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University of Pittsburgh, 2013 

 

Human immunodeficiency virus type-1 (HIV-1) affects more than 30 million people 

worldwide and has accounted for over 30 million deaths.  The advent of combination antiretroviral 

therapy (cART) resulted in a drastic decrease in AIDS-associated morbidity and mortality.  Despite 

this, cART fails to completely eradicate the virus from infected patients, as cessation of treatment 

results in a rebound in viremia and a resumption of disease progression. Partial immune 

reconstitution is achieved under suppressive therapy, thus causing research efforts to begin 

development of curative strategies for HIV-1-infected patients.  We believe the best method of 

HIV-1 eradication will be through cytotoxic T lymphocyte (CTL) elimination of the latently-

infected reservoir, which may be difficult given the propensity of the virus to undergo mutations 

that evade CTL recognition.  Dendritic cells, the most potent antigen-presenting cells, can reveal 

broad and robust HIV-1-specific T cell responses in subjects on cART and can prime CD8+ T cells 

specific for various HIV-1 antigens.  We therefore believe the best method of inducing a potent 

anti-HIV-1 CTL response will be through the use of a DC-based immunotherapy targeting the 

patient’s own, unique (autologous) virus.  It is unclear, however, if the naïve T cell repertoire and 

function has been sufficiently restored to respond to autologous virus containing multiple 

mutational variants.  In the present study, we longitudinally evaluated autologous HIV-1 evolution 

and changes in T cell responses throughout untreated and treated HIV-1 infection in subjects from 

the Multicenter AIDS Cohort Study (MACS). We show that dendritic cells reveal autologous 



 v 

antigen-specific T cell responses at all stages of disease progression and are potent inducers of 

polyfunctional T cell responses after long-term suppressive cART.  We developed and utilized an 

in vitro model of DC immunotherapy targeting naïve and memory CD8+ T cell subsets to show for 

the first time that naïve CD8+ T cells from subjects on cART can be primed to target the latent 

HIV-1 reservoir.  Taken together, these findings shed new light on T cell responses to autologous 

HIV-1 viral variants and support the use of a DC immunotherapy in subjects on cART. 
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1.0  HUMAN IMMUNODEFICIENCY VIRUS TYPE-1 

Human immunodeficiency virus type-1 (HIV-1) affects more than 30 million people 

worldwide and accounts for 1.8 million deaths per year (329).   Adult HIV-1 prevalence has 

exceeded 20% in some countries in Sub-Saharan Africa, including Swaziland (26%), Botswana 

(23.4%), and Lesotho (23.3%) (329).  While combination antiretroviral therapy (cART) has 

drastically reduced AIDS-associated morbidity and mortality, the treatment is lifelong and results 

in many undesirable side effects (338).  Additionally, inaccessibility to or failure to adhere to 

cART has resulted in a continuation of viral spread, even in the United States where treatment is 

readily obtainable (52).  Current research is focused on the development of a prophylactic HIV-1 

vaccine and/or curative approaches to completely eradicate infection in those already infected with 

the virus.  There is no doubt that developing a cure will provide the best chance of HIV-1 

eradication and will allow those already infected to live healthy, normal lives in the absence of 

cART. 

1.1.1 Life cycle 

HIV-1 is a single-stranded, positive sense RNA virus and is the etiologic agent of acquired 

immunodeficiency syndrome (AIDS).  The virus is present in blood and other bodily fluids and is 

contracted upon transfer of these fluids between people.  HIV-1 is approximately 120nm in 
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diameter and contains two copies of the genome that encodes nine genes (66).  The viral capsid is 

surrounded by an envelope composed of host cell phospholipids and the viral proteins gp120 and 

gp41.  These two proteins interact with CD4 and CCR5 or CXCR4 on the surface of host cells to 

gain entry, therefore making CD4+ T cells and macrophages the primary targets for HIV-1 

infection (65, 214, 224) (Figure 1).   

 

Figure 1.  The HIV-1 life cycle 

Viral entry into host cells requires the CD4 molecule and either the CCR5 or CXCR4 chemokine receptor.  

Entry is followed by a cascade of viral uncoating, reverse transcription, nuclear import, synthesis of viral proteins, 

and budding from the host membrane.  Reproduced with permission from Rambaut et al. (274) ©2004 Nature 

Publishing Group. 

 

The viral envelope fuses with the host cell membrane and releases the virion contents into 

the cytosol (54).  It is here where RNA reverse transcription generates complementary DNA 

(cDNA) that is imported into the nucleus.  This process of reverse transcription is extremely error-
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prone and often results in mutations conferring drug resistance, immunological escape, or costs in 

viral fitness.  The cDNA is then integrated into the host genome and establishes latency.  Following 

cell activation, the viral genome is transcribed into mRNA, exported from the nucleus, and 

translated into viral proteins (150, 153).  Virion assembly then occurs in the cytosol, incorporating 

two copies of the single-stranded (+) sense RNA genome within the Gag capsid proteins.  The 

assembled virion then buds from the cell membrane, incorporating portions of the host cell 

membrane in its envelope, and is released to infect new target cells (367). 

1.1.2 Pathogenesis 

HIV-1 is a lentivirus, and as such is slowly-replicating and can latently reside within 

infected cells for many years.  HIV-1 preferentially infects CD4+ T cells and thus results in their 

gradual depletion over many years of infection.  In approximately half of those infected with the 

virus, an acute mononucleosis-like syndrome develops within 6 weeks of infection (322).  During 

this period there are high levels of viremia and a subsequent detectable immune response to HIV-

1 (64, 76).  Within 6 months after seroconversion, there is a peak in plasma viral load and a decline 

in the number of CD4+ T cells in circulation.  This is followed by a period of gradual deterioration 

of the immune system lasting 6-10 years in patients with typical disease progression.  When the 

CD4+ T cell count falls below 200 cells/mm3, patients are classified as having acquired 

immunodeficiency syndrome (AIDS).  Due to the lack of a fully competent immune system, 

patients almost surely succumb to opportunistic infections, such as Pneumocystis carinii 

pneumonia, Toxoplasma gondii, and Kaposi’s sarcoma, within two years of an AIDS diagnosis 

without antiretroviral treatment (Figure 2) (255).   
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Figure 2.  Typical course of untreated HIV-1 infection  

Acute HIV-1 results in viral dissemination and an almost immediate drop in CD4+ T cells in the blood.  

Clinical latency is established after ~1 year of infection and is followed by a period of gradual CD4+ T cell decline.  

Patients are classified as having acquired immunodeficiency syndrome (AIDS) after CD4+ T cells fall below 200 

cells/mm3.  Patients typically succumb to opportunistic infections within 2 years after an AIDS diagnosis.  Reproduced 

with permission from Pantaleo et al. (268) ©1993 Massachusetts Medical Society 
 

1.1.3 Genetic evolution 

Much of the pathogenesis associated with HIV-1 infection can be attributed to its high rate 

of genetic evolution.  Diversification of the viral repertoire within infected hosts is a hallmark of 

HIV-1 infection and is thought to be the result of multiple host and viral factors (274).  High viral 

replication rate, error-prone reverse transcription, strong neutralizing antibody responses, and 

CD8+ cytotoxic T lymphocyte (CTL) selective forces are all thought to contribute to the evolution 
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and eventual immune escape of HIV-1 within chronically-infected subjects (80, 188, 274, 278, 

344).   

HIV-1 has extensive intrahost genetic variability that can be observed early after infection 

(333).  The error-prone reverse transcriptase enzyme makes ~0.2 errors per genome replication 

cycle (34), which results in a substantial number of mutations in the ~1010 new virions that are 

produced each day during untreated infection (4).  Positive selection is also a major driving force 

of viral evolution and has been well characterized in HIV-1 and in SIV models (75, 80, 131, 227, 

318).  Mutations resulting from positive selection allow the virus to evade host immune responses.  

Indeed, disease progression is positively correlated with high genetic diversity and divergence and 

escape from adaptive immune responses, particularly in the env gene (149, 201, 307).  This 

persistent variation occurs within hosts and between hosts, thereby complicating prophylactic and 

therapeutic vaccine efforts.  Moreover, the highly mutable nature of this virus leaves it susceptible 

to drug resistance in individuals on combined antiretroviral therapy (cART) (57).  Luckily, in those 

who do not develop drug resistance, cART reduces viremia to undetectable levels and slows or 

ceases viral evolution (55, 126).   

 

1.1.4 Combination antiretroviral therapy 

Following the advent of combination antiretroviral therapy (cART) in 1996, HIV-1 

infection was reduced from a death sentence to a manageable chronic disease.  After 52 weeks of 

cART, there are significant increases in CD4+ T cell counts and undetectable levels of plasma 

HIV-1 RNA (<20 copies/ml) in >50% of patients (234).  Prolonged use of cART has enabled 
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patients to live near-normal life spans without HIV-1 disease progression, but often results in many 

adverse side effects and/or drug-resistant viral strains. 

Increases in several liver enzymes and liver toxicity are observed after long-term use of 

cART.  These HIV-1 medications can lead to anemia, neutropenia, thrombocytopenia, and 

idiopathic thrombocytopenic purpura (192).  Other treatment effects include increases in 

hyperglycemia and dyslipidemia secondary to insulin resistance and glucose intolerance.  Because 

of this, subjects on cART have an increased risk for type 2 diabetes, cardiovascular disease, and 

heart attacks (338).  When patients fail to adhere to their prescribed dosing regimen or cease 

treatment altogether, viral replication resumes and drug-resistant mutations arise (98).  It was 

initially proposed that cART would only need to be used for a few years, thus mitigating any 

potential side effects in favor of HIV-1 eradication.  Mathematical models inaccurately predicted 

HIV-1 eradication from the body within 2-3 years of the start of cART (258).  Because latency is 

established early in infection, resurgence in HIV-1 replication occurs shortly after cessation of 

cART and presents a mechanism of lifelong viral persistence, even in patients who have been on 

treatment for many years (61, 109, 110, 221, 340, 352).  It is therefore necessary to explore curative 

approaches that would allow HIV-1-infected patients to live drug- and disease-free. 

1.2 CTL AND HIV-1 INFECTION 

Cytotoxic T lymphocytes (CTL) are a specialized subset of CD8+ T cells that enact killer 

effector functions on cancer cells, damaged cells, or cells infected with pathogens.  These cells 

express a T cell receptor (TCR) that can recognize a specific MHC class I-bound antigen on the 

target cell (237).  CTL are generated from naïve CD8+ precursors and are the result of priming by 
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a professional APC, such as a DC.  Upon encountering an infected cell, CTL secrete the type-1-

associated cytokines IL-2, IFNγ, and TNFα, and the cytotoxins granzyme and perforin (237).  Part 

of the dysfunction in chronic HIV-1 infection is that CTL are not effective at eliminating infected 

cells, thus allowing unchecked viral replication and disease progression (22).  An anti-HIV-1 CTL 

response should recognize the autologous virus with high breadth and magnitude if it is to be 

successful at eradicating infection (19, 83). 

1.2.1 CTL in chronic infection 

HIV-1-specific CD8+ T cell responses are effective at imposing immunological pressure in 

acute infection, as evidenced by the induction of a large turnover and mutation rate in the virus 

population (89, 313, 336).  Depletion of CD8+ T cells in the non-human primate model results in 

enhanced disease progression, thus supporting the protective role of these cells (299).  Long term 

control of both HIV-1 and simian immunodeficiency virus (SIV) infections is associated with a 

broad and high magnitude CTL response (253, 289), particularly to Gag epitopes (33, 179, 285). 

However, the failure of CD8+ cytotoxic T lymphocytes (CTL) to control virus in chronic infection 

results in progression to AIDS and can be attributed to several factors.  Viral evolution, specifically 

in CTL epitopes, can impede its recognition by naïve and memory CD8+ T cells, resulting in a 

limited repertoire of T cell-mediated immune responses against the mutated region (6, 7, 19, 22, 

30, 134-137, 145). 

The breadth and magnitude of CD8+ T cell responses are thought to be critical indicators 

in the control of HIV-1 infection as well as prevention of AIDS (19, 83).  Therefore, the induction 

of strong and broadly reactive memory CTL responses is believed to be necessary to respond to 

the diverse viral sequences generated during the course of infection. Indeed, the failure of the STEP 
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prophylactic vaccine trial has been linked in part to induction of limited CTL responses and failure 

to cross-react with circulating viral strains (25, 73).  There is also a correlation between the larger 

number of T cell responses targeting different SIV proteins and control of viral load in non-human 

primates (204, 277).  Strong cellular HIV-1-specific responses are thought to contribute to long 

term viral control in long term nonprogressors, a subset of HIV-1-infected individuals who 

maintain plasma viral loads below 50 copies/ml and live >10 years without developing AIDS (24).  

Understanding CD8+ T cell failure and the mechanisms underlying successful control in HIV-1 

infection are therefore paramount for the design of successful therapeutic strategies. 

1.2.2 Barriers to CTL-mediated viral clearance 

Several hypotheses have emerged to explain the failure of CTL generated during natural 

infection to eradicate virally-infected cells, despite displaying a polyfunctional phenotype 

associated with cytolytic activity (155).  The propensity of HIV-1 to undergo mutations that 

eventually lead to CTL escape is undoubtedly a primary mechanism by which the virus persists 

(58, 165).  More recently, however, other mechanisms have been described.  Alterations in T cell 

homeostasis and prolonged antigenemia promote an environment of chronic immune activation 

that disrupts the generation and effector function of HIV-1-specific CTL in progressive infection 

(17, 91, 146, 366).  Additionally, perturbations in regulatory T cells (Treg) lead to alterations in 

homeostasis and can result in the suppression of HIV-1-specific responses (14, 21, 112, 164, 243, 

302, 314).  In concert, these three factors heavily contribute to the demise of CTL control in chronic 

infection and eventual progression to AIDS.  
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1.2.2.1 Escape 

An undisputed mechanism by which HIV-1 evades host recognition in chronic infection is 

the rapid rate at which the virus evolves.  Mutations in CTL epitopes can alter peptide:MHC 

affinity  and could consequently ablate T cell recognition of the mutated epitope (58, 165).  

Mechanisms promoting the establishment of escape mutations and thus evasion of clearance of 

HIV-1-infected cells by CTL include interaction defects between a viral epitope and its cognate 

MHC class I molecule or between an MHC class I molecule/epitope complex and its T cell receptor 

(TCR) (202) and impairment at the level of epitope processing (7, 93, 360).  Disease progression 

has been shown to be positively associated with synonymous HIV-1 substitution rates and high 

HIV-1 genetic diversity (149, 201).  There is a temporal association between env divergence and 

diversity and progression to AIDS, as well as the emergence of CXCR4-tropic viral strains in 

chronically infected individuals (307).  These observations underscore the role of viral evolution 

on HIV-1 disease progression.  It is therefore imperative to overcome these complications of 

natural infection in order to design HIV-1 vaccines capable of eliciting antiviral immunity 

targeting the diverse viral strains in infected individuals. 

1.2.2.2 Regulatory mechanisms 

Alterations in T cell homeostasis during chronic infection largely impact the naïve subset 

and partially result from decreases in thymic output (17, 91, 366). Progressive infection is also 

accompanied by decreases in the naïve CD8+ T cell subset despite increases in total CD8+ T cells 

(284).  These perturbations in the naïve CD8+ T cell repertoire could reduce the number and 

likelihood of mutated epitopes being recognized.    Additionally, HIV-1 infection is accompanied 

by a progressive decrease in CD4+ T cells, of which a subpopulation is capable of suppressing 

immune responses and promoting tolerance in healthy states and in a variety of disease models 
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(191, 291).  As HIV-1 is a disease of chronic immune activation, an increase or decrease in these 

regulatory T cells (Treg) could be beneficial to the virus. An increase leading to more suppression 

of anti-HIV-1 CTL responses and a decrease leading to enhanced immune activation.   

Reports on the perturbations in these regulatory T cells (Treg) during chronic HIV-1 

infection have been variable, with most showing an increase in the frequency of Treg with disease 

progression and/or overall CD4+ T cell depletion (14, 21, 112, 164, 243, 302, 314).  These cells 

have also been implicated in HIV-1 pathogenesis and disease progression (59, 212).  In subjects 

receiving successful combination antiretroviral therapy (cART), Treg levels return to those seen in 

uninfected subjects (39, 235, 302), suggesting any effects imposed by Treg during untreated 

infection should be mitigated during cART.  Interestingly, Treg also suppress HIV-1-specific T cell 

responses following DC immunotherapy in subjects on cART (213), highlighting their role in 

suppressing existing CD8+ T cell responses and those generated de novo under suppressive cART.  

1.2.2.3 Immune activation and exhaustion 

HIV-1 primarily infects CD4+ T cells, thus resulting in the gradual decline of these cells in 

the blood of infected individuals (106).  However, cellular apoptosis in infected individuals is not 

specific to infected CD4+ T cells and is observed in other cells types (108, 229).  A large body of 

evidence has pointed to chronic immune activation as a driving force in the failure of HIV-1-

specific immunity to control virus in chronic infection (146).  This activation, subsequent to 

prolonged antigenemia, affects multiple cells in the innate and adaptive arms of the immune system 

(230) and results in continuous activation of naïve CD4+ and CD8+ T cells and the eventual 

depletion of these subsets.  The generation of new, primary CTL against late-evolving virus is 

therefore difficult to achieve and results in a CTL population that is unable to eradicate HIV-1 in 

progressive infection (92, 136, 284).   
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More recently, the upregulation of inhibitory receptors such as programmed death-1 (PD-

1), CTLA-4, and Tim-3 has been shown to result from continued immune activation.  The 

downstream effects of these markers may interfere with the generation of new CTL or the function 

of existing recall CTL (79, 173, 323).  Indeed, the persistent activation that induces expression of 

these markers has detrimental effects on CD4+ (142, 143, 226, 361) and CD8+ (53, 231, 331) HIV-

1-specific immunity.  Potential therapies aimed at inducing CTL de novo or enhancing the exiting, 

dysfunctional CD8+ T cell response should take this exhaustion into consideration. 

1.3 DENDRITIC CELLS AND HIV-1 INFECTION 

Dendritic cells (DC) are the most potent antigen-presenting cells (APC) and are lauded as 

being the sentinels of infection.  These cells respond to invading pathogens and coordinate the 

innate and adaptive arms of the immune system (326).  Upon encountering a pathogen, immature, 

undifferentiated DC (iDC) undergo a maturation to become professional mature APC.  This 

maturation is accompanied by the secretion of cytokines in accordance with the type of immune 

cells that need to be attracted to combat the residing pathogen (266, 317).  Optimal priming of 

CD8+ T cells requires maturation of DC with a type-1-polarizing cocktail containing IFNγ.  This 

maturation protocol generates IL-12p70-producing DC with increased expression of activation and 

costimulatory molecules (104). These factors are involved in activation of memory antigen-

specific CD8+ T cell memory responses and are likely involved in priming of CD8+ T cells (273).  

These in vitro, T cell memory and priming models represent a promising approach to generate 

potent CD8+ T cell-driven immunotherapeutic approaches (69, 219).   
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1.3.1 Impact of chronic HIV-1 infection on DC function 

There is the potential for HIV-1 infection of DC by both CXCR4- and CCR5-tropic strains, 

with the virus replicating more efficiently in immature than mature DC (264).  Additionally, DC 

in untreated infection are circulating in a semi-mature state (88) and are more likely to induce Treg 

that can suppress anti-HIV-1 responses (190).  Luckily, DC are not major reservoirs for HIV-1 

infection during cART (250).  While many aspects of the immune system become dysfunctional 

in chronic HIV-1 infection and remain dysfunctional after treatment, myeloid DC retain the ability 

to process and present antigen (68) and stimulate HIV-1-specific IFN-γ production in CD8+ (105, 

156, 158) and CD4+ T cells (240).  Although monocytes can be infected with HIV-1 in vivo, 

functional monocyte-derived DC can be generated from HIV-1-infected patients on cART (70).  

These DC also secrete high levels of the Th-1-stimulating cytokine IL-12p70 if treated with 

CD40L and IFN-γ or the αDC1 maturation cocktail (104, 156).    These findings therefore support 

the functional integrity of DC in HIV-1-infected persons on cART and underscore their potential 

usefulness in immunotherapy. 

1.3.2 DC as an immunotherapy in subjects on cART 

We and others propose that the afferent arm of the CTL response can be induced by 

autologous dendritic cells (DC) (119, 248, 280, 334, 337), the most potent antigen presenting cells 

(APC), which are capable of enhancing the breadth, magnitude, and polyfunctionality of the 

efferent arm, i.e., HIV-1-specific memory and naïve T cell responses (67, 155-157, 211).  A key 

issue in this approach is how these DC are educated in vitro to result in the greatest breadth and 

magnitude of anti-HIV-1 T cell reactivity after they are given in vivo.  During cART, myeloid DC 
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obtained from blood monocytes and matured with mixtures of different cytokines and T cell co-

stimulatory molecules retain their capacity to process and present antigen (68, 295) and stimulate 

HIV-1-specific IFN-γ production in CD8+ (105, 156, 158) and CD4+ T cells (240). In particular, 

we have shown that subjects on cART secrete high levels of IL-12p70 if treated with CD40L and 

IFN-γ or the αDC1 maturation cocktail that is being used in cancer immunotherapy trials (104, 

156).  We have also shown the generation of broadly reactive and polyfunctional primary CD8+ T 

cell responses from HIV-1 naïve adults against HIV-1 and other viral epitopes (67).   

Several different methods have been proposed to enhance immune responses in persons on 

cART, of which the methods and principles have been extensively reviewed elsewhere (119, 180, 

212, 280, 292, 337).  These methods include cytokine-based therapies, specifically administration 

of IL-2, IFN-α, and IL-7; blockade of inhibitory molecules such as PD-1/PD-1L or inhibition of 

regulatory T cells; and induction of HIV-1-specific responses via therapeutic vaccination.  The 

most promising of these strategies is therapeutic vaccination using autologous, myeloid-derived 

DC that promote effective cell-mediated antiviral immunity against the autologous HIV-1 

reservoir.  The goal of this approach is to induce CD4+ and CD8+ cytotoxic T cell (CTL) responses 

against the autologous HIV-1 reservoir.  Because DC induce T cell immunity in response to 

microbial pathogens (326), they are an attractive tool for creating effective, long-lasting immunity 

in viral infections and cancer.  Indeed, this method was first explored in patients with B cell 

lymphoma (152), and recent clinical trials have shown promising results in cancer patients using 

autologous, myeloid-derived DC loaded with tumor antigens (100, 249, 315).  

Several clinical trials have explored the use of DC in HIV-1 immunotherapy and have 

reported varying levels of success.  There are several approaches and methodologies that can be 

implemented in a DC therapeutic vaccine, of which some are outlined in Table 1.  Connolly et al. 
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showed a transient increase in HIV-1-specific IFN-γ production by T cells following DC 

vaccination (70), while Lu et al. reported decreases in plasma HIV-1 viremia that correlated with 

IL-2 and IFNγ production by HIV-1-specific CD4+ T cells (210).  More recently, García et al. 

reported inverse correlations between the change in post-vaccination viral load and the increase in 

HIV-1-specific T cell responses (116), and in a separate study saw significant decreases in plasma 

viral load that were associated with increases in HIV-1-specific T cell responses (117).  DC 

electroporated with mRNA encoding Tat, Rev, and Nef were used to vaccinate 17 HIV-1 infected 

patients on cART and, following treatment interruption, 6/17 patients remained off drug therapy 

(5).  Additionally, Van Gulck et al. showed an increase in the breadth and magnitude of HIV-1-

specific IFNγ production following DC vaccination of 6 subjects on cART (335). Despite these 

promising results, long-lasting control of HIV-1 replication remains elusive. 
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Table 1.  Factors involved in the generation of a dendritic cell immunotherapy for HIV-1 
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1.3.2.1 Immunotherapy targeting naïve T cells 

A major issue in our immunotherapy approach is which subset or subsets of T cells should 

be targeted for enhancement of antiviral activity by HIV-1 antigen-loaded DC.  We propose that 

DC immunotherapy should target naïve T cell precursors in order to prime CTL de novo, and avoid 

or even inhibit activation of the existing, dysfunctional memory T cell population in an effort to 

revitalize their CTL function.  We have previously proposed that CTL should be primed from 

naïve precursors, as the endogenous memory T cell population has already failed to control virus 

prior to cART (280).  This is problematic, however, as studies have revealed decreases in the 

prevalence and function of naïve T cells following HIV-1 infection compared to uninfected 

controls (17, 91, 145, 364).    

Abnormalities in T cell receptor (TCR) diversity and function, including responsiveness to 

neo-antigens, have also been reported and are reviewed elsewhere (178). It is plausible that naïve 

T cells present in long term, HIV-1 chronically infected subjects on cART do not have the 

appropriate TCR repertoire or functional capacity to respond to primary stimulation against 

autologous HIV-1, or that viral escape has specifically evaded potential recognition by this new 

repertoire of naïve T cells.  Moreover, alterations in T cell homeostasis during chronic, untreated 

HIV-1 infection largely impact the naïve subset and partially result from decreases in thymic 

output (17, 91, 366).  Under cART, however, there is a progressive restoration of naïve CD4+ T 

cells that results in normalization of their frequency in subjects who began treatment with higher 

baseline CD4+ T cell counts (>200 cells/µl) (341, 359).  Subjects who began treatment with <200 

CD4+ T cells/µl experienced partial restoration in CD4+ T cell numbers but not normalization of 

the naïve CD4+ T cell compartment, suggesting delayed initiation of cART may adversely affect 

immune reconstitution even in the absence of viral burden (341).   
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To develop an effective CTL-mediated immunotherapy that would allow reduction or 

cessation of cART, it is essential to evaluate the effects of untreated HIV-1 infection on the naïve 

CD8+ T cell compartment.  Progressive HIV-1 infection is accompanied by decreases in the naïve 

CD8+ T cell subset despite increases in total CD8+ T cells (284).  Cossarizza et al. assessed CD4+ 

and CD8+ v-beta TCR repertoires in acutely- and chronically-infected subjects pre- and post-

cART. Although the naïve CD4+ compartment was only restored in subjects receiving cART in 

acute infection, the naïve CD8+ compartment was restored with cART irrespective of when 

treatment began (74).  These findings suggest naïve CD8+ T cells in subjects on cART possess the 

breadth and specificity required to respond to an array of diverse HIV-1 antigens.  

Perturbations in the normal distribution of TCRs within the naïve T cell repertoire of 

untreated HIV-1 infected persons have been noted (71).  These alterations lead to TCR clones 

being both more or less prevalent in HIV-1-infected subjects compared to healthy, uninfected age-

matched donors (120, 127).  Baum et al. showed that, while HIV-1-infected persons exhibited a 

10 fold decrease in TCR repertoire diversity in the blood, the diversity of purified T cell 

populations was comparable between HIV-1-infected and HIV-uninfected subjects (29).  They 

therefore postulate that changes in TCR repertoire diversity are the result of changes in T cell 

subpopulations and not the direct result of specific clonal deletion or expansion within the naïve 

compartment.  These findings further underscore the potential efficacy of an immunotherapy 

aimed to stimulate primary anti-HIV-1 CTL responses from naïve CD8+ T cell precursors. 

While changes in the frequency of naïve T cells may play a role in the generation of an 

effective immune response, their function in response to neoantigen is of equal importance.  Lange 

et al. evaluated antibody concentrations, lymphocyte proliferation, and delayed-type 

hypersensitivity responses following tetanus toxoid, diphtheria-toxoid, and key hole limpet 
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hemocyanin immunization and showed that delayed initiation of cART predicted an impaired 

response to vaccination, despite partial restoration of CD4+ T cell numbers (197).  Gelinck et al. 

reported significantly lower concentrations of anti-rabies IgG and IgM following rabies 

vaccination in HIV-1 infected subjects compared to uninfected donors (122).  While both of these 

studies demonstrated an impaired capacity to generate primary immune responses against 

neoantigens, they also focused solely on Th2-driven responses mediated primarily by CD4+ T 

cells.  Although their frequency within the CD4 compartment may be restored if cART is 

implemented early, the overall number of CD4+ T cells in many HIV-1-infected subjects does not 

rebound to normal levels, even after long-term suppressive cART (17, 18, 232, 251, 265).  

Dysfunctional naïve CD4+ T cells may exist in subjects on cART, but immunotherapies for 

these subjects that induce a CD8+ T cell-mediated response would mostly need CD4+ T cell 

functionality for bystander “help” (31, 44, 279, 301, 327, 328).  Additionally, these studies 

compare HIV-1-infected subjects on cART to uninfected donors, which is difficult when assessing 

naïve T cell function in response to primary stimulation without accounting for a variety of factors, 

including HLA type, individual differences in autologous APC, age, comorbidities, and duration 

of infection.  It is more beneficial to look within HIV-1-infected individuals to determine if the 

proposed immunotherapy generates a response greater than that generated from natural infection.  

Although the de novo response generated in an HIV-1-infected person on cART may not be 

equivalent to that which is generated in an uninfected person, it may be sufficient for viral 

clearance. 

1.3.2.2 Effects of immunotherapy on memory T cells  

A more recent and less-explored consideration is the effect of existing HIV-1-specific 

memory T cells on the efficacy of a DC immunotherapy that aims to prime CTL from naïve 
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precursors.  Despite their failure to control virus during treatment interruption, HIV-1-specific 

CD8+ T cells persist in the blood of subjects on cART.  While only a small fraction of PBMC and 

purified CD8+ T cells from these subjects secrete IFN-γ in response to HIV-1 peptide antigens, 

DC loaded with these same antigens reveal broad and robust T cell responses (154, 155).  

Additionally, peptide-loaded DC enhance the percent of T cells that secrete multiple type 1 

cytokines and chemokines, including IL-2, IFNγ, TNFα, and MIP-1β, and induce translocation of 

the CD107a LAMP protein to the plasma membrane.  Additionally, DC stimulate proliferation of 

T cells in response to MHC class I-restricted HIV-1 peptide epitopes (155, 157).  As the assays 

used in these studies range from 6-18h, it is highly unlikely that DC are inducing primary 

responses, but are rather revealing T cell responses that were undetectable with standard assay 

procedures.  These findings show that HIV-1-specific T cells persist during cART and are capable 

of secreting high levels of type 1 cytokines in response to HIV-1 antigens, yet do not eradicate 

HIV-1-infected cells.  These studies also suggest that these quiescent memory T cells can be 

awoken with the proper stimulus. 

1.4 STATEMENT OF THE PROBLEM 

While cART has reduced HIV-1 infection from a death sentence to a chronic illness, 

patients must be treated for life and often times suffer adverse side effects from prolonged use of 

these medications.  Additionally, the prohibitive cost of lifelong treatment, especially in resource-

limited countries, reduces the adherence to medications and perpetuates HIV-1 spread.  It is 

therefore imperative that we identify the mechanisms by which HIV-1 evades host recognition and 

that we develop methods of eradicating the latent reservoir in subjects on cART.   
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We propose that a DC immunotherapy could induce an effective anti-HIV T cell response 

capable of eliminating the viral reservoir.  To test this hypothesis, we first need to determine the 

effects of DC on T cell responses at all stages of disease progression and then determine if 

regulatory mechanisms have any impact on the DC-T cell interaction.  We then need to determine 

if naïve and memory T cells from subjects on prolonged cART are capable of responding to a DC 

immunotherapy.  The naïve repertoire may be irreparably damaged or dysfunctional, and the HIV-

1-specific memory populations may be too exhausted to respond to this type of therapy. 

A barrier to addressing these problems is the lack of longitudinal cohorts in which to 

evaluate the changes in T cell responses over time.  Many subjects in the Multicenter AIDS Cohort 

Study (MACS) enrolled in the late 1980’s and early 1990’s, eventually seroconverted to HIV+ 

status, received cART, and are still enrolled in the study.  We therefore have the unique opportunity 

to analyze clinical correlates of longitudinal infection and viral evolution and to determine the 

residual capacity of T cells to respond to a DC immunotherapy after enduring years of chronic 

infection and cART treatment.  In the present study, we chose three subjects from the MACS and 

examined signatures of HIV-1 gag and env viral evolution throughout untreated infection.  We 

then used these sequences to identify variants of known and predicted HLA A*2402-restricted 

epitopes and evaluated T cell responses to these autologous variants with and without the addition 

of DC and regulatory T cell depletion.  The study culminated by determining the residual capacity 

of naïve and memory T cells from cART to respond to DC stimulation against the autologous HIV-

1 reservoir.   
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1.4.1 Specific aim I: describe the clinical correlates and signatures of HIV-1 evolution in 

chronic, untreated infection 

Hypothesis: 

HIV-1 evolution is observed in gag and env and can be correlated with signatures of 

immunological pressure. 

 

HIV-1 infection is characterized by increases in viral divergence and diversity.  This 

diversity is thought to contribute to immunologic failure in chronic infection.  Viral evolution may 

be predictive of immune pressure on viral proteins and changes in clinical parameters.  These 

hypotheses are addressed in chapter 2. 

1.4.2 Specific aim II: evaluate the effects of viral evolution on the generation and 

detection of HIV-1-specific T cell responses 

Hypothesis:  

T cell responses to autologous HIV-1 epitope variants are generated in vivo and can be 

enhanced by DC addition and/or regulatory T cell depletion 

 

The failure of CTL to control HIV-1 infection may be the result of mutations that ablate T 

cell epitope recognition.  Responses to autologous epitope variants decrease throughout chronic 

infection, thus suggesting T cells were unable to mount immunity against the dominant variants 

that evolved.  Responses against these variants may have been generated in vivo, but are suppressed 
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by regulatory T cells or need additional stimulation by DC to be detected or mediate a clinically 

beneficial anti-HIV-1 response.  These hypotheses are addressed in chapters 3, 4, and 5. 

1.4.3 Specific aim III: determine the residual capacity of naïve and memory T cells to 

respond to DC stimulation and eradicate the HIV-1 reservoir in subjects on cART 

Hypothesis: 

DC-induced primary HIV-1-specific T cells can eliminate autologous HIV-1-infected CD4+ T 

cells and do so more efficiently than re-stimulated memory T cells 

 

Chronic HIV-1 infection induces perturbations in the naïve T cell repertoire and results in 

a viral quasispecies that evades host recognition.  cART reduces viral load to undetectable levels, 

but removal from treatment results in rebounds in viral load and resumption of disease progression.  

The breadth and magnitude of the endogenous CTL response is not sufficient to eradicate infection 

after cART interruption.  DC priming of naïve T cells or reconditioning of memory T cells may 

provide the stimulus needed to generate potent CTL specific for the autologous reservoir.  These 

hypotheses are addressed in chapter 6. 
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2.0  CLINICAL CORRELATES AND SIGNATURES OF SELECTIVE PRESSURE IN 

HUMAN IMMUNODEFICIENCY VIRUS TYPE-1 GAG AND ENV 

HIV-1 evades host recognition by rapidly mutating away from adaptive immune responses.  

A comprehensive understanding of the evolutionary mechanisms behind mutational escape in two 

of the key proteins involved in the viral life cycle, Gag and Env, is needed to develop effective 

immunotherapies for HIV-1-infected persons.  We longitudinally evaluated genetic and amino acid 

evolution of autologous HIV-1 sequences in three untreated subjects in the Multicenter AIDS 

Cohort Study throughout chronic infection.  Single-genome sequencing of gag p17-p6 and env 

gp120 was performed at 5 to 6 sequential time points in each subject.  The frequency of sites under 

positive selection increased throughout infection and these sites were found within and adjacent to 

several known MHC class I-restricted epitopes.  Positive selection in gag was associated with a 

decrease in CD4+ T cells and an increase in CD8+ T cells, whereas negative selection was 

associated with these parameters in env.  While increases in divergence and diversity were not 

associated with a rise in HIV-1 viral load or CD8+ T cells, these two evolutionary parameters were 

strongly correlated with the percent of gag and env sites under positive selection.  The data 

presented here display differential correlates of genetic evolution in gag and env with chronic HIV-

1 infection and provide novel insight into the effects of evolutionary mechanisms on protein and 

epitope evolution.  These findings are important for understanding the natural evolution of HIV-1 

infection and for development of prophylactic and therapeutic vaccines. 

HIV-1 gag and env sequencing and the generation of phylogenetic trees were performed 

by our collaborators in the laboratory of Dr. Jim Mullins at the University of Washington.  I 

performed all the remaining data analyses and statistical computations discussed in this chapter. 
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2.1 BACKGROUND 

Human immunodeficiency virus type-1 (HIV-1) is known to rapidly mutate and evolve in 

the absence of combination antiretroviral therapy (cART).  Diversification of the viral repertoire 

within infected hosts is a hallmark of HIV-1 infection and is thought to be the result of multiple 

host and viral factors.  High viral replication rate, error-prone reverse transcription, strong 

neutralizing antibody responses, and CD8+ cytotoxic T lymphocyte (CTL) selective forces are all 

thought to contribute to the evolution and eventual immune escape of HIV-1 within chronically-

infected subjects (188, 261, 274, 278, 344).  HIV-1 infection is also associated with a progressive 

increase in the percent of CD8+ T cells circulating in peripheral blood, presumably due to chronic 

immune activation, antigenic stimulation, and generation of CTL responses against the Gag 

proteins (135, 139).  Antibody and CD4+ T cell-mediated helper responses, however, are 

predominantly formed against Env (90).   To date, the correlates of viral evolution and escape from 

these adaptive host responses are not fully understood. 

Phylogenetic studies of acute infection have provided an understanding of early 

evolutionary events.  The observation that a single viral variant establishes infection, despite the 

subject being exposed to a pool of variants, has implications in the design of prophylactic vaccines 

(2, 23, 84, 114, 128, 138, 147, 174, 176, 199, 270, 282, 293, 307, 348).  The results of studies 

evaluating evolution within chronically infected subjects, however, could be useful in the design 

of therapeutic vaccines, as clinical and virologic parameters during untreated HIV-1 infection can 

be predictors of disease outcome (228), cART treatment success (99, 103, 118, 134, 222, 353), 

and could potentially be predictors of a successful immunotherapy response. Several studies have 

described the evolution of the env gene in natural HIV-1 infection, but many have failed to 

compare this evolution to the more conserved gag.  Understanding gag evolution is important 
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because protective CTL responses have been shown to target regions of the Gag protein (32, 179, 

285), whereas T cell responses to Env are associated with higher viral load (179).  Delineating the 

role of HIV-1 evolution in escape from adaptive immune responses, particularly CTL escape, is 

crucial in efforts to develop an effective immunotherapy against the autologous virus within 

infected subjects on cART (280).   

Divergence from a common ancestor and intrahost diversity are the classical indicators of 

viral evolution, whereas the ratio of non-synonymous to synonymous mutations (dN/dS) is often 

a marker of directional selective pressures (125, 283).  Several studies have attempted to associate 

these evolutionary parameters with clinical outcomes.  Disease progression has been shown to be 

positively associated with synonymous HIV-1 substitution rates and high HIV-1 genetic diversity 

(149, 201).  We previously published a study of 9 HIV-1 infected men who have sex with men 

(MSM) describing changes in T cell subsets and divergence and diversity of the C2-V5 region of 

the envelope (env) gene throughout 6 to 12 years of untreated infection (307).  This study identified 

a temporal association between divergence and diversity and the progression to AIDS, as well as 

the emergence of CXCR4-tropic viral strains.   

In the present study, we longitudinally evaluated the diverse gag and env quasispecies in 3 

HIV-1 infected subjects from the Multicenter AIDS Cohort Study (MACS).  We assessed 

divergence and diversity throughout infection and identified potential clinical correlates of viral 

evolution.  To ascertain the mechanisms behind this evolution, we analyzed the cognate protein 

sequences for evidence of immune selective pressures within and outside of CTL epitopes.   The 

data presented here provide a novel, in-depth analysis of natural HIV-1 evolution in the absence 

of cART.  These data support an increased role for selective forces in the evolution of conserved 

and variable HIV-1 genes and have novel implications for therapeutic vaccine development. 
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2.2 METHODS 

2.2.1 Study participants 

Three HIV-1 infected subjects were chosen from the MACS, a natural history study of men 

who have sex with men (MSM) for which the methodologies have been described previously (159, 

171).  Human subject approval was obtained from the University of Pittsburgh Institutional 

Review Board.  These subjects were chosen based on their prolonged enrollment in the study (>10 

years), typical course of disease progression, favorable response to combination antiretroviral 

therapy (cART), and the presence of at least one common HLA allele.  HLA A, B, and DR 

genotypes of each subject were determined by high resolution PCR genotyping (Tissue Typing 

Laboratory, University of Pittsburgh Medical Center).  The HLA type of each subject is shown in 

Table 3.  All three subjects were enrolled in the MACS prior to seroconversion to HIV-1.  

Seropositivity was confirmed by positive enzyme-linked immunosorbent assay (ELISA) for the 

presence of HIV-1 p24 and a Western blot with bands corresponding to at least two of the Gag, 

Pol, and Env proteins (171).  Blood specimens and epidemiological and clinical data were 

collected at each visit, as described previously (307).  All three subjects progressed to AIDS as 

defined by the CDC (<200 CD4+ T cells/mm3) within 8.3 years after seroconversion.  All three 

subjects received combination ART and maintained plasma HIV-1 RNA below 20 copies/ml at 

most post-ART visits. 
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2.2.2 Clinical and virologic characteristics 

At each biannual visit, plasma samples and peripheral blood mononuclear cells (PBMC) 

were collected from the study subjects and were stored at -80C and -140C, respectively, as 

described previously (159, 171).  T cell phenotypes were determined by flow cytometry as 

previously described (123, 298).  HIV-1 plasma viremia was determined by extracting RNA using 

a COBAS® Ampliprep Instrument (Roche Diagnostics, Indianapolis, IN) and performing RT-PCR 

on a COBAS® Taqman® 48 Analyzer (Roche Diagnostics) using the COBAS® 

Ampliprep/COBAS® Taqman® HIV-1 test.  This assay is capable of detecting 20 to 106 HIV-1 

RNA copies/ml of plasma.  Negative, low positive, and high positive controls were used in each 

extraction and amplification per the manufacturer’s instructions.   

2.2.3 HIV-1 gag and env-gp120 sequencing 

Five post-seroconversion time points for S2 and S8 and six post-seroconversion time points 

for S3 were chosen for HIV-1 gag p17-p6 and env gp120 sequencing.  Viral RNA was manually 

extracted from plasma using a viral RNA mini kit (Qiagen, Valencia, CA).  cDNA synthesis was 

performed using Nef3 (TAAGTCATTGGTCTTAAAGGTACC) and RT2 

(GTATGTCATTGACAGTCCAGC) primers with SuperScript III Reverse Transcriptase (200 

U/ml; Invitrogen, Carlsbad, CA).  Endpoint dilution methodology was used prior to viral gene 

amplification to avoid template resampling.  Multiplex first-round PCR was performed with the 

Gag1 (GAGGCTAGAAGGAGAGAGATGG) and RT2 primers to amplify gag and the Ed3 

(TTAGGCATCTCCTATGGCAGGAAGAAGCGG) and Nef3 

(TAAGTCATTGGTCTTAAAGGTACC) primers to amplify env-gp120.  Singleplex second 
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round PCR was performed with Gag2 (GTGCGAGAGCGTCGGTATTAAGCG) and RSP15R 

(CAATTCCCCCTATCATTTTTGGTTTCC) primers for gag and Gp120 forward 

(GGCCGCGTCGACAAGAGCAGAAGACAGTGGCAATGA) and reverse 

(GGCCGCGGATCCGTGCTTCCTGCTGCTCCCAAGAAC) primers for env.  PCR products 

were run on a QIAxcel automated electrophoresis system (Qiagen, Valencia, CA) and Sanger 

sequencing was performed on samples with positive bands (High Throughput Genomics Center, 

Seattle, WA).   We obtained 5 to 36 unique gag sequences and 9 to 32 unique env sequences from 

each subject at each time point.     

2.2.4 Genetic sequence analysis 

Nucleotide sequences were aligned with MUSCLE (203, 309) in SeaView, version 4.4. 

(133), and manually codon-edited with CLC sequence viewer, version 6.7.1 (CLC Bio, Aarhus, 

Denmark).  All Env sequences were evaluated for CCR5 and CXCR4 coreceptor specificity using 

the position-specific site matrix (PSSM) web tool (163) 

(http://indra.mullins.microbiol.washington.edu/webpssm).  Viral divergence from the most recent 

common ancestor (MRCA) and pairwise diversity were determined using the general time 

reversible model of substitution (GTR) and an HXB2 sequence as the outgroup within the DIVEIN 

web tool (86, 196).  Phylogenetic trees were constructed with BEAST 1.7.4 (96) using the time of 

sequence sampling to estimate evolutionary rates throughout the tree.  Each sample used the GTR 

with gamma substitution model and assumed a random-clock model.  MCMC chains were run for 

30 million generations and manually examined in tracer to ensure thorough mixing. Trees were 

edited using FigTree, version 1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/).  Four subtype 

reference sequences from HIV-1 subtype B were used as outgroup sequences and were obtained 

https://sremote.pitt.edu/,DanaInfo=indra.mullins.microbiol.washington.edu+webpssm
http://tree.bio.ed.ac.uk/software/figtree/
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from the Los Alamos Database.  Reference numbers for these outgroup sequences are: 

Ref.B.FR.83.HXB2_LAI_IIIB_BRU.K03455, Ref.B.NL.00.671_00T36.AY423387, 

Ref.B.TH.90.BK132.AY173951, and Ref.B.US.98.1058_11.AY331295 

(http://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html). Potential N-linked 

glycosylation sites (PNGS) in Env were predicted using N-GLYCOSITE (365).   

