
DESIGNATED CONFIRMER SIGNATURES:
MODELLING, DESIGN AND ANALYSIS

by

FUBIAO XIA

A thesis submitted to the

University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

School of Computer Science

College of Engineering and Physical Science

University of Birmingham

January 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Archive, E-theses Repository

https://core.ac.uk/display/18614307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

Digital signatures are one of the most significant achievements of public-key cryp-

tography and constitute a fundamental tool to ensure data authentication. However,

the public verifiability of digital signatures may have undesirable consequences when

manipulating sensitive and private information. Undeniable signatures, whose verifi-

cation requires the cooperation of the signer in an interactive way, were invented due

to such considerations. Whereafter, designated confirmer signatures (DCS) were intro-

duced as an improved cryptographic primitive when the signer becomes unavailable in

undeniable signatures.

This thesis is mainly devoted to the modelling, design and analysis of designated

confirmer signatures. By exploiting the existing security notions, we theoretically anal-

yse the relations among unimpersonation, invisibility, non-transferability and transcript-

simulatability. To this end, we develop formal proofs to demonstrate the implications

of those properties.

After providing the theoretical results related to the security model, we develop

both concrete and generic DCS constructions that adapts to a full verification setting.

On one hand, by supporting the signer’s ability to disavow, we can achieve an effi-

cient designated confirmer signatures by using bilinear maps, and such a construction

is secure in the random oracle model under a new computational assumption, called

Decisional Co-efficient Linear (D-co-L) assumption, whose intractability in pairing

settings is analysed in the generic group model. The proposed scheme is constructed

by encrypting Boneh, Lynn and Shacham’s pairing based short signatures with signed

ElGamal encryption. On the other hand, we build a generic transformation that is in-

spired by Gentry, Molnar, Ramzan’s DCS scheme. The new generic DCS scheme is

proved to be secure in the standard model, and can be implemented to obtain an ef-

ficient instantiation with a Persesen Commitment, a Camenisch and Shoup’s Paillier-

based encryption scheme and a Boneh, Lynn and Shacham’s short signature scheme.

Acknowledgements

At the very beginning, I would like to thank my supervisors, Dr. Guilin Wang, and

Dr. Volker Sorge. Without their guidance and support my thesis would not have been

possible. In particular, I devote my special gratitude to Dr. Wang, for his great patience

and long-term encouragement to my remote supervision in Australia in the last two and

a half year, and to Dr. Sorge, for his valuable advices and help from being a remarkable

lecturer in the fundamental cryptography in my Master’s study.

Besides my supervisors, I’m deeply grateful to my thesis group members, Prof.

Mark Ryan and Dr. Eike Ritter, for their insightful comments and challenging ques-

tions throughout my PhD study.

I also would like to thank all the staffs and PhD students in the Computer Security

Reading Group. The group members and its weekly meetings have been a great source

of feedback, and for years I’m benefiting and learning from the discussions. I am

particularly grateful to: Myrto Arapinis, Tom Chothia, Eike Ritter, Mark Ryan, Ben

Smyth, Shiwei Xu, Rehana Yasmine.

It gives me a great pleasure in acknowledging the support from the external re-

searchers. They are either a collaborator of my previous research or the person edu-

cated me generously in cryptography and information security. They are: Liqun Chen,

Wei Gao, Qiong Huang, Qi Xie, Rui Xue, Yunlei Zhao.

I am indebted to my many Ph.D colleagues for providing a stimulating and fun

environment in which to learn and grow. I am especially grateful to Hasan Qunoo,

Rodrigo Soares, Rehana Yasmin, Vivek Nallur, Shuo Wang, Haobo Fu, Guanzhou Lu,

Shengdong He, Handing Wang.

I would like to thank my girlfriend Zhangqi, for her encouragement, understanding,

and patience.

Finally, I am extremely appreciative of my family: Guoyu Xia and Xiaoqin Dai.

Their love and support in both mental and financial aspects have gone a long way in

helping me to achieve all that I have. They have taught me to always believe I shall

never give up. To them I dedicate this thesis.

Contents

1 Introduction 1

1.1 Motivations . 4

1.2 Contributions and Results . 5

1.3 Thesis Outline . 7

2 Preliminaries in Cryptography 11

2.1 General Definitions . 11

2.2 Provable Security . 12

2.2.1 The Random Oracle Model 13

2.2.2 The Generic Model . 16

2.3 Interactive Proofs . 17

2.3.1 Interactive Proof Systems 17

2.3.2 Zero-knowledge Proofs . 19

2.3.3 Proofs of Knowledge . 21

2.4 Pairing-based Cryptography . 22

2.5 Some Cryptographic Primitives . 24

2.5.1 Public Key Encryption Schemes 24

2.5.2 Digital Signatures . 26

2.5.3 Undeniable Signatures . 29

3 An Overview on Designated Confirmer Signatures 31

3.1 Security Model . 35

3.1.1 Definitions (Syntax) . 35

3.1.2 Security Requirements . 37

3.2 Invisibility of Zhang et al.’s DCS Scheme 42

3.2.1 Review of the Scheme . 43

3.2.2 Mounting the Attack . 44

3.3 Invisibility of Wei et al.’s DCS Scheme 46

3.3.1 Review of the Scheme . 47

3.3.2 An Attack on Invisibility . 50

3.3.3 A Repair . 51

4 A Theoretical Analysis of Security Model 53

4.1 Different Security Notions . 55

4.1.1 A Weak Security Notion: Unimpersonation 55

4.1.2 Another Notion: Transcript-simulatability 63

4.2 Is CM Model As Strong As GMR Model? 65

4.2.1 A New Definition of Non-transferability 66

4.2.2 A Proof for One Side . 68

4.2.3 A Proof for the Other Side 74

4.3 Summary . 80

5 A Paring-based DCS Scheme with Unified Verification 81

5.1 Introduction . 81

5.2 Bilinear Pairings and the BLS Signature 83

5.3 Concurrent Zero-knowledge From Honest-Verifier Zero-Knowledge . 84

5.3.1 CZK Transformation From Σ-Protocols 88

5.3.1.1 Transformation from Σ-Protocol into CZK in the

CRS Model . 89

5.3.1.2 CZK from Σ-protocols with unprogrammable RO . 90

5.4 Security Model . 92

5.5 The Proposed Scheme . 99

5.5.1 HVIZKs on Confirm and Disavow Protocols 103

5.6 Security Analysis . 107

5.6.1 Complexity Assumptions 107

5.6.2 Security Proofs . 111

5.7 A Comparison . 116

5.8 Summary . 116

6 A Generic DCS Construction with Full Verification 119

6.1 Introduction . 119

6.2 Cryptographic Primitives . 121

6.2.1 Commitment Schemes . 121

6.2.2 Secure Encryption Scheme with Labels 123

6.3 A Generic Construction of DCS with Full Verification 124

6.4 Security Analysis . 128

6.5 Implementation and Evaluation of the DCS Scheme 133

6.5.1 The instantiation . 133

6.5.2 Implementation Details . 137

6.5.3 Efficiency Analysis . 140

6.6 Summary . 141

7 Conclusions and Future Works 143

Bibliography 160

List of Figures

4.1 Impersonation Game GameUNIMP 58

4.2 Invisibility Game GameINV . 61

4.3 Non-transferability Game GameNTR−0 62

4.4 Non-transferability Game GameNTR−1 62

4.5 Transcript-simulatability Game: GameTS 62

4.6 Relations among security notions in DCS Schemes 80

5.1 The Confirm(S,V) Protocol in the concrete DCS-UV scheme 105

5.2 The Confirm(C,V) Protocol in the concrete DCS-UV scheme 106

5.3 The Disavow(S,V) Protocol in the concrete DCS-UV scheme 106

5.4 The Disavow(C,V) Protocol in the concrete DCS-UV scheme 107

List of Tables

4.1 A Truth Table . 74

5.1 Straight-line CZK protocol with unprogrammable RO 87

5.2 Comparison of The Concrete DCS-UV with Some Existing DCS Schemes

. 116

6.1 Comparison of The Generic DCS-FV with Two Similar Schemes . . . 141

Chapter 1

Introduction

It is evident that information technology provides significant change to our daily life,

especially the way people communicate. Communication systems have evolved from

pigeons carrying messages to emails and instant messages that travel long distances

within seconds. With the rapid development in information technology, the security

issue in communication systems herewith get a great deal of attention. Fortunately,

encryption technique has long been used to protect the confidentiality of messages,

while digital signatures have been adopted to guarantee the authenticity and data in-

tegrity of messages in communication systems. The concept of digital signatures is

initially introduced by Diffie and Hellman in the remarkable work [28], and later has

been widely used in communication systems to significantly reduce the costs of con-

ducting business over the Internet. As one of the most fundamental tools of public-key

cryptography, digital signatures are generated by applying a mathematical formula or

an algorithm, to scramble the information into a string of digits. Only the holder of the

private key – the signer can produce such an “electronic autograph”, and the recipient

of the signature with the public key – the verifier can verify if the signature came from

that individual. For messages distributed through a non-secure channel, a properly im-

2

plemented digital signature gives the receiver reason to believe the message being sent

by the claimed sender. In many scenarios, any change in the message after signature

will invalidate that signature, which ensures the integrity of the signed data against

tampering or corruption in the transmission.

As illuminated above, ordinary digital signatures are verifiable by anybody holding

the signer’s public key. Although the universal verifiability (or self-authentication) of

digital signatures is very convenient in most applications, however, in some scenarios,

the signer may hope the recipient of a signature would not be able to show its validity to

other parties. For instance, a signature binding parties to a confidential agreement or a

signature on documents carrying private or personal information, shall only be verified

by specific verifiers. In these cases limiting the ability of third parties to verify a

signature’s validity is an important goal. This motivates the introduction of undeniable

signatures. Chaum and van Antwerpen proposed the concept of undeniable signatures

[23] that such a signature can only be verified with the collaboration of the legitimate

signer. A distinctive feature of undeniable signatures is there exists a disavow protocol

that allows to prevent the signer from denying a valid signature.

Undeniable signatures have various applications in cryptography such as licensing

softwares, electronic voting and auctions. Considering a typical scenario in licens-

ing softwares, for instance, software vendors might want to sign on their products to

provide authenticity to their paying customers. Nevertheless, they strictly disallow dis-

honest users who have illegally duplicated their softwares to verify the validity of the

signatures. Undeniable signature scheme plays an important role here as it allows only

legitimate users to verify the validity of the signatures on the softwares.

However, for many practical applications, if the signer becomes unavailable, or

refuses to cooperate, the recipient cannot make use of the signature. Due to this reason,

designated confirmer signatures (DCS) are introduced by Chaum and van Antwerpen

3

[21] to solve this weakness, as an extension of undeniable signatures. In a designated

confirmer signature scheme, the signer is still able to interactively verify the signature

with the verifier. However, if the signer is unavailable, a semi-trusted third party called

the designated confirmer can also confirm the (in)validity of an alleged signature by

running some interactive protocols with the verifier. In general, such a verifier cannot

transfer the signature’s (in)validity to other parties by convincing them of the same fact.

Furthermore, the designated confirmer can convert a designated confirmer signature

into a standard signature when this is necessary, so that it becomes a publicly verifiable

signature.

Perhaps the most convincing example demonstrating that designated confirmer sig-

natures are better than undeniable signatures, is a job offer scenario. Alice is offered

a job by Bob and wishes to receive a formal signed offer at some point, but Bob does

not want Alice to show this offer to other potential employers. If Bob signs this offer

using an undeniable signature, he may suffer from an embarrassment that Alice wants

to expose this signed offer. In that case, Bob has no hope to deny that offer, and the

most he can do is to refuse to cooperate. To solve this problem, Carol comes to the res-

cue. Suppose Bob signs this offer with a designated confirmer signature by using his

own secret key and Carol’s public key. He could simply convince Alice that the signed

offer is legitimate, i.e., he proves to Alice he formed the signature in this way. Such

a DCS is special in that it can also be verified directly by Carol, and its distribution is

indistinguishable from a distribution that can be computed using only the public keys

of Carol and Bob. Bob can assume that nobody can forge a signature for his public key,

and that as long as Carol is honest no body learns that he signed an offer. Alice can

safely assume that Bob cannot fool her, and that if Bob denies having signed an offer

and Carol is honest, then Carol can prove to anybody that Bob is lying by convert that

designated confirmer signature into an ordinary signature of Bob that can be verified

4

by anybody.

1.1 Motivations

Since the invention of designated confirmer signatures, a number of schemes with var-

ious properties and different underlying mathematical problems have been developed.

Although a considerable amount of work has been dedicated to the design of DCS

schemes, all of the previous DCS schemes fail to support signer to disavow any in-

valid signatures. Therefore, the current concept of DCS has not yet fully inherited

that functionality from undeniable signatures, as the latter does grant the signer the

ability of disavowal. As a result, one motivation of this thesis is concerned with the

design of designated confirmer signatures that fully support signer’s verifiability, or

more precisely, “DCS with full verification”. The formal definition of this notion will

be presented in Chapter 5.

Another motivation is the confusions of the security notions in the existing DCS

models. As far as we know, In a DCS scheme, the signer’s security only requires a se-

curity notion called unforgeability, which informally means no body except the signer

can produce a valid signature on any unsigned message. However, to achieve the con-

firmer’s security, several security notions were proposed in the literature, including

unimpersonation [45, 64], invisibility [18, 32], non-transferability [18] and transcript-

simulatability [38]. Intuitively, unimpersonation means no body can impersonate the

confirmer to verify a DCS by running the confirmer’s verification protocol; invisibil-

ity requires no body can see the validity of a DCS without the verification, in other

words, an adversary who receives a DCS has no advantage than a random guess to find

the signature is valid or not; non-transferability is relates to the verification protocols,

which means one cannot get more information out of the verification protocols than

5

whether a signature is valid or not; transcript-simulatability guarantees the confirma-

tion or disavowal of a DCS should not be transferable, that is, any transcript of the

verification protocols is simulatable. Naturally, one may raise such a question: “can

a DCS cryptosystem achieves the confirmer’s security by satisfying only one or two of

them?” It is noticed that non-transferability and transcript-simulatability with different

definitions but capture the similar security requirement, and hence there may exist an

implication between these two notions. In addition, it seems also feasible to figure out

an equivalence between three security notions, that is, a DCS cryptosystem achieves

the security of transcript-simulatability, if and only if it achieves invisibility and non-

transferability. Since the relations between these security notions are not clear and have

never been formally discussed after their propositions, it is a fundamental question to

study the equivalences/implications among these security notions.

1.2 Contributions and Results

Based on the above two motivations, the key contributions of this thesis can be summed

up in two aspects. Firstly, from a modelling perspective, we prove that to achieve prov-

able security, a DCS cryptosystem only requires transcript-simulatability or alterna-

tively invisibility plus non-transferability. In other words, the security model proposed

by Camenisch and Michels [18] and the security model proposed by Gentry et al [38]

are equivalent under a proper assumption, that is if the verification protocols for DCS

schemes are based on zero knowledge proofs. However, we also prove that unimper-

sonation is implied by invisibility, which concludes that Goldwasser and Waisbard’s

security model [45] is weaker than Camenisch and Michels’ security model.

Then from the perspective of designing and analysing DCS schemes, we show that

it is feasible to construct a DCS scheme that supports the signer’s ability of disavowing

6

invalid signatures. In more details, we provide the following contributions:

• Two existing DCS schemes, i.e., Zhang et al’s DCS scheme and Wei et al’s

society-oriented DCS scheme, are insecure, and attacks against invisibility can

be identified. In particular, we fix the security flaw in one of the two schemes,

i.e., Wei et al’s scheme [83].

• A concrete DCS scheme with full verification can be constructed by using bilin-

ear maps. Such a DCS scheme is provably secure in the random oracle model

under a newly introduced computational assumption. And the intractability of

this computational assumption in pairing settings is analyzed in generic group

model. Moreover, the proposed scheme can be further transformed into a unified

verification version, which allows the signer and the confirmer to run the same

verification protocols. We also propose a very efficient way that transforms our

verification protocols into concurrent zero knowledge protocols which is invul-

nerable to any adversary during the concurrent executions of verification proto-

cols.

• A generic DCS scheme with full verification can be constructed by extending

the constructions of the improved GMR scheme in [78]. The building blocks

of this generic DCS scheme are, a statistically hiding computationally binding

commitment scheme, an IND-CCA2 secure public key encryption scheme which

supports the use of “labels”, and an EUF-CMA digital signature scheme. In ad-

dition, we give a formal security analysis, and implement an instantiation of the

generic construction by using BLS short signatures [14], Pedersen commitments

[67] and CS-Paillier cryptosystem [19].

This thesis has resulted in two publications:

7

• [86] Fubiao Xia, Guilin Wang, and Rui Xue. On the Invisibility of Designated

Confirmer Signatures. In Proceedings of the 6th ACM Symposium on Infor-

mation, Computer and Communications Security (ASIACCS’11), pp. 268-276,

ACM Press. March 22-24, 2011, Hong Kong, China.

• [80] Guilin Wang, Fubiao Xia, and Yunlei Zhao. Designated Confirmer Signa-

tures With Unified Verification. In Proceedings of the 13th IMA International

Conference on Cryptography and Coding (IMACC’11), LNCS 7089, pp. 469-

495, Springer-Verlag, 2011. December 12-15, 2011; University of Oxford, UK.

Also the following work is published during my PhD study on some topic which is not

related to designated confirmer signatures.

• [87] Qi Xie, Guilin Wang, Fubiao Xia, and Deren Chen. Provably Secure Self-

Certified Proxy Convertible Authenticated Encryption Scheme. In: Proc. of

the 4th International Conference on Intelligent Networking and Collaborative

Systems (INCoS-2012), Bucharest, Romania, September 19-21, 2012.

1.3 Thesis Outline

Chapter 2 aims at providing a brief overview of the cryptographic background re-

quired to understand the sequel of this work. After recalling the concept of “provable

security”, we discuss two commonly used idealisations of security models, namely, the

random oracle model and the generic model. Then we present a survey of interactive

proofs and zero-knowledge proofs, which are necessary in the verification protocols of

a designated confirmer signature scheme. We also introduce the pairing based cryp-

tography by recalling the definition of bilinear maps, which will be used as a building

block in the concrete DCS scheme in Chapter 5. The last section of this chapter is

8

dedicated to a review of the definitions and security notions of several cryptographic

primitives, including public key encryptions, digital signatures and undeniable signa-

tures.

Chapter 3 is devoted to general aspects of designated confirmer signatures. First

of all, we present the context and motivations in an introduction to this cryptographic

primitive, and discuss some important works among the previous DCS schemes. The

subsequent section provides a formal definition of the security model. Next to this, we

introduce two existing concrete DCS schemes which is vulnerable to some consider-

able attacks.

Chapter 4 exposes the modelling aspect of designated confirmer signatures, namely

we clarified different security notions under proper assumptions, associated with both

intuitive discussions and formal security proofs. Firstly, comparing with the properties

introduced in the previous chapter, we recall two different security notions, namely,

unimpersonation (appears in [64, 45]) and transcript-simulatability (firstly intro-

duced in [38]), and we proved the property called unimpersonation, is naturally sat-

isfied if a stronger property called invisibility (initially introduced in [18]) is satis-

fied. Next, we analyse the relations between transcript-simulatability, invisibility, and

non-transferability (appears in [58, 18]) with formal proofs. Our result shows that

transcript-simulatability in Gentry et al.’s model [38] is also implicitly covered by Ca-

menisch and Michels’ [18] DCS model.

Chapter 5 is dedicated to the design and security analysis of a new concrete desig-

nated confirmer signature scheme with unified verification. We first put forward some

building blocks of our new scheme, including bilinear pairings, and BLS signatures

[14]. Next, we develop the transformation of concurrent zero knowledge (CZK) proofs

from honest verifier zero knowledge proofs, because CZK protocols are required since

an adversary in DCS schemes may act as arbitrary cheating verifiers during the con-

9

current execution of verification protocols. Subsequently, we introduce the updated

model for DCS with unified (full) verification. Based on these results, we propose

a DCS scheme with unified verification by using BLS signature and signed ElGa-

mal encryption, and prove security results according to the definitions in the updated

security model. Furthermore, such a construction can be simply transformed into a

full-verification version.

Chapter 6 deals with the design and analysis of a generic designated confirmer

signature scheme with full verification. After presenting the context and motivation of

this work, we introduce two cryptographic primitives, that is, the commitment scheme

which is used as a “layer of indirection”, to achieve the efficient instantiations, as

well as the public key encryption scheme that supports the use of labels to enhance

the security. Next to this, we propose a generic transformation to convert any digital

signatures into designated confirmer signatures with full verification. A formal security

analysis of the proposed scheme is provided with regarding to the definitions in the

previous chapter. Subsequently, we show how to efficiently instantiate the generic

construction by properly choosing a digital signature scheme, a commitment scheme

and a public key encryption scheme.

Chapter 7 concludes this work and suggests some future research directions in

both theoretical and practical aspects concern with our results, which are worth to

investigate from our viewpoint.

10

Chapter 2

Preliminaries in Cryptography

2.1 General Definitions

To denote the set of different numbers, we use the “blackboard” font such as the set of

positive integers N, the integers Z, the real numbers R, the non-negative real numbers

R+. Throughout this thesis, λ ∈ N denotes the security parameter. The set {0, 1}∗

stands for the set of the bitstrings of arbitrary length. For any bitstring x ∈ {0, 1}∗, we

use the symbol |x| to denote its length, i.e., the number of bits it is composed of.

We consider only algorithms A which are probabilistic Turing machine that run in

time polynomial in λ unless indicated otherwise. If S is a set, then x ← S indicates

that x is chosen uniformly at random over S. We remark that, even if occasionally not

mentioned, all algorithms in this thesis receive the security parameter λ as an additional

input.

Definition 2.1. (A Negligible Function). we say that a function, ε : N→ R+ is called

negligible if for every constant c ≥ 0, there exists an integer kc such that ε(k) ≤ k−c

for all k ≥ kc. We will denote by negl(·) any negligible function.

12

2.2 Provable Security

After the first revolution in the 1970s, when the notion of public key cryptography is in-

vented by Diffie and Hellman [28], and made possible by Rivest, Shamir and Adleman

[71], cryptography underwent another revolution in the 1980s, namely, the discovery

that one could provide formal definitions of security for cryptographic problems, and

such definitions were achievable under complexity assumptions.

The term “provable security” has been criticized since security is not being proved;

only a reduction from security to some other unproved assumptions. A significant

line of research has turned out to construct proofs in the framework of complexity

theory, also known as “reductionist security proofs” [3]: the proofs provide reductions

from a well-studied problem (RSA or the discrete logarithm) to an attack against a

cryptographic protocol.

The initial attempts of defining security notions were actually trying to minimize

the required assumptions on the primitives like one-way functions without consider-

ing practicality. Therefore, one just needs to design a scheme with some polynomial

algorithms, and to present a polynomial reductions from the basic assumption on the

primitive to an attack of the security notion, in an asymptotic way. However, those re-

sults may indeed have no practical impact on actual security, because of the tightness

of a reduction. More specifically, in a non-tight reduction, one may still construct an

adversarial algorithm that breaks the cryptographic protocol within a few hours, while

the reduction leads to an algorithm against the underlying problem that requires many

years.

For a few years, people have tried to provide both practical schemes, with practi-

cal reductions and exact complexity, which prove the security for realistic parameters,

under a well-defined assumption: exact reduction in the standard model (which means

in the complexity-theoretic framework). Unfortunately, practical or even just efficient

13

reductions in the standard model can rarely be conjugated with practical implementa-

tions. Therefore, one needs to make some hypotheses on the adversary, namely, the

attack is generic, independent of the actual implementation of some components:

1. hash functions, in the random oracle model;

2. symmetric block ciphers, in the ideal-cipher model;

3. algebraic groups, in the generic model.

we give more detailed explanations about random oracle model and generic model,

which are necessary background for the sequel of this thesis. In particular, both two

models are referred in the security proofs of our DCS constructions.

2.2.1 The Random Oracle Model

In the early attempts of designing cryptographic protocols with provable security, very

few practical schemes can be proved in this “standard model”, in which the adversary

is only limited by the amount of time and computational power. In 1993, Bellare

and Rogaway [5] proposed a trade-off to achieve some kind of security validation

for cryptographic protocols, by identifying some concrete crypto-objects with ideal

random ones. The most famous identification appeared in the so-called “random-oracle

model”.

