi et al., 2007; Friedman et al., 2008; McDowell et al., 2010, 2012]. 

However, in this study, we show that a unilateral relatively mild lesion to the DA pathway is 

sufficient to produce about a two-fold increase in daytime sleep duration, sleep bouts and latency 

to wake [Subramanian et al., 2012]. Not surprisingly, the increase in daytime sleepiness found in 

this study is lower than reported in a previous study in monkeys where a larger dose of MPTP 

(0.5 mg/kg MPTP intravenous injections until progressive and severe parkinsonism was 

established) [Barraud et al., 2009] led to a > 95% loss of dopamine and dopamine metabolites 

was associated with a five-fold increase in daytime sleep duration.  

DA plays a very complex role in the regulation of sleep that is not well characterized. 

Patients taking dopamine agonists have reported sudden onsets of sleepiness [Frucht et al., 

1999], but amphetamines that are known to increase the concentration of DA promote 
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wakefulness [Jankovic, 2002]. The effects of dopamine on the regulation of sleep appear to be 

dependent upon the type of DA drug used, the concentration of specific receptor subtypes for 

dopamine and the different regional distributions of these receptors. Many dopamine agonists, 

such as pramipexole and ropinirole, have been directly implicated in causing daytime sleepiness 

[Frucht et al.,1999; Ondo et al., 2001; Montastruc et al., 2001]. However, other drugs like 

selegiline and amantadine, that prolong the effect of dopamine, can lead to delayed sleep onset if 

they are taken in the latter part of the day [Videnovic et al., 2012].  This dichotomy of the effects 

of DA on sleep could be due to their separate actions on two subtypes of DA receptors: D1-like 

and D2-like dopamine receptors. Low doses of dopamine may lead to increased sleepiness by 

acting through D2-like receptors, while high concentrations of DA might be acting through D1-

like receptors to increase wakefulness [Jankovic, 2002; Monti et al., 2007].  Alternatively, 

increased daytime sleepiness might be a characteristic of the disease itself, due to degeneration 

of other sleep modulating circuits in the lower brain regions [Braak et al., 2002; Hawkes et al., 

2010; Knie et al., 2011; Schulte et al., 2011; Videnovic et al., 2012]. However, our data suggests 

that there is increased daytime sleepiness after low dopamine due to MPTP lesions. This implies 

either that dopamine, itself, is having effects on sleep or that there are very fast compensatory 

changes that take place in the sleep-regulating circuits as a consequence to low dopamine. MPTP 

is also known to cause depletion of other monoamines, like NA [Forno, 1996; Fornai et al., 

2007], and serotonin [Perez-Otano et al., 1991; Russ et al., 1991].  A combination of lower brain 

neuro-modulatory systems, including the NA system, are thought to act by a common pathway to 

excite serotonin neurons leading to arousal [Brown et al., 2002].  These changes could also 

partly explain the development of sleep problems that is seen in the MPTP-treated primate model 
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[Barraud et al., 2009; Verhave et al., 2011] and  MPTP-treated mouse models of PD [Monaca et 

al., 2004; Laloux et al., 2007, 2008; Mc Dowell et al., 2010, 2012]. 

PD is also associated with an increased incidence of nighttime sleep problems including 

insomnia, rapid eye movement (REM) sleep behavioral disorder (RBD) and sleep related 

breathing disorders (SRBD’s) [Lees et al., 1988; Arnulf et al., 2000; Schulte et al., 2011]. 

However, in our low-dose MPTP monkey model we did not observe any changes in nighttime 

sleep. Interestingly, clinical studies have reported no relationship between nighttime sleep and 

daytime sleep problems in PD [Rye et al., 1999; Arnulf et al., 2002; Arnulf et al., 2005].  And, 

although some studies suggest that excessive daytime sleep may precede the diagnosis of PD 

[Abbott et al., 2005; Gao et al., 2011], nighttime sleep problems tend to occur later in the disease 

process [Videnovic et al., 2012]. We are using an early stage model of PD, thus it may not be 

surprising that we see only see changes daytime sleep in this model. In monkey studies using 

more severe DA lesions nighttime sleep problems have been reported [Barraud et al., 2009].  

In this study we were not able to examine sleep during the first two weeks post-MPTP 

and how changes in daytime sleepiness developed relative to the development of motor 

impairments because monkeys could not wear collars with accelerometers during the period of 

time the surgical incision was healing post-MPTP. However, given that we found increased 

daytime sleep as soon as we were able to measure sleep post-MPTP, and the fact that previous 

clinical studies have reported that the incidence of longer daytime napping in a nonclinical 

population was associated with future risk of PD occurrence [Abbott et al., 2005; Gao et al., 

2011], we believe that the low dose unilateral MPTP monkey model of PD will be useful for 

studying whether it is the moderate loss of dopamine that leads to increased daytime sleepiness 

that precedes the development of motor impairments in PD. To address this issue, monkeys 
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could wear activity monitors sewn into a pocket in a jacket, rather than housed in a collar, 

allowing activity monitors to be put back on monkeys immediately after administration of 

MPTP.  

It is important to recognize that sleep was assessed in this study using an indirect 

measurement of changes in the pattern of motor behavior by actigraphy. Sleep assessment by 

actigraphy has become relatively common in clinical studies over the last 15 years [Sadeh et al., 

1995, 2011; Ancoli-Israel et al., 2003; Herringa et al., 2009]. Although there are drawbacks to 

measuring sleep by actigraphy rather than by continuous electroencephalography (EEG), such as 

an inability to discern specific sleep stages, there are also important benefits including that 

actigraphy is non-invasive and can easily be adapted to home environments [Ancoli-Israel et al., 

2003; Sadeh et al., 1995, 2002, 2011]. The same is true for nonhuman primates. Sleep has been 

studied by EEG in freely-moving monkeys [Almirall et al., 1999; Barraud et al., 2009], however 

this required surgery to implant electrodes. Actigraphy on the other hand, provides an indirect 

measure of sleep without any invasive procedure, and thus monitoring the natural state of sleep 

in monkeys without significant manipulations that may, in of themselves, influence to the sleep 

behavior [Sadeh et al., 1995, 2002, 2011].  

In summary, we show for the first time that a mild reduction in brain dopamine levels 

induced by a single unilateral MPTP injection is sufficient to cause changes in sleep pattern and 

lead to excessive daytime sleepiness in monkeys. The neural circuits that underlie excessive 

daytime sleepiness are currently unknown. Future studies with this animal model can be used to 

identify the specific neural circuits that underlie arousal and the role of dopamine in these 

circuits that could lead to this sleep dysfunction.  Further this animal model can also be used to 

test new therapies for daytime sleep disorders.    
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4.0  EFFECTS OF GDNF, CDNF, N2 AND N4 ON DAYTIME SLEEP IN MPTP-

TREATED MONKEYS 

 

4.1 INTRODUCTION 

 

Non-motor symptoms in PD are under-recognized and can be an important cause of reduced 

quality of life, even more than the motor impairments in PD [reviewed in Knie et al., 2011; 

Videnovic et al., 2012]. In a recent survey, it was found that in more than 50% of cases of PD 

there is under-reporting of non-motor symptoms associated with PD and daytime sleepiness was 

the most frequently undeclared non-motor symptom (52.4% of patients) [Chaudhuri et al., 2010]. 

An increased incidence of accidents due to increased daytime sleepiness in PD patients has also 

been reported [Ondo et al., 2001; Frucht et al., 1999]. Many PD patients show evidence of 

increased daytime sleepiness before the motor symptoms of PD develop [Gjerstad et al., 2006; 

Dhawan et al., 2006; Iranzo 2011]. And, increased daytime sleepiness has been reported to be 

predictive of future development of PD [Abbott et al., 2005; Gao et al., 2011].  

The treatment and management of increased daytime sleepiness is thus an important 

therapeutic goal that needs to be addressed by a comprehensive plan in order to improve the 
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quality of life of PD patients [Pal et al., 1999; Knie et al., 2011]. Coming up with effective 

treatments requires an understanding of the possible mechanisms underlying increased daytime 

sleepiness. The mechanisms that lead to hypersomnia during the day is of prime importance to 

both sleep medicine and basic research as industrial societies continue to look for ways to 

increase daytime productivity and reduce fatigue [Frucht et al., 1999; Brodsky 2003; Gjerstad et 

al., 2006; Schulte et al., 2011]. The presence of excessive daytime sleepiness in PD has triggered 

research to identify the role of DA in regulating sleep and to find effective treatments for it 

[Jankovic, 2002, see Section 3.4 for more detailed discussion on role of DA in sleep].  

There are many wakefulness-promoting drugs currently available for treating daytime 

sleepiness. These drugs are thought to modulate dopamine release but the exact mechanisms of 

action are not established. However, most of these drugs have a common feature of increasing 

extracellular dopamine concentration in structures associated with arousal, like nucleus 

accumbens [Boutrel et al., 2004; Murillo-Rodríguez et al., 2007; Zolkowska et al., 2009]. 

Modafinil, a wakefulness-promoting drug, has been shown to increase extracellular dopamine in 

the nucleus accumbens and increase wakefulness in rats [Murillo-Rodríguez et al., 2007; 

Zolkowska et al., 2009]. Modafinil was used successfully in the treatment of excessive daytime 

sleepiness for PD in two small clinical trials [Hogl et al., 2002; Adler et al., 2003; Korczyn, 

2006]. However, Modafinil failed in a larger double-blind study to improve daytime sleepiness 

[Ondo et al., 2005].  