2.2.5 Identification of sites under selection 

Gag and env codon alignments were evaluated at each time point for evidence of positive 

and negative diversifying selection.  In positive selection, nonsynonymous mutations that infer an 

adaptive benefit are selected for at a greater rate than neutral or synonymous mutations.  In 

negative selection, dN/dS is abnormally low and usually at or close to zero (125, 283).  To estimate 

the rate of positive and negative selection, we used the fixed-effects likelihood (FEL) method with 

the GTR substitution model (196) in HyPhy as described previously (147).  Sites with dN/dS (ω) 

of >1 and P<0.1 were considered to be under positive selection, whereas sites with ω of <0.2 and 

P<0.1 were considered to be under negative selection.  Codons corresponding to the variable loops 

of env were removed for selection analyses to avoid false identification of sites under positive 

selection. 

To determine neutrality of viral evolution, Tajima’s D (316) and the D* of Fu and Li (113) 

were calculated for gag and env at each time point using the DnaSP software package (203) and 

using the heuristic assumption of free recombination among genes (309) and no recombination 

within them.  

To identify sites under directional selective pressure, HIV-1 gag and env nucleotide 

sequences were first translated to amino acids using the ExPasy Bioinformatics Resource Portal 

http://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html
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Translate Tool (16).  Sequences coding for early stop mutations were excluded from protein 

sequence analysis and the variable loops in Env were removed for selection analyses due to the 

inability to assign homology.  We determined the rate and number of sites under directional 

selection for each subject at each time point using the directional evolution of protein sequences 

(DEPS) method (http://www.datamonkey.org) (187).   

2.2.6 Protein sequence and epitope analysis 

Predicted N-linked glycosylation sites in Env were identified using the N-Glycosite web 

tool:  

(http://www.hiv.lanl.gov/content/sequence/GLYCOSITE/glycosite.html) (365).    

Phylogenetically informative sites were identified using the InSites approach 

(http://indra.mullins.microbiol.washington.edu/DIVEIN/insites.html) on the DIVEIN web tool 

(86).  This tool functions by omitting mutations that only occur once and are therefore possibly 

introduced by polymerase errors during PCR.   

Changes in the number of predicted MHC class I epitopes were evaluated using 

netMHCpan version 2.8 (151, 241) and SYFPEITHI (275), whereas changes in MHC class II 

epitopes were evaluated using netMHCIIpan version 3.0 (170).  Peptide sequences with a predicted 

IC50 of less than 500 nM or 9mer sequences containing at least one preferred anchor residue were 

considered “predicted epitopes”.  A combined predictor was also used to identify potential MHC 

class I-restricted epitopes.  This algorithm combines proteasomal cleavage, TAP transport, and 

MHC class I affinity to produce a score for each peptide designating its potential of being a class 

I epitope (http://tools.immuneepitope.org/processing/).   Peptide sequences with an overall score 

https://sremote.pitt.edu/,DanaInfo=www.datamonkey.org+
http://www.hiv.lanl.gov/content/sequence/GLYCOSITE/glycosite.html
https://sremote.pitt.edu/DIVEIN/,DanaInfo=indra.mullins.microbiol.washington.edu+insites.html
http://tools.immuneepitope.org/processing/
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greater than -2.0 were considered “predicted epitopes”.  NetChop version 3.1 (242) was used to 

identify potential sites of proteasomal cleavage.  

2.2.7 Statistics 

Spearman correlations were calculated to determine the association between CD4+ T cell 

number and viral load, CD8+ T cell number and viral load, as well as divergence and diversity 

correlations with viral load, CD4+T cell number, and CD8+ T cell number.  Linear regression was 

performed to identify the association between disease progression/years post-seroconversion and 

divergence, diversity, and sites under positive selection.  Two-way ANOVA with Bonferroni 

multiple comparisons post-test was used to determine significant differences within subjects at 

each time point.  All statistics were computed using GraphPad Prism 5 (GraphPad Software, Inc., 

La Jolla, CA) and were calculated with an α of 0.05. 

2.3 RESULTS 

2.3.1 Clinical characteristics in chronic, untreated HIV-1 infection 

In the present study, three HIV-1 infected subjects from the Multicenter AIDS Cohort 

Study (MACS) were chosen for longitudinal analysis.  These subjects were chosen based on their 

prolonged enrollment in the study (>10 years), typical course of disease progression, and the 

presence of at least one common HLA allele. For each subject (designated as S2, S3 and S8), HIV-

1 plasma viral loads and CD4+ and CD8+ T cell counts were determined biannually for >10 years 



 32 

post-seroconversion (Figure 3A).  All three subjects progressed to AIDS (<200 CD4+ T cells/µl) 

between 7.0 and 8.25 years after infection and subsequently received and responded favorably to 

combination antiretroviral therapy (cART).  S8 was not infected with HIV-1 until 1992, hence he 

was administered cART earlier in his disease progression compared to S2 and S3, who were 

infected in 1987 and 1988, respectively, and received cART in 1996.   

 

Figure 3.  Clinical and virologic data 

HIV-1 plasma RNA and CD4+ and CD8+ T cell counts were determined biannually for the three study subjects.    (A)  

CD4+ (green line) and CD8+ (blue line) T cell counts and viral load (red line) are shown longitudinally for S2, S3, and 

S8.  All three subjects progressed to AIDS (CD4+ T cell count below 200 cells/mm3, solid line) and received 
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antiretroviral therapy (ART, dotted line).  Autologous Gag and Env sequences were obtained from multiple time points 

that spanned >6.5 years post-seroconversion (shaded region).  Pre-ART (B) CD4+ T cell number and (C) CD8+ T cell 

number are shown as functions of viral load. 

 

We observed an inversion of the CD4:CD8 T cell ratio following infection, albeit at varying 

degrees in each subject. The lowest ratio observed in S2 was 0.10, compared to 0.27 and 0.17 in 

S3 and S8, respectively.  We also observed the steepest increase to peak viremia in S2, averaging 

an increase of 787,665 copies/ml per year.  This was significantly greater than the rates to peak 

viremia observed in S3 (21,304 copies/ml per year) and S8 (908 copies/ml per year) (p=0.019).  

Despite a gradual decline in CD4+ T cell number to <200 cells/µl and an inversion in the CD4:CD8 

ratio, S8 maintained relatively low viremia, reaching a peak of 15,456 copies/ml.  This therefore 

demonstrated typical disease progression accompanied by atypical HIV-1 viral load.  Interestingly, 

while S8 maintained the highest CD4+ T cell count of the three subjects evaluated, he also 

experienced the most drastic reduction in T cell number, dropping 76% from 1,189 CD4+ T 

cells/mm3 at his first post-seroconversion visit to 283 CD4+ T cells/mm3 at his last pre-ART visit.   

We next examined CD4+ T cell counts as a function of viral load to determine if HIV-1 

viremia was a predictor of CD4+ T cell number within infected individuals before administration 

of cART.  As expected, we saw significant negative correlations between these two parameters in 

all 3 subjects (Figure 3B).   We additionally expected to see positive correlations between viral 

load and CD8+ T cell number, which would suggest increased level of viral antigen led to CD8+ T 

cell expansion, but observed this correlation only in subject S2 (p=0.0214, R=-0.5377).  

Interestingly, subject S8 displayed a negative correlation between CD8+ T cell numbers and viral 

load (p=0.017, R=-0.6853) (Figure 3C).  Only S3 showed a negative correlation between CD4+ 

and CD8+ T cell number (data not shown).  When T cell and viral load data from all subjects were 

combined, viral load was negatively correlated with CD4+ T cell number (p<0.0001).  No 
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association was seen between CD8+ T cell number and viral load or between CD4+ and CD8+ T 

cell number when the subjects were combined (data not shown).   

Taken together, these data demonstrate varying correlates of disease progression in each 

subject.  Despite progression to AIDS, each subject had unique patterns of CD4+ T cell depletion, 

CD8+ T cell expansion, and increases in HIV-1 viral load.  Moreover, these data show that high 

levels of viral antigen may directly contribute to CD4+ T cell depletion, but are not sufficient to 

induce CD8+ T cell expansion in all subjects.  Of note, these findings indicate that raw CD4+ T 

cell number may not be the best indicator or correlate of disease progression when comparing 

individuals, as baseline lymphocyte numbers differ greatly between individuals. 

2.3.2 Correlates of HIV-1 gag and env evolution 

Prior studies have documented continuous HIV-1 evolution that produces a pool of unique 

viral strains, termed quasispecies, in untreated subjects (307, 349).  It has yet to be fully determined 

if stochastic evolutionary processes, selection processes, or a combination of both contribute to 

viral evolution and disease progression in chronic untreated infection.  To identify correlates of 

quasispecies evolution in our study subjects, we performed single-genome HIV-1 gag p17-p6 and 

envelope (env) gp120 sequencing on plasma samples from 5 to 6 pre-cART time points for each 

subject.  A total of 325 gag and 328 env sequences were obtained, with an average of 20 and 21 

sequences per time point, respectively.  The numbers of gag and env sequences obtained from each 

subject at each time point are shown in Table 2.  Sequencing spanned >6.5 years of untreated HIV-

1 infection, with at least one early infection time point per subject that contained viruses predicted 

by PSSM (163) to primarily use the CCR5 co-receptor, as is expected in acute HIV-1 infection 

(297).  
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Table 2.  HIV-1 plasma viral load, T cell count, and number of unique gag and env sequences 

obtained from each post-seroconversion time point 

 

 

 

Divergence from the most recent common ancestor (MRCA) was determined for gag and 

env at each time point (Figure 4A).   For ease of interpretation and comparability between subjects, 

we grouped the time points into the following ranges: 0-1, 1-2, 2-4, 4-6, 6-8, and >8 years post-

seroconversion.  Overall, the rate at which gag diverged from the founding virus differed between 

the subjects (p=0.0011).  There was a linear correlation between gag divergence and the time post-

Table 1.  HIV-1 viral load, T cell count, and number of unique gag and env sequences obtained from 
each post-seroconversion time point 
 
     No. of Sequences

c
           T Cell Counts (cells/mm

3
)         _ 

Subject     YPS
a
     HIV-1 Viral Load

b
   Gag          Env CD3  CD4  CD8 

 

S2      0.2  7,844     11         13  2,015  806  1,021 

      1.2  11,430     12         14  1,340  638  718 

      3.4  44,749     20         31  1,525  479  1,046 

      5.6  138,153    22         25  1,264  239  997 

      9.6  20,926     25         27  1,215  207  937 

 

S3      0.2  70,873     21         20  1,304  545  677 

      1.5  28,240     15         11  969  406  459 

      2.5  19,992     24         21  936  510  454 

      5.3  2,539     27         19  1,670  668  947 

      6.4  15,869     36         21  1,162  357  739 

      8.3  71,057     27         32  1,117  225  853 

 

S8      0.5  776     14         9  2,616  1,189  1,438 

      1.4  2,146     5         13  2,517  990  1,508 

      2.4  3,794     28         25  1,961  564  1,268 

      5.0  10,897     22         23  1,595  382  1,199 

      6.6  5,645     16         24  1,299  283  1,003 

 
a
Years post-seroconversion 

b
Plasma RNA copies/ml 

c
Number of unique sequences obtained at each time point from HIV-1 gag and env single genome 

sequencing 
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seroconversion in S3 (p=0.0021, r2=0.9256) and S8 (p=0.0253, r2=0.8520).  We did not see this 

correlation in S2.  Gag divergence in S3 was significantly greater than that of S2 and S8 at each 

time point tested (p<0.0001 for all).  In env, divergence was linearly correlated with years post-

seroconversion in S2 (p=0.0201, r2=0.8725) and S3 (p=0.0020, r2=0.9271).  Env divergence in S8 

increased at all time points except 2-4 years post-seroconversion, at which point divergence 

dropped below that seen 0-1 years post-seroconversion.  Env divergence in S3 was significantly 

greater than that of S2 and S8 at all time points except 1-2 years post-seroconversion (p<0.0001 

for all), during which time there were no differences in divergence between the subjects.  Env 

divergence in S2 was also significantly greater than divergence in S8 2-4 years post-

seroconversion (p<0.0001 for all).  Although there was an overall positive slope in divergence in 

S8 throughout disease progression, this association did not reach significance (p=0.0518, 

r2=0.7663).   

Although there was an increasing trend in gag and env divergence as HIV-1 plasma viremia 

increased, this association did not reach significance when the subjects were combined (p=0.0697 

in gag, p=0.0718 in env), suggesting a limited role of uncontrolled viral replication in inducing 

divergence (Figure 4B).  To avoid the issue of having a highly variable dataset when combining 

raw numbers of CD4+ and CD8+ T cells between subjects, we evaluated divergence as a function 

of the CD4+ and CD8+ percent of the total lymphocyte population.  Divergence was not due to an 

expansion or depletion of T cell subsets, as neither the percent of CD4+ T cells (Figure 4C) nor 

the percent of CD8+ T cells (Figure 4D) in peripheral blood correlated with divergence in gag or 

env.  Based on these data, we conclude that gag and env divergence from MRCA is not a linear 

process in all HIV-1 infected subjects.  Furthermore, uncontrolled viral replication alone is not 

responsible for this divergence, nor is it the cause of changes in CD4+ and CD8+ T cell percentages 
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within infected individuals.  These data implicate selective pressures that may be driving HIV-1 

evolution and suggest that increases in antigenic variability are not sufficient to induce CD4+ T 

cell depletion or CD8+ T cell expansion.   

 

 

Figure 4.  Correlates of HIV-1 gag and env divergence 

Divergence from the most recent common ancestor (MRCA) was determined using the general time reversible (GTR) 

model of substitution with autologous gag and env sequences from 5 to 6 time points in each subject.  (A) Divergence 

during untreated HIV-1 infection in S2 (blue line), S3 (red line), and S8 (green line).  Spearman correlations were 

performed to evaluate (B) gag and env divergence as a function of HIV-1 viral load, (C) gag and env divergence as a 

function of CD4+ T cell percent, and (D) gag and env divergence as a function of CD8+ T cell percent.  Error bars 

represent the standard deviation of 5 to 36 sequences. 

 

Linear regression analyses showed the rate at which env divergence increased throughout 

infection was greater than that of gag in S2 (p=0.0091), S3 (p=0.0052), and S8 (p=0.0317) (Figure 

5). Interestingly, there was a decrease in env divergence 1-2 and 2-4 years post-seroconversion in 

subjects S3 and S8, respectively, followed by steady increases in divergence at all remaining time 

points.   
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Figure 5.  Comparison of divergence in HIV-1 gag and env 

Divergence from the most recent common ancestor (MRCA) was calculated for the autologous gag and env sequences 

obtained from subjects S2 (left panel), S3 (middle panel), and S8 (right panel) at each post-seroconversion time point.  

Error bars represent the standard deviation of 5 to 36 sequences. 

 

 

We then evaluated the gag and env pairwise diversity of the viral quasispecies present 

within each subject at each time point (Figure 6A).  There was a significant linear correlation 

between gag diversity and years post-seroconversion in S2 (p=0.0074, r2=0.9336) and S8 

(p=0.0391, r2=0.8046).  In S3, however, we observed increases in gag diversity through 4-6 years 

post-seroconversion and then a gradual decrease back to levels observed 0-1 years post-

seroconversion, showing no overall correlation with disease progression.  Nonetheless, gag 

diversity in S3 was significantly higher than the diversity seen in S8 at all time points and higher 

than the diversity in S2 at four out of five time points (p<0.0001 for all).     

Diversity in gag correlated with HIV-1 viral load (p=0.0338, R=0.5324), whereas this 

correlation was not observed with env diversity (Figure 6B).  In accordance with our findings with 

divergence, diversity in neither gag nor env correlated with the percent of CD4+ T cells (Figure 

6C) or the percent of CD8+ T cells (Figure 6D) in peripheral blood.   
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Figure 6. Correlates of HIV-1 gag and env pairwise diversity 

Pairwise diversity at each time point was calculated using the general time reversible (GTR) model of substitution.  

This method identifies genetic distances between each sequence in a quasispecies at a particular time point.  (A)  gag 

and env pairwise diversity throughout untreated HIV-1 infection in S2 (blue line), S3 (red line), and S8 (green line).  

Spearman correlations were performed to evaluate (B) gag and env diversity as a function of HIV-1 viral load, (C) 

gag and env diversity as a function of CD4+ T cell number, and (D) gag and env diversity as a function of CD8+ T cell 

number.  Error bars represent the standard deviation of 5 to 36 sequences. 
 

 

There was a positive linear correlation between env diversity and the time post-

seroconversion only in S8 (p=0.0095, r2=0.9219).  Env diversity in S2 had an overall increasing 

trend during infection, although this did not reach significance (p=0.0769, r2=0.7010).  In S3, we 

saw a similar trend in env diversity as we saw in gag, with diversity increasing and then gradually 

returning to baseline at >8 years post-seroconversion and no correlation with disease progression.  

This is not unexpected, as a previous report on env C2-V5 sequence evolution in MACS subjects 

showed plateaus and declines in diversity in some subjects, which correlated with the T cell 

inflection point  in chronic, untreated HIV-1 infection (307).  Env diversity was different between 

S2 and S3 at 1-2 (p<0.05) and 4-6 (p<0.0001) years post-seroconversion.  There were also 

differences between S2 and S8 at 2-4 years post-seroconversion (p<0.0001) in env diversity.  
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Interestingly, the rate at which env diversity increased was significantly greater than that of gag 

only in S8 (p=0.0033) (Figure 7), suggesting env divergence from the most recent common 

ancestor may increase at a rate faster than that observed in gag, the intrahost variability of env at 

a specific time point is not consistently higher than the variability of gag. 

 

 

Figure 7. Comparison of diversity in HIV-1 gag and env 

Pairwise diversity was calculated for the autologous gag and env sequences obtained from subjects S2 (left panel), S3 

(middle panel), and S8 (right panel) at each post-seroconversion time point. Error bars represent the standard deviation 

of 5 to 36 sequences. 
 

 

Phylogenetic trees constructed for gag and env confirmed our calculations showing an 

increase in evolution over time (Figure 8).  The rate of evolution differed between subjects and 

within subjects at different time points. Divergence in gag and env began to increase 5.61 years 

post-seroconversion in subject S2 (Figure 8A). Among the three, sequences obtained from subject 

S3 seemed to have the greatest evolution and divergence from the HXB2 outgroup sequence 

(Figure 8B). While gag and env sequences obtained from subject S8 were highly divergent from 

the outgroup (Figure 8C), they did not evolve at the rates seen in subjects S2 and S3.   

Interestingly, some sequences obtained from subjects S2 and S3 exhibited signatures of reversion 

to the ancestral sequence beginning at the second time point evaluated 
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Figure 8. Phylogenetic trees derived from autologous gag and env sequences 

Phylogenetic trees were constructed from the autologous HIV-1 gag and env sequences derived from subjects (A) S2, 

(B) S3, and (C) S8 using 4 HIV-1 subtype B reference outgroup sequences. 
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Divergence from MRCA highly correlated with diversity in gag (p<0.0001, R= 0.8794) 

and env (p=0.0009, R= 0.7441), showing a linear association between these two evolutionary 

parameters (Figure 9).  Overall, these data suggest that HIV-1 viral load alone may contribute to 

increases in gag diversity but is not a direct contributor of increases in env diversity.  Additionally, 

these results fail to directly correlate CD4+ T cell depletion and CD8+ T cell expansion to viral 

evolution, suggesting a role for adaptive immunological pressures that does not solely rely on T 

cell expansion. 

 

 

Figure 9. Correlations between divergence and pairwise diversity 

Divergence from the most recent common ancestor (MRCA) and pairwise diversity were combined from the three 

subjects and plotted for gag (left), env (center), and both genes combined (right).  R and p values from Spearman 

correlations are shown. 

 

2.3.3 Mechanisms of viral evolution 

The HIV-1 gag and env evolution observed in these subjects could have resulted from 

stochastic events or could have been the result of adaptive selective pressure.  To evaluate these 

two potential mechanisms, we first assessed how the data conformed to the neutral theory, given 

that plasma HIV-1 viral load was increasing throughout infection and could have influenced 
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genetic diversity.  Both Tajima’s D (316) and Fu and Li’s D* (113) tests revealed deviations from 

neutrality in gag at 1 to 2 time points in each subject, whereas deviations from neutrality in env 

were observed only in S2 at 2 timepoints (data not shown).  These findings implicate stochastic 

evolution in the divergence and diversity seen at most time points.  More specifically, these 

findings suggest that evolution of env may have been more the result of replication errors during 

demographic expansion of the viral population, whereas evolution of gag may have resulted from 

other processes, such as selective pressures.  

Although the entire gag and env genes exhibited patterns of random evolution at most time 

points, it is possible that selective pressures acted on a small number of sites within these genes to 

induce significant rates of non-synonymous mutations.  To determine if selective pressures at 

individual amino acid sites could have induced the evolution observed in these subjects, we used 

a fixed effects likelihood (FEL) method to identify codons that were under diversifiying and/or 

directional positive selection.  This model operates by calculating the non-synonymous to 

synonymous substitution ratio in a maximum likelihood framework (dN/dS).  In positive selection, 

certain codons are advantageous and are indicated by a relatively high dN/dS ratio due to the rapid 

fixation of the favorable mutation in the population (125, 283).  To avoid false identification of 

sites under positive selection, codons corresponding to the variable loops in env were removed for 

these analyses.  The percent of gag codons that were under positive selection increased throughout 

infection and was associated with disease progression in S2 (p=0.0142, r2=0.8983), S3 (p=0.0006, 

r2=0.9619) and S8 (p=0.0045, r2=0.9522) (Figure 10A).  This was also seen in env, with the 

percent of sites under positive selection correlating with disease progression in S2 (p=0.0013, 

r2=0.9789), S3 (p=0.0012, r2=0.9451), and S8 (p=0.0073, r2=0.9344).  The rate at which positively-

selected sites accumulated throughout infection was not different between the subjects, averaging 
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0.92% per year in gag and 1.54% per year in env.  Of note, there was no difference in the mean 

frequency of codons under positive selection between gag and env at any of the time points, 

implying positive selective pressures were acting uniformly on the two genes. 
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Figure 10.  Correlates of positive and negative selection 

The percent of gag and env codons under positive and negative selection were determined for each subject at each 

time point.  (A) The percent of gag (left panel) and env (right panel) codons undergoing positive selection as 

determined by identifying sites under directional and diversifying selection.  Spearman correlations were performed 

between the percent of sites under positive selection and HIV-1 plasma viral load (B), CD4+ T cells (C), and (D) CD8+ 

T cells.  (E) The percent of gag (left panel) and env (right panel) codons under negative selection was determined 

longitudinally for each subject.  Spearman correlations show the association between the percent of codons under 

negative selection and (F) HIV-1 viral load, (G) CD4+ T cells, and (H) CD8+ T cells. 
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We combined positive selection data from the three subjects and performed Spearman 

correlations between the percent of sites under positive selection and viral load, CD4+, and CD8+ 

T cell percentages at each time point.  No correlation was observed between positive selection in 

gag and HIV-1 plasma viremia (Figure 10B).  There was a positive association between these two 

parameters in env, although this did not reach significance (p=0.0697, R=0.4647).  Lower CD4+ T 

cell percentages correlated with a greater percentage of sites under positive selection in gag 

(p=0.0008, R=-0.7511), but did not reach significance in env (p=0.0567, R=-0.4853, Figure 10C).  

Likewise, we observed a positive correlation between CD8+ T cell percentages and the number of 

sites under positive selection in gag (p=0.0012, R=0.7349), but did not see any association with 

CD8+ T cells in env (Figure 10D).     

We then identified gag and env sites that were undergoing negative selection, at which the 

dN/dS ratio is unusually low.  In negative selection, conserved amino acids accrue a higher 

proportion of synonymous mutations than nonsynonymous due to nonsynonymous mutations 

being selected against.  Using the FEL method we found that negative selection in gag and env 

correlated positively with disease progression in all three subjects (p<0.004, r2>0.95 for all, Figure 

10E).  There was no difference in the rate at which sites under negative selection accumulated 

between gag and env in S2 (p=0.8929).  Negatively selected sites accumulated faster in gag than 

in env in S3 (p=0.0048), and faster in env than in gag in S8 (p=0.0318).  There were no correlations 

between the percent of sites under negative selection and HIV-1 plasma viremia in gag or env, 

although the association approached significance in env (p=0.0759, R=0.4959).  The percent of 

env sites under negative selection was negatively correlated with CD4+ T cell percent (p=0.0077, 

R = -0.6392).  We did not see this correlation in gag (Figure 10G).  Accordingly, there was a 

positive correlation between CD8+ T cell percentage and the number of sites under negative 
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selection in env (p=0.0246, R=0.5582) but not in gag (Figure 10H).  Interestingly, negatively-

selected sites accumulated at a faster rate than positively selected sites in gag and env in all subjects 

(P<0.0003 for all).   

We conclude that adaptive selective pressures, in addition to random mutations, are acting 

on both gag and env in chronic, untreated HIV-1 infection.  The analyses of positive and negative 

selection show that increases in positively-selected sites are accompanied by a higher proportion 

of negatively-selected sites.  Additionally, there are differential correlates of positive and negative 

selection between the two genes.  Specifically, the expansion and depletion of T cell subsets 

correlates with positive selection in gag and negative selection in env. 

2.3.4 Positive selection as a driving force for viral evolution 

The evidence presented above suggests uncontrolled viral replication alone is not 

responsible for the increases in divergence and diversity observed in chronic HIV-1 infection, and 

that positive selection at specific amino acid residues could have induced the evolution observed 

in these subjects.  To determine the effects of adaptive selection on viral evolution, we performed 

Spearman correlations between divergence and diversity and positive selection in gag and env.  

We observed strong correlations between the percent of sites under positive selection and 

divergence (Figure 11A, p<0.0001, R=0.7104) and diversity (Figure 11B, p<0.0001, R=0.7179) 

when data from the three subjects were combined.  We observed similar results when correlations 

were performed on gag and env separately (data not shown).   
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Figure 11.  Positive selection as a function of viral divergence and diversity 

Longitudinal data from all three subjects were combined to perform Spearman correlation analyses between the 

percent of gag and env codons under positive selection within each subject and (A) divergence and (B) diversity of 

the corresponding gene at the corresponding timepoint. 

 

Analysis of phylogenetically-informative sites (86) revealed an increase in the number of 

mutated amino acid sites throughout infection as well as the presence of compensatory and 

mutually exclusive mutation patterns at these sites in all three subjects (data not shown).  On 

average, less than 10% of amino acids in Gag and Env were considered phylogenetically 

informative, providing further evidence that evolution of entire HIV-1 genes may be due to 

evolution at a few highly-mutable sites.  Of note, in all three subjects ≥70% of mutated Gag and 

Env amino acid sites were under positive selection, suggesting non-synonymous mutations were 

often the result of selective pressure.  Env amino acid sequences showed no increase in potential 

N-linked glycosylation sites (PNGS) in any of the subjects throughout infection (data not shown), 

suggesting a limited role of this mechanism in escape from adaptive immune responses.   

Together, these data provide strong evidence for the role of positive selection at a limited 

number of sites in the evolution of entire HIV-1 genes. 
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2.3.5 Positive selection in MHC class I-restricted epitopes 

To identify the effects of protein evolution on cytotoxic T-lymphocyte (CTL) epitopes, we 

identified amino acid changes that occurred within epitopes known to be targeted, processed, and 

presented as defined by the Los Alamos Database (http://www.hiv.lanl.gov) for each individual’s 

HLA A and B alleles (Table 3).  

 

Table 3.  Molecular HLA genotypes used in epitope prediction models. 

 

 

We excluded epitopes that occurred in the variable regions of Env from our analysis.  The 

known Gag and Env epitopes evaluated for each subject are shown in Table 4.  

 

Supplementary Table 1.  Molecular HLA genotypes used in epitope prediction models. 

 
                                 HLA Alleles _ 
 

 Subject A
a
  B

a
  DRB1

b
  DRB3

b
  DRB4

b
      

 

 S2      2402, 2902      0801, 3501         1104, 1302         0202, 0301 

       

 S3      2402, 0301        1518, 3502           1104, 0401             0202   0101 

 

 S8      2402, 1101        4001, 5101           0701, 1301             0202               0101 

 

a
HLA A and B alleles were used for MHC class I peptide affinity predictions, proteasomal  

cleavage, and TAP binding predictions 

b
HLA-DR alleles were used for MHC class II peptide affinity predictions 

http://www.hiv.lanl.gov/
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Table 4.  Known MHC class I-restricted HIV-1 Gag and Env epitopes for each subject 

 

 

In S2, 6/7 (85.7%) Gag epitopes and 1/2 (50.0%) Env epitopes mutated throughout 

infection.  Only 2/7 (28.6%) Gag epitopes and 0/2 (0.0%) Env epitopes contained sites undergoing 

 Table 2.  Known Gag and Env CTL epitopes for each study subject. 

 
 Subject Epitope Position       HLA Restriction    AA Change?

a
     Pos. Selection?

b
 

 
 S2           KYKLKHIVW         p1728-36    A*2402         yes  yes 
                       ELRSLYNTV         p1774-82    B*0801         yes  yes            
                       LYNTVATLY          p1778-86    A*2902         yes  yes 
                       EVKDTKEAL         p1793-101    B*0801         yes  yes 
                       NYPIVQNL            p17/p24131-138    A*2402         yes  yes 
                       HPVHAGPIA         p24216-224    B*3501         yes  yes 
                       IYKRWIILGL         p24263-272    A*2402         yes  yes 
                       DYVDRFYKT        p24295-303    A*2402         yes  no   

                       LFCASDAKAY      gp12052-61    A*2402         no   no 

                       SFEPIPIHY           gp120209-217    A*2902         yes  yes 

 

S3           KYKLKHIVW  p1728-36    A*2402         yes  no 

           NYPIVQNL  p17/p24131-138    A*2402         no   no 

           VKVVEEKAF  p24156-164    B*15          yes  yes 

           GHQAAMQML  p24193-201    B*15          no   no 

           PPIPVGEIY  p24254-262    B*3502         no   no 

           IYKRWIILGL  p24263-272    A*2402         no   no 

           DYVDRFYKT  p24295-303    A*2402         no   no 

           VTVYYGVPVWK  gp12036-46    A*0301         no   no 

           LFCASDAKAY  gp12052-61    A*2402         yes  no 

 

S8           KYKLKHIVW  p1728-36    A*2402         yes  yes 

           VLYCVHQG  p1784-91    A*1101         no   no 

           VEIKDTKEAL  p1792-101    B*4001         yes  yes 

           NYPIVQNL  p17/p24131-138    A*2402         no   no 

           VKVVEEKAF  p24156-164    B*15          yes  yes 

           SEGATPQDL  p24176-184    B*4001         no   no 

           GHQAAMQML  p24193-201    B*15          no   no 

           IYKRWIILGL  p24263-272    A*2402         no   no 

           GLNKIVRMY  p24269-277    B*15          no   no 

           DYVDRFYKT  p24295-303    A*2402         no   no 

           NANPDCKTI  p24325-333    B*5001         no   no 

           ACQGVGGPGHK  p24349-359    A*1101         yes  no 

           VTVYYGVPVWK  gp12036-46    A*0301         no   no 

           LFCASDAKAY  gp12052-61    A*2402         yes  no 

           SFNCGGEFF  gp120375-383    B*15          yes  no 

           LPCRIKQII  gp120414-424    B*5001         no   no 

 
a
Identifies if there were amino acid changes within the epitope at any time during untreated HIV-1 infection 

 
b
Identifies if any amino acid changes within the epitope were the result of positive selection 
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positive selection.  In S3, 2/7 (28.6%) Gag epitopes and 1/2 (50.0%) Env epitopes mutated, with 

0/7 (0.0%) Gag and 0/2 (0.0%) Env epitopes containing sites under positive selection.  Lastly, in 

S8 4/12 (33.3%) Gag epitopes and 2/4 (50.0%) Env epitopes mutated, with 2/12 (16.7%) Gag and 

2/4 (50.0%) Env epitopes under positive selection (Table 4).  Interestingly, the percent of epitopes 

with mutations was significantly higher than the percent of epitopes with positively-selected sites 

(p=0.0014, data not shown), suggesting that mutations within epitopes are not always the direct 

result of positive selection.  Epitope evolution was not specific to either protein, as there was no 

difference in the mean percent of epitopes that mutated between Gag and Env.  Interestingly, none 

of the subjects exhibited evidence of positive selection in the optimal HLA A24-restricted Gag 

epitope KW9 (p1728-36, KYKLKHIVW), despite variation of this epitope in all subjects.  

Additionally, the observed lack of selection in CTL epitopes was likely not due to viral fitness 

costs, as no compensatory mutations were found in or near known epitopes. 

2.3.6 The impact of protein evolution on predicted epitope processing and presentation 

We have previously shown that the number of predicted epitopes in autologous full-length 

HIV-1 sequences decreases during the first 50 days of infection (147).  To date, we have yet to 

fully understand how selective processes affect the HIV-1 proteome in chronic infection, 

particularly in CTL epitopes and regions involved in epitope processing.  We therefore generated 

consensus Gag and Env sequences for each subject at each time point and used netMHCpan, a 

prediction model for peptide:MHC class I affinity, to identify potential epitopes for each subject’s 

cognate HLA-A and -B molecules.  For comparability between the two proteins, which are 

different lengths, we calculated the number of predicted epitopes per amino acid.  Surprisingly, 

predicted MHC class I-restricted epitopes were more prevalent in Env than in Gag in all subjects 
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at all time points (Figure 12A).  In fact, Env epitopes were more than 1.5 times more prevalent 

than Gag epitopes in S8 at every time point.  There was no observable change in the number of 

predicted MHC class I epitopes throughout infection in Gag or Env. 
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Figure 12.  Longitudinal changes in the frequency of predicted MHC class I and II-restricted epitopes 

Autologous Gag and Env sequences were evaluated for the presence of predicted MHC class I and II epitopes, as well 

as proteasomal cleavage sites.  The number of predicted Gag and Env epitopes for each subject at each time point as 

determined by (A) netMHCpan, (B) a combined MHC class I affinity, proteasomal processing, and TAP binding 

predictor, and (C) SYFPEITHI calculations.  (D) The number of predicted MHC class II epitopes at each time point 

for each subject as determine by netMHCIIpan.  For comparability between Gag and Env, data are shown as the 

number of predicted epitopes per amino acid, as there were 475 Gag and 507 Env amino acids in each sequence.  Error 

bars represent the standard deviation of 5 to 36 sequences.  *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 
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A similar pattern was observed when using a combined prediction model within the 

Immune Epitope Database (IEDB), which combines predictions of MHC class I affinity, 

proteasomal cleavage, and TAP binding to give an overall epitope “score” (260, 319).  When these 

three components were evaluated in autologous Gag and Env sequences, Env had consistently 

more frequent predicted MHC class I epitopes than Gag (Figure 12B).  Of note, there was a two-

fold higher frequency of class I-restricted Env epitopes than Gag epitopes in S2 at all time points.  

This method is unable to predict an epitope score for HLA B*1518 and B*3502, so only 

predictions for HLA A alleles were performed in S3.  SYFPEITHI calculations also showed a 

similar trend when looking at predicted HLA A*2402-restricted epitopes within autologous 

sequences.  As this method is able to evaluate multiple sequences at a time, we were able to identify 

predicted high-affinity peptide sequences in each of the 325 Gag and 328 Env sequences and 

calculated a mean and standard deviation for each time point within each subject.  At all time 

points in all subjects, class I-restricted epitopes were significantly more prevalent in Env than in 

Gag (p<0.0001 for all, Figure 12C).  Shockingly, when evaluating the prevalence of MHC class 

II-restricted epitopes throughout infection, Gag had more epitopes than Env at all time points in 

all subjects with the exception of 4-6 and 6-8 years post-seroconversion in S8 (Figure 12D).  

NetChop predictions performed on all autologous Gag and Env sequences from each time point 

showed no deviations in the number of predicted proteasomal cleavage sites throughout infection, 

but significantly more frequent sites in Gag than in Env at all time points except 2-4 years post-

seroconversion in S8 (Figure 13).   
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Figure 13.  Longitudinal changes in predicted proteasomal cleavage sites 

NetChop was used to identify the number of predicted cleavage sites in Gag and Env in each subject throughout 

untreated HIV-1 infection.  Error bars represent the standard deviation of 5 to 36 sequences obtained at each time 

point.  *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 

 

 

The number of predicted epitopes in Gag and Env was not correlated with viral load, CD4+ 

T cell, or CD8+ T cell percentages (data not shown).  There were additionally no correlations 

between the number of predicted Gag cleavage sites and viral load, CD4+ T cell, or CD8+ T cell 

percentages (data not shown).  When all subjects were combined, there was a significant 

correlation between the number of Env cleavage sites and CD8+ T cells (p=0.0128), but not with 

viral load or CD4+ T cells.   

From these data, we conclude that neither the number of predicted epitopes nor the number 

of cleavage sites change throughout infection.  Because netMHCpan and SYFPEITHI base their 

epitope predictions on the presence of amino acid sequences with high affinity for the subject’s 

HLA alleles, we can conclude that epitope affinity for MHC class I was not likely to be altered 

during infection.  Taken together, these data demonstrate varying patterns of epitope frequency 

and cleavage site evolution.  Overall, predicted MHC class I epitopes were more prevalent in Env, 

whereas predicted MHC class II epitopes and proteasomal cleavage sites were more prevalent in 
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Gag, suggesting differential mechanisms of escape and epitope processing and presentation 

between the two proteins. 

2.4 DISCUSSION 

In the present study, we evaluated gag and env viral evolution and the correlates of adaptive 

selective pressures in three untreated HIV-1 infected subjects.  We performed in-depth analyses of 

gag and env viral evolution at multiple time points within each subject and evaluated between 5 

and 36 sequences from each time point.  Here we described trends of nucleotide and amino acid 

evolution within each individual and identified patterns and correlates of disease progression and 

signatures of selective pressure. 

We found that the gradual increase in plasma viremia was not sufficient to induce CD8+ T 

cell expansion, although it may be directly related to CD4+ T cell depletion.  The increase in CD8+ 

T cells observed in chronic HIV-1 infection could be due to a chronic state of immune activation 

that is independent of the level of HIV-1 in the blood.  This is evidenced by longitudinal clinical 

data as well as the clinical characteristics of our study subjects (Figure 3A) in which CD8+ T cells 

remain high and the CD4:CD8 ratio remains skewed during cART and even when plasma viral 

load has decreased to undetectable levels. 

Interestingly, we did not observe any correlations when looking at the raw number of CD4+ 

and CD8+ T cells, as these values varied greatly between subjects.  S8, for example, had 1,189 

CD4+ T cells/mm3 at the first post-seroconversion timepoint, compared to 545 and 806 cells/mm3 

in S2 and S3, respectively.  While common practice is to evaluate the raw CD4+ T cells count as a 

measure of disease progression, it may be more telling to look at how the T cell repertoire has 
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changed over time.  Although S8 had the highest pre-cART CD4+ T cell count of the subjects 

evaluated in this study, he also experienced the most drastic change, with a 76.2% reduction in 

CD4+ T cell numbers by the last pre-cART time point.  Therefore, even though the clinical 

parameters observed in this subject may hint to a slightly slower disease progression, the rate at 

which he lost CD4+ T cells was much more rapid than the other two subjects. 

A recent study of 37 high-risk Kenyan women examined gag and env sequences at one 

acute and one chronic infection time point.  In chronic infection, gag divergence was positively 

correlated with viral load and was negatively correlated with CD4+ T cell number, whereas no 

correlations were observed with env divergence and diversity (262).  This study went further to 

evaluate the impact of genetic evolution on MHC class I epitopes and found that the percentage of 

gag epitopes that were variable was positively associated with viral load, suggesting a crucial role 

of gag evolution in disease progression.   

We previously reported longitudinal increases in env divergence and diversity in treatment-

naïve HIV-1 infected subjects (307).  Prior to this study, analyses of gag evolution and the effects 

of genetic evolution on cognate protein sequences had yet to be fully explored.  More importantly, 

which virologic and/or immunologic factors induce these increases in genetic diversity?  Here we 

determined that gag and env divergence and diversity was not the direct result of uncontrolled viral 

replication.  Because of this, it can be hypothesized that random genetic drift was not the sole 

culprit for the high evolutionary rates observed in these subjects. Indeed, bursts of nonsynonymous 

substitutions in multiple HIV-1 proteins have been shown to be the result of positive selection as 

opposed to random genetic drift (30).  

In both gag and env, we were able to detect the signature of positive selection, providing 

further evidence that adaptive processes greatly contribute to viral evolution. Although neutrality 
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tests suggested gag and env evolution was the result of viral expansion, identification of sites under 

positive selection revealed the majority of non-synonymous mutations were due to positive 

selective pressure.  Perhaps stochastic evolutionary events that resulted in non-synonymous 

mutations, but conferred no immunological benefit to the virus, were eliminated from the viral 

repertoire.  We also observed rates of negative selection that were much higher than the rate of 

positive selection.  We are not the first to show that negative selection is more common than 

positive selection, as this is the basis of the neutral theory of molecular evolution (124, 181-183), 

whereby most sites are evolving neutrally and very few are under positive selection, while a 

substantially higher proportion are under negative selection.  We do show, however, that selection 

is differentially correlated with T cell subsets in gag and env, but is nonetheless detected in both 

of these genes.   

Sites under positive selection accumulated at an equal rate in gag and env, hence we can 

conclude that the driving force for adaptive selection was acting uniformly on both genes.  As the 

associations did approach significance, it would be of interest to examine more subjects in this 

fashion to determine if a significant correlation is observed between genetic evolution and HIV-1 

viral load.  Additionally, neither decreases in CD4+ T cells nor increases in CD8+ T cells were 

predictive of viral evolution, again showing that disease progression alone was not sufficient to 

induce evolution in these genes.  As CD4+ T cell depletion is a hallmark of progressive HIV-1 

infection, it is plausible to suspect the quantity of CD4+ and CD8+ T cells may not be as important 

as the quality of these cells in containing viral evolution.  These findings are contradictory to a 

previous study, which observed positive correlations between divergence and viral load, and 

inverse correlations between divergence and CD4+ T cell number in gag sequences obtained from 

chronically-infected subjects (262).  This study looked at one acute and one chronic infection time 
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point in each subject, whereas our study looked at 5 to 6 time points throughout infection, giving 

a broader range of T cell and viral load fluctuations.  Additionally, these discrepancies may be due 

to using CD4+ T cell number instead of percentage as the correlating factor.  As the total number 

of lymphocytes varies greatly within the human population, it is more appropriate to look at CD4+ 

T cells as a percent of lymphocytes when combining data from multiple subjects. The number of 

CD4+ T cells may not be comparable between subjects, but the percent of CD4+ T cells within the 

lymphocyte pool may be more telling of trends within multiple subjects.  

Notably, the number of codons under positive and negative selection did not differ between 

gag and env, suggesting the high divergence and diversity observed in env was not due to increased 

selective pressures but was potentially due to higher rates of random polymerase errors.  This 

furthermore shows that adaptive selection was equally targeted against the two proteins in spite of 

significant differences in genetic evolution.  Additionally, diversifying selection (positive and 

negative selection) was inversely correlated with CD4+ T cells and positively correlated with CD8+ 

T cells in env but not in gag, suggesting selection in env is more predictive of clinical outcome.  It 

may therefore be pertinent to expand studies of selection, particularly CTL-mediated selection, to 

include analysis of env in addition to gag, as many CTL studies primarily focus on amino acid 

changes within the Gag protein.  Observing these correlations in positive and negative selection, 

despite the lack of correlations observed between divergence and diversity and clinical parameters, 

implicates a specific adaptive selective force that is acting in response to the Env protein, i.e. 

genetic evolution is not a stochastic event but is not the best correlate of clinical outcome in chronic 

HIV-1 infection. 

Despite the evidence presented here for adaptive selective pressures against gag and env, 

these mechanisms were unsuccessful in controlling HIV-1 replication and in preventing disease 
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progression.  That is, there is strong evidence for adaptive selective mechanisms within our study 

subjects, yet all three still progressed to AIDS, suggesting an unsuccessful immune response may 

have been generated.  We suspect the adaptive responses generated to Gag and Env were unable 

to eliminate viral targets but succeeded in inducing an environment of chronic inflammation upon 

recognition, but not elimination, of their antigens.  A primary mechanism by which HIV-1 evades 

immune recognition is by evolution within epitopes that is secondary to CTL selective pressures 

(9, 10, 35, 43, 58, 244-247, 271).  Our observation that positive selection was not specific to CTL 

epitopes suggests an efficient epitope-specific response was not generated during natural HIV-1 

infection.  Of note, we did not observe amino acid changes within all of the known CTL epitopes.  