Various cryptographic schemes have adopted a hash function H, such as MD5

[70] and SHA-1 [77]. This use of hash functions was originally motivated by the

wish to sign long messages with a single short signature. In order to achieve non-

repudiation, a minimal requirement on the hash function is the impossibility for the

signer to find two different messages providing the same hash value. This property is

called collision-resistance.

14

Hash functions are found as an essential ingredient for the security of digital sig-

nature schemes, and even for the security of the most cryptographic schemes. In order

to obtain security arguments, while keeping the efficiency of the designs which use

hash functions. A few authors suggested using the hypothesis that “H behaves like a

random function”, to obtain security proofs (or more precisely “security arguments”),

while reserving the efficiency of the designs. Fiat and Shamir [31] applied the random

oracle heuristically to construct a signature scheme which is “as secure as” factoriza-

tion. Later, Bellare and Rogaway [6, 7] formalised this concept for digital signature

and public-key encryptions.

In the random-oracle model, the hash function can be formalised by an oracle that

outputs a truly random value for each new query. Certainly, identical answers are

received if the same query is asked twice. This is precisely the context of complexity

theory with “oracles”, and hence the name.

We give a formalised description as below.

Definition 2.2. The Random Oracle Model (ROM). Let G be a group of prime order

q with a generator g, a range M = {0, 1}∗ of messages, and let Zq denote the field

of integers modulo q. Let H be an ideal hash function with range Zq, modelled as an

oracle that given an input (query) inG×M , outputs a random number in Zq . Formally,

H is a random function H: G ×M →Zq chosen at random over all functions of that

type with uniform probability distribution.

Canetti, Goldreich and Halevi hold a rather negative view on the ROM-based secu-

rity proofs [20]. They demonstrate that there exists signature and encryption schemes

which are provably secure under the ROM, but cannot reserve the security in the real

world implementations. Their basic idea is to devise nasty schemes. Such a scheme

usually behaves properly as a signature scheme or an encryption scheme. However,

upon holding of a certain condition such as non-randomness is sensed, the scheme

15

becomes nasty and outputs the private signing key if it is a signature scheme, or the

plaintext message if it is an encryption scheme.

Another interesting view of ROM is given by Mao, the author of the book “Modern

Cryptography: Theory and Practice” [55]. He gives his argument in the subsection

15.2.7, under the fact revealed by the ROM-based security proof for the RSA-OAEP

(Optimal Asymmetric Encryption Padding is a padding scheme introduced by Bellare

and Rogaway [7], often used together with RSA encryption). That is, if the padding

scheme uses a truly random function, then the padding result output from OAEP is a

“plaintext” in an ideal world: it has a uniformly random distribution in the plaintext

space of the RSA function. Thus, his investigation on the strength of the RSA function

being used in the ideal world concludes that the easiest way to break the IND-CCA2

security is to solve the RSA problem first and then to do what the decryption algorithm

does. Furthermore, the ROM-based proof suggests that for a real world padding-based

encryption scheme which uses real world hash functions rather than ROs, the most

vulnerable point to mount an attack is the hash functions used in the scheme. From this

point of view, he considers that a ROM-based technique for a security proof manifests

its importance such that it suggests where to focus the attention for careful design. For

instance, in order to reach a high confidence about a padding based encryption scheme,

people should pay much attention on the design of hash function and its inputting

randomness.

Although there is an ongoing debate on whether the assumption of a random hash

function is realistic or too generous, this model has been strongly accepted by the

community, and is considered as a good one, in which security analysis give a good

taste of the actual security level. The problem is that random functions can in principle

not be implemented by public algorithms. However, even if it does not provide a

formal security proof, comparing with the proofs in the standard model without any

16

ideal assumption), it is argued that proofs in this model guarantee the security of the

overall design of the scheme provided that the hash function has no weakness. On the

other hand, proofs in the random oracle model are still widely used today as they lead

to better reductions than any other proof technique.

This model can also be regarded as a restriction on the adversary’s capabilities. It

simply means that the attack is generic without considering any particular instantiation

of the hash functions. Therefore, an actual attack would necessarily use a weakness or a

specific feature of the hash function. The replacement of the hash function by another

one would rule out this attack. On the other hand, assuming the tamper-resistance

of some devices, such as smart cards, the random-oracle model is equivalent to the

standard model, which simply requires the existence of pseudo-random functions [40,

60]. As a consequence, almost all the designs of cryptographic protocols by now

require provably security, at least in the random oracle model.

2.2.2 The Generic Model

The generic model is also an idealised cryptographic model like the random oracle

model. Researchers use this model to analyse the computational hardness assumptions,

namely, to prove a lower bound on the complexity of computing the corresponding

intractable problems. Nechaev [62] proves that the discrete logarithm problem is hard

in such a model. The generic model of algorithms was further elaborated on by Shoup

[74].

In the generic model, it is assumed that the properties of the representation of

the elements of the algebraic structure (e.g. a group) under consideration cannot be

exploited. The adversary is only given access to a randomly chosen encoding of a

group, instead of efficient encodings, such as those used by the finite field or elliptic

curve groups used in practice.. In fact, for some problems like the discrete logarithm

17

problem on general elliptic curves, exploiting the representation is not known to be

of any help, and hence generic algorithms are the best known, such an assumption is

reasonable from a practical point of view.

Generic Algorithms In order to motivate the later security proof to be introduced,

we briefly discuss generic algorithms in a cyclic group.

Let G be a multiplicative cyclic group of integers mod n, and let S be a set of bit

strings of cardinality at least n. An encoding function of G is an injective map ξ from

G into S.

A generic algorithm (adversary) A for G is a probabilistic algorithm that behaves

as follows. It takes an encoding list of the group elements as input. When the algo-

rithm executes, it may make up oracle queries from time to time. More precisely, it

specifies two exponents ρi and ρj , and a bit of operator into the encoding list. The

oracle computes ξ(ρi ± ρj), according to the operator bit, and this string is appended

to the encoding list.

Note that the algorithm A depends on S and n, but not on ξ; A can only retrieve

the information about ξ through the oracle. The term generic means that one cannot

exploit non-trivial properties of the representation of group elements, except for two

generic properties that any representation has. Firstly, one can have the equality test of

elements, and secondly one can impose a total order relation � on any representation.

2.3 Interactive Proofs

2.3.1 Interactive Proof Systems

This section introduces the notion of interactive proof systems, which is a fundamental

tool for designing cryptographic protocols. It is intended to recall some basic material

18

and to restrict to the necessary background for the sequel of this work. Most of the sub-

sequent results are taken from the book of Goldreich [39] and the paper of Goldwasser

et al. [43].

The concept of interactive proof systems (or interactive proofs) was motivated by

the need of secure cryptographic protocols, such as identification protocols. In an in-

teractive proof system, a player, called the prover, needs to interactively prove the

validity of a given statement to another player, called the verifier. Formally, the prover

and the verifier are modelled by some interactive Turing machines. An interactive Tur-

ing machine (ITM) is a Turing machine equipped with a read-only input tape, a work

tape, a random tape, one read-only communication tape, and one write-only communi-

cation tape. The random tape contains an infinite sequence of random bits, and can be

scanned only from left to right. We say that an interactive machine flips a coin, mean-

ing that it reads the next bit in its own random tape. An interactive machine M expects

some input at the beginning of its execution, and from then on alternately sends and

receives messages. It may finally terminate with some output. Such a machine may be

probabilistic (i.e., use randomnesses).

Definition 2.3. We say an interactive Turing machine M polynomial time if there is

a polynomial p, such that the machine M runs at most p(|x|) steps upon input x, no

matter what and how many messages it receives.

Let R be an efficiently computable relation on pairs of bitstrings. We say that x is

a true statement and ω is a witness for x if (x, ω) ∈ R (or xRω). For instance, if we

want to prove a “big integer” is not prime, we would use the relation R with xR(p, q)

iff x = pq and p, q > 1. The witness ω corresponds to a proof that x is a true statement.

Let LR denote the language of all true statements, and we have, LR := {x :

∃ω.(x, ω) ∈ R}. We define the concept of interactive proof systems by using the

above notation.

19

Definition 2.4. Let P denote the prover and V denote the verifier. An interactive proof

system 〈P, V 〉 (or interactive proof) for a relation R with completeness bound c and

soundness bound s is a pair of polynomial-time interactive Turing machine P and V ,

such that the following properties are satisfied.

• Completeness: If (x, ω) ∈ R then Pr[〈P (x, ω), V (x)〉 = 1] ≥ c(|x|), where the

probability is over the random tapes of P and V . (Intuitively, the honest prover

will succeed in proving a true statement with probability at least c(|x|), provided

it knows a witness.)

• Soundness: For any (possibly computationally unbounded) interactive machine

P ∗ (the cheating prover), and for any x /∈ LR, we have that Pr[〈P ∗, V (x)〉 =

1] ≤ s(|x|), where the probability is over the random tapes of P ∗ and V . (In-

tuitively, even a dishonest, unbounded prover will not succeed in convincing the

honest verifier of a wrong statement.)

Obviously, an interactive proof is better if c is close to 1 (it almost always succeeds),

and s is close to 0 (one almost never proves anything wrong). If c = 1, we say the proof

has perfect completeness. If the soundness property only holds against a polynomial-

time (in |x|) malicious prover, we say that the interactive proof is computationally

sound.

2.3.2 Zero-knowledge Proofs

In mathematics and in life, if we want to convince you that we know X is true, usually,

we commonly try to present all facts we know and the inferences from that facts that

imply X is true. For instance, if you want to prove a “big integer” is not prime, the

straight way is you expose the factorization, that is, the big integer is a product of two

20

integers. This approach gives a typical byproduct that you gained some knowledge,

other than that you are convinced that the statement is true.

a zero-knowledge proof (ZKP) is an interactive method to address that issue. In

a zero-knowledge proof, when Alice prove to Bobs that a statement X is true, Bob

will completely convinced that X is true, but will learn nothing else as a result of this

process. That is, Bob will gain zero knowledge.

Firstly conceived by Goldwasser, Micali and Rackoff [43] in the “GMR” paper in

FOCS ′85, zero-knowledge proofs turned out to be one of the most interesting and in-

fluential topics in computer science, with applications ranging from practical signature

schemes to complexity proofs for many NP-complete problems.

a zero-knowledge proof must satisfy three properties:

• Completeness: if the statement is true, the honest verifier will be convinced of

this fact with a non-negligible probability, by a honest prover who knows the

witness.

• Soundness: if the statement is false, even a dishonest prover will not succeed in

convincing the honest verifier of a wrong statement.

• Zero-knowledge: if the statement is true, no cheating verifier learns anything

other than this fact. This notion is formalised by showing that, for every cheat-

ing verifier, there always exists a simulator such that given only the statement

to be proved (and no access to the prover), can output a transcript that “indistin-

guishable” from the transcript of an interaction between the honest prover and

the cheating verifier.

Initially formalised in [43], we present a formal definition of zero-knowledge as fol-

lows. Suppose all the messages exchanged between a prover P and a verifier V in an

21

interactive proof form the transcript of the protocol. We denote by V iew(〈P, V 〉) the

transcript (random variable) of the interactive proof 〈P, V 〉.

Definition 2.5. (Zero-knowledge). We say that an interactive proof system 〈P, V 〉 for

the language LR (with corresponding relation R) is (perfect, statistical, or computa-

tional) zero-knowledge if for any probabilistic polynomial-time interactive machine V ∗

and any polynomial p, there exists a probabilistic polynomial-time algorithm S called

the simulator, such that the ensembles:

{V iew(〈P (ω), V ∗(y)〉 (x))}(x,ω)∈R,y∈{0,1}p(|x|) and {S(x, y)}(x,ω)∈R,y∈{0,1}p(|x|)

are (perfectly, statistically, or computationally) indistinguishable, whereS(x, y) de-

notes the random variable of S’s output with the inputs x, y.

This definition of zero-knowledge with an auxiliary input to the verifier is an extension

of the classical definition, where the verifier is only given the common input x. The

auxiliary input can be some information known by the verifier before the beginning of

the interaction.

2.3.3 Proofs of Knowledge

Basically this is a stronger form of soundness of interactive proofs, which guarantee

that no statement x is accepted by the verifier such that there is no witness ω with

(x, ω) ∈ R. Such a proof can hence be interpreted as proving the statement of “there

is a witness ω for x”. In some scenarios, however, we require the prover to show

something stronger, namely, “I know a witness ω for x”.

In the following, when we say a machine K has oracle access with rewinding to an

interactive machine P , we mean that, K can interact with P in an arbitrary fashion and

at any point reset P ’s state to any state in the history of P ’s execution. In particular, the

22

machine K may send inputs of the following forms to P :(msg,m) and (rewind, i).

Upon receiving input (msg,m), the code of P is executed on the current state of P to

compute the reaction to the message m. The message output by P is returned to K.

The new state of P is appended to a list H of states. Upon receiving input(rewind, i),

P ’s state is set to the i-th element of H .

The notion of a proof of knowledge is defined as below.

Definition 2.6. (A Proof of Knowledge). We call (P, V) a proof of knowledge with

completeness bound c, soundness bound s, and knowledge error κ if the following

holds:

• (P, V)is a proof with completeness bound c, soundness bound s.

• Validity: There exists a constant d > 0 and a polynomial-time oracle machine

K with rewinding such that for any interactive machine P ∗ and any x ∈ LR, we

have the following:

Pr[〈P ∗, V (x)〉 = 1] ≥ κ(|x|)⇒ Pr[(x, ω) ∈ R : ω ← KP ∗(x)]

≥ (Pr[〈P ∗, V (x)〉 = 1]− κ(|x|))d.

2.4 Pairing-based Cryptography

Elliptic curves naturally occur in the study of congruent numbers and Diophantine

equations, which has been a research area for a long time already. At the beginning,

researchers found the study of curves over finite fields seem to forms rather boring

Abelian groups. However, in 1985, Miller [59] found an application of elliptic curves

over finite fields in cryptology. Two years later, Koblitz [52], alternatively figured, el-

liptic curves could provide a similar level of security while using shorter keys. There-

after a lot of research works [54, 56, 73, 75] have been put in elliptic curve cryptog-

23

raphy (ECC) and many cryptosystems [35, 17, 46] have been proposed. Pairings are

cryptanalysis tools which were initially used for attacking the existing cryptosystems.

In this context, a pairing may be treated as a function that takes two points on an el-

liptic curve as input, and outputs an element of some multiplicative group. Basically,

a pairing meets some special properties, like bilinearity and non-degeneracy, and is

naturally hard to construct.

Weil pairing [84] and Tate pairing [76] are two well-studied symmetric pairings,

while some other pairings have been given more and more attentions, like Eta pairing

[2] and Ate Pairing [34]. Until 2000, pairings are found by Joux [51] that they can

be contributed to cryptographic building blocks as well, whose discovery spurred an

extensive research into pairings and their new applications.

Definition 2.7. (Bilinear Maps). Suppose that G and Gt be two multiplicative cyclic

groups of prime order q, while g is a generators of G. A bilinear pairing on (G,Gt) is

a map e : G×G→ Gt, which satisfies the following properties:

• Bilinearity: For all u, v ∈ G, and for all a, b ∈ Zq, e(ua, vb) = e(u, v)ab.

• Non-degeneracy: e(g, g) 6= 1, where 1 is the multiplicative identity of group Gt.

• Computability: e can be efficiently computed.

Considering the DL(discrete logarithm)-problem, if (P,Q) is an instance of the DL-

Problem in G where Q = P x, then e(P,Q) = e(P, P x) = [e(P, P)]x. Thus logPQ =

loggh, where g = e(P, P) and h = e(P,Q) are elements of Gt. Hence, the DL-problem

in G can be efficiently reduced to the DL-problem in Gt.

Considering the bilinear Diffie-Hellman problem (BDHP), which is introduced by

Boneh and Franklin [12]: given P, P a, P b, P c, compute e(P, P)abc. The following

reasons state that the hardness of the BDHP implies the hardness of the Diffie-Hellman

Problem (DHP) [28] in both G and Gt . Firstly, if the DHP in G can be efficiently

24

solved, then one could solve an instance of the BDHP by computing abP and then

e(P ab, P c) = e(P, P)abc. Also, if the DHP in Gt can be efficiently solved, then the

BDHP instance could be solved by computing g = e(P, P), gab = e(P a, P b), gc =

e(P, P c) and then gabc.

2.5 Some Cryptographic Primitives

2.5.1 Public Key Encryption Schemes

The concept of public-key cryptography was firstly developed in the ground-breaking

article of Diffie and Hellman [28] without proposing a concrete public-key encryption

(PKE) scheme. And possibly the most famous PKE is RSA cryptosystem [71], which

was introduced by Rivest, Shamir and Adleman. In general, a public key encryption

scheme allows two parties to communicate in a confidential way with the help of an

authenticated channel, which is used to transmit the public key. Such a cryptographic

system requires two separate keys, one of which is secret and one of which is pub-

lic. This ensures any message encrypted with respect to the public key will only be

decrypted by the owner of the corresponding secret key (or called private key alterna-

tively).

We denote the message space byM and the ciphertext (encrypted message) space

by C. A public key encryption scheme is composed of three polynomial time algo-

rithms.

Setup: This PPT algorithm takes the security parameter λ, denoted by 1λ as input,

and outputs a pair of matching public and private key. We have (pk, sk)← Setup(1λ).

Enc: The encryption algorithm is a PPT algorithm that takes a message m ∈ M

and a public key pk as input, and outputs a ciphertext c. We have c← Enc(m, pk).

Dec: The decryption algorithm is a deterministic algorithm that takes a ciphertext

25

c ∈ C and a private key sk as input, and outputs a message m ∈ M. We have

m← Dec(c, sk). In some cases, this algorithm returns a special symbol ⊥ to indicate

that the ciphertext was invalid.

We require that for all (pk, sk) which can be output by Setup(1λ), for all m ∈M,

and for all c that can be output by Enc(m, pk), we have that Dec(c, sk) = m. We also

require that Setup, Enc and Dec can be computed in polynomial time.

The classical goal of secure encryption is to protect the privacy of messages: an

adversary should not be able to learn from a ciphertext information about its plain-

text beyond the length of that plaintext, which is formalised as indistinguishability of

encryptions, due to Goldwasser and Micali [42].

Along the other axis, we consider three different attacks. These are chosen-plaintext

attack (CPA), non-adaptive chosen-ciphertext attack (CCA1), and adaptive chosen-

ciphertext attack (CCA2), in order of increasing strength. Under CPA the adversary

can obtain ciphertexts of plaintexts of its choice. In the public-key setting, giving the

adversary the public key suffices to capture these attacks. Under CCA1, formalised

by Naor and Yung [61], the adversary gets, in addition to the public key, access to an

oracle for the decryption function. Under CCA2, due to Racko and Simon [69], the

adversary again gets access to an oracle for the decryption function, but this time it

may use this decryption function even on ciphertexts chosen after obtaining the chal-

lenge ciphertext c, the only restriction being that the adversary may not ask for the

decryption of c itself.

One can “mix-and-match” the goal– IND and the attacks {CPA,CCA1,CCA2} in

three combinations, giving rise to three notions of security: IND-CPA, IND-CCA1,

and IND-CCA2. Below, we present these three security notions based on the definition

in [4] with minor changes.

Let the string atk be instantiated by any of the formal symbols cpa, cca1, cca2;

26

while ATK is then the corresponding formal symbol from CPA, CCA1, CCA2. When

we say Oi = ε, where i ∈ {1, 2}, we mean Oi is the function which, on any input,

returns the empty string ε.

Definition 2.8. (IND-CPA, IND-CCA1, IND-CCA2). Let Π = (Setup, Enc,Dec)

be an encryption scheme and let A = (A1,A2) be an adversary. For atk ∈{cpa,

cca1,cca2} and λ ∈ N , let advind−atkA,Π (λ) denote the following probability:

2 · Pr[(pk, sk)← Setup(1λ); (m0,m1, s)← AO1
1 (pk);

b← {0, 1}; c← Enc(mb);AO2
2 (m0,m1, s, c) = b]− 1

where

if atk=cpa, then O1 = ε and O2 = ε;

if atk=cca1, then O1 = Dec(·) and O2 = ε;

if atk=cpa, then O1 = Dec(·) and O2 = Dec(·);

In the case of CCA2, we insist that A2 does not ask its oracle to decrypt c. We

say that Π is secure in the sense of IND-ATK if A being polynomial-time implies that

advind−atkA,Π (·) is negligible.

2.5.2 Digital Signatures

The main goal of digital signatures is to reproduce the electronic version of handwrit-

ten signatures, i.e., the signature on a message is a string which binds the message,

and public and secret data specific to the user; anyone can check the validity of the

signature by using public data only. Digital signatures become more and more crucial

since their invention [28], and are now used in numerous cryptographic protocols. In

1988, Goldwasser, Micali and Rivest became the first [44] to rigorously define the se-

curity requirements of digital signature schemes. We introduce the formal definition of

27

signature schemes, with minor changes, following David Pointcheval’s proposal [68]

that formally presented the precise definition of digital signatures and of the possible

attacks against them.

A digital signature scheme usually consists of the following probabilistic polynomial-

time (PPT) algorithms. LetM and Σ denote the message space and the signature space

respectively. In general,M is the set of messages to which the signature algorithm may

be applied, and Σ is the set of signatures can be produced with an instance of the digital

signature scheme.

Setup: This PPT algorithm takes the security parameter λ, denoted by 1λ as input,

and outputs a key pair which is associated with the signer, (pk, sk)← Setup(1λ).

Sign: This PPT algorithm generates a signature σ on a given message m ∈ M,

σ ← Sign(m, sk).

Verify: This verification algorithm is usually deterministic and takes a message-

signature pair (m,σ) ∈ M× Σ and an associated public key pk as input, outputs a

bit 0 or 1. We have b ← V erify(m,σ, pk), where b ∈ {0, 1}. This algorithm tells

whether the pair (m,σ) is valid with respect to the key pair (pk, sk). The output bit 1

means that the signature is valid.

In practice, signer’s public key pk needs to be sent through an authenticated channel

so that the verifiers are ensured that pk really corresponds to the right signer. Once this

operation is performed, the signer can authenticate the messages to a verifier using

digital signatures even through via an insecure channel.

The security of the signature schemes usually depends on what kind of attack

results the adversary could achieve. A hierarchy of attack results are discussed in

[68, 44]. One might say that the enemy has "broken" a signer’s signature scheme if his

attack allows him to do any of the following with a non-negligible probability:

• Disclose the private key/data of the signer, which is the most serious attack, so-

28

called total break.

• Construct an efficient algorithm to sign messages with good probability of suc-

cess, so called universal forgery.

• Forge a signature for a particular message chosen a prior by the enemy, so called

selective forgery.

• Provide a new message-signature pair. This is named as existential forgery.

Considering the security requirements, an adversary can have some access to the sig-

nature protocols with different power levels. For instance, there could be an attacker

which has the only access to public key of the signer while another attacker may have

the access to a list of valid message-signature pairs. The attacker in the latter scenario

is obviously much powerful, and is named as “adaptive chosen-message attack”. In

an adaptive attacking situation, the attacker can ask the signer to sign any message

of its choice and it can adjust its queries according to previous answers. Currently,

the strongest security notion is the security against existential forgery under an adap-

tive chosen-message attack. So when designing a signature scheme, one may want to

computationally prevent at least existential forgeries, under adaptive chosen-message

attacks, which is widely accepted as the standard definition. We give a formalisation

as below.

Definition 2.9. (Existential Unforgeability) Let O be a signing oracle that imple-

ments the algorithm Sign . We denote by L the list of all messages queried to O. A

signature scheme is secure against an existential forgery under an adaptive chosen-

message attack, if for any probabilistic polynomial time forger (algorithm) F , we have

Pr[1← V erify(m,σ, pk) ∧m /∈ L|(pk, sk)← Setup(1λ), (m,σ)← FO] = neg(λ)

29

where the probability is taken over the random tapes of the involved algorithms.

Each invocation to the oracle O is counted in the complexity of F , and the number of

queries made to O must also be polynomially bounded in λ.