A number of secreted proteins and signaling molecules during development (growth 

hormone releasing hormone (GHRH), nerve growth factor (NGF), brain-derived neurotrophic 

factor (BDNF), GDNF, and interleukin-1, (IL-1)) are thought to play a role in sleep regulation 

[Sassin et al., 1969; Obal et al., 1988; Kerkhofs et al., 1993; Kapas et al., 1996; Faraguna et al., 
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2008; Kreuger et al., 1999; Kushikata et al., 2000]. Injection of these (GHRH, NGF, BDNF, 

GDNF, IL-1) is known to cause an increase of either rapid eye movement sleep or non-rapid eye 

movement sleep, or both. Many sleep regulatory substances like interleukins are known to 

enhance GDNF release.  GDNF has been shown to regulate sleep in rats and rabbits [Kushikata 

et al., 2000].  We hypothesized that NTF’s may restore problems of sleep and arousal in PD and 

in animal models of PD. There have been many recent advances in the development and use of 

NTF’s as treatment options for PD [Lindholm et al., 2007; Bjorklund et al., 2009; Marks et al., 

2008; Marks et al., 2010; Vastag 2010; Aron et al., 2011]. However, the use of trophic factors to 

improve sleep problems in both patients and animal models of PD has not been investigated thus 

far. NRTN belongs to the GDNF family, which has been studied most extensively with regards 

to a potential therapeutic role in PD (see Chapter 1 for review), and CDNF is a newly discovered 

trophic factor that has been shown to be more effective than GDNF in rodent models of PD 

[Lindholm et al., 2007, 2010; Voutilainen et al., 2011]. The experiments described here were 

designed to test if two variants of NRTN (N2 and N4) and CDNF were effective in restoring 

normal daytime sleep in a primate model of PD. Reported here, for the first time, is evidence that 

mutant variants of NRTN, N2 and N4, are effective in restoring some aspects of sleep 

dysfunction in a monkey model of PD.  
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4.2 MATERIALS AND METHODS 

4.2.1 Animals 

Twenty eight female rhesus macaques (Macaca mulatta), 16-20 years of age (mean age: 

18.3+0.2 years) were housed in social living pens (1.6m x 2.3m x 3.5m) that had multiple 

perches, toys, and a thick layer of sawdust bedding with overhead skylights that provided natural 

lighting. In addition to the natural lighting, artificial lighting turned on at 0700 h in the morning 

and lights turned off at 1900 h at night. For sleep calculations, the start of the daytime was 

determined as the time of sunrise or 0700 h, depending on which occurred first; similarly the end 

of daytime was calculated as 1900 h or the time of sunset, depending on which occurred last.  

This housing facility has 20 pens in a wing, and pens have wire mesh fencing fronts such that 

monkeys in each pen could see and hear other monkeys in a number of other pens. Monkeys 

were pair-housed. Monkeys were fed Purina Monkey Chow (#5038; Ralston Purina Co., St. 

Louis, MO) once daily and given fresh fruit, vegetables, nuts and seeds to encourage foraging, as 

well as ad libitum access to drinking water.  All monkeys were observed daily for health and 

menstrual status.  All procedures were performed in accordance with the NIH Guide for the Care 

and Use of Laboratory Animals and were approved by the University of Pittsburgh Institutional 

Animal Care and Use Committee. 

4.2.2 MPTP Administration 

Prior to MPTP administration, baseline assessments of motor function and sleep were made for 

approximately a two-week period (13.2+0.5 days) for each monkey. All monkeys then 
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underwent a surgery to expose the right carotid artery and each received a right intracarotid 

injection of MPTP-HCl (Sigma Chemical Co., St. Louis MO), at a concentration of 0.14-0.16 

mg/kg (average dose=0.15±0.001 mg/kg), delivered at 1 mL/min, using previously published 

techniques [Ovadia et al., 1995; Gash et al., 1996; Grondin et al., 2002]. After surgery, animals 

were allowed to recover in quarantine for 4 days to allow for excretion of MPTP. Monkeys did 

not wear collars with activity monitors for the first two weeks after surgery to allow healing of 

the surgical incision that was made for the intracarotid injection. Activity was measured from 3-6 

weeks post-MPTP administration. 

4.2.3 Experimental design 

Group Size: Monkeys were assigned into six experimental groups (n=4-6/group). At six 

weeks post-MPTP, when stable symptoms of PD were established, monkeys were assigned to an 

experimental group, taking care to make sure the distribution of PD-like symptoms was uniform 

across the six experimental groups. In the treatment groups, each monkey received four 

intraputamenal infusions of trophic factor/vehicle at monthly intervals (see Figure 2). 

Experimental groups were treated with four monthly injections of vehicle (n=4), GDNF (450 µg; 

n=5), CDNF (450µg; n=5), CDNF (150 µg; n=6), N2 (337.5  µg; n=6), or N4 (280 µg; n=5). 

Vehicle, GDNF and CDNF were given in a 225 µL volume and N2 and N4 were given in a 337.5 

µL volume of phosphate-buffered saline (vehicle, CDNF, N2, N4) or citrate buffer (GDNF), pH 

7.4.   

Activity Monitoring: Activity was measured in each animal using an omnidirectional 

Actical accelerometer (Respironics, Phoenix, AZ) mounted on a loose-fitting collar (Primate 

Products, Immokalee, FL), using previously published methods [Sullivan et al., 2006; Hunnel et 
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al., 2006; Papailiou et al., 2008; Sullivan et al., 2010]. Monkeys adapted quickly to the collars, 

which did not interfere with activities such as feeding or sleeping. Activity monitors were set to 

collect activity counts per minute. Activity was measured for approximately two-week periods in 

each monkey prior to MPTP (13.2+0.5 days), 3-4 weeks post-MPTP (10.6+0.7 days), and 5-6 

weeks post-MPTP administration (11.0+0.4 days).   

 

NTF Administration: Many trophic factors and pharmacological agents have “inverted 

U” dose response curves, with lower efficacy at both lower and higher concentration levels 

[Gash et al., 1995, 1996; Zhang et al., 1997], and this was taken into consideration when 

choosing doses of NTFs to test in this study. The CDNF doses that were utilized for the current 

study were chosen based on previous work demonstrating that a 450 µg dose of GDNF, 

delivered intraputamenally, was effective in improving DA function in MPTP-treated monkeys 

[Ovadia et al., 1995; Gash et al., 1996; Grondin et al., 2002]. We chose to test this same dose of 

CDNF in monkeys in one experimental group. However, CDNF had been shown to be more 

effective than GDNF in a rodent model of PD [Lindholm et al., 2007], so there was concern that 

if the same was true for monkeys we may be on the diminishing slope in an “inverted U” dose 

response curve. Thus, a lower dose of CDNF was also tested (150 µg). A dose of N2 (337.5  µg) 

that was the molar equivalent of the 450 µg dose of GDNF, was tested. N4 was less soluble than 

N2 and hence a 280 µg dose, that could be dissolved in the same volume as the N2 solutions 

tested was used. Monkeys were sacrificed immediately following the fourth infusion to compare 

the actual distribution of trophic factors within the brain and also for post infusion biochemical 

analysis.    
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4.2.4 Sleep function assessments  

Analysis parameters for defining actigraphic sleep were developed in a previous study in which 

sleep was measured by EEG and actigraphy and validated by infra-red videography [Herringa et 

al., 2009]. Sleep was defined as twelve minutes of continuous zero activity counts. Various sleep 

parameters were calculated including: nighttime sleep latency (time from lights off to first sleep 

episode overlapping with or after lights off), number of nighttime awakenings, total night sleep 

duration, morning wake latency (time from lights on to beginning of first wake episode after or 

overlapping with lights on), total daytime sleep duration, and number of daytime sleep bouts. 

4.2.5 Assessment of Motor Function 

To confirm previously reported findings that a single, low-dose intracarotid injection of MPTP 

results in stable mild motor dysfunction [Ovadia et al., 1995, Ding et al., 2008], we assessed 

monkeys on the primate version of the Unified Parkinson’s Disease Rating Scale [the monkey 

Parkinson’s rating scale; Smith et al., 1993, Ovadia et al., 1995] once a week for 4 weeks pre-

MPTP and 6 weeks post-MPTP. Motor functions were scored from 0 (normal) to 3 (severe 

disability) in the following categories: rigidity, bradykinesia, posture, balance, tremor, and hand 

dexterity. The left side and right side were scored separately for rigidity, bradykinesia and 

tremor. The maximum score possible was 22. Two independent raters scored each videotaped 

session and assigned ratings for each video session. If variability between the two independent 

raters was greater than 15%, a third rater scored the session. Overall, inter-rater reliability was 

88.6 ± 2.9%. 
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4.2.6 Statistical Analysis  

For all analyses, normality and homogeneity of variance criteria were met, and a paired t-test 

was used to identify significant changes in each sleep parameter across the post-MPTP and post-

infusion three periods. Pearson’s correlation coefficients were used to calculate the relationship 

between latency to wake and the post-mortem DA cell counts. Statistical analyses were 

performed using MATLAB (The MathWorks Inc., Natick, MA). Values are presented as means 

± SEM. P < 0.05 was considered significant. 

4.3 RESULTS 

After three months of vehicle infusion average sleep duration during the day was 242.95 ± 29.57 

minutes and the mean number of daytime sleep bouts was 11.48 ± 0.95 bouts/day, which was not 

significantly different from the post-MPTP values for the vehicle-treated group (daytime sleep 

duration: 245.76 ± 34.11 minutes; daytime sleep bouts: 11.21 ± 1.28 bouts/day). There was also 

no change in the daytime sleepiness after three months of NTF treatment compared to post-

MPTP for the groups receiving 450 µg CDNF (Sleep duration: 145.72 ± 19.63 to 121.46 ± 39.18 

minutes, p=0.17; daytime sleep bouts: 8.42 ± 1.25 to 6.96 ± 1.94 bouts/day, p=0.13), or 150 µg 

CDNF (Daytime sleep duration: 186.96 ± 38.57 to 199.93 ± 39.98 minutes, p=0.16; daytime 

sleep bouts: 9.87 ± 1.77 to 10.18 ± 1.88 bouts/day, p=0.32).  For the N2 treatment group again 

there was a trend for reduction in daytime sleep bouts, but not for daytime sleep duration, from 

post-MPTP to post-infusions (daytime sleep duration: 197.28 ± 41.81 to 170.89 ± 50.66 minutes, 
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p=0.25; daytime sleep bouts: 9.61 ± 1.59 to 7.75 ± 1.52 bouts/day, p=0.08). However, the mean 

latency to wake up in the morning significantly decreased from 13.50 ± 4.80 minutes after lights 

on to 2.50 ± 5.20 minutes before lights on for the N2 treatment group, p=0.05. Daytime sleep 

duration decreased significantly after three months of N4 infusion from 272.60 ± 51.10 minutes 

to 229.81 ± 52.94 minutes (p=0.02 Figure 18A). And, daytime sleep bouts showed a trend 

towards reduction after three months of N4 infusion from 272.60 ± 51.10 minutes to 229.81 ± 

52.94 minutes (p=0.06; Figure 18B). The mean latency to wake up in the morning also 

significantly decreased from 16.27 ± 2.26 minutes after lights on to 5.77 ± 6.21 minutes before 

lights on for the N4 treatment group (p=0.02; Figure 18C). For all monkeys, the mean time to 

wake up in the morning post-infusion three was significantly predictive of the number of 

dopamine cells present in post-mortem brain tissue (r=-0.479, p=0.005; Figure 19).   
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Figure 18. A. Mean daytime sleep duration, B. mean daytime sleep bouts, and C. mean 

latency to wake during the pre-MPTP period (open bars) ,post-MPTP (black bars) and 

post-infusion with N4 (grey bars). Asterisks indicate a significant difference between two 

time periods, as indicated by horizontal lines (p<0.05). A plus sign indicates significant 
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Figure 19. Correlation between, cell counts and latency to wake in the morning.  