It is plausible that mutations within these epitopes were detrimental to viral fitness, but there was 

no evidence for compensatory mutations within or near any of the known CTL epitopes.   

Reports on the efficacy of CTL pressure are somewhat conflicting.  Allen et al. 

longitudinally examined viral evolution and T cell responses to CTL epitopes in four HIV-1 

infected subjects and noted that nearly two-thirds of mutations could be attributed to CD8+ T cell 

selective pressures (6).  This same group, however, observed occasions of limited evolution in 

persistently-targeted CD8+ T cell epitopes, suggesting that T cell responses in chronic infection 

may not always exert functional immunological pressure (186).  These studies demonstrate 

contrasting models of CTL selective pressure that may not be mutually exclusive.  For the purposes 

of therapeutic vaccine development, perhaps responses should focus on inducing selection within 

dominant Gag and Env CTL epitopes, particularly the well-defined KW9 epitope.  A focus of 

future work is to perform intensive longitudinal analyses on all known and predicted CTL epitopes 

within these subjects and correlate these responses with the in-depth evolutionary data presented 

here.   
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In summary, our study provides the first in depth analysis of longitudinal and sequential 

gag and env genetic and protein evolution in untreated, chronically-infected subjects.  The results 

reported here provide novel insight into the natural evolution of HIV-1 and could potentially 

impact the design of therapeutic vaccinations aimed at targeting autologous Gag and Env epitopes.  

Identifying the immunological implications and evolutionary correlates of adaptive immune 

pressures, particularly those in CTL epitopes, is important for development of immunotherapies 

that target autologous epitope variants and aim to cure HIV-1 infection. 
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3.0  THE EFFECTS OF REGULATORY T CELLS AND DENDRITIC CELLS ON T 

CELL RESPONSES TO AUTOLOGOUS HIV-1 EPITOPE VARIANTS 

3.1 ABSTRACT 

Recall T cell responses to HIV-1 antigens are often used as a surrogate for the endogenous 

immune response that is generated during infection.  HIV-1 immunotherapies aim to induce T cell 

immunity against viral antigens for which there are no effective T cell responses generated during 

natural infection.  The current methods of identifying antigen specific T cell responses in HIV-1 

infection use bulk PBMC and ignore regulatory mechanisms that could be masking these responses 

and/or antigen presenting cells that could reveal otherwise hidden responses.  It has yet to be shown 

how regulatory mechanisms, such as regulatory T cells (Treg), and enhancing mechanisms, such as 

dendritic cells (DC), suppress or enhance detection of responses to autologous epitope variants in 

chronic HIV-1 infection.  In the present study, HIV-1 gag and env were sequenced from three 

A*2402 subjects at multiple post-seroconversion time points.  Peptides representing autologous 

variants of thirteen known or predicted MHC class I-restricted epitopes were synthesized and used 

as antigen in IFNγ ELISpot and intracellular polyfunctional cytokine assays.  Longitudinal PBMC 

responses were compared to responses observed with removal of Treg from PBMC and/or addition 

of autologous monocyte-derived DC.  Addition of DC to ELISpot assays significantly enhanced 

the detection of antigen-specific responses regardless of disease state.  Removal of Treg, however, 

had minimal effect on the detection of T cell responses.  Using DC and Treg removal only modestly 

enhanced responses at some time points when compared to the condition with only DC addition.  

Secretion of multiple type 1 cytokines was enhanced by DC and the effect DC had on the 



 63 

polyfunctionality of CD8+ T cells was most apparent late post-cART.  For the first time, we have 

shown that T cell responses specific for autologous HIV-1 antigens are generated at all states of 

disease progression, but are slightly masked by regulatory mechanisms and are significantly 

enhanced when stimulated by a professional antigen-presenting cell.  We additionally show that 

DC can reveal polyfunctional T cell responses after many years of treatment.  These data 

underscore the potential efficacy of a DC immunotherapy that aims to awaken a dormant 

autologous HIV-1-specific CD8+ T cell response. 

HIV-1 gag and env sequencing was performed by our collaborators in the laboratory of Dr. 

Jim Mullins at the University of Washington.  I performed all experiments and data and statistical 

analyses and generated all graphs.  Interpretation of the data was assisted by Dr. Charles R. Rinaldo 

and Dr. Robbie B. Mailliard. 

3.2 BACKGROUND 

HIV-1-specific CD8+ T cell responses are effective at imposing immunological pressure in 

acute infection, as evidenced by the induction of a large turnover and mutation rate in the virus 

population (89, 313, 336).  However, the failure of CD8+ cytotoxic T lymphocytes (CTL) to control 

virus in chronic infection results in progression to AIDS and can be attributed to several factors.  

Viral evolution, specifically in CTL epitopes, can interfere with recognition by naïve CD8+ T cells, 

resulting in a limited repertoire of T cell-mediated immune responses against the mutated region.  

In the absence of an effective CTL response that is specific for these mutated epitopes, the virus 

persists and disease progression continues (6, 7, 19, 22, 30, 134-137, 145).  Additionally, 

prolonged antigenemia and changes in regulatory mechanisms lead to a disruption in T cell 
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homeostasis, correlate with disease progression, and may negatively regulate the HIV-1-specific 

CD8+ T cell response (107, 236).  To fully understand the mechanisms of viral pathogenesis and 

develop effective treatments for HIV-1-infected subjects, the effects of viral evolution and 

regulatory mechanisms on HIV-1-specific T cell responses must be evaluated.   

Alterations in T cell homeostasis during chronic infection largely impact the naïve subset 

and partially result from decreases in thymic output (17, 91, 366). Progressive infection is also 

accompanied by decreases in the naïve CD8+ T cell subset despite increases in total CD8+ T cells 

(284).  These perturbations in the naïve CD8+ T cell repertoire could reduce the number and 

likelihood of mutated epitopes being recognized.    Additionally, HIV-1 infection is accompanied 

by a progressive decrease in CD4+ T cells, of which a subpopulation is capable of suppressing 

immune responses and promoting tolerance in healthy states and in a variety of disease models 

(191, 291).  As HIV-1 is a disease of chronic immune activation, an increase or decrease in these 

regulatory T cells (Treg) could be beneficial to the virus. An increase leading to more suppression 

of anti-HIV-1 CTL responses and a decrease leading to enhanced immune activation.   

Reports on the perturbations in these regulatory T cells (Treg) during chronic HIV-1 

infection have been variable, with most showing an increase in the frequency of Treg with disease 

progression and/or overall CD4+ T cell depletion (14, 21, 112, 164, 243, 302, 314).  These cells 

have also been implicated in HIV-1 pathogenesis and disease progression (59, 212).  In subjects 

receiving successful combination antiretroviral therapy (cART), Treg levels return to those seen in 

uninfected subjects (39, 235, 302), suggesting any effects imposed by Treg during untreated 

infection should be mitigated during cART.  Interestingly, Treg also suppress HIV-1-specific T cell 

responses following DC immunotherapy in subjects on cART (213) 
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While many aspects of the immune system become dysfunctional in chronic HIV-1 

infection and remain dysfunctional even when subjects receive cART, myeloid dendritic cells 

(DC), the most potent antigen presenting cells (APC), retain the ability to process and present 

antigen (68, 295) and to stimulate HIV-1-specific IFNγ production in CD8+ (105, 156, 158) and 

CD4+ T cells (240).  These cells may be a valuable tool in analysis of the antigen recognition 

repertoire of CD8+ T cells or in immunotherapies that strive to enhance a dysfunctional HIV-1 

recall CD8+ T cell response.  Indeed, we have previously shown that DC stimulation reveals CD8+ 

T cell responses to consensus MHC class I-restricted HIV-1 epitopes that were otherwise masked 

in subjects on cART (155).  It is currently unclear if DC can also reveal responses to the subject’s 

own, unique (autologous) virus, and if this DC enhancement changes with untreated and treated 

HIV-1 infection.  As a successful immunotherapy will likely enhance the breadth and magnitude 

of the autologous HIV-1-specific T cell response (3, 37, 259), it is pertinent to ascertain the best 

method of detecting and enhancing these responses. 

In the present study, we longitudinally evaluate recall T cell responses to autologous HIV-

1 epitope variants at multiple pre- and post-cART time points.  We use Treg depletion and DC 

addition to determine the best method of revealing and enhancing the HIV-1-specific response.  

While both methods enhanced the response at multiple time points, DC were more able to 

consistently reveal a response of high breadth and magnitude.  Additionally, the ability of DC 

stimulation to reveal bifunctional and polyfunctional cytokine responses increased as subjects 

regained immunological function during cART.  Taken together, the findings presented here 

demonstrate a unique ability of DC to reveal HIV-1-specific responses to a multitude of autologous 

epitope variants regardless of disease state and to enhance CD8+ T cell cytokine profiles after long-
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term treatment, thus supporting the use of these cells in an immunotherapy for HIV-1-infected 

subjects on cART. 

 

3.3 METHODS 

3.3.1 Study subjects 

Three HIV-1 infected subjects were chosen from the MACS, a natural history study of men 

who have sex with men for which the methodologies have been described previously (87, 171).  

Human subject approval was obtained from the University of Pittsburgh Institutional Review 

Board.  These subjects were chosen based on their prolonged enrollment in the study (>10 years), 

typical course of disease progression, favorable response to combination antiretroviral therapy 

(cART), and the presence of at least one common HLA allele.  Positivity for HLA A*2402 was 

confirmed by high resolution PCR genotyping (Tissue Typing Laboratory, University of 

Pittsburgh Medical Center).  All three subjects were enrolled in the MACS prior to seroconversion 

to HIV-1. Seropositivity was confirmed by positive enzyme-linked immunosorbent assay (ELISA) 

for the presence of HIV-1 p24 and a Western blot with bands corresponding to at least two of the 

Gag, Pol, and Env proteins (171).  Blood specimens and epidemiological and clinical data were 

collected at each visit, as described previously (307).  All three subjects progressed to AIDS as 

defined by the CDC (<200 CD4+ T cells/mm3) within 8.3 years after seroconversion.  All three 

subjects received cART and maintained plasma HIV-1 RNA below 20 copies/ml at most post-

ART visits. 



 67 

3.3.2 Isolation of HIV-1 pre- and post-cART 

Five post-seroconversion time points for S2 and S8, six post-seroconversion time points 

for S3, and one post-cART time point for S2 and S3 were chosen for HIV-1 gag p17-p6 and env 

gp120 sequencing.  HIV-1 was obtained from freeze-thawed plasma for all pre-cART time points.  

Under cART, plasma viremia was reduced to <50 copies/ml in all subjects.  We therefore used a 

previously described virus culture assay to induce HIV-1 production by latently-infected CD4+ T 

cells obtained during cART (195, 311).  Briefly, 1x106 CD4+ T cells were isolated from 

cryopreserved PBMC obtained <2 years post-cART using a negative CD4+ T cell enrichment kit 

per the manufacturer’s instructions (STEMCELL Technologies Inc, Vancouver, BC).  1x107 fresh, 

irradiated PBMC from an HIV-1-negative donor were co-cultured with patient-derived CD4+ T 

cells in IMDM supplemented with 10% heat-inactivated fetal bovine serum (FBS), 50 μg/ml 

gentamicin (Life Technologies, Carlsbad, CA), 100 U/ml IL-2 (Prometheus Labs, San Diego, CA), 

and 1 μg/ml PHA (Sigma-Aldrich, St. Louis, MO) at 37°C in a 5% CO2 atmosphere. On day 2, 

4x106 CD4+ lymphoblasts that had been activated for 2 days with 100 U/ml IL-2 and 0.5 μg/ml 

PHA were added to the virus cultures.  On day 7 and every 7 days thereafter, CD4+ lymphoblasts 

were again added to the virus cultures, splitting cells and replenishing media as needed.   The 

presence of HIV-1 in culture supernatants was evaluated every 3 days by p24 ELISA (Zeptometrix, 

Buffalo, NY).  Cultures were terminated and supernatants were collected when the concentration 

of p24 reached or exceeded 20,000 pg/ml.   
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3.3.3 HIV-1 genetic sequencing 

Viral RNA was manually extracted from plasma or cell culture supernatants using a viral 

RNA mini kit (Qiagen, Valencia, CA).  cDNA synthesis was performed using Nef3 

(TAAGTCATTGGTCTTAAAGGTACC) and RT2 (GTATGTCATTGACAGTCCAGC) primers 

with SuperScript III Reverse Transcriptase (200 U/ml; Invitrogen, Carlsbad, CA).  Endpoint 

dilution methodology was used prior to viral gene amplification to avoid template resampling.  

Multiplex first-round PCR was performed with the Gag1 (GAGGCTAGAAGGAGAGAGATGG) 

and RT2 primers to amplify gag and the Ed3 (TTAGGCATCTCCTATGGCAGGAAGAAGCGG) 

and Nef3 (TAAGTCATTGGTCTTAAAGGTACC) primers to amplify env-gp120.  Singleplex 

second round PCR was performed with Gag2 (GTGCGAGAGCGTCGGTATTAAGCG) and 

RSP15R (CAATTCCCCCTATCATTTTTGGTTTCC) primers for gag and Gp120 forward 

(GGCCGCGTCGACAAGAGCAGAAGACAGTGGCAATGA) and reverse 

(GGCCGCGGATCCGTGCTTCCTGCTGCTCCCAAGAAC) primers for env.  PCR products 

were run on a QIAxcel automated electrophoresis system (Qiagen, Valencia, CA) and Sanger 

sequencing was performed on samples with positive bands (High Throughput Genomics Center, 

Seattle, WA).   We obtained 5 to 36 unique gag sequences and 9 to 32 unique env sequences.   

 

3.3.4 Identification of epitopes and peptide synthesis 

Six HLA A*24-restricted HIV-1 Gag and Env epitopes were identified for each subject 

using the Los Alamos Database (http://www.hiv.lanl.gov).  The combined epitope prediction 

model within The Immune Epitope Database (260, 319) was used to identify seven additional 
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predicted A*2402-restricted epitopes within autologous sequences from the three study subjects.  

This prediction model ranks potential epitopes within an input sequence based on predicted 

proteasomal cleavage, TAP transport, and MHC class I affinity using the netMHCpan prediction 

method (151, 260, 319). A PEPscreen custom library representing the epitope variants that evolved 

in each study subjects was synthesized (Sigma-Aldrich).  Each peptide was resuspended in 100μl 

DMSO and further resuspended in AIM V at a final concentration of 1 mg/ml or 100 μg/ml.  

Peptides were stored at -80°C. 

3.3.5 Treg depletion 

To investigate the effects of regulatory T cells (Treg) on HIV-1-specific CD8+ T cell 

responses, cryopreserved PBMC were thawed and depleted of Treg using a Treg CD4+CD25+ two-

step isolation kit per the manufacturer’s instructions (Miltenyi Biotec, Gladbach, Germany).  This 

column-based kit uses magnetic beads to first isolate CD4+ T cells via negative selection and then 

isolate CD25+ T cells from within the CD4+ subset via positive selection.  The labeled CD4 

negative cells from the first separation were resuspended in the recommended assay buffer and 

rested at 4°C.  Following positive isolation and removal of CD4+CD25+ T cells from the CD4+ 

subset, the CD4 negative population and the CD4+ non-Treg population were reconstituted to 

generate the Treg
neg PBMC condition. To account for any potential effects this isolation procedure 

may have on T cell function, the CD4+ negative bead selection was performed on the PBMC 

condition, after which all subsets were reconstituted.  
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3.3.6 PBMC and Treg staining 

To determine Treg frequency in peripheral blood and the efficiency of Treg depletion, 

aliquots from Treg
neg PBMC, PBMC before magnetic bead selection, and PBMC after reconstitution 

were stained for cell surface markers and intracellular FoxP3.  Cells (5x104) were resuspended in 

100μl PBS with 1μl LIVE/DEAD Aqua Viability Dye (Invitrogen, Carlsbad, CA) and incubated 

for 30 minutes at room temperature in the dark.  Cells were washed and resuspended in 100μl PBS 

and stained with CD3-APC, CD4-APC-Cy7, CD8-PerCP-Cy5.5, CD39-PE-Cy7, and CD25-PE 

(all BD Pharmingen).  Cells were washed twice and resuspended in 100 μl Cytofix/Cytoperm (BD 

Biosciences, San Jose, CA) and incubated for 20 minutes at 4C.  Cells were again washed and then 

stained for intracellular FoxP3 expression using a FoxP3 staining kit per the manufacturer’s 

instructions (Biolegend, San Diego, CA).  Briefly, cells were resuspended in 100μl FOXP3 

Fix/Perm solution and incubated at room temperature in the dark for 20 minutes.  Cells were 

washed once with PBS and once with 1X FOXP3 Perm Buffer.  Cells were resuspended in 1ml of 

1X FOXP3 Perm Buffer and incubated at room temperature in the dark for 15 minutes.  Cells were 

again washed and incubated with 100μl 1X FOXP3 Perm Buffer with 3μl FOXP3-AlexaFluor488 

for 30 minutes at room temperature in the dark.  Following two washes with PBS, cells were 

resuspended in 0.5ml PBS and analyzed on a BD LSR Fortessa flow cytometer using BD 

FACSDiva software.  Graphs displaying flow cytometry data were generated using FLowJo 

version 9.6.4 (Ashland, OR).   
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3.3.7 Generation of monocyte-derived dendritic cells (DC) 

Leukapheresis was performed on each study subject while under cART to obtain PBMC.  

Monocytes were isolated from PBMC by Percoll (GE Healthcare Life Sciences, Uppsala, Sweden) 

density separation.  Immature DC were generated by culturing monocytes in IMDM containing 

10% FBS with GM-CSF and IL-4 (both 1000 U/ml; R&D Systems, Minneapolis, MN).  On day 

5, immature DC were treated with 0.5 μg/ml soluble CD40L (Enzo, Farmingdale, NY) for 48h.  

Maturation status of the DC was confirmed by expression of CD83, CD86, and CCR7 as 

determined by flow cytometry. 

3.3.8 IFN-γ ELISpot assay 

IFN-γ production was measured by a standard overnight ELISpot assay.  Briefly, 96-well 

nitrocellulose plates (EMD Millipore, Billerica, MA) were coated with anti-IFN-γ monoclonal 

antibody (10 μg/ml; Mabtech, Stockholm, Sweden) and incubated overnight at 4°C.  Plates were 

washed and blocked with IMDM supplemented with 10% heat-inactivated FBS for 2h at 37°C.  

PBMC or Treg
neg PBMC (1x105/well) were tested in singlet or duplicate for reactivity to peptides 

representing the autologous HIV-1 epitope variants that had evolved before and at the time point 

of PBMC sampling.  Responders were stimulated overnight at 37°C with peptide alone (5μg/ml) 

or 1x104 autologous DC pre-pulsed with peptide (5 μg/ml) in IMDM supplemented with 10% heat-

inactivated FBS.   Responders in media alone or with DC alone served as negative controls and a 

peptide pool consisting of CMV, EBV, and flu (CEF) peptides was used as a positive control for 

all responder conditions.  ELISpot plates were washed and processed as described previously (67, 

156).  Spots were counted using an automated ELISpot plate reader (AID, Straßberg, Germany) 
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and are shown as the number of background-subtracted antigen-specific spot-forming cells (SFC) 

per 106.  Background was calculated as the mean number of SFC/106 in duplicate control wells 

without peptide plus 2 standard deviations. 

3.3.9 Intracellular cytokine staining 

PBMC were also evaluated for polyfunctional cytokine secretion in response to peptide 

alone or peptide-loaded DC.    PBMC obtained from each subject during late infection (<1 year 

pre-cART), early cART (first post-cART visit with HIV-1 viral load <50 copies/ml), and late 

cART (>15 years post-cART) were thawed and resuspended in AIM V with CD28/CD49d 

FastImmune™ co-stimulatory reagent (BD Biosciences), Golgistop (BD Biosciences), and 

Golgiplug (BD Biosciences).  Peptides representing variants of known HLA A*24 HIV-1 Gag and 

Env epitopes that were in circulation at the time of PBMC sampling (“contemporaneous variants”) 

were added to PBMC or pre-loaded into DC before adding to PBMC at a final concentration of 5 

μg/ml.  Cells were incubated for 6h at 37°C, washed with PBS, and stained with LIVE/DEAD 

Aqua Viability Dye (Invitrogen) for 30 minutes at room temperature in the dark.  Cells were 

washed and stained for surface expression of CD3-PE-TexasRed (Invitrogen), CD4-APC (BD 

Biosciences), and CD8-APC-Cy7 (BD Biosciences).  Cells were again washed and fixed with 100 

μl Cytofix/Cytoperm (BD Biosciences) and then incubated with 1X Perm/Wash buffer (BD 

Biosciences) for 30 minutes at room temperature in the dark.  Cells were washed and resuspended 

in 50 μl 1X Perm/Wash buffer containing IFN-γ-Alexa Fluor 700 (BD Pharmingen), TNF-α-eFluor 

450 (eBioscience), and MIP-1β-APC (BD Pharmingen) and incubated for 20 minutes at room 

temperature in the dark.  Cells were washed, resuspended in PBS, and analyzed on a BD LSR 
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Fortessa flow cytometer using BD FACSDiva software.  Data were analyzed using Flow Jo version 

9.6.4. 

3.3.10 Statistical analyses 

Comparisons between the percent of epitopes with variants of higher, lower, or higher and 

lower affinity were performed using a repeated measures one-way ANOVA, while the comparison 

between the percent of variants with higher or lower affinity than the founder were performed 

using student’s T test.  Evaluation of the differences in IFNγ production between T cell conditions 

at longitudinal time points was performed using a two-way ANOVA with Sidak’s multiple 

comparisons post-test.  Paired T tests were used to compare cytokine secretion with and without 

the addition of DC.  All graphs and statistical analyses were generated using GraphPad Prism 6 

(GraphPad Software, Inc., La Jolla, CA).   

3.4 RESULTS 

3.4.1 Changes in HIV-1 Gag and Env epitopes in chronic infection 

A proposed mechanism by which infected subjects fail to control HIV-1 replication is the 

lack of cytotoxic T lymphocytes (CTL) that recognize the patient’s own, unique virus (“autologous 

virus”), presumably due to mutations within CTL epitopes that ablate MHC class I affinity and/or 

T cell recognition (58, 165).  We therefore aimed to longitudinally assess the changes in predicted 

MHC class I affinity of Gag and Env epitope variants derived from autologous HIV-1 sequences. 
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We chose 3 subjects from the Multicenter AIDS Cohort Study (MACS) who share the HLA 

A*2402 allele, received and responded to combination antiretroviral therapy (cART), and are still 

enrolled in the study. In subjects S2, S3, and S8 there was a gradual rise in HIV-1 plasma viremia 

and CD8+ T cells and a decline in CD4+ T cells concordant with progression to AIDS (<200 CD4+ 

T cells/mm3), indicating typical patterns of disease progression.  

Autologous HIV-1 was sequenced from plasma obtained from 5 to 6 post-seroconversion, 

pre-cART time points in all three subjects.  Additionally, HIV-1 was isolated from CD4+ T cells 

at one post-cART time point in subjects S2 and S3.  We were unable to isolate autologous HIV-1 

from CD4+ T cells in subjects S8, potentially due to the low HIV-1 viral load exhibited in this 

subject at all stages of disease progression.  The source of autologous HIV-1 likely did not affect 

the resulting sequences, as virus recovered from plasma was shown to be identical to virus obtained 

from CD4+ T cells (13).  We performed single genome HIV-1 gag and env gp120 sequencing on 

the autologous virus obtained from each subject at each time point.  Nucleotide sequences were 

translated to their corresponding amino acid sequences. We identified 6 known Gag and Env HLA 

A*2402-restricted epitopes using The Los Alamos Database 

(http://www.hiv.lanl.gov/content/immunology) and 7 predicted epitopes using the Immune 

Epitope Database combined predictor with the netMHCpan MHC class I prediction method (151, 

260, 319). We then identified the variants of these epitopes that evolved in each subject throughout 

infection.  The epitopes studied and the variants that evolved in vivo are shown in Table 5.  

Interestingly, not all epitopes evolved throughout infection, despite each subject being infected for 

>7 years without receiving cART.  Of note, the Gag p24 AFSPEVIPMF and DYVDRFYKT 

epitopes did not evolve in any of the subjects throughout infection.  In Gag p17 NYPIVQNI, Gag 

http://www.hiv.lanl.gov/content/immunology
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p24 IYKRWIILGL, and Env gp120 LYKYKVVKI, amino acid changes were observed in only 1 

out of the 3 subjects.   
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Table 5.  HIV-1 Gag and Env epitope variants that evolved throughout infection 

      

Epitope locationa

Amino acid 

sequenceb Subjectc

Autologous 

variant 

sequenced

Time of 

evolution 

(YPS)e

Predicted 

MHC class I 

affinity (nM)f Epitope locationa

Amino acid 

sequenceb Subjectc

Autologous 

variant 

sequenced

Time of 

evolution 

(YPS)e

Predicted 

MHC class I 

affinity (nM)f

Gag p17 28-36 KYKLKHIVW S2 KYKLKHIVW 0.2 954.7 Env gp120 52-61 LFCASDAKAY S2 LFCASDAKAY 0.2 29256.5

KYELKHIVW 0.2 738.1

KYQLKHIVW 0.2 155.3 S3 LFCASDAKAY 0.2 29256.5

KYRLKHIVW 1.2 1164.5

S8 LFCASDARAY 0.5 27869.6

S3 KYKLKHIVW 0.2 954.7 LFCASDAKAY 5.0 29256.5

QYKLKHIVW 0.2 1616.7

RYKLKHIVW 2.5 561.2 Env gp120 158-165 SFNISTSI S2 TFNITTSI 0.2 1515.1

TFNITTNI 9.6 1382.9

S8 RYRLKHLVW 0.5 233.0

KYRLKHLVW 5.0 432.5 S3 SFNITTNI 0.2 1321.7

SFNITTDI 5.3 3088.4

Gag p17 43-51 RFAVNPGLL S2 RFAVNPGLL 0.2 626.9

RFAVNPSLL 3.4 245.9 S8 SFNVTTSI 0.5 1862.3

S3 RFAVNPGLL 0.2 626.9 Env gp120 168-176 KVQKEYAFF S2 KMQKEYALF 0.2 17.9

RFALNPGLL 6.4 650.0 KVQKEYALF 3.4 139.7

S8 RFAVNPGLI 0.5 293.8 S3 KVQKEYALF 0.2 139.7

RFAVNPGLL 2.4 626.9 KVQKEHALF 2.5 394.3

RFAVNPGLM 2.4 1246.9 KVQQEYALF 5.3 159.8

KVQKERALF 5.3 1054.2

Gag p17 131-132 /p241-6 NYPIVQNI S2 NYPIVQNI 0.2 74.0 KVRQEYALF 5.3 768.5

NYPIVQNL 9.6 214.7

S8 KMKGEYAFF 0.5 157.9

S3 NYPIVQNL 0.2 214.7 KMKREYAFF 0.5 132.5

KIKREYAFF 2.4 1141.8

S8 NYPIVQNL 0.5 214.7 KIKREYAAF 5.0 3502.7

KIKREYATF 5.0 1256.3

Gag p24 31-40 AFSPEVIPMF S2 AFSPEVIPMF 0.2 274.3 KRKREYATF 5.0 7219.6

KRRREYATF 6.6 9284.2

S3 AFSPEVIPMF 0.2 274.3

Env gp120 311-320 RGPGRAFVTI S2 MGPGGAFYAT 0.2 26383.6

S8 AFSPEVIPMF 0.5 274.3 IGPGRAFYAT 3.4 27231.5

Gag p24 129-138 IYKRWIILGL S2 IYKGWIILGL 0.2 107.3 S3 IGPGRAFYAT 0.2 27231.5

IYKRWIILGL 0.2 78.9 IGPGRAFYAA 6.4 19176.8

S3 IYKRWIILGL 0.2 78.9 S8 IGPGRAFYTT 0.5 21484.4

IGPGGAFYTT 2.4 21701.3

S8 IYKRWIILGL 0.5 78.9 IGPGRAFYAT 5.0 27231.5

Gag p24 163-171 DYVDRFYKT S2 DYVDRFYKT 0.2 19856.1 Env gp120 383-391 FYCNSTQLF S2 FYCNTTQLF 0.2 8.9

FYCNTTPLF 3.4 13.8

S3 DYVDRFYKT 0.2 19856.1 FYCNTTKLF 9.6 34.9

FYCSTKQLF 9.6 21.7

S8 DYVDRFYKT 0.5 19856.1

S3 FYCNSTQLF 0.2 11.5

FYCNTTQLF 1.5 8.9

FYCNTAQLF 2.5 11.9

FYCNTTKLF 5.3 35.0

FYCDTTKLF 5.3 80.0

FYCNTTRLF 8.3 28.5

FYCNTTHLF 8.3 6.0

S8 FYCNTAQLF 0.5 11.9

FYCNTTQLF 2.4 8.9

FYCNTSQLF 2.4 9.4

Env gp120 434-443 MYAPPISGQI S2 MYAPPIRGQI 0.2 89.0

MYAPPIKGQI 1.2 121.0

MYAPPIKGLI 3.4 52.9

S3 MYAPPISGLI 0.2 21.4

MYAPPIRGLI 5.3 41.0

MYAPPIKGLI 8.3 52.9

MYAPPNKGLI 8.3 82.5

S8 MYAPPIRGEI 0.5 99.5

MYAPPISGEI 2.4 47.8

MYAPPISGVI 5.0 46.8

Env gp120 483-491 LYKYKVVKI S2 LYKYKVVKI 0.2 301.8

S3 LYKYKVVKI 0.2 301.8

LYKYKVVEI 8.3 237.6

S8 LYKYKVVKI 0.5 301.8

aHXB2 location of each HIV-1 epitope within the Gag p17 and p24 (left table)  

and Env gp120 (right table) proteins 

  
bHXB2 consensus amino acid sequences for known and predicted HLA A*2402-restricted  

HIV-1 Gag and Env epitopes. Known epitopes as identified by the Los Alamos Database  

are in bold.  Non-bolded sequences show the HXB2 sequence of regions predicted to be  

CTL epitopes in autologous sequences derived from all three subjects.  Predicted epitopes  

were identified using the Immune Epitope Database combined predictor, which assigns  

an overall score taking into account MHC class I affinity, proteasomal processing, and  

TAP affinity. 

  
cSubjects S2, S3, and S8 were chosen from the Multicenter AIDS Cohort Study for analysis. 

  
dAutologous epitope variants were identified by single-genome gag p17-p6 and env gp120  

sequencing of autologous HIV-1 derived from plasma at 5 to 6 pre-cART time points and  

1 post-cART time point in subjects S2 and S3.  Underlined variants were the dominate form  

of the epitope (>55% of the variant pool) that was observed at the last pre-cART time point. 

  
eThe time at which the epitope variant was detected by single genome sequencing.             

YPS, years post-seroconversion.   

  
fPredicted affinity for HLA A*2402 as determined using netMHCpan.   

A lower value indicates a higher predicted affinity. nM, nanomolar 
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Previous studies have suggested that the failure of CTL to be generated against HIV-1 

variants in chronic infection is due to amino acid mutations within CTL epitopes that ablate epitope 

affinity for MHC class I (58, 165). Surprisingly, not all variants had a lower predicted affinity for 

the HLA A*2402 molecule in comparison to the founder variant that was present at the first post-

seroconversion time point.  Of the 9 epitopes that contained amino acid changes in subject S2, 5 

evolved to variants with lower predicted MHC class I affinity, 3 evolved to variants with higher 

predicted affinity, and 1 evolved to variants with higher and lower predicted affinity (Table 5).  In 

subject S3, 8 epitopes contained mutations, of which 4 evolved to variants with lower predicted 

affinity, 3 evolved to variants with higher predicted affinity, and 1 evolved to variants with higher 

and lower predicted affinity.  Of the 7 epitopes that contained amino acid changes in subject S8, 5 

evolved to variants with lower predicted affinity and 2 evolved to variants with higher predicted 

affinity.  When data from the three subjects were combined, an average of 59% of epitopes only 

contained variants with lower affinity than the founder, whereas 33.1% only contained variants 

with higher MHC class I affinity, and 7.9% of epitopes contained variants with higher and lower 

predicted affinity (Figure 14A).   
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Figure 14.  The effects of amino acid substitutions on predicted MHC class I affinity in autologous 

HIV-1 HLA A*2402-restricted epitope variants 

Autologous variants of known and predicted epitopes were identified by single genome sequencing of plasma HIV-1 

in subjects S2, S3, and S8 (shown in Table 4).  Predicted affinity for HLA A*2402 was determined using netMHCpan 

(151, 241).  (A) The percent of mutated epitopes that acquired variants with lower, higher, or lower and higher 

predicted MHC class I affinity than the founder variants present at the first post-seroconversion time point.  (B) The 

percent of epitope variants within each subject that were of lower and higher predicted MHC class I affinity than the 

founder variants.  (C) The percent of variants in circulation during AIDS that were of lower or higher predicted MHC 

class I affinity than the founder or the percent of variants that were the same as the founder.  Data are shown as the 

mean of the three subjects +/-SD.  *p<0.05, ***p<0.001 

 

There was a significant difference between the three groups (p=0.03), but post test 

comparisons only showed a significant difference between the percent of epitopes that contained 

variants with lower MHC class I affinity and the percent that contained variants with both patterns 

of affinity (p=0.04).  Despite the lower percent of epitopes that contained variants with higher 

MHC class I affinity, this was not significantly different from the percent containing lower-affinity 

variants (p=0.10). When we combined all variants from each subject, we observed significantly 

more lower-affinity variants than those with higher predicted affinity (p=0.0002) (Figure 14B). 

Despite these variable patterns of predicted MHC class I affinity within autologous epitope 

variants, it is possible that the variants with higher predicted affinity did not make up a large 

percentage of the variants in circulation in the end stages of disease progression.  It could be argued 

that, while variants with higher affinity evolved throughout infection, they were only transient 

blips and were not representative of the dominating, “escape” variant that persisted while subjects 
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progressed to AIDS.  To address this concern, we determined the frequency of each variant within 

its cognate epitope at the last pre-cART time point in subjects S2, S3, and S8, at which point all 

three subjects had AIDS as defined by the CDC (CD4+ T cell count <200 cells/mm3).  We were 

able to identify the variant that made up >55% of the epitopic pool and determined this to be the 

“dominant” variant at that time point (Table 5).  When the subjects were averaged, 42.1% of the 

dominant variants during AIDS were of lower predicted MHC class I affinity than the founder 

variant, with 32.7% having a higher predicted affinity, and 25.3% were the founders that 

maintained dominance despite the evolution of other variants (Figure 14C).  No significant 

difference was observed between these two groups, indicating variants with lower MHC class I 

affinity were not specifically selected for during progression to AIDS. 

 

3.4.2 Longitudinal T cell responses to autologous HIV-1 epitope variants 

To identify the impact of amino acid substitutions within CTL epitopes on T cell responses, 

we synthesized the variants shown in Table 5 and used them to stimulate autologous PBMC 

obtained from the time points at which sequences were derived.  PBMC were tested against all 

autologous epitope variants that had evolved by the time of PBMC sampling.  For subject S8, 

PBMC from the two post-cART time points were tested against the variants that had evolved by 

the last pre-cART time point.  For subjects S2 and S3, PBMC from the last post-cART time point 

were tested for reactivity to variants that had evolved by the first post-cART time point.  For each 

subject, there were 5 to 6 pre-cART time points, one early post-cART time point (<0.5 years post-

cART), and one late post-cART time point (>15 years post-cART) evaluated for T cell responses. 
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 In subject S2, we evaluated 5 pre-cART, one early post-cART (10.1 years post-

seroconversion; <0.5 years post-cART), and one late post-cART (25.9 years post-seroconversion; 

>15 years post-cART) time point.  IFNγ responses of varying magnitude were detected to 100% 

of the variants at at least one time point (Figure 15).   Variants of known Gag epitopes induced 

moderate to robust responses 0.2 years post-seroconversion, but these responses waned with 

disease progression and slightly rebounded 25.9 years post-seroconversion (Figure 15A).  A 

similar trend was observed in the responses to variants of predicted Gag epitopes, with early 

responses waning and a partial rebound at the last time point (Figure 15B).  IFNγ production in 

response to variants of known Env epitopes was low throughout infection but was revealed 25.9 

years post-seroconversion during late post-cART (Figure 15C), while variants of predicted Env 

epitopes induced T cell responses that waned by 9.6 years post-seroconversion and rebounded at 

the last time point (Figure 15D).  Of note, no differences were observed in the IFNγ production 

against known and predicted epitope variants nor between Gag and Env variants at any time point, 

suggesting responses were generated equally against the two proteins and our prediction methods 

may have accurately identified new A*2402-restricted HIV-1 epitopes. 
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Figure 15.  PBMC responses to autologous HIV-1 epitope variants in subject S2 

PBMC were tested by IFNγ ELISpot for reactivity to autologous variants of known (A) and predicted (B) Gag epitopes 

and known (C) and predicted (D) Env epitopes.  Each graph represents the responses observed at each post-

seroconversion time point.  Variants are shown in the order of their evolution.  10.1 and 25.9 years post-seroconversion 

are post-cART time points.  Data are shown as the mean number of spot forming cells (SFC) above background per 

106 PBMC.  Background was calculated as the mean number of SFC with PBMC alone plus 2 standard deviations.  

Error bars represent the standard deviation of duplicate wells.  Variants underlined in red were detected for the first 

time at the corresponding time point. 

 

In subject S3, we analyzed 6 pre-cART time points, an early post-cART time point (8.8 

years post-seroconversion, <0.5 years post-cART), and a late post-cART time point (23.5 years 

post-seroconversion, >15 years post-cART) for T cell responses to autologous HIV-1 peptide 

epitopes (Figure 16). Responses to variants of known and predicted Gag epitopes were detected 

prior to cART but were lost early post-cART. As seen in subject S2, these responses rebounded 
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after long-term cART (Figure 16A-B).  A similar trend was seen in T cell responses to variants of 

known and predicted Env epitopes, whereby responses of moderate magnitude were detected to 

all variants pre-cART, with a loss of responses early post-cART and restoration late post-cART 

(Figure 16C-D).  Of note, responses were detected to all founder variants and the supposed 

“escape” variants that evolved throughout infection, albeit at only a moderate magnitude.  No 

significant differences were observed between responses detected against Gag and Env variants or 

between variants of known and predicted epitopes (data not shown). 
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Figure 16.  PBMC responses to autologous HIV-1 epitope variants in subject S3 

PBMC were tested by IFNγ ELISpot for reactivity to autologous variants of known (A) and predicted (B) Gag epitopes 

and known (C) and predicted (D) Env epitopes.  Each graph represents the responses observed at each post-

seroconversion time point.  Variants are shown in the order of their evolution.  8.8 and 23.5 years post-seroconversion 

are early post-cART and late post-cART time points, respectively.  Data are shown as the mean number of spot 

forming cells (SFC) above nonspecific background per 106 PBMC, +/- standard deviation from duplicate wells.  

Variants underlined in red were detected for the first time at the corresponding time point. 
 

In subject S8, we evaluated PBMC responses at 5 pre-cART time points, one early post-

cART time point (8.0 years post-seroconversion, <0.5 years post-cART), and one late post-cART 

time point (20.5 years post-seroconversion, ~13.0 years post-cART).  T cell responses were 

detected to all autologous epitope variants except the KIKREYATF variant, with the breadth of 
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responses being most prominent 20.5 years post-seroconversion (Figure 17).  Responses to 

variants of known and predicted Gag epitopes were minimal 0.5 years post-seroconversion, but 

increased by 1.4 years post-seroconversion (Figures 17A and B).  The detection of responses was 

sporadic at the remaining time points, with responses to all Gag epitope variants detected during 

late post-cART.  A similar trend was observed in T cell responses to variants of known and 

predicted Env epitopes (Figures 17C and D), with minimal responses detected 0.5 years post-

seroconversion, variable responses at the remaining time points, and the number of variants 

recognized peaking late post-cART.  No significant differences were observed in IFNγ ELISpot 

responses against variants of known or predicted epitopes, nor between variants from Gag and 

Env.   
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Figure 17.  PBMC responses to autologous HIV-1 epitope variants in subject S8 

PBMC were tested by IFNγ ELISpot for reactivity to autologous variants of known (A) and predicted (B) Gag epitopes 

and known (C) and predicted (D) Env epitopes. Each graph represents the responses observed at each post-

seroconversion time point.  Variants are shown in the order of their evolution.  8.0 and 20.5 years post-seroconversion 

are early post-cART and late post-cART time points, respectively.  Data are shown as the mean number of spot 

forming cells (SFC) above nonspecific background per 106 PBMC, +/- standard deviation from duplicate wells.  

Variants underlined in red were detected for the first time at the corresponding time point. 
 

IFNγ ELISpot data from these three subjects show PBMC responses were generated to 

autologous HIV-1 Gag and Env epitope variants, albeit at varying levels throughout infection with 

minimal magnitude.  There were mostly no differences between T cell responses detected against 
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Gag and Env epitope variants, nor against variants of known and predicted epitopes.  Interestingly, 

there were also no differences between the responses detected to variants that were of higher or 

lower predicted MHC class I affinity than the founder variant, and there was no correlation 

between predicted affinity and IFN production at any time point in any of the subjects (data not 

shown).  While most of the epitopes evolved to produce at least one variant, T cell responses were 

still detected, indicating the epitope did not fully escape T cell recognition. 

3.4.3 The effects of regulatory T cells on HIV-1-specific responses 

Regulatory T cells (Treg) are a CD4+ subset that suppress antigen-specific responses and 

could possibly impede an effective anti-HIV T cell response.  Additionally, the loss of CD4+ T 

cells in chronic HIV-1 infection could contribute to enhanced immune activation.  To 

longitudinally identify the effects of Treg on responses specific for autologous HIV-1 epitope 

variants in chronic and treated infection, we combined the PBMC responses shown in figures 13, 

14, and 15 for subjects S2, S3, and S8, respectively, to generate an average response to all variants 

tested at each time point.  We then compared these responses to those detected in PBMC depleted 

of Treg (Treg
neg PBMC) at the same time points.  The Treg depletion method was successful at 

removing > 80% of CD4+CD25+ T cells and increased the frequency of CD8+ T cells by  <4% 

(Appendix B, figure 57). 
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Figure 18.  Longitudinal responses to autologous HIV-1 epitope variants in PBMC and Treg
neg PBMC 

PBMC were depleted of Treg and evaluated by IFNγ ELISpot for responses against the autologous HIV-1 Gag and Env 

epitope variants that had evolved by each time point.  (A) Responses to autologous HIV-1 epitope variants detected 

in PBMC (filled black circle) were averaged at each time point and compared to those detected in Treg
neg PBMC (red 

square) to the same variants.  The mean response of all variants +/- SEM is shown at each time point for subjects S2 

(left panel), S3 (middle panel), and S8 (right panel).  Responses are shown as spot-forming cells (SFC) per 106.  (B) 

The fold change in IFNγ production of Treg
neg PBMC compared to PBMC is shown at each time point.  Open circles 

represent the fold change detected in an individual epitope variant.  Error bars represent the mean fold change +/- 

SEM.  The dashed red line is shown to mark a fold change of 1, or no change in response. Post-cART time points are 

indicated by the gray box.  *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
 

 

In subject S2, the mean PBMC response decreased from 557 SFC/106 0.2 years post-

seroconversion to 178 SFC/106 1.2 years post-seroconversion, but had little variation at the 

remaining pre-cART time points (Figure 18A, left panel).  Early post-cART, the mean PBMC 

response dropped to 18 SFC/106 PBMC and rebounded late post-cART (25.9 years post-

seroconversion) to 551 SFC/106 PBMC. Treg
neg PBMC responses mirrored this pattern throughout 

infection and were not significantly higher than the PBMC response at any of the time points 
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tested.  Interestingly, the PBMC response was significantly higher than the Treg
neg PBMC response 

late post-cART (p=0.006).  Surprisingly, there was no significant linear trend in PBMC (p=0.224) 

or Treg
neg PBMC (p=0.233) responses pre-cART.  We therefore concluded that disease progression, 

accompanied by an increase in viral load and a decrease in CD4+ T cells, was not sufficient to also 

cause a decrease in the HIV-1-specific response that was generated in vivo.    