2.5.3 Undeniable Signatures

The conflict between authenticity (non-repudiation) and privacy (controlled verifiabil-

ity) always exists in the digital signature world. As mentioned in Chapter 1, undeniable

signature was firstly introduced to solve such a problem by letting the signer interac-

tively prove to any verifier it selected. Undeniable signature as an fundamental crypto-

graphic primitive, is the origin of designated confirmer signatures, and we present the

formal definition of this cryptographic primitive as below.

An undeniable signature scheme consists of two algorithms, namely Setup and

Sign, and two protocols, namely Confirm and Disavow. For every choice of the

security parameter λ there is a message space M and a signature space Σ. Also we

denote the signer by S, and the verifier by V .

Setup: This PPT algorithm takes the security parameter λ, denoted by 1λ as input,

and outputs a key pair which is associated with the signer, (pk, sk)← Setup(1λ).

Sign: This PPT algorithm generates a signature σ ∈ Σ on a given message m ∈

M, σ ← Sign(m, sk).

Confirm: This protocol is executed between a signer and a verifier interactively.

The common inputs are a message-signature pair (m,σ) ∈ M× Σ, and the signer’s

public key pk. The protocol outputs a bit b, and allows the signer to prove to a

verifier that the signature σ is valid for the message m and the key pk. We have

b← Confirm(S,V)(m,σ, pk), where b ∈ {0, 1}.

Disavow: This protocol is executed between a signer and a verifier interactively.

The common inputs are a message-signature pair (m,σ) ∈ M× Σ, and the signer’s

30

public key pk. The protocol outputs a bit b, and allows the signer to prove to a

verifier that the signature σ is invalid for the message m and the key pk. We have

b← Disavow(S,V)(m,σ, pk), where b ∈ {0, 1}.

Chapter 3

An Overview on Designated

Confirmer Signatures

Designated confirmer signatures (DCS) are introduced by Chaum and van Antwerpen

[21] as an extension of undeniable signature. More specifically, in a designated con-

firmer signature scheme, if the signer is unavailable, a semi-trusted third party called

the designated confirmer can confirm the (in)validity of an alleged signature by run-

ning some interactive protocols with a verifier. However, such a verifier cannot trans-

fer the signature’s (in)validity to other parties by convincing them of the same fact.

Furthermore, the designated confirmer can selectively convert a designated confirmer

signature into a standard signature so that it can be publicly verifiable. A number of re-

lated work have been presented in the last two decades, like [64, 58, 18, 45, 38, 78, 85],

though most of them are either insecure or inefficient. For example, [58] identifies at-

tacks against the two concrete DCS scheme proposed in [64], Camenisch and Michels

[18] shows the insecurity of [58], Wang et al. [78] points out security flaws in the

schemes proposed in [45, 38], while the solutions given in [18, 85] are not efficient as

they rely on general zero-knowledge protocols.

32

Apart from unforgeability which is a common security requirement for variants of

digital signatures, the unique security property of a DCS scheme is called invisibility

[18], which requires that any probabilistic polynomial adversary cannot feasibly deter-

mine the (in)validity of an alleged signature against adaptive attacking environment. In

this chapter, we first introduce a traditional security model of DCS schemes; then dis-

cuss attacks against invisibility of two practical DCS schemes, and then fix the security

flaw in one of the two schemes [89] and [83], i.e., Wei et al’s scheme [83].

Related Works on DCS Schemes Since the introduction by Chaum and van Antwer-

pen [21], various generic DCS schemes have been produced from ordinary digital

signatures and other cryptographic primitives such as public key encryptions, commit-

ment schemes, and/or zero-knowledge protocols. We briefly review the most important

attempts in chronological order:

• Chaum and van Antwerpen (1994) [21]: The first proposition of designated con-

firmer signatures to solve the weakness of undeniable signatures, with an exam-

ple of DCS based on RSA scheme.

• Okamoto (1994) [64]: Okamoto give the first formal definition of designated

confirmer signatures in the sense of rigorous concept, and proposed a practical

construction by using digital signatures, public key encryptions, bit-commitment

schemes and pseudo-random functions. Also it rigorously proves that the exis-

tence of public-key encryption is the necessary and sufficient assumption for

constructing designated confirmer signatures.

• Michels and Stadler (1998) [58]: They pointed out a certain weakness of the

DCS schemes by Okamoto [64] that the confirmer can forge a valid signature

on behalf of the signer. Realizing this problem, they further proposed a new

33

security model and introduced an efficient DCS scheme in that model by using

signatures with the Fiat-Shamir paradigm and commitment schemes.

• Camenisch and Michels (2000) [18]: The authors identified an attack against the

DCS schemes proposed in [21, 64, 58], where the validity of a DCS issued by a

signer S can be linked to that of a DCS issued by another signer S ′. As a result,

those schemes are insecure if multiple signers share the same confirmer, and

such multi-signer settings seem to be natural in e-commerce applications. Based

on that observation, they proposed a new security model to cover this variant of

attacks, and presented the “encryption of a signature” idea along with a security

analysis of the resulting generic DCS schemes. However, this construction is

provably secure but inefficient. Because in their confirmation/disavowal proto-

cols, to prove the correctness of such an encryption, actually relies on general

zero-knowledge proofs for NP statement.

• Goldwasser and Waisbard (2004) [45]: They introduced an interesting security

notion called “unimpersonation” in their security model, meanwhile, the new

model circumvent the requirement of “invisibility” and “non-transferability”. By

exploiting strong witness hiding proofs of knowledge, instead of zero-knowledge

proof of knowledge, Goldwasser and Waisbard proposed several secure DCS

schemes without appealing to random oracles in the weakened security model.

Moreover, the disavowal protocol of their construction has still recourse to gen-

eral concurrent ZK proofs of NP statements.

• Gentry et al. (2005) [38]: Gentry, Molnar and Ramzan presented a generic trans-

formation from any secure ordinary signature scheme into a DCS scheme. Their

basic idea is to add a middle layer in the “sign-and-encrypt” paradigm. In partic-

ular, they issue a DCS by generating an ordinary signature on the commitment

34

of a message, while the randomness used for the commitment is encrypted un-

der the confirmer’s secret key separately. They also proved the result is secure

in their new model, which is an enhancement of the one introduced in [18]. The

authors give an interesting transformation because it gives rise to an efficient

generic DCS scheme without having resource to either the random oracles or the

general zero-knowledge proofs.

• Wang et al (2007) [78]: The authors first identified two flaws in the construction

of [38], and proposed an improved DCS scheme based on the insecure version.

Then they introduced a new way of designing efficient and generic DCS schemes

without any public key encryptions. 1 One limitation is their construction still

appeals to the random oracles.

In contrast, only a few concrete DCS schemes have been proposed. In 2008, Zhang et

al. proposed an efficient DCS scheme based on bilinear pairings [89]. In the same year,

Wei et al. presented a society-oriented DCS scheme [83], which is a new concept for

sharing the signer and confirmer’s capability among two groups of individuals respec-

tively. The construction is based on two threshold cryptosystems, namely a threshold

signature scheme[49] and a threshold encryption scheme[79]. Wei et al.’s scheme is

so called as it allows a threshold of possible signers to collectively issue a DCS and a

threshold of designated confirmers to collectively confirm the (in)validity of such an

alleged DCS. However, It is discovered that both Zhang et al’s DCS scheme and Wei

et al’s SDCS scheme fail to meet invisibility, and we will pay more attention to the two

schemes and show the related attacks later in this chapter.
1Note this construction does not contradict with the result in [64], as the later proves that designated

confirmer signatures exist if and only if public key encryptions exist. The reason is that, the scheme in
[78] uses a confirmer commitment scheme as the building block. As stated in [58], probabilistic public
key encryption schemes are actually a special case of confirmer commitments. This gives an intuition
about the relation between these two primitives, i.e., it might be possible to derive a secure probabilistic
public key encryption scheme from a secure confirmer commitment scheme. Though this still need to
be further investigated.

35

3.1 Security Model

This section reviews the syntax (Section 1.1) and security requirements (Section 1.2) of

DCS schemes. In general, we follow the definitions given by Camenisch and Michels

[18], because their formalization is widely complied with by various schemes in the

last decade. To improve the readability, some changes are made. For instance, we

update the security model by introducing the existence of some efficient computable

relation R (see in Section 3.1.2), to make the expressions more accurate.

3.1.1 Definitions (Syntax)

Basically, a designated confirmer signature scheme consists of three parties, a signer,

a designated confirmer, and a verifier. Once the signer issues a DCS, the verifier can

interactively validate it with the help from either the signer or the confirmer. In par-

ticular, for any alleged DCS, the confirmer will first check its validity, and execute the

corresponding protocol, i.e., using confirm protocol (for a valid signature) or disavow

protocol (for an invalid signature).

In the formal definition given below, negl(λ) denotes any negligible function that

grows slower than λ−v for any positive integer v and for all sufficiently large integer λ.

{A(u)} denotes the set of all possible output values of a probabilistic algorithmAwith

input u. In addition, we use “X ← P (·)” and “Y = A(·)”to denote that a protocol P

outputs X , and an algorithm A outputs Y , respectively.

Definition 3.1. (Syntax) [18]: A correct designated confirmer signature scheme

involves three roles of parties, i.e., a signer S, a designated confirmer C, and a verifier

V , and consists of the following components:

• Key Generation (GS, GC): Given the security parameter λ, denoted by 1λ as in-

put, probabilistic polynomial time (PPT) algorithm GS outputs a pair of strings

36

(skS, pkS) as the signer’s private key and public key. Similarly, PPT algorithm

GC that takes on input 1λ, outputs a pair of strings (skC , pkC) as the designated

confirmer’s private key and public key.

• Sign: Given a message m and a signer’s private key skS , algorithm Sign pro-

duces a (standard) signature σ for message m. Namely, σ = Sign(m, skS).

• Verify: Given a public key pkS , a message m, and an alleged signature σ, al-

gorithm Verify outputs a bit b, where b = 1 indicates “Accept”, and b = 0

indicates “Reject”. We require that for any key pair (skS, pkS), any message m,

V erify(m,Sign(m, skS), pkS) = 1.

• DCSSign: Given a message m, a signer’s private key skS and the confirmer’s

public key pkC , DCSSign is a probabilistic algorithm that generates a designated

confirmer signature on the input message. We have σ′ = DCSSign(m, skS, pkS, pkC).

• Extract: Given (m,σ′, skC , pkC , pkS) as input, algorithm Extract outputs a

string σ such that V erify(m,σ, pkS) = b, where b = 1 indicates “Accept”, and

b = 0 indicates “Reject”.

• Confirm: As an interactive protocol, the designated confirmer C with private

input skC can runConfirm protocol with a verifier V to confirm that an alleged

DCS σ′ for a message m is extractable. The common input for the protocol is

(m,σ′, pkS, pkC). Eventually, the verifier outputs a bit b,where b = 1 indicates

“Accept”, and b = 0 indicates “⊥”. We say σ′ is valid w.r.t. message m, if

the verifier’s output b = 1. Otherwise, the validity of σ′ is undetermined. The

Confirm protocol should be both complete and sound.

• Disavow: As an interactive protocol, the designated confirmer C with private

input skC can run Disavow protocol with a verifier V to convince that an alleged

37

DCS σ′ is unextractable. The common input to the protocol is (m,σ′, pkS, pkC).

Eventually, the verifier outputs a bit b,where b = 1 indicates “Accept”, and b = 0

indicates “⊥”. If the verifier’s output b = 1, we say σ′ is invalid w.r.t. message

m. Otherwise, the invalidity of σ′ is undetermined. The Disavow protocol should

be complete and sound.

Remark 1. The algorithms and protocols above actually only allows the designated

confirmer to do the verification, by confirming any alleged valid DCS or disavowing

any alleged invalid one. A not-fully-extended definition is, as proposed in [45, 38, 78],

to allow the signer be able to (partly) verify the signatures, namely, a ConfirmedSign

protocol is prepared to let the signer confirm a DCS immediately it is honestly gener-

ated. Comparing to the previous syntax, we also introduce a fully-extended definition

in Chapter 5, where we allow the signer has the ability to disavow any invalid DCS.

3.1.2 Security Requirements

We follow the definitions in [18], and briefly illuminate the notions as below, namely

game-based formalizations of unforgeability and invisibility are presented to improve

the readability and the further discussion.

Definition 3.2. Completeness of Confirm/Disavow: If the confirmer and the veri-

fier are honest, then for all λ, all (skS, pkS) ∈ GS(1λ), all (skC , pkC) ∈ GC(1λ), all

m ∈ {0, 1}∗, and all σ′ ∈ {DCSSign(m, skS, pkS, pkC)}, we require that

Confirm(C,V)(m,σ
′, pkS, pkC)→

1 if σ′ ∈ {DCSSign(m, skS, pkS, pkC)}

0 otherwise

38

and

Disavow(C,V)(m,σ
′, pkS, pkC)→

1 if σ′ /∈ {DCSSign(m, skS, pkS, pkC)}

0 otherwise

Definition 3.3. Soundness of Confirm/Disavow: For any cheating confirmer C∗,

for all sufficiently large λ, all (skS, pkS) ∈ GS(1λ), all (skC , pkC) ∈ GC(1λ), all

m ∈ {0, 1}∗, and all σ′ ∈ {DCSSign(m, skS, pkS, pkC)}, we require that

Pr[Confirm(C∗,V)(m,σ
′, pkS, pkC)→ 1] < negl(λ)

if σ′ /∈ {DCSSign(m, skS, pkS, pkC)} and

Pr[Disavow(C∗,V)(m,σ
′, pkS, pkC)→ 0] < negl(λ)

if σ′ ∈ {DCSSign(m, skS, pkS, pkC)}, The probability is taken over the coin

tosses of C and C∗ .

Definition 3.4. Correctness of Extract: for all sufficiently large λ, all (skS, pkS) ∈

GS(1λ), all (skC , pkC) ∈ GC(1λ), all m ∈ {0, 1}∗, all σ′ ∈ {0, 1}∗, and all σ′ ∈

{DCSSign(m, skS, pkS, pkC)}, it holds that

V erify(m,Extract(m,σ′, skC , pkC , pkS), pkS) = 1

.

39

Definition 3.5. Security for the signer (Unforgeability): Unforgeability requires

that no adaptive PPT adversary can forge a valid DCS on a fresh message, even it

compromises the confirmer’s secret key skC . Note this is also part of the security

requirement that holds against the confirmer, and thus we allow the secret key of the

confirmer as the input.

For any DCS scheme, we can specify an efficiently computable equivalence rela-

tion R (this concept first appears in Gentry et al’s work [38]), and say (m,σ′′) and

(m,σ′) are equivalent if and only if R(m,σ′, σ′′) = 1. Informally, such a binary re-

lation R is used to classify two valid signature pairs respect to the same message. For

example, if a DCS scheme is strongly existentially unforgeable, it requires the forger

cannot even produce a valid DCS on any previously signed message. In that case, it

may be appropriate to specify R(m,σ′, σ′′) = 1 if and only if σ′ = σ′′. However, R

needs not be that restrictive. It depends on the specific DCS scheme. We update the

original definition of unforgeability by introducing the existence of such a relation R,

an present a new definition as follows:

Game-UF: Key generation algorithms are run on input 1λ, and output (pkS,skS),

(pkC ,skC) as the public/private key-pairs of the signer and the confirmer respectively.

Given pkS , pkC , and skC , an PPT adversary A is allowed oracle access to the signer

(i.e., it may ask designated confirmer signatures of polynomially many messages {mi}

viaDCSSign), and to the confirmer (i.e,A can accessConfirm(C,A),Disavow(C,A),

and Extract oracles). Let Lsig denote the list of all message-signature pairs (mi, σ
′
i)

output by DCSSign oracle and all (mi, σ
′′
i) such that R(mi, σ

′
i, σ
′′
i) = 1. Finally, A

outputs a message-signature pair (m,σ′) where (m,σ′) is a message-signature pair

40

not in Lsig. Then, for any such A, we require that A’s output satisfies

Pr[V erify(m,Extract(m,σ′, skC , pkC , pkS), pkS) = 1] < negl(λ).

The probability is taken over the coin tosses of the signer S, the adversary A, and

the key generation algorithms GS and GC .

Definition 3.6. Security for the confirmer (Invisibility): Intuitively, this means

that no adaptive PPT adversary can distinguish between two designated confirmer sig-

natures (or between a valid DCS and an invalid DCS). Consider the following game

against a distinguisher D:

Game-INV: Firstly, Key Generation algorithms are run for the signer and the con-

firmer on input 1λ. D is given pkS and pkC , which are the public keys of the signer

and the confirmer, with the addition of signer’s secret key skS . As a training purpose,

D is allowed to create signature-key pairs (skD,pkD) (not necessarily via Key Gener-

ations) and to interact with the confirmer with respect to these keys. Furthermore, D

can make arbitrary queries to the following oracles: Confirm(C,D), Disavow(C,D),

and Extract. Then, the distinguisher has to present two messages m0 and m1. After

a fair coin b is flipped by the challenger, the distinguisher is given a corresponding

DCS σ′ = DCSSign(mb, skS, pkC), where b ∈ {0, 1}. Now D is again allowed to

access the above oracles except that it cannot enquire for (m0, σ
′) or (m1, σ

′) (and

their equivalent DCSs) via Confirm, Disavow, or Extract oracle. Finally, the dis-

tinguisher must output one bit information b′ to guess the value of b. The distinguisher

wins if and only if b = b′, and D’s advantage is defined as advD = Pr[D wins]. We

require:

advD < negl(λ).

The above probability is taken over the coin tosses of the signer S, the confirmer

41

C, and key generation algorithms GS and GC .

Remark 2. This security property can be generalised in the multi-signer settings,

i.e. in the scenario of many signers sharing the same confirmer. That is, the adversary

cannot break invisibility w.r.t a specified signer, even if it knows secret keys of other

signers. To update the definition, one could simply add the secret keys of the other

n − 1 signers, say skSi
where skSi

6= skS and 1 ≤ i ≤ n − 1, as the adversary’s

auxiliary input.

Definition 3.7. Security for the confirmer (Non-transferability of Confirm and

Disavow protocols): The evidence generated in Confirm or Disavow protocol

should be untransferable. Namely, although an adaptive PPT adversary A knows

whether a given DCS is valid or not through the interactive verification, it does not

gain any knowledge that can be used to convince a third party about the validity of

that DCS. In particular, this notion is formalised in the following games considering a

simulator A′:

Game-NTR: Firstly, the adversary A is given the public key pkS and pkC of the

signer and the confirmer. It is allowed to make arbitrary oracle queries to DCSSign,

Confirm(C,V), Disavow(C,V) and Extract. Again A is allowed to create signature-

key pairs (skA, pkA), and to run DCSSgin and then interact with the confirmer with

respect to these keys.

In some stage, the adversary must present two strings,m and σ′, for which it wishes

to carry out theConfirm (orDisavow) protocol with the confirmer. Next a fair coin b

is flipped. If b = 0, the real confirmer and A run the Confirm (orDisavow) protocol

with common input (m,σ′, pkS, pkC), while the confirmer’s secret input will be skC . If

b = 1, the simulator Sim is plugged in the place of the confirmer to run the Confirm

(or Disavow) protocol on (m,σ′). Sim is not given the confirmer’s secret key, but is

allowed to make a single call to an oracle which tells Sim whether the strings m and

42

σ′ is a valid DCS w.r.t. pkS and pkC .

In parallel, the adversary is allowed to make arbitrary queries to the signer and

the confirmer. And in all other interactions except the confirmation (or disavowal) on

(m,σ′), the real signer or the real confirmer speaks with the adversary. Finally, A

must output one bit information b′ to guess the value of b. The adversaryA wins if and

only if b = b′, and A’s advantage is defined as advA = Pr[A wins]. We require for

any adversary A, there exists a simulator Sim such that for all sufficiently large λ, all

(skS, pkS) ∈ GS(1λ), and all (skC , pkC) ∈ GC(1λ) :

advA < negl(λ).

The above probability is taken over the coin tosses of the signer S, the confirmer

C, and key generation algorithms GS and GC .

Remark 3. A further discussion about the definitions and security notions of DCS

schemes is laid out in Chapter 4. In particular, we introduce two additional security

notions, namely “unimpersonation” and “transcript-simulatability”, and explore the

relations among those notions.

3.2 Invisibility of Zhang et al.’s DCS Scheme

Considering the construction for DCS schemes, Okamoto [64] proposed a straight-

forward way using standard cryptographic primitives, i.e., public key encryptions and

digital signature schemes. The signer firstly issues a standard signature on a target

message m, then encrypts the signature using the confirmer’s public key, and finally,

the resulting ciphertext is preserved as the designated confirmer signature on m. To

43

prove the validity of such a DCS, the signer has to interact with the verifier (signature

recipient), i.e., the signer should prove that what the verifier obtained is indeed an en-

cryption of a standard signature on m. In fact, that NP statement requires general zero-

knowledge proofs. Zhang et al.’s scheme [89], as the first concrete implementation of

the above paradigm, outperforms the previous schemes [45, 38] on both signature size

and computational cost. However, we discover that their scheme has a vulnerability

with regard to invisibility.

3.2.1 Review of the Scheme

We briefly describe their scheme, and note that their scheme provides neither signer’s

confirm-ability nor signer’s disavow-ability.

Setup: Choose a bilinear map e : G × G→ Gt, where G is a multiplicative cyclic

group of prime order p and a generator g. Gt is another multiplicative cyclic group

such that |G| =|Gt| = p. The system parameters are (G,Gt,e,p,g).

Key Generation: Signer randomly selects x, y ∈R Z∗q , and computes u = gx,

v = gy, then sets its public key as (u, v), and its private key as (x, y). Confirmer

chooses a random number xc from Z∗q as its private key, and computes its public key

as α = gxc .

Sign: This is the same as the signing algorithm in ZCSM scheme [88]. Given a

message m ∈Zq , signer picks a random r ∈R Z∗q , and computes σ = g(x+my+r)
1
2 ∈ G.

Here (x + my + r)
1
2 is computed modulo q. The algorithm will try with different

random values for r until x + my + r is a quadratic residue modulo q. The signature

on message m is (σ, r).

Verification: Given public parameters, a message m ∈Zq , and a signature (σ, r),

anyone can verify that if the equation e(σ, σ) = e(uvmgr, g) holds or not.

DCSSign: Given confirmer’s public key α, a message m ∈Zq , signer picks a ran-

44

dom r ∈R Z∗q , and computes σ′ = α(x+my+r)
1
2 ∈ G. The designated confirmer signa-

ture on message m is (σ′, r).

Confirm: confirmer first checks that (σ′, r) has been signed by the signer using

its secret key xc, i.e., it checks if the equation e(σ′, σ′) = e(uvmgr, α)xc holds or not.

If it holds, confirmer performs an interactive zero-knowledge proof with the verifier

for knowledge: loge(uvmgr,α) e(σ
′, σ′) = loge(g,g) e(α, g). This is an interactive zero-

knowledge proof system for the equality of two discrete logarithms[22].

Disavow: To disavow a purported signature (σ′, r) on m, confirmer performs an

interactive zero-knowledge proof with the verifier for proving the discrete logarithm

loge(uvmgr,α) e(σ
′, σ′) and log e(α, g) are unequal.

Extract: For (m,σ′, r), confirmer can extract the ordinary ZCSM signature on m

using its secret key α: σ = σ′x
−1
c .

3.2.2 Mounting the Attack

In this Section, we mount an attack against the invisibility of Zhang et al.’s scheme. In

this attack, if a verifier has already obtained two valid designated confirmer signatures,

it will be able to verify the validity of any alleged designated confirmer signatures by

himself.

In Confirm protocol, a confirmer first validates the signature by the equation

e(σ′, σ′) = e(uvmgr, α)xc , of which the right half can be re-written into three parts:

e(σ′, σ′) = e(uxc , α) · e(vxc , α)m · e(αr, α). (∗)

For each distinct signature, e(uxc , α) and e(vxc , α) are constant, while e(αr, α) can

be calculated since α and r are public. Our target is to compute e(uxc , α) and e(vxc , α),

so that the verifier can check the equation (*) by himself and determines the signature’s

45

validity. The technical details are described as follows.