Vehicle (open diamond), 450 µg GDNF (open square), 450 µg CDNF (open circle), 

150 µg CDNF  (closed circle), 337.5 µg N2 (closed square), 280 µg N4 (closed 

diamond) 
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4.4 DISCUSSION 

Monkeys that received a single low-dose unilateral MPTP injection had a significant increase in 

daytime sleepiness (see Chapter 3). After treatment with neurotrophic factor infusions for three 

months, the daytime sleep duration in monkeys receiving three infusions of N4 decreased 

significantly. With both N2 and N4 there was a trend for a decrease in number of daytime sleep 

bouts after 3 months of treatment, and the latency to wake up in the morning decreased 

significantly with both N2 and N4 treatment after three monthly infusions. Thus, this study 

shows for the first time in an animal model of PD that NTF’s can improve daytime sleep 

dysfunction. 

  The improvement in sleep seen after N2 and N4 infusions, but not CDNF and GDNF 

could reflect the fact that N2 and N4 have the widest distribution within the brain of the trophic 

factors we tested [Runeberg, Saarma and Penn, unpublished data]. In this study, all of the NTF 

infusions were given in the putamen, that lies in close proximity to the nucleus accumbens, a 

structure implicated in arousal mechanisms [Murillo-Rodríguez et al., 2007]. Increased release of 

dopamine in the nucleus accumbens has been shown to improve wakefulness and arousal levels 

in rodents [Robbins et al., 1997; Murillo-Rodríguez et al., 2007; Monti et al., 2007].  Planned 

analyses with the post-mortem brains from this study will look at both the tissue distribution of 

N2 and N4, as well as measure tissue levels of DA, TH, HVA, and DOPAC in the accumbens. A 

higher level of DA and DA metabolism, coupled with increased N2 and N4 staining in 

accumbens compared to other NTF’s, would support the hypothesis that NRTN variants reached 

the accumbens in higher concentration than the other NTFs tested in this dissertation and that 

dopamine release was increased after N2 and N4 treatment. 
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The loss of DA-containing neurons from midbrain SNpc to the striatum is well 

documented after MPTP administration (see Chapter 1.4). These DA neurons receive direct 

projections from serotonin neurons originating in the dorsal raphe nucleus. SNpc neurons also 

project back to the dorsal raphe nucleus [Forno, 1996; Fornai et al., 2007; Monti et al., 2007]. 

The loss of projections from SNpc neurons to the raphe nucleus after MPTP could potentially 

lead to changes in the activity of serotonin neurons post-MPTP. Several studies have also shown 

neuronal loss and Lewy body formation in the serotonergic neurons in the dorsal raphe nucleus 

in PD [Ohama et al., 1976; Huot et al., 2011,2013]. According to the Braak staging of PD, 

changes to the raphe nucleus occur before DA loss in midbrain and could possibly play a role in 

the development of sleep problems that precede the presentation of motor symptoms in PD 

[Braak et al., 2003, 2006; Hawkes et al., 2010]. Serotonin levels in the striatum, and other 

regions of the brain, are indeed significantly reduced in PD [Kish et al., 2008, Huot et al., 2013]. 

Similarly, reduced serotonin levels in the striatum of MPTP-treated primates have been reported 

[Perez-Otano et al., 1991; Russ et al., 1991]. After N2 and N4 infusions, there could be 

restoration and recovery of function in DA neurons in SNpc that project to and receive 

projections from serotonergic raphe neurons. This, in turn, could restore the homeostasis of 

serotonin neurons that are implicated in sleep. Alternatively, N2 and N4 may have diffused far 

enough to directly provide trophic support to serotonin neurons [Ducray et al., 2006]. Planned 

analyses of the post-mortem brain tissue collected in this study will measure tissue levels of 

serotonin and its metabolites, as well as other neurotransmitters including norepinephrine. 

Improved levels of serotonin correlates strongly with better response to levodopa therapy in PD 

patients [Huot et al., 2011, 2013]; a similar change observed in these monkeys could provide 

evidence for improvement of sleep problems through non-dopaminergic pathways. 
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  There is a clear loss of locus coeruleus neurons in PD patients and the loss is nearly as 

severe as that is seen with DA neurons [Braak et al., 2000, 2003, 2004, 2006; Fornai et al., 

2007]. This loss is again thought to precede the DA loss according to the Braak staging of PD. In 

a recent study, a significant reduction in noradrenaline (NA) within motor thalamic regions in 

PD patients was reported [Pifl et al., 2012]. These decreased levels of NA in PD patients could 

play a key role in the origin of sleep and arousal problems in PD. NA plays a role in the 

regulation of rapid eye movement sleep through central adrenergic receptors and inhibition of 

NA release is thought to play a role in narcolepsy, a disorder characterized by excessive daytime 

sleepiness [Brown et al., 2002]. Also, in PD animal models, loss of NA neurons enhanced the 

parkinsonian symptoms and increased the loss of DA neurons in animal models [Fornai et al., 

2007]. Pifl et al., [2012, 2013] also has reported that in monkeys after MPTP treatment only the 

monkeys that had significant reductions in NA in thalamic regions had parkinsonian symptoms, 

while the asymptomatic monkeys after MPTP did not have any changes in NA levels in 

thalamus. Although the reduction of NA levels and the loss of NA neurons in the locus coeruleus 

has been reported in PD patients, the consequences of this loss has received little attention 

[reviewed in, Forno, 1996; Fornai et al., 2007]. There are reports that loss of locus coeruleus 

neurons containing NA can exacerbate the symptoms and motor dysfunction in PD 

[Rommelfanger et al., 2007; Fornai et al., 2007]. Planned analyses of post-mortem brain tissue 

will also examine NA levels in the locus coeruleus of the monkeys in the present study. 

Some studies have reported loss of hypocretin neurons, that are involved in sleep 

regulation, in PD patients [Thannical et al., 2007]. Moreover, a combination of orexin/hypocretin 

system, the NA system and the histamine system might act though a common pathway to excite 
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serotonin neurons leading to arousal [Brown et al., 2002]. Impairment of this combined 

neuromodulatory system in PD could lead to an increase in daytime sleepiness.  

N4 was generated from NRTN by adding the tail region of PSPN to the NRTN molecule 

[Runeberg, Saarma and Penn, unpublished data]. PSPN is another trophic factor that does not 

bind to heparin. N2 and N4 are mutant molecules about which very little is known with respect 

to the receptors through which they might act or the signaling cascades they might activate. 

Power analyses after completion of this study indicate that both CDNF and the two variants of 

the NRTN molecule are likely to have similar effect sizes. Thus, it is possible that N2 and N4, 

with slightly greater capacity to diffuse to brain regions outside the putamen, were effective in 

reversing daytime sleep abnormalities that developed post-MPTP, but that CDNF would be 

effective also if it reached the critical brain regions impacting sleep. 

In summary, this is the first report of neurotrophic factor treatment leading to 

improvement of sleep in an animal model of PD. NTF’s present a promising alternative to 

current treatments, like L-Dopa, to treat both PD-associated motor and non-motor symptoms, 

like sleep dysfunction. The mechanism through which NTF’s act to restore sleep function in 

neural circuits should be investigated in future experiments in both animal studies and in 

patients. Moreover, future studies with NTF’s should consider their impact on both motor and 

non-motor symptoms of the disease. 

 



 122 

5.0  GENERAL DISCUSSION 

 

5.1 DISTRIBUTION OF NTFS IN BRAIN TISSUE 

There has been tremendous progress in the utilization of neurotrophic factors to test their 

effectiveness for treating PD since the discovery of GDNF and its DA neuron survival-

promoting effects [Lin et al., 1993]. The experiments using GDNF fuelled a huge number of 

investigations into neurotrophic factors, their mechanism of action for neuronal survival, and 

their role in counteracting age-related deficits that develop in the central nervous system. Other 

members of the GDNF family of NTFs were later discovered, including neurturin (NTRN) 

[Kotzbauer et al., 1996]. The degeneration of DA neurons is a hallmark of PD (see Section 1.1). 

Most GDNF family ligands have the property of promoting DA neuron survival and led to its 

testing as a treatment for PD [Saarma et al., 2003]. GDNF has been shown to improve PD-like 

symptoms in animal models of the disease both in rodents [Hoffer et al., 1994; Tomac et al., 

1995; Beck et al., 1995; Bowenkamp et al., 1995; Bjorklund et al., 1997] and in primates [Gash 

et al., 1996; Zhang et al., 1997; Connor et al., 1998]. The beneficial effects of GDNF in animals 

was found to depend on a number of factors, including the dose used and tissue distribution 

[Zhang et al., 1997; Grondin et al., 1998]. New techniques for delivery of NTFs to facilitate 
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distribution of bioactive molecules began to be explored early [Grondin et al., 1998, 2002, 

2003].  

  The issue of poor tissue diffusion of NTF’s became more apparent with the first 

experiments using GDNF in humans [Kordower et al., 1999]. The distribution of GDNF within 

the brain has been a major roadblock for converting the therapeutic use of NTF’s for treating PD 

from laboratory animals to humans in the clinic because NTF’s have much further to diffuse in 

larger human brains. A number of phase I and phase II clinical trials have since been conducted 

using GDNF [Nutt et al., 2003; Gill et al., 2003; Patel et al., 2005; Slevin et al., 2005; Lang et 

al., 2006]. In all these clinical trials, GDNF was not as efficient as when it was used in 

parkinsonian animal models [Hoffer et al., 1994; Beck et al., 1995; Bowenkamp et al., 1995; 

Opacka-Juffry et al., 1995; Tomac et al., 1995; Gash et al., 1995,1996; Hou et al., 1996; Martin 

et al., 1996; Schults et al., 1996; Bjorklund et al., 1997]. One of the main reasons for the poor 

effectiveness of GDNF in clinical trials was attributed to the poor distribution in the brain 

parenchyma [Gash et al., 2005; Barker, 2006, 2009; Evans et al., 2008; Deierborg et al., 2008]. 