In subject S3, the mean PBMC response increased from 197 SFC/106 0.2 years post-

seroconversion to 704 SFC/106 1.5 years post-seroconversion (Figure 18A, middle panel).  By 

2.5 years post-seroconversion, the PBMC response decreased to 54 SFC/106 and only slightly 

varied from this during the remaining pre-cART time points.  The trend of Treg
neg PBMC responses 

mirrored the PBMC response and was significantly higher than PBMC at 0.2 (p=0.002) and 1.5 

(p=0.003) years post-seroconversion.   The PBMC response was significantly higher than the 

Treg
neg PBMC response 23.5 (p<0.0001) years post-seroconversion.  While decreasing trends were 

observed in the average PBMC and Treg
neg PBMC responses, there were no significant linear 

associations with disease progression.   

In subject S8, we observed a slightly different trend in T cell responses compared to 

subjects S2 and S3.  PBMC responses slightly increased throughout untreated infection but did not 

exhibit a significant upward trend (Figure 18A, right panel).  The highest PBMC response was 

observed 23.5 years post-seroconversion, during late cART.  The Treg
neg PBMC response gradually 

increased throughout untreated infection with a significant increase of 161 SFC/106/year 

(p=0.003), indicating Treg depletion revealed an increase in antigen-specific T cell responses 

throughout infection.  IFNγ production by Treg
neg PBMC was significantly higher than the PBMC 

response 6.6 years post-seroconversion (p=0.0009).  Contrary to subjects S2 and S3, we observed 
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no timepoints in subject S8 at which the PBMC response was higher than the Treg
neg PBMC 

response. 

While evaluating the average responses over multiple epitope variants is useful in 

identifying longitudinal trends, it does not show if there is a universal Treg effect among all epitope 

variants.  The significant differences observed between the PBMC and Treg
neg PBMC conditions 

at a few time points could be the result of reactivity to a few isolated variants.  We next aimed to 

assess the effect of Treg on the PBMC response to each individual variant by determining the fold 

change in IFNγ production induced by Treg depletion (Figure 18B).  We observed no common 

trend among the three subjects.  In subject S2, the effect of Treg depletion increased 1.2 and 3.4 

years post-seroconversion and decreased to baseline levels 5.6 and 9.6 years post-seroconversion, 

exhibiting no significant trend with disease progression.  The Treg effect increased early post-cART 

and returned to baseline late post-cART (Figure 18B, left panel).  In subject S3, the fold change 

decreased throughout untreated infection and was negatively associated with disease progression 

prior to cART (p=0.018).  The Treg effect rebounded early post-cART to an average fold change 

of 29.8.  Late post-cART, the average fold change was 0.18, indicating lower responses in Treg
neg 

PBMC compared to PBMC (Figure 18B, middle panel).  In subject S8, the fold change decreased 

1.4 years post-seroconversion and then continually increased throughout untreated infection.  

While there was an increasing trend in the fold change prior to cART, this association did not reach 

significance (p=0.143).  There was a drop in the fold change early post-cART, and by late post-

cART the average fold change was 0.83, indicating slightly lower Treg
neg PBMC responses 

compared to PBMC (Figure 18B, right panel). 

In summary, the data presented here indicate varying patterns of T cell response throughout 

infection and varying levels of the Treg effect on IFNγ secretion.  Surprisingly, no changes in 
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PBMC or Treg
neg PBMC responses were noted in subjects S2 and S3 during untreated infection, 

despite disease progression.  Subject S8 displayed a unique pattern, with Treg
neg PBMC responses 

significantly increasing throughout untreated infection.  In S2 and S3, we observed one time point 

at which the PBMC response was significantly higher than the Treg
neg PBMC response.  Together, 

these data suggest a variable degree of suppressive activity imposed by Treg in HIV-1 infection that 

may be patient- and disease state-dependent. 

 

3.4.4 Broad DC enhancement of T cell responses to autologous epitope variants 

We have previously shown that dendritic cell (DC) stimulation enhances T cell responses 

to consensus HIV-1 peptide antigens in subjects on cART (155).  We next aimed to determine the 

longitudinal effects of DC stimulation on the detection of T cell responses (PBMC+DC) to 

autologous epitope variants and to compare these responses to those detected in PBMC alone.  

Immature DC were derived from monocytes obtained from our three study subjects during cART 

and were matured with CD40L and loaded with the autologous HIV-1 epitope variants that had 

evolved by the time of PBMC sampling.  PBMC obtained from the same time points shown above 

were co-cultured with antigen-loaded DC or peptide alone and were evaluated for responses by 

IFNγ ELISpot.  The responses to all variants within each subject were averaged at each time point 

and are shown in Figure 19A.   
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Figure 19.  DC stimulation reveals T cell responses specific for autologous epitope variants at all stages 

of disease progression 

Autologous DC were generated for each patient and were derived from monocytes obtained during late post-cART.  

DC were matured with CD40L for 48h and were loaded with individual autologous HIV-1 epitope variants.  PBMC 

with or without antigen-loaded DC were evaluated by IFNγ ELISpot for responses against the autologous HIV-1 Gag 

and Env epitope variants that had evolved by each time point.  (A) Responses to autologous HIV-1 epitope variants 

detected in PBMC (filled black circle) were averaged at each time point and compared to those detected in PBMC+DC 

(green square) to the same variants.  The mean response of all variants +/- SEM is shown at each time point for subjects 

S2 (left panel), S3 (middle panel), and S8 (right panel).  Responses are shown as spot-forming cells (SFC) per 106.  

(B) The fold change in IFNγ production of PBMC+DC compared to PBMC is shown at each time point.  Open circles 

represent the fold change detected in an individual epitope variant.  Error bars represent the mean fold change +/- 

SEM.  The dashed red line is shown to mark a fold change of 1, or no change in response. Post-cART time points are 

indicated by the gray box.  *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
 

In subject S2, DC stimulation significantly enhanced T cell responses to autologous epitope 

variants at 0.2 (p<0.0001), 1.2 (p=0.001), 3.4 (p=0.001), 5.6 (p<0.0001), 9.6 (p=0.001), and 25.9 

(p<0.0001) years post-seroconversion (Figure 19A, left panel). At 1.2 years post-seroconversion, 

the mean response dropped from 7,029 SFC/106 to 2360 SFC/106.  There was a slight increase in 

the response 5.6 years post-seroconversion, followed by two timepoints of subsequent decreases 

in response.  IFNγ production rebounded to 5,295 SFC/106 at 25.9 years post-seroconversion.   
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Prior to cART, there was no significant trend in IFNγ production by PBMC+DC (p=0.394), 

indicating no correlation of this response with disease progression.  In subject S3, the PBMC+DC 

response peaked at 2,029 SFC/106 1.5 years post-seroconversion and decreased at the next 3 study 

time points (Figure 19A, middle panel).  There was an increase in response to 1,444 SFC/106 at 

the last pre-cART time point, followed by decreases at each of the post-cART time points.  The 

PBMC+DC response was significantly higher than the PBMC response at 1.5 (p=0.001), 2.5 

(p=0.002), 8.3 (p<0.0001), and 8.8 (p<0.0001) years post-seroconversion.  There was no 

correlation of this response with years post-seroconversion (p=0.953) prior to cART.   In subject 

S8, there was a decrease in response 1.4 years post-seroconversion to 659 SFC/106, followed by 

increases in mean IFNγ production at the next two time points (Figure 19A, right panel).  There 

was a slight decrease in response at the last pre-cART time point, followed by a drastic increase 

to 3,109 SFC/106 at 8.0 years post-seroconversion and a drop to 2,315 SFC/106 20.5 years post-

seroconversion.  Addition of DC significantly enhanced the PBMC response at 0.5 (p=0.001), 5.0 

(p=0.005), 6.6 (p=0.01), 8.0 (p<0.0001), and 20.5 (p<0.0001) years post-seroconversion.  There 

was no association of the PBMC+DC response with years post-seroconversion throughout 

untreated infection (p=0.845).   

When we looked at the fold change in IFNγ production induced by DC stimulation, we saw 

average fold changes that were >1 in all subjects at all timepoints, indicating DC stimulation 

enhanced HIV-1-specific T cell responses regardless of disease state (Figure 19B).  Additionally, 

there were no significant linear trends in the fold change induced by DC throughout infection.  

Interestingly, there was a decrease in the fold change late post-cART compared to the early post-

cART time point in all three subjects.  In subjects S3 and S8, this decrease was significant 

(p<0.0001 for both).   
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Together, these data show that DC stimulation can enhance IFNγ production by T cells 

specific for autologous HIV-1 epitope variants at most post-seroconversion time points and at all 

stages of disease progression.  This trend was observed in all three subjects.  Additionally, the 

PBMC+DC response did not change throughout untreated infection, indicating disease progression 

had little effect on the ability of DC to reveal HIV-1-specific responses.   

3.4.5 The combined effect of Treg depletion and DC addition on recall T cell responses 

While we only observed a moderate enhancement in T cell responses with Treg removal, 

we hypothesized that Treg depletion combined with the addition of antigen-loaded DC could further 

enhance the T cell response above that which was observed with DC addition alone.  We therefore 

co-cultured autologous DC loaded with the contemporaneous, autologous epitope variants shown 

in Table 5 with Treg
neg PBMC and evaluated T cell responses by IFNγ ELISpot, while concurrently 

evaluating PBMC responses to the same epitope variants.  We then calculated an average response 

for each condition at each time point (Figure 20A).   
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Figure 20.  The combined effect of DC addition and Treg depletion on recall HIV-1-specific responses 

in vitro 

Autologous DC were generated for each patient and were derived from monocytes obtained during late post-cART.  

DC were matured with CD40L for 48h and were loaded with individual autologous HIV-1 epitope variants.  PBMC 

with or without antigen-loaded DC were evaluated by IFNγ ELISpot for responses against the autologous HIV-1 Gag 

and Env epitope variants that had evolved by each time point.  (A) Responses to autologous HIV-1 epitope variants 

detected in PBMC (filled black circle) were averaged at each time point and compared to those detected in Treg
neg 

PBMC+DC (blue square) to the same variants.  The mean response of all variants +/- SEM is shown at each time point 

for subjects S2 (left panel), S3 (middle panel), and S8 (right panel).  Responses are shown as spot-forming cells (SFC) 

per 106.  (B) The fold change in IFNγ production of PBMC+DC compared to PBMC is shown at each time point.  

Open circles represent the fold change detected in an individual epitope variant.  Error bars represent the mean fold 

change +/- SEM.  The dashed red line is shown to mark a fold change of 1, or no change in response. Post-cART time 

points are indicated by the gray box.  *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
 

In Subject S2, the mean IFNγ production by the Treg
neg PBMC+DC condition at 0.2 years 

post-seroconversion was 5,153 SFC/106 (Figure 20A, left panel).  By 1.2 years post-

seroconversion this response had dropped to 946 SFC/106.  The response decreased slightly 3.4 

years post-seroconversion and rebounded to 3,723 SFC/106 at 5.6 years post-seroconversion.  

Following a decrease at 9.6 years post-seroconversion, the average response of the Treg
neg 

PBMC+DC condition increased at both post-cART time points.  The combination of Treg depletion 

and DC addition significantly enhanced IFNγ production at 0.2 (p<0.0001), 5.6 (p<0.0001), 9.6 
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(p=0.03), 10.1 (p<0.0001), and 25.9 (p<0.0001) years post-seroconversion.  There was no 

significant association of the Treg
neg PBMC+DC response with pre-cART disease progression, 

despite showing an average loss of 185 SFC/106/year.  

In subject S3, the mean response of the Treg
neg PBMC+DC condition increased from 1303 

SFC/106 at 0.2 years post-seroconversion to 3,150 SFC/106 at 1.5 years post-seroconversion 

(Figure 20A, middle panel).  The response gradually decreased until 6.4 years post-

seroconversion when the response reached a low of 247 SFC/106.  At the last pre-cART time point, 

IFNγ production increased to 1952 SFC/106 and then decreased at each post-cART time point.  

Treg
neg PBMC+DC responses were significantly higher than those detected in the PBMC condition 

at 0.2 (p=0.013), 1.5 (p<0.0001), 2.5 (p=0.0002), 8.3 (p<0.0001), and 8.8 (p<0.0001) years post-

seroconversion.  There was no linear trend in the Treg
neg PBMC+DC responses throughout 

untreated infection. 

When evaluating Treg
neg PBMC+DC responses in subject S8, we observed a decrease from 

1,803 SFC/106 at 0.5 years post-seroconversion to 526 SFC/106 at 1.4 years post-seroconversion 

(Figure 20A, right panel).  The mean response only slightly varied until 6.5 years post-

seroconversion, when the mean response peaked at 2,516 SFC/106 at the last pre-cART time point 

and then decreased at each of the post-cART time points.   The Treg
neg PBMC+DC response was 

significantly higher than the PBMC response at 0.5 (p=0.002), 6.5 (p<0.0001), 8.0 (p<0.0001), 

and 20.5 (p=0.024) years post-seroconversion.  Similar to subjects S2 and S3, there was no linear 

trend in Treg
neg PBMC+DC responses prior to cART in subject S8.   

We then evaluated the fold change induced by the Treg
neg PBMC+DC condition compared 

to the PBMC condition within each autologous epitope variant (Figure 20B).  The average fold 

change was >1 at all time points in each subject, indicating Treg depletion combined with the 
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addition of DC was able to enhance the PBMC response to autologous Gag and Env epitope 

variants regardless of disease progression.    

In summary, these data show that Treg depletion combined with the addition of DC is able 

to reveal T cell responses specific for HIV-1 epitope variants at all stages of disease progression.  

Furthermore, the responses detected with this condition did not decrease throughout chronic 

infection and further verify that high-magnitude responses were generated against late-evolving 

variants and can be detected late in infection. 

3.4.6 Comparison of Treg depletion and DC addition for the detection of recall HIV-1-

specific T cell responses 

We were able to show significant increases in HIV-1-specific responses with the removal 

of Treg in some cases and with the addition of DC at most timepoints.  We next aimed to determine 

which method, Treg depletion, DC addition, or the combination of both techniques, was most 

efficient at revealing epitope variant-specific IFNγ production and if the best method of detection 

was dependent on disease progression.  We therefore compared the mean responses detected in the 

Treg
neg PBMC to those detected in the PBMC+DC condition at each time point in each subject 

(Figure 21A).  In subject S2, the PBMC+DC response was significantly higher than the Treg
neg 

PBMC response at each time point except early post-cART at 10.1 years post-seroconversion 

(p<0.001 for all, Figure 21A, left panel).  In subject S3, DC addition revealed higher IFNγ 

production than Treg depletion at 1.5 (p=0.009), 2.5 (p=0.003), 8.3 (p<0.0001), 8.8 (p<0.0001), and 

23.5 (p=0.002) years post-seroconversion (Figure 21A, middle panel).  In subject S8, we 

observed the least number of time points at which the PBMC+DC response was significantly 

greater than the Treg
neg PBMC response.  These time points were 0.5 (p=0.002), 8.0 (p<0.0001), 
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and 20.5 (p<0.0001) years post-seroconversion (Figure 21A, right panel).  Not surprisingly, Treg 

depletion did not enhance the PBMC+DC response at any time point in subjects S2 and S3 (Figure 

21B, left and middle panels).  In subject S8, we only saw a significant enhancement at 6.5 

(p=0.003) and 8.0 (p=0.007) years post-seroconversion (Figure 21B, right panel).  

 

 

Figure 21.  DC addition reveals higher magnitude HIV-1-specific responses than Treg depletion 

The longitudinal responses shown in figures 18, 19, and 20 were compared within each subject at each time point to 

determine the best method of revealing T cell responses specific for autologous HIV-1 epitope variants.  (A) Responses 

to autologous HIV-1 epitope variants detected in PBMC+DC (green square) were averaged at each time point and 

compared to those detected in (A) Treg
neg PBMC (red square) or (B) Treg

neg PBMC +DC (blue square) to the same 

variants.  The mean response of all variants +/- SEM is shown at each time point for subjects S2 (left panel), S3 

(middle panel), and S8 (right panel).  Responses are shown as spot-forming cells (SFC) per 106.  Post-cART time 

points are indicated by the gray box.  *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

 

In summary, the data presented here suggest DC addition is the best and most consistent 

method of detecting T cell responses specific for autologous HIV-1 epitope variants throughout 

chronic and treated HIV-1 infection.  While Treg depletion slightly increases recall IFNγ 

production, it does not reveal the magnitude of responses seen with DC addition.  Additionally, 
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we observed no additive effect of combining the DC addition with Treg depletion, therefore 

suggesting DC addition alone is sufficient to reveal robust recall T cell responses at all stages of 

disease progression.  

3.4.7 DC enhance cytokine secretion in HIV-1-specific CD8+ T cells 

We showed above that DC enhance IFNγ secretion specific for autologous epitope variants 

at multiple stages of disease progression.  We therefore aimed to determine if DC could enhance 

T cell production of other type 1 immune mediators in response to these autologous epitope 

variants.  To address this, we co-cultured PBMC obtained from each subject during AIDS, early 

post-cART, and late post-cART with autologous HIV-1 epitope variants alone or loaded onto 

CD40L-matured, monocyte-derived DC.  For practicality purposes, we only used variants of the 

known Gag and Env epitopes (Table 5) that were in viral circulation at the time of PBMC sampling 

(contemporaneous variants).  Following a 6h co-culture, PBMC were stained for the type 1-

associated molecules IFNγ, CD107a, MIP-1β, TNFα, and IL-2.   

We first evaluated cytokine/chemokine secretion by CD8+ T cells obtained from the last 

pre-cART time point with peptide alone or peptide-loaded DC (Figure 22).   
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Figure 22.  DC enhance the percent of CD8+ T cells staining positive for proinflammatory molecules in 

response to autologous, contemporaneous HIV-1 epitope variants during late disease progression 

Autologous monocyte derived DC were matured with CD40L and loaded with autologous HIV-1 epitope variants.  

PBMC derived from the last pre-cART time point were incubated with peptide alone or peptide-loaded DC.  For 

practicality, only the variants of known Gag and Env epitopes that were in circulation at the last pre-cART time point 

were used.  PBMC and PBMC+DC were also incubated with SEB or media alone for positive and negative controls, 

respectively.  PBMC were then stained for CD107a, IFNγ, IL-2, MIP-1β, and TNFα.  Background was determined as 

the percent of CD8+ T cells staining positive for the relevant cytokine in the negative control condition.  Data are 

shown as the percent of CD8+ T cells that are antigen-specific (background subtracted) in (A) subject S2, (B) subject 

S3, and (C) subject S8. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
 

In each subject, this study visit was after at least one time point with a CD4+ T cell count 

that was below 200 cells/mm3 and was therefore in the advanced stage of disease progression.  In 

subject S2, DC significantly enhanced the percent of CD8+ T cells specific for IFNγ (p<0.0001), 

MIP-1β (p=0.001), and TNFα (p=0.03) (Figure 22A).  Surprisingly, only CD107a secretion was 

enhanced by DC in subject S3 (p=0.023) (Figure 22B).  In subject S8, CD107a (p=0.03) and IFNγ 

(p=0.008) were enhanced by DC (Figure 22C).  While we observed increases in IL-2 production 
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in response to 4 of the variants tested when using DC, the mean percent of CD8+ T cells specific 

for this cytokine was not significantly different (p=0.06).  Of interest, there was no common 

immune mediator that was enhanced by DC in all three subjects, implying this enhancement is not 

cytokine-specific and may result in differential CD8+ T cell immune profiles. 

 

 

Figure 23.  DC enhance the percent of CD8+ T cells staining positive for proinflammatory molecules in 

response to autologous, contemporaneous HIV-1 epitope variants early post-cART 

Autologous monocyte derived DC were matured with CD40L and loaded with autologous HIV-1 epitope variants.  

PBMC derived from the first post-cART time point (<6 months post-cART) were incubated with peptide alone or 

peptide-loaded DC.  For practicality, only the variants of known Gag and Env epitopes that were in circulation at the 

last pre-cART time point were used.  PBMC and PBMC+DC were also incubated with SEB or media alone for positive 

and negative controls, respectively.  PBMC were then stained for CD107a, IFNγ, IL-2, MIP-1β, and TNFα.  

Background was determined as the percent of CD8+ T cells staining positive for the relevant cytokine in the negative 

control condition.  Data are shown as the percent of CD8+ T cells that are antigen-specific (background subtracted) in 

(A) subject S2, (B) subject S3, and (C) subject S8. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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To determine if cART impacted the ability of DC to stimulate cytokine production, we 

evaluated responses in CD8+ T cells obtained from the first post-cART time point, which was less 

than 6 months after starting treatment (Figure 23).  In subject S2, DC induced significant increases 

in the percent of CD8+ T cells that stained positive for all immune mediators evaluated; CD107a 

(p=0.002), IFNγ (p=0.02), IL-2 (p=0.01), MIP-1β (p=0.006), and TNFα (p=0.03) (Figure 23A).  

In subject S3, we observed higher IFNγ (p=0.005), MIP-1β (p=0.007), and TNFα (p=0.002) 

production with antigen-loaded DC (Figure 23B).  In subject S8, DC induced significant increases 

in the production of all immune mediators evaluated; CD107a (p=0.04), IFNγ (p<0.0001), IL-2 

(p<0.0001), MIP-1β (p=0.03), and TNFα (p=0.02) (Figure 23C).  Of note, IFNγ, MIP-1β, and 

TNFα were significantly increased in each subject following DC addition.  This is in contrary to 

our findings at the last pre-cART time point, at which there were no common mediators enhanced 

by DC among the three subjects. 

We finally aimed to evaluate the effect of DC on antigen-specific CD8+ T cell responses 

late post-cART, after >13 years of treatment in each subject (Figure 24).  In subject S2, we 

observed a higher percent of CD8+ T cells staining positive for CD107a (p=0.0001), IFNγ 

(p=0.0002), IL-2 (p=0.001), and TNFα (p=0.017) (Figure 24A) when T cells were exposed to 

antigen-loaded DC.  We observed an increase in the production of 4 out of the 5 immune mediators 

in subject S3 when DC were added; CD107a (p=0.0003), IFNγ (p=0.041), IL-2 (p=0.005), and 

MIP-1β (p=0.033) (Figure 24B).  In subject S8, we only observed a DC enhancement in CD107a 

(p<0.0001), IFNγ (p<0.0001), and IL-2 (p<0.0001) (Figure 24C).  While DC addition revealed 

increases in MIP-1β- and TNFα-positive CD8+ T cells, these changes were not significant (p=0.06 

and 0.07, respectively).  The percent of CD8+ T cells producing CD107a, IFNγ, and IL-2 was 

significantly enhanced by DC in all three subjects at this late post-cART time point, showing a 
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shift from early post-cART in the common DC-enhanced immune mediators among the three 

subjects. 

 

 

 

Figure 24.  DC enhance the percent of CD8+ T cells staining positive for proinflammatory molecules in 

response to autologous, contemporaneous HIV-1 epitope variants late post-cART 

Autologous monocyte derived DC were matured with CD40L and loaded with autologous HIV-1 epitope variants.  

PBMC derived from the last post-cART time point (>13 years post-cART) were incubated with peptide alone or 

peptide-loaded DC.  For practicality, only the variants of known Gag and Env epitopes that were in circulation at the 

last pre-cART time point were used.  PBMC and PBMC+DC were also incubated with SEB or media alone for positive 

and negative controls, respectively.  PBMC were then stained for CD107a, IFNγ, IL-2, MIP-1β, and TNFα.  

Background was determined as the percent of CD8+ T cells staining positive for the relevant cytokine in the negative 

control condition.  Data are shown as the percent of CD8+ T cells that are antigen-specific (background subtracted) in 

(A) subject S2, (B) subject S3, and (C) subject S8. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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The intracellular cytokine data presented here show a differential DC-induced increase in 

type 1-associated cytokines between the three subjects.  Late post-seroconversion, we observed 

the lowest number of cytokines in which there was a DC enhancement effect.  In subjects S2 and 

S8, the highest number of cytokines for which there was a DC enhancement was observed early 

post-seroconversion, whereas this was observed late post-seroconversion in subject S8.  

Nonetheless, antigen-loaded DC were able to reveal cytokine specific CD8+ T cells at all three 

time points in each subject. 

3.4.8 DC induce a disease state-dependent enhancement in the cytokine profile of epitope 

variant-specific CD8+ T cells 

We have previously shown that DC reveal polyfunctional cytokine production by CD8+ T 

cells in response to consensus Gag peptides in subjects on cART (155).  We therefore aimed to 

determine if DC enhance epitope variant-specific polyfunctionality of CD8+ T cells derived from 

our study subjects during chronic infection, early post-cART, and late post-cART.  These findings 

would allow us to evaluate the potential efficacy of a DC immunotherapy aimed at enhancing the 

polyfunctionality of HIV-1-specific CD8+ T cells and would shine light on the effects of DC on 

polyfunctional responses at various stages of disease progression.  To address this, we loaded 

autologous CD40L-matured DC with the autologous contemporaneous epitope variants found in 

subjects S2, S3, and S8 late post-seroconversion.  These are the same variants used in Figures 22, 

23, and 24.  We then incubated PBMC from the last pre-cART time point (“late post-

seroconversion”), the first post-cART time point (<2 years post-cART), and a late post-cART time 

point (>13 years post-cART) with peptide-loaded DC or peptide alone and stained for 
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polyfunctional expression of the immune mediators CD107a, IFNγ, IL-2, TNFα, and MIP-1β 

(Figure 25).   

 

Figure 25. DC effects on multifunctional CD8+ T cell responses specific for autologous 

contemporaneous HIV-1 epitope variants pre- and post-cART 

Autologous monocyte derived DC were matured with CD40L and loaded with autologous HIV-1 epitope variants.  

PBMC derived from late post-seroconversion (the last pre-cART time point), early post-cART (<2 years post-cART), 

and late post-cART (>13 years post-cART) were incubated with peptide alone or peptide-loaded DC.  For practicality, 

only the variants of known Gag and Env epitopes that were in circulation at the last pre-cART time point were used.  

PBMC and PBMC+DC were also incubated with SEB or media alone for positive and negative controls, respectively.  

PBMC were then stained for CD107a, IFNγ, IL-2, MIP-1β, and TNFα.  Background was determined as the percent of 

CD8+ T cells staining positive for the relevant cytokine in the negative control condition.  Data are shown as the 

percent of CD8+ T cells above background that are producing one (mono fx), two (bi fx), and 3 or more (poly fx) 

immune mediators in (A) subject S2, (B) subject S3, and (C) subject S8. *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. 
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In Figure 25A, B, and C, we show the polyfunctional profile of CD8+ T cells in subjects 

S2, S3, and S8, respectively.  Late post-seroconversion, after many years of untreated HIV-1 

infection, we observed a DC-mediated increase in the percent of monofunctional (p=0.0005) and 

bifunctional (p=0.015) CD8+ T cells in subject S2 (Figure 25A).  At this time point, we only 

observed increases in monofunctionality in subjects S3 (Figure 25B, p=0.002) and S8 (Figure 

25C, p=0.0001).  Early post-cART, DC increased the percent of CD8+ T cells that were 

monofunctional (p<0.0001), bifunctional (p<0.0001), and polyfunctional (p=0.031) in subject S2.  

We saw a significant enhancement of the monofunctional response in subjects S3 (p=0.004) and 

S8 (p<0.0001), as well as an increase in the bifunctional response (p<0.0001 for both) when using 

DC early post-cART.  Finally, DC increased the late post-cART monofunctional response 

(p<0.0001 for all), as well as the bifunctional (p= <0.0001, 0.0009, and 0.0001) and polyfunctional 

(p= <0.0001, 0.005, and 0.021) responses in subjects S2, S3, and S8, respectively.   

The data presented here suggest a restoration in the ability of DC to reveal polyfunctional 

CD8+ T cell responses as immune reconstitution occurs during cART.  While monfunctional 

responses were significantly enhanced by DC late post-seroconversion, the bifunctional response 

was not increased in subjects S3 and S8 until early post-cART and the polyfunctional response 

was not increased by DC until late post-cART.  While the bifunctional response was enhanced by 

DC late post-seroconversion in subject S2, the polyfunctional response was not revealed until early 

post-cART, again demonstrating a disease state-dependent ability of the DC to reveal 

multifunctional cytokine profiles in HIV-1-specific CD8+ T cells. 
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3.5 DISCUSSION 

Cytotoxic T lymphocytes (CTL) play a vital role in controlling HIV-1 infection (253, 289).  

The failure to control HIV-1 replication in chronic infection has been attributed to a decline in 

CTL responses that are specific for the autologous virus (6, 7, 19, 22, 30, 134-137, 145).  Indeed, 

mutations within CTL epitopes have been shown to ablate MHC class I affinity and would 

therefore prevent the generation of a primary CD8+ T cell response against that epitope.  In this 

study, we employed several methods of detecting and enhancing T cell responses specific for 

autologous HIV-1 epitope variants at multiple stages of infection, before and after combination 

antiretroviral therapy (cART).  Using these methods, we show that regulatory T cells (Treg) have 

limited, if any, suppressive effect on IFNγ production, while dendritic cells (DC) reveal broad and 

robust responses regardless of disease progression.  These results were expanded using a DC-

enhanced polychromatic flow cytometry assay to detect multiple immune mediators in response 

to autologous HIV-1 epitope variants that were in circulation immediately prior to or after cART 

(contemporaneous variants).  By using this approach, we observed DC enhancement of multiple 

cytokine production by HIV-1-specific CD8+ T cells that was associated with suppression of 

viremia subsequent to cART.   

The known and predicted HLA A*2402-restricted epitopes used in our study exhibited 

various patterns of evolution.  While many of the epitopes incurred amino acid changes throughout 

infection, there was no universal effect of these changes on the predicted MHC class I affinity, 

indicating HIV-1 evolution did not specifically evade MHC class I loading by antigen presenting 

cells (APC) or expression on the surface of infected cells.  This observation would suggest that 

APC priming of naïve CD8+ T cells could have occurred in vivo if the T cell receptor (TCR) 

repertoire was sufficient to recognize these antigens.  Indeed, we detected PBMC responses to 
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>95% of variants irrespective of the predicted MHC class I affinity, showing amino acid mutations 

within epitopes did not ablate priming to these variants in vivo.  Moreover, IFNγ production to 

variants of novel predicted epitopes was of a similar magnitude to the response against variants of 

known epitopes, therefore highlighting the potential of these predicted epitope regions to be 

classified as HLA A*2402 epitopes.   

Our failure to identify a link between IFNγ production and MHC class I affinity is not 

surprising.  While decreased binding of mutated epitopes to MHC class I is a primary mechanism 

by which HIV-1 and SIV evade CD8+ T lymphocyte responses (7, 26, 43, 58, 75, 102, 130, 131, 

177, 227, 271), detection of IFNγ production is not necessarily indicative of a cytolytic CD8+ T 

cell response that can control infection (94, 144, 160, 217).  The three subjects used in our study 

exhibited characteristics of normal disease progression, and therefore resident CTL were unable 

to control viral replication in chronic infection.  A CTL response with high breadth and magnitude, 

specifically to the Gag proteins, has been associated with SIV and HIV-1 control (33, 179, 253, 

285, 289).  However, high-avidity CD8+ T cells have been detected in progressive infection and 

therefore point to poor immune selection pressure exerted by these cells (94).  Indeed, the PBMC 

responses to autologous epitope variants described in this study were broad and within a wide 

range of magnitudes despite the continuation of disease progression, thus indicating ineffective 

selective pressure on the virus.  While we are not making the claim that our detection of cytokine 

secretion is indicative of CTL activity, we are concluding that a primary response to these epitope 

variants was generated in vivo, although this response was likely of variable efficacy, as disease 

progression continued and many of the epitope variants persisted throughout infection.  Future 

studies should focus on the changes in cytolytic effector function against a select number of epitope 
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variants throughout HIV-1 infection.  Nonetheless, these findings provide an in-depth 

understanding of the breadth of T cell responses that are generated to autologous HIV-1 antigens. 

Treg have been implicated in the pathogenesis of HIV-1 infection and have become targets 

for exploitation in immunotherapies (212, 213). Additionally, we previously reported on the ability 

of mature, autologous DC to reveal and enhance HIV-1-specific T cell responses in subjects on 

cART (155).  Not much is known about the role of Treg in suppressing responses or the ability of 

DC to enhance responses during progressive infection.  After detecting moderate responses to 

autologous epitope variants in PBMC, we next determined the individual and combined effects of 

Treg depletion and DC addition on longitudinal CD8+ T cell IFNγ production throughout untreated 

and treated HIV-1 infection.  Surprisingly, Treg depletion only slightly enhanced responses at a 

relatively small number of time points in two of the subjects.  The Treg effect on PBMC responses 

did not universally increase throughout infection and therefore showed this mechanism of 

regulation is not necessarily correlated with disease progression.  Addition of DC to PBMC did 

not enhance the number of epitope variants that were recognized, as the breadth was already >95% 

when evaluating PBMC, but the magnitude was significantly enhanced at most time points in each 

subject.   

Regardless of disease progression, DC were functional at enhancing IFNγ production 

against autologous epitope variants as judged in our overnight ELISpot assays.  More importantly, 

we observed similar responses to variants that evolved early and late post-seroconversion, thus 

supporting the ability of DC to present mutated epitopes to their cognate CD8+ T cell.  We 

hypothesized that combining Treg depletion and DC addition might result in an additive T cell 

response that was greater than the two methods used individually.  We did not observe this, and in 

fact observed few differences between the PBMC+DC and PBMC-Treg+DC conditions, thereby 
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suggesting DC addition is superior at revealing HIV-1-specific T cell responses and Treg depletion 

provides minimal, if any, help in enhancing these responses.  Of note, DC enhanced T cell 

responses late post-cART in 2 of the 3 subjects, suggesting a DC-mediated therapy for subjects on 

long-term suppressive cART may be successful in reinvigorating quiescent memory responses that 

are specific for the autologous reservoir. 

Production of multiple cytokines by CD8+ T cells has been associated with CTL effector 

function and control of HIV-1 infection (11, 12, 36, 141, 324).  We therefore expanded our analysis 

of DC-mediated enhancement of HIV-1-specific CD8+ T cell responses by evaluating intracellular 

cytokine secretion late post-seroconversion and during early and late cART time points with and 

without DC.  As the subjects in our study regained their health under suppressive cART, DC were 

more able to reveal polyfunctional cytokine secretion by CD8+ T cells.  These findings suggest 

that a DC immunotherapy aimed at reinvigorating the dysfunctional CTL response may be 

effective.  Our IFNγ ELISpot analysis showed variable effects of DC addition as subjects received 

cART, but staining for multiple immune mediators gave a broader picture of how cART restores 

the ability of T cells to respond to HIV-1-specific stimuli.  While our ELISpot data suggest DC 

would be efficient at inducing T cell responses at all disease time points, ICS shows DC 

enhancement is more pronounced after long-term cART.   

We recognize our in-depth study was performed in a limited number of subjects and was 

done so to evaluate a broad array of autologous epitope variants.  Continuing studies should 

incorporate a large cohort of subjects and should focus on a few epitopes and their variants.  

Additionally, using the data here to identify and focus on a select number of epitopes would allow 

for the analysis of cytolytic effector function by cells stimulated with antigen-loaded DC.  

Nonetheless, our extensive in-depth study allowed us to show DC enhancement to almost every 
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epitope variant evaluated and can therefore be lauded as a general phenomenon within our study 

subjects.  Together, the data presented in this study highlight the ability of T cells to respond to 

autologous HIV-1 epitope variants at all stages of disease progression and support the use of DC 

immunotherapy in subjects on cART. 
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4.0  PRIMARY AND RECALL T CELL RESPONSES TO AUTOLOGOUS EPITOPE 

VARIANTS IN CHRONIC HIV-1 INFECTION 

4.1 ABSTRACT 

It is unclear if HIV-1 variants lose the ability to prime naïve CD8+
 cytotoxic T 

lymphocytes (CTL) during progressive, untreated infection. We conducted a comprehensive 

longitudinal analysis of viral evolution and its impact on primary and memory CD8+
 T cell 

responses pre-seroconversion (SC), post-SC, and during combination antiretroviral therapy 

(cART). Memory T cell responses targeting autologous virus variants reached a nadir by 8 years 

post-SC with development of AIDS, followed by transient enhancement of anti-HIV-1 CTL 

responses upon initiation of cART. We show broad and high magnitude primary T cell responses 

to late variants pre-SC, comparable to primary anti-HIV-1 responses induced in T cells from 

uninfected persons. Despite evolutionary changes, CD8+
 T cells could still be primed to HIV-1 

variants. Hence, vaccination against late, mutated epitopes could be successful in enhancing 

primary reactivity of T cells for control of the residual reservoir of HIV-1 during cART. 

 I performed >50% of the experiments discussed in this chapter, generated all graphs, and 

performed most of the statistical analyses and data interpretation.  A modified version of the work 

in this chapter has been published as: The impact of viral evolution and frequency of variant 

epitopes on primary and memory human immunodeficiency virus type-1-specific CD8+ T cell 

responses.  *Melhem NM, *Smith KN, Huang XL, Colleton BA, Jiang W, Mailliard RB, Mullins 

JI, and Rinaldo CR.  Virology.  (IN PRESS). 

*These authors contributed equally to this work and share primary authorship 
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4.2 BACKGROUND 

CD8+ cytotoxic T lymphocytes (CTL) are a crucial component of the immunological 

defense against human immunodeficiency virus type 1 (HIV-1) infection (22).  The appearance of 

CTL responses is associated with the early decline of plasma viremia during HIV-1 infection (189).  

Depletion of CD8+ T cells in the non-human primate model results in enhanced disease 

progression, supporting the protective role of these cells (299).  Long term control of both HIV-1 

and simian immunodeficiency virus (SIV) infections is associated with a broad and high magnitude 

CTL response (253, 289), particularly to Gag epitopes (33, 179, 285). However, despite the 

establishment of HIV-1-specific CTL responses during early HIV-1 infection, they fail to control 

persistent, chronic HIV-1 infection. A hallmark of HIV-1 pathogenesis is the ability of the virus 

to escape host CTL responses through mutations within and adjacent to CTL epitopes during the 

early and chronic phases of the infection (8, 9, 93, 246).  HIV-1 prophylactic and therapeutic 

vaccine strategies have yet to establish protective CD8+ CTL responses to overcome the propensity 

of the virus to undergo escape mutations.  

The breadth and magnitude of CD8+ T cell responses are thought to be critical indicators 

in the control of HIV-1 infection as well as prevention of AIDS (19, 83). Therefore, the induction 

of strong and broadly reactive memory CTL responses is believed to be necessary to respond to 

the diverse viral sequences generated during the course of infection. Indeed, the failure of the STEP 

prophylactic vaccine trial has been linked in part to induction of limited CTL responses and failure 

to cross-react with circulating viral strains (25, 73).   There is also a correlation between the larger 

number of T cell responses targeting different SIV proteins and control of viral load in non-human 

primates (204, 277).  These emphasize the importance of understanding the mechanisms 
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underlying the ability of CD8+ T cell responses to control HIV-1 replication for the design of 

successful vaccine strategies. 

Mechanisms promoting the establishment of escape mutations and thus evasion of 

clearance of HIV-1-infected cells by CTL include interaction defects between a viral epitope and 

its cognate MHC class I molecule or between an MHC class I molecule/epitope complex and its T 

cell receptor (TCR) (202) and impairment at the level of epitope processing (7, 93, 360).  It is 

imperative to overcome these complications of natural infection in order to design HIV-1 vaccines 

capable of eliciting antiviral immunity targeting the diverse viral strains circulating during the 

course of infection and spreading from person to person. We have previously shown the generation 

of broadly reactive and polyfunctional primary CD8+ T cell responses from HIV-1 naïve adults 

against HIV-1 and other viral epitopes (67). Optimal priming of CD8+ T cells requires maturation 

of DC with CD40L and IFN-. This maturation protocol generates IL-12-producing DC (104) with 

increased expression of activation and costimulatory molecules. These factors are involved in 

activation of memory antigen-specific CD8+ T cell memory responses and are likely involved in 

priming of CD8+ T cells (273).  These in vitro, T cell memory and priming models represent a 

promising approach to evaluate the immunogenicity of potential HIV-1 epitopes for vaccine design 

(219). 

To better understand the relationship between viral evolution and its impact/effect on 

primary and memory responses, we examined autologous HIV-1 gag, env, and nef sequences 

derived at multiple points up to approximately 12 years post-seroconversion (SC) in a participant 

in the Multicenter AIDS Cohort Study (MACS) (87, 171). The breadth and magnitude of primary 

T cell responses were compared to memory, recall T cell responses observed early and late during 

infection as well as during cART. Our results reveal memory T cell responses specific for prior 
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and contemporaneous HIV-1 variants.  We further demonstrate the development of strong primary 

responses in pre-SC naïve T cells to naturally evolving HIV-1 variant sequences in an entirely 

autologous system. These primary CD8+ T cell responses were of similar breadth to memory 

responses and of higher magnitude, thus supporting the use of such models in immunotherapy of 

HIV-1 infection in persons on cART. 

4.3 METHODS 

4.3.1 Study participants 

Human subject approval was obtained for this study from the institutional review board of 

the University of Pittsburgh. The participant in this study (subject 8) is enrolled in the Multicenter 

AIDS Cohort Study (MACS), a natural history study of HIV-1 infection in men who have sex with 

men (87, 171). The age of the study participant upon enrollement in the study was 24.8 years. The 

subject’s MHC class I alleles as determined by high resolution PCR genotyping (Tissue Typing 

Laboratory, University of Pittsburgh Medical Center) are HLA-A*0201 A*2402 B*0702 B*4001 

C*0304 C*00702. Subject 8 was HIV-1 seronegative upon enrollment in the MACS in November, 

1984, and seroconverted to HIV-1 between October 1987 and May 1988.  HIV-1 seropositivity 

was confirmed by a positive enzyme-linked immunosorbent assay (ELISA) for the presence of 

HIV-1 p24 and a Western blot with bands corresponding to at least 2 of either Gag, Pol, and Env 

(171). Blood specimens, and epidemiologic and clinical data were obtained at semiannual visits 

(307). Participant 8 progressed to AIDS as defined by the CDC (<200 CD4+ T cells/mm3) 6.2 years 

post-SC. cART was initiated July, 1996 at 8.4 years post-SC. This treatment regimen, consisting 
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of Retrovir (zidovidine azidothymidine, GlaxoSmithKline), Epivir (lamiduvidine 3TC, 

GlaxoSmithKline) and Invirase (saquinovir mesylate, Roche), was administered for 1 year. At 9.4 

years post-SC, Viracept (nelfinavir mesylate, Agouron), Sustiva (efavirenz, Bristol-Meyers 

Squibb) and Ziagen (abacavir sulfate, GlaxoSmithKline) replaced the previous regimen. This 

treatment was finally replaced with Atrilpa (efavirenz/emtricitabine/tenofovir, Bristol-Meyers 

Squibb) at 20.5 years post SC and was maintained for the period of study. Blood was also obtained 

from 2 anonymous, healthy HIV-1 negative donors (Central Blood Bank, Pittsburgh, PA) who 

were typed as HLA-A2/B7 by flow cytometry for use in the T cell priming study. 

4.3.2 Clinical and virologic characteristics 

At each clinic visit pre- or post-SC and during cART, plasma samples and peripheral blood 

mononuclear cells (PBMC) were collected and stored at -80oC and -140 oC, respectively.  Plasma 

samples and PBMC were used to determine HIV-1 load and CD4+ and CD8+ T cell counts, 

respectively.  T cell phenotypes were determined by flow cytometry as previously described (123, 

298).  For HIV-1 plasma viremia, RNA was extracted from plasma using a COBAS Ampliprep 

Instrument (Roche Diagnostics, Indianapolis, IN) and amplified by RT-PCR on a COBAS 

Taqman 48 Analyzer (Roche Diagnostics) using the COBAS Ampliprep/COBAS Taqman 

HIV-1 Test.  This assay is capable of detecting from 20 to 106 HIV-1 RNA copies/ml of plasma.  

Negative, low positive and high positive controls were used in each RNA extraction and RT-PCR 

assay as per manufacturer’s instructions.   
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4.3.3 Sequencing and phylogenetic analysis 

env C2-V5 sequences were reported previously (307). gag and nef sequences were obtained 

using the procedures and primers as previously described (205, 220, 309). Briefly, viral sequences 

were derived from 12, 16, and 9 time points for gag-p17 and -p24, env-gp120, and nef, 

respectively.  Sequences spanned 8 years of untreated HIV-1 infection and included at least one 

post-ART time point. Viral sequencing was not performed during late ART due to inability to 

detect viral RNA in plasma.  

Sequences bearing open reading frames (~90% of all sequences determined) were first 

aligned with the Pileup program in the GCG suite (Genetics Computer Group, Madison, WI) and 

then manually edited (205, 206). Both viral divergence from the founder strain and viral diversity 

were estimated at each time point.  To estimate viral diversity, we determined the mean and 

standard deviation for pairwise nucleic acid distances between all sequences obtained at each time 

point.  To estimate viral divergence, we compared sequences from each visit to a founder sequence 

that was approximated as the consensus sequence found at the initial virus-positive time point.  

The mean and standard deviation for all pairwise comparisons were then calculated.   