1. Suppose the verifier already holds two valid designated confirmer signatures,

(σ′1, r1) on message m1 and (σ′2, r2) on message m2. Firstly, it computes A1 =

e(σ′1,σ
′
1)

e(αr1 ,α)
, and A2 =

e(σ′2,σ
′
2)

e(αr2 ,α)
.

2. According to equation (*), the equation e(σ′,σ′)
e(αr,α)

= e(uxc , α) · e(vxc , α)m holds,

then the verifier computes e(vxc ,α)m1

e(vxc ,α)m2
= A1

A2
. So, he can obtain e(vxc , α) =(A1

A2
)

1
m1−m2 ,

where 1
m1−m2

is the inverse of (m1 −m2) modulo q.

3. The verifier can compute e(uxc , α) = A1

e(vxc ,α)m1
after it gets the value of e(vxc , α).

4. Finally, as the verifier knows the values of e(uxc , α) and e(vxc , α), it can validate

any DCS signatures without the confirmer by checking equation (*).

According to Goldwasser and Waisbard’s security model [45] cited in [89], the defined

security requirement for designated confirmer only covers “unimpersonation” but ex-

cludes “invisibility” and “non-transferability”. Note that this attack breaks invisibility

consequently. We also found the security proof for Lemma 1 and proof for Theorem 3

in [89] are incomplete.

For Lemma 1, the proof is incomplete because there were no analysis of oracle

simulation by the challenger, since they only mentioned the forger F could access

qDCS times DCSSign, qC times Confirm and qD times Disavow oracle adaptively, and

output a forged message-signature pair, which could be imposed by another forger

F ′ that aims to break the unforgeability of underlying ZCSM signature scheme [88].

Nonetheless, we can simply make up the simulation as below:

if F requests a DCS from ConfirmedSign oracle, the challenger F ′ can send the

same query to its own Signing oracle which will issue a ZCSM signature (σ, r), then

F ′ responds to the F with a corresponding DCS (σ′, r) =(σxc , r). Note that F ′ knows

46

confirmer’s secret key xc so that it can check any alleged DCS’s validity, because we

assume the confirmer could be corrupted.

if F requests a Confirmation (Disavowal) via Confirm (Disavow) oracle, F ′can

send a correct response by using xc.

if F requests a extraction for a DCS, F ′can send a correct ZCSM signature by

using xc.

For Theorem 3, They did not give the full oracle simulations to the adversary be-

fore the challenge, i.e. the algorithm B which is a challenger to solve the Computa-

tional Diffie-Hellman Problem, only provides ConfirmedSign oracle to the adver-

sary. Meanwhile, B should be able to simulate the other oracles including Confirm,

Disavow and Extract, to convince the adversary. We find the attack does not com-

ply with the not-complete proof, because according to “soundness” property of zero-

knowledge proofs, since B is not able to convince the adversary for the corresponding

zero-knowledge proofs without the secret, and it cannot run Confirm or Disavow

protocol in fact.

3.3 Invisibility of Wei et al.’s DCS Scheme

Wei, Zhang, and Chen proposed a new and interesting concept of society-oriented des-

ignated confirmer signature scheme (SDCS) [83] recently. They extends the standard

DCS into a “group-based” DCS via threshold cryptography. In their proposition, there

is a “signer group” consists of n individuals, and a “confirmer group” consists of l indi-

viduals. To issue a society-oriented designated confirmer signature , at least tmembers

of the signer group form a “signing group”, and cooperate to produce a SDCS for the

receiver. To validate the signature, at least k members of the confirmer group form a

legitimate “confirming group”, and cooperate to provide the validity proof. In partic-

47

ular, there is a “signing combiner” whose task is to choose and encrypt some random

values, compute the commitments, and collect all partial results during the signing

phase. Analogically, a “confirming combiner” collects partial witnesses produced by

the k confirmers and outputs the final validity proof of the alleged signature.

However, we find their concrete scheme fails to meet invisibility (Note that, this

attack also applies to a similar paper [82] by Wei et al.’s). Recall that, a secure DCS

scheme should meet invisibility informally requires that, if given a DCS σ′, no (adap-

tive) adversary can distinguish the signed source between message m0 and message

m1 with non-negligible advantage better than 1/2.

3.3.1 Review of the Scheme

To depict the attack, we give a brief introduction about Wei et al.’s scheme without

redundant maths.

System Parameters Generation: Given the security parameter λ, system param-

eters are produced as SP = (P,G, g, h, n, t, l, k,N,M,H, u, v; p, q). G is a cyclic

group with order P . g, h are two random generators of G. The signer group has n

members, while at least t out of which are required to sign a message. The confirmer

group has l members , while at least k out of which are required to confirm a signa-

ture’s validity. N is a typical RSA modulus, where it is the product of two 512-bit

secure primes: N = pq, p = 2p′ + 1 and q = 2q′ + 1, and p′, q′ are also primes. M

is the product of p′ and q′. H is a collision-free hash function {0, 1}∗ → {0, 1}1024. v

is a random generator in the quadratic residue group QRN and u is an element in Z∗N

whose Jacobi symbol with respect to N is −1.

Key Generations: Given system parameters SP , keys related to all players in the

scheme are generated as follows. n < e < min(p′, q′) is the public prime exponent

for the singer group while d is the private signing key. di = f(i)(n!)−1 mod M , (i =

48

1, 2, ..., n) is the signing-key share (SKSi
= di) for the i− th signer, where a random

polynomial f(x) =
∑t−1

i=0 aix
i ∈ ZP [x], a0 = d, and ai ∈R Z∗M(i = 1, 2, ..., t − 1).

vi = vdi mod N(i = 1, 2, ..., n) is the public verification value (PKSi
= vi) associated

with di. (SKCi
, PKCi

)(i = 1, 2, ..., l) is the private/public key pairs of the i − th

confirmer, where SKCi
∈R Z∗P and PKCi

= gSKCi .

SDCS Generation: For a message m ∈ Z∗P to be signed, the signing combiner

interacts with the members of the signing group and issues a SDCS σ∗ in the following

steps,

1. the signing combiner firstly computes a Pedersen commitment [67] ϕ = gmhr

by a random value r ∈R Z∗P ;

2. Then it computes the ciphertext c of the randomness r using the public keys

PKC1 , ..., PKCi
of lmembers of the confirming group as c = EncPKC1,...PKCl

(r) =

(R,ω1, ...ωl), where R = gr, ωj = F (PKr
Cj

), Enc is an encryption function in

a (k, l) threshold encryption scheme [49]. Another random polynomial F (x) is

defined as F (x) =
∑k−1

i=0 bix
i ∈ ZP [x], where b0 = r and b1, ..., bk−1 ∈R Z∗P .

3. The signing combiner secretly sends a tuple (m,ϕ, c) to each member of the

signing group with a proof PK{(α) : ϕ = gmhα ∧R = gα ∧ω1 = PKα
C1
∧ ...∧

ωl = PKα
CL
}.

4. Each member of the signing group validates the proof of (m,ϕ, c), and compute

m′ = H(ϕ ‖ c)u(1−J(
H(ϕ‖c)

N
))/2 where J(.) is the Jacobi symbol. A partial signa-

ture is also computed as σi = m′2di . Then they send them secretly back to the

signing combiner with the proofs PK{(β) : vi = vβ ∧ σi = m′2β}.

5. Given at least t valid partial signatures, the signing combiner computes σ =∏t
i=1 σ

2n!
∏

j∈{1,...,t},j 6=i
j

j−i

i mod N . The it publishes the SDCS on message m as

49

σ∗ = (ϕ, c, σ). Note this step and step 4 are actually the generation of a (t, n)

threshold signature [79].

SDCS Confirmation/Disavowal: To validate a SDCS σ∗ on a message m, the

verifier interacts with the confirming group as follows,

1. The verifier checks σ is a valid signature on m′ by checking the equation σe =

m′4. Then it sends the SDCS σ∗ with the message m to k members of the con-

firming group that it trusts.

2. Each member of the confirming group, can compute c = RSKCj using their pri-

vate key SKCj
, and sends it to the confirming combiner with a proof PKCj

{(γ) :

cj = Rγ ∧ PKCj
= gγ}.

3. The confirming combiner computes a value

r′ =
k∑
j=1

ωj
∏ ct

ct − cj
t∈{1,...,k},t 6=j

.

It checks the equation R = gr
′ . If it does not hold, cj and PKCj

{(γ) : cj =

Rγ ∧ PKCj
= gγ} are sent to the verifier who will decrypt the ciphertext him-

self and be convinced that it has submitted an invalid ciphertext, the terminate

the procedure. Otherwise, the confirming combiner performs a bi-proof that in-

teracts with the verifier, to prove the equality loggR = logh
ϕ
gm

or the inequality

loggR 6= logh
ϕ
gm

.

4. The verifier will be convinced that (m,σ∗) is a valid message-SDCS pair if the

equality of loggR and logh ϕ
gm

holds. Otherwise, it will know σ∗ is not a valid

SDCS onm for the inequality of those two discrete logarithms. Here we omitted

the technical details of proving the equality or inequality of two discrete loga-

rithms, which is proposed in Section 3.2 [57].

50

3.3.2 An Attack on Invisibility

The successful launch of the attack depends on a security flaw that the ciphertext c of

randomness r can be re-used in different signatures.

For instance, a SDCS σ∗ = (ϕ, c, σ) is signed on a message mb, where b = {0, 1},

ϕ = gmhr, c = Enc(r, PKC1 , ..., PKCl
) and σ as described in the previous protocols.

An (adaptively chosen message) adversary A given σ∗, is to guess whether this sig-

nature is signed on m0 or m1, which are two messages selected by himself before the

challenge. In addition, A is also given the public/private key-pairs of the signer group,

and the public keys of the confirmer group according to the definition of security for

the confirmers in [83]. The attack can be launched as below:

1. The adversary picks a new message m that m 6= m0, and m 6= m1.

2. It calculates ϕ = ϕgmg−m0 , which again equals gm+mb−m0hr.

3. A generates a SDCS on m, i.e. σ∗ = (ϕ, c, σ). This procedure is reasonable be-

cause the adversary holds all private keys of members of the signing group, and it

can simulate the SDCS generation phase by himself. More specifically, the gen-

eration of threshold signature σ does not require the knowledge of randomness

r in [79].

4. After that, A inquires OV for message-signature pair (m,σ∗). Note the veri-

fication oracle OV is provided in the security model in[83], which on input a

message-signature outputs whether or not it is correct w.r.t. the private keys of

the signing group and the public keys of the confirming group.

5. Finally,A outputs b = 0 if the response fromOV is “correct”, i.e. gm+mb−m0hr =

gmhr. Otherwise, it outputs b = 1. It is clear thatA can distinguish the two mes-

sages with probability 1.

51

It is straightforward to check the correctness of the above attacks.

3.3.3 A Repair

Now we consider how to fix the above security flaw in Wei et al.’s SDCS scheme. The

basic idea is that we should let the confirming combiner know the “context” of cipher-

text c, i.e., for which message and with respect to which users it is created. To this end,

we can use public encryption with “labels” by taking the context information as a label.

For example, we may use the Paillier based CCA2-secure encryption with labels intro-

duced by Camenisch and Shoup [19]. More specifically, to use this encryption scheme,

the signer group can define label L = m||PKS1|| · · · ||PKSn||PKC1|| · · · ||PKCl

when they issues a SDCS for message m w.r.t. the confirmer group with public keys

of PKC1 · · ·PKCl. Beside this modification, all the procedures are the same as in

the Wei et al.’s original SDCS scheme, though all zero-knowledge proof should be

given with the context of label L. So, this improvement is compatible with the original

SDCS construction, maintains its efficiency, and also overcomes the above security

flaw against invisibility.

52

Chapter 4

A Theoretical Analysis of Security

Model

As mentioned in the previous chapter, the central security property of a designated

confirmer signature scheme is invisibility [18], which requires that any probabilistic

polynomial time (PPT) adversary cannot feasibly determine the (in)validity of an al-

leged signature. That is, the (in)validity of an alleged signature is invisible to a verifier

so that the only way to check this is to interact with either the signer or the designated

confirmer. However, in the literature researchers have also proposed two other related

properties, namely unimpersonation [64, 45] and transcript simulatability [38, 78]. In-

tuitively, unimpersonation requires an attacker cannot impersonate either the signer or

the confirmer to run the given interactive protocols with a verifier to validate a signa-

ture. Transcript-simulatability requires that the transcripts (i.e. evidence) generated in

those interactive protocols should be simulatable. If such transcripts were forwarded,

rather than those generated via directly interacting with the real prover, i.e the signer

or the confirmer, they cannot convince the other party and show the (in)validity of the

alleged signature. Eventually, a notion named non-transferability is introduced in [18],

54

which can be seen as a simplified version of transcript-simulatability that give some

restrictions about verification protocols, and it informally means that one cannot get

more information out of verification protocols than whether a signature is valid or not.

The relations between these four properties are not clear and have never been formally

discussed after they were proposed.

In cryptography, it is necessary to study the relations between different crypto-

graphic primitives or different definitions of the same or similar security properties.

The most famous example is probably the equivalence of two definitions on the secu-

rity of public key encryption against adaptive chosen ciphertext attack (CCA2) [69],

i.e., the IND-CCA2 and the NM-CCA2 [4]. Namely, CCA2 can be equivalently for-

malised in the context of either indistinguishability (IND) or non-malleability (NM).

The importance of such a question is twofold. On the one hand, if the equivalence

of different notions is known, a designer is free to choose any of them to prove the

security for any given cryptosystem, according to the features of the scheme analysed

and/or his/her preference and familiarity. Namely, such a result increases the flexibility

of security analysis and scheme designs. On the other hand, if we know that some sim-

ilar notions are actually not the same, then we should try to construct cryptosystems

which are secure w.r.t. stronger or even the strongest security notion, as such a scheme

effectively satisfies all weaker properties as well. So, our productivity is improved.

In this chapter, we classify these different security notions under proper assump-

tions, associated with both intuitive discussions and formal security proofs. After an

introduction to the theoretical background, we first discuss the relations between in-

visibility and unimpersonation with a formal proof presented. Then, as a rather purely

theoretical interest, we examine the concept of transcript-simulatability, and try to find

if this new notion in Gentry et al’s model [38] is stronger than or equivalent to any

previous notions, namely invisibility or non-transferability in Camenisch and Michels’

55

model [18]. The result seems interesting: On one hand, if any DCS scheme satisfies

both invisibility and non-transferability, it naturally satisfies transcript-simulatability.

On the other hand, however, the result slightly changes, that is, if any DCS scheme

satisfies transcript-simulatability, a weakened notion of non-transferability and invisi-

bility is guaranteed.

4.1 Different Security Notions

Unforgeability, as introduced in the previous chapter, is an essential notion to guarantee

the signer’s security. However, considering the confirmer’s security, we discover that

it contains more requirements like invisibility and non-transferability, as stated in the

previous chapter. In fact, there exist other dimensions to define the confirmer’s security,

and we introduce two of them in this chapter, namely unimpersonation and transcript-

simulatability, which were both appeared in the previous literature of DCS schemes.

4.1.1 A Weak Security Notion: Unimpersonation

Of course, for a DCS scheme to be secure, it should be infeasible for an adversary to

impersonate the confirmer. Okamoto’s model [64] firstly captures “unimpersonation”

in a formal way, and is later complied by Goldwasser and Waisbard’s transformation

[45]. However as pointed in Camenisch and Michels’s elucidation (the second para-

graph of subsection 2.2 in [18]), “his model defines a weaker notion of security of the

confirmer: the adversary knowing the signer’s secret key wins the game only if it is

able to behave like the confirmer, i.e., to confirm and disavowal signatures, but does

not win the game if it can distinguish between two confirmer signatures (or between

a valid and an invalid confirmer signature)”. We agree with their comments, and give

the grounds in a latter discussion by showing that invisibility actually implies unim-

56

personation. We present the formal definition of “unimpersonation of the confirmer”

(also see in Figure 4.1, where the public parameter π is shorthand for (1λ, pkS, pkC),

and KG is a abbreviation of the key generation algorithm) developed from [45] with

some changes (see the discussion in Remark 2).

Definition 4.1. Security for the confirmer (Unimpersonation) Let I be a PPT im-

personator. On given input the public keys pkS and pkC under the security parameters

1λ, I enters the learning phase that it can request the executions ofO oracle, including

DCSSign, Confirm(C,I), Disavow(C,I) and Extract for polynomially many times

on the inputs of its choice. At the end of learning phase, I must output a pair (m,σ′)

of its choice and an additional bit coin, where coin = 1 indicates that it is a valid

message-DCS pair, and coin = 0 indicates that it is an invalid one. In the imper-

sonation phase, I executes the Confirm(C,V) protocol as the prover if coin = 1.

Otherwise, it executes the Disavow(C,V) protocol as the prover. The impersonator I

wins if and only if:

Confirm(I,V)(m,σ
′, pkS, pkC)→ 1 if coin = 1

or Disavow(I,V)(m,σ
′, pkS, pkC)→ 1 if coin = 0

I’s advantage in this game is defined to be advI = Pr[I wins]. We say a DCS

scheme is secure for the confirmer iff advI is a negligible function after executing the

above game. The above probability is taken over all possible coins used by I, S, C,

V , and the key generation algorithms GS and GC . Also this requirement should hold

when many signers share the same confirmer. Namely, when I knows polynomially

many secret key skSj
such that skSj

6= skS .

Remark 1. The given definition is different from the definitions in Okamoto’s

model[64]. In [64], the Disavow protocol is integrated in the verification process with

57

the Confirm protocol, while our model separates the verification in two different pro-

tocols. Also our definition is weaker, since the definition in [64] allows the adversary

to have the signer’s secret key.

Remark 2. The given definition is also slightly different from the Goldwasser

and Waisbard’s definition [45]. In [45], the disavowal case is overlooked, namely the

adversary should not succeed in executing Disavow(C,V) protocol when its chosen

challenging DCS is invalid. Also we replace t the adversary’s ConfirmedSign oracle

with a DCSSign oracle.

Remark 3. The previous DCS models ([64] and [45]) require the challenge message-

DCS pair not necessary to be fresh. In other words, the adversary can still use the same

pair as the one involved in previous oracle queries.

Remark 4. Note that in the above definition, to win the game the adversary has

to run the same Confirm protocol specified in the given DCS scheme. So, from

the viewpoint of a verifier, such an attacker is actually impersonating the role of the

confirmer. That is the reason why the security definition is called “unimpersonation”,

rather than “security for designated confirmers” [45].

Remark 5. A simultaneous notion is “unimpersonation of the signer” in confirm-

ing (disavowing) a designated confirmer signature. Note this is not equal to forge

a valid DCS. It is naturally involved when the scheme supports a full verification,

namely, even the signer can confirm and disavow any designated confirmer signa-

tures. The formal definition of “unimpersonation of the signer” is quite straightfor-

ward, as based on the definition 4.1, that one only needs to add the oracle access

with Confirm(S,A)and Disavow(S,A), and later A should impersonate as the signer

in Confirm(S,V) or Disavow(S,V) protocol as a challenge. However, most of the pre-

vious schemes are not consistent with the signers disavowal ability, and thus we only

refer to the confirmer’s security here.

58

1. (pkS, skS, pkC , skC)← KG(1λ)
2. (m,σ′, coin)← IO(π)
3. if coin = 1, b← Confirm(I,V)(π,m, σ

′)
else, b← Disavow(I,V)(π,m, σ

′)
4. I wins iff b = 1.

Figure 4.1: Impersonation Game GameUNIMP

Invisibility implies Unimpersonation. The soundness of the confirm and disavow

protocols intuitively captures the requirement that “a prover cannot cheat” when inter-

acting with a verifier in the Confirm or Disavow protocol i.e. it cannot convince a

verifier that a signature is both valid and invalid. However, it does not prevent a third

party from impersonating the prover.

Camenisch and Michels [18] claimed that as Okamoto’s model [64] only covers

unimpersonation for the confirmer’s security, a scheme secure in Okamoto’s model

may suffer from adaptive signature-transformation attack that violates invisibility. Such

a counter example is further given in Section 2.2 of [18]. Therefore, we can conclude

that Okamoto’s model [64] is weaker than Camenisch and Michels’ model [18] (CM

model), as it only captures “unimpersonation”, and excludes invisibility. Hence, any

DCS scheme which is secure in Okamoto’s model may suffer from “adaptive signature-

transformation attacks”. Intuitively, such an adaptive signature-transformation adver-

sary can transform a challenge DCS with respect to a given signing key into another

DCS with respect to another signing key such that the resulting signature is valid if

and only if the original signature is valid. In other words, this attack relates to invisi-

bility. Note that in CM model, the adversary is allowed at anytime to create additional

signature-key pairs, and to interact with the confirmer with respect to these keys. De-

tailed description of this attack can be acquired in [18], Section 2.3.

Though Camenisch and Michels have mentioned that unimpersonation is a weaker

notion than the security formalised in their model, it is still worthwhile to give fur-

59

ther exploration for the implicity behind. Invisibility intuitively requires no adaptive

adversary can distinguish between a valid DCS and an invalid DCS if both are signed

on the same message. We observe that if the adversary can impersonate the confirmer

by successfully convincing any verifier of a DCS via any interactive protocol, it must

trivially know the signature’s validity. Hence, this means that an attacker can break

unimpersonation it can also break invisibility. We present a formal proof for the fol-

lowing theorem. In addition, Figure 4.2 is to demonstrate the invisibility game in Def.

6 in Chapter 3, where σ′ /∈ LO means (m0, σ
′) or (m1, σ

′) (and their equivalent DCSs)

should not be queried in O, including Confirm, Disavow, and Extract oracle.

Theorem 4.1. Let DCS be a designated confirmer signature scheme, if DCS sat-

isfies invisibility as defined in Def. 3.6 in Chapter 3, then the scheme satisfies

unimpersonation as specified in Def. 4.1, that is, no PPT algorithm A can im-

personate as the confirmer with a non-negligible probability, under the adaptive

chosen message attacks.

Proof: Considering a PPT algorithm A executes the unimpersonation game, if

A can break DCS by impersonating the confirmer in performing Confirm(A,V) or

Disavow(A,V) protocol as a prover, with a non-negligible probability ε and within a

polynomial number q of oracle queries, we shall construct another adversary B that

breaks invisibility of DCS by winning the invisibility game with a non-negligible

probability. In the security proof, B should simulate the environment for A about

its permitted oracle queries.

At the beginning of the executions, B receives the public keys of the signer and the

confirmer, pkS and pkC , which are generated via key generation algorithm. In addition,

B receives the signer’s secret key skS , and thus can simulate the DCSSign oracle by

himself. Then B forwards the signer and the confirmer’s public keys to A.

Next B runs A as a subroutine, and answers all A’s oracle queries as follows. Ac-

60

cording to the definition 3.6 in Chapter 3, B is allowed to access Confirm, Disavow

and Extract oracles. Thus for Confirm(C,A), Disavow(C,A) and Extract oracle

queries, B relays A’s related queries and the corresponding responses between A and

B’s own challenger. For DCSSign oracle queries, since B possesses skS , it simulates

DCSSign oracle for A by himself.

Before the simulation, B tries to guess which message will be selected by A in its

DCSSign oracle and later to perform Confirm or Disavow protocol in A’s chal-

lenge with respect to that message. In particular, B should select a random index j

such that 1 ≤ j ≤ q in advance. This fixed index j is used to guess a message mj

which will be asked in DCSSign oracle queries and later used by A to break unim-

personation. Accordingly, once a message mj is asked in DCSSign oracle, B will

set mj as one challenging message for its own invisibility game and randomly select

another challenging message m′. After submitting these two messages, B will get a

DCS σ∗ from its challenger. Without loss of generality, we assume that after flipping

a fair coin b, B ’s challenger always signs on mj if b = 0, and it signs on m′ if b = 1.

Now B forwards σ∗ to A as the response to A’s DCSSign query on message mj .

Eventually, A outputs a fresh pair (mA, σA) for which it wants to carry out the

Confirm or Disavow protocol as the prover.

Without loss of generality, we assume B is plugged into the verifier’s place by

honestly executing the protocol Confirm(A,B) or Disavow(A,B) on the pair (mA, σA).