Many members of the GDNF family of ligands, including GDNF and NRTN, have been shown 

to bind with  high affinity to heparin and heparan sulphate [Rickard et al., 2003; Rider, 2006]. 

Heparan sulfate is a ubiquitous acidic polysaccharide that is present in the extracellular matrix 

and on cell surfaces. It acts as a receptor and regulates a number of biological actions of GDNF 

and NRTN, including during neuronal development [Saarma et al., 2003]. There is a need for 

highly localized concentrations of many of these NTF’s during development and binding to 

heparan sulfate could provide a mechanism that ensures a high concentration of NTF’s at the site 

of developing neurons [Rider, 2006]. It has also been shown that the binding of GDNF to 

heparan sulfate prevents its proteolytic degradation and thus can prolong its action [Piltonen et 
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al., 2009]. Moreover, the heparin binding property of GDNF has been shown to be important in 

mediating the optimal neuroprotective effect of GDNF; truncated GDNF that does not bind to 

heparan sulfate and diffuses widely in brain parenchyma, does not have improved efficacy 

[Piltonen et al., 2009].  

Meanwhile, a search also began for a novel trophic factor that does not bind to heparan 

sulphate and is neurotrophic to DA neurons. CDNF was discovered using a bioinformatics 

approach [Lindholm et al., 2007]. CDNF was found to be both neuroprotective and 

neurorestorative in a 6-OHDA rat model of PD [Lindholm et al. 2007]. CDNF distributes to a 

larger area than GDNF [Voutilainen et al. 2011]. CDNF also was shown to protect the 

nigrostriatal DA system in a MPTP mouse model [Airavaara et al., 2012]. In this dissertation, 

CDNF was tested for effectiveness of NTF support to DA neurons in a primate MPTP model of 

PD [Langston et al., 1984; Bankiewicz et al., 1986; Bergman et al., 1990; Smith et al., 1993; 

Benazzouz et al., 1993; Ovadia et al., 1995; Gash et al., 1996; Bezard et al., 2001; Emborg, 

2007; Bove et al., 2012]. Shown in this dissertation for the first time, CDNF is effective in 

rescuing DA neurons and motor deficits a primate model of PD. The work undertaken here used 

two doses of CDNF, based on the previous effective dose of GDNF tested in primates [Zhang et 

al. 1997; Grondin et al. 1998] and the rodent data that suggested that CDNF was more effective 

than GDNF [Lindholm et al. 2007; Voutilainen et al. 2011; Airavaara et al., 2012]. The low dose 

of CDNF (150 µg) was effective in improving the motor symptoms of PD, but not the higher 

dose of CDNF (450 µg) that was tested. Thus, CDNF appears to follow the classic “inverted u-

shape curve” for dose effectiveness (discussed in detail in Section 5.3, ‘Optimal dose and dosing 

regimen’). The low-dose CDNF treatment led to significant improvements in the monkey 

Parkinson’s rating scale score after each infusion. Also, the low-dose CDNF treatment was able 
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to rescue fine motor function measured using mMAP, such that monkeys that had stopped 

working using the left hand after MPTP started working again after the low-dose CDNF 

infusions. With the ability of CDNF to rescue both gross motor and fine motor functions, CDNF 

has significant potential as a treatment option for PD patients.  

 More recently, the same group that discovered CDNF developed NRTN variants with 

point mutations in the site of the molecule that putatively binds to heparin and heparan sulphate, 

to test the importance of its heparin and heparan sulphate binding motifs in neuroprotection and 

diffusion within the brain [Runeberg, Saarma and Penn, unpublished data]. Two such NRTN 

mutants (N2 and N4) were found to be bioactive after mutations and also spread widely in rodent 

and monkey brain [Runeberg, Saarma and Penn, unpublished data]. N2 and N4 also showed 

successful protection of DA neurons, and were more potent than GDNF in rescuing dopamine 

neurons in a 6-OHDA rat model [Runeberg, Saarma and Penn, unpublished data]. Similarly, N2 

and N4 also displayed significant improvement of motor performance in the monkey Parkinson’s 

rating scale score. Both N2 and N4 were effective immediately after the first monthly infusion. 

The monkeys in both these groups continued to remain significantly improved until the end of 

the study. As shown in rodents [Runeberg, Saarma and Penn, unpublished data], it appears that 

N4 was more widely distributed in the brain that N2 in primates in a preliminary study 

[Runeberg, Saarma and Penn, unpublished data]. N4-treated monkeys displayed significant 

improvement in not just motor function, but also in non-motor functions of sleep and motivation. 

The improved efficacy of N4 in restoring non-motor functions could be due to the greater tissue 

distribution resulting from the small point mutations to the NRTN molecule that did not alter the 

neuroprotective properties of NRTN, whereas in Piltonen et al. [2009] a greater portion of the 

GDNF molecule was deleted, with the GDNF being truncated near this binding motif.  
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5.2 DELIVERY OF NTF’S TO THE BRAIN 

At the same time that GDNF was beginning to be tested as a therapy for PD, new methods of 

delivery that were less invasive were beginning to be investigated, as there was concern that 

patients shouldn’t have to undergo multiple surgeries to receive injections of NTF’s [Barker, 

2006, 2009]. Several novel delivery methods emerged and were tested for the delivery of 

bioactive compounds to the brain, including the use of catheters to pump NTF’s continuously 

into brain tissue [Grondin et al., 1998, 2002, 2003], and the use of viral-mediated gene transfer 

to provide a continuous supply of NTF [Bilang-Bleuel et al., 1997; Lapchak et al., 1997; 

Bensadoun et al., 2000; Rosenblad et al., 2000; Connor et al., 2001; Kordower et al., 2003]. 

However, development of an effective catheter system has eluded scientists so far, as all 

catheters tried to date form glial scars at the port of entry and thereby reduce the tissue 

distribution of NTF’s [Deierborg et al., 2008; Bjorklund et al., 2009].  

Retroviral-mediated gene transfer as a method of delivery was developed in the late 

1980’s and early 1990’s and progressed from lab animals to treatment in clinics within a short 

span of time for use in human gene therapy trials for a number of neurological diseases [Mann et 

al., 1983; Anderson, 1992] and was safely used in vivo for delivery of NTFs [Bilang-Bleuel et 

al., 1997; Lapchak et al., 1997; Bensadoun et al., 2000; Rosenblad et al., 2000; Connor et al., 

2001; Kordower et al., 2003]. An Adeno-associated virus type-2 (AAV2) vector that carries a 

gene encoding a modified form of human NRTN, called CERE-120, was successfully developed 

by Ceregene Inc. and used in both rat and monkey models of PD to successfully preserve nigral 
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dopamine neuron loss in these animal models [Kordower et al., 2006; Gasmi et al., 2007; Herzog 

et al., 2007; Herzog et al., 2008; Herzog et al., 2009]. Following the path of GDNF, CERE-120 

was tested successfully in a small Phase I clinical trial [Marks et al., 2008]. Then in larger Phase 

II clinical trial testing PD patients treated with CERE-120 failed to show significant 

improvement in parkinsonian symptoms [Marks et al., 2008, 2010]. Post-mortem data from 

patients who died of other complications during the trial showed poor diffusion of the trophic 

factor in the brain parenchyma [Marks et al., 2010; Vastag, 2010; Ceregene press release 2013; 

MJFF press release, 2013].  

Thus, even using a viral vector method of delivery does not guarantee the successful 

diffusion of the trophic factor into the target region, as was expected. The reason for this poor 

diffusion using viral vector-mediated delivery could be because of the binding of AAV type-2 

virus, itself, to heparan sulphate on cell surface, as it is also a viral receptor site [Summerford et 

al., 1998]. Hybrid recombinant AAV (rAAV) is one of the many viruses that are currently 

available as vectors for gene transfer. Many other enveloped viruses (retrovirus, Lentivirus, 

herpes simplex virus: HSV-1) and non-enveloped viruses (Adenoviruses) are also used for 

treatment using gene therapy [Thomas et al., 2003]. The binding of these viruses to extracellular 

matrix and their ability to safely infect and replicate only in the neurons of interest, without 

leading to oncogensis, in a wide array of tissues should be investigated further. There are a lot of 

challenges associated with using gene therapy including humoral immunity in the host that 

develops antibodies against the virus particles; safety issues also need to be addressed along with 

ethical and social implications of gene therapy [Thomas et al., 2003; Masat et al., 2013]. 
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5.3 OPTIMAL NTF DOSE AND DOSING REGIMEN 

 

Another important factor that needs to be taken into account to optimize efficacy of NTF’s is the 

dose of the NTF used. In a unilateral MPTP-treated monkey model, GDNF was shown to have a  

“inverted U-shaped” response curve, with maximum effectiveness in the middle of the dosing 

range (~300 µg) [Zhang et al., 1997]. Similarly, it was shown for GDNF that increasing the dose 

did not increase the efficacy of the NTF after a critical threshold for being effective was achieved 

[Gash et al., 2005]. In this dissertation, again using the same animal model, CDNF was found to 

be less effective at the higher dose tested (450 µg) compared to the lower dose (150 µg). For this 

dissertation, the GDNF dose that was chosen had been found to be optimally effective in the 

unilateral MPTP-treated monkeys in a number of previous studies from the Gash lab [Gash et al., 

1995, 1996, 2005; Zhang et al., 1997; Grondin et al., 1998, 2002, 2003]. In order to compare the 

efficacy of CDNF, a trophic factor that had not been previously tested in primates, we used the 

same dose that was optimal for GDNF (450 µg). However, in a number of studies using a rodent 

PD model it had been shown that CDNF was more effective than GDNF at the same dose 

[Lindholm et al., 2007, 2010; Voutilainen et al., 2011; Airavaara et al., 2012]. Taking this 

finding from rodents into account, and worrying that there may also be an “inverted U-shaped 

dose response curve” for CDNF, we also tested a lower dose of CDNF (150 µg) in monkeys. The 

studies in this dissertation show that the lower dose of CDNF (150 µg) significantly improved 

parkinsonian motor symptoms, while the high dose (450 µg) did not cause a significant 

improvement of motor symptoms.  
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Treatment with the 150 µg dose of CDNF, at monthly intervals, led to continued 

improvement in motor function measured by the monkey Parkinson’s rating scale with each 

monthly dose of CDNF. It is possible that the time-course of improvement using low-dose 

CDNF may last for a longer duration than one month [Cohen et al., 2011]. Hence, subsequent 

infusions at monthly intervals might have had additive effects so that the effectiveness of CDNF 

was greater after the second and third monthly CDNF infusions because a higher dose of CDNF 

was available in the brain. A detailed dose response curve for the effectiveness of CDNF to 

recover PD symptoms in rodent models of PD would be useful before further studies in 

nonhuman primates or humans are undertaken. A time-course analysis of the benefits after a 

single CDNF infusion by following the progression of improvement in a PD model would 

provide insight into the duration of effectiveness and the mechanisms behind the improvement 

seen with this NTF [Cohen et al., 2011].  