4.3.4 Synthetic peptides 

Peptide sequences representing autologous Gag, Env, and Nef MHC class I - associated 

variants evolving in our study participant during infection were synthesized (SynBioSci, 

Livermore, CA) and used in T cell priming and memory T cell functional assays. Epstein-Barr 

virus (EBV) BMLF1280-288 (GL9, GLCTLVAML) (provided by the NIH AIDS Research Program) 

was used as a control peptide sequence in the functional assays. The Los Alamos HIV Molecular 
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Immunology Database was referred to for defining MHC Class I epitopes based on being known 

as optimal epitopes or based on affinity, T cell receptor usage, computational epitope prediction 

or functional studies. For ease of interpretation, the naturally evolving peptide sequences of subject 

8 are referred to in order of their detection post-SC. Consequently, we defined early post-SC (0-

2.8 yr post-SC), late post-SC (3.25-7.8 yr), early cART (8.3-10.1yr) and late cART (12.4-13.1 or 

>12.4yr) time points.  

4.3.5 In silico and in vitro analysis of peptide binding affinity 

HLA peptide binding predictions of the sequences under investigation were scored using 

the netMHCpan 2.4 server (www.cbs.dtu.dk/services/NetMHCpan) (151, 241). In silico 

(predicted) IC50 values were computed with binding affinity of peptides for MHC class I. Strong 

binders were assigned as having an IC50 threshold of 50 nM and weak binders as having a threshold 

of 500nM. A fluorescence polarization (FP)–based assay was used to experimentally screen and 

identify high affinity binding peptides to HLA molecules (Pure Protein LLC, Oklahoma City, OK). 

Briefly, the assay utilizes fluorescently labeled control peptides and recombinant soluble HLA-

A*0201 and B*0702 molecules to test for the competitive binding between a labeled reference 

peptide and the peptide or the peptide mix being investigated. The binding affinity of the 

competitor peptide is expressed as the concentration inhibiting 50% (IC50) of the binding of the 

labeled peptide (48). The followings are the binding affinity categories based on the log IC50: high 

affinity < 3.7, medium < 4.7, low < 5.5, and no affinity < 6.0 (48).  

http://www.cbs.dtu.dk/services/NetMHCpan
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4.3.6 Generation of dendritic cells (DC) 

Monocyte-derived DC were generated from subject 8 and two healthy HIV-1 negative 

adults as previously described (67) with minor modifications. Briefly, CD14+ monocytes were 

positively selected using anti-CD14 monoclonal antibody (mAb) coated magnetic beads (StemCell 

Technologies, Vancouver, Canada) or Percoll density separation (Sigma-Aldrich, Saint Louis, 

MO). DC were generated by culture of the purified monocytes with 1,000U/ml recombinant GM-

CSF (Bayer Healthcare, Montville, NJ) and 1,000 U/ml recombinant IL-4 (R & D Systems, 

Minneapolis, MN). On day 5, immature DC were treated for 48 h with recombinant CD40L (0.5 

µg/ml; Enzo, Farmingdale, New York) for use in memory T cell assays or CD40L (0.5 µg/ml) and 

interferon γ (IFN-γ; 1000 U/ml; R&D) for use in priming assays.  

4.3.7 In vitro priming 

In vitro priming of autologous PBMC was performed as previously described with minor 

modifications (67). Briefly, DC were derived from PBMC obtained from subject 8 during virus 

suppressive cART and the HIV-1 negative, adult volunteers. Autologous DC matured with CD40L 

and IFN-γ were incubated with 10 µg/ml of HIV-1 peptides in IMDM medium (Gemini Bio-

Products, West Sacramento, CA) containing 10% heat-inactivated fetal calf serum (FCS) (Gemini 

Bio-Products) for 2 hr at 37oC in a 5% CO2 atmosphere. The DC were harvested and re-suspended 

with autologous PBMC at a responder-to-stimulator (T:DC) ratio of 10:1. Autologous PBMC from 

subject 8 were obtained from cryopreserved cells prior to SC. After 3 days, the co-cultures were 

fed with fresh IMDM/10% FCS supplemented with recombinant IL-15 (2.5ng/ml; PeproTech, 

Rocky Hill, NJ), IL-2 (50 U/ml; Chiron, Emeryville, CA) and IL-7 (10 ng/ml; Miltenyi, Auburn, 



 119 

CA). This was repeated at 2-3 day intervals thereafter for 2 weeks. PBMC were then re-stimulated 

with autologous DC loaded with the same set of peptides as in the primary stimulation at a 

responder-to-stimulator (T:DC) ratio of 10:1.  These cells were harvested after a total of 21 days 

of culture and used in IFN-γ ELISPOT assays.  

4.3.8 IFNγ ELISPOT assay 

ELISPOT assays were performed as previously described (67, 156). Briefly, 96 well plates 

were coated overnight with 1 µg/ml anti-human IFNγ mAb 1-D1K (Mabtech, Stockholm, Sweden) 

at 4oC. DC matured with CD40L were loaded with 10 µg/ml HIV-1 peptides or control EBV 

peptides in IMDM/10% FCS for 2 hr at 37oC. Control wells contained T cells in the presence of 

mature DC. Autologous PBMC in IMDM/10% FCS were added to wells at a responder-to-

stimulator ratio of 10:1 and were incubated for 18 hr at 37 oC in a 5% CO2 atmosphere. Following 

incubation, wells were washed with PBS/0.05% Tween-20 (Fisher Scientific, Pittsburgh, PA) and 

were treated with biotinylated anti-IFN-  mAb (1 µg/ml; Mabtech, Stockholm, Sweden). Plates 

were washed with PBS/0.05% Tween 20 and incubated with an avidin-peroxidase complex 

(Vectastain ABC Kit, Vector Laboratories, Burlingame, CA) for 45 min at room temperature. 

Plates were washed with 0.05% Tween 20/PBS and PBS alone to remove unbound complexes 

followed by peroxidase staining with diaminobenzidine solution (Sigma, St Louis, MO) for 5 min 

at RT. IFN-  spot-forming cells (SFC) were enumerated using an AID ELISPOT reader (Cell 

Technology, Columbia, MD). Results reported represent mean values of duplicates and are 

expressed as spot forming cells/106 PBMC. T cell responses were considered positive after 

subtraction of the mean number of spots stimulated by DC alone from the mean number of spots 

induced by peptide-loaded DC.  
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4.3.9 Statistical analysis 

The following statistical analyses were carried out: Pearson correlation between 1) 

predicted (IC50) and experimental (logIC50) MHC binding, 2) viral load and divergence and 

diversity, 3) MHC binding and magnitude of T cell responses, 4) MHC binding and percent 

positive T cell responses, 5) the frequency of occurrence of variants and the percent positive T cell 

responses. In addition, a two-tailed paired-T test was used to compare the proportion of positive 

primary responses in our study participant as well as to compare subject 8 primary responses 

targeting naturally evolving sequences to those observed against the same sequences when testing 

our priming model with cells from two healthy donors. Bonferroni posthoc comparisons were 

applied to compare memory responses targeting contemporaneous Gag, Env and Nef variant 

sequences at early, late, early ART or late ART time intervals. Statistical analyses were conducted 

using GraphPad Prism software (version 4) and SPSS software (version 17.0). 
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4.4 RESULTS 

4.4.1 Clinical and virologic characteristics of the study participant 

Subject 8 enrolled in the MACS in November 1984, 3.2 years prior to SC to HIV-1. He 

was negative for both hepatitis B and C viruses throughout the period of study. PBMC and plasma 

samples were collected biannually from the time of enrollment. Within the first 3 years after SC 

(early post-SC: 0-2.8 years), the number of CD4+ T cells decreased and the number of CD8+ T 

cells increased, with an inversion in the CD4:CD8 T cell ratio (Figure 26).  

 

Figure 26.  Clinical course of HIV-1 infection in the study participant 

Plasma viral load (red line), CD4+ (green line), and CD8+ (blue line) T cell counts in subject 8 are shown. Subject 8 

developed AIDS as per CDC guidelines 6.2 years post-SC. cART was administered 8.4 years post-SC. Time frames 

include early, late, early cART, and late cART and are defined as follow: 0-2.8 years post-SC, 3.3- 7.8 years post-SC, 

8.3-10.1 years post-SC, and >12.4 years post-SC, respectively. SC, seroconversion. 
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Viral load increased sharply to 7.8 x 104 RNA copies/ml at the first SC visit (0.3 years) and 

then reached a set point ranging from 23,092 to 39,608 RNA copies/ml up to 2.8 years. For the 

next 4.4 years (late post-SC: 3.3-7.8 years), the numbers of CD4+ T cells decreased, reaching 200 

cells/mm3 6.1 years post-SC (Stage 3 HIV-1 infection, AIDS) (300) while CD8+ T cells continued 

to increase. This decline in CD4+ T cells was associated with a rise in viral load that began 

approximately 3.8 years post-SC. A decline in viral load to a nadir of 80,470 copies/ml at 7.8 years 

post-SC was observed after development of AIDS and before initiation of cART at 8.3 years post 

SC. Overall, we observed a negative correlation between HIV-1 viral load and CD4+ T cell counts 

(p=0.001), as well as a positive correlation between viral load and CD8+ T cell counts (p=0.0004) 

before cART. Imposition of cART led to a decline in viral load to <200 RNA copies/ml during the 

first 1.8 years (early cART: 8.3-10.1 years). HIV-1 plasma viremia was maintained between <20 

and 119 copies/ml through the next 10 years (late post-cART: >12.4 years).  During this period of 

viral suppression, an increase in the CD4+ T cell count was observed with levels ranging between 

266 and 587 cells/mm3, with a concurrent decrease in CD8+ T cell counts (Figure 26).  

Taken together, these data demonstrate a typical course of HIV-1 infection from SC 

through development of AIDS, and recovery on cART.  Consequently, we chose to use this 

participant in our longitudinal analysis of viral evolution and immunological responses to 

autologous HIV-1. 

4.4.2 Dynamics of viral evolution and epitope variants 

We examined the longitudinal changes in HIV-1 genes from subject 8 to define the effects 

of immune pressure during chronic, untreated infection and during cART.  We sequenced 12, 16, 

and 9 time points that spanned >10 years of infection for gag-p17/-p24, env, and nef genes, 
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respectively. We next determined the pairwise diversity and divergence from the founder virus 

population at each time point.  As expected (307), viral diversification and divergence in each 

HIV-1 gene gradually increased with time (Figure 27).  

 

Figure 27.  Dynamics of genetic diversity and divergence of HIV-1  

(○) Divergence and (●) diversity of (A) gag p17, (B) gag p24, (C) env, and (D) nef are plotted (y-axis) for each gene 

during the course of HIV-1 infection. Subject 8 developed AIDS 6.2 years post-SC and cART was administered at 8.4 

years post-SC. Trends in pairwise distance diversity and divergence from the founder virus are plotted through time 

from seroconversion to 10.1 years post-SC. SC, seroconversion. 

 

Diversity accumulated linearly in gag p17 (Figure 27A) and gag p24 (Figure 27B) and 

then shrunk, with the peak being about 4.9 years post-SC. Notably, diversification of env (Figure 

27C) and nef (Figure 27D) proceeded faster than that of gag. A linear increase in diversity was 

observed until 6.1 years post-SC in env, when X4 viruses first appeared, and then diversity began 

to shrink (307). Diversification of the nef gene followed a different pattern, with diversification 
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appearing to slow appreciably before 4 years of infection, and, following a transient contraction, 

increased slowly thereafter.  No clear plateau in divergence from the founder strain was noted in 

nef (Figure 27D).  

In summary, the circulating viral populations within our study participant show increasing 

divergence from the founder virus.  Interestingly, we observed a significant correlation between 

viral load and viral divergence (p<0.01) and diversity (p=0.05) up through 6.6 years post-SC, 

wherein viral load began a rapid decline prior to cART.  

4.4.3 Autologous HIV-1 peptide binding affinity for MHC class I 

The strength of peptide binding to MHC class I is a key determinant in CTL epitope 

immunogenicity (285).  We therefore identified known HLA A*0201-and B*0702-restricted HIV-

1 CTL epitopes in autologous sequences from subject 8 based on previously established 

immunologic activity (362). We also predicted additional HLA A*0201- and B*0702-restricted 

epitopes using the BioInformatics and Molecular Analysis Section (BIMAS) computational model 

(256). Accordingly, we identified 11 peptide families consisting of the Gag, Env, or Nef founder 

epitopes and their corresponding autologous variants that evolved during infection (Table 5).  

Epitope variants are referred to in Table 1 in order of their evolution in our study participant. 
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Table 6.  Longitudinal HIV-1 peptide sequences and their predicted and experimental HLA A and B affinity 

 

   MHC Class I Binding    

HIV-1 protein 
(epitope  position)  

Sequence a HLAb  

restriction  

netMHCpanc  logIC50
d Correlation 

coefficient 

p value 

Gag    
p17 77-85 SLFNTVATL A*0201 139.2 3.81 0.9777 0.0002 

 

 

 

 

 

 

SLFNTVAAL potential 41.9 3.84 

SLFNTVATP potential 13108 5.24 

SLFSTVAT`L potential 106.9 3.66 

SLFNTIATL potential 55.12 3.92 

SLYNTVATL A*0201 223.2 3.86 
 

p24 16-24 
SPRTLNAWV B*0702 36.4 4.18 

0.0357 NSe 

SPRTLDAWV undefined 102.5 4.38 

SPRALNAWV undefined 24.4 4.07 

PPRTLNAWV undefined 1221 4.22 

SPRPLNAWV undefined 20 4.18 

SPRTLSAWV    undefined 36.9 6.08 
 

p24 19-27 TLNAWVKVV A*0201 113.7 4.16 0.8439 0.034 

TLDAWVKVV potential 85.6 4.30 

ALNAWVKVV potential 42.7 3.93 

PLNAWVKVV potential 2854.1 4.81 

TLSAWVKVV potential 105.4 4.18 
 

p24 143-151  RMYSPTSIL potential 173.1 4.34 0.9738 0.0132 

RMYSPISIL potential 87.7 3.83 

RMYSPASIL potential 281 4.78 

RMYSPVSIL potential 123.8 3.92 
 

Env 

gp160/120   
298-307  RPNNNTRKSI B*0702 14.7 3.56 0.0901 NS 

RPNNNTRRSI undefined 9.3 3.99 

RSNNNTRKSI undefined 3120.83 4.33 

RPNNNTRKST  RS9 B*07 130 4.04 

RPNNSTRKSI  undefined 12.6 3.87 

RPNNDTRKSI undefined 23.9 3.85 

RPNNNTRKRI undefined 49.7 4.32 

RPNNNTGKRI undefined 77.4 4.36 

RPSNNTRKRI undefined 34.4 4.17 

RPTNNTRKSI undefined 16.6 3.75 

RPNNNTRKCI undefined 67.8 4.63 
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RPNNNTRKSL  RS9 B*07 5.4 3.69 
 

341-349 TLEQVVKKL potential 10358.5 5.34 0.7055 0.0006 

ALEQVVKKL potential 4739.2 4.93 

MLEQVVKKL potential 2643.9 4.99 

TLAQVVKKL potential 1205.9 4.55 

TLEQVVEKL potential 3291.8 5.11 

ILEQVVKKL potential 4295.9 5.35 

TLEQVVNKL potential 3678.9 5.14 

TLDKVVKKL potential 3003.6 4.96 

TLGRVAKKL potential 8819.8 6.03 

TLGQVVEKL potential 677.1 4.45 

TLDKVVEKL potential 431.5 4.36 

Nef    
68-76 FPVRPQVPL B*0702 8.6 3.83 0.9766 0.0015 

FSVRPQVPL potential 2500.2 4.85 

FPARPQVPL potential 5.2 3.66 

SPVRPQVPL potential 8.4 3.67 

FPIRPQVPL potential 7.9 3.62 
 

77-85 RPMTWKGAL potential 2.9 3.85 0.0733 NS 

RPMTWKAAL potential 2.7 3.86 

RPMTYKGAL potential 2.6 3.89 

RPMTRKAAL potential 2.1 3.82 

RPMTCKGAL potential 2.9 3.74 

RPMTYKAAL B*0702 2.4 4.04 

RPITYKAAL potential 3.2 3.87 
 

128-137 TPGPGTRYPL undefined 20.3 3.57 0.9076 <0.0001 

TPGPGIRFPL undefined 43.7 3.4 

TPGPGIRYPL B7 34.8 3.78 

TPGPGIRYPV undefined 142.3 3.74 

TPGPGIRFPI undefined 150.3 3.77 

TSGPGTRFPL undefined 5462.9 4.85 

IPGPGRHPL undefined 16.8 3.51 

TPGPGVRYPL 

B7 

supertype  30.3 3.64 

TPGPGPRYPL undefined 30.3 3.77 

TPGPGTRFPL undefined 23.7 3.46 

TPGPGPRFPL undefined 35.9 3.66 

TPGPGIRYPM undefined 36.1 3.5 

TPGPGPRYPV undefined 117.7 3.82 

TPGPGPRYPM undefined 33.2 3.57 

TKGPGIRFPL undefined 12856.5 5.41 
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136-145 PLTFGWCFKLg undefined 4173.8 6.48 0.00 NS 

PLTLGWCFKL undefined 5994.1 6.10 

PITFGWCFKL undefined 16105.3 6.35 

PVTFGWCFKL undefined 19876.4 6.48 

PLCFGWCFKL undefined 3451.6 4.86 

PVCFGWCFKL undefined 18878.7 5.4 

PMCFGWCFKL undefined 2898.1 5.3 

PLCFGWCFKP undefined 36444.9 5.34 
 

180-189 VLVWRFDSSL undefined 212.2 4.4 0.8315 0.0042 

VLVWKFDSSL undefined 179.6 4.37 

VLVWKSDSSL undefined 401.3 4.76 

VLVWKFDSNL undefined 197.4 4.31 

VLVWKFDSKL undefined 330.1 4.82 

VLVWKFDSRL undefined 290.0 4.44 

VLVWKFDSHL undefined 154.6 4.22 

 

a These sequence variants of HIV-1 epitopes are listed in order of time of appearance during the course of infection. 

 
b These are known or potential MHC class I epitopes defined by the HIV sequence database as HLA A*0201 or 

B*0702. A potential epitope is a single peptide having C-terminal anchor residues and internal anchors matching one 

or more motifs associated with the submitted HLA, but are not found in the HIV sequence database. 

 
c This is the IC50 (nM) prediction binding score of peptides under investigation.  Strong binders have an IC50 threshold 

of 50 and weak binders have a threshold of 500. 

d logIC50 is used to refer to the experimental (in vitro) binding of peptides to HLA A*0201 or B*0702. The followings 

are the binding affinity based on the log IC50: high affinity < 3.7, medium < 4.7, low < 5.5, and no affinity < 6.0. 

 
eNS: Pearson correlation, between predicted and experimental MHC binding,  is not significant, p value >0.05. 

 
f LTFGWCFKL can bind all five HLA-A2 supertypes alleles: A*0201, A*0202, A*0203, A*0206 and A*6802. 

 

An in vitro fluorescence polarization binding assay was performed for each variant (48).  

We also evaluated the predicted MHC-restricted binding affinity of variant epitope sequences 

within Gag, Env, and Nef by netMHCpan (151, 241). Lower experimental logIC50 values and 

netMHCpan scores (IC50) correspond to actual and predicted higher peptide:MHC binding affinity, 

respectively. Significant positive correlations were found between observed and predicted MHC 

class I binding in the following families: SLFNTVATL (Gag p1777-85), TLNAWVKVV (Gag 
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p2419-27), RMYSPTSIL (Gag p24 143-151), TLEQVVKKL (Env gp160/120 341-349), FPVRPQVPL 

(Nef68-76), TPGPGTRYPL (Nef128-137), and VLVWRFDSSL (Nef180-189) (Table 1).  

Peptide variants were categorized based on their MHC class I affinity as determined by 

experimental log IC50 values: high affinity binders < 3.7, medium affinity binders < 4.7, low affinity 

binders < 5.5 and no affinity binders < 6.0.  Figure 28 shows: 1) medium binders constituted >97% 

of the Gag epitope pool at all three time points, 2) within Env contemporaneous epitopes, medium 

binders made up only 4% of the epitope pool early post-SC, but increased to 19.7% and 45.1% 

during late post-SC and early cART, respectively; frequency of high and low binders gradually 

decreased with this increase in medium binders, and 3) the frequency of Nef variants with medium 

binding affinity ranged from 50% to 70% through time with no trend in the fluctuation of low and 

high binder frequencies. Peptide variants with medium binding affinity were more frequent than 

variants with low or high binding affinity throughout chronic infection.  

 

 

Figure 28.  Proportion of HIV-1 epitope variants exhibiting differential MHC class I affinities 

Epitope variants derived from autologous sequences from subject 8 were synthesized and evaluated for binding to 

soluble HLA A*0201 or B*0702 molecules by fluorescence polarization to determine a logIC50 for each variant.  

Variants were separated into three distinct groups based on experimental logIC50 values:  high affinity (< 3.7), medium 

affinity (3.7-4.7), and low/no affinity (>4.7). The longitudinal changes in the proportion of these variants within the 

Gag, Env, and Nef epitopes of interest, as well as in all epitopes evaluated, are shown for early post-SC, late-post-SC, 

and early cART time points. 
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4.4.4 Impact of peptide:MHC binding affinity on the breadth of memory T cell responses 

to autologous contemporaneous HIV-1 peptide sequences 

To better understand the impact of CTL epitope variation and the frequency of different 

binders on corresponding T cell responses, we longitudinally evaluated HIV-1 specific T cell 

responses targeting autologous known and predicted CTL epitope variants.  Autologous PBMC 

were used as responder cells in IFNγ ELISPOT to measure memory (recall) T cell responses 

stimulated by DC-loaded with peptide sequences.  We first calculated the percent of naturally 

occurring Gag, Env, and Nef peptide variants that yielded positive in vitro T cell responses at early 

post-SC, late post-SC, or during cART time points (Figure 29) (207).  
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Figure 29.  The percent of autologous HIV-1 epitope variants that induced T cell responses 

Synthetic peptide sequences representing autologous variants of subject 8 were loaded onto mature autologous DC 

and used to stimulate cryopreserved autologous PMBC. PBMC were added to wells at a responder-to-stimulator ratio 

of 10:1. Epitope-specific T cell responses were measured by IFNγ ELISPOT assay.  The “percent positive” is defined 

as the percent of epitope variants to which we detected in vitro T cell responses at each time point.  Viral load (red 

line) and percent positive (black line) to Gag variants (A), Env variants (B), Nef variants (C) and all variants tested 

(D) are shown across time. (E) The percent of variants with high, medium, or low/no affinity that were recognized at 

all time points by IFNγ ELISPOT assay.  Affinity binding categories are based on the values of log IC50: high affinity 

< 3.7, medium < 4.7, low/no affinity >5.5.  SC, seroconversion. 

 

Viewing the data in this fashion allowed us to evaluate the overall breadth and efficiency 

of memory responses during progressive HIV-1 infection. The total percent of epitope variants 

inducing HIV-1-specific memory T cell responses peaked early post-SC, then declined and 

remained minimal shortly after establishment of the viral set point.  This early T cell response was 

reflected in specific targeting of Gag, Env, and Nef variant sequences (Figure 29A-C).  Overall, 

E 
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we observed a tri-modal pattern in the breadth of T cell memory (Figure 29D). Following this 

early peak in T cell reactivity, there was a decline in responses to all three HIV-1 proteins.  This 

pattern of immune reactivity was associated with an early decrease in plasma viral load to 23,092 

copies of HIV-1 RNA, followed by relatively steady levels of HIV-1 RNA for ~3.0 years.  The 

greatest breadth, i.e. the greatest “percent positive”, to Gag, Env, and Nef variants was observed 

during early cART (Figure 29A-C).  This was associated with a decline in viral load to less than 

200 copies/ml of plasma.  During late cART, the total breadth of memory T cell responses declined 

for both Gag (Figure 29A) and Nef (Figure 29C) epitope variants.  Memory responses to Env 

variants, however, remained relatively constant (Figure 29B).  Interestingly, there was no 

significant difference in the percent of variants with high, medium, or low MHC class I affinity 

that induced detectable responses at any time point tested (Figure 29E).  Overall, we observed 

significant correlations between the frequency of variants with high, medium, and low/no affinity 

and the percentage each of these contributed to the overall breadth of the autologous memory 

response early post-SC (p=0.003, r2=0.601), late post-SC (p<0.0001, r2=0.827), early cART 

(p<0.0001, r2=0.815), and at late cART (p<0.0001, r2=0.816). Taken together, we show that the 

breadth of memory T cell responses was associated with the frequency of occurrence of 

contemporaneous variants.  

Our results indicate a typical course of progressive HIV-1 infection whereby an early 

increase in anti-HIV-1 CTL activity is associated with a decrease in HIV-1 viremia. As the 

untreated virus infection resulted in inexorable immune dysfunction, T cell reactivity no longer 

controlled viral replication.  Initiation of cART was associated with control of viral replication and 

a temporal enhancement of anti-HIV-1 CTL responses that eventually declined to a low level, 

steady state (51, 167, 281).  
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4.4.5 The changing magnitude of T cell memory responses targeting autologous HIV-1 

variant sequences 

We next assessed the longitudinal change in T cell responses to autologous Gag, Env, and 

Nef epitope variants (Table 5).  Mature, autologous DC were loaded with synthetic peptides 

representing contemporaneous Gag, Env, and Nef CTL epitope variants and these peptides were 

used to stimulate PBMC in IFNγ ELISPOT.  Because sequencing data were not available for late 

cART time points, we used epitope variants reflecting circulating sequences during early cART in 

the late cART T cell memory assays. T cell memory responses to Gag families (SLFNTVATL, 

SPRTLNAW, TLNAWVKVV and RMYSPTSIL) ranged from 0 to 800 SFC/106 PBMC (Figure 

30).  Early post-SC we observed modest IFNγ recall responses to 3 out of the 4 Gag families 

(SLFNTVATL, SPRTLNAW and TLNAWVKVV) (Figure 30A-C). These T cell responses 

decreased to low or undetectable levels late post-SC. More robust memory T cell responses were 

observed during early cART.  In contrast, there were little or no memory responses to the 

RMYSPTSIL variants early post-SC, although these responses moderately increased late post-SC 

(Figure 30D).  SLFNTVATL, TLNAWVKVV (known HLA A*0201 epitopes), and 

SPRTLNAWV (known HLA-B*0702 epitope) were in circulation at all time points. The 

magnitude of T cell responses to these variants consistently increased early following cART.  

These responses were either reduced or completely lost during late therapy. T cell responses 

targeting Gag variants circulating at early cART were statistically significant and higher than 

responses targeting variants circulating at early and late post-SC, and during late cART (Figure 

30E).  
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Figure 30.  Longitudinal changes in T cell responses against contemporaneous Gag epitope variants. 

As previously described, synthetic 9 mer or 10 mer HIV-1 peptide sequences representing autologous 

contemporaneous variants of the study participant were loaded into mature autologous DC and were used to 

stimulate cryopreserved autologous PMBC at a responder-to-stimulator ratio of 10:1 in an IFNγ ELISPOT assay. 
IFNγ production (y-axis) to contemporaneous variants of (A) SLFNTVATL (p17 77-85), (B) SPRTLNAWV (p24 

16-24), (C) TLNAVWVKVV (p24 19-27), and (D) RMYSPTSIL (p24 143-151) are shown across time. Blue 

histograms, early variants that emerged 0-2.8 years post-SC and tested with autologous PBMC; green histograms, 

late variants that emerged 3.3-7.8 years post-SC and tested with autologous PBMC; red histograms, early cART 

variants that emerged 8.3-10.1 years post-SC and tested with autologous PBMC. Epitope specific T cell responses 

labeled as late cART represent sequences evolving at early cART and assumed to linger through late cART(>10.1 

years post-SC). (E) Mean Gag-specific memory responses detected early post-SC (0-3 years post-SC), late post-SC 

(3.25-7.75 years post-SC), early cART (8-10.25 years post-SC), and late cART (>10.5 years post-SC). SC, 

seroconversion, SFC, spot-forming cells.  Standard deviation bars are shown when applicable. ***p<0.001 

 

We next evaluated recall T cell responses to HIV-1 Env epitope variants.  We observed 

strong T cell responses targeting the variants of RPNNNTRKSI late post-SC (Figure 31A). 

RPNNNTRKSI, a known HLA-B*0702 epitope that lingered throughout infection, did not induce 

memory responses early post-SC; however, increasing responses were detected late post-SC and 
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following cART. Low to no memory responses were produced against the tested TLEQVVKKL 

sequences arising late post-SC (Figure 31B). Variant sequences of this family of peptides are 

identified as potential epitopes by the Los Alamos database (Table 5). As observed with Gag 

variants, there was an increase to early and late variants during early cART. A statistically 

significant mean difference was observed between T cell responses targeting early and late Env 

variants of RPNNNTRKSI and TLEQVVKKL families of peptides (Figure 31C).  

 

Figure 31.  Longitudinal changes in T cell responses against contemporaneous Env epitope variants. 

As previously described for Gag, synthetic Env peptide sequences representing contemporaneous variants of the 

study participant were loaded into mature autologous DC and were used to stimulate cryopreserved autologous 

PMBC at a responder-to-stimulator ratio of 10:1 in an IFNγ ELISPOT assay.  IFNγ responses (y-axis) to 

contemporaneous variants of the (A) RPNNNTRKSI (298-307) and (B) TLEQVVKKL (341-349) epitopes are 

shown across time. Blue histograms, early variants that evolved 0-2.8 years post-SC and tested with autologous 

PBMC; green histograms, late variants that evolved 3.3-7.8 years post-SC and tested with autologous PBMC; red 

histograms, early cART variants that evolved 8.3-10.1 years post-SC and tested with autologous PBMC. Epitope 

specific T cell responses labeled as late cART represent sequences that evolved during early cART and assumed to 

linger through (>10.1 years post-SC). (C) Mean Env-specific responses detected early post-SC (0-2.8 years post-

SC), late post-SC (3.3-7.8 years post-SC), early cART (8.3-10.1 years post-SC), and late cART (>10.1 years post- 

SC). SC, seroconversion, SFC, spot-forming cells. Standard deviation bars are shown when applicable. *p<0.05 

 

Variants of Nef epitopes (FPVRPQVPL, RPMTWKGAL, TPGPGTRYPL, 

PLTFGWCFKL and VLVWRFDSSL) were next tested for their ability to induce T cell memory 
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responses (Figure 32).  FPVRPQVPL, a founder sequence and a known B*0702 epitope (Table 

5), was frequently in circulation and stimulated low memory responses at all studied time points 

with a moderate increase following the administration of cART (Figure 32A).  The founder 

sequences of the RPMTWKGAL family induced specific-memory responses in vitro.  The switch 

observed in the dominant form of the estimated founder sequence RPMTWKGAL to become 

RPMTWKAAL was associated with maintenance of the ability of the latter to induce memory 

responses until early cART (Figure 32B).   These responses were lost during late therapy.  

RPMTWKAAL is also identified as a known B*0702 epitope whereas the remaining variants are 

identified as potential epitopes (Table 6).  

 

 

 

 

 

Figure 32.  Longitudinal changes in T cell responses against contemporaneous Nef epitope variants. 

As previously described for Gag and Env, synthetic contemporaneous variants of Nef peptide sequences were 
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loaded into mature autologous DC and were used to stimulate PBMC in an IFNγ ELISPOT assay. Nef-specific IFNγ 

responses (y-axis) to contemporaneous variants of the (A) FPVRPQVPL (68-76), (B) RPMTWKGAL (77-85), (C) 

TPGPGTRYPL (128-137), (D) PLTFGWCFKL (136-145), and (E) VLVWRFDSSL (180-189) epitopes are shown 

across time. Blue histograms, early variants that evolved 0-2.8 years post-SC and tested with autologous PBMC; 

green histograms, late variants that evolved 3.3-7.8 years post-SC and tested with autologous PBMC; red 

histograms, early cART variants that evolved 8.3-10.1 years post-SC and tested with autologous PBMC.  T cell 

responses labeled as late cART represent sequences that evolved during early cART and were assumed to linger 

through (>10.1 years post-SC). (F) Mean Nef-specific memory responses detected early post-SC (0-3 years post-

SC), late post-SC (3.25-7.75 years post-SC), early cART (8-10.25 years post-SC), and late cART ( >10.5 years post-

SC) time points. SC, seroconversion, SFC, spot-forming cells. Standard deviation bars are shown when applicable.  

*p<0.05 

 

The majority of TPGPGTRYPL variants that evolved early post-SC induced low to 

moderate memory responses (Figure 32C); responses to the variants lingering to late time points 

were reduced. Early and late cART time points were associated with maintenance of moderate 

responses to contemporaneous sequences and loss of response to one of the studied founder 

sequences (TPGPGTRYPL).  Responses to TPGPGIRYPL, a HLA B*07 epitope (Table 5), were 

reduced with time whereas the TPGPGVRYPL variant, a B*07 supertype, was not able to 

stimulate memory responses early post-SC.  LTFGWCFKL (Table 5) is reported by the Los 

Alamos database to bind all five HLA-A2 supertype alleles: A*0201, A*0202, A*0203, A*0206 

and A*6802. Memory responses to two 10mers containing variants of LTFGWCFKL 

(PLCFGWCFKL and PMCFGWCFKL) induced no-to-low memory responses; the latter 

recovered during therapy with eventual loss at late cART time points (Figure 32D). 

VLVWKFDSKL and VLVWKFDSRL evolved late post-SC and during early cART time points, 

respectively, and were the only variants in this family to induce moderate to high memory 

responses (Figure 32E).  Pairwise comparisons showed statistical differences in mean memory 

responses between early and early cART time points as well as between late and early cART time 

points (Figure 32F).   

We evaluated the impact of MHC class I affinity on the magnitude of memory T cell 

responses throughout infection (Figure 33). Our data show that Gag, Env and Nef peptide variants 
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with high or medium affinity induce similar responses early post-SC while low binders as 

classified by the FP-assay induce statistically significant higher responses as compared to high 

binders (Figure 33A). Later during infection (i.e. late, early cART, and late cART), variants with 

high, medium and low binding affinity   stimulated similar IFNγ responses (Figure 33B-D).  

 

 

Figure 33.  T cell responses specific for HIV-1 epitope variants with differential MHC class I affinity.   

Mean T cell responses to variants with high affinity < 3.7, medium affinity < 4.7, and low/no affinity >4.7 that were 

detected (A), late (B), early cART (C), and late cART (D) time points.  SC, seroconversion. *p<0.05 

 

Being a known or potential HLA-A*0201 or HLA-B80702, the magnitude of T cell 

responses elicited by the tested peptide variants with high and medium binding affinity was 

generally similar at different time point post-SC.  Low affinity binders of Gag, Env, and Nef 

variants tested in vitro variably induced T cell responses with a clear increasing magnitudes 

following cART.   
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4.4.6 Broad and high magnitude primary T cell responses to naturally-evolving variants 

in HIV-1-positive and healthy donors 

We have previously demonstrated the ability of mature monocyte-derived DC from HIV-

1-naïve donors to induce broadly reactive primary CD8+ T cell responses (67). Little is known 

about the ability to prime anti-HIV T cell immunity specific for variants that evolved during natural 

infection. Thus, we next determined the capacity of DC isolated from subject 8 during cART to 

prime autologous pre-SC T cells.  Autologous DC matured with CD40-L and IFN- (104, 156) 

were loaded with contemporaneous Gag (Figure 34A), Env (Figure 34B), and Nef (Figure 34C) 

peptide sequences that emerged at early, late, or cART time points post-SC.  These DC were then 

used in a 21-day in vitro priming assay. The magnitude of primary T cell responses was tested in 

an IFN ELISPOT assay. 
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Figure 34.  In vitro-induced primary T cell responses specific for autologous HIV-1 epitope variants. 

Mature DC loaded with autologous peptide epitope variants were used to prime autologous T cells isolated from the 

study participant prior to seroconversion. The magnitude of primary T cell responses were tested by IFNγ ELISpot. 

Primary T cell responses were induced against epitope variants derived from (A) Gag (SLFNTVATL, 

TLNAWVKVV, RMYSPTSIL), (B) Env (TLEQVVKKL, RPNNNTRRSI), and (C) Nef (FPVRPQVPL, 

RPMTWKGAL, TPGPGTRYPL) and evolving early post-SC (blue), late post-SC (green), and/or during early 

cART (red). The proportion of Gag, Env, and Nef variants to which positive primary responses were detected is 

shown in (D). SC, seroconversion; SFC, spot-forming cells.  

  Of the 59 peptides tested, HIV-naïve, pre-SC T cells were primed to 9/15 (60%) Gag, 

10/17 (58.8%) Env, and 13/27 (48.4%) Nef variants. Among these 32 sequences eliciting primary 

responses, moderate (>=100 SFC) to strong (>=500SFC) primary IFN- responses were noted to 

known HLA-A*0201 or HLA-B*0702 epitopes SLYNTVATL (p17), naturally evolving at late 

time points; TLNAWVKVV (p24) identified as a founder sequence; FPVRPQVPL (Nef), a 

founder sequence; TPGPGVRYPL emerging early post-SC and TPGPGIRYPL (Env), a founder 

sequence (Table 6).  
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The peptide families containing SLYNTVATL, TLNAWVKVV and FPVRPQVPL, 

harbor variant sequences with potential CTL epitopes (Table 6). Variants of three out of the five 

remaining families of peptides tested in our priming model:  i.e. RMYSPTSIL (Gag), 

TLEQVVKKL (Env), and RPMTWKGAL (Nef) are also defined as potential MHC class I -

restricted epitopes (Table 6). In summary, a total of 16 out of 32 variants induced strong primary 

responses (>500 SFC) (Figure 34).  

 To determine the breadth of primary T cell responses, the proportion of variants inducing 

positive primary responses was defined as the number of variant sequences inducing a positive 

primary T cell response /total number of variants tested within a respective family. The proportion 

of variants that stimulated primary responses was not dependent on the HIV-1 protein from which 

these variants were derived, as we observed no significant differences between primary responses 

targeting Gag, Env, and Nef peptide variants (Figure 34D). When combined, variants of Gag, Env, 

and Nef with low, binding affinity induced primary T cell responses with comparable breadth and 

magnitude as variants with high or medium affinity (Figure 35).  
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Figure 35.  Primary T cell responses induced in vitro against autologous epitope variants with 

differential MHC class I affinities. 

Mature DC loaded with autologous peptide epitope variants were used to prime autologous T cells isolated from the 

study participant prior to seroconversion. The magnitude of primary T cell responses were tested by IFNγ ELISpot. 

Primary T cell responses were induced against epitope variants derived from (A) Gag (SLFNTVATL, 

TLNAWVKVV, RMYSPTSIL), (B) Env (TLEQVVKKL, RPNNNTRRSI), and (C) Nef (FPVRPQVPL, 

RPMTWKGAL, TPGPGTRYPL) and possessing high (black), medium (white), or low (striped) affinity for MHC 

class I. The proportion of variants with high, medium, or low MHC class I affinity to which positive primary 

responses were detected is shown in (D). SC, seroconversion; SFC, spot-forming cells.  

 

Taken together, our results indicate that substantial primary T cell responses are induced 

by our model to a diverse number of HIV-1 peptide variants of the virus proteome. Being a known, 

potential, or undefined HLA-matched epitope, with high, medium, or low binding affinity did not 

influence the ability of our priming model to stimulate robust T cell responses in an entirely 

autologous system.  
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To evaluate the person-to-person variation in T cell priming capacity of the HIV-1 variant 

peptides from subject 8, we used PBMC from 2 healthy, HIV-1 naïve, HLA matched (HLA-

A2/B7) donors. SLYNTVATL (Gag p17), TLNAWVKVV (Gag p24), FPVRPQVPL (Nef) and 

their naturally evolving variants were tested. T cells from donor 0038 responded to all 

SLYNTVATL (6/6) variants, 4 out of 5 TLNAWVKVV variants and all (5/5) FPVRPQVPL 

variants. Similarly, donor 2256 responded to all variants except one within the FL9 family (Figure 

36). We found no significant difference between the magnitude of the IFN primary responses 

stimulated by peptide variants of our HIV-positive study participant and those of HIV-naïve 

volunteers. 

 

 

Figure 36.  Primary T cell responses specific for patient-derived HIV-1- epitope variants induced in 

HIV-1-negative donors. 

Mature DC isolated from HLA A2/B7-matched, HIV-1-negative donors (donors 2256 and 0038) were loaded with 

epitope variants detected in subject 8 and were used to stimulate autologous PBMC. The magnitude of primary T 

cell responses was tested by IFN-γ ELISpot. Variants of the SLFNTVATL, TLNAWVKVV, and FPVRPQVPL 

epitopes (x-axis) were used in our priming model. SFC, spot-forming cells. 
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4.5 DISCUSSION 

We report the evolution of HIV-1 in an infected subject across time and the impact of HIV-

1 variants and respective MHC class I binding affinities on the breadth and the magnitude of T cell 

memory responses. Our data show that with higher sequence diversity, the proportion of T cell 

memory responses targeting contemporaneous variant peptide sequences of the proteome 

increases. It has been previously reported that the continuous presence of antigen is important for 

the maintenance of CTL responses (308, 347). Moreover, Liu et al. (207) recently reported in the 

cART-naïve setting that a balance is likely needed between the presence of antigen and prolonged 

antigen stimulation.  Along similar lines, our results suggest the dynamic ability of evolving viral 

sequences to continuously exist and stimulate specific T cell responses.  

T cell responses directed against individual known or optimal peptide sequences (Gag: 

SLFNTVATL, SLYNTVATL, TLNAWVKVV; Env: RPNNTRKSI; Nef: FPVRPQVPL, 

RPMTYKAAL, TPGPGVRYPL) evolving early during infection were temporally enhanced 

during early cART, followed by a decline or complete loss in late cART.  We have previously 

observed such a temporal effect on CTL activity to consensus HIV-1 epitopes (281). This 

observation was not limited to optimal epitopes as similar trends were observed against potential 

epitopes and previously undefined epitopes (Table 6).  Moreover, our results show a clear 

correlation between the frequency of autologous peptide variants during infection and the breadth, 

but not the magnitude, of these responses. These results are in agreement with the lack of 

correlation between the magnitude of CTL responses and HLA binding affinity (40, 320). 

Importantly, our data indicate that the breadth of T cell responses targeting contemporaneous 

epitopes representing different parts of the HIV-1 proteome is comparable early post-SC, late post-
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SC, or during cART regardless of the experimental binding capacity to the cognate MHC class I 

molecules.  

Even though a small repertoire of Gag, Env, and Nef peptide families were used in this 

study, all of the tested autologous HIV-1 epitope variants maintained a functionally detectable or 

predicted level of binding to MHC class I. Further assessment of peptide binding to MHC and its 

relation to T cell memory responses will need to categorize percent recognized (T cell reactive) 

and percent non-recognized (T cell non-reactive) variants in relation to viral peptides exhibiting a 

broader range of MHC binding. This is especially important since a number of mechanisms such 

as T cell escape, change in the antigen load and T cell exhaustions (325) could lead to decline of 

T cell responses during HIV-1 infection.  

The minimum impact of MHC class I affinity observed in this study suggests that the 

breadth of recognition of peptide variants could be partially due to the promiscuity of TCR (49). 

Limited TCR diversity within cognate clonotypes has been suggested to facilitate immune escape 

through loss of CD8+ T cell recognition (78, 272). Recently, dominant HIV-specific CD8+ T cell 

clonotypes were found to persist in vivo for long periods of time while being able to cross-

recognize naturally occurring epitope variants (332). A high clonotypic turnover of HIV-specific 

CD8+ T cells was described following initiation of HAART or upon appearance of viral mutations; 

moreover, authors showed new cognate clonotypes during decreased or limited antigen load (161). 

These clonotypes became dominant and were characterized by high functional capabilities. While 

we don’t have data on the evolution of HIV-specific CD8+ T cell repertoire clonal composition in 

our participant or the functional profiles of the detected T cell responses, we believe that we might 

be dealing with a similar reconstitution post cART. 
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In our study, T cell responses were detected to 81% (63/78) of the total tested variants in 

the study participant, 8 of which are classified as optimal epitopes and 29 as potential epitopes as 

described by the Los Alamos HIV database. Post-STEP trial emphasis has been on the benefit of 

maximizing the T cell coverage, i.e. breadth, of the contemporaneous forms of the virus (225). 

Even though correlation between the breadth of the CTL responses and the containment of virus 

in vivo has been controversial (3, 111, 206), we and others (285) believe that the probability of 

inducing protective anti-HIV CTL responses is likely to be enhanced by broader range of 

immunogenic epitopes presented professionally by APC. We acknowledge the limitation of 

monitoring viral sequences longitudinally from one subject in addition to the limited repertoire of 

peptide epitopes tested in this study; hence, we might have missed important motifs implicated in 

better MHC binding and consequently effective T cell responses.  