Now B tries to guess whether (mj, σ
∗) or (m′, σ∗) is a valid message-DCS pair by

using the following strategy:

• Case 1: IfA successfully performs Confirm(A,B)(mA, σA), and (mA, σA) is an

equivalent DCS of (mj, σ
∗) where mA = mj , B outputs 0 as its guess to the

value of b. This suggests that B made a correct guess, and thus it succeeds to

find (mj, σ
∗) is valid, while (m′, σ∗) is invalid.

61

1. (pkS, skS, pkC , skC)← KG(1λ)
2. (m0,m1)← AO(π, skS)

3. b R← {0, 1}
4. if b = 0, σ′ ← DCSSign(π,m0, skS)

else, σ′ ← DCSSign(π,m1, skS)
4. b′ ← AO(m0,m1, σ

′)
5. Return 1 iff b = b′ and σ′ /∈ LO.

Figure 4.2: Invisibility Game GameINV

• Case 2: If A successfully performs Disavow(A,B)(mA, σA), and (mA, σA) is an

equivalent DCS of (mj, σ
∗) where mA = mj , B outputs 1 as its guess to the

value of b. This suggests that B made a correct guess, and thus it succeeds to

find (mj, σ
∗) is invalid, while (m′, σ∗) is valid.

• Case 3: If A has never asked as many as j messages or did not use (mj, σ
∗)

or its equivalent DCS to run Confirm or Disavow protocol by impersonating

confirmer’s role, which suggests B fails in its simulation, and it outputs a random

bit as its guess to the value of b′. Indeed, in this case, B has no hope to relate the

validity of its challenging signatures to (mA, σA).

Apparently, B wins the invisibility game with a non-negligible advantage if either Case

1 or Case 2 happens. One may note the probability that, (mA, σA) is an equivalent

DCS of (mj, σ
∗) where mA = mj , is

1

q
. The reason is that, apart from the DCS pairs

acquired from B’s DCSSign oracle, A has negligible probability to solely construct

any valid DCS pair unless unforgeability cannot be satisfied. And thus under the as-

sumption that A’s probability ε in successfully performing Confirm(A,B)(mA, σA)

or Disavow(A,B)(mA, σA) is non-negligible, B wins the invisibility game with a non-

negligible advantage
ε

q
. �

62

1. (pkS, skS, pkC , skC)← KG(1λ)

2. b R← {0, 1}
3. (m,σ′)← AO(π)
4. if b = 0, b1 ← Confirm(C,A)(m,σ

′),
b2 ← Disavow(C,A)(m,σ

′);
else, b1 ← Confirm(SimV alidityO,A)(m,σ

′),
b2 ← Disavow(SimV alidityO,A)(m,σ

′)
5. b′ ← AO, and return 1 iff b = b′.

Figure 4.3: Non-transferability Game GameNTR−0

1. (pkS, skS, pkC , skC)← KG(1λ)

2. b R← {0, 1}
3. (m,σ′)← AO0 (π)
4. if b = 0, b1 ← Confirm(C,A1)(m,σ

′),
b2 ← Disavow(C,A1)(m,σ

′),τ ← A1;
else, ,τ ← SimV alidityO(m,σ′);

5. b′ ← AO2 (m,σ′, τ), and return 1 iff b = b′.

Figure 4.4: Non-transferability Game GameNTR−1

1. (pkS, skS, pkC , skC)← KG(1λ)
2. (m0,m1, s)← AO0 (skS, π)

3. b R← {0, 1}
4. σ′ ← DCSSign(π,mb, skS)
5. if b = 0, τ ← AO1 (b,m0,m1, s, σ

′, π);
else, τ ← SimDCSSign(b,m0,m1, s, σ

′, π)

6. b′ = AOlim
2 (τ,m0,m1, σ

′, π)
7. Return 1 iff b = b′ and σ′ /∈ Lext.

Figure 4.5: Transcript-simulatability Game: GameTS

63

4.1.2 Another Notion: Transcript-simulatability

At Asiacrypt 2005, Gentry et al. [38] introduced another security notion in DCS cryp-

tosystems, namely “transcript-simulatability”. This notion informally requires that the

evidences of confirmation or disavowal of a DCS should be simulatable.

We present the formal definition of transcript-simulatability as below. The formu-

lation follows the way of [38] and [78] except we use DCSSign algorithm to replace

ConfirmedSign protocol, with related modified oracles .

Definition 4.2. Transcript-simulatability: We say a DCS scheme is transcript sim-

ulatable if for any PPT adversary A = (A0,A1,A2) involved in the following game

(see Figure 4.5), there exists a PPT algorithm Sim such thatA’s advantage w.r.t. Sim,

i.e., correctly guessing the value of bit b, is negligible:

advA = |Pr[GameTS returns 1]− 1/2| ≤ negl(λ).

The above probability is taken over all possible coins used by A0, A1, A2, Sim and

key generation algorithms.

GameTS: π denotes the public parameters (1n, pkC , pkS). With access to all ora-

cles inO = {DCSSign, Confirm(C,A), Disavow(C,A), Extract}, algorithmA0 first

outputs two messages m0 and m1. Then, a DCS σ′ on mb is output randomly by DC-

SSign algorithm, where b is a random bit generated by flipping a fair coin. After that,

A1, Sim and A2 play the game in which Sim tries to make its output τ (when m1

is signed) indistinguishable from A1’s output τ (when m0 is signed); A2 with input

(π,m0,m1, σ
′, τ) attempts to guess the value of bit b, i.e., distinguish whether m0 or

m1 has been signed. In the game,A1 has access to all oracles in setO, i.e., all oracles

in O under the restriction σ′ /∈ Lext that both (m0, σ
′) and (m1, σ

′), together with

their “equivalent” DCSs, should not be queried to the Extract oracle. Similarly, A2

64

has access to oracles in Olim, i.e., all oracles in O with the restriction that A2 cannot

make any query on (m0, σ
′), (m1, σ

′), or their “equivalent” DCSs. In contrast, Sim is

given very limited oracle access set, i.e., it can make only q times of DCSSign queries

as long as A0 makes at most q times of DCSSign queries. Finally, A2 outputs one bit

b′ as its guess to the value of b, i.e., whether m0 or m1 is signed. Let advA denote the

advantage of the adversary A.

Intuitively, algorithms A1, A2 and Sim represent verifier V1, verifier V2 and a sim-

ulation algorithm respectively. In the viewpoint of A2, to guess σ′ is signed on which

message, the transcript from a real verifier A1 is no more convincing or informative

than the transcript from a simulation algorithm Sim.

Remark 6. One may note this security requirement is quite similar to “non-

transferability” which is proposed in Camenisch and Michels’ model (the definition

can be found in [18], and also in Def.3.7 in Chapter 3). However, the definition

of transcript-simulatability actually includes an implicit indistinguishability, namely

the adversary cannot identify which is the valid message-signature pair, (m0, σ
′) or

(m1, σ
′)? This motivate us to explore the relations between transcript-simulatability,

non-transferability, and invisibility. A further detailed discussion for the relations be-

tween those three notions is carried out in the next section, and to make the comparison

compatible, we make some changes to the DCS model. In particular, we assume only

the confirmer can verify a DCS and interactively convince the verifier of the signature’s

validity. Hence, the “ConfirmedSign” protocol is replaced by the “DCSSign” al-

gorithm where the latter is an algorithm that outputs a valid DCS. In fact, our change is

just to disable the verifiability of the signer in GMR model [38] , and it does not affect

the correctness of the result, as non-transferability actually means non-transferable of

the confirmer’s interactive verification. Because the signer and the confirmer’s verifi-

ablity are symmetric, we believe the comparison based only on the separate confirmer’s

65

verifiability is reasonable.

4.2 Is CM Model As Strong As GMR Model?

Two notions are introduced in CM model [18], i.e., invisibility and non-transferability.

Recall that invisibility informally requires no adversary can see the (in)validity of an

alleged signature, while non-transferability informally requires one cannot get more in-

formation out of the Confirm/Disavow protocol than whether a signature is valid or not.

Note that, Figure 4.3 is to demonstrate the non-transferability game in Camenisch and

Michels’ definition [18], where Sim denotes the simulator in the non-transferability

game, and V alidityO denotes the single oracle that outputs a DCS’s validity.

From the intuition, it seems the requirement of non-transferability may be cov-

ered by (or equivalent to) the requirement of transcript-simulatability. Meanwhile,

by investigating the definition of invisibility and transcript-simulatability, we find the

former can be derived from the later from the definitions, which means transcript-

simulatability implies invisibility. Hence, one may raise an assumption: “Under proper

conditions, transcript-simulatability is equivalent to invisibility plus non-transferability,

that is, GMR model is as strong as CM model in some way. To address this issue, we

tries to find a formal proof in two directions, i.e, one half about whether GMR model

covers CM model, and the other half about whether CM model covers GMR model.

However, we find it seems hard to deal with non-transferability in both directions, and

we introduce another type of non-transferability, and we explain the related reasons as

below.

66

4.2.1 A New Definition of Non-transferability

Normally, non-transferability guarantees that a verifier who learns whether a given

DCS is valid or not by interacting with the confirmer in the confirm or disavow proto-

cols, should not be able to prove this fact to a third party. More specifically, the verifier

should be able to “fake” any evidence of the validity of a signature obtained by interact-

ing with the confirmer. However, non-transferability in [18] and in Def 3.7. in Chapter

3, is actually defined based on an interaction-based indistinguishability, which means

the adversary should not be able to tell whether it was interacting with a real confirmer

or a simulation algorithm. We agree with the comments by Wikström that (see the dis-

cussion after Definition 8 in [85]), this requirement seems too strong, which relies on

the existence of a straight-line zero knowledge simulator for an interactive proof with-

out set-up assumptions. Hence we propose a new definition but preserves the main

implications and applications of non-transferability as follows. For simplicity, we let

NTR-0 denote the definition of non-transferability in [18] and Def 3.7. in Chapter 3.

Consequently, we introduce the new definition of non-transferability.

Definition 4.3. Non-transferability of Confirm and Disavow protocols (NTR-1):

The evidence generated inConfirm andDisavow protocols should be untransferable.

Namely, although an adaptive PPT adversary A knows whether a given DCS is valid

or not through the interactive verification, it does not gain any knowledge that can be

used to convince a third party about the validity of that DCS. Because there always

exists an accompanying simulator of A, which is able to produce the evidence that is

indistinguishable from the true evidence. In particular, this notion is formalised in the

following game considering a PPT adversary A = (A0,A1,A2) and a PPT simulator

Sim:

Initially, the adversaryA = (A0,A1,A2) is given the public key pkS and pkC of the

signer and the confirmer. A0 is allowed to make arbitrary oracle queries toDCSSign,

67

Confirm(C,V), Disavow(C,V) and Extract. Again A0 is allowed to create signature-

key pairs (skA, pkA), and to run DCSSgin and then interact with the confirmer with

respect to these keys. In some stage, A0 must present two strings, m and σ′, for which

it wishes to carry out Confirm (or Disavow) protocol with the confirmer. Then a fair

coin b is flipped.

If b = 0, the confirmer and A1 run the Confirm (orDisavow) protocol with com-

mon input (m,σ′, pkS, pkC), while the confirmer’s secret input will be skC . Eventually,

A1 stops with an output τ , where τ is the evidence shows that σ′ is a valid (invalid)

signature on m.

If b = 1, the PPT simulator Sim is involved in the game. Sim is not given the

confirmer’s secret key, but is allowed to make a single call to an oracle which tells

Sim whether the strings m and σ′ is a valid DCS w.r.t. pkS and pkC . Eventually,

Sim stops with an output τ , where τ is the evidence shows that σ′ is a valid (invalid)

signature on m.

On receiving (m,σ′, τ) with the public keys pkS and pkC , A2 outputs a bit b′ to

guess the value of b. In addition, A2 is allowed to make arbitrary oracle queries to

DCSSign, Confirm(C,V), Disavow(C,V) and Extract.

A’s advantage relative to Sim in this game is defined as advA,Sim = Pr[b′ = b]−1

2
.

We require for any PPT adversary A = (A0,A1,A2), there exists a simulator Sim

such that for all sufficiently large λ, all (skS, pkS) ∈ GS(1λ), and all (skC , pkC) ∈

GC(1λ), advA,Sim ≤ negl(λ).

Remark 7. Note that, Figure 4.3 and Figure 4.4 demonstrate the non-transferability

games in the definitions of NTR-0 and NTR-1 respectively, where V alidityO denotes

the single oracle that outputs a DCS’s validity.

Remark 8. It seems one may not easily to identify the relation between NTR-0 and

NTR-1 for the following reasons. On one hand, it seems by reducing the requirement

68

of distinguishing two interactions, to the requirement of distinguishing two pieces of

evidences, NTR-1 seems weaker than NTR-0, as the simulator in NTR-1 could usually

be a straight-line ZK simulator for an interactive proof without set-up assumptions,

which is much harder to construct than a rewindable simulator in NTR-1. On the other

hand, in NTR-1, the adversary A1 can append arbitrary information on the transcript

from Confirm(C,V)(m,σ
′) if it wants, which requires the simulator to be more pow-

erful regarding to a revisable transcript. And hence it remains an open problem to find

the relations between these two security notions.

4.2.2 A Proof for One Side

For the first problem, i.e., whether GMR model covers CM model? We think the

answer is NOT SURE, since NTR-0 in CM model seems too strong to achieve the

computational security. However, if we replace NTR-0 with NTR-1 in CM model,

we think the answer is YES. The reason is quite straightforward. By the informal

above discussion, one could simply obtain the invisibility game by deleting algorithms

A1 and A′1 (i.e. Step 5), and deleting τ in the input of algorithm A2. On the other

hand, the challenge in the transcript-simulatability game essentially requiresA2 cannot

distinguish between a true transcript (shows that σ′ is signed on m0) from a simulated

one, even the later is on a false statement. Comparing against the similar challenge

in the non-transferability game, such a requirement is clearly stronger, and thus we

intuitively think transcript-simulatability also implies non-transferability. In fact, two

results can be proved within the following theorem.

Theorem 4.2. Let DCS be a designated confirmer signature scheme which has

transcript-simulatability, thenDCS has invisibility and non-transferability as spec-

ified in Def 4.3.

69

Proof: We use the method of proof by contraposition, by proving the following

two lemmas, i.e., Lemma 4.1 and Lemma 4.2. Let AINV , ANTR, ATS be three adver-

saries which aim to win the invisibility game, non-transferability game, and transcript-

simulatability game respectively. �

Lemma 4.1. If a PPT adversaryAINV breaks the schemeDCS on non-transferability

by executing GameINV in polynomial time tINV with a non-negligible advan-

tage advINV , a PPT adversary ATS can break the scheme DCS on transcript-

simulatability by executing GameTS in polynomial time tTS with a non-negligible

advantage advTS .

Proof: We remark that because GameINV can be derived from GameTS by delet-

ing algorithms A1 and A′1 (i.e. step 5 and 6), and deleting in the input τ of algorithm

A2. Hence, an adversary in GameTS with more resource, i.e., additional transcripts τ ,

should have an advantage which is larger than a similar adversary in GameINV when

guessing the random bit.

We build a PPT adversary ATS by using AINV as follows. The challenger of ATS

runs the key generation algorithm to generate the public parameters and the key pairs

of the signer and the confirmer. Th adversary ATS receives the public parameters

including pkS, pkC from its challenger, and relays a copy to AINV .

InAINV ’s training phase, all oracle queries and responses are relayed byA0, which

is a subalgorithm ofATS that has the full oracle access inO. AINV outputs two strings,

say m0 and m1, which will be alternatively signed by its challenger.

ATS uses m0 and m1 as its own challenging messages, and sends them to its chal-

lenger. At this point ATS’s challenger flips a coin to obtain a bit b and takes σ′ as the

DCS on mb. After AINV receives its challenge tuple (m0,m1, σ
′) from ATS , the exe-

cutions follow GameTS in step 5. At the end of the procedure, either A1or A′1 outputs

70

a transcript τ to convince A2 that σ′ is signed on m0.

AINV is again allowed to enquire O via A2’s oracles. Eventually, AINV outputs a

bit b′ as its guess on b, and ATS uses b′ as its own answer.

It is straightforwardly to find that if AINV makes a successful distinction with a

non-negligible advantage advINV , ATS’s advantage to break transcript-simulatability

is non-negligible, and we have advTS = advINV . In addition, the running time ofATS

is equal to the running time of AINV , i.e., tINV = tTS . �

Lemma 4.2. If there exists a PPT adversary BNTR = (B0,B1,B2) breaks the

scheme DCS on non-transferability by executing GameNTR in polynomial time

tNTR with a non-negligible advantage advNTR, then there exists a PPT adver-

sary ATS that breaks the scheme DCS on transcript-simulatability by executing

GameTS in polynomial time tTS with a non-negligible advantage advTS .

Proof: Essentially, we need to prove such a statement: if there exists an PPT

adversary BNTR = (B0,B1,B2), for arbitrary PPT simulator B′1, the output of B1

and the output of B′1 can be distinguished by B2, then there exists an PPT adversary

ATS = (A0,A1,A2), such that for arbitrary PPT simulator A′1, the output of A1 and

the output of A′1 can be distinguished by A2.

we shall construct a transcript-simulatability adversary ATS = (A0,A1,A2) by

using the successful non-transferability adversary BNTR = (B0,B1,B2) as a subrou-

tine. In particular, ATS should simulate all permitted oracles for BNTR in GameNTR

as follows.

Initially, the challenger of ATS runs the key generation algorithm to generate the

public parameters and the key pairs of the signer and the confirmer. Th adversaryATS

receives the public parameters including pkS, pkC from its challenger, and relays a

copy to BNTR.

Because A0 is a subalgorithm of ATS and has the full oracle access in O, A0

71

relays all of B0’sDCSSign, Confirm,Disavow andExtract queries and responses.

Meanwhile, B0 is allowed to create its own key pairs (skB, pkB), and to run DCSSgin

and then interacts withA0 for the confirmation or disavowal with respect to these keys.

Again, A0 still relays all Confirm or Disavow queries and responses. We allow A0

to maintain a list LDCSSign0 that LDCSSign0 = {(mi, σ
′
i) | (mi, σ

′
i) ← DCSSign} as

B0’s all DCSSign queries, where i does not exceed the polynomial number of B0’s

oracle access in its training phase. Furthermore, LDCSSign0 will be added to the state

information s and further sent to A1 or A′1.

At some point, B0 outputs two strings, m and σ′, for which it wants to carry out

the verification protocols. Let τ denote the transcript of confirming or disavowing the

DCS-pair (m,σ′) in the following simulation. A0 outputs two strings m0 and m1,

where m0 = m, and m1 is randomly selected from the message space. In addition, A0

adds (m0, σ′) to its states s.

Then the challenger of ATS flips a fair coin b, and produces a DCS σ′ on mb. A1

or a PPT simulator A′1 executes as follows:

• Case 1 : If b = 0, A1 runs Confirm(C,A1) and Disavow(C,A1) protocols with C

on the pair (m0, σ′), and records the transcript τ . A1 outputs τ as the evidence

showing σ′ is signed on m0, thought τ is meaningless w.r.t. (m0, σ
′).

• Case 2 : If b = 1, the executions are a little complex. Firstly, we assume any

PPT simulator A′1 involved in the following executions is always willing to is-

sue an indistinguishable output from the output in Case 1. The reason is that,

we can define two types of simulator. The first-type simulator always issues a

distinguishable output from the output in Case 1, while the second-type simula-

tor always tries to issue an indistinguishable output from the output in Case 1.

However, for the first-type simulator, A2 can always make a distinction and thus

the statement is true. So without loss of generality, we simply assume any PPT

72

simulator A′1 is the second-type simulator. A′1 constructs the simulated tran-

script τ as follows. Since A′1 has access to DCSSign oracle, it maintains all

pairs {(m′j, σ′j)} previously generated by DCSSign as a list LDCSSign1 , where

j ∈ {1, .., q}. Also A′1 extracts LDCSSign0 from s.

– If (m,σ′) ∈ LDCSSign0 , which means (m,σ′) is previously generated by

A0’s DCSSign oracle. A′1 marks “valid” on (m,σ′).

– If (m,σ′) ∈ LDCSSign1 , which means the previously selected pair(m,σ′) is

also a valid DCS generated by A′1’s DCSSign oracle, and that is a rare

case for a randomized algorithm. A′1 marks “valid” on (m,σ′).

– If m = m′i and R(m,σ′i, σ) = 1, which means σ is an equivalent DCS of

some signature σ′i in LDCSSign0 . A′1 marks “valid” on (m,σ′).

– If m = m′j and R(m,σ′j, σ) = 1, which means σ is an equivalent DCS of

some signature σ′j in LDCSSign1 . A′1 marks “valid” on (m,σ′).

– In all other cases, A′1 marks “invalid” on (m,σ′).

On receiving the validity information of (m,σ′), A′1 simulates a proper confirma-

tion or disavowal transcript τ on (m,σ′) as the evidence showing σ′ is signed on m0.

Next, on receiving τ from either A1 or A′1, A2 invokes B2 with the input (m,σ′, τ).

In addition, A2 simulates B2’s oracle queries by using its own oracles. Eventually, B2

output a bit b′, and A2 uses b′ as its guess to the value of coin b.

We remark that, in Case 2, As long as A′1 is the second-type simulator, its simu-

lation for τ is indistinguishable from a real non-transferability simulator’s execution.

The reason is that, in the real non-transferability game, the simulator is equipped with

a validity oracle once to know (m,σ′)’s validity. In our settings, A′1 knows all valid

DCSs that were correctly generated by DCSSign oracle and recorded in LDCSSign0

73

and LDCSSign1 . Thus, with a small probability that (m,σ′) is a valid message-DCS pair

if, either(m,σ′) or its equivalent DCSs appears in LDCSSign0 or LDCSSign1 , or ANTR

has the ability to “forge” such a DCS without the signer’s secret key skS . And hence

A′1 always ensures the validity of (m,σ′) before it simulates a proper confirmation or

disavowal transcript.

Note if ANTR outputs its guess in polynomial time tNTR, ATS outputs its guess in

polynomial time tTS , where tNTR = tTS .

Now we analyze ATS’s probability of breaking DCS on transcript-simulatability.

Let event Ei denote executions follow in Case i and the simulation in Case i succeeds.

If ATS wins the game with an advantage advTS , we have:

advTS = Pr[bTS = b]− 1

2
= Pr[bTS = b | E1 ∨ E2]× Pr[E1 ∨ E2]− 1

2

Analogously, in Case 2, the simulation succeeds with a probability of 1 − advUF

where adv∗UF denotes ANTR’s advantage to “forge” a valid message-DCS pair in the

above procedure. NoteANTR is not allowed to possess skC which differs from a typical

adversary in the unforgeability game (see in Def 2.2.4), and thus adv∗UF will be less

equal than the advantage of such a typical forger. So the simulation in Case 2 succeeds

with a overwhelming probability assuming adv∗UF is negligible. Thus the probability of

E2 that indicates the procedure falls in Case 2 and the simulation succeeds is Pr[E2] =

1

2
× (1− adv∗UF) ≈ 1

2
× (1− advUF), and we have Pr[E1 ∨E2] = Pr[E1] + Pr[E2] =

1− 1

2
× advUF .

In both cases, ATS always succeeds in guessing b if ANTR can make a successful

guess on b′, so we have Pr[bTS = b | E1 ∨ E2] =
1

2
+ advNTR.

Therefore, we have:

advTS ≈ (
1

2
+advNTR)×(1−1

2
×advUF)−1

2
= advNTR−

1

4
×advUF−

1

2
×advNTR×advUF

One could derive the following inequation by eliminating advUF :

74

¬TS ¬INV ¬NTR NTR ¬TS → ¬INV ∨ ¬NTR ¬TS ∧NTR→ ¬INV
T T T F T T
T T F T T T
T F T F T T
T F F T F F
F T T F T T
F T F T T T
F F T F T T
F F F T T T

Table 4.1: A Truth Table

advTS ≈ advNTR

and hence the result follows. �

4.2.3 A Proof for the Other Side

On the other side, what we really care about is, “if a DCS scheme satisfies both invisi-

bility and non-transferability, transcript-simulatability is implicitly satisfied”. And the

contrapositive of the above statement is: “if a DCS scheme does not satisfy transcript-

simulatability, either non-transferability or invisibility does not hold”. Employing the

symbolic logic, using the symbol “¬P ” to denote the negation of the proposition P ,

one could derive the following result.