The planned dose for the two NRTN mutants tested (i.e., N2 and N4) was 337.5 µg. This 

dose was calculated for N2 as the molar equivalent of 450 µg of GDNF, and because N2 is less 

soluble than GDNF it was diluted in 1 µg/µl for a total of 337.5 µl infusate. N4 was even less 

soluble and it required 406.6 µl to dilute 337.5 µg. However, concern over infusing a 

significantly higher volume into the putamen led to a choice of a lower dose of N4 (280 µg) that 

could be prepared to be the volumetric equivalent of the N2 infusions. Surprisingly, the N4 dose 

(280 µg) was more effective in recovering the non-motor symptoms of PD that occurred in the 

MPTP model than the higher dose of N2 (337.5 µg). In contrast to CDNF, the N2- and N4-

treated monkeys significantly improved motor function after the first infusion but did not show 

continued improvements in motor function with subsequent infusions. The N2- and N4-treated 

animals appeared to have reached a ceiling effect for motor improvement immediately after the 
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first infusion.  However, this was not the case for some non-motor measures, where N4 infusions 

showed a progressive improvement in the latency to wake measurements after each infusion. On 

the other hand, for daytime sleep duration and number of daytime sleep bouts, the effects of 

monthly N4 infusions were variable. It would be useful for future studies in rodents using N4 to 

delineate a detailed dose response curve for both the motor and non-motor symptoms. It may be 

that the effects of N4 on latency to wake and daytime sleep might take a longer time to become 

apparent and stable, in contrast to the effects of N4 on motor function. 

 

5.4 STRATEGIES FOR DEVELOPING THE MOST EFFECTIVE NTF THERAPIES 

 

The intracellular mechanisms through which the NTF’s improve function and restore the 

health of DA neurons is still a work in progress [Grondin et al., 1998; Airaksinen et al., 1999, 

2002; Saarma et al., 1999, 2000; Sariola et al., 1999, 2003; Takahashi et al., 2001]. This is 

especially true for more recently discovered neurotrophic factors like CDNF, as even the 

receptors through which they might act are not clearly understood at this time [Lindholm et al., 

2007, 2008, 2010]. During the process of development, NTF’s play various specific and critical 

roles in supporting growth, sustenance, axon guidance to targets, pruning of synapses and other 

functions [Saarma et al., 1999, 2000; Takahashi et al., 2001]. GDNF has been found to play an 

important role in the migration, proliferation and outgrowth of neurites from neurons in the 

central and peripheral nervous system. NRTN is another member of the GDNF family of 

neurotrophic factors and it plays an important role in target innervation, branching and terminal 
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formation, following axon guidance paths, and increasing cell size (trophic to the cells). CDNF is 

a specifically trophic to DA neurons and has been shown to be both neuroprotective and 

neurorestorative in a rodent PD model [Lindholm et al., 2007, 2008, 2010]. CDNF is thought to 

play a role in protecting DA neurons against ER stress-induced cell death and facilitating protein 

folding in the ER. A simple combination of these trophic factors could be used to test the joint 

efficacy of these trophic factors in restoring function in PD.  An advantage of using this 

combination approach is to target different aspects of this disease to produce the most beneficial 

outcome. A combination of NTF’s could increase the benefit by rescuing neurons that are in 

advanced stage of degeneration by preventing or reversing the ER stress response [Palgi et al., 

2009, 2012; Lindholm et al., 2007, 2010], while also inducing sprouting and providing trophic 

support to the DA terminals that are still healthy [Zigmond et al., 1990, 1997, 2003; Sariola et 

al., 1999, 2003].   

The GDNF family of NTF’s mediate signaling through a common receptor tyrosine 

kinase RET (rearranged during transformation). The four main members of the GDNF family: 

GDNF, NRTN, Artemin (ARTN) and Persephin (PSPN) also bind with functional specificity to 

four identified GDNF family receptors (GFRα 1-4) [Sariola et al., 1999,2003]. Both ligand-

dependent and ligand-independent RET signaling pathways have been identified. RET induces a 

pro-apoptotic signal dependent on caspase activation, and this is blocked when a ligand binds to 

RET or there is a complex formed between GFR and RET in the absence of ligands [Saarma et 

al., 1999, 2000, Takahashi, 2001]. There has been a lot of work done in vitro to understand the 

signaling cascades through which GDNF family members mediate trophic action. In contrast, 

there is very little that is known about the intracellular mechanism of action for CDNF except 

that its binding affinity is at least an order of magnitude higher than that of GDNF binding to its 
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receptor [Voutilainen et al., 2011].  Recently, the structure of CDNF was solved [Parkash et al., 

2009] and this provided insight into the possible mechanisms through which it could be 

signaling. At the amino terminal end of CDNF a saposin-like domain is present and saposins are 

trophic to cultured neurons [Parkash et al., 2009; Voutilainen et al., 2011].   At the carboxy-

terminal end it is similar to MANF that is protective again ER-stress induced cell death. Thus, 

CDNF might be acting through functional domains providing protection through two distinct 

activities. A combination strategy, combining NTFs such as CDNF and N4, would be similar to 

the strategies that are now being  commonly used to treat other diseases, such as cancer, where 

multiple drugs are used to target different aspects of the same disease to produce the most 

effective treatment regimen [Thompson et al., 1995]. This concept of combining therapies that 

work on different intracellular mechanisms has received little attention in the field of 

neurodegenerative disorders, but deserves more attention in the future. 

  Another strategy that may be useful for improving effectiveness of NTF 

treatment would be to follow the treatment regimen for growth factor infusions that mimic their 

endogenous pattern of secretion during development [Saarma et al., 1999, 2000; Sariola et al., 

1999, 2003]. During normal development there is initially an increase in concentration of GDNF 

signaling leading to sprouting and new neurites being formed during the embryonic stage of 

development [Airaksinen et al., 1999, 2002]. This is followed by a sequential increase in NRTN 

signaling during the perinatal period that plays a crucial role in target innervation through axon 

guidance and terminal formation [Grondin et al., 1998; Takahashi, 2001; Airaksinen et al., 1999, 

2002]. This shift in pattern of signaling is also present in the enteric nervous system suggesting a 

common evolutionary conservation of this developmental mechanism. Thus, in order to restore 

the health of degenerating neurons in PD it may be necessary to use a sequential combination of 
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trophic factors Future experiments in animal models should consider taking into account this 

multifactor approach to restore function.  

 

5.5 THE EFFECTIVENESS OF TREATING NON-MOTOR SYMPTOMS OF PD 

WITH NTF’S 

 

Non-motor symptoms in PD have been described from the very beginning of the description of 

the disease (see review in Chapter 1) [Parkinson, 1817]. However, considerably less attention has 

been paid to understanding more fully the non-motor symptoms and only recently has it begun to 

be accepted that other non-motor systems could also be a part of this multi-factorial disease 

[Braak et al., 2000, 2003, 2006; Hawkes et al., 2010].  

 This dissertation reports for the first time that a low dose unilateral MPTP 

monkey model of PD has the non-motor symptom of daytime sleep dysfunction that can be 

recovered using the NTF, N4 (see Chapters 3, 4). Thus, this dissertation shows that using an 

unilateral low dose of MPTP that leads to a moderate lesion of dopamine neurons in the 

nigrostriatal pathway is sufficient to cause an imbalance in DA concentration that leads to non-

motor problems like sleep. It has been known for a long time that growth factors including 

GHRH, NGF, BDNF and GDNF are involved in sleep regulation [Sassin et al., 1969; Obal et al., 

1988; Kerkhofs et al., 1993; Kapas et al., 1996; Faraguna et al., 2008; Kreuger et al., 1999; 

Kushikata et al., 2000].  However, there has been a paucity of research to test the benefits of 

these factors in treating sleep disorders, such as those that occur with PD. The successful use of 
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NTFs to treat the sleep problems associated with PD would open a wide array of treatment 

possibilities for sleep disorders, that would not be just limited to the sleep problems seen in PD. 

 

5.6 FINAL CONCLUSIONS 

This dissertation explored the therapeutic effectiveness of CDNF, a novel recently discovered 

neurotrophic factor, and two variants of the NRTN molecule (i.e., N2 and N4), to rescue 

nigrostriatal DA neurons and treat PD-like motor and non-motor symptoms in a low-dose MPTP 

unilateral non-human primate model. All three trophic factors were successful in rescuing 

nigrostriatal DA neurons (Chapter 2), as well as the PD-like motor symptoms measured using a 

monkey version of the Parkinson’s rating scale (Chapter 2). We also found that there was strong 

dose dependence in the effects of treatment using CDNF. The lower dose of CDNF that was 

tested (150 µg) was effective in improving parkinsonian symptoms, but not the higher dose (450 

µg) that was the molar equivalent of a known effective dose of GDNF in this same model [Zhang 

et al., 1997; Gash et al., 2005]. This suggests that there is ‘an inverted U-shaped dose response 

curve’ for the neurorestorative effects of CDNF. Gross motor functions measured by the rating 

scale, accelerometers and Ethovision assessment of whole body movement were all significantly 

correlated with the post-mortem DA cell counts (p<0.001, p=0.05, p=0.009, respectively). Fine 

motor function measured using mMAP and scoring of naturally-occurring fine motor movement 

in the homepen also correlated with DA cell counts (p=0.002 and p=0.06, respectively). 

However, with group sizes of 4-6 animals/group, CDNF, N2 and N4 did not lead to significant 

improvement in specific measures of gross and fine motor movement. Power analyses predict 
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that for the low-dose CDNF group the differences would become significant with a sample size 

of 8-10 monkeys. 