The genetic diversity of HIV-1 and the propensity of the virus to undergo escape mutations 

are major hurdles for long-term immune control of HIV-1. With the current lack of a preventive 

HIV-1 vaccine, alternatives are needed to improve the quality of the immune responses targeting 

the virus and thus reducing its transmission. It has been proposed that the magnitude and the quality 

of the memory T cell pool is affected by the activation of naïve CD8+ T cells by licensed DC and 

that excessive antigenic stimulation leads to terminal differentiation and impairment of these 

memory CD8+ T cells (363). We have previously demonstrated the potent capability of mature 

monocyte-derived DC from uninfected donors to induce a broad spectrum of primary CD8+ T cell 

responses targeting epitopes in Gag, Env, and Nef (67).  Our in vitro model was successful at 

priming HIV-naive CD8+ T cells to consensus HIV-1 epitopes as well as other viral peptides in 

vitro. A series of events have been described to be involved in triggering the stimulation of the 
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TCR on naïve CD8+ T cells. The TCR and signaling by co-stimulatory and cytokine receptors 

drive the magnitude and the quality of the response (273).  

Consequently, we have proposed the enhancement of the primary responses of naïve CD8+ 

T cells to a broad array of HIV-1 epitopes while patients are on cART for better control of viral 

replication and disease (280).  In this study, we confirm the ability of our in vitro model to stimulate 

autologous pre-SC naïve T cells from our study participant against 54% (32/59) of tested 

autologous peptide variants that emerged at different stages pre- and post-therapy.  Moderate to 

strong primary responses were induced to variants from a variety of known and potential Gag, 

Env, and Nef epitopes in an entirely autologous system.  Moreover, the time post-SC at which the 

epitope variant evolved did not affect the magnitude of the primary T cell responses.  The elicited 

primary responses were not exclusive to already defined known and potential epitopes. A number 

of variant sequences of Env and Nef were not defined by the Los Alamos HIV database, yet had 

predicted and experimental HLA-binding affinity. Taken together, this in vitro priming model 

stimulates primary T cell responses regardless of the nature (i.e. known or undefined), origin (HIV-

1 protein), and MHC binding affinity (high, medium or low binders) of the tested HIV-1 epitope 

variants.  Even though cART has been successful at controlling HIV-1 viral load, immune recovery 

is still a challenge (72). Our model suggests by-passing this obstacle by using DC to generate 

primary CTL in vivo while subjects are under suppressive cART (280).  

As a proof-of-concept, we demonstrated the ability of our priming model to prime 

autologous T cells derived from 2 HIV-1 naïve volunteers to a broad range of Gag and Nef peptide 

variants derived from the study subject. 25% and 75 % of these peptides were known and potential 

HLA A*0201 and HLA B*0702 epitopes, respectively, as defined by the Los Alamos HIV 

Immunology Database.  Our model was able to generate primary responses targeting 
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immunodominant (SL9, FL9) and subdominant (TV9) epitopes and their variants. It is well 

established that immunodominant HIV-specific CTL responses can exert selection pressure on the 

virus during primary infection (9, 27). Even though subdominant epitopes stimulate T cells less 

frequently, the elicited responses are protective (40, 43, 93, 165).  Our model does not differentiate 

between viral sequences based on immunodominance.  A significant difference was observed 

between the magnitudes of these in vitro primary responses generated by cells of our normal 

donors.  The reason for failure to detect similar in vitro primary responses between the 2 normal 

donors could be due to differences in T cell precursor frequencies.  Importantly, we found no 

difference between the magnitudes of primary responses of our 2 healthy donors targeting HIV-1 

evolving variant sequences derived from our study participant when compared to those targeting 

the same variants using pre-SC or HIV-naïve cells from our study participant.  These findings 

show that, prior to HIV infection and immune dysfunction, the naïve T cell repertoire found within 

subject 8 was capable of recognizing and responding to primary stimulation against the variants 

that evolved after seroconversion.  The mutations that evolved after infection, particularly those 

that appeared late post-SC, may have evolved to specifically evade T cell recognition.  This 

obviously would have implications in immunotherapy approaches, which aim to induce primary 

responses against these “late evolving” viral variants.  Fortunately, we show the induction of 

primary responses against these variants prior to SC, thus suggesting therapies implicated during 

cART, when immune restoration has occurred, may be successful at inducing CTL specific for 

autologous viral variants.  

While we acknowledge the need for further exploration of the specific TCR clonotypic 

repertoire associated with emerging viral variants and its ability to control HIV-1 replication, we 

believe that the present work highlight the importance of primary responses against HIV-1 variants 



 148 

in a continuous environment of competition between HIV-1 and the virus specific T cell responses. 

In fact, a recent study on mutations within the KK10 epitope at different positions suggest the 

capacity of KK10-specific CD8+ T cell responses to attract an array of cross-reactive clonotypes 

from the existing repertoire to control HIV-1 infection (194). We believe the described primary 

responses might be similarly capable of assembling T cell clonotypes to control the ability of 

emerging viral variants to affect TCR recognition. This however requires further investigation.  

With the clonal exhaustion of CD8+ T cells as a result of chronic HIV-1 infection and the 

pressure exerted on memory T cells to recognize wild-type and mutant variants, we and others (15) 

believe that an effective T cell response would have to generate a long lasting protection 

environment.  Engineering DC to prime naïve T cells to immune escape variants (280) could be a 

potential approach to overcome the challenges faced by circulating memory T cells.  
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5.0  THE ROLE OF DEFECTIVE AND CROSS-REACTIVE RECALL T CELL 

RESPONSES IN HIV-1 INFECTION 

5.1 ABSTRACT 

The ability of HIV-1 to rapidly accumulate mutations provides the virus with an effective 

means of escaping CD8+ cytotoxic T lymphocyte (CTL) responses. Here we describe how subtle 

alterations in CTL epitopes expressed by naturally occurring HIV-1 variants can result in an 

incomplete escape from CTL recognition, providing the virus with a selective advantage.  Rather 

than paralyzing the CTL response, these epitope modifications selectively induce the CTL to 

produce pro-inflammatory cytokines in the absence of target killing.  Importantly, instead of 

dampening the immune response through CTL elimination of variant antigen-expressing immature 

dendritic cells (iDC), a positive CTL-to-DC immune feedback loop dominates whereby the iDC 

differentiate into mature pro-inflammatory DC.  Moreover, these CTL-programmed DC exhibit a 

superior capacity to mediate HIV-1 trans-infection of T cells.  This discordant induction of CTL 

helper activity in the absence of killing likely contributes to the chronic immune activation 

associated with HIV-1 infection, and can be utilized by HIV-1 to promote viral dissemination and 

persistence.  Our findings highlight the need to address the detrimental potential of eliciting 

dysfunctional cross-reactive memory CTL responses when designing and implementing anti-HIV-

1 immunotherapies. 

 I performed several of the memory and priming experiments discussed in this chapter, 

generated multiple figures, and performed statistical analyses.  The work in this chapter was 

published as: Selective induction of CTL ‘helper’ rather than killer activity by natural epitope 
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variants promotes DC-mediated HIV-1 dissemination.  Mailliard RB, Smith KN, Fecek RJ, 

Rappocciolo G, Nascimento EJM, Marques ET, Watkins SC, Mullins JI, Rinaldo CR.  Journal of 

Immunology, 2013. 

5.2 BACKGROUND 

Effective CD8+ cytotoxic T lymphocyte (CTL) responses are critical for the control of 

HIV-1 infection (238).  Early in HIV-1 infection, the immune system responds vigorously and 

seemingly appropriately with the induction of strong CTL responses that coincide with the 

resolution of acute viremia (189).  In primate models of SIV as well as HIV-1 in humans, those 

who limit progression and maintain relatively low virus loads mount and maintain potent and long-

term anti-viral CTL activity. However, in most cases of HIV-1 infection, the virus escapes from 

immune control, causing a variety of complications that directly and indirectly negatively impact 

the cellular immune response, creating a state of persistent immune activation, eventually leading 

to T cell senescence and disease progression (81).  

One way HIV-1 evades immune elimination is through its ability to rapidly mutate.  CTL 

epitopes resulting from divergence of the infecting viral strains during viral replication have been 

shown to occur during acute and chronic stages of infection, emerging due to immune selective 

pressure provided by antigen specific CTL responses (132).  While these genetic changes pose an 

inherent risk of adversely impacting viral fitness (206), their establishment likely provides the 

pathogen with a selective advantage.  Minor viral protein modifications within CTL epitopes have 

been shown to contribute to immune escape by causing changes in antigen processing, reduced 

capacity to bind to the MHC class-I molecule, and alterations in the ability of T cell receptors to 
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interact with the presented peptides, all of which can reduce the effectiveness of memory CTL 

responses (184).   

There is, however, evidence that contrasts with the concept that viral mutations driven by 

CTL immune pressure lead to the establishment of viral escape variants that paralyze antigen-

specific CTL responders. Cale et al. (50) found CTL epitope variants of SIV arise during the acute 

stages of infection while in the presence of pre-existing variant reactive CTL. While these CTL 

efficiently recognize newly acquired variants, they fail to control the evolving and eventual 

fixation of mutant escape epitopes.  Similarly, during chronic stages of HIV-1 infection, highly 

avid antigen specific CTL responses against autologous virus can be maintained without impact 

on viral evolution (94, 160).  These CTL responses diminish as the subjects received antiviral 

therapy, suggesting that CTL were indeed actively responding to virus (94).  Moreover, the 

presence of active antigen-cognizant CTL that fail to impact viral evolution or epitope divergence 

can be found in high frequency along with high viral load during progression to AIDS (94, 144).   

It remains unclear why the pre-existing antigen-reactive CTL described in these studies 

lack the ability to provide sufficient immune pressure to either influence further viral evolution or 

impede the establishment of the recognized variants. It is conceivable that the CTL detected ex-

vivo are dysfunctional or suppressed in vivo as a result of the harsh environmental conditions 

associated with chronic viral assault.  Furthermore, it is possible that any continued change to these 

epitopes might be more detrimental to the overall fitness and survival of the virus than the CTL 

response itself.  However, data from previous reports suggest that HIV-1 can evolve directly into 

the path of pre-existing antigen responsive CTL rather than evolve away from CTL pressure, even 

when viral fitness would permit (50, 60).  Another plausible explanation is that the presentation of 

some altered peptide variants can simply trigger detectable yet ineffective responses from 
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previously established cross-reactive CTL.  Nevertheless, the potential benefit that may exist for 

the virus to evade such ineffective CTL activity is apparently outweighed by the advantage in 

maintaining it.  

In the present study, we explore the notion that incomplete immune escape from sub-

optimal CTL responses could provide an advantage for the pathogen.  Using an in vitro DC-based 

CTL priming system, we show that minor viral changes in CTL epitopes can selectively induce 

the helper rather than killer function of cross-reactive CTL to promote their dysfunctional dialogue 

with HIV-1 antigen-expressing DC. As a result, an inflammatory state continues, promoting DC 

survival and acquisition of characteristics ideal for mediating HIV-1 dissemination through trans 

infection of CD4+ T cells.   

5.3 METHODS 

5.3.1 Media, reagents, and cell lines 

Cell cultures and lines were maintained in Iscove's Modified Dulbecco's Medium (IMDM; 

Invitrogen) containing 10% heat inactivated FBS (Gemini Bio Products) and 1% 

penicillin/streptomycin (Invitrogen).  The following factors were used: rhGM-CSF (Leukine®, 

Bayer), rhIL-2 (Proleukin® Chiron), IFN- (Intron® A, Schering-Plough), rhIL-4, rhIL-6, rhIL-7, 

rhIL-15, rhTNF-, rhIL-1and rhIFN-(R&D Systems).  The CD40L-transfected J558 cell line 

(J558-CD40L) was a gift from Dr. P. Lane, University of Birmingham, UK.  The HLA A2 

expressing T2 cell line was provided by Dr. Walter Storkus, University of Pittsburgh.  
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5.3.2 Human subjects 

This research was part of the Pittsburgh portion of the Multicenter Aids Cohort Study 

(MACS) (87), and was approved by the University of Pittsburgh Institutional Review Board.  

Plasma and PBMC were collected and cryopreserved at biannual MACS visits beginning at the 

time of enrollment, and plasma viral RNA copies/ml and T cell counts were determined. Whole 

blood products (buffy coats) from healthy, anonymous, HIV-1 negative donors were purchased 

from the Central Blood Bank of Pittsburgh.  HIV-1 screening was performed as part of the product 

release criteria.  

5.3.3 Selection of HIV-1 epitopes 

Families of CTL epitope peptides chosen for this study were identified through extensive 

sequence analysis of plasma derived viral RNA samples collected throughout the course of 

infection from 3 HIV-1 infected MACS subjects. These sequence analyses allowed for the 

identification of autologous viral epitopes and determination of the appearance and establishment 

of epitope variants.  Synthetic MHC class 1-restricted epitope and variant peptides were then 

generated.  PBMC from each collection time point were screened by routine IFN- ELISPOT 

assays for CTL reactivity against each peptide target. Reactivity of the pre-existing CTL 

responders against later established variants within certain epitope families was noted in each of 

the 3 subjects tested (data from one representative donor shown in Fig. S1, Table S1).  Founder 

virus sequences from 3 epitope families, i.e., Gag77–85 (SLFNTVATL), Gag151–159 

(TLNAWVKVV) and Nef72-80 (FPVRPQVPL), identified from one subject of a common HLA 
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type (A*0201 / B*0702 positive) were selected to initiate in vitro CTL priming in MHC class I 

single allele- matched HIV-1 naïve donors. 

5.3.4 HIV-1 genetic sequencing 

Plasma HIV-1 RNA was isolated and amplified as previously described (307).  Viral 

sequences were derived from 5’ and 3’ half genomes from 12, 16, and 9 time points for gag-p17, 

-p24, env-gp160, and nef respectively. An average of 12 clonal sequences was obtained per time 

point.  Sequences bearing open reading frames were aligned with the Pileup program in the GCG 

suite (Genetics Computer Group, Madison, WI) (206). 

5.3.5 Dengue virus epitope sequences 

The dengue virus serotype 3 (DENV3) epitope NS3399-407 (KLNDWDFVV) was identified 

through use of the human HLA A*0201 transgenic mouse model previously described (257). The 

DENV2 (RTNDWDFVV) and DENV4 (KLTDWDFVV) serotype variants were identified from 

the NCBI Entrez Protein Database.   

5.3.6 Synthetic peptides 

The Los Alamos HIV Molecular Immunology Database was used to identify optimal MHC 

class I epitopes, whereas predicted MHC class I epitopes were defined based on the presence of 

known HLA specific anchor residues.  HIV-1 associated peptide sequences were synthesized by 
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Sigma-Aldrich and SynBioSci, whereas the DENV associated peptides were synthesized by 

GenScript (Piscataway, NJ). 

5.3.7 Analysis of peptide:MHC class I affinity 

A previously described (48) fluorescence polarization competitive binding assay was used 

to experimentally determine MHC class I peptide affinity (Pure Protein LLC, Oklahoma City, 

OK).  Epitope variant peptides were classified as previously reported (48) based on the log IC50 

as being binders with high affinity <3.7, medium affinity 4.7> and low/no affinity > 5.5. 

5.3.8 HLA typing 

High-resolution HLA molecular typing was performed by the University of Pittsburgh 

Medical Center Tissue Typing Laboratory.  The in vitro priming studies were limited to HIV-1 

seronegative donors confirmed to be HLA-A*0201 and/or HLA-B*0702 positive.   

5.3.9 Generation of DC 

Monocytes were isolated and cultured for 5-7 days in IMDM containing 10% FBS in the 

presence of GM-CSF and IL-4 (both 1000 IU/ml) (R&D systems) to generate immature DC (iDC) 

as previously described (218). To induce CD83+ mature DC, immature DC were differentially 

exposed, on day 5, to activation factors for 48h. Mature type-1 polarized DC used for CTL priming 

experiments were generated using the DC1 maturation cocktail previously described (218); TNF-

(50 ng/ml) was used as a single maturation factor for ‘TNF--matured’ DC. 
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5.3.10 Induction and expansion of primary CTL 

Induction and expansion of primary CTL from HIV-1 naïve donors was done using a 

protocol similar to that previously described (218).  Briefly, CD8+ T cells were isolated from HIV-

1 seronegative donors using the EasySep (StemCell Technologies) negative selection isolation 

system. These T cells were plated at 7.5×105 cells/well in 48 well plates and sensitized with 9mer 

peptide-pulsed DC1 (7.5×104 cells/well).  -irradiated (3000 Rad) J558-CD40L cells were added 

to the cultures (5×104 cells/well).  At day 4, rhIL-2 (50 IU/ml), rhIL-7 (10 ng/ml), and rhIL15 (1 

ng/ml) were added to the cultures.  Long term CTL lines were maintained with increased 

concentration of rIL-2 (200 IU/ml) and rhIL-7 (10 ng/ml) and re-sensitized with the priming 

relevant peptide-pulsed -irradiated (3000 Rad) HLA-A2+ T2 cells at a stimulator to T cell 

responder ratio of 1:5 every 14 days.   

5.3.11 Short term expansion of CTL 

Memory CTL from HIV-1 positive subjects were generated using a short term expansion 

method previously described method with slight modifications (175).  Briefly, PBMC 

(1×105 /well) were cultured in the presence of 9mer peptide antigens (1 g/ml) for 3 days and then 

supplemented with rIL-2 (200 IU/ml) and rhIL-7 (10 ng/ml) for an additional 7 days, at which time 

they were analyzed or maintained. 
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5.3.12 CTL and DC co-cultures 

CTL (2×105 cells/well) were added directly to day 5 autologous iDC cultures in the absence 

or presence of antigenic 9mer peptides (1g/ml).  An irrelevant DENV associated HLA-A*0201 

restricted peptide (KLNDWDFVV) was also included as control where stated.  Exposure time 

depended on the individual experiment.  Human soluble TNF receptor I (sTNF-RI; 0.1 μg/ml; 

R&D Systems) or IFNγ receptor 1 (IFNγ-R1; 1 μg/ml; R&D Systems) were added for blocking 

studies. 

5.3.13 HIV-1 infection and transmission assay 

HIV-Ba-L (R5 tropic virus) was propagated in PHA and IL-2 activated, normal donor 

PBMC and purified as described (20). Virus titers were determined by p24 ELISA (SAIC-

Frederick).  DC were differentially activated by addition of autologous CTL in the presence of an 

irrelevant epitope peptide (KLNDWDFVV- iDCCTL) or the relevant epitope specific variant 

(PLN9- mDCCTL), or TNF- (mDCTNF T cells were removed from the co-cultures prior to use 

of DC in HIV-1 transmission assay using the positive isolation system EasySep (StemCell 

Technologies).  The DC were incubated with virus at 37°C for 2hr at an MOI of 10-4 , an MOI not 

sufficient to directly infect activated CD4+ T cells, as previously shown (276).  HIV-1 loaded DC 

were then washed extensively and incubated with autologous, activated CD4+ T cells at a 1:10 

ratio respectively. After 4 days, cell free supernatants were collected and measured for viral p24 

by ELISA. 
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5.3.14 Flow cytometry 

Anti-human CD86 (FITC), CD83 (PE) (Immunotech), anti-CD3 mAb (APC-Cy7, BD 

Bioscience), anti-CD8 mAb (PerCP-Cy5.5, BD Biosciences), anti-CD107a (PC5, Pharmingen), 

anti-TNF (eFluor 450, eBiosciences), anti-IFN (FITC, eBioscience), anti-IL-2 (APC 

Pharmingen) mAb reagents were used. Anti-CD28/CD49d (FastImmune) (BD Biosciences), 

Golgistop™ (BD Biosciences), Golgiplug™ (BD Biosciences) reagents were used for intracellular 

staining. Viability was determined using the LIVE/DEAD® Aqua Kit (Invitrogen) per 

manufacturer’s instructions.  Data were acquired using a LSR-II 12-color flow cytometer (BD 

Biosciences) and analyzed using FlowJo 7.6 (TreeStar Inc.).  Polyfunctional responses were 

determined using a previously described  multi-parameter gating strategy (305) and displayed 

using the SPICE (5.2) program (Mario Roederer, NIAID, NIH).   

5.3.15 ELISpot assays 

PBMC (1×105/well) and cultured CTL (3×104/well) were tested for reactivity to 9mer 

peptide antigens by ELISpot assay as previously described with minor modifications (175).  HLA-

A2+ T2 target cells (1×104 /well) were added to the assay as antigen presenting cells when testing 

HLA-A2+ restricted CTL. Spots were counted with an automated ELISpot reader (AID GmbH).  

All data presented as spot forming units (SFUs) per 105 cells. 
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5.3.16 Cytotoxicity assays 

CD4+ T cell targets:  PBMC were activated and cultured for 5 days in the presence of PHA 

(1g/ml) and rIL-2 (100 IU/ml).  The pre-activated CD4+ T-cell targets were purified by negative 

selection (EasySep, StemCell Technologies) and pulsed with 1g/mL target peptide for 1h and 

then washed.  Peptide-pulsed targets were cultured at 37°C with CTL for 18h at ratios (CTL: target) 

of 3:1, 1:1, 0.3:1, and 0:1.  Following incubation, cells were washed and stained with anti-CD4-

V450 (BD Biosciences) and anti-CD8-APC-Cy7 (BD Biosciences).  Cells were fixed and 

permeabilized with BD Cytofix/Cytoperm™ Fixation/Permeabilization Solution Kit (BD 

Bioscience).  DNA of permeabilized cells was stained with 7-amino-actinomycin D (7-AAD) (BD 

Pharmingen) for 20 minutes at 37°C.  To assess target cell death, DNA content was measured by 

gating on the singlet, CD4+ target cells and analyzing 7-AAD intensity on a linear scale. 

Immature DC targets:  Peptide-pulsed autologous immature DC were used as targets in 

standard 4 h 51Cr-release assays as previously described (218).  Flow cytometry was used to 

measure the percent cell loss in CTL: DC co-cultures by determining the ratio of cell types 

recovered as determined by gating based on light scatter properties and expression of CD3 and 

CD86 on T cells and DC, respectively.  Further analysis of cell viability on the DC gated events 

was achieved using LIVE/DEAD® Aqua amine-binding dye. CTL:DC exposure times varied.   

5.3.17 DC production of immune mediators 

Cytokine and chemokine production of DC was induced as previously described (218).  

DC were plated (2×104 cells/well) in a 96-well flat bottom plate and stimulated with J558-CD40L 
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cells (5×104 /well).  Supernatants were collected at 24 h and tested by specific ELISA (Thermo 

Fisher) for the presence of IL-12p70, IL-6, CCL5, and CXCL10. 

5.3.18 Scanning electron microscopy (SEM) 

Sterile 12 mm round glass coverslips were placed in the bottom of the well of day 5 iDC 

culture suspensions.  CTL (2×105/well) and specified peptides (1 g/ml) were added to the 

cultures.  The glass coverslips were removed at 24h, fixed in 2.5% glutaraldehyde in PBS and 

post-fixed in aqueous 1% osmium tetroxide and washed with PBS. Samples were dehydrated 

through a graded ethanol series, critical point dried, and coated with 3.5 nm gold palladium. A 

JEOL JSM-6330F SEM was used at 3 kV for imaging. 

5.3.19 Live cell imaging 

Imaging was performed using a Perkin Elmer Ultraview spinning disk confocal microscope 

equipped with a Nikon TE 2000E camera. A Metamorph (Molecular Devices) was used to collect 

all data and to drive the microscope. All images were collected using a 1.3 NA oil immersion 40× 

objective with a 1× coupler between the microscope and either the confocal or wide-field cameras. 

Cells were maintained at 37°C in the microscope using a Harvard Apparatus heated stage insert.  

The XYZ stage used was made by ASI. 
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5.3.20 Statistical analysis 

Data were analyzed using either paired Student’s t-test (two-tailed) or one-way ANOVA 

followed by a Tukey post hoc test.  Significance was determined at an  of 0.05. 

5.4 RESULTS 

5.4.1 Use of DC to induce broadly cross-reactive HIV-1-specific CTL from HIV-1 naïve 

donors 

Previous studies have shown that viral antigen specific CTL can actively persist and 

respond to certain target epitopes throughout the course of both SIV and HIV infection without 

providing sufficient immune pressure to induce selective change in their establishment (50, 60, 94, 

144, 160).  We hypothesize that such ineffective immune responses could represent the activity of 

previously established memory CTL sub-optimally cross-reacting to epitope variants.  To ascertain 

whether early CTL responders generated against founder HIV-1 epitopes could indeed 

differentially cross-react to viral epitope variants arising at later time points of infection, we 

developed an in vitro strategy to study and characterize cross-reactive CTL responses to natural 

HIV-1 epitope variants.  Our approach was to recapitulate the in vivo anti-HIV-1 CTL response 

using a previously described autologous dendritic cell-based in vitro model (15) to induce primary 

CTL responses in HIV-1 naïve donors using founder epitopes identified through the analysis of 

virus collected from MHC-class 1 matched HIV-1 positive donors.  These CTL could be expanded 

and subsequently characterized for reactivity to naturally occurring epitope variants.   
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We first observed that T cells obtained early in HIV-1 infection recognized and produced 

IFNγ in response to variants that did not evolve until after the time of T cell sampling, indicating 

the presence of cross-reactive T cells.  We identified these cross-reactive responses in 10 HIV-1 

Gag, Env, and Nef epitopes (Table 7).  

Table 7.  Early memory anti-HIV CTL responses to early and late epitope variants 

 

 

Table SI.  Early memory anti-HIV CTL responses to early and late epitope variants 
 

  Early Memory CTL Reactivity Observed
a 

  Early Variants
b Late Variants

c 

CTL Epitope Origin MHC Class I Affinity Amino Acid Affinity Amino Acid 

(HXB2 position) Restriction
d Category

e Sequence Category Sequence 

Gag p17 A*2402 NA QYKLRHIVW NA KYRLKHIVW 

(28-36)  NA  NA QYKLKHIVW 

Gag p17 A*0201 medium SLFNTVATL low SLFNTVATP 

(77-85)  medium SLFNTVAAL medium SLFNTIATL 

    medium SLYNTVATL 

Gag p24 B*0702 medium SPRTLNAWV medium PPRTLNAWV 

(16-24)  medium SPRALNAWV   

Gag p24 A*02 medium TLNAWVKVV medium ALNAWVKVV 

(19-27)  medium TLDAWVKVV medium PLNAWVKVV 

    medium TLSAWVKVV 

Env B*07 high RPNNNTRKSI medium RSNNNTRKSI 

(298-307    medium RPNNNTRKCI 

Env A*0201 very low IGPGRAFYAT no affinity IGSGRAFYAT 

(311-320)      

Env A*0201 low TLEQVVKKL low ALEQVVKKL 

(341-349)    low MLEQVVKKL 

    low TLGQVVEKL 

    medium TLDKVVEKL 

Nef B*07 medium FPVRPQVPL high FPARPQVPL 

(68-76)  low FSVRPQVPL high SPVRPQVPL 

Nef B*0702 high TPGPGTRYPL medium TPGPGIRFPI 

(128-137)  medium TPGPGIRYPL medium TPGPGIRYPV 

  high TPGPGIRFPL low TSGPGTRFPL 

    high TPGPGIRYPM 

Nef A*0201 medium VLVWRFDSSL low VLVWKFDSSL

(180-189)      

 
a
PBMC obtained from an HIV-1+ MACS donor at early post-seroconversion time points were evaluated by IFNg ELISPOT for 

endogenous T cell responses to autologous epitope variants that evolved before and after PBMC sampling. 
 
b
Autologous MHC class I epitope variants that were present prior to PBMC sampling and induced positive T cell reactivity  

 
c
Autologous MHC class I epitope variants that evolved after PBMC sampling, yet induced positive T cell reactivity  

 
d
Autologous epitope variants were evaluated for MHC class I affinity and are defined according to their logIC50 values: high 

affinity, log IC50 < 3.7; medium affinity, 3.7< log IC50 < 4.7; low, 4.7<logIC50<6.0; no affinity, log IC50 > 6.0  
 

e
Amino acid sequences represent the autologous Gag, Env, and Nef epitope variants derived from an HIV-1 infected patient 
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The order of epitope variant evolution in vivo is shown in Figure 37. Founder virus 

sequences from 3 epitope families identified from in this HIV-1 positive subject were selected to 

initiate in vitro CTL priming in HLA-matched (A*0201 / B*0702 positive) HIV-1 naïve donors. 

 

Figure 37.  Chronological evolution of autologous HIV-1 Gag, Env, and Nef epitope variants 

An outlined summary of the appearance of established CTL epitope variants.  The amino acid mutations 

compared to the founder variants are in bold, and were determined by sequencing viral isolates at 13 time points 

ranging from 0.3 to 8.8 years post-seroconversion.  

 

These were Gag77–85 (SLFNTVATL), Gag151–159 (TLNAWVKVV) and Nef72-80 

(FPVRPQVPL).  The SLFNTVATL and TLNAWVKVV peptides are HLA-A*0201 restricted, 

and the FPVRPQVPL peptide is HLA-B*0702 restricted.  Using this strategy, HIV-1 antigen-

specific CTL responses against all 3 epitopes were successfully generated as determined by IFN-
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 ELISPOT assay.  Representative responses generated against variants of the TLN9 epitope are 

shown in Figure 38. In general, we found that CTL showed of cross-reactivity to all epitope 

variants, with some responses being comparable to that of the priming peptide (Figure 38A).  

   

Figure 38.  In vitro induction of broadly reactive primary HIV-1 specific CTL  

Primary CTL from an HIV naïve donor were generated against the HLA-A2 restricted, HIV-1 associated epitope p24 

Gag151–159 TLNAWVKVV (TLN9), maintained in culture, and tested for compared responsiveness to natural epitope 

variants. (A) IFN ELISPOT results recorded as net spot forming units (SFU) /105 cells (non-specific background 

subtracted). Error bars represent  standard deviation of assay replicates. (B) Polyfunctional analysis of CTL cross-

reactivity using intracellular cytokine staining and multi-parameter flow cytometry. The bar graph represents the 

percentage of CD3+CD8+ T cells induced to express any combination of the 4 immune factors, IFN-, TNF-, IL-2 

and CD107 (below), and were color coded based on the peptide used for stimulation. Pie charts (above) indicate the 

relative amount of polyfunctional responses to the individual peptide, with darker shades having higher degrees of 

polyfunctionality. The numbers at the bottom delineate groups with the indicated numbers of responses.  Responses 

within each of these groups are summed to obtain the fractions shown in the pie charts. The data sets shown were 

generated using one representative CTL culture of 6 independently established each generated from different donors. 

For example, TLNAWVKVV (TLN9) primed CTL induced responses of similar 

magnitude when re-challenged with either the cognate peptide or variant peptides ALNAWVKVV 
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(ALN9) and PLNAWVKVV (PLN9), with more apparent differences found only with decreasing 

antigen concentration (data not shown).  Similar cross-reactivity was found with CTL lines 

generated against Gag77–85 (SLFNTVATL) and Nef72-80 (FPVRPQVPL) (data not shown).  For 

sake of transparency, we chose to focus the rest of this report on CTL generated against the TLN9 

epitope.  However it is important to note that the findings we report translate across the peptide 

families tested.  

5.4.2 Phenotypic characterization of cross-reactive CTL lines 

We used intracellular cytokine staining (ICS) and flow cytometry analysis to compare the 

cytokine producing capacity and polyfunctional profiles of the CTL stimulated with either cognate 

or variant peptides.   In doing so, we found that the peptides that induced the highest magnitude of 

responses also induced the most polyfunctional responses in the CTL (Figure 38A and B). 

Specifically, the TLN9-induced CTL reacted comparably in magnitude and polyfunctionality 

when exposed to the cross-reactive variants ALN9 and PLN9 as they did to the cognate TLN9 

peptide, but reacted to the TLD9 and TLS9 epitope variants with less magnitude and 

polyfunctionality.   

Even though the magnitude and quality of the CTL responses to some of the epitope 

variants seemed comparable to that of the cognate priming peptide, we noted subtle phenotypic 

differences.   For example, when the priming peptide TLN9 or late viral variant PLN9 was used 

as the peptide stimulator, the cytokine profile and overall percentage of the responding CTL were 

similar (Figure 38 and Figure 39A).   
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Figure 39.  Differential expression of the T cell co-receptor CD8 on cross-reactive CTL 

(A) HIV-1 p24 Gag151–159 specific CTL were stimulated with either the relevant priming peptide TLNAWVKVV 

(TLN9), the epitope variant peptide PLNAWVKVV (PLN9), or an irrelevant DENV3 associated HLA-A*0201 

restricted control peptide (KLNDWDFVV) and assessed for dual expression of CD8 and each of the cytokines TNF-

, IFN-, and IL-2. (B) Single parameter histogram display comparing CD8 expression of differential peptide-induced 

IFN-producing CTL.  (C) Comparison of CD8 expression on TLN9 specific CTL following their differential 

stimulation with either their cognate priming peptide TLN9, the epitope variant PLN9, and an irrelevant peptide 

control.  Data plotted as mean fluorescence intensity (MFI) using CTL generated from 5 different HIV-1 naïve donors 

(each represented by a unique symbol).  Peptide responsive cells were analyzed by gating on the IFN- producing T 

cells.  Statistical significance was determined by one-way ANOVA followed by a Tukey post hoc test. (D) TLN9-

specific CTL assessed for dual expression of the TCR specific MHC class 1 pentamer (A*0201, TLNAWVKVV) 

stain and IFN-following differential peptide stimulation. (E) HLA-A*0201 restricted DENV3 NS3339-407 epitope 

specific CTL were stimulated with either the priming peptide (KLNDWDFVV) or inter-serotype (DENV2 and 

DENV4) associated variant peptides and assessed for dual expression levels of CD8 and IFN-. Red lines included a 

visual reference to compare relative differences in CD8 expression of antigen responsive CTL. 
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However, when stimulated with the priming peptide TLN9, the surface expression of CD8 

on the peptide reactive CTL decreased, while its expression was maintained on the CTL exposed 

to the cross-reactive variant peptide PLN9 (Figure 39A and B). The differences observed in CD8 

expression of CTL stimulated by the cognate TLN9 peptide compared to the variant PLN9 peptide 

was found to be consistent and statistically significant among CTL lines generated from 5 different 

donors (Figure 39C).  Although not as striking, the expression level of CD3 followed the same 

pattern, with the variant peptide failing to down-regulate the expression of this surface marker 

(data not shown).  

To verify that these differential responses were in fact occurring in cross-reactive CTL, 

and not the result of a simultaneous outgrowth of distinct T cell clones having different 

specificities, we further analyzed the CTL by flow cytometry using a fluorochrome labeled T cell 

receptor (TCR)-specific pentamer designed to recognize a TCR having specificity for the peptide 

TLN9 in the context of the MHC molecule HLA-A*0201. The specific binding of this pentamer 

to those cells producing cytokines in response to either the TLN9 or the PLN9 peptide, and not the 

irrelevant peptide, clearly demonstrated that the same cell population was in fact cross-reactive to 

both of the related HIV-1 peptides (Figure 39D).   

To determine if the observed relationship between CTL cross-reactivity and surface 

expression of CD8 was unique to HIV-1, we repeated CTL priming experiments using a dengue 

virus serotype 3 (DENV3)-associated HLA-A*0201 restricted CTL epitope peptide (NS3399-407, 

KLNDWDFVV).  The CTL generated against the DENV3 epitope were then tested for reactivity 

to the altered peptide sequences naturally associated with different DENV serotypes.  Similar to 

the findings with the HIV-1 specific CTL, the DENV3 specific CTL displayed intense cytokine 

expression and down-regulation of CD8 in response to the relevant priming peptide 
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KLNDWDFVV, while the CD8 expression was maintained on the cells cross-reacting to the 

respective DENV2 and DENV4 serotype peptide variants RTNDWDFVV and KLTDWDFVV 

(Figure 39E).  Therefore, the association between CTL expression of CD8 and cross-reactivity to 

natural viral variants appears to represent a basic immunological phenomenon. 

These findings compelled us to revisit the HIV-1 positive donor samples we originally used 

for virus sequencing and epitope selection to see if a similar pattern in CD8 expression could be 

found in CTL obtained from natural infection (Table 6, Figure 37).  We focused attention on the 

Gag77–85 (SLFNTVATL) epitope family which demonstrated the most dominant and potentially 

cross-reactive early responses to the late variant SLYNTVATL. Indeed, CTL expanded from early 

PBMC samples obtained from this donor 6 months post seroconversion which reacted to the late 

dominant variant SLYNTVATL failed to down-regulation CD8 expression, while down-

regulation occurred with exposure to the founder epitope peptide SLFNTVATL (Figure 40).   
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Figure 40.  CTL induced early post-seroconversion respond to late autologous HIV-1 epitope variants. 

Antigen-specific memory T cells were expanded in short-term cultures from PBMC isolated from an HIV-1 

infected donor ~1 year post-seroconversion and were tested for reactivity to HIV-1 p17 Gag77-85 (SLFNTVATL; 

SL9) epitope peptide variants that arose throughout the course of infection.  (A) IFNγ ELISpot responses to HIV-1 

peptide variants derived from virus detected at time points prior to (black bars, -0.5 years) and following (white bars, 

+0.5, 2.5, and 7.0 years) the collection date of PBMC.  The dashed line indicates the relative collection time point 

(year 0) of the PBMC test sample.  Error bars represent +/- SD. (B) Relative CD8 surface expression of antigen-

activated, IFNγ-producing CTL responding to early founder (SLFNTVATL) and late variant (SLYNTVATL) HIV-1-

derived peptides.  Data from one experiment representative of 3 independent tests performed with this epitope family. 

See Table 5 that lists additional cross-reactive CTL epitopes and their relative time points of detection. 

5.4.3 Cytolytic function of cross-reactive HIV-1-specific CTL 

A critical function of CTL is their ability to eliminate antigen-expressing targets.  

Therefore, we studied the cytotoxic effector responses of the CTL against antigen expressing 

autologous CD4+ T cells as well as immature DC (iDC), both of which are known to be naturally 
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targeted by HIV-1 (121, 200).  To examine CTL-induced cytotoxicity of pre-activated antigen 

expressing, CD4+ T cells, we used DNA intercalating 7-aminoactinomycin D (7-AAD) to measure 

by flow cytometry the changes in DNA content associated with cell death.  We detected a dramatic 

antigen specific decrease in the DNA histogram peak representing target cells in the diploid G1 

phase of the cell cycle (Figure 41 A and B).   

 

Figure 41.  Dysfunctional cytolytic capacity of cross-reactive HIV-1-specific CTL 

Purified autologous pre-activated CD4+ T cells and immature DC that differentially expressed the cognate 

TLNAWVKVV (TLN9), variant PLNAWVKVV (PLN9), or irrelevant KLNDWDFVV peptide antigen were used as 

HIV-1 specific CTL targets in cytotoxicity assays.  (A) Flow cytometry cell cycle analysis using 7-AAD staining to 

measure cellular DNA content of antigen-expressing CD4+ T cell targets following an 18h co-culture with TLN9-

specific CTL.  Percent of target events within the G1 and S/G2 phase of the cell cycle and sub-G1 (apoptotic) regions 

are shown. Data shown from a representative experiment of 4 performed yielding similar results (B) Dose titration of 

CTL-induced cytotoxicity of antigen expressing CD4+ T cell following an 18h co-culture. Results plotted as a percent 

loss of G1 compared to baseline target values in the absence of CTL. (C) Still frame pictures from a live cell time 

lapse (4h) video showing HIV p24 Gag151–159 specific CTL lysis of autologous iDC target cells expressing the relevant 

peptide TLN9 (CTL:DC = 1:1). (D) A 4h 51Cr-release assay showing differential ability of the CTL to kill autologous 

iDC expressing the relevant peptide TLN9 but not the cross-reactive variant  PLN9. (E) Flow cytometry viability 

assessment using LIVE/DEAD® Aqua staining of autologous iDC co-cultured for 6h with the CTL at a 3:1 (CLT:DC) 

ratio in the absence or presence of either the irrelevant control peptide KLNDWDFVV, the relevant TLN9 peptide, or 

the epitope variant peptide PLN9. 
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This was accompanied by an early increase in the S/G2 region (within 5 hours, data not 

shown), and followed by an increase in the sub-diploid DNA apoptotic region after 16 h co-culture 

(Figure 41A, middle panel). These results were indicative of a CTL-induced toxic arrest of the 

targets at the S/G2 phase of the target cell cycle.  This cytotoxic activity and loss of DNA in the 

G1 peak increased in a CTL dose dependent manner (Figure 41B).  Interestingly, CD4+ T cell 

targets labeled with an optimal concentration of the variant peptide PLN9 were not effectively 

killed (Figure 41A, right panel, and 41B).   

A similar pattern of cytotoxicity was found when analyzing iDC targets. In addition to 

representing a normal CTL function of eliminating infected target cells, lysis of antigen-expressing 

iDC represents a negative feedback mechanism used by CTL to dampen successful type-1 immune 

responses (148).  Using live cell microscopy, we were able to visualize the capacity of in vitro 

primed CTL to kill TLN-9 antigen-expressing autologous iDC targets (Figure 41C).  Within 4 

hours, at a 1:1 effector to target ratio, a substantial number of iDC targets were lysed.  The ability 

of the CTL to kill antigen-expressing iDC was tested by standard 4 h 51Cr-release cytotoxicity 

assays.  As expected and in accord with previous reports (148, 342), the CTL showed lytic activity 

against iDC exposed to 1g/ml of the priming cognate antigen.  However, this effector function 

was dramatically reduced when iDC were labeled with the same concentration of the variant 

peptide PLN9 (Figure 41D). This difference in killing activity was also apparent when analyzing 

antigen expressing iDC cultures by flow cytometry following their 6h exposure to CTL at a 3:1 

(CTL:DC) ratio.  In the representative experiment described, of the remaining iDC that could be 

recovered from priming peptide co-cultures, 32% were determined to be dead compared to only 

14% and 8.3% recovered from the co-cultures containing the variant peptide and control peptide 

respectively (Figure 41E).  This was in addition to an initial 49% reduction in the total number of 
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iDC recovered from the cultures that contained the priming peptide, compared to a reduction of 

only 8.5% from the cultures having the variant peptide as compared to control cultures (data not 

shown).   

5.4.4 Activation and programming of variant antigen-expressing DC by cross-reactive 

CTL 

Although the CTL we evaluated showed a substantial reduction in killing capacity towards 

the iDC expressing PLN9 variant epitope, striking changes in DC morphology were seen after 24 

h through light microscopic evaluation of the co-cultures, suggesting the occurrence of some level 

of CTL-induced DC activation. These DC partially adhere and developed a pronounced webbed 

network of long cellular extensions between neighboring cells (Figure 42A, right panel).    

 

Figure 42.  Cross-reactive CTL induce micro/nanotube extensions on DC expressing variant peptide. 

(A) Light microscopy of iDC:CTL co-cultures following a 24h incubation in the presence of the irrelevant DENV3 

associated peptide KLNDWDFVV (left panel),  the relevant HIV-1 associated priming peptide TLNAWVKVV 
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(TLN9) (middle panel), and the epitope variant peptide PLNAWVKVV (PLN9) (right panel).  Cellular debris in the 

priming peptide culture indicates a massive degree CTL-induced DC death while the elongated adherent cells in the 

peptide variant culture suggest cross-reactive CTL dependent DC activation.  (B) Scanning electron microscopy 

(SEM) images of HIV-1 peptide TLN9 specific CTL and autologous iDC co-cultures after 24h in the presence of an 

irrelevant DENV3 NS3339-407 (left) or the of epitope variant peptide PLN9 (600X) (right).  Insets images are from the 

respective cultures showing CTL (smaller round cell) and DC in contact at an enhanced magnification (6000X). (C) 

SEM image of the iDC: CTL co-cultures after 24 h incubation in the presence of the HIV-1 epitope variant peptide 

PLN9 highlighting what appears to be intercellular-connecting micro/nanotube formations (arrow) induced by the 

cross-reactive CTL (6000X). 

 

This was in sharp contrast to the iDC expressing the control irrelevant peptide (Figure 

42A, left panel) which went relatively unchanged, while the iDC expressing the TLN9 peptide 

failed to survive the extended exposure with the CTL (Figure 42A, middle panel).  Scanning 

electron microscopy (SEM) used to examine the changes in DC morphology in detail provided 

evidence of what appeared to be the induction of interconnected micro/nanotube formations 

exclusively in the DC:CTL co-cultures containing the variant peptide (Figure 42B and C).  These 

cellular formations appeared to be similar to the previously described tunneling membrane 

connections reported to facilitate intercellular communication and transfer of small molecules 

(343) as well as pathogens, including HIV-1 (101, 312).   

Flow cytometric analysis of the surface expression levels of the DC maturation markers 

CD86 and CD83 revealed that the cross-reactive CTL were in fact inducing maturation of those 

DC expressing the variant antigen compared to iDC exposed to peptide alone, or to CTL in the 

presence of an irrelevant peptide (Figure 43A and B). While there were signs of low level non-

specific CTL induced activation of DC, this was much less pronounced compared to the high 

degree of maturation that was dramatically induced by variant peptide (Figure 43A and B).  Of 

the factors produced by these CTL as measured by ICS flow cytometry, TNFand IFN were the 

most likely candidates to contribute to this DC activation. Therefore we used the TNF and IFN 

inhibitors, sTNF-rec1 and sIFN-rec1, respectively, to assess whether either factor was involved.  