• Step1: Our goal is to prove: “¬TS → ¬INV ∨ ¬NTR”.

• Step 2: To prove: “¬TS → ¬INV ∨ ¬NTR”, is equivalent to prove such a

statement: “(¬TS → ¬INV) ∨ (¬TS → ¬NTR)”.

• Step 3: Alternatively, to prove: “¬TS → ¬INV ∨ ¬NTR”, is equivalent to

prove such a statement: “¬TS ∧NTR→ ¬INV ”.

In fact, we find neither the left clause nor the right clause in Step 2 can be straight-

forwardly proved in such an OR-statement. The reason is that, the definition of transcript-

75

simulatability could be treated as a combination of invisibility and non-transferability,

sinceA2 inGameTS can win the game if it can either make a distinction on (m0,m1, σ
′)

which in fact looks like an invisibility challenge, or it can make a distinction on the

generator of the evidence which turns into a non-transferability challenge of NTR-1 in

that case. So either a successful invisibility attacker or a successful attacker for non-

transferability of NTR-1 can conduct to a successful transcript-simulatability attacker.

However, we cannot say the reverse holds, since one cannot explicitly figure out that

these two underlying challenges in a transcript-simulatability game are independent.

However, if one raises a reasonable assumption, one may get a weaker but still very

useful theoretical result. Indeed, what we achieved is by showing the truth of such an

statement in Step 3: “Under the assumption that non-transferability is satisfied, a suc-

cessful invisibility adversary exists if a successful transcript-simulatability adversary

exists”. And such a result is formally presented in the following theorem. Note the

correctness of the statement in step 3 is guaranteed by applying the truth table in Table

4.1.

One should note that non-transferability in the theorem below is specified as NTR-

0, since we are only able to construct a successful invisibility attacker linking a NTR-0

secure DCS scheme. And it remains an open problem if one replace NTR-0 with NTR-

1 in theorem 4.3., that is, the problem that how to prove that transcript-simulatability

implies invisibility plus non-transferability in Def 3.7., Chapter 3 (or the definition of

[18]).

Theorem 4.3. If the schemeDCS satisfies non-transferability (NTR-0) as specified

in Def 3.7., and if a PPT adversary ATS breaks the scheme DCS on transcript-

simulatability by executing GameTS in polynomial time tTS with a non-negligible

advantage advTS , there exists a PPT adversary AINV that can break the scheme

DCS on invisibility by executing GameINV in polynomial time tINV with a non-

76

negligible advantage advINV .

Proof: The main idea of the proof is to construct an invisibility adversary AINV

by using a transcript-simulatability adversary ATS as a subroutine, where the former

simulates the environment for ATS = (A0,A1,A2) and A′1, which is the concomitant

simulator of A1 in the transcript-simulatability game. During the simulation, we let

the algorithm A1 violates with some constrains in a little way (The details of A1’s

innocuous behaviors will be given shortly).

For the assumption that the scheme DCS meets NTR-0, we require that, for every

non-transferability adversary say ANTR−0, there exists a simulator say SNTR−0 that

is able to simulate an interaction with ANTR−0, and such a simulated interaction is

indistinguishable from a interaction performed by the real confirmer. Let advNTR−0

denote the advantage of ANTR−0 to win the non-transferability game in the definition

of NTR-0, and we have advNTR−0 ≤ negl(λ) .

Initially, the challenger of AINV runs the key generation algorithm to generate

the public parameters and the key pairs of the signer and the confirmer. Th adversary

AINV receives the public parameters including pkS, pkC from its challenger, and relays

a copy to A0. In addition, AINV will hold the signer’s secret key skS as required.

AINV simulatesA0’s oracleO includingConfirm,Disavow andExtract queries

by relaying the requests and responses between AINV ’s challenger and A0. In partic-

ular, AINV can simulate A0’s DCSSign oracle using the signer’s secret key skS by

himself. At some point, A0 outputs two messages, say m0 and m1.

AINV uses m0 and m1 as its output at its challenge phase. After flipping a fair

coin bINV , AINV ’s challenger generates a DCS σ′ on message mb. Next AINV flips a

hidden coin bTS . If bTS = 0,AINV sends (m0,m1, σ
′) toA1 as input; otherwise,AINV

sends (m0,m1, σ
′) to A′1 as input. NowAINV simulates A1 or A′1’s oracle services by

using the following strategy:

77

[Simulation for A′1] BecauseA′1 is only allowed to access to DCSSign oracle. By

using skS , AINV can simply answer all A′1’s DCSSign queries.

[Simulation forA1] For all queries NOT involving σ′,AINV can simply relay those

queries to its own challenger. However, for any query including σ′, it cannot repeat

that according to the limitation of such an invisibility adversary after receiving the

challenge. Without loss of generality, we assume A1 is always requesting the interac-

tions about a confirmation on (m0, σ
′) and a disavowal on (m1, σ

′). Since NTR-0 is

satisfied due to the assumption, to confirm (m0, σ
′) or disavow (m1, σ

′), we alterna-

tively require AINV invokes SNTR−0 while treating (m0, σ
′) as a valid message-DCS

pair and (m1, σ
′) as an invalid one. Note this instant guess is consistent with AINV ’s

previous choice, i.e., if bTS = 0, AINV sends (m0,m1, σ
′) to A1 as input.

[A1’s innocuous behavior] We require A1 always performs the following innocu-

ous behavior during the simulation: For each confirmation on (m0, σ
′) and each dis-

avowal on (m1, σ
′), A1 tries to identify if it interacts with a real confirmer or a simu-

lator. Furthermore, if it “thinks” it interacts with a simulator, it rejects that verification

and terminates; otherwise, it accepts that verification.

At the end of the simulation, A1 or A′1 outputs a tuple (m0,m1, σ
′, s, τ) and sends

it to A2, where s indicates the state information and τ denotes a transcript shows that

σ′ is signed on m0. Now AINV still relays all A2’s oracle queries that will not include

(m0, σ
′) or (m1, σ

′) or their equivalent DCSs.

If A2 outputs a bit b, AINV outputs b as its guess for its game.

Now we analyze AINV ’s probability of breaking DCS on invisibility by using

(A0,A1,A′1,A2) as subroutines. Note AINV successfully simulates the environment

for (A0,A1,A′1,A2) except some failure events happen. We define the following fail

events during the AINV ’s simulation.

78

• fail1: bTS 6= bINV . This indicates AINV falsely sent (m0,m1, σ
′) to A1 or A′1.

• fail2: A1 rejects the confirmation transcript on (m0, σ
′) or a disavowal transcript

on (m1, σ
′), after its interaction with AINV . This suggests A1 is potentially

able to play as an non-transferability adversary, and distinguish the interaction

between a real confirmer and a simulator who knows the signature’s validity.

Obviously, we have Pr[fail1] =
1

2
since bTS and bINV are two independent fair coins.

For the second type of failures, we think that A1 will definitely request a verification

on (m0, σ
′) or (m1, σ

′), to output a piece of transcript which shall convince A2 that

σ′ is signed on m0. If A1 is aware that during interactions, at least one interaction is

controlled by the simulator, it would be potentially able to play as a non-transferability

adversary, and distinguish such an interaction, i.e., to verify (m0, σ
′) or (m1, σ

′), be-

tween a real confirmer and a simulator. Recall that advNTR−0 denotes the advantage

of a PPT adversary to win the non-transferability game in the definition of NTR-0.

Because A1 tries to subconsciously identify the transcript from AINV during each in-

teraction, A1’s probability to accept such a simulated transcript is ε =
1

2
− advNTR−0.

And thus we have Pr[fail2] = 1− ε2.

From the simulation specified above, if fail1 happens,AINV ’s probability to guess

bINV correctly is exactly
1

2
, and we refer to this event as “AINV wins”. Otherwise,

AINV ’s probability to guess bINV correctly is equal to ATS’s probability to guess bTS

correctly, and we refer to the later event as “ATS wins”.

we have:

Pr[AINV wins] =
1

2
× Pr[fail1] + Pr[ATS wins]× Pr[¬fail1]

1

2
+ advINV =

1

2
× 1

2
+ (Pr[ATS wins | ¬fail2]× Pr[¬fail2]

+ Pr[ATS wins | fail2]× Pr[fail2])× 1

2

79

Note Pr[ATS wins | fail2] =
1

2
means ATS’s probability to win is exactly

1

2
if

fail2 happens. Thus we have:

1

2
+advINV =

1

2
×1

2
+((

1

2
+advTS)×ε2+

1

2
×(1−ε2))×1

2
=

1

2
+

1

2
×advTS×(

1

2
−advNTR−0)2

that is, advINV =
1

2
× advTS × (

1

2
− advNTR−0)2

According to the assumption that advNTR−0 is a negligible probability, One could

derive the following inequation by eliminating advNTR−0:

advINV ≈
1

8
× advTS

Hence if advTS is non-negligible, advINV is non-negligible.

Considering the running time of AINV : Because tNTR and tTS is polynomial, the

total running time of AINV is tTS plus A1’s additional executing time which is 2 ×

tNTR−0, where tNTR−0 denotes the polynomial time ofANTR−0 executing the game of

NTR-0, and thus AINV still succeeds in polynomial time. �

Since almost all the current practical or generic DCS schemes are constructed by

using (concurrent) ZK proofs or ZK proofs of knowledge as the underlying building

blocks. Furthermore, non-transferability follows in a straightforward manner from

zero-knowledge property of the proofs in the Confirm or Disavow protocol (Similar

argument can be found in the proof of Theorem 1 in [18]). One could get the following

more applicable corollary.

Corollary 4.1. Let DCS be a designated confirmer signature scheme with the

underlying verification protocols which are based on zero knowledge proofs. If

DCS satisfies invisibility, it satisfies transcript-simulatability.

(Proof omitted). One could applying the above proof of Theorem 4.3, by replacing

the assumption of NTR-0 into a stronger one such that the zero knowledge property

of the underlying Confirm and Disavow protocols is guaranteed. And the related

80

INV −→ UNIMP (by Theorem 4.1)
TS −→ INV (by Lemma 4.1)

TS −→ NTR-1 (by Lemma 4.2)
TS −→ INV + NTR-1 (by Theorem 4.2)
INV + NTR-0 −→ TS (by Theorem 4.3)

INV + ZK −→ TS (by Corollary 4.1)

Figure 4.6: Relations among security notions in DCS Schemes

equation still holds: advINV ≈
1

8
× advTS . �

4.3 Summary

We show that at least CM model is stronger than GMR model, namely the combination

of invisibility and non-transferability (NTR-0) implies transcript-simulatability. How-

ever, the converse only holds when assuming a new definition of non-transferability,

i.e., NTR-1 is satisfied. A more practical result is, if the underlying Confirm and

Disavow protocols are based on zero knowledge proofs, transcript-simulatability is

equivalent to invisibility. We show a more detailed result listed in Figure 4.6, where

the strings of “INV”, “UNIMP”, “TS”, represent the security notions of invisibility,

unimpersonation and transcript-simulatability, respectively.

For the future work, it would be very interesting to find a formal proof that figures

out the relations between the notion of NTR-0 and the notion of NTR-1. Although

due to the Theorem 4.2 and Theorem 4.3, NTR-1 seems intuitively no stronger than

NTR-0.

Chapter 5

A Paring-based DCS Scheme with

Unified Verification

5.1 Introduction

There is one limit in most of the existing DCS schemes: A signer is not given the

ability to disavow invalid DCS signatures. Therefore, the current concept of DCS has

not yet fully extended that of undeniable signatures, as the latter does grant the signer

the ability of disavowal. Moreover, in many applications it seems more sensible to

enable the signer having the same ability as the confirmer to confirm any valid DCS

and deny any invalid DCS. In fact, this additional ability will not only alleviate the

burden of the confirmer, but effectively prevents the signer from viciously claiming:

“This alleged DCS is not valid, but I am not able to show this”. Galbraith and Mao

[32] first pointed out DCS schemes should allow a signer to be able to deny invalid

signatures but they did not present any construction with this property. Motivated by

this observation, in this thesis we propose the concept of DCS with unified verification,

together with a formal security model and a concrete construction. Simply speaking,

82

in DCS scheme with unified verification both the signer and the designated confirmer

can run the same protocol to confirm valid signatures, and another same protocol to

disavow invalid signatures. Based on the security models in [18, 32], we first present a

new security model for DCS with unified verification to capture all desirable security

requirements (Section 3). We also point out that the proposed model can be easily

generalised to accommodate DCS with full verification, in which the signer and the

confirmer do not necessarily run the same protocols to confirm or disavow signatures.

Then, we consider how to construct a DCS with unified verification. This is a

challenge, as simply revising the existing constructions does not work. The reason

is that almost all previous DCS schemes [45, 38, 58, 64, 78] follow the approach of

encrypting the signer’s signature under the confirmer’s public key. So, without the

confirmer’s private key the signer is not able to show that a CCA2 ciphertext is not

a proper encryption of his/her signature for a given message. In fact, it seems that

even Wang et al.’s DCS [78] without using public encryption cannot be converted into

a scheme supporting the signer’s disavowal, since an alleged DCS may contain a non

Diffie-Hellman tuple, for which the signer does not know a witness to prove this fact

at all.

However, this does not mean that it is impossible to construct DCS schemes with

unified verification or with full verification. Due to the amazing property of bilinear

pairings, we constructed the first concrete DCS scheme which supports unified verifi-

cation in the preliminary version of this work [81], though that scheme only achieves

weak invisibility. By making a simple enhancement to our previous work [81], we

get a new and secure DCS scheme with unified verification in this thesis (Section 4)

and prove its security in the random oracle model (Section 5). Specifically, the new

scheme is constructed by encrypting the BLS pairing based short signature [14] un-

der the signed ElGamal encryption [72]. Note that directly exploiting plain ElGamal

83

encryption [30] cannot guarantee the invisibility, due to ElGamal’s malleability (See

more discussion in Section 4). Moreover, compared to the existing DCS schemes

[45, 38, 78, 48], the proposed solution has a conceptual simpler structure and a short

signature size, though the computational overhead is a little higher due to pairing eval-

uation. Another interesting observation about our construction is that the underlying

signed ElGamal encryption is actually not CPA secure due to the fact that the DDH

(Decisional Diffie-Hellman) problem is easy in pairing setting, though signed ElGa-

mal encryption is proved to be CCA2-secure in the random oracle model and in the

generic group model by Schnorr and Jakobsson [72]. This is seemingly contradictory

to the result by Okamoto [64]. The likely reason for this is that our definitions on the

security of DCS are different from Okamoto’s, but we are not very sure at this moment.

So, here we would like to promote this issue as an open problem.

5.2 Bilinear Pairings and the BLS Signature

Basically, a pairing is a function that takes two points on an elliptic curve as input, and

outputs an element of some multiplicative group. Weil pairing and Tate pairing are

two known symmetric pairings, while some other pairings, e.g., Eta pairing and Ate

Pairing [34], have been given more and more attentions.

Definition 5.1. Suppose that G and Gt be two multiplicative cyclic groups of prime

order q, while g is a generators of G. A bilinear pairing on (G,Gt) is a map e :

G×G→ Gt, which satisfies the following properties:

Bilinearity: For all u, v ∈ G, and for all a, b ∈ Zq, e(ua, vb) = e(u, v)ab.

Non-degeneracy: e(g, g) 6= 1, where 1 is the multiplicative identity of group Gt.

Computability: e can be efficiently computed.

We now review the BLS short signature scheme of Boneh, Lynn and Shacham

84

[14]. In general, the scheme has three algorithms, Key Generation, Sign, and Verify. In

addition, it needs a full-domain hash function H: {0, 1}∗ → G.

Key Generation: A user randomly selects x ∈ Z∗q as its private key, and computes

y = gx as the corresponding public key.

Sign: To sign a message m ∈ {0, 1}∗, the signer with private key x computes

h = H(m) ∈ G, and the signature σ = hx ∈ G.

Verify: Given a public key y and a message-signature pair (m,σ), a verifier first

computes h = H(m), and then checks if e(g, σ) = e(y, h) holds or not. If it holds, it

accepts the validity of (m,σ).

Note that the BLS signature is only one single element of G, so it is very short

(for example, 171 bits) for some elliptic curves. In [14], it is proved that the security

of the BLS signature scheme follows the hardness of Computational Diffie-Hellman

(CDH) problem in the random oracle model. In fact, the original BLS signature [14] is

described in the setting of asymmetric pairing e, i.e., e is a bilinear map from G1×G2

to Gt, while G1, G2, and Gt are all multiplicative cyclic groups of prime order q. Here,

for simplicity we just use symmetric pairing by letting G = G1 = G2. We note that to

extend our DCS scheme for the asymmetric pairing is straightforward.

5.3 Concurrent Zero-knowledge From Honest-Verifier

Zero-Knowledge

Zero-knowledge (ZK) protocols allow a prover to validate theorems to a verifier with-

out giving away any other knowledge other than the theorems being true (i.e., existing

witnesses) [43]. Traditional notion of ZK considers the security in a stand-alone (or

sequential) execution of the protocol. Motivated by the use of such protocols in an

85

asynchronous network like the Internet where many protocols are run concurrently at

the same time, studying security properties of ZK protocols in such concurrent settings

has attracted extensive research efforts in recent years [29]. Informally, a ZK protocol

is called concurrent zero-knowledge (CZK) if the ZK related simulatability property

holds in the concurrent settings, namely, when a malicious verifier concurrently in-

teracts with a polynomial number of honest prover instances and schedules message

exchanges as it wishes. We note, in DCS schemes, we require CZK protocols, be-

cause an adversary in DCS schemes may act as arbitrary cheating verifiers during the

concurrent execution of protocols that confirm or deny all alleged DCS signatures.1

In this work, for presentation simplicity, we describe the Confirm and Disavow

protocols with Σ-protocols (i.e., 3-round public-coin special honest verifier interactive

zero-knowledge (SHVIZK) with special soundness) directly.

Definition 5.2.

A 3-round public-coin protocol 〈P, V 〉 is said to be a Σ-protocol for a relation R if

the following hold:

• Completeness. If P , V follow the protocol, the verifier always accepts.

• Special soundness. From any common input x of length n and any pair of ac-

cepting conversations on input x, (a, e, z) and (a, e′, z′) where e 6= e′, one can

efficiently computes w such that (x,w) ∈ R. Here a, e, z stand for the first,

the second and the third message respectively and e is assumed to be a string

of length t (that is polynomially related to n) selected uniformly at random in

{0, 1}t.

1We note that the CZK issue was not realised in [48], where only stand-alone 4-round ZK is men-
tioned.

86

• Special honest verifier zero-knowledge (SHVZK). There exists a probabilistic

polynomial-time (PPT) simulator S, which on input x and a random challenge

string e, outputs an accepting conversation of the form (a, e, z), with the same

probability distribution as the real conversation between the honest P , V on

input x.

Σ-protocols have been proved to be a very powerful cryptographic tool and are

widely used. Transformation methodologies from Σ-protocols to CZK protocols, in

the common reference string (CRS) model, are known (e.g., [27, 36]), but usually

incurs much additional computational and communication complexity. Moreover, for

CZK transformation in the CRS model, the CRS should be included as a part in the

public-key of the confirmer, which additionally increases the public-key length of the

confirmer. The transformation methodology proposed in [27] is recalled in section

5.3.1, which is among the most efficient transformations.

As we aim for DCS in the RO model, in this work we develop a highly effi-

cient transformation from Σ-protocols to straight-line CZK in the unprogrammable

RO model, where straight-line CZK means that the CZK simulator works in a straight-

line way (without rewinding the underlying adversary). Given access to a random or-

acle O, we can transform a Σ-protocol into a non-interactive zero-knowledge (NIZK)

protocol via the Fiat-Shamir heuristics. But, the NIZK got this way loses deniability

[63, 66], which is however required for DCS schemes. The deniability loss is due to

the programmability of RO in the security analysis [63, 66]. To overcome the denia-

bility loss of simulation with programmable RO, the works of [63, 66] proposed the

unprogrammable RO model, and showed that ZK with unprogrammable RO reserves

the deniability property. We briefly discuss the main difference between programmable

RO model and unprogrammable RO model. In the programmable RO model, the sim-

ulator can (1) see the queries parties make to the random oracle and (2) can choose the

87

Common input. An element x ∈ L of length n, where L is an NP-language that admits Σ-
protocols.

P ’s private input. A witness w for x ∈ L.

Random oracle. An unprogrammable random oracle denoted O.

Round-1. The verifier V takes e ∈ {0, 1}k uniformly at random, and sends c = O(e) to P .

Round-2. The prover P sends a (i.e., the first-round of the underlying Σ-protocol by running the
underlying PL) to V .

Round-3. V sends e to P .

Round-4. After receiving e from V , P first checks whether c = O(e). If not, P simply aborts;
otherwise (i.e, c = O(e)), P sends z (i.e., the last-round of the underlying Σ-protocol by
running the underlying PL) to V .

V ’s decision. V checks, by running the underlying VL, whether (a, c, z) is an accepting conversa-
tion of the underlying Σ-protocol for showing x ∈ L.

Table 5.1: Straight-line CZK protocol with unprogrammable RO

answers to these queries. The second is what we refer to as programming the random

oracle. Suppose our goal is to simulate a transcript of the random oracle RO at some

value s. Our intuition about the random oracle as a truly random function indicates

that picking a truly random string should suffice, and indeed, even no computationally

unbounded distinguishers, can distinguish a truly random string from RO’s output of s,

provided the distinguisher does not get access to RO. However, in the unprogrammable

RO model, we give the distinguisher access to RO, then the only "good" simulation of

the transcript is RO’s output of s, and the simulation must query RO at s. In this setting,

the simulator is not allowed to choose the answers to oracle queries. We remark that,

in this work, unprogrammable RO is used only for achieving highly practical CZK,

other parts of security analysis still rely on regular (programmable) random oracle.

Roughly speaking, before running the Σ-protocol (a, e, z), we require the verifier

to first commit to its random challenge e by sending c = H(e) on the top, where H is

88

a hash function that is modeled as an unprogrammable RO in the analysis. The pro-

tocol is depicted in Figure-1. Note that the additional computational complexity and

communication complexity, incurred by this approach of transformation with unpro-

grammable RO, is minimal: only a hash value is incurred.

5.3.1 CZK Transformation From Σ-Protocols

Zero-knowledge (ZK) protocols allow a prover to validate theorems to a verifier with-

out giving away any other knowledge other than the theorems being true (i.e., existing

witnesses). This notion was introduced by Goldwasser, Micali and Rackoff [43] and

its generality was demonstrated by Goldreich, Micali and Wigderson [41]. Since its

introduction ZK has found numerous and extremely useful applications, and by now

has been playing the central role in modern cryptography.

Traditional notion of ZK considers the security in a stand-alone (or sequential) ex-

ecution of the protocol. Motivated by the use of such protocols in an asynchronous

network like the Internet where many protocols are run concurrently at the same time,

studying security properties of ZK protocols in such concurrent settings has attracted

extensive research efforts in recent years, initiated by Dwork, Naor and Sahai [29]. In-

formally, a ZK protocol is called concurrent zero-knowledge (CZK) if the ZK related

simulatability property holds in the concurrent settings, namely, when a malicious ver-

ifier concurrently interacts with a polynomial number of honest prover instances and

schedules message exchanges as it wishes.

We note, in DCS schemes, we require CZK protocols, because an adversary in

DCS schemes may act as arbitrary cheating verifiers during the concurrent execution

of protocols that confirm or deny all alleged DCS signatures. In this work, for presenta-

tion simplicity, we describe the Confirm and Disavow protocols with Σ-protocols (i.e.,

3-round public-coin special honest verifier zero-knowledge with special soundness)

89

directly. We then discuss transformation methodologies from Σ-protocols to CZK pro-

tocols in the common reference string (CRS) model or in the unprogrammable random

oracle model.

5.3.1.1 Transformation from Σ-Protocol into CZK in the CRS Model

There are several general methodologies that transform Σ-protocols into CZK argu-

ments in the CRS model (e.g., [27, 36]). To our knowledge, the approach proposed in

[27] is the most efficient and has conceptual simple structure, which is suggested to

use in this work.