This dissertation also presents evidence that increased daytime sleep is rapidly evident in 

a low-dose unilateral MPTP non-human primate model of PD (Chapter 3). As increased daytime 

sleepiness is a symptom that becomes apparent early in the preclinical stage of PD [Hawkes et 

al., 2010], and is in fact a predictor of later onset of PD [Abbott et al., 2005; Gao et al., 2011], 

this finding suggests that the low-dose MPTP non-human primate model will be useful for 

understanding early aspects of PD. Some aspects of increased daytime sleepiness (i.e., longer 

latency to wake in the morning) were recovered after treatment with the NRTN variants, N2 and 

N4 (Chapter 4). Further evidence of a therapeutic effect of N2 and N4 on daytime sleepiness is 

offered by the finding that there were significant correlations between DA cell count and daytime 

sleep duration, number of daytime sleep bouts and latency to wake. Moreover, the N2 and N4 

treatments led to a significant shortening in latency to wake. These findings offer strong support 

for the conclusion that N2 and N4 have significant potential to serve as new tools for the 

treatment of increased daytime sleepiness in PD. 

In conclusion, the research presented in this dissertation shows that these novel  

neurotrophic factors have significant potential for treating PD early in the disease process by 

either halting or slowing the progression of DA neuronal loss, motor and sleep problems inherent 

in this disease. This is the first report of daytime sleep dysfunctions occurring early in the 

process of DA neuronal degeneration and improvement of PD-associated sleep problems after 

NTF therapy. Future experiments should address both the mechanisms of action of these novel 

NTFs, as well as modes of NTF treatment that optimally recover functions in both the motor and 

non-motor domains of this complex disease that affects multiple systems. 
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APPENDIX A 

EFFECTS OF UNILATERAL MPTP INJETCIONS ON MOTIVATION AND THE 

EFFECTS OF MONTHLY TROPHIC FACTOR INJECTION OF CDNF, N2 AND N4 

A.1 INTRODUCTION 

Parkinson’s disease (PD) is a debilitating neurodegenerative disorder characterized by the 

progressive loss of dopamine (DA) neurons in the substantia nigra (SN) and their projections to 

the striatum.  PD is clinically characterized by the presence of resting tremor, bradykinesia, 

rigidity, and postural imbalance (for details see Section 1.3).  Despite the clinical diagnosis of 

these motor symptoms, many non-motor symptoms (NMS), including sleep disturbances, 

cognitive decline, greater apathy or loss of motivation, depressive symptoms, and loss of smell, 

among others, co-occur or even precede the onset of the motor symptoms [Pfeiffer, 2007; 

Bayulkem et al., 2010; Korczyn et al., 2010; Ferrer et al., 2012].  PD patients most regularly cite 

the NMS, especially reduced motivation, sleep and other depressive symptoms, as most 

disruptive to quality of life [McDowell et al., 2012; Videnovic et al., 2012] and yet, animal 

models of PD routinely only focus on the motor symptoms of the disease. 

The nonhuman primate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of 

PD has been studied as a reliable model of the motor symptoms of  PD for more than two 
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decades [Bankiewicz et al., 1986;  Przedborski et al., 2001].  Although the monkey MPTP model 

of PD does have its limitations it remains the “gold standard for preclinical testing” of PD 

therapies [Tieu et al., 2011; Porras et al., 2012].  The monkey MPTP model reliably produces a 

stable lesion of striatal DA neurons and concomitant motor deficits observed in PD [Bankiewicz 

et al., 1986; Ding et al., 2008; Gash et al., 1996]. Like PD patients, monkeys given MPTP 

respond to typical anti-parkinsonism drugs and exhibit the same motor complications that result 

from their long-term use [Ding et al., 2008].  Thus, the monkey MPTP model of PD best suited 

to answer the question of NMS and the treatments for the same using trophic factors.  

Despite the ubiquity of the monkey MPTP model of PD for studying the motor symptoms 

and associated pathologies, only a few studies have examined the NMS in this model.  These 

studies have focused on cognitive decline [Taylor et al., 1990; Schneider et al., 1993; Vezoli et 

al., 2011] or sleep [Barraud et al., 2009; Verhave et al.,  2011; Vezoli et al., 2011], but only one 

study [Brown et al., 2012] to date has focused on reduced motivation in the monkey model of 

PD.   

We use a reliable model [Bankiewicz et al., 1986; Ding et al., 2008] of objectively 

measured motivation in the rhesus monkey model of PD. The Progressive Ratio (PR) task that is 

a  “gold standard” for assessing motivation was used to objectively measure motivation [Arnold 

et al., 1997; Paterson et al., 2003; Roane, 2008; Zhang et al., 2003].  This is a task used to assess 

motivation to seek a drug in a number of addiction as well as other studies. The objective 

measures of motivation that were tested in this study are, namely, the number of times a freely 

behaving monkey refuses to participate (i.e., number of balks) in both motor tasks and non-motor 

tasks.  
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Reduced motivation was assessed in monkeys treated with a single, unilateral right 

intracarotid dose of MPTP. The monkeys were then tested for the recovery of this loss of 

motivation after three monthly trophic factor infusions.  

A.2 MATERIALS AND METHODS 

A.2.1 Animals 

Twenty-six female rhesus monkeys (15-20yrs, 5-8 kg) living in social pens (4m x 4m x 4.7m) 

that had perches, toys, and a thick layer of sawdust bedding were used in this study.  Monkeys 

were pair housed, and could see and hear other monkeys in several other pens. Monkeys were 

fed Purina Monkey Chow (#5038; Ralston Purina Co., St. Louis, MO) once daily and given 

fruit/vegetables, seeds, and nuts daily to encourage foraging.  Monkeys had ad libitum access to 

drinking water.  Monkeys were observed multiple times daily for health and menstrual status.  

All procedures were performed in accordance with the NIH Guide for the Care and Use of 

Laboratory Animals and were approved by the University of Pittsburgh Institutional Animal 

Care and Use Committee. 

 

A.2.2 MPTP administration 

Monkeys had baseline assessments for motor function and motivation made for 6 weeks before 

they received MPTP, as described below.  All monkeys then underwent a surgery to expose the 
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right carotid artery and each received a right intracarotid injection of MPTP-HCl (Sigma 

Chemical Co., St. Louis MO), at a dose of 0.14-0.16 mg/kg (average dose = 0.15±0.001 mg/kg), 

delivered at 1 mL/min, using previously published techniques (Ding et al., 2008). Monkeys were 

then allowed to recover in quarantine for 3 days to allow for excretion of MPTP and they were 

subsequently moved back into the pen living environment. Starting 10.7±0.7 days and 

20.04±1.41 days after MPTP administration, assessments of motor function and motivation, 

respectively, were continued for an additional four weeks.  

 

A.2.3 Experimental design 

Group Size: Monkeys were assigned into six groups (n=6/group). At six weeks post-

MPTP, when stable symptoms of PD are established, monkeys were assigned in each group such 

that the distribution of PD-like symptoms was uniform and had homogeneity across these six 

groups. Each monkey received four intraputamenal infusions of trophic factor/vehicle at monthly 

intervals (see, Figure 2). Groups were treated as follows: Group 1: MPTP + vehicle; Group 2: 

MPTP + CDNF (450µg); Group 3: MPTP + CDNF (150 µg); Group 4: MPTP + GDNF (450 

µg)); Group 5: MPTP + N2 (280  µg)); Group 6: MPTP + N4 (280 µg)  

Neurotrophic Factor Dosing: Many trophic factors and pharmacological agents have 

“inverted U” dose response curves with lower efficacy at both lower and higher concentration 

levels [Gash et al., 1995, 1996; Zhang et al., 1997], which was taken into consideration when 

considering doses of NTFs to test in this study. The CDNF doses that were utilized for the 

current study were chosen based on previous work demonstrating that a 450 µg dose of GDNF, 

delivered intraputamenally, was effective in improving DA function in MPTP-treated monkeys 



 141 

[Ovadia et al., 1995; Gash et al., 1996; Grondin et al., 2002]. We chose to test this same dose of 

CDNF in monkeys in one group. However, CDNF had been shown to be more effective than 

GDNF in a rodent model of PD [Lindholm et al. 2007], so there was concern that if the same was 

true for monkeys as we may be on the diminishing slope in an “inverted U” dose response curve. 

Thus, a lower dose of CDNF was also tested (150 µg). A molar equivalent dose of N2 (337.5  

µg), of the 450 µg dose of GDNF, was tested. N4 was less soluble than N2 and hence a 280 µg 

that corresponds to the same volume as that of the N2 dose that was administered was used. 

A.2.4 Motivation assessments 

Motivation was assessed in three ways: 1) by performance on a Progressive Ratio (PR) task, 2) 

by performance on a cognitive task of object recognition, and 3) during performance on a motor 

assessment task (the mMAP test).  

Progressive Ratio (PR) task: The PR and object recognition tasks were performed using 

the Wisconsin General Testing Appartus [WGTA; Meunier et al., 1996] and previously 

published techniques [Rhyu et al., 2010]. Monkeys were transferred to a testing room and placed 

in a cage to which the WGTA was attached, with a solid sliding access door separating the 

monkey from the WGTA test tray.  Monkeys were allowed to adapt to the testing cage for at 

least 1 week prior to the onset of testing.  Monkeys were trained to move aside a toy that 

completely covered a treat in a well on a tray in front of them each time the sliding door was 

raised.  

After training, monkeys then received PR testing. The PR test is commonly used to assess 

motivation in animal models of drug addition [Arnold et al., 1997; Paterson et al., 2003; Roane, 

2008; Zhang et al., 2003].  We based our PR task on previously published procedures in 
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monkeys [Cilia et al., 2001], modifying it for use with the WGTA. During PR testing monkeys 

were required to move a toy aside to retrieve a treat and in each trial they had to move the toy 

progressively more times to retrieve the reward.  For example, on the first trial, the monkey had 

to move the toy aside once after the screen was raised, and a treat was present under the toy.  On 

the second trial, the monkey had to move aside the toy the first time the screen was raised (but no 

reward was present under the toy), the screen was briefly lowered and the toy was replaced with 

a treat under it, and the screen was raised a second time allowing the monkey to push aside the 

toy a second time to retrieve the treat.  On the third trial, the treat was given the third time the 

screen was raised, and this pattern progressed with each trial.  Monkeys were given 60 seconds 

to respond to each toy presentation.  If a monkey did not respond within 60 seconds at any time, 

PR testing ceased for the day.  The PR task was given for 3 days, and the number of trials a 

monkey completed each day was recorded. For each monkey a break point (BP), i.e, the total 

number of completed trials before the monkey refused to work, was calculated for each of the 3 

days, and was averaged across the 3 days to yield a mean BP [Cilia et al., 2001].  This 3-day test 

was given at 29.81±2.42 days pre-MPTP and at 20.04±1.41 days post-MPTP. 