While sIFN-rec1 did not inhibit the CTL-induced DC maturation, CD86 enhancement was 
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partially reduced with the inclusion of sTNF-rec1 (Figure 43B), suggesting that CTL-derived 

TNF played a role in the CTL-induced DC maturation.  The fact that the CTL-induced DC 

enhancement of CD86 expression was not entirely blocked by the addition of sTNF-rec1 suggested 

that other factors along with TNF likely contributed to this DC maturation. 

 

Figure 43.  Cross-reactive HIV-1-specific CTL induce mature proinflammatory programmed DC 

DC were characterized following 24h co-culture with HIV-1 antigen TLNAWVKVV (TLN9)-specific CTL in the 

presence of cognate or variant peptide. (A) Impact of cross-reactive CTL on the maturation status of variant peptide 

PLNAWVKVV (PLN9)-expressing iDC as determined by surface expression of CD86 and CD83. iDC were exposed 

to PL9 peptide only (blue line), CTL and irrelevant control peptide KLNDWDFVV (CTL+irrel., red line), or to both 

CTL and PLN9 peptide (shaded histogram). The dashed line denotes the isotype control of the CTL: PLN9 condition.  

Isotype controls for the other conditions were recorded but not shown. (B) Impact of the presence of TNF blocker 

(sTNF-R1; 0.1g/ml) or an IFNblocker (sIFN-R1; 1g/ml) on cross-reactive CTL-induced maturation of PLN9 

(var. Ag) expressing DC.  iDC and CTL were co-cultured for 48h, followed by assessment of DC surface expression 

of CD86 and capacity to produce IL-12p70. TNF (50ng/ml) stimulated DC were a positive control for DC maturation 

and iDC exposed to PLN9 (var. Ag) peptide in the absence of CTL served as the iDC control.  Error bars represent 

the standard deviation of assay triplicates. Data are from one experiment representative of 3 performed. (C) 
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Comparison of cytokine and chemokine producing capacity of mature DC following a 48h exposure of iDC to either 

TNF (50ng/ml; mDCTNF) to or variant peptide stimulated cross-reactive CTL (mDCCTL) in response to CD40L 

stimulation as determined by ELISA.  Data presented as mean ± standard error of 4 independent experiments using 4 

different donors.  *Actual values for mDCTNFwere consistently below detection limits of the assay for CXCL10.  

Therefore, p values were recorded as < the calculated value substituting the assay detection limit as the DCTNFvalue 

for CXCL10.  Significance was determined using two-tailed paired t tests. 

 

In addition to inducing DC maturation, the cross-reactive CTL triggered the type-1 

polarization of the maturing DC, characterized by their enhanced IL-12p70 producing capacity 

upon subsequent stimulation with CD40 ligand (Figure 43B).  This was in stark contrast to DC 

matured with exposure to exogenous TNF-ng/ml which similarly expressed high levels of 

CD86, but instead had a more IL-12p70 “exhausted” phenotype (198), in which the ability to 

produce this cytokine is curtailed (Figure 43B and C).  As was found with maturation, addition 

of sTNF-rec1 partially inhibited the CTL-dependent enhancement of DC IL-12p70 expression 

(Figure 43B).  Moreover, while IFN- did not appear to play a role in DC maturation with regard 

to surface expression of CD86 (Figure 43B) and CD83 (not shown), the addition of sIFN-rec1 

dramatically reduced their IL-12p70 producing capacity (Figure 43B).  When both blocking 

reagents were used simultaneously, additive effects were not observed (data not shown).  The 

finding that either of these inhibitors could interfere with DC polarization is in line with previous 

studies showing that the combined exposure of iDC to both a maturation inducing stimulus and 

IFNbut neither alone, can promote this high IL-12 producing mature DC phenotype (168). In 

addition to IL-12p70, when compared to the TNF--matured non-polarized DC, these CTL-

programmed mature DC consistently produced higher levels of IL-6 as well as the pro-

inflammatory chemokines CXCL10 and CCL5 (Figure 43C), factors that can attract and promote 

their interaction with activated effector T cells, including CCR5 expressing CD4+ T cells typically 

targeted by HIV-1 (223).  
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5.4.5 Expression levels of cognate antigen can determine killer versus helper role of CTL 

Low concentrations of viral antigenic peptides have been previously shown to activate CTL 

without causing down-regulation of TCR (38). Therefore, we questioned if the cognate peptide 

expression level could reach a threshold that would allow for the selective induction of CTL ‘help’ 

in the absence of iDC killing as observed with optimal expression of altered viral peptide variants.  

When CTL and iDC were co-cultured in the presence of high concentration (1.0 to .01g/ml) of 

the TLN9 peptide, iDC were effectively recognized as cytolytic targets as mentioned previously 

(Figure 44A and B).  However, killing capacity of the CTL was reduced with decreasing 

concentration of cognate peptide, with a substantial drop in killing occurring at .001 g/ml (Figure 

44A and B).  This decrease in killing capacity was inversely associated with an increase in CD8 

expression (Figure 44A).  When left in culture for 24 h, those DC that survived the exposure to 

CTL in the presence of .001 g/ml of TLN9 peptide differentiated into high CD86 expressing 

mature DC (Figure 44C), similar to when a high concentration of the PLN9 variant peptide was 

used (Figure 43A and B). 
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Figure 44.  Concentration of cognate Ag determines differential shift in CTL killer versus helper 

activity 

(A) Gray bars indicate percentage of iDC killed in a 6h co-culture with CTL at a 3:1 (CLT:DC) ratio by flow cytometry 

viability assessment using LIVE/DEAD® Aqua Kit discrimination.  The blue line represents the relative CD8 

expression (MFI) of TLN9 reactive CTL. Error bars represent  standard error of three experiments. (B) Flow 

cytometry data showing percent DC recovery after overnight co-culture with CTL in relation to antigen concentration 

as determined by light scatter gating of DC region (dashed gates) compared to CTL in the presence of antigen control 

(0.1 g/ml shown). (C) Relative expression of CD86 on surviving DC following 24h exposure to CTL and low 

concentration of either cognate (blue) or control (yellow) antigen. 

5.4.6 CTL programmed DC show enhanced ability to mediate HIV-1 transmission to T 

cells 

DC are known to play a critical role in HIV dissemination through trans infection of CD4+ 

T cells, with the efficiency of this trans-infection being greatly influenced by the status and mode 

of DC activation (355).  Because the CTL programmed DC expressed the phenotypic, 

morphologic, and functional qualities ideal for activating and attracting activated CD4+ T cells, 
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we speculated that they may be superior in mediating transmission of HIV-1 infection to CD4+ T 

cell. To test this, HIV-1 trans-infection assays were performed comparing the CTL-matured DC 

to both immature (CTL exposed) and TNF--matured DC. The differentially activated DC were 

purified and pulsed for a short time with a concentration of R5-tropic HIV-1 previously determined 

to be suboptimal for direct infection of activated CD4+ T cells (276), and subsequently co-

incubated with autologous activated CD4+ T cells for 4 days.  We found that the efficiency of HIV-

1 trans infection was consistently greatest when using the CTL-matured DC (Figure 45). 

Importantly, viral p24 concentrations remained below detectable levels in conditions where DC or 

CD4+ T cells alone (data not shown) were exposed to the suboptimal concentration of virus.    

 

Figure 45.  DC matured by cross-reactive CTL are superior mediators of HIV-1 transmission to CD4+ 

T cells.   

Immature DC were differentially stimulated for 48h with either CTL in the presence of the non CTL activating 

irrelevant peptide KLNDWDFVV (iDCCTL), CTL in the presence of the of the cognate priming peptide 

TLNAWVKVV (TLN9) (not shown), activating PLNAWVKVV (PLN9) epitope variant peptide (mDCCTL), or 

50ng/ml of TNF- (mDCTNFCTL were removed from the co-cultures and the differentially activated DC were 

incubated with HIV-1 R5 tropic virus at an MOI of 10-4 at 37°C for 2h.  Virus loaded DC were then co-incubated with 

autologous pre-activated CD4+ T cells for 4 days at a DC:T cell ratio of 1:10.  Cell free supernatants were tested by 

for levels of HIV-1 p24 by ELISA.  DC initially present in co-cultures containing the CTL/TL9 peptide combination 

did not survive the 48h incubation (see Fig. 6A, middle panel) and therefore were not used in the trans-infection assay.   

Data presented as the combined mean concentration of p24 measured from supernatants collected from three separate 

trans-infection co-culture experiments ± standard error using autologous cells generated from one representative 

donor. Data was analyzed using a one-way ANOVA followed by a Tukey post hoc test.  bd = below detection limits 

of the assay. 
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5.5 DISCUSSION 

CTL selective pressure is usually considered in the context of the antigen reactive CTL 

having the ability to kill infected target cells and inhibit viral production.  CTL escape mutations 

that would allow infected cells to survive a cellular attack would thus provide an obvious selective 

advantage to the virus.   However, the functions of antigen specific CTL are not limited to their 

killer effector role.  They also play important immunoregulatory helper functions by producing 

cytokines and chemokines that influence the quality and character of the immune response (216).   

In addition, they can regulate the extent of the immune response by limiting the survival of antigen 

presenting cells (148). Therefore, it is likely that these functions are targeted by viruses and 

contribute to shaping the viral variant selection process.  

We propose that the incomplete immune escape from CTL recognition through the 

establishment of partially activating epitope variants provides a selective advantage for the virus. 

Instead of totally bypassing the CTL response, these modifications can selectively promote the 

helper activity of the CTL while inhibiting their capacity to kill antigen expressing targets.  

Importantly, when the CTL effectors encounter such variant antigen presenting iDC, instead of 

dampening the immune response as a result of recognition of the iDC as cytolytic targets (148), a 

positive CTL to DC immune feedback loop dominates whereby the CTL provides helper signals 

to activate the HIV-1 antigen expressing DC, programming them to differentiate into a highly 

stimulatory, pro-inflammatory type of mature DC.   

It is this viral ‘baiting’ of pre-existing CTL that allows the virus to utilize the CTL’s ability 

to program the phenotypic, morphologic, and functional character of the DC, the cell type that has 

been shown to be exploited by HIV-1 for dissemination and immune escape (121, 200).  As shown 

in this study, iDC that survive the antigen-specific interaction with the cross-reactive effector CTL 
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undergo a dramatic physical transformation in vitro.  These DC rapidly sprout widespread micro- 

and nanotube-like extensions, allowing them to develop extensive interconnected cellular 

networks. Pathogens such as HIV-1 have been known utilize such cellular connections for cell-to-

cell spread (101, 312). Therefore, altered CTL responses against epitope variants in vivo may 

actually promote the development of these complex cellular networks that can be exploited as an 

escape route by HIV-1, thereby allowing for intercellular spread without exposure to neutralizing 

antibodies, and establishment of a potentially latent reservoir.  

Instead of having a diminished capacity to produce inflammatory factors upon maturation, 

DC that are programmed to mature by variant cross-reactive CTL have qualities consistent with 

type-1 polarized DC (DC1) (218), producing enhanced levels of cytokines, such as IL12p70 and 

IL-6, as well as chemokines such as CXCL10 and CCL5.  Such characteristics provide the mature 

CTL-induced DC1 with the ability to efficiently interact with antigen specific naïve CD4+ T cells 

as well as attract activated CCR5+CD4+ T cells, the cells preferentially targeted by HIV-1 (85, 95, 

209).  Together, these characteristics likely contribute to the superior ability of CTL-induced DC1 

to facilitate trans infection of CD4+ T cells as we report in this study. This notion supports a 

previous study that indicates DC1 to be effective mediators of HIV-1 trans infection (294). These 

results suggest that HIV-1 may utilize and benefit from the activity of cross-reactive CTL in vivo 

by promoting DC mediated viral spread.  

The immunoregulatory helper roles of CD8+ T cells and their ability to modulate DC 

function have been previously described (137, 216, 288, 321).  It is known that they can participate 

in heterologous immune responses to promote antiviral and anticancer immunity (239, 345), and 

contribute to a DC-mediated positive immunoregulatory feedback mechanism supporting success 

driven, type-1 immune responses (169).  In our experience, however, the effectiveness of such 



 181 

direct DC-mediated CD8+ T cell ‘help’ greatly depends on the activation status of the T cells, and 

is limited to the activity of either naïve or resting memory CD8+ T cells (216, 239).  The direct, 

antigen-specific interaction of fully activated CTL with DC typically results in a negative outcome 

with significant DC lysis (148, 239, 342), as we also have shown in this report. One novel finding 

from our study is that the presentation of altered peptide antigen can selectively promote the helper 

rather than killer function of the fully activated and otherwise potent effector CTL.  The fact that 

these two CTL functions can occur either separately or simultaneously reinforces previous reports 

suggesting that data generated using common assays to measure and assess CTL function, such as 

ELISPOT and ICS flow cytometry, should be interpreted with caution (208, 330). 

In this study, CTL killing activity was associated with the selective down-regulation and 

possible internalization of CD8 following antigenic stimulation as previously described (215).  It 

has been suggested that the down-regulation of CD8 and CD3 serves to focus the CTL response 

on targets expressing high levels of antigen, limiting the response to protect against ‘self’ damage 

(215, 356). While exposure to low concentrations of viral antigenic peptides can activate CTL 

without causing down-regulation of TCR (38), we show that an altered viral peptide presented at 

high concentrations can likewise activate CTL without impacting TCR and CD8 expression.  

Importantly, we found the expression of the degranulation marker CD107a on the variant peptide 

activated CTL was not directly indicative of killing activity, a finding in line with that reported by 

others (350).  Our data suggest that a decrease in CD8 expression is a reliable surrogate marker for 

measuring cytolytic function.  Regardless of their lack of impact on CD8 expression, the variant 

peptides induced CTL production of cytokines at levels that had significant biological impact on 

DC function.  Consistent with previous reports (77, 354, 357), this involvement of the T cell co-

receptor CD8 appears to be a critical factor in determining the quality of the cross-reactive CTL 
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response.  The possibility that a virus may target the role of CD8 engagement during antigen 

specific interaction to selectively drive the helper versus killer function is intriguing.    

We propose that an escape strategy in which the virus only partially evades, or even evolves 

towards partial CTL recognition to allow an ineffective CTL response to persist, provides the virus 

with a novel mechanism for survival. In contrast to what might be expected, the successful 

establishment of a CTL escape variant does not necessarily ensure an outcome favorable to the 

virus.  In fact, it has been shown that the efficient selective escape from successful CTL responses 

by Gag epitope variants correlates with a decrease, rather than an increase in viral load, which was 

suspected to be due to loss in viral fitness (47, 160). Alternatively, the selective induction of an 

inefficient or incomplete CTL response could provide the virus with an immune ‘smoke screen’ 

to impede a more direct and effective antiviral CTL attack while limiting the need for excessive 

epitope modifications that would otherwise pose a threat to viral fitness.   The proposed benefit of 

HIV-1 to selectively induce such a host response would suggest the likelihood that there would be 

an enrichment, at a population level, of certain epitope variants that would characteristically 

promote CTL helper activity in the absence of killing rather than completely abrogate CTL 

recognition. The immunodominant HLA-A*2010 restricted SL9 (SLYNTVATL) epitope, may 

represent such an example.  While SL9 is widely targeted during chronic rather than acute infection 

(129), with often robust and potentially cross-reactive CTL responses, these attacks 

characteristically lack strong selective pressure (45, 46, 129, 160). This is true even when viral 

fitness pressure does not appear to be a major counteractive force to resist this immune pressure 

and epitope diversification (60). This suggests that these CTL responses are sub-optimal for target 

elimination, and that the potential benefit of the virus to evade this immune activity is outweighed 

by the advantage of maintaining it.  
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Our results fit with the “original antigenic sin” (185) model, whereby ineffective cross-

reactive memory responses (in this case CTL memory) induced from an earlier exposure to virus 

hinders effective priming and expansion of naïve T cell responders specific against new viral 

variants. Such cross-reactive memory responses can interfere with the effectiveness of vaccines 

designed to elicit antigen specific cellular immunity, and may have partially contributed to the 

peculiar results of the STEP HIV-1 vaccine trial which showed a trend of increased HIV-1 

infections observed in those receiving the vaccine (97). Genetic analysis of breakthrough virus in 

recipients of the STEP vaccine uncovered evidence for vaccine-associated divergence of Gag 

specific CTL epitopes (286).  It is conceivable that narrow CTL responses elicited by this vaccine 

and the establishment of a limited pool of effector memory T cells allowed the virus to create an 

inflammatory response favorable for productive infection.  

Our study adds a novel dimension to the idea of “original antigenic sin” by suggesting that 

in the setting of HIV-1 infection, the promiscuous nature of the CTL response is specifically 

exploited by an evolving virus to modulate the function of the DC to create an environment suitable 

for its spread and persistence within the host.  Our results also point to the notion that this selective 

induction of CTL helper versus killer function is a general phenomenon, and not restricted to a 

specific virus, viral epitope, or HLA type, and therefore may be implicated in a broad range of 

diseases. This is supported by the fact that similar results were obtained when examining CTL 

responses to epitopes variants derived from DENV, a virus that upon secondary infection with 

heterotypic serotypes can lead to cross-reactive immune memory responses associated with severe 

disease including dengue hemorrhagic fever (287). Therefore, developing novel strategies to 

specifically disrupt or avoid this positive immune feedback loop may prove critical for the design 
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of more effective immunotherapeutic therapies for a wide range of diseases including HIV-1 

infection. 
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6.0  PRIMARY IN VITRO DC STIMULATION OF NAÏVE CD8+ T CELLS 

FACILITATES ELIMINATION OF THE HIV-1 RESERVOIR 

A recent surge in HIV-1 research has focused on developing immunotherapies to eradicate 

the autologous viral reservoir via cytotoxic T lymphocyte (CTL)-mediated immune responses.  To 

clear infection, new CTL must be primed from naïve precursors or memory CTL must be 

reactivated, as the endogenous effector memory populations fail to control viral replication during 

cART interruption.  It has yet to be shown if naïve T cells derived from subjects on cART can be 

primed into effector CTL specific for the autologous reservoir, as they failed to prime effectively 

prior to cART.  We hypothesize that naïve CD8+ T cells derived from subjects on cART, in the 

absence of viral burden, can be primed into CTL specific for the autologous HIV-1 reservoir.  To 

address this, we isolated highly pure populations of naïve and memory CD4+ and CD8+ T cells 

from HIV-1 infected subjects on cART or PBMC from these same subjects prior to seroconversion.  

T cells were used in an in vitro model of dendritic cell (DC) immunotherapy, in which autologous 

DC were loaded with inactivated HIV-1 derived from the autologous cART reservoir and were 

used to induce primary CD8+ T cell responses from naïve precursors or to re-stimulate memory 

populations. IFNγ ELISpot and viral suppression assays were used to evaluate primary CTL 

effector function against autologous viral antigen.  DC from HIV-1 infected subjects on cART 

induced primary CTL that suppressed the survival of virally-infected CD4+ T cells.  Moreover, 

these primary CTL were specific for the autologous Gag proteome and enhanced the breadth of 

responses to those found in re-stimulated memory populations.  Primary responses during cART 

did not differ from those induced pre-seroconversion.  We show for the first time that naïve T cells 

from HIV-1 infected subjects on cART can respond to primary in vitro DC vaccination against the 
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autologous reservoir and are capable of suppressing viral replication.  Additionally, we show that 

chronic, untreated infection did not permanently impair CTL priming to autologous virus.  These 

data support the use of DC immunotherapies targeting the autologous reservoir in HIV-1 infected 

subjects on cART. 

Viral isolation and purification from subjects on cART was assisted by Deena Ratner and 

the laboratory of Dr. Phalguni Gupta.  I performed all other experiments, including ELISpots and 

viral suppression assays, generated all figures and performed all statistical analyses.  Data analysis 

was assisted by Dr. Charles R. Rinaldo and Dr. Robbie B. Mailliard. 

6.1 BACKGROUND 

Combination antiretroviral therapy (cART) has greatly reduced the morbidity and mortality 

associated with chronic HIV-1 infection.  While on cART, subjects experience partial CD4+ T cell 

recovery and decreases in AIDS-defining opportunistic infections, and many maintain plasma 

viremia at levels undetectable by standard assays (<50 copies/ml) (1, 28, 252).  Despite this, viral 

reservoirs persist in the blood, gut-associated lymphoid tissues (GALT), and other lymphatics even 

after long-term suppressive therapy (62, 109, 110, 140, 263).  Importantly, the frequency of anti-

HIV-1 CD4+ and CD8+ T cells decreases, presumably due to low antigenic stimulation consequent 

to the lower viral load (233, 267, 281). Thus, partial immune reconstitution is achieved during 

cART, but the functionality of the reconstituted immune system is limited (115).  When subjects 

are removed from cART due to drug toxicity or treatment noncompliance, there is an associated 

rebound in HIV-1 load and resumption of disease progression (61, 109, 110, 221, 340, 352).   
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It is presumed from studies in the SIV nonhuman primate model (299, 358) and 

observational studies in HIV-1-infected humans (22, 42, 189, 193, 254) that T cell immunity is the 

most important parameter in controlling virus infection in absence of cART and is paramount in 

controlling infection in concert with cART (42, 189, 254, 299).  It has been proposed that induction 

of a broad and high magnitude CTL response that is specific for the patient’s own, unique 

(autologous) virus will be effective at eliminating HIV-1-infected cells (255, 289).  Unfortunately, 

a hallmark of HIV-1 pathogenesis is the ability of the virus to escape host CTL responses through 

chronic immune activation and dysregulation (41, 172, 230) and genetic mutations during the early 

and chronic phases of the infection (132) (8, 9, 93, 246).  Therapeutic approaches have therefore 

aimed to enhance anti-HIV-1 CTL activity in subjects on cART, when the viral burden is 

minimized and partial immune reconstitution has occurred (17, 251, 351, 366).  However, latently-

infected cells do not express viral proteins during suppressive cART and are therefore undetectable 

by the immune system (310).  Hence, to effectively control HIV-1 replication and ultimately cure 

HIV-1 infection, a “shock and kill” approach has been proposed. In this concept, cells harboring 

the latent virus reservoir are induced (the “kick”) to produce viral protein antigens, together with 

a potent immunotherapy that induces cytotoxic T lymphocytes (CTL) specific for the patient’s 

own, unique (autologous) virus (the “kill”) (82). 

These immunotherapies aim to induce primary immunity from naïve CD8+ T cells or 

reactivate a dormant or dysfunctional recall CD8+ T cell response in subjects on cART.  We have 

previously shown that monocyte-derived dendritic cells (DC) engineered ex vivo are capable of 

revealing CD8+ T cell responses to autologous and consensus HIV-1 peptide antigens in subjects 

on cART and during untreated infection (chapters 3 and 4 above) (155), thus supporting the use of 

DC in treatments that reactivate HIV-1-specific recall T cells.  Additionally, Shan et. al. 
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demonstrated the ability of ex vivo antigen-stimulated CD8+ T cells to eradicate reactivated CD4+ 

T cells harboring latent HIV-1 (306), again underscoring the potential usefulness of reinvigorating 

a quiescent CTL response.  It is currently unclear, however, if the repertoire and function of naïve 

and memory T cells in these subjects have been sufficiently restored to respond to a potent DC 

immunotherapy targeting the viral reservoir. 

Abnormalities in T cell receptor (TCR) diversity and function, including responsiveness to 

neo-antigens, have been reported following chronic HIV-1 infection (178).  It may be that naïve T 

cells present in long term, HIV-1 chronically infected subjects on cART do not have the TCR 

repertoire or functional capacity to respond to primary stimulation against autologous HIV-1, or 

that viral escape has specifically evaded potential recognition by this new repertoire of naïve T 

cells.  Additionally, prolonged antigenic stimulation in chronic infection results in T cell 

exhaustion that persists during cART (41, 172, 230).  DC, the most potent antigen-presenting cells, 

may further exhaust the HIV-1-specific memory subset in an immunotherapy.  We believe naïve 

CD8+ T cells from subjects on long-term suppressive cART can successfully respond to primary 

DC stimulation against the autologous HIV-1 reservoir, and that they will be superior CTL in 

comparison to memory T cells that have undergone the same stimulation. 

To address these hypotheses, we established an in vitro model of dendritic cell (DC) 

immunotherapy to evaluate priming of naïve CD8+ T cells and “re-conditioning” of memory CD8+ 

T cells targeting the autologous HIV-1 cART reservoir.  For the first time, we show that naïve 

CD8+ T cells from subjects on cART can be primed to the HIV-1 reservoir and can eliminate 

infected CD4+ T cells following an in vitro DC prime-boost regimen.  We also show that memory 

T cells exposed to the same stimulation secrete proinflammatory cytokines but do not have CTL 
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effector function.  Together, these data support use of DC immunotherapy targeting the naïve 

subset in subjects on cART. 

6.2 METHODS 

6.2.1 Study subjects 

Four HIV-1 infected subjects were chosen from the MACS, a natural history study of men 

who have sex with men for which the methodologies have been described previously (87, 171).  

Human subject approval was obtained from the University of Pittsburgh Institutional Review 

Board.  These subjects were chosen based on their prolonged enrollment in the study (>20 years), 

typical course of disease progression, and favorable response to combination antiretroviral therapy 

(cART).  Subject S1 was determined to be HLA A*0201/B*0702 positive by high resolution PCR 

genotyping (Tissue Typing Laboratory, University of Pittsburgh Medical Center), whereas 

subjects S2, S3, and S8 were positive for the HLA A*2402 allele.  All four subjects were enrolled 

in the MACS prior to seroconversion to HIV-1.  Seropositivity was confirmed by positive enzyme-

linked immunosorbent assay (ELISA) for the presence of HIV-1 p24 and a Western blot with 

bands corresponding to at least two of the Gag, Pol, and Env proteins (171).  Blood specimens and 

epidemiological and clinical data were collected at each visit, as described previously (307).  All 

four subjects progressed to AIDS as defined by the CDC (<200 CD4+ T cells/mm3) within 8.3 

years after seroconversion.  These subjects received combination ART (cART) and maintained 

plasma HIV-1 RNA below 20 copies/ml at most post-cART visits. 
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6.2.2 Induction and isolation of HIV-1 from latently-infected CD4+ T cells 

We used a previously described virus culture assay to induce HIV-1 production by latently-

infected CD4+ T cells obtained during or immediately prior to cART (195, 311) in subjects S2, S3, 

and S8.  Briefly, 1x106 CD4+ T cells were isolated from cryopreserved PBMC obtained <2 years 

post-cART using a negative CD4+ T cell enrichment kit per the manufacturer’s instructions 

(STEMCELL Technologies Inc, Vancouver, BC).  1x107 fresh, irradiated PBMC from an HIV-1-

negative donor were co-cultured with patient-derived CD4+ T cells in IMDM supplemented with 

10% heat-inactivated fetal bovine serum (FBS), 50 μg/ml gentamicin (Life Technologies, 

Carlsbad, CA), 100 U/ml IL-2 (Prometheus Labs, San Diego, CA), and 1 μg/ml PHA (Sigma-

Aldrich, St. Louis, MO) at 37°C in a 5% CO2 atmosphere. On day 2, 4x106 CD4+ lymphoblasts 

that had been activated for 2 days with 100 U/ml IL-2 and 0.5 μg/ml PHA were added to the virus 

cultures.  On day 7 and every 7 days thereafter, CD4+ lymphoblasts were again added to the virus 

cultures, splitting cells and replenishing media as needed.   The presence of HIV-1 in culture 

supernatants was evaluated every 3 days by p24 ELISA (Zeptometrix, Buffalo, NY).  Cultures 

were terminated and supernatants were collected when the concentration of p24 reached or 

exceeded 20,000 pg/ml.  The virus was filtered 5 times through centrifugal filtration devices 

(Millipore, Billerica, MA) to remove any contaminating cytokines from the prolonged cell culture.  

The purified virus was then resuspended in RPMI/10% FBS, and frozen at -80°C until use.  p24 

ELISA was performed on each aliquot to determine the concentration of virus in each sample. 
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6.2.3 HIV-1 sequencing and peptide synthesis 

For subject S1, sequencing of plasma HIV-1 was performed as described previously (307).  

For subjects S2, S3, and S8, only gag sequencing was performed.  To do this, viral RNA was 

manually extracted from cell culture supernatants using a viral RNA mini kit (Qiagen, Valencia, 

CA).  cDNA synthesis was performed using Nef3 (TAAGTCATTGGTCTTAAAGGTACC) and 

RT2 (GTATGTCATTGACAGTCCAGC) primers with SuperScript III Reverse Transcriptase 

(200 U/ml; Invitrogen, Carlsbad, CA).  Endpoint dilution methodology was used prior to viral gene 

amplification to avoid template resampling.  Multiplex first-round PCR was performed with the 

Gag1 (GAGGCTAGAAGGAGAGAGATGG) and RT2 primers.  Singleplex second round PCR 

was performed with Gag2 (GTGCGAGAGCGTCGGTATTAAGCG) and RSP15R 

(CAATTCCCCCTATCATTTTTGGTTTCC) primers.  PCR products were run on a QIAxcel 

automated electrophoresis system (Qiagen, Valencia, CA) and Sanger sequencing was performed 

on samples with positive bands (High Throughput Genomics Center, Seattle, WA).    

For subject S1, 11 peptides representing autologous variants of known HLA A*0201 and 

B*0702 CTL epitopes were synthesized.  For subjects S2, S3, and S8, a library of 18mers 

representing the consensus autologous Gag sequence detected during cART was generated using 

PeptGen on The Los Alamos Database website (http://www.hiv.lanl.gov/content/immunology) 

and was synthesized for each subject (Sigma Aldrich, St. Louis, MO).  Peptides were resuspended 

in 50μl sterile DMSO and were frozen in AIM V at 1mg/ml at -80°C. 
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6.2.4 Isolation of monocytes and peripheral blood lymphocytes 

PBMC were purified from leukapheresis product by Ficoll density separation, and was 

further separated into monocytes and peripheral blood lymphocytes (PBL) by Percoll density 

separation.  Monocytes and PBMC were frozen in FBS/10% DMSO in aliquots of 10M cells/vial.  

Fresh peripheral blood lymphocytes (PBL) were used immediately for purification of naïve and 

non-naïve CD4+ and CD8+ T cells. 

6.2.5 Purification of naïve and non-naïve CD4+ and CD8+ T cells 

Fresh PBL were resuspended in PBS and stained with CD3 PerCP (BD Pharmingen), CD4 

Pacific Blue (BD Pharmingen), CD8 PerCp-Cy5.5 (BD Pharmingen), CD45RA APC-Cy7 (BD 

Pharmingen), CD62L APC (BD Pharmingen), CD31 PE (BD Pharmingen), and CCR7 FITC 

(R&D Systems).  Cells were washed with PBS and resuspended at 107/ml in IMDM/10% FBS.  

Naïve CD4+ (CD3+/CD4+/CD45RA+/CD62L+/CCR7+/CD31+) and naïve CD8+ 

(CD3+/CD4+/CD45RA+/CD62L+/CCR7+) T cells, as well as the non-naïve CD4+ and CD8+ T cells 

were purified to >97% using a BD FACS Aria IIu sorter.  Purified naïve populations were tested 

for the presence of contaminating memory cells in an overnight IFNγ ELISpot assay using a 

combination of CMV, EBV, and flu peptides as antigen. 
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6.2.6 Generation of monocyte-derived DC and CTL effector populations 

Monocyte-derived DC were generated from each subject as previously described (67) with 

minor modifications. Briefly, monocytes were thawed and cultured in 10% FBS/IMDM with 1,000 

U/ml recombinant GM-CSF (Bayer Healthcare, Montville, NJ) and 1,000 U/ml recombinant IL-4 

(R & D Systems, Minneapolis, MN). On day 5, ~0.5 million immature DC (iDC) were incubated 

with 50,000 pg of purified autologous AT-2 inactivated HIV-1 or peptide epitope variant (5μg/ml) 

for 2h. iDC  were then treated with recombinant CD40L (0.5 µg/ml; Enzo, Farmingdale, New 

York) and IFN-γ (1000 U/ml; R&D Systems) for 48h.  Mature, antigen-loaded DC were harvested 

and γ-irradiated (3,000 Rads) to kill any contaminating memory T cells in the DC cultures. 

Mature, antigen-loaded DC were co-cultured with PBMC obtained prior to seroconversion, 

naïve CD4+ and CD8+ T cells (used for priming) obtained post-cART, or non-naïve CD4+ and 

CD8+ T cells (used for in vitro sensitization) obtained post-cART at a DC:T cell ratio of 1:10 for 

12 days, supplementing recombinant IL-2 (100 IU/ml; Chiron, Emeryville, CA), IL-7 (10 ng/ml; 

Miltenyi, Auburn, CA), and IL-15 (2.5ng/ml; PeproTech, Rocky Hill, NJ) every 3 days.  T cell 

cultures were then restimulated with mature, autologous DC loaded with the peptide antigen used 

in the initial stimulation or autologous AT-2 inactivated HIV-1 and were cultured for an additional 

7 days, again supplementing with IL-2, IL-7, and IL-15 every 3 days.  Bulk T cells were isolated 

from primary and IVS cultures by negative selection using a T cell enrichment kit (EasySep, 

STEMCELL Technologies).  Ex vivo T cells were generated by isolating bulk T cells from 

contemporaneous PBMC using a negative T cell enrichment kit (EasySep, STEMCELL 

Technologies) and culturing in IMDM/10% FBS supplemented with IL-2 (100 IU/ml) and IL-7 

(10 ng/ml) for 2d.  Ex vivo, primary, and IVS T cells were then used in functional assays. 
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6.2.7 IFNγ ELISpot 

ELISpot assays were performed as previously described (67, 156). Briefly, 96 well plates 

were coated overnight with 1 µg/ml anti-human IFNγ mAb 1-D1K (Mabtech, Stockholm, Sweden) 

at 4oC.  For subject S1, CD8+ T cells were isolated from pre-seroconversion in vitro priming 

cultures or from PBMC obtained late post-cART using a custom CD8+ negative isolation kit 

without the CD56 marker (EasySep, STEMCELL Technologies, Vancouver, BC).  For analysis of 

responses against peptide epitopes, CD8+ T cells were incubated with 1 μg/ml relevant peptide or 

EBV for 18h at 37 oC in a 5% CO2 atmosphere.  For analysis of responses against overlapping Gag 

18mers in subjects S2, S3, and S8, autologous iDC were loaded with 1 µg/ml individual 18mers 

or a positive control pool consisting of CMV, EBV, and flu peptides for 2 hr at 37oC.  Ex vivo, in 

vitro priming, and in vitro-sensitized (IVS) T cells were incubated with antigen-loaded iDC at a 

stimulator:responder ratio of 1:10 in IMDM/10% FBS for 18 hr at 37 oC in a 5% CO2 atmosphere.  

Following incubation, wells were washed with PBS/0.05% Tween-20 (Fisher Scientific, 

Pittsburgh, PA) and were treated with biotinylated anti-IFNγ mAb (1 µg/ml; Mabtech, Stockholm, 

Sweden).  Plates were washed with PBS/0.05% Tween 20 and incubated with an avidin-peroxidase 

complex (Vectastain ABC Kit, Vector Laboratories, Burlingame, CA) for 45 min at room 

temperature.  Plates were washed with 0.05% Tween 20/PBS and PBS alone to remove unbound 

complexes followed by peroxidase staining with diaminobenzidine solution (Sigma, St Louis, 

MO) for 5 min at RT.  IFNγ spot-forming cells (SFC) were enumerated using an AID ELISpot 

reader (Cell Technology, Columbia, MD).  Results reported represent the mean values of 

duplicates when available and are expressed as SFC/106.  T cell responses were considered positive 

and antigen-specific after subtraction of the mean number of spots stimulated by DC alone plus 2 

standard deviations. 
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6.2.8 Generation of autologous HIV-1-infected CD4+ T cells 

Autologous CD4+ T cells were infected with autologous HIV-1 as described previously 

with minor modifications (56, 290).  Contemporaneous PBMC were depleted of CD8+ T cells 

using a CD8 T cell positive isolation kit (EasySep, STEMCELL Technologies).  The CD8neg 

population was cultured for 2d in IMDM/10% FBS in the presence of IL-2 (100 IU/ml) and PHA 

(1 μg/ml; Sigma-Aldrich) to induce T cell activation.  Activated cells were washed and incubated 

for 1h in IMDM/10% FBS containing 5 μg of polybrene per ml.  Cells were again washed and 

resuspended in the concentration of purified autologous HIV-1 that resulted in 10-30% of the cells 

being infected after an additional 3d incubation in IMDM/10% FBS and IL-2 (100 IU/ml).  After 

3 days of incubation, CD4+ T cells were isolated by negative selection using a CD4+ T cell 

enrichment kit (EasySep, STEMCELL Technologies) and were stained for surface expression of 

CD8-PerCP-Cy5.5 (BD Pharmingen) and intracellular expression of HIV-1 core antigens using 

the KC57-FITC antibody (Beckman Coulter, Brea, CA) per the manufacturer’s instructions to 

confirm we had generated a pure population of CD8neg T cells, of which 10-30% were positive for 

HIV-1 (290).   

6.2.9 HIV-1-specific cytotoxicity assay 

CD8+ T cells were isolated from ex vivo, primary, and secondary cultures by negative 

selection using a custom CD8+ T cell enrichment kit without the CD56 marker (EasySep, 

STEMCELL Technologies) and were immediately evaluated for cytotoxic effector function by co-

culture with fresh autologous infected CD4+ T cells at various effector:target ratios for 18h at 37°C.  

The baseline percent of infection was determined by incubation of infected CD4+ T cells without 
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CD8+ T cells.  Co-cultures were harvested and stained for surface expression of CD8-PerCP-Cy5.5 

(BD Pharmingen) and intracellular expression of HIV-1 core antigens using the KC57-FITC 

antibody (Beckman Coulter, Brea, CA) per the manufacturer’s instructions.  Samples were run on 

a BD LSRFortessa™ flow cytometer (BD Biosciences) and were analyzed using FlowJo version 

9.6.4.  The percent of infected CD4+ T cells was determined by gating on the CD8neg population 

and then on the KC-57 (HIV core antigen)-positive subset.  The percent reduction in infected CD4+ 

T cells was determined for each condition at each E:T ratio and is in relation to the baseline 

infection rate. 

6.2.10 Statistical analyses 

Comparisons in IFNγ production to autologous peptide epitopes pre-seroconversion and 

post-cART, as well as in the responses to p17 and p24 peptide antigens, were performed using 

student’s T test.  Comparisons in ex vivo and primary T cell responses were performed using a 

paired T test, whereas evaluation of differences in IFNγ production between all three T cell 

conditions was performed using a two-way ANOVA with Tukey’s multiple comparisons post-test.  

Differences in CTL killing among the 3 T cell conditions were evaluated using a two-way ANOVA 

with Sidak’s multiple comparisons post-test.  All figures and statistics were generated using 

GraphPad Prism 6 (GraphPad Software, Inc., La Jolla, CA). 
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6.3 RESULTS 

6.3.1 Primary CD8+ T cell responses induced from pre-seroconversion and post-cART 

naïve precursors 

It is currently unclear if naïve CD8+ T cells from HIV-1-infected subjects who were 

infected for many years without cART are restored in their ability to respond to primary 

stimulation against autologous HIV-1 antigens after long-term cART.  Studies have shown the 

function and repertoire of naïve CD8+ T cells are diminished after years of chronic infection.  To 

determine if our sorted naïve CD8+ T cells were capable of responding to and recognizing 

autologous HIV-1 epitope variants at a level similar to what would have been observed prior to 

infection, we first performed Gag, Env, and Nef single-genome sequencing on plasma HIV-1 

derived from subject S1 post-cART.  We then synthesized 11 variants of known CTL epitopes that 

were detected by sequencing.  Autologous monocyte-derived DC from the same time point as 

sequencing were matured with CD40L and IFNγ and were loaded with each of the 11 epitope 

variants.  Because of limited cell numbers prior to seroconversion and the lack of any existing 

memory CD8+ T cells to HIV-1 at this time point, we used bulk PBMC as our responders in the 

pre-seroconversion condition.  Antigen-loaded DC were then used to induce primary T cell 

responses in these pre-seroconversion PBMC or purified naïve CD8+ T cells obtained from the 

same time point as sequencing (“contemporaneous”, post-cART T cells).  Following a 19-day DC 

prime-boost regimen, CD8+ T cells were isolated and the resulting responses were evaluated by 

IFNγ ELISpot (Figure 46).   
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Figure 46.  Primary CD8+ T cell responses specific for autologous epitope variants induced pre-

seroconversion and post-cART in subject S1 

Monocyte-derived DC were matured with CD40L and IFNγ and were loaded with individual peptides representing 

autologous HLA A*0201 and B*0702 epitope variants.  Antigen-loaded DC were used to stimulate primary T cell 

responses in PBMC obtained prior to seroconversion or purified contemporaneous naïve CD8+ T cells (post-cART). 

IFNγ production was evaluated by an overnight ELISpot assay.  (A)  T cell responses to each individual epitope 

variant, (B) mean IFNγ production, and (C) the cumulative response from all variants are shown as the number of 

spot-forming cells (SFC) per 106 for the pre-seroconversion and post-cART T cell conditions.  Error bars represent 

the standard deviation of duplicate wells in (A) or the response to all variants in (B).  Pre-SC, pre-seroconversion.  

***p<0.001, ****p<0.0001 
 

In cells obtained prior to seroconversion, we detected primary responses to 6 of the 11 

variants tested, whereas we observed responses of varying magnitudes to all variants in the post-

cART condition (Figure 46A).  We observed significant differences in IFNγ production between 
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the two conditions in only three of the variants tested.  Responses to TLNAWVKVV and 

FPVRPQVPL were significantly higher post-cART compared to the pre-seroconversion condition 

(p<0.0001 and p=0.0004, respectively).  Interestingly, only the TLEQVVKKL variant induced a 

higher response in the pre-seroconversion condition (p<0.0001).  There was no difference in mean 

IFNγ production when the responses to each variant were averaged for the pre-seroconversion and 

post-cART conditions (p=0.581), with the post-cART T cells producing an average of 469 SFC/106 

compared to 303 SFC/106 in pre-seroconversion T cells (Figure 46B).  To evaluate the overall 

magnitude of the primary response, we summed the IFNγ production that was detected in each set 

of T cells, with a sum of 3,333 SFC/106 in pre-seroconversion cells and 5,269 SFC/106 in post-

cART CD8+ T cells (Figure 46C).  In cells derived from pre-seroconversion PBMC, however, the 

response is more evenly distributed across 5 different variants, whereas in the post-cART CD8+ T 

cells the response is primarily toward the FPVRPQVPL and TLNAWVKVV variants. 

Nonetheless, these data indicate a sufficient capacity of naïve CD8+ T cells derived after 

many years of chronic infection and suppressive cART to develop primary responses against 

autologous epitope variants.  Because these variants were in circulation during cART, it can be 

hypothesized that an effective CTL response was not generated to these variants in vivo.  

Additionally, an effective DC immunotherapy would need to generate a response that is more 

broad and of higher magnitude than the endogenous T cell response, as these CTL failed to control 

infection naturally.  We therefore aimed to determine if the primary responses generated in vitro 

from naïve, contemporaneous (post-cART) precursors were comparable to those generated to the 

same variants in vivo.  Contemporaneous bulk CD8+ T cells were stimulated in an overnight IFNγ 

ELISpot assay with the same autologous HIV-1 epitope variants.   
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Figure 47.  Comparison of primary and recall CD8+ T cell responses to autologous HIV-1 epitope 

variants in subject S1 

CD8+ T cells were isolated from contemporaneous T cells pre-activtaed with IL-2 and IL-7 (ex vivo) or from 

the priming cultures that used contemporaneous naïve precursors (post-cART priming). Ex vivo and primary IFNγ 

production to 11 autologous variants of HLA A*0201- and B*0702-restricted CTL epitopes was evaluated in an 

overnight ELISpot assay.  Responses to each variant are shown as the number of spot-forming cells (SFC) per 106.  

Error bars represent the standard deviation of duplicate wells. ****p<0.0001 
 

We detected responses to 8 of the variants tested in the ex vivo condition (Figure 47), 

compared to all of the variants in the post-cART priming condition (Figures 46A and 47).  Similar 

to the pattern observed in pre-seroconversion primary responses, the ex vivo T cell response was 

significantly lower than the post-cART primary response to the TLNAWVKVV (p<0.0001) and 

FPVRPQVPL (p<0.0001) variants.  Ex vivo IFNγ production in response to TLEQVVEKL was 

significantly higher than that detected in the post-cART priming condition (p<0.0001).  Overall, 

there was no significant difference between the two conditions in 8 out of the 11 variants tested, 

and there was no difference in mean IFNγ production by both conditions (data not shown), 

indicating a failure of our DC-based priming method to induce a response from naïve precursors 
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that is of greater magnitude than the endogenous recall T cell response when targeting autologous 

HIV-1 epitope variants. 