For the transformation proposed in [27], the CRS consists of the public-key for

a trapdoor commitment scheme. In this work, we use the DL-based trapdoor com-

mitment, where the public-key is h = gx, and the commitment to a value v ∈ Zq

is c = grhv, where r is randomly taken from Zq and is served as the decommitment

information. Note that for this concrete implementation, to commit to a value in Zq,

the committer needs to perform about 1.5 exponentiations, and the receiver needs to

perform also about 1.5 exponentiations. The communication complexity, besides the

transmission of the committed value v (that is sent in the decommitment stage), is

about 2|q| (suppose the commitment c is of about |q| bits).

To transform a Σ-protocol (a, e, z) into CZK, the key idea of [27] is to send C(a),

rather then the plain a, at the first-round of the transformed protocol, where C denotes

the trapdoor commitment scheme; in the third-round, the prover opens the value a and

computes the third-round message z.

Moreover, for the general transformation in the CRS model, the CRS should be

included as a part in the public-key of the confirmer, which additionally increases the

public-key length of the confirmer.

90

5.3.1.2 CZK from Σ-protocols with unprogrammable RO

Given access to a random oracle (RO) O, we can transform a Σ-protocol into a non-

interactive zero-knowledge (NIZK) protocol via the Fiat-Shamir heuristic. But, the

NIZK got this way loses deniability [63, 66], which is however required for DCS

schemes. The deniability loss is due to the programmability of RO in the security

analysis [63, 66]. To overcome the deniability loss of simulation with programmable

RO, the works of [63, 66] proposed the unprogrammable RO model where all parties

have access to an unprogrammable (fixed) RO, where ZK with unprogrammable RO

reserves the deniability property.

In this section, we give a general yet simple method of transforming Σ-protocols

into straight-line CZK with unprogrammable RO, where straight-line CZK means that

the CZK simulator works in a straight-line way (without rewinding the underlying

adversary).

Given a Σ-protocol 〈PL, VL〉(x) which consists of three rounds (a, e, z) for anNP-

language L, the transformed protocol, denoted 〈P, V 〉 is presented in Figure-1.

Roughly speaking, before running the Σ-protocol (a, e, z), we require the verifier

to first commit to its random challenge e by sending c = h(e) on the top, where h is a

hash function that is modeled as RO in the analysis.

Note that the additional computational complexity and communication complexity,

incurred by this approach of transformation with unprogrammable RO, is minimal:

only a hash value is incurred.

Theorem 5.1. The protocol depicted in Figure-1 is a straight-line CZK proof with

unprogrammable RO for any language admitting Σ-protocol.

Proof. The completeness of the protocol 〈P, V 〉 can be directly checked.

Perfect soundness. The perfect soundness of 〈P, V 〉 is from the observations:

the commitment c perfectly hides e in the RO model; Then, the perfect soundness of

91

〈P, V 〉 is inherited from the special soundness of the underlying Σ-protocol 〈PL, VL〉.

That is, the transformed protocol 〈P, V 〉 is a proof rather than an argument (i.e., com-

putationally sound protocol).

Straight-line CZK with unprogrammable RO. For any concurrent malicious ver-

ifier V ∗, the simulator S runs V ∗ as a subroutine and works as follows, with oracle

access to a unprogrammable RO O:

• For any oracle query made by V ∗ on input e, S makes the same query to the

unprogrammable RO O. S returns back the answer, denoted c, from O to V ∗,

and records (c, r) into a list LO.

• Whenever V ∗ starts a new concurrent session, on a common input x ∈ L, by

sending c (as the first-round message) to S, S works as follows:

– S firstly checks whether c ∈ LO. If not, S simply aborts the simulation, and

outputs “failure". This failure is called “Case-1 failure" for presentation

simplicity.

– If c ∈ LO, S retrieves the record (c, e) in LO and works as follows: S

runs the underlying SHVZK simulator SL (guaranteed for the underlying

Σ-protocol 〈PL, VL〉) on the input (x, e), denoted SL(x, e), to get a simulate

transcript (a, e, z) of the underlying Σ-protocol 〈PL, VL〉. Then S sends a

to V ∗ as the second-round message of the current session. If V ∗ returns

back e to S in the third-round, S returns back z in the fourth-round and

successfully completes the simulation of the current session; If V ∗ returns

back e′ 6= e in the third-round, S simply aborts the simulation, and outputs

“failure". This failure is called “Case-2 failure" for presentation simplicity.

It is easy to check that S outputs “failure" (either Case-1 failure or Case-2 fail-

ure) with negligible probability in the RO model. Specifically, for Case-1 fail-

92

ure, with overwhelming probability V ∗ cannot guess the correct value c without

querying the RO O with e; For Case-2 failure, with overwhelming probability

V ∗ cannot get two different values e, e′ such that c = O(e) = O(e′).

Conditioned on S does not output “failure", the simulation of S is identical to the

real view of V ∗, which establishes the CZK property. Furthermore, S works in

the unprogrammable RO model, as S never programs the ROO by itself. Specif-

ically, S only accesses the unprogrammable ROO to see the queries made by the

underlying V ∗. Moreover, the simulation of S with restricted RO is straight-line,

as S never rewinds the underlying V ∗. �

5.4 Security Model

We update the DCS model following the security model in section 2, Chapter 3. In ad-

dition, we shall briefly mention how this new model can be modified to accommodate

DCS with full verification.

Definition 5.3. (Syntax). A correct designated confirmer signature scheme with

unified verification involves three roles of parties, i.e., a signer S, a designated con-

firmer C, and a verifier V, and consists of the following components:

Key Generation (Gs, Gc): Given the security parameter λ, denoted by 1λ, as input,

probabilistic polynomial time (PPT) algorithm Gs outputs a pair of strings (skS , pkS)

as the signer’s private key and public key, respectively. Similarly, PPT algorithm Gc

that takes on input 1λ, outputs a pair of strings (skC , pkC) as the designated con-

firmer’s private key and public key, respectively.

Sign: Given a message m and a signer’s private key skS , algorithm Sign produces

a (standard) signature σ for message m. Namely, σ = Sign(m, skS).

Verify: Given a public key pkS , a message m, and a signature σ, algorithm Verify

93

outputs Accept or Reject. For any key pair (skS, pkS), any message m, we have

V erify(m,Sign(m, skS), pkS) =Accept.

DCSSign: Given a message m, a signer’s private key skS and the confirmer’s

public key pkC , algorithm DCSSign outputs σ′ as a designated confirmer signature on

message m. Namely, σ′ = DCSSign(m, skS, pkC).

Extract: Given (m,σ′, skC , pkC , pkS) as input, algorithm Extract outputs a string

σ such that Verify(m, σ, pkS) = Accept or ⊥. In the case Extract can successfully ex-

tract a valid standard signature σ from σ′, we say that σ′ is extractable w.r.t. message

m. Otherwise, σ′ is unextractable.

Confirm: As an interactive protocol, either the signer S with private input skS

or the designated confirmer C with private input skC can run Confirm protocol with

a verifier V to confirm that an alleged DCS σ′ for a message m is extractable. The

common input for the protocol is (m, σ′, pkS , pkC). After the protocol is run, the

verifier outputs b ∈ {Accept, ⊥}. We say σ′ is valid w.r.t. message m, if the verifier’s

output is Accept. Otherwise, the validity of σ′ is undetermined. The Confirm protocol

should be complete and sound.

a) Completeness: For all honest C, S, and V , if Verify(m, Extract(m, σ′,

skC , pkC , pkS), pkS) =Accept, then Confirm(C,V)(m, σ′, pkS ,pkC) =Accept, and

Confirm(S,V)(m, σ′, pkS , pkC)=Accept.

b) Soundness: For any potentially cheating confirmerC ′, any potentially cheat-

ing signer S ′, and any honest verifier V, if Verify(m, Extract(m,σ′, skC , pkC , pkS), pkS)

=⊥, then

Pr[Confirm(C′,V)(m,σ
′, pkS, pkC) = Accept] < negl(λ), and

Pr[Confirm(S′,V)(m,σ
′, pkS, pkC) = Accept] < negl(λ).

94

The probability is taken over all possible coins tossed by C ′, S ′, V , Gs, Gc, and

Extract. This means, neither a cheating confirmer C ′ nor a cheating signer S ′ can

convince an honest verifier V that an un-extractable designated confirmer signature σ′

is valid. In other words, all valid DCS signatures are extractable.

Disavow: As an interactive protocol, either the signer S with private input skS

or the designated confirmer C with private input skC can run Disavow protocol with

a verifier V to convince that an alleged DCS σ′ is unextractable. The common input

to the protocol is (m, σ′, pkS , pkC), while the verifier output is b ∈ {Accept, ⊥}. If

the verifier’s output is Accept, we say σ′ is invalid w.r.t. message m. Otherwise, the

invalidity of σ′ is undetermined. The Disavow protocol should be complete and sound.

a) Completeness: For all honest C, S, and V , if Verify(m, Extract(m, σ′, skC ,

pkC , pkS), pkS) =⊥, thenDisavow(C,V)(m, σ′, pkS , pkC) =Accept, andDisavow(S,V)(m,

σ′, pkS , pkC) =Accept.

b) Soundness: For any potentially cheating confirmerC ′, any potentially cheat-

ing signer S ′, and any honest verifier V, if Verify(m, Extract(m, σ′, skC , pkC , pkS),

pkS) =Accept, then

Pr [Disavow(C′,V)(m,σ
′, pkS, pkC) = Accept] < negl(λ), and

Pr [Disavow(S′,V)(m,σ
′, pkS, pkC) = Accept] < negl(λ).

The probability is taken over all possible coins tossed by C ′, S ′, V , Gs, Gc, and

Extract. This means, neither a cheating confirmer C ′ nor a cheating signer S ′ can

convince an honest verifier V that an extractable designated confirmer signature σ′ is

invalid. In other words, all invalid DCS must be unextractable.

Remark 1. In contrast to the models given in [18, 45, 38, 78], there are three main

differences in the above syntax definition. Firstly, we include the basic signature gen-

95

eration and verification algorithms to make the syntax more complete. Secondly, an

algorithm DCSSign is now used to produce a DCS instead of an interactive protocol

ConfirmedSign in [45, 38, 78] to allow the signer generating a valid DCS and confirm-

ing it when it is just generated. The reason for this is that the signer will use the same

Confirm protocol to show the validity of a DCS as does by the confirmer. Finally, in

our model the signer is also able to use the Disavow protocol to show the invalidity

of an alleged DCS. This is definitely necessary, as our DCS model targets to support

unified verification.

Remark 2. Due to the above changes in syntax, we accordingly update the se-

curity definitions by including all necessary oracle accesses. Security for the signer

or unforgeability requires that no adaptive PPT adversary can forge a valid DCS on

a fresh message on behalf of a specific signer, even it compromises the secret keys

of the confirmer and other signers. This means that unforgeability should be satisfied

in multi-signer settings, i.e., in the scenario of multiple signers sharing the same con-

firmer. In our definition of unforgeability given below, the forging algorithm is not

given oracle accesses for which the confirmer is the prover, since it already holds the

confirmer’s private key skC . Due to a similar reason, the Sign oracle for underlying

signatures is not provided as the attacker can simulate this oracle by asking DCSSign

queries and then running Extract to get basic signatures for any messages.

Definition 5.4. Security for the signer (Unforgeability): Let F be a PPT forg-

ing algorithm, which on input 1n, pkS , pkC and skC , can request oracle access in

OF={DCSSign,Confirm(S,F),Disavow(S,F)} for polynomially many times for adap-

tively chosen inputs of its choice; and then outputs a DCS message-signature pair (m,

σ′) in which message m is not previously asked in DCSSign queries. We say a DCS

scheme is secure for the signer or existentially unforgeable, if for any PPT forging

algorithm F ,

96

Pr[V erify(m,Extract(m,σ′, skC , pkC , pkS), pkS) = Accept] < negl(λ).

The probability is taken over all possible coins used by F , S, and key generation

algorithm Gs, Gc.

Intuitively, security for the confirmer or invisibility means that no adaptive PPT

adversary D can distinguish between a valid DCS and an invalid DCS for a given

message (or two designated confirmer signatures).

Definition 5.5. Security for the confirmer (Invisibility): Firstly, Key Generation al-

gorithms are run for the signer and the confirmer on input 1λ. D is given pkS and pkC ,

which are the public keys of the signer and the confirmer. As a training purpose, D is

allowed to create signature-key pairs (skD, pkD) (not necessarily via Key Generations)

and to interact with the confirmer with respect to these keys. Furthermore,D can make

arbitrary oracle queries in OD = {Sign, DCSSign, Confirm(S,D), Confirm(C,D),

Disavow(S,D), Disavow(C,D), Extract}. Then, the distinguisher has to present one

fresh message m. After a fair coin is flipped, the adversary is given a corresponding

DCS σ′ = DCSSign(m, skS, pkC), where b = 0, or a fake DCS signature chosen uni-

formly at random from the signature space where b = 1. Here the signature space has

a finite size that depends only on the security parameter n. Now D is again allowed to

access the above oracles except that it cannot enquire for σ′ via any of these oracles.

Finally, the distinguisher must output one bit information b′ to guess the value of b. We

say a DCS scheme with unified verification is invisible, if for any PPT distinguisher

D:

|Pr[b′ = b]− 1/2| ≤ negl(λ).

The above probability is taken over the coin tosses of the signer, the confirmer, key

generation algorithms and the oracles.

97

Remark 3. Note we adopt the definition of invisibility by Galbraith and Mao

[32], which is slightly stronger than the definition proposed by Camenisch and Michels

[18]. What we defined here is actually to require that the adversary cannot decide the

validity of a given DCS with respect to its chosen message, without the help of the

signer or the confirmer. However, the security requirement in [18], requires that the

adversary should be unable to relate a chosen message with a valid DCS from a face

DCS. Galbraith and Mao have proved that these two types of invisibility are actually

equivalent satisfying some particular properties in the standard model of computation.

In addition, we disallow the adversary to have skS . Otherwise, it will be trivial for him

to distinguish signatures via unified verification protocols.

Definition 5.6. Security for the confirmer (Non-transferability): This is an ex-

tended version of the non-transferability definition in Chapter 3. Intuitively, we require

the evidence generated in Confirm or Disavow protocols should be untransferable.

Namely, although an adaptive PPT adversary A knows whether a given DCS is valid

or not through the interactive verification, it does not gain any knowledge that can be

used to convince a third party about the validity of that DCS. In particular, this notion

is formalised in the following games considering a PPT simulator A′:

Game-NTR: Firstly, the adversaryA is given the public key pkS and pkC of the signer

and the confirmer. It is allowed to make arbitrary oracle queries toDCSSign,Confirm(S,V),

Disavow(S,V), Confirm(C,V), Disavow(C,V), and Extract. AgainA is allowed to

create signature-key pairs (skA, pkA), and to runDCSSgin and then interact with the

confirmer with respect to these keys. Let a string P denote the prover which could be

either the signer S or the confirmer C in any interactive protocols, where P ∈ {C, V }.

In some stage, the adversary must present two strings,m and σ′, for which it wishes

to carry out the Confirm(P,V) (or Disavow(P,V)) protocol with the prover. Next a

fair coin b is flipped. If b = 0, the real prover and A run the Confirm(P,V) (or

98

Disavow(P,V)) protocol with common input (m,σ′, pkS, pkC), while the prover’s secret

input will be skP . If b = 1, the simulator Sim is plugged in the place of the real prover

to run theConfirm(P,V) (or Disavow(P,V)) protocol on (m,σ′). Sim is not given

either the confirmer’s secret key or the signer’s secret key, but is allowed to make a

single call to an oracle which tells Sim whether the strings m and σ′ is a valid DCS

w.r.t. pkS and pkC .

In parallel, the adversary is allowed to make arbitrary queries to the signer and

the confirmer. And in all other interactions except the confirmation (or disavowal)

on (m,σ′), the real signer or the real confirmer speaks with the adversary. Finally,

A must output one bit information b′ to guess the value of b. The adversary A wins

if and only if b = b′, and A’s advantage is defined as advA = Pr[A wins]. We say a

DCS scheme with unified verification is non-transferable if for any adversaryA, there

exists a simulator Sim such that for all sufficiently large λ, all (skS, pkS) ∈ GS(1λ),

and all (skC , pkC) ∈ GC(1λ):

advA < negl(λ).

The above probability is taken over the coin tosses of the signer S, the confirmer

C, and key generation algorithms GS and GC .

Applying the result in Chapter 4, we know another security notion, i.e., transcript

simulatability proposed in GMR model [38], is implied by invisibility and NTR-0.

So we omit a proof about transcript-simulatability in our security analysis. In fact,

the main obstacle to prove transcript-simulatability in our scheme is that the signed

ElGamal, our underlying encryption scheme, is even not CPA-secure. However, the

generic DCS proposed in [38, 78] both rely on CCA2-secure public key encryption.

Definition 5.6. (Security). We say a correct designated confirmer signature scheme

99

is secure, if it satisfies security for the signer and for the confirmer. Namely, it is

existentially unforgeable, non-transferable, and invisible.

In fact, [38, 78] also studies security for verifier or unfoolability, which requires

that any DCS confirmed by running Confirm protocol must be extractable, and that

every alleged DCS confirmed by running Disavow protocol must be unextractable. As

this property follows the soundness of Confirm and Disavow protocols [38, 78], we do

not separately specify it here.

Finally, from the above description we can see that by introducing additional Con-

firm and Disavow protocols for the signer, the formal model for DCS with unified

verification can be directly generalised to accommodate DCS with full verification, in

which the signer can also confirm and disavow a signature, but not necessarily runs the

same protocols as the confirmer.

5.5 The Proposed Scheme

Based on BLS signature scheme [14], which has been reviewed in Section 2.1, we now

present a designated confirmer signature scheme with unified verification. Basically,

a DCS in our scheme is just the signed ElGamal encryption [72] of a BLS signature.

After the scheme description, we shall give more explanations on the construction.

We use a symmetric bilinear map e : G × G → Gt, where G is a multiplicative

cyclic group of prime order q and g is a generator of G. In addition, two cryptographic

hash functions H and H ′ are used. In particular, H : {0, 1}∗ → G is a full-domain

hash function, and H ′ : {0, 1}∗ → Z∗q is a standard cryptographic hash function.

Key Generation: The signer picks xs ∈R Z∗q as its private key, and computes

ys = gxs as its public key. Similarly, the confirmer sets its private/public key pair as

(xc, yc = gxc), where xc ∈R Z∗q .

100

Sign: Given a signer’s private key xs and a message m, output the signature σ=

hxs ∈ G, where h= H(m) ∈ G.

Verify: Given (m,σ), check whether e(g, σ) = e(ys, h) holds, where h = H(m) ∈

G.

DCSSign: After generating a basic signature σ= H(m)xs for message m by us-

ing the signer’s private key xs, output DCS for message m as σ′ = (σ1, σ2, s, t) by

computing:

σ1 = yrc , σ2 = σgr, where r ∈R Z∗q; and

s = H ′(ykc , σ1, σ2), t = k + sr mod q, where k ∈R Z∗q.

It is easy to see that σ′ is exactly the signed ElGamal encryption [72] under the

private/public key pair (x−1
c , g = yx

−1
c
c), which is equivalent to the confirmer’s key pair

(xc, yc = gxc). Namely, (σ1, σ2) is the naive ElGamal ciphertext of basic signature

σ = H(m)xs under the key pair (x−1
c , g = yx

−1
c
c), while (s, t) is a Schnorr signature on

message (σ1, σ2) under the temporary private/public key pair (r, σ1 = yrc).

Extract: Given a message m and an alleged DCS σ′ = (σ1, σ2, s, t), which satis-

fies s ≡ H ′(ytcσ
−s
1 , σ1, σ2), the confirmer extracts the basic signature σ = σ2/σ

x−1
c

1 if

e(σ2, yc)/e(σ1, g) = e(h, ys)
xc , where h = H(m). Otherwise, ⊥ is output.

Confirm: Given common input (m,σ′, ys, yc), where σ′ = (σ1, σ2, s, t) is an al-

leged DCS, the confirmer C with the private key xc can check the validity of the DCS

by verifying whether e(σ2, yc)/e(σ1, g) = e(h, ys)
xc holds or not, where h = H(m).

As e(h, ys)xc ≡ e(h, yc)
xs , the signer S with the private key xs can similarly know the

validity of σ′ by checking e(σ2, yc)/e(σ1, g) = e(h, yc)
xs . If σ′ is valid, either the con-

firmer C or the signer S can convince a verifier V of that fact by running the following

101

interactive zero knowledge protocol:

PK{(xc ∨ xs) : [e(σ2, yc)/e(σ1, g) = e(h, ys)
xc ∧ yc = gxc]

∨[e(σ2, yc)/e(σ1, g) = e(h, yc)
xs ∧ ys = gxs]}.

Disavow: On input (m,σ′, ys, yc), where σ′ = (σ1, σ2, s, t) is an alleged DCS, if

e(σ2, yc)/e(σ1, g) 6= e(h, ys)
xc or e(σ2, yc)/e(σ1, g) 6= e(h, yc)

xs , where h = H(m),

this means that σ′ is an invalid DCS for message m. Then, either the confirmer C or

the signer S can run the following interactive zero knowledge protocol with a verifier

V to convince this fact:

PK{(xc ∨ xs) : [e(σ2, yc)/e(σ1, g) 6= e(h, ys)
xc ∧ yc = gxc]

∨[e(σ2, yc)/e(σ1, g) 6= e(h, yc)
xs ∧ ys = gxs]}.

Note that the above PKs are for “the (in)equality of two discrete logarithms” ∨ “the

(in)equality of another two discrete logarithms”, and each part can be proved easily by

using the standard techniques [22, 16, 53]. The implementation details of these zero

knowledge proofs are given in Appendix B.

Remark 4. First, note that the idea of building a DCS here is inspired by the Boneh

et al’s verifiably encrypted signature (VES) scheme [13], which encrypts a basic BLS

signature using ElGamal encryption with the adjudicator’s key (xc, yc = gxc). The

adjudicator in VES plays a similar role as the confirmer in DCS. Here, we exploit the

same idea but change the format of the ciphertext via effectively setting the confirmer’s

key pair (x−1
c , g = yx

−1
c
c). The result is very interesting, as we get a DCS scheme in

which the validity of a hidden signature (i.e. DCS) is not publicly visible any more,

compared to Boneh et al.’s hidden but publicly verifiable VES.

However, the above resulting scheme is actually not a secure DCS, as it fails to

102

meet invisibility, due to the malleability of naive ElGamal encryption. That is, given

a target DCS (σ1 = yrc , σ2 = σgr) for a message m, an adaptive attacker can simply

derive the validity of (σ1, σ2) by inquiring the validity of (σ′1 = σ1y
r′
c , σ

′
2 = σ2g

r′)

w.r.t. the same messagem by selecting a random number r′. Note that such an attack is

allowed in the security definition of invisibility. To address this issue, signed ElGamal

encryption [72] is exploited to add one Schnorr signature (s, t) showing that the creator

of ciphertext (σ1, σ2) indeed knows the secret value of r which is used for encryption.

Equivalently, this implies that in the proposed scheme the issuer of a DCS (σ1, σ2, s, t)

knows the corresponding basic signature σ, as σ = σ2/g
r. Hence, the above attack

does not work any more, since such a DCS has a fixed format and is not malleable.

Remark 5. Note that the proposed DCS scheme is not strongly unforgeable (but

is existentially unforgeable) for an attacker who has comprised the confirmer’s pri-

vate key xc as explained below. Since a valid DCS for a message m has the form of

σ′ = (σ1, σ2, s, t) = (yrc , σg
r, s, t) satisfying s ≡ H ′(ytcσ

−s
1 , σ1, σ2), the attacker with

xc can first extract the basic signature by computing σ = σ2/σ1
x−1
c . Then, the attacker

can trivially forge another valid DCS σ̄′ = (σ̄1, σ̄2, s̄, t̄) for the same message m. Nev-

ertheless, this does not violate our definition of unforgeability specified in Definition

3, as a successful forger is required to produce a valid DCS on a new message, not a

previously signed message.

Remark 6. According to Remark 2, both the signer and the confirmer can check

a designated confirmer signature’s validity or invalidity of an alleged DCS by using

their own private keys. Then, either of them can run the same Confirm or Disavow

interactive zero knowledge protocol with a verifier to show whether σ′ is valid or not.