Object discrimination Task: Object discrimination testing was started the day after PR 

testing was completed using previously described methods [Rhyu et al., 2010]. Briefly, two 

easily discernable objects were placed over the lateral wells of the testing tray and the position of 

the objects varied from trial to trial according to a random sequence. The monkey’s access door 

was lowered, and the experimenter placed a treat under the designated object. The access door 

was raised and the monkey could retrieve the treat by displacing the designated object. Monkeys 

were tested until they reached 90% criterion (18/20 trials correct object displacement in a single 

testing session) with the designated object. Assessments of motivation during the object 
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discrimination task were made by recording each animal’s balk rate for each day of testing: that 

is, the percentage of trials in a day that the monkey refused to work (monkeys were allowed 60 

sec to move the toy in each trial). Testing ended for the day if a monkey balked for 5 trials in a 

row. A mean balk rate was calculated across all testing days in each phase of the experiment 

(i.e., pre-MPTP, post-MPTP and post-Infusions). 

Assessment of motivation during a motor function task: To confirm previously reported 

findings that a single, low-dose intracarotid injection of MPTP results in stable mild motor 

dysfunction [Ding et al., 2008], we assessed monkeys on the primate version of the Unified 

Parkinson’s Disease Rating Scale [Ovadia et al., 1995] once a week for 4 weeks pre-MPTP and 6 

weeks post-MPTP. Monkeys were rated on bradykinesia, rigidity, tremor, balance, and posture 

during a 5-min, videotaped session in which seeds, nuts, raisins and other small treats were 

thrown into the sawdust bedding of their home pen.  Two independent raters scored each 

videotaped session and assigned ratings. If variability was greater than 15%, a third rater scored 

the session. Inter-rater reliability of greater than 90% agreement was achieved. 

Fine motor function of hands was measured throughout the study using the monkey 

Motor Assessment Panel (mMAP), an apparatus that has been shown to accurately assess motor 

function in both human and non-human primates [Gash et al., 1999; Maswood et al., 2002] as 

well as age-related motor decline in non-human primates [Zhang et al., 2000].  mMAP testing 

was performed from two to six weeks pre-MPTP (Mean=3.0±0.2 weeks pre-MPTP)  and for 5 

weeks post-MPTP (starting 10.7+0.7 days post-MPTP).  Monkeys were transferred from their 

home pen to a testing room and placed in a testing cage with the mMAP apparatus attached to 

the front.  Monkeys had been acclimated to the testing cage for at least 1 week prior to the onset 

of testing.  Each day of mMAP testing consisted of 12 trials total, 6 trials for each hand. This 
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allowed us to compare motor function between the left hand (i.e., the side that would be affected 

by right intracarotid MPTP) and the right hand (i.e., the unaffected side).  During mMAP testing, 

monkeys were required to reach through two openings to retrieve a small food reward on an 

elevated platform [Gash et al., 1999].  The openings were each equipped with photodiodes to 

monitor arm/hand movements of the subject, thereby recording with millisecond accuracy the 

latency to retrieve the food reward [Gash et al., 1999].  Monkeys were given 5 minutes to 

respond per trial before the trial ended. At each trial the latency to retrieve the treat was 

recorded. If the monkey did not retrieve a treat at the end of 5 minutes the trial was scored as a 

balk. The trials alternated between the right and left hands. The testing was stopped if the 

monkey did not retrieve the treat for three consecutive trials. The assessment of motivation in 

this task was by calculating the balk rate in the mMAP task. For these calculations mean balk 

rate across all sessions of mMAP testing was calculated pre-MPTP, post-MPTP and post-

Infusions for each monkey. 

Statistical Analysis: Prior to analyses, all dependent variables (monkey Parkinson’s rating 

scale, mean BP, mean balks during object discrimination testing, and mean balks during mMAP 

testing both pre- and post-MPTP) were examined for normality and homoscedacity.  As no 

monkeys showed impairments in the monkey Parkinson’s rating scale during the baseline (pre-

MPTP) period, all monkeys received a score of 0 (lowest possible score) for the baseline value, 

as has been reported in previous studies with monkeys using this experimental model [Brown et 

al., 2012].  Rating Scale data collected pre-MPTP was not used in the analyses in this study. The 

post-MPTP rating scale data were normally distributed. Pre- and post-MPTP BP values were 

normalized using a reciprocal root transformation (-1/√Y).  Pre- and post-WGTA balk rate 

values were normalized using a square root transformation (√Y).  Paired-samples t-tests were 
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then used to analyze the changes in BP and WGTA balk rate from pre- to post-MPTP. The pre- 

and post-MPTP mMAP balk data could not be normalized using standard methods, so the 

nonparametric Wilcoxon signed rank test was used to analyze these data from pre- to post-

MPTP.  Spearman correlations were employed to examine the relationship between post-MPTP 

BP and balks during object discrimination and mMAP testing, as well as the relationship 

between these measures of motivation and loss of motor function as assessed by post-MPTP 

monkey Parkinson’s rating scale scores. Data are reported as mean+SEM. SPSS v21.0 was used 

for all analyses, and p <0.05 was considered significant. 

 

A.3 RESULTS 

A.3.1 MPTP reduces both motor function and motivation 

Compared to baseline, monkeys showed a significant decline in motor function across the 

6 weeks post-MPTP as evidenced by poorer scores on the monkey Parkinson’s rating scale 

(t(25)=-13.30, p<0.001). Monkeys also exhibited impairment in their left hand during mMAP 

testing post-MPTP, as evidenced by a significant increase in balk rate with this hand (pre-MPTP: 

2.08±0.66%, post-MPTP: 69.81±6.92%, =4.23, p<0.001). Balking with the left hand was 

significantly increased compared to balking with the right hand post-MPTP (t(25)=7.44, 

p<0.001). However, monkeys also exhibited a significant increase in balks post-MPTP during 

mMAP testing in the right hand (Z=3.01, p=0.003; Figure 20). 
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Monkeys showed a significant decrease in motivation as assessed by BP from pre- to 

post-MPTP (t(25)=3.055, p=0.005), averaging 3.22+0.39 trials pre-MPTP and 2.60+0.39 trials 

post-MPTP (Figure 20).  However, balk rate during object discrimination testing was not 

significantly increased post-MPTP (t(24)=0.109, p=0.914). Nevertheless, measures of motivation 

were consistent across tasks (Table 1), such that monkeys exhibiting a lower post-MPTP BP (i.e., 

less motivation) also exhibited more balks during object discrimination testing (i.e., less 

motivation; r(s)=-0.681, p<0.001) as well as more balks with the right hand during mMAP 

testing (i.e., less motivation; r(s)=-0.599, p=0.001).  Additionally, monkeys who balked more 

during post-MPTP object discrimination testing also balked more with their right hands during 

post-MPTP mMAP testing (r(s)=0.693, p<0.001).   

A.3.2 Decline in motivation predicts motor dysfunction after MPTP 

Balk rate during post-MPTP mMAP testing positively predicted the post-MPTP score on the 

rating scale (r(s)=0.559, p=0.003; Figure 21; Table 1), such that monkeys exhibiting reduced 

motivation after MPTP during mMAP testing (higher balk rate) also had higher scores (more 

impairment) on the monkey Parkinson’s rating scale.  BP during the post-MPTP testing period 

negatively predicted the post-MPTP score on the monkey Parkinson’s rating scale (r(s)=-0.442, 

p=0.024; Figure 21; Table 1) such that monkeys exhibiting reduced motivation after MPTP 

during PR testing (lower BP) also had higher scores (more impairment) on the rating scale.  
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A.3.3 Effect of CDNF, N2 and N4 on motivation after MPTP administration  

In the 150 µg CDNF group there was significant improvement in motivation to work with the 

left affected hand as assessed by balk rate from post-MPTP to post-Infusions from 79.2±14.0 to 

29.0±18.0 percent (p=0.02). Similarly the right hand balk rate which is a direct measurement of 

the monkey’s motivation in the MPTP unaffected right hand was significantly reduced from 

7.2±3.0 to 0.5±0.5 percent balking rate from post-MPTP to after three months of 150 µg CDNF 

trophic factor infusions (p=0.04). There was no significant change in any of the other treatment 

groups in these measures.  

Compared to post-MPTP values in the BP during progressive ratio testing there was an 

increase in motivation indicated by increased BP values at the end of three monthly infusions in 

the treatment groups: monkeys in the 450 µg CDNF changed their BP from 1.7±0.3 post-MPTP 

to 3.1±0.4 post-infusions (p=0.02), 150 µg CDNF changed from 2.5±0.6 post-MPTP to 4.1±0.7 

post-infusions (p=0.10), N4 changed from 1.8±0.5 post-MPTP to 4.5±1.1 post-infusions 

(p=0.04). There were no changes in the other treatment groups in this measure and no other 

measures of motivation had any significant changes in their values after infusions with trophic 

factors. 
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Figure 20.  Monkeys showed reduced motivation after MPTP as evidenced by (a) 

increased balk rate with the right hand during mMAP testing, and (b) reduced Break 

Point in the progressive ratio task. **p<0.01 
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Figure 21.  Reduced motivation was associated with impaired motor function after 

MPTP.  (a) Monkeys with a higher balk rate with the right hand during mMAP testing 

(r(s) =  0.559, p<0.01, and (b) lower Break Point in progressive ratio testing (r(s)= -

0.442, p<0.01) had higher scores on the UPDRS post-MPTP. 
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Table 1.  Correlations between measures of motivation and motor function after 

MPTP. 
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A.4 DISCUSSION 

A.4.1 Effect of unilateral low-dose MPTP administration on motivation 

We found that the unilateral MPTP-lesioned monkey can be used as a reliable model for 

motivational decline accompanying the motor symptoms after MPTP.  Similar to previously 

published reports, the monkeys in our study exhibited motor impairments as evidenced by poor 

scores on the UPDRS and poor performance on mMAP on the affected (left) hand, indicating 

stable lesions to the nigrostriatal pathway after a single unilateral dose of MPTP [Ovadia et al., 

1995; Ding et al., 2008; Brown et al., 2012]. 