6.3.2 Ex vivo T cells recognize autologous Gag p17 and p24 with variable breadth and 

magnitude 

We showed above that DC loaded with autologous HIV-1 peptide antigen induce primary 

responses from naïve precursors that are largely indistinguishable from the responses generated 

during infection.  It could be hypothesized that using a limited number of individual peptide 

epitopes did not accurately reflect the breadth and magnitude of responses that were present 

endogenously or that can be generated using a DC stimulation.  We therefore expanded our study 

to include three additional subjects who were under long-term suppressive cART (>13 years) 

following 8-10 years of untreated HIV-1 infection.  We first wanted to assess the breadth and 

magnitude of the endogenous recall T cell response that was generated during infection and that 

currently makes up the memory repertoire against the autologous reservoir virus.   These are the 

responses that would be stimulated during a therapeutic treatment interruption or a reactivation of 

the latent reservoir, and we therefore wanted a more broad understanding of the memory repertoire 

that was generated against the autologous virus.   

Autologous HIV-1 was reactivated and isolated from CD4+ T cells using a previously 

described method (195, 311).  In subjects S2 and S3, this virus was obtained after >5 years post-

cART, whereas in subject S8 this virus was isolated immediately prior to cART.  The isolated 

viruses were deemed “contemporaneous”, as HIV-1 is unlikely to undergo significant evolution 

under suppressive cART (166, 303, 304).  We performed single-genome gag p17-p24 sequencing 

on the reactivated virus and generated a library of 120, 114, and 115 overlapping 18mers 
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representing the autologous consensus Gag sequence of subjects S2, S3, and S8, respectively.  

Bulk T cells were isolated from each subject at the most recent study visit (>13 years post-cART) 

and were activated for 2 days in the presence of IL-2 and IL-7.  This brief period of activation was 

performed to allow proper detection of an antigen-specific response in freeze-thawed T cells.  

These ex vivo cells were evaluated in an IFNγ ELISpot assay for responses to each 18mer using 

immature dendritic cells (iDC) as our antigen-presenting cells. 
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Figure 48.  Ex vivo T cell responses to autologous, contemporaneous Gag peptide antigen 

Autologous monocyte-derived immature DC were loaded with individual 18mers representing autologous 

contemporaneous Gag p17 and p24 sequences and were used to stimulate pre-activated, ex vivo T cells in an overnight 

IFNγ ELISpot assay.  Responses to each 18mer are shown as the number of spot-forming cells (SFC) per 106 in 

duplicate wells (left panels) or the mean response to each p17 and p24 peptide (right panels) in subjects (A) S2, (B) 

S3, and (C) S8.  All responses are shown with the mean background +2 standard deviations subtracted.  Error bars 

represent the standard deviation of duplicate wells (left panels) or the standard error of the mean of all p17 or p24 

peptide responses (right panels).  
 

In subject S2, we detected recall T cell responses to 21/120 peptides (17.5%), with 

responses ranging from 10 to 1,740 SFC/106 (Figure 48A).  Within the Gag p17 protein, 6/27 

(22.2%) peptides induced responses, whereas only 15/93 (16.1%) p24 peptides induced responses.  



 204 

In subject S3, we detected responses to 91/114 (79.8%) peptides, with IFNγ production ranging 

from 13 to 1,713 SFC/106.  In p17, 18/26 (69.2%) peptides were recognized whereas 72/88 (81.8%) 

peptides were recognized in p24 (Figure 48B).  In subject S8, 47/115 (40.9%) peptides were 

recognized and responses to these ranged from 10 to 7,896 SFC/106 (Figure 48C).  In this subject, 

we detected IFNγ production in response to 11/27 (40.7%) p17 peptides and 36/88 (40.9%) p24 

peptides.  There were no significant differences in the mean IFNγ response between p17 and p24 

in any of the subjects, suggesting an equal distribution of the response between the two Gag regions 

(Figure 48 A, B, and C).   

In summation, subjects S2 and S8 showed limited breadth in their endogenous responses 

to autologous Gag peptide antigen.  In subject S3, we detected responses of high magnitude that 

broadly targeted the two proteins.  Despite this, these T cells failed to control the virus in chronic 

HIV-1 infection.  As we now evaluated IFNγ production in response to many autologous peptide 

antigens, these responses serve as a baseline for which to compare our in vitro method of enhancing 

ant-HIV-1 CD8+ T cell immunity. 

6.3.3 T cells primed to autologous HIV-1 in vitro are of higher breadth and magnitude 

than responses detected ex vivo   

We next aimed to determine if DC loaded with whole autologous virus could induce a 

broad primary response from contemporaneous naïve precursors.  Immature DC were loaded with 

autologous AT-2 inactivated HIV-1, matured with CD40L and IFNγ, and were cultured with 

purified contemporaneous naïve T cells in an in vitro 19 day prime-boost regimen.  Primary CD3+ 

T cells were isolated and evaluated for IFNγ production against the overlapping 18mers previously 
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used in Figure 48 to determine if a broad and robust response was generated against the autologous 

Gag sequence using our in vitro priming method. 

 

Figure 49.  Primary T cell responses specific for contemporaneous Gag p17 and p24 peptide antigens 

Contemporaneous immature DC (iDC) were loaded with autologous, AT-2 inactivated HIV-1 and were matured with 

CD40L and IFNγ for 2 days.  Mature antigen-loaded DC were γ-irradiated and used to stimulate primary HIV-1-

specific T cells from purified contemporaneous naïve precursors.  Autologous monocyte-derived iDC were loaded 

with individual 18mers representing autologous contemporaneous Gag p17 and p24 sequences and were used to 

stimulate pre-activated, ex vivo T cells in an overnight IFNγ ELISpot assay.  Responses to each 18mer are shown as 

the number of spot-forming cells (SFC) per 106 in duplicate wells (left panels) or the mean response to each p17 and 

p24 peptide (right panels) in subjects (A) S2, (B) S3, and (C) S8.  All responses are shown with the mean background 

+2 standard deviations subtracted.  Error bars represent the standard deviation of duplicate wells (left panels) or the 

standard error of the mean of all p17 or p24 peptide responses (right panels).  ns, not significant.  ****p<0.0001, 

*p<0.05. 
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In subject S2, we generated primary responses against 99/120 (82.5%) of the 18mers tested, 

with 100% of p17 and 72/93 (77.4%) of p24 peptides being recognized and responses ranging 

from 10 to 1,708 SFC/106 (Figure 49A, left panel).  The mean IFNγ production against p17 

peptides was significantly higher than the response against p24 peptides (p=0.014), despite there 

being 8 p24 peptides that induced responses >1,000 SFC/106 compared to only one variant 

inducing this magnitude of response in p17 (Figure 49A, right panel).  In subject S3, primary 

IFNγ production ranged from 30 to 5,967 SFC/106, with a total of 95/114 (83.3%) peptides being 

recognized.  Within p17, 100% of peptides were recognized, whereas 69/88 (78.4%) of p24 

peptides were recognized (Figure 49B, left panel).  Mean IFNγ production in response to the p17 

peptides was significantly higher than the mean response to p24 peptides (p<0.0001, Figure 49B, 

right panel).  Among the peptides inducing IFNγ production, the range is similar between the two 

proteins, with a range of 207 to 6,167 SFC/106 in p17 and 63 to 5,966 SFC/106 in p24, despite 

more peptides inducing no response in p24 than p17.  In subject S8, we detected primary responses 

against 101/115 (87.8%) peptides that ranged from 54 to 4,294 SFC/106, with 21/27 (77.8%) p17 

peptides and 80/88 (90.9%) p24 peptides giving a positive response (Figure 49C, left panel).  

There was no significant difference in the mean IFNγ production against peptides from p17 and 

p24 (Figure 49C, right panel).   

We then compared the primary responses induced from naïve precursors to those detected 

against the same peptide antigens in contemporaneous ex vivo T cells.  This comparison would 

allow us to determine if using DC loaded with whole, autologous HIV-1 induced a primary 

response that was of higher magnitude and breadth than the endogenous recall response. 
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Figure 50.  Priming of naïve T cells to autologous HIV-1 induces antigen-specific responses that are of 

greater magnitude than the endogenous recall response  

The IFNγ ELISpot data generated in figures 48 and 49 were evaluated in pairwise comparisons for differences in the 

magnitude between the endogenous ex vivo response and the primary response induced in vitro in subjects (A) S2, (B) 

S3, and (C) S8.  The differences between responses against peptides from the p17 (left panels) and p24 (middle panels) 

proteins were evaluated, as well as the difference in response to all peptides combined (right panels). *p<0.05, 

****p<0.0001 
 

 

In subjects S2 (Figure 50A), S3 (Figure 50B), and S8 (Figure 50C) we were able to 

generate significantly higher primary responses from naïve precursors in comparison to the 

endogenous responses generated in vivo.  In fact, when we evaluated responses to peptide antigens 
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based on the protein from which they were derived, primary responses were significantly higher 

than ex vivo responses against the p17 peptides (Figure 50, left panels, p<0.0001 for all) and p24 

peptides (Figure 50, middle panels) for subjects S2 (p<0.0001), S3 (p=0.039), and S8 (p<0.0001).   

 

 

Figure 51.  Primary stimulation of naïve T cells increases the breadth of responses to autologous HIV-

1 antigen 

The number of Gag p17 (black) and p24 (gray) 18mers that induced responses above background (the average SFC/106 

of duplicate wells without peptide plus 2 standard deviations) and were greater than 10 SFC/106 in ex vivo and primary 

T cells were counted for subjects S2 (left panel), S3 (middle panel), and S8 (right panel). 
 

We then wanted to determine if naïve T cell priming also enhanced the breadth of the 

response, i.e. the number of peptide variants that were recognized.  In all three subjects, the number 

of variants that induced IFNγ production was higher in the primary condition than in ex vivo T 

cells (Figure 51).  These findings suggest that, not only did our in vitro priming method 

successfully prime naïve T cells to whole inactivated HIV-1, but the resulting T cells recognize 

autologous Gag antigens with a higher breadth and affinity than endogenous T cells. 

Comparing primary and ex vivo IFNγ production to autologous HIV-1 antigen derived from 

the reservoir virus allows us to conclude that naïve T cells from subjects on long-term cART are 

capable of mounting primary responses that are of significantly higher magnitude than the response 

generated in vivo if they are given the appropriate stimulation and are in the absence of chronic 
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immune dysfunction.  However, these findings do not address the effects of a DC prime-boost 

regimen on the existing dysfunctional T cell population. 

6.3.4 DC sensitization of non-naïve T cells results in responses of variable breadth and 

magnitude against autologous Gag antigens 

While inducing a primary response using DC immunotherapy would allow us to pick the 

antigen to which we want the cells to respond, it has been proposed that reactivating the quiescent, 

dysfunctional memory response may be effective as well.  In fact, DC can “re-condition” 

dysfunctional T cell responses to melanoma-associated antigens from those predominantly 

producing the type-2 cytokine IL-5 to those producing the type-1 cytokine IFNγ (346).  

Additionally, it has yet to be explored how a long-term DC stimulation would impact an antigen-

specific population with regulatory and exhaustion defects from years of chronic HIV-1 infection 

(162, 269, 296).  We therefore used purified T cells that were not included in the “naïve” sorting 

gate (“non-naïve” cells) in our in vitro priming model.  Since these cells were probably largely 

antigen-experienced, the T cells resulting from this protocol were deemed “secondary”.  Following 

the 19-day DC stimulation with autologous AT-2 inactivated HIV-1, we evaluated the expanded, 

secondary T cells for IFNγ production against the overlapping Gag 18mers used previously.   
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Figure 52.  Secondary, DC-stimulated T cell responses to autologous Gag peptides  

Contemporaneous immature DC (iDC) were loaded with autologous, AT-2 inactivated HIV-1 and were matured with 

CD40L and IFNγ for 2 days.  Mature antigen-loaded DC were γ-irradiated and used to stimulate autologous 

contemporaneous non-naïve T cells.  Autologous monocyte-derived iDC were loaded with individual 18mers 

representing autologous contemporaneous Gag p17 and p24 sequences and were used to stimulate secondary T cells 

in an overnight IFNγ ELISpot assay.  Responses to each 18mer are shown as the number of spot-forming cells (SFC) 

per 106 in duplicate wells (left panels) or the mean response to each p17 and p24 peptide (right panels) in subjects (A) 

S2, (B) S3, and (C) S8.  Responses in subjects S2 and S3 are shown with the mean background +2 standard deviations 

subtracted.  Responses in subject S8 are shown as the number of SFC/106 in single wells above background.  Error 

bars represent the standard deviation of duplicate wells (left panels) or the standard error of the mean of all p17 or p24 

peptide responses (right panels).  ns, not significant.  *p<0.05. 
 

In subject S2, secondary T cells responded to 23/120 (19.2%) peptides, with 4/27 (14.8%) 

p17 and 19/93 (20.4%) p24 peptides inducing IFNγ production (Figure 52A).  Pairwise 

comparisons showed no significant difference in the mean IFNγ response induced by peptides 
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derived from either protein.  Secondary T cell responses were more prevalent in subject S3, with 

62/114 (54.4%) giving positive results (Figure 52B).  We detected responses to 8/26 (30.8%) p17 

peptides and 54/88 (61.4%) p24 peptides in this subject.  The average response generated against 

p24 peptides was significantly higher than that generated against p17 peptides (p=0.014).  Finally, 

IFNγ production by secondary T cells from subject S8 was observed in 58/115 (50.4%) peptides, 

with 21/27 (77.8%) p17 and 37/88 (42.0%) p24 peptides inducing responses (Figure 52C).  The 

average response induced by p24 peptides was significantly lower than the response induced 

against p17 peptides (p=0.01) in this subject.   

As we already showed a significant enhancement of the response to autologous antigens 

when using primary T cells compared to ex vivo T cells, we next wanted to determine how the 

secondary response compares to the previous two T cell conditions.  We therefore determined if 

secondary T cells enhanced the endogenous response and if they were of a different magnitude 

than the primary T cells induced from naïve precursors.  By combining the data generated in 

figures 48, 49, and 52, we were able to observe stark differences between the three T cell 

conditions. 

 

Figure 53.  Comparison of IFNγ responses to all autologous Gag antigens evaluated in ex vivo, primary, 

and secondary T cells 

The IFNγ ELISpot data generated in figures 48, 49, and 52 were evaluated in pairwise comparisons for differences in 

the magnitude between the endogenous ex vivo response and the primary and secondary responses induced in vitro in 

subjects (A) S2, (B) S3, and (C) S8.  Responses are shown as the mean number of spot forming cells (SFC) above 

background in duplicate wells for each Gag 18mer in each T cell condition.  ns, not significant.  **p<0.01, 

****p<0.0001 
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When comparing the responses of all three T cell conditions, primary IFNγ production was 

significantly higher than the secondary response in subjects S2 (Figure 53A), S3 (Figure 53B), 

and S8 (Figure 53C) (p<0.00001 for all).  The secondary T cell response was not different from 

the ex vivo response in subjects S2 and S3, however it was higher than the ex vivo response in 

subject S8 (p=0.0001).  These findings indicate that DC-mediated stimulation of non-naïve T cells 

was unable to enhance the endogenous HIV-1-specific T cell response in 2 of the 3 subjects.  

Despite this, we still observed high magnitude IFNγ responses to at least a few of the Gag 18mers 

in each subject, with more being recognized following secondary stimulation in subjects S3 and 

S8 than in subject S2.   

It is plausible that the differences observed in mean IFNγ production were skewed because 

of the high number of peptides that induced no response in the ex vivo condition.  We therefore 

wanted to determine if the magnitude of the IFNγ response was specifically increased in response 

to peptide antigens to which we detected responses in the ex vivo condition.  Evaluating the data 

in this fashion would allow us to determine if in vitro priming or secondary stimulation specifically 

enhanced the responses that were already present in the ex vivo condition.  We therefore compared 

IFNγ ELISpot data for the Gag 18mers that induced positive responses in ex vivo T cells (Figure 

54).   
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Figure 54.  Comparison of IFNγ responses specific for autologous Gag antigens that induced responses 

in ex vivo T cells 

The IFNγ ELISpot data shown in figure 53 were transformed to only include responses to variants to which 

we detected positive IFNγ production in the ex vivo condition in subjects (A) S2, (B) S3, and (C) S8.  Responses are 

shown as the mean number of spot forming cells (SFC) above background in duplicate wells for each Gag 18mer in 

each T cell condition.  Error bars represent the mean of all values +/- SEM.  **p<0.01, ***p<0.001 
 

Surprisingly, the significant differences observed between the ex vivo and primary 

responses in subjects S2 and S3 (Figure 53 A and C, respectively) were completely abrogated 

when adjusting our analysis to only include variants giving positive responses in the ex vivo 

condition (Figure 54A and B).  Only subject S8 retained the difference between the ex vivo and 

primary conditions (Figure 54C).  Additionally, there was no longer a difference between the 

primary and secondary conditions in subjects S2 and S8 (Figure 54 A and C, respectively).  Of 

note, secondary responses were significantly lower than ex vivo responses in subject S3 after 

removal of variants that induced no response in ex vivo T cells (Figure 54B).  These data give a 

closer insight into the dynamics of the response within the breadth of the ex vivo condition, and 

show no universal enhancement of either in vitro priming or secondary stimulation compared to 

ex vivo. 
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6.3.5 Analysis of CTL effector function against autologous HIV-1-infected CD4+ T cells 

We showed above that in vitro sensitization of non-naïve T cells results in IFNγ production 

that is significantly lower than the primary response generated from naïve precursors, but is still 

high in magnitude against some of the Gag antigens evaluated, particularly those that induced 

responses in the ex vivo condition.  While IFNγ production is a good way to validate the existence 

of an immune response, it is not necessarily correlative of a cytolytic effector function.  We 

previously described a mechanism by which cytokine secretion is not necessarily correlative of 

CTL killing, and in fact activation of antigen-specific T cells with a similar, but different antigen 

resulted in high levels of cytokine production without the associated CTL response (217).  We 

therefore needed to determine if the IFNγ production detected in in vitro-sensitized and primary 

CD8+ T cells was indicative of CTL effector function, and if the DC-based secondary stimulation 

or priming methods were able to generate CTL capable of eliminating autologous infected CD4+ 

T cells with greater efficiency than the endogenous CD8+ T cells that were generated in vivo.  To 

address this, we evaluated primary and secondary CD8+ T cells for their ability to kill autologous 

CD4+ T cells infected with the autologous contemporaneous virus that was derived from latently-

infected cells and compared this CTL elimination to that observed in ex vivo CD8+ T cells. 
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Figure 55. Ex vivo, primary, and secondary CTL-mediated reductions in autologous CD4+ T cells 

infected with the autologous HIV-1 reservoir virus 

Contemporaneous autologous CD4+ T cells from subjects S2 (left panel), S3 (middle panel), and S8 (right panel) were 

infected for at least 2d with autologous HIV-1 derived from the cART reservoir to obtain a population in which 10-

30% of the cells stained positive for intracellular HIV-1 by flow cytometry. Ex vivo (black triangle), primary (open 

circle), and secondary (open square) CD8+ T cells were isolated and co-cultured with infected CD4+ T cells for 18h at 

various effector:target ratios.  Data are shown as the mean percent reduction in infected CD4+ T cells compared to 

infected targets without effector CD8+ T cells.  Percent reduction was determined by flow cytometry and is shown as 

a comparison in the percent reduction induced by (A) secondary and (B) primary CD8+ T cells to endogenous CD8+ 

T cells stimulated ex vivo with IL-2 and IL-7 for 2d. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 
 

In subject S2, we did not observe secondary or ex vivo CTL elimination of virally-infected 

targets until the 1:1 E:T ratio (Figure 55A, left panel).  CTL killing peaked at the 20:1 ratio at 

30.6% and 58.4% in the ex vivo and secondary conditions, respectively.  Secondary CD8+ T cells 

significantly enhanced CTL killing above the ex vivo condition only at the 10:1 (p=0.004) and 20:1 

(p=0.003) ratios.  In subject S3, there was no identifiable pattern in target killing with increasing 

E:T ratios (Figure 55A, middle panel).  Killing by ex vivo CD8+ T cells was largely 

indistinguishable from the killing observed by secondary CD8+ T cells, with no significant 

0.1 0.5 1 5 10 20
-40

-20

0

20

40

60

80

100

E:T Ratio

Subject S3

0.1 0.5 1 5 10 20
-40

-20

0

20

40

60

80

100

E:T Ratio

%
 r

e
d
u
c
ti
o
n
 i
n
 

in
fe

c
te

d
 C

D
4

+
 T

 c
e
lls

**
**

Subject S2

0.1 0.5 1 5 10 20
-40

-20

0

20

40

60

80

100

E:T Ratio

Secondary
Ex vivo

Subject S8

0.1 0.5 1 5 10 20
-40

-20

0

20

40

60

80

100

E:T Ratio

%
 r

e
d
u
c
ti
o
n
 i
n
 

in
fe

c
te

d
 C

D
4

+
 T

 c
e
lls

*
**

** **
**

**

Subject S2

0.1 0.5 1 5 10 20
-40

-20

0

20

40

60

80

100

E:T Ratio

*

*
**

** ***
**Subject S3

0.1 0.5 1 5 10 20
-40

-20

0

20

40

60

80

100

E:T Ratio

Naive
Ex vivo

**

**
*** ****Subject S8

A

B



 216 

differences seen at any of the E:T ratios.  In subject S8, there was a general trend of increased 

reduction in infected targets with increased E:T ratios, however secondary CD8+ T cell killing was 

not significantly greater than killing by ex vivo CD8+ T cells at any of the ratios (Figure 55A, right 

panel).  These data suggest that DC secondary stimulation of CD8+ T cells does not increase their 

cytolytic effector capabilities, despite our detection of IFNγ production in response to autologous 

Gag peptide antigen.   

When evaluating CTL killing by primary T cells, we observed increases with each E:T 

ratio in all three subjects (Figure 55B).  In subjects S2 (Figure 55B, left panel) and S3 (Figure 

55B, middle panel), CTL killing by primary CD8+ T cells was significantly greater than the killing 

observed by ex vivo CD8+ T cells at every E:T ratio evaluated, with primary CTL killing peaking 

at 65.6% and 90.5%, respectively, at the 20:1 ratio.  In subject S8, primary CTL killing was greater 

than ex vivo killing at the 1:1 (p=0.005), 5:1 (p=0.004), 10:1 (p=0.0007), and 20:1 (p<0.0001) 

ratios (Figure 55B, right panel), and peaked at 91.4%.  Collectively, the data from these subjects 

show that inducing a primary CTL response from naïve precursors results in CTL that eliminate 

infected CD4+ T cells more effectively than the endogenous ex vivo-stimulated CTL.   

6.4 DISCUSSION 

In this study we have shown for the first time that naïve CD8+ T cells from subjects on 

long-term suppressive cART can respond to primary DC stimulation against the autologous HIV-

1 reservoir and are capable of exerting effector CTL function on CD4+ T cells infected with this 

same virus.  We further show that primary CTL derived from naïve precursors have superior 

cytolytic activity when compared with the endogenous, ex vivo response, thus showing that our 
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method of in vitro priming significantly enhanced the CTL response against the autologous 

reservoir.  

A major issue in HIV-1 immunotherapy approaches is which subset or subsets of T cells 

should be targeted for enhancement of antiviral activity by the HIV-1 antigen-loaded DC.  We 

propose that DC immunotherapy should target naïve T cell precursors in order to prime CTL de 

novo, and avoid or even inhibit activation of the existing, dysfunctional memory T cell population 

in an effort to revitalize their CTL function.  We have previously proposed that CTL should be 

primed from naïve precursors, as the endogenous memory T cell population has already failed to 

control virus prior to cART (280).  This is problematic, however, as studies have revealed 

decreases in the prevalence and function of naïve T cells following HIV-1 infection compared to 

uninfected controls (17, 91, 145, 364).   Failure of naïve T cells from subjects on cART to respond 

to neo-antigens has also been reported (178).  Perturbations in naïve T cells have been 

acknowledged as a potential mechanism by which CTL fail to control virus (178), as narrowing of 

the T cell receptor (TCR) repertoire decreases the number of unique antigens to which T cells can 

respond and therefore reduces the likelihood of generating a primary response to HIV-1 variants 

in vivo (120, 127).   

Prior to this study, it was unclear if naïve CD8+ T cells in these individuals were sufficiently 

restored in function and repertoire to respond to primary stimulation against the highly mutated 

HIV-1 reservoir.  We show here that naïve CD8+ T cells from subjects on cART can be primed to 

HIV-1 derived from the autologous reservoir and recognize a broad array of autologous Gag 

antigens.  Primary IFNγ production by these cells was also associated with enhanced cytolytic 

effector function against CD4+ T cells infected with the autologous virus.  We recognize that our 

study does not compare naïve T cell function in HIV-1 negative donors and acknowledge that a 
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disparity may still exist in the function of naïve T cells in HIV-1-infected subjects.  However, our 

data show that even if the function and repertoire of naïve CD8+ T cells is perturbed in subjects on 

cART, it is still sufficient to respond to and eradicate autologous virus.  Additionally, our in vitro 

findings should be interpreted with caution and are not necessarily indicative of immunotherapy 

success in vivo.  Our results merely show that naïve CD8+ T cells, in a controlled environment, 

have the repertoire and function that is required to respond to a primary HIV-1-specific 

stimulation. 

We have recently shown that cross-reactive CD8+ T cells that secrete proinflammatory 

cytokines in response to HIV-1 epitope variants do not have a cytolytic effector function and in 

fact induce maturation of bystander DC, which then promote HIV-1 dissemination (chapter 5 

above) (217).  It was from these findings that we decided to evaluate the effects of a potential DC 

immunotherapy on the memory CD8 population and compare how this response was altered from 

the one that was generated during HIV-1 infection.  Because a DC immunotherapy implemented 

on memory CD8+ T cells is not “priming”, we labeled this process a “secondary” stimulation.  We 

initially hypothesized that secondary CD8+ T cells would exhibit some level of CTL activity 

against infected CD4+ T cells, albeit at a predicted lower efficacy than the killing observed in CTL 

derived from naïve precursors.  Because the residual CD8+ T cell responses were likely specific 

for the autologous contemporaneous reservoir or the virus that was in circulation immediately prior 

to cART, we believed a reinvigoration of this response would be efficacious at inducing CTL 

effector function.  Since these CD8+ T cells were likely specific for the virus with which we were 

using in our secondary stimulation, there was no reason to suspect we would observe the negative 

effects of cross-reactive T cell responses.  Following DC secondary stimulation, these cells 

secreted high levels of IFNγ in response to a portion of the autologous Gag 18mers.  While not all 
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regions of Gag were recognized by secondary CD8+ T cells, some induced relatively robust 

responses that were greater than 4,000 SFC/106.  To our surprise, secondary stimulation resulted 

in CTL activity that was largely indistinguishable from the killing observed ex vivo, suggesting a 

DC immunotherapy may not enhance the cytolytic capacity of memory T cells but may instead 

result in a population of CD8+ T cells with limited breadth but high IFNγ secreting potential and 

limited CTL function.  

Cytokine secretion in the absence of CTL killing is not a new phenomenon.  Loffredo et. 

al. showed that IFNγ and TNFα production by CD8+ T cells in response to HIV-1 epitope variants 

was detectable at higher concentrations of peptide antigen, yet was not associated with elimination 

of target cells expressing the escape variant (208).  Another study demonstrated that escape 

variant-specific T cell responses identified in ELISpot assays failed to predict CD8+ T cell 

recognition of cells infected with the variant virus (330).  Studies in the nonhuman primate model 

have shown that cytokine-producing cells vary greatly in their ability to suppress SIV replication 

(63), thus further highlighting the possibility that a single correlate of viral control may not exist, 

and that an anti-HIV-1 CTL response may be composed of a multitude of factors (339).  

These findings are somewhat contrasting to those reported by Shan et. al., which showed 

peptide stimulation of recall CD8+ T cells facilitates elimination of the viral reservoir (306).  These 

findings would suggest that recall CD8+ T cells are capable of being revitalized to recognize and 

kill infected cells.  However, this protocol used a 6 day peptide stimulation, which is not 

comparable to our potent 21-day DC stimulation method and does not support the longevity of the 

CTL response.  The results of in vitro peptide stimulation are not comparable to those that would 

be induced in vivo, as a peptide vaccine would be readily processed and presented by an antigen-

presenting cell, such as a DC, before encountering a T cell.  This could then lead to the inability 
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to eradicate the HIV-1 reservoir that we describe here.  Additionally, this study evaluated HIV-1 

elimination over the course of 8 days, whereas we report potent CTL activity after 18 hours, 

suggesting DC stimulation may be more effective at inducing a robust anti-HIV-1 response. 

The present study, while novel, includes a small number of subjects and the findings of 

which should therefore be applied with caution.  While we anticipate that our findings will hold 

true in most subjects on cART, further work must be completed to determine the generalizability 

of our conclusions.  Future work should increase the number of subjects to determine if our 

findings represent a generalized phenomenon across HLA types and different patterns of disease 

progression.  Additionally, subjects who received cART early after becoming infected with HIV-

1 may respond to primary DC stimulation with more success than those who received cART after 

chronic infection.  These are all factors that should be addressed in continuing work.  Nonetheless, 

this study provides novel insight into the residual function of naïve CD8+ T cells in HIV-1-infected 

subjects on cART and supports further research evaluating the efficacy of DC immunotherapies.   
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7.0  DISCUSSION AND SUMMARY 

CTL are a vital component in the immunological response to HIV-1 infection (42, 189, 

254, 299).  Mutational escape in CTL epitopes contributes to viral persistence and the eventual 

progression to AIDS (58, 165).  Broad and high magnitude CTL responses have been detected in 

subjects who control infection without cART, and declining CTL responses have been reported in 

subjects who progress (19, 83) (24).  An underlying issue is that no clear correlate of CTL efficacy 

exists.  Longitudinal studies describing HIV-1-specific CTL responses typically used consensus 

peptide epitopes to stimulate PBMC, thereby ignoring autologous differences in epitope 

composition and the role of the APC in stimulating recall T cell responses.  Accurately assessing 

these recall responses is paramount in the development of immunotherapies that aim to enhance 

the breadth and magnitude of the endogenous response. 

CTL failure in chronic infection can be attributed to a combination of several factors, 

including mutational escape, increases in regulatory mechanisms, and T cell exhaustion.  Although 

partial immune restoration occurs during cART, residual CTL primed before cART still exist.  Due 

to low antigenic stimulation, it is likely that new CTL are not generated under this reconstituted 

immune system. Curative approaches for HIV-1-infected subjects on cART have therefore focused 

on generating new CTL from naïve precursors or reinvigorating dysfunctional CTL with a potent 

APC.  DC, the most potent APC, are the most promising tool for generating robust anti-HIV-1 

CTL.  Despite this, perturbations in the naïve T cell repertoire following chronic HIV-1 infection 

have left many to hypothesize that naïve T cells in subjects on cART are not capable of recognizing 

or responding to the autologous virus.  Additionally, recall T cells have been shown to be 
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detrimental if stimulated with HIV-1 epitope variants and could therefore do more harm than good 

in the context of a DC immunotherapy. 

My work has provided valuable, novel insight into the immune responses generated to 

autologous HIV-1 in chronic infection and in the methods of detecting and stimulating antigen-

specific T cell responses.  In initial studies, I identified clinical correlates of HIV-1 evolution and 

identified signatures of positive selection in CTL epitopes in HIV-1-infected subjects.  Sites under 

positive selection accumulated at an equal rate in gag and env, hence we can conclude that the 

driving force for adaptive selection was acting uniformly on both genes.  Notably, the number of 

codons under positive and negative selection did not differ between gag and env, suggesting the 

high divergence and diversity observed in env was not due to increased selective pressures but was 

potentially due to higher rates of random polymerase errors.  This furthermore shows that adaptive 

selection was equally targeted against the two proteins in spite of significant differences in genetic 

evolution.  Our observation that positive selection was not specific to CTL epitopes shows an 

efficient epitope-specific response was not generated during natural HIV-1 infection.  Of note, we 

did not observe amino acid changes within all of the known CTL epitopes.  It is plausible that 

mutations within these epitopes were detrimental to viral fitness, but there was no evidence for 

compensatory mutations within or near any of the known CTL epitopes.  Of course, these analyses 

are limited to the number of known epitopes for the HLA alleles found within our study subjects.  

Positive selection could have occurred in unidentified epitopes, and in fact it is likely that 

unidentified epitopes would have high rates of positive selection imposed on them.   

I then used the findings from our gag and env sequence analysis to evaluate CD8+ T cell 

responses to autologous variants of known and predicted HLA A*2402-restricted epitopes.  We 

identified several novel potential epitopes by using epitope prediction algorithms and generated a 
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peptide library consisting of known and predicted epitopes and their variants that evolved in each 

subject.  We wanted to identify the effects of chronic HIV-1 infection on CD8+ T cell responses 

to these variants.  IFNγ ELISpot assays showed that recall T cell responses to autologous epitope 

variants were detected at all stages of HIV-1 infection.  Importantly, our findings show for the first 

time that primary CD8+ T cell responses are generated in vivo to autologous virus and that they 

respond with the same breadth and magnitude to variants that evolved early or late post-

seroconversion, suggesting these cells have the ability to respond to mutated “escape” variants.   

We are not making the claim that our detection of cytokine secretion is indicative of CTL 

activity, but we are concluding that a primary response to these epitope variants was generated in 

vivo, although this response was likely of variable efficacy, as disease progression continued and 

many of the epitope variants persisted throughout infection.  This CTL failure was likely due to 

insufficient antigen presentation or regulatory mechanisms that impeded their CTL effector 

function.  We therefore evaluated the role of DC and Treg on antigen-specific responses.  Mature, 

autologous DC revealed broad and robust CD8+ T cell responses to autologous HIV-1 epitope 

variants regardless of disease progression, whereas the effects of Treg depletion were moderate at 

best.  While we are not discounting the role of Treg in progressive HIV-1 infection, our data would 

suggest that antigen-loaded DC readily overcome any suppressive effect imposed by Treg. 

Nonetheless, these findings provide an in-depth understanding of the breadth of T cell responses 

that are generated to autologous HIV-1 antigens.  Future studies should focus on the changes in 

cytolytic effector function against a select number of epitope variants throughout HIV-1 infection 

and should expand the study to include more subjects with a wide array of HLA alleles.   

These longitudinal findings are primarily of academic interest and have minimal, if any, 

implications in DC-based immunotherapeutic approaches.  We therefore evaluated the cytokine 
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secretion profiles of CD8+ T cells stimulated with autologous epitope variants in the presence or 

absence of DC.  We have previously shown that DC reveal polyfunctional responses specific for 

consensus MHC class I epitopes in subjects on cART (155), but studies have yet to evaluate how 

DC affect responses to autologous epitope variants.   We observed a temporal increase in the ability 

of DC to reveal bifunctional and polyfunctional CD8+ T cell responses with implementation of 

cART.  These findings show that as subjects regain their health and immune function subsequent 

to decreases in viral load, DC are more capable of enhancing responses that are associated with 

CTL effector function.  These findings support the function and potential therapeutic efficacy of a 

DC immunotherapy aimed at reviving the quiescent CTL response in subjects on cART.  As our 

study evaluated a large number of peptide epitopes, it was impractical to assess CTL killing against 

each one.  Future studies should determine if the enhanced cytokine profile observed with DC 

stimulation is associated with CTL elimination of target cells expressing the relevant antigen, and 

if differences in avidity exist between epitope variants.  

Our next goal was to determine if HIV-1 infection permanently inhibited the generation of 

T cells that targeted late epitope variants.  This is important for immunotherapeutic vaccines that 

aim to generate primary T cell responses against a late, reservoir virus.  We have previously 

demonstrated the potent capability of mature monocyte-derived DC from uninfected donors to 

induce a broad spectrum of primary CD8+ T cell responses targeting epitopes in Gag, Env, and 

Nef (67).  In the present work, we showed that DC priming of PBMC obtained prior to 

seroconversion induced T cells that recognized autologous HIV-1 epitope variants that evolved 

after the subject became infected, specifically those variants evolving late post-seroconversion.  

That is, the naïve T cell repertoire found within subject 8 before infection and immune dysfunction 

was capable of recognizing and responding to primary stimulation against the variants that evolved 
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after seroconversion.  It can therefore be assumed that the variants that evolved in this subject did 

not evolve to evade TCR or MHC recognition. This obviously would have implications in 

immunotherapy approaches, which aim to induce primary responses against these “late evolving” 

viral variants.  Even though cART has been successful at controlling HIV-1 viral load, immune 

recovery is still a challenge (72).  Our model suggests by-passing this obstacle by using DC to 

generate primary CTL in vivo while subjects are under suppressive cART (280).  These 

observations suggest therapies implicated during cART, when immune restoration has occurred, 

may be successful at inducing CTL specific for autologous viral variants. 

We then focused our work on the effects of DC stimulation on primary and recall CTL 

responses.  We explored the notion that incomplete immune escape from sub-optimal CTL 

responses could provide an advantage for the pathogen.  Using an in vitro DC-based CTL priming 

system, we show that evolutionary changes in CTL epitopes can induce a helper function in cross-

reactive CTL to promote a dysfunctional interaction with HIV-1 antigen-expressing DC.  These 

CTL do not exert their cytolytic function and instead promote DC maturation and HIV-1 

dissemination.  We propose that the virus partially evades CTL recognition to allow an ineffective 

CTL response to persist, thus allowing viral persistence in the absence of CTL elimination. The 

proposed benefit of HIV-1 to selectively induce such a host response suggests there could be an 

enrichment of certain epitope variants that promote CTL helper activity in the absence of effector 

function rather than completely evade CTL recognition.  These findings could explain why robust 

T cell responses are detected to HIV-1 epitope variants that continue to persist in chronic infection.  

For example, T cell responses to the immunodominant HLA A*0201-restricted SLYNTVATL 

(Gag p1777-85) epitope are readily detected on chronic infection, but fail to exert selective pressure 
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(45, 46, 129, 160).  Perhaps the evolution of certain epitope variants is a form of “incomplete” 

immune escape and generates an immunological environment that is suitable for viral spread. 

Based on the above findings, we hypothesized that a DC immunotherapy implemented 

during cART may be detrimental to the existing recall T cells, whereas it would be efficacious at 

inducing primary CTL responses from naïve precursors.  We therefore developed an in vitro model 

of DC immunotherapy targeting the HIV-1 reservoir to evaluate the impact of this potent 

stimulation on naïve and memory T cells obtained from subjects on cART.  For the first time, we 

show that naïve CD8+ T cells from these subjects can be induced to recognize the autologous 

reservoir and are capable of exerting effector CTL function on CD4+ T cells infected with this 

same virus.  We further show that memory T cells exposed to this same stimulation exert an 

effector function that is indistinguishable from the response that was generated in vivo, indicating 

DC stimulation had no effect on this population of T cells.  Importantly, we did observe IFNγ 

production in response to several autologous Gag antigens, further supporting our previous 

findings that cytokine secretion is not necessarily indicative of CTL function.  

Prior to this study, it was unclear if naïve CD8+ T cells in these individuals were sufficiently 

restored in function and repertoire to respond to primary stimulation against the highly mutated 

HIV-1 reservoir.  Primary CTL derived from naïve precursors had superior cytolytic activity when 

compared with the endogenous, ex vivo response and the secondary response, thus showing that 

our method of in vitro priming significantly enhanced the potential for viral eradication.  These 

findings are somewhat contrasting to previous reports suggesting naïve T cells from subjects on 

cART were impaired in their ability to respond to neoantigens.  Lange et. al. and Gelinck et. al. 

reported impaired primary responses to vaccinations in subjects on cART (122, 197), but also 

evaluated antibody responses mediated primarily by CD4+ T cells.  Dysfunctional naïve CD4+ T 
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cells may exist in subjects on cART, but immunotherapies for these subjects that induce a CD8+ T 

cell-mediated response would only require CD4+ T cell functionality for bystander “help” (31, 44, 

279, 301, 327, 328).  Because of this, results from vaccines that aim to induce antibody-mediated 

immune responses in HIV-1-infected patients should be interpreted with caution when applying 

them to analyses of potential CTL-mediated immunotherapy efficacy.  In addition, studies of 

primary immunity in HIV-1-infected subjects on cART typically compare responses to those 

observed in age-matched, uninfected controls.  The de novo response generated in an HIV-1-

infected person on cART may not be equivalent to that which is generated in an uninfected person, 

but it may be sufficient for viral clearance.  Nonetheless, we show here that DC stimulation of 

naïve T cells may be more effective at inducing potent anti-HIV-1 CTL than DC stimulation of 

memory T cells.  In addition, memory T cells stimulated with variants of their cognate antigen not 

only secreted proinflammatory cytokines in the absence of CTL effector function, but also 

promoted viral dissemination by DC, suggesting a DC immunotherapy may actually be detrimental 

to our efforts of HIV-1 eradication.  Our proposed hypothesis is shown in Figure 56.  

 



 228 

 

 

Figure 56.  Proposed effects of DC immunotherapy on naïve and memory CD8+ T cells in HIV-1-

infected subjects on cART 

DC stimulation of naïve CD8+ T cells induces primary CTL that secrete proinflammatory cytokines and eliminate 

infected CD4+ T cells.  Secondary DC stimulation of memory CD8+ T cells results in cytokine secretion without CTL 

effector function and promotes viral dissemination.  

 

 

 

 

While our findings are significant and unprecedented, they represent an in-depth analysis 

of a limited number of patients.  To further prove that the naïve repertoire in subjects on cART is 

capable of responding to DC-based priming against the HIV-1 reservoir, this study must be 

expanded to include more subjects with varying HLA phenotypes and atypical patterns of disease 

progression.  Additionally, the time after infection at which the subjects received cART could 

impact the success of their response to neoantigens, as delayed initiation of cART negatively 
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affects immune restoration (341).  Future studies should also evaluate the longitudinal changes in 

the TCR repertoire to determine how chronic HIV-1 infection affects the number and type of 

antigens that can be recognized by naïve T cells.  Even if the repertoire is severely narrowed follow 

infection and even during cART, we believe it will be sufficient to respond to primary stimulation 

against the HIV-1 reservoir if a potent DC is used. 

In conclusion, the work presented within this dissertation utilized a completely autologous 

system to dissect the immune responses that are generated during natural HIV-1 infection and 

those that could be induced using an immunotherapy.  We have provided novel insight into the 

ability of CD8+ T cells to recognize, respond to, and eliminated autologous virus even after many 

years of untreated and treated infection.  If successful, DC immunotherapies for HIV-1-infected 

persons on cART could eradicate the virus or allow these individuals to live disease-free in the 

absence of drug therapy.  Such a treatment would have vast implications in the global health arena 

and would vastly improve the quality of life for those living with HIV-1.  
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APPENDIX A 

LIST OF ABBREVIATIONS 

AIDS  Acquired Immunodeficiency Syndrome 

ANOVA Analysis of Variance 

APC  Antigen Presenting Cell 

cART  Combination Antiretroviral Therapy 

CD40L CD40 ligand 

CTL  Cytotoxic T Lymphocyte 

DC  Dendritic Cell 

ELISA  Enzyme-linked Immunosorbent Assay 

ELISpot Enzyme Linked Immunospot 

E:T  Effector to Target ratio 

FEL  Fixed Effects Likelihood 

GM-CSF Granulocyte Macrophage Colony Stimulating Factor 

GTR  General Time-Reversible 

HIV-1  Human Immunodeficiency Virus Type-1 

HLA  Human Leukocyte Antigen 

IC50  Inhibitory Concentration 50% 

ICS  Intracellular Cytokine Staining 

iDC  Immature Dendritic Cell 
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IFNγ  Interferon gamma 

MACS  Multicenter AIDS Cohort Study 

MHC  Major Histocompatibility Complex 

MIP-1β Macrophage inflammatory protein-1beta 

mRNA  Messenger Ribonucleic Acid 

PBL  Peripheral Blood Lymphocytes 

PBMC  Peripheral Blood Mononuclear Cells 

PCR  Polymerase Chain Reaction 

PolyI:C Poly inosinic acid + cytidylic acid 

PD-1  Programmed Death-1 

RNA  Ribonucleic Acid 

TCR  T Cell Receptor 

TNFα  Tumor Necrosis Factor alpha 
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APPENDIX B 

SUPPLEMENTAL FIGURES 

 

Figure 57.  Effects of Treg depletion on remaining T cell populations 

PBMC were stained for T cell and Treg markers before or after depletion of CD4+CD25+ cells by 

dual process magnetic bead separation.  (A) The efficiency of the Treg depletion kit on removing 

CD4+CD25+ T cells from PBMC populations.  (B) The effect of Treg depletion on the frequency of 

CD8+ T cells.  
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