Hence, to check the validity of a signature the verifier can interact with either the

signer or the designated confirmer. Due to this reason, we call our scheme a DCS with

unified verification. In particular, in our scheme the signer is granted the ability to

103

disavow any invalid designated confirmer signature. This new feature is interesting, as

our scheme serves a better extension of undeniable signatures [21], in which there is

a disavow protocol for the signer; nevertheless no current DCS schemes except [48],

which inspired by our prototype in [81] of this scheme, offer Disavow protocol for the

signer.

A Generalised Version As discussed in Section 1, our unified verification DCS

can be simply generalised to a full verification version. The idea is to get rid of the

“OR” relation in the interactive zero-knowledge (IZK) protocols. For Confirm(S,V),

the signer initially checks the validity of a given DCS, then runs a zero-knowledge

protocol PK{xs : e(σ2, yc)/e(σ1, g) = e(h, yc)
xs ∧ ys = gxs}. For Confirm(C,V), the

ZK protocol will be PK{xc : e(σ2, yc)/e(σ1, g) = e(h, ys)
xc ∧ yc = gxc}. To disavow

an invalid signature, either the signer or the verifier firstly checks the invalidity of a

given DCS using their own secret key, and then runs PK{xs : e(σ2, yc)/e(σ1, g) 6=

e(h, yc)
xs ∧ ys = gxs} or PK{xc : e(σ2, yc)/e(σ1, g) 6= e(h, ys)

xc ∧ yc = gxc},

respectively. Hence, the above extension accommodates the generalised DCS model,

where the signer and the confirmer can confirm (or disavow) signatures via different

protocols.

5.5.1 HVIZKs on Confirm and Disavow Protocols

In this section, we show how to run honest verifier interactive zero-knowledge proof

(HVIZK), actually Σ-protocols, to complete the Confirm and Disavow protocols. To

this end, we directly adapt the protocols given in [53], and depict the implementation

details as below.

In the Confirm protocol, the knowledge statement is PK{(xc∨xs)) : [e(σ2, yc)/e(σ1, g) =

e(h, ys)
xc ∧ yc = gxc] ∨ [e(σ2, yc)/e(σ1, g) = e(h, yc)

xs ∧ ys = gxs]}. So, once the

104

prover (either the signer or the confirmer) and a verifier pre-compute A1 = A2 =

e(σ2, yc)/e(σ1, g), B1 = e(h, ys), B2 = e(h, yc), C1 = yc, C2 = ys, andD1 = D2 = g,

they can run the Confirm protocol as shown in Figures 5.1 and Figure 5.2 to prove

“(A1 = Bxc
1 ∧ C1 = Dxc

1) ∨ A2 = Bxs
2 ∧C2 = Dxs

2)”.

In the Disavow protocol, the knowledge statement is PK{(xc∨xs)) : [e(σ2, yc)/e(σ1, g) 6=

e(h, ys)
xc ∧ yc = gxc] ∨ [e(σ2, yc)/e(σ1, g) 6= e(h, yc)

xs ∧ ys = gxs]}. So, once the

prover (either the signer or the confirmer) and a verifier pre-compute A1 = A2 =

e(σ2, yc)/e(σ1, g), B1 = e(h, ys), B2 = e(h, yc), C1 = yc, C2 = ys, andD1 = D2 = g,

they can run the Disavow protocol as shown in Figures 5.3 and Figure 5.4 to prove

“(A1 6= Bxc
1 ∧ C1 = Dxc

1) ∨ A2 6= Bxs
2 ∧ C2 = Dxs

2)”.

As mentioned before, both the above Confirm and Disavow HVIZK protocols

should be converted into CZK so that they can be executed with multiple verifiers

concurrently.

105

Common Input:

A1, A2, B1, B2, C1, C2, D1, D2

Signer S Verifier V

(with private input xs)

a, b1, c1 ∈R Zq,

z1 = B1
b1 · A1

c1 ,

z2 = D1
b1 · C1

c1 ,

z3 = B2
a, z4 = D2

a; (1)
(z1, z2, z3, z4)
−−−−−−−−−→ c ∈R Zq

c2= c - c1 mod q, (2) c←−−−−−−−−−

b2 = a - c2xs mod q. (3)
(b1, b2, c1, c2)
−−−−−−−−−→ Output Accept iff

c1+ c2≡ c mod q,

z1 = B1
b1·A1

c1 , z2 = D1
b1·C1

c1 ,

z3 = B2
b2·A2

c2 , z4 = D2
b2·C2

c2 .

Figure 5.1: The Confirm(S,V) Protocol in the concrete DCS-UV scheme

106

Common Input:
A1, A2, B1, B2, C1, C2, D1, D2

Confirmer C Verifier V
(with private input xc)

a, b2, c2 ∈R Zq,
z1 = B1

a, z2 = D1
a,

z3 = B2
b2 · A2

c2 ,

z4 = D2
b2 · C2

c2; (1)
(z1, z2, z3, z4)
−−−−−−−−−→ c ∈R Zq

c1= c - c2 mod q, (2) c←−−−−−−−−−

b1 = a - c1xc mod q; (3)
(b1, b2, c1, c2)
−−−−−−−−−→ Output Accept iff

c1+ c2≡ c mod q,
z1 = B1

b1·A1
c1 , z2 = D1

b1·C1
c1 ,

z3 = B2
b2·A2

c2 , z4 = D2
b2·C2

c2 .

Figure 5.2: The Confirm(C,V) Protocol in the concrete DCS-UV scheme

Common Input:

A1, A2, B1, B2,

C1, C2, D1, D2.

Signer S Verifier V

(with private input xs)

a, b1, b2, c1, e, e
′, β ∈R Zq/{1},

β′ = (D2
xs/C2)a,

z′1 = D2
e/C2

e′ , z′2 = B2
e/A2

e′ ,

z1 = βc1D1
b1/C1

b2 ,

z2 = B1
b1/A1

b2; (1)
(β, β′, z1, z2, z

′
1, z
′
2)

−−−−−−−−−−−−→ Iff β 6= 1 and β′ 6= 1,

(2) c←−−−−−−−−−−−− c ∈R Zq

c2= c - c1 mod q,

b′1 = e - c2xsa mod q, (3)
(b1, b2, b

′
1, b
′
2, c1, c2)

−−−−−−−−−−−−→ Output Accept iff

b′2 = e′ - c2a mod q; c1+ c2≡ c mod q,

z1 = βc1D1
b1/C1

b2 , z2 = B1
b1/A1

b2 ,

z′1 = β′c2D2
b′1/C2

b′2 , z′2 = B2
b′1/A2

b′2 .

Figure 5.3: The Disavow(S,V) Protocol in the concrete DCS-UV scheme

107

Common Input:

A1, A2, B1, B2,

C1, C2, D1, D2

Confirmer C Verifier V

(with private input xc)

a, b′1, b
′
2, c2, e, e

′, β′ ∈R Zq/{1},

β = (D1
xc/C1)a,

z1 = D1
e/C1

e′ , z2 = B1
e/A1

e′ ,

z′1 = β′c2D2
b′1/C2

b′2 ,

z′2 = B2
b′1/A2

b′2; (1)
(β, β′, z1, z2, z

′
1, z
′
2)

−−−−−−−−−−−−→ Iff β 6= 1 and β′ 6= 1,

(2) c←−−−−−−−−−−−− c ∈R Zq

c1= c - c2 mod q,

b1 = e - c1xca mod q, (3)
(b1, b2, b

′
1, b
′
2, c1, c2)

−−−−−−−−−−−−→ Output Accept iff

b2 = e′ - c1a mod q; c1+ c2≡ c mod q,

z1 = βc1D1
b1/C1

b2 , z2 = B1
b1/A1

b2 ,

z′1 = β′c2D2
b′1/C2

b′2 , z′2 = B2
b′1/A2

b′2 .

Figure 5.4: The Disavow(C,V) Protocol in the concrete DCS-UV scheme

5.6 Security Analysis

5.6.1 Complexity Assumptions

We introduce some complexity assumptions required in our proposal as below. Let

negl(n) denote any negligible function that grows slower than n−v for any positive

integer v and for all sufficiently large integer n. x ∈R X denotes an random element

x is picked from set X uniformly, and x1, x2, ..., xn
R

← X denotes x1, x2, ..., xn are

108

random elements picked from set X uniformly. All the other alphabets and symbols

follow the previous meanings.

Definition 5.6. Computational Diffie-Hellman Assumption (CDH). Given g, ga, gb ∈

G, no probabilistic polynomial-time (PPT) algorithm can output gab ∈ G with non-

negligible probability, where a, b ∈R Z∗q .

Now we propose a new assumption, called “Decisional-coefficient-Linear (D-co-L,

in short) assumption”, to serve our security analysis in Theorem 3. We shall provide

more confidence towards the D-co-L assumption in the generic bilinear groups.

Definition 5.7. Decisional-coefficient-Linear Assumption (D-co-L): With g ∈ G

and a pairing e described as above,given a tuple (g, ga, gb, gw, gby, gwa+y, gz), where

a, b, w, y, z
R← Z∗q , no PPT algorithm A can distinguish between gwa+y and a random

element gz in G. Formally, for any PPT algorithm A, for (g, ga, gb, gw, gby, gwa+y, gz),

where a, b, y, w, z R← Z∗q , we define the advantage of A:

AdvD−co−LA (n) =| Pr[A(t, ga, gb, gw, gby, gwa+y) = 1]−Pr[A(t, ga, gb, gw, gby, gz) = 1] |

The probability is over the uniform random choice of the parameters to A, and over

the coin tosses of A. We say the decisional-coefficient-linear assumption (T, ε)-holds,

if there is no such A, which runs in time at most T and AdvD−co−LA (n) is at least ε.

We prove a lower bound on the computational complexity of the D-co-L problem

in the generic group model following the proof techniques in [8], [11], [10] and [47],

to give more confidence towards the D-co-L assumption. In this model, the adversary

can only perform equality tests, because group elements of G and Gt are encoded

as unique random strings. Three oracles are assumed to perform operations between

group elements, including computing the group action in G and Gt, as well as the

bilinear pairing e : G × G → Gt. Two injective functions are used to model this

opaque encodings, ξ : Zq → {0, 1}∗ for group G, where a group element gt ∈ G is

109

represented as a string ξ(t), and an analogous function ξ′ : Zq → {0, 1}∗ for group Gt.

Theorem 5.2. Let A be an algorithm that solves D-co-L problem in the generic

group model, making at most l queries to the oracles which compute the group

action inG andGt, and the oracle which computes the bilinear pairing e. Suppose

a, b, w, y, z
R← Zq, d

R← {0, 1}, and ξ, ξ′ are two random encoding functions as

defined above for G and Gt respectively. Let td = wa + y and t1−d = z. Then

about A’s advantage, we have:

ε :=| Pr[A(q, ξ(1), ξ(a), ξ(b), ξ(w), ξ(by), ξ(t0), ξ(t1), ξ′(1)) = d]− 1

2
|≤ 4(l+8)2/q.

Proof: We construct a simulation algorithm S that simulates the generic group oracles

for A without committing to values for a, b, w, y, t0, t1. S keeps track of the group

elements by their discrete logarithms (group exponents) to the generators g ∈ G and

e(g, g) ∈ Gt. Since the variables a, b, w, y, t0, t1 are undetermined, these discrete

logarithms are polynomials in Zq[a, b, w, y, t0, t1] with coefficients in Zq, which we

denote by ρi for exponents in G and ρ′i for exponents in Gt. S then maps these group

exponents to arbitrary distinct strings it gives to A, i.e., ξi = ξ(ρi) for ρi in G and ξ′i =

ξ′(ρ′i) for ρ′i in Gt. S maintains two lists of pairs, i.e., L = {(ρi, ξi) : i = 0, 1, ..., τ}

and L′ = {(ρ′i, ξ′i) : i = 0, 1, ..., τ ′}, under the condition that at step κ in the game,

τ + τ ′ = κ + 8. These lists are initialised at step κ = 0: ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 and ξ′0

are set to arbitrary distinct strings in {0, 1}∗, which binds to ρ0 = 1, ρ1 = a, ρ2 = b,

ρ3 = w, ρ4 = by, ρ5 = t0, ρ6 = t1 and ρ′0 = 1 respectively, where two counters are

initialised τ = 7 and τ ′ = 1.

Initially, S gives all the strings created above to A, and then simulates the ora-

cles for A as below. Without loss of generality, we assume that A only queries S on

legitimate strings that were previously revealed.

110

Group Actions. To compute the product/division of two operands inG represented

as ξi and ξj , where 0 ≤ i, j ≤ τ , S computes ρτ = ρi± ρj . If ρτ = ρk for some k < τ ,

set ξτ = ξk; otherwise, it set ξτ to a string in {0, 1}∗ distinct from ξ0, ..., ξτ−1. S then

increases τ by one, adds the new pair (ρτ , ξτ) to the list L and give ξτ to A. Group

action queries in Gt are treated similarly, this time by working with the list L′ and the

counter τ ′.

Pairings. To compute the product of two operands in G represented as ξi and ξj ,

where 0 ≤ i, j ≤ τ , S computes ρ′τ ′ = ρiρj . If ρ′τ ′ = ρ′k for some k < τ ′, set ξ′τ ′ = ξ′k;

otherwise, it set ξ′τ ′ to a string in {0, 1}∗ distinct from ξ′0, ..., ξ
′
τ ′−1. S then increases τ ′

by one, adds the new pair (ρ′τ ′ , ξ
′
τ ′) to the list L’ and give ξ′τ ′ to A.

Note that at any time in the game, the total degree of any polynomial to represent

an element in G is at most 2, and the total degree of any polynomial to represent an

element in Gt is at most 4.

After at most l queries, A terminates and returns a guess d̂ ∈ {0, 1}. At this point,

S chooses random â, b̂, ŵ, ŷ, ẑ
R← Zq. Consider td = ŵâ + ŷ and t1−d = ẑ for both

choices of d ∈ {0, 1}. The simulation provided by S is perfect and reveals nothing

to A about d unless the chosen random values for the variables a, b, w, by, z, t0, t1

leads to an equality relation between these intermediate values that is not an equality

of polynomials. This happens if either of the following events happens::

1. ρi(a, b, w, y, wa + y, z) − ρj(a, b, w, y, wa + y, z) = 0 but ρi 6= ρj for some

0 ≤ i, j ≤ τ .

2. ρ′i(a, b, w, y, wa + y, z) − ρ′j(a, b, w, y, wa + y, z) = 0 but ρ′i 6= ρ′j for some

0 ≤ i, j ≤ τ ′.

3. any relation similar to the above in which wa+ y and z have been exchanged;

Because the group operations inG andGt are implemented by the addition/subtraction

111

between polynomials in L and L′ respectively, and the pairing operations are imple-

mented by the multiplication of polynomials in L, it is unable for the adversary to

trivially obtain the knowledge of a multiple of the polynomial wa+ y via these opera-

tions.

When any of the above events occurs, S’s responses to A’s queries deviate from

the real oracles’ responses. Furthermore, in this case d is independent from algorithm

A’s view and A’s probability of making a correct guess is exactly 1/2. Since ρi − ρj

for fixed i and j is of degree at most 2, it equals zero for a random assignment of

the variables in Zq with probability at most 2/q. Similarly, for fixed i and j, ρ′i − ρ′j

becomes zero with probability 4/q. The same probabilities can be found in the third

case. Therefore, we have that A makes a correct guess with advantage bounded by

ε ≤ 2 · ((τ
2
)2
q

+ (τ
′

2
)4
q
). Since τ + τ ′ ≤ l + 8, we have ε ≤ 4(l + 8)2/q. �

5.6.2 Security Proofs

Under the standard CDH assumption, the BLS signature scheme [14] is provably se-

cure in the random oracle model. The unforgeability of our DCS relies upon the secu-

rity of BLS scheme, without direct use of random oracles. The new D-co-L assump-

tion, proposed in this work, gives rise to the invisibility of our DCS scheme in the

random oracle model.

Because our Confirm andDisavow protocols are based on special honest verifier

zero knowledge proofs (SHVZK) and can be converted to CZK protocols according to

the transformation methodologies in section 3, the notion of non-transferability in Def

5.6 follows in a straightforward manner from the concurrent zero-knowledge property

of the proofs, and we omit a proof on non-transferability.

Theorem 5.3. If the BLS signature scheme is (t′,q′H ,q′S ,ε′)-secure against existential

forgery, then the proposed DCS scheme is (t,qH ,qS ,ε)-secure against existential

112

forgery w.r.t. Definition 4, where q′H = qH , q′S = qS , ε′ = ε, t′ ≤ t+6c·(qS+qC+qD),

where c is a constant, denoting the time to compute one pairing evaluation, one

exponentiation in G, and one exponentiation in Gt.

Proof. Given a forgery algorithm F for the proposed DCS scheme, we shall construct

a forgery algorithm F ′ for the underlying BLS signature scheme. For presentation

simplicity, we assume F behaves well in the random oracle model, i.e., F always

requests the hash of a message m before requesting a designated confirmer signature.

The BLS forger F ′ is given the signer’s public key ys for which the private key is

unknown to F ′ and has access to the Sign and hash oracles. As the challenger for F ,

F ′ simulates and runs interactions with F as follows.

Setup. F ′ generates a key-pair (xc, yc) randomly by running Gc, which serves as

the confirmer’s key pair. Then F ′ runs F , providing it as input the public keys ys and

yc, and also the confirmer’s private key xc.

Hash Queries. When F requests a hash on m, F ′ makes a query for m to its own

hash oracle, and receives some value h ∈ G, then it responds h to F .

DCSSign Queries. When F requests a DCS on some m (it would have already

queried the hash oracle on m), F ′ queries its own Sign oracle on message m, obtaining

σ ∈ G. Then F ′ selects two random numbers r, k ∈ Z∗q , generates a DCS σ′ =

(σ1, σ2, s, t) according to Eq. (5) and returns it to F .

Confirm and Disavow Queries. Whenever F asks to run either Confirm(S,F)

or Disavow(S,F) protocol w.r.t. a DCS message-signature pair (m,σ′), F ′ can first

checks the validity of σ′ by using the secret xc and then convinces F by running

Confirm(C,F), Disavow(C,F) respectively in the role of the confirmer C. Note that

in the view of point of algorithm F , such interactions are indistinguishable from those

running in the role of the signer S. Note that for the proof of unforgeability, we actu-

ally need the witness indistinguishability property of Confirm and Disavow protocols,

113

which does hold for the HVIZK protocols presented in Appendix B (without the need

of transforming them into CZK with unprogrammable RO).

Output. Finally, if F halts declaring failure, F ′ declares failure too. Otherwise,

F provides a valid and nontrivial DCS σ′∗ = (σ∗1, σ
∗
2, s
∗, t∗) to F ′ on a message m∗.

Then, F ′ computes σ∗ = σ∗2/(σ
∗
1)x
−1
c , which is a valid BLS signature on m∗ under

signer’s public key ys. A nontrivial forgery means that F did not query the DCSSign

oracle on m∗, for which F ′ did not query its Sign oracle on m∗. Hence, (m∗, σ∗) forms

a nontrivial BLS forgery.

Now we analyze the success probability and the running time of F ′. Algorithm F ′

succeeds whenever F does, so the success probability of F equals to that of F ′, i.e.,

ε = ε′. The running time of F ′ is the running time of F plus the time it takes to respond

qH hash queries and qS DCSSign queries, to run qC Confirm queries and qD Disavow

queries, together the time to transform the final forged DCS into a BLS signature. Hash

queries impose no overhead. Each DCSSign query requires F ′ to perform three expo-

nentiations in G. For each Confirm query, F ′ will evaluate four paring computations

and five exponentiations in Gt, while each Disavow query requires five paring com-

putations and six exponentiations in Gt. The final signature transformation needs one

exponentiation in G. Denote the time for pairing computation by pr, the time for ex-

ponentiation in G by exG, and the time for exponentiation in Gt by ex. We get that the

total running time t′ for F ′ is at most t+(3qS+1)·exG+5(qC+qD)·pr+(5qC+6qD)·ex.

In a summary, if F can (t, qH , qS, qC , qD, ε)-forges a DCS in the proposed DCS

scheme, then F ′ can (t′, q′H , q
′
S, ε
′)-forges a BLS signature, where q′H = qH , q′S = qS ,

ε′ = ε, and t′ ≤ t+ 6c · (qS + qC + qD), where c = pr + exG + ex is a constant. �

Theorem 5.4. Under the D-co-L assumption, the proposed DCS scheme is invisible

in the RO model.

114

Proof: Suppose a challenger algorithm C is given the D-co-LA challenge, i.e., to dis-

tinguish two tuples, (g, ga, gb, gw, gby, gwa+y) and (g, ga, gb, gw, gby, gz) where g is a

generator in a multiplicative cyclic group G with prime order q. A pairing is con-

structed as e : G × G → Gt where Gt is another multiplicative cyclic group with

the same order q. Consider the invisibility game modeled in Definition 5, C needs to

simulate a DCS environment for some PPT distinguisher D, in which D tries to dis-

tinguish two pairs: (m, sig) and (m, sigR), where sig = DCSSign(m, skS, pkC) and

sigR is chosen uniformly at random from the signature space. D can access the hash

oracle, Sign, DCSSign, Confirm, Disavow oracles before and after the challenge

request phase. So, C can setup a DCS scheme instance and simulate the game for D

as below.

First, C sets pkC = gb, and pkS = gw. Then, C simulates all the oracles for D as

follows:

Hash query by D: Upon receiving D’s queried message m, C picks u randomly

and sets H(m) = gu. Then, add (m,u) to a H list, which is initially empty.

Sign query by D: For a queried message m, C first checks if (m,u) ∈ H for

some u. If yes, outputs basic signature σ = gwu. Otherwise, selects u randomly, adds

(m,u) to the H list, and outputs σ = gwu.

DCSSign query by D: For a queried message m, similarly C can get a unique

tuple (m,u) ∈ H for some u. Then, C computes basic signature σ = gwu. By picking

a random r, C computes σ1 = pkrC = gbr and σ2 = σ · gr = gwu+r. Since r as ‘the

signing key’, C can simply produce a Schnorr signature (s, t) for message (σ1, σ2).

Finally, C outputs (σ1, σ2, s, t) to D.

Extract query by D: For given an alleged DCS (σ1, σ2, s, t) for message m, C

outputs ⊥ if it cannot find m in the H list. Otherwise, retrieves (m,u) from the H

list and computes σ = gwu. Then, if e(σ2, g
b) 6= e(σ1, g) · e(σ, gb), C outputs ⊥.

115

Otherwise, C knows that the queried DCS signature-message pair is valid, so it outputs

the basic signature σ = gwu.

Confirm/Disavow query by D: Similar with the Extract oracle, C can check

the queried DCS’s validity easily. To convince D the validity of queried DCS, C just

needs to straightforwardly run the underlying CZK simulator.

For the challenge message m′ submitted by D, C computes the DCS signature sig,

in case the coin toss is head, as follows. Let H(m′) = ga, which implicitly sets the

underlying BLS signature for m′ as H(m′)skS = gwa. Then, C sets σ1 = gby, where y

is treated as the randomness used in the original DCSSign phase, and σ2 = gwa+y. For

the Schnorr signature part, i.e., constructing (s, t), we assume C also controls H ′(·)

oracle. Thus it can simply selects s, t randomly, and let gbk = gbtg−brsmod q. Note

that here the public key for the internal Schnorr signature is gbr, the secret key is r and

the base of logarithm is gb. Finally, C outputs the challenge DCS for message m as

sig = (σ1, σ2, s, t), which is a valid DCS on message m.

In case the coin toss is tail, C outputs a fake DCS sigR = (σ1, σ2, s, t) for message

m′, where σ1 = gby, σ2 = gz, and (s, t) is a simulated Schnorr signature showing that

(σ1 = gby, σ2 = gz) is a well formed ElGamal encryption.

After that, C can continuously answer D’s oracle queries as simulated above. Fi-

nally, if D can distinguish the two signatures sig and sigR by outputting a correct

guess bit b′, w.r.t. m′ with a non-negligible advantage, it is straightforward to see that

C can output the same bit b′ to solve the given challenge also with a non-negligible

advantage. �

116

GW [45] GMR [38] WBWB [78] HWS [48] Our Scheme

Random Oracle No No Yes No Yes
Underlying Signatures [26, 44, 37] Any Any