To our knowledge, this is the first comprehensive, objective study of motivation in a 

nonhuman primate model of PD.  Other studies have examined “apathy,” defined as a lack of 

motivation [Brown et al., 2012], and “no-response errors,” or errors of omission [Roeltgen et al., 

1994] in MPTP-treated rhesus monkeys, but these assessments have limitations as reliable 

measures of motivation.  In the Brown et al. study (2012), the measures of “apathy” were 

subjective measures of the monkeys’ willingness to attempt tasks (i.e., walking and turning in 

circles using the common pole-and-collar method, and reaching tasks while restrained in a 

primate chair).  These tasks were given while the monkeys were under physical restraint (pole-

and-collar and primate chair), which may not accurately reflect their willingness to attempt 

particular behaviors as physical restraint has been shown to affect behavior in primates 

[Reinhardt et al., 1995].  Roeltgen et al., study (1994) used a more objective measurement 

(errors of omission, which reflect lack of persistence and thus are a proxy of attentiveness or 

motivation), but many of their subjects were also tested in a primate chair, thus confounding the 

reliability of the monkeys’ willingness to perform.  In contrast, we tested monkeys in a single 
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cage, which did not limit their movement, and monkeys were free to choose to participate in the 

task or not.  In addition to recording the number of balks in the cognitive and mMAP tasks, 

which is similar to recording errors of omission or lack of persistence, we also used the well-

established and reliable PR task to quantify motivation in our monkeys.  The reliability of these 

methods is evidenced by the fact that each of the measures of motivation was strongly correlated 

with each other (Table 1), confirming the comprehensive nature of motivational decline in 

unilaterally MPTP-treated monkeys. 

We further found that these monkeys’ loss of motor function after MPTP may in part be 

governed by their loss of motivation, as evidenced by the strong correlations between measures 

of motivation and motor function.  These findings corroborate similar reports in humans [Shiner 

et al., 2012], and further validate the unilateral MPTP nonhuman primate model as a reliable 

model for both motor and non-motor symptoms in PD.  The performance on the PR task was 

completed before the UPDRS measurements were done. However, PR performance negatively 

predicted UPDRS score. This further suggests that decreases in motivation after MPTP may 

precede motor dysfunction.  Recent models on the development of PD have now begun to 

consider the development of other non-motor symptoms before the clinical diagnosis of motor 

symptoms  (See Section 1.3.2 and Section 1.1.2). 

That monkeys did not show an increase in balk rate during WGTA testing on a cognitive 

task after MPTP suggests that reduction in motivation may be specific to tasks which require the 

use of a particular hand (i.e., the affected side).  This is supported by the fact that most monkeys 

failed to use their left hand during mMAP testing after MPTP, but worked better with their right 

hand.  Although they did balk significantly more with the right hand after MPTP compared to 

pre-MPTP. The monkey’s balk rate with the left hand was significantly higher than that with the 
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right hand. This suggests to us that the monkey’s motivation to work for the reward on the 

affected side was reduced.  As monkeys were not required to use one hand or the other in WGTA 

testing, it is likely that they relied more on using their right hands after MPTP and as such 

motivation on this task, as indicated by balk rates, was not significantly affected.  Thus it appears 

that while decreased motivation and decreased motor function may go hand in hand, decreased 

motivation is not necessarily co morbid with decreased cognitive function in PD.  Future studies 

should focus on a levodopa challenge test to determine if dopamine replacement therapy can 

improve motor function as well as motivation. 

A possible mechanism for the concurrent loss of motor function and motivation in these 

monkeys is that dopaminergic neurons in the substantia nigra-ventral tegmental area (SN-VTA) 

complex were also possibly mildly affected after a unilateral MPTP injection.  Whereas the SN 

sends dopaminergic projections to the striatum and is implicated in motor control, dopaminergic 

neurons in the VTA ascend to the limbic system via the nucleus accumbens (NAcc) and are 

associated with reward and motivation [Cardinal et al., 2002].  In fact, the NAcc has long been 

proposed as a functional interface between the limbic system and the motor system [Mogenson et 

al., 1980; Salamone, 1992].  It is likely that the unilateral intracarotid MPTP administration was 

not selective solely to neurons in the SN (i.e., the nigrostriatal pathway).  Although the VTA has 

been shown to be less susceptible to the ameliorative effects of MPTP [Hung et al., 1996; 1998], 

it is not immune, as studies have shown a loss of up to 20-40% of dopaminergic neurons in the 

VTA after MPTP [Schneider et al., 1987].  This loss is likely accountable, in part, to the loss of 

motivation observed in our monkeys, owing to a reduction of dopaminergic function in the other 

dopaminergic pathway. 
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Taken together, our findings represent a comprehensive study of motivational decline 

after MPTP in the rhesus monkey, and suggest that there is a loss of motivation after MPTP 

injection.  These findings highlight the utility of the nonhuman primate MPTP model for 

studying both motor and non-motor symptoms of PD.  Future studies will be able to take 

advantage of this model for analyzing the effectiveness of treatments targeted toward the 

different symptoms seen in PD. This model has the potential to positively impact and find 

treatments for motivational decline and the reduced quality of life that PD patients face as a 

result of it. 

A.4.2 Effect of neurotrophic factors infusion on motivation 

a. Decreased Motivation in PD patients 

The lack of motivation or apathy is not attributable to cognitive impairment or emotional distress 

or depression in PD [Levy et al., 1998]. However, apathy is defined as lack of motivation that 

manifests itself as diminished goal-directed behavior [Pederson et al., 2009]. Apathy is 

associated with reduced social [Brown et al., 2002], and functional impairment [Gerritsen et al., 

2005], reduced quality of life in patients and caregivers [Aarsland et al., 2007], poor illness 

outcome and response to treatment [Starkstein et al., 2006]. In terms of the pathophysiology, the 

cause of apathy is dysfunction in the frontal lobes following lesion of the frontal cortex or 

damage to regions tightly connected to its function like basal ganglia [Dujardin et al., 2007].  

This frontal-sub-cortical circuit is often involved in pathological cases of apathy [Levy et al., 

2006]. Thus apathy is commonly seen in PD where there is reduction of DA that disrupts the 

normal functioning of the frontal-sub-cortical circuits. Although apathy and depression may have 
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overlapping symptoms in PD such as, lack of interest or pleasure many studies indicate that they 

are discrete syndromes in patients [Starkstein et al., 1992; Levy et al., 1998; Aarsland et al., 

1999; Isella et al., 2002; Kirsch-Darrow et al., 2006].   

b. Changes to measures of motivation after neurotrophic factors infusions 

We found that the 150 µg CDNF group, 450 µg CDNF group and the 280 µg N4 neurotrophic 

factor treatment groups were all effective in significantly changing measures of motivation after 

MPTP administration. The balk rate which is a measure of the monkey’s motivation to work in a 

task was significantly reduced in the 150 µg CDNF group from post-MPTP to post-infusions in 

both the left and right hands. The break point (BP) which measures the motivation of the monkey 

to retrieve a treat, is a standard test used in drug addiction studies was shown to increase 

significantly after treatment with three months of CDNF and N4 infusions. Thus the increase in 

BP which is a measure of increased motivation in monkeys was significantly different from post-

MPTP measurements in the 450 µg CDNF group and the 280 µg N4 group and showed a trend 

towards significance in the 150 µg CDNF group.  

 This is the first time any changes to direct measurements of motivation was shown to 

improve in the monkey MPTP model of PD. There has been an increased recognition of the role 

of non-motor symptoms in PD and the adverse impacts on the quality of life that it leads to 

[Chaudhuri et al., 2010].  Hence recent advances in treatment options for PD patients are 

increasingly focused on improving their quality of life. There has been a lot of progress in using 

neurotrophic factors for the treatment of PD [Nutt et al., 2003; Gill et al., 2003; Patel et al., 

2005; Slevin et al., 2005; Marks et al., 2008; Marks et al., 2010]. However these trophic factor 
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treatments have so far only focused on the improvement of motor symptoms. It is not known if 

the patients had improvements to their non-motors symptoms after being treated with trophic 

factors. Thus using these novel trophic factors could provide benefit to patients in both the 

domains of motor and non-motor symptoms. 

 The distribution of N4 trophic factor in the brain parenchyma was found to be the largest 

compared to CDNF and GDNF [Runeberg, Saarma and Penn, unpublished data]. The 

improvements in motivation as measured by BP are the highest for this group compared to any 

other trophic factor treatment. All our injections were directed only to the putamen that is 

involved in aspects of motor functions in basal ganglia. However the nucleus accumbens that is 

implicated in motivation lies just below the putamen and the larger distribution within the brain 

that is characteristic of N4 trophic factor could mean that improvements to motivation in this 

treatment group could be directly attributed to changes in the ventral striatum [Ikemoto et al., 

1999]. Future analysis will consider the spread of the N4 trophic factor and other neural and 

biochemical changes in the ventral striatum of the post-mortem monkey brains.  

The effective concentration of drugs that could lead to improvement in a particular aspect 

of behavioral function might work effectively in specific neural sub-circuit and structure. But, 

the same concentration of drug might be ineffective in a neighboring neural structure that has a 

different function. This could be due to the inherent properties of the different neurons present in 

these different circuits, the physiological and anatomical organization of the inputs and outputs 

of this circuit. The 450 µg CDNF group significantly improved the aspects of motivation, as it 

could be within the range of effectiveness at this concentration in the motivational circuits that 

govern the progressive ratio task, but could be ineffective in improving motor behaviors. Some 

evidence for this is also supported by the trend in improvement (p=0.10) in motivation seen the 
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measurements of BP with the 150 µg CDNF group which was tested at a lower concentration. A 

more detailed dose response analysis of CDNF to improving the different aspects of symptoms 

of PD in animal models needs to be carried out.  

Thus we show for the first time significant improvements in direct measures of objective 

motivation in a monkey model of PD. These trophic factors, i.e. the N4 and CDNF neurotrophic 

factors could be used for treatment of both motor and non-motor functions in this primate model. 

Future experiments should also explore infusions of these factors directly into other non-motor 

circuits of the basal ganglia that are also affected in PD patients. An appropriate dose, location 

and method of infusion that best improves both motor and non-motor functions should be 

considered before translation of neurotrophic factors to the clinic. Finally, clinical trials with 

these novel trophic factors should also comprehensively record the changes to all aspects of non-

motor function including motivation along with the improvements to motor functions. 
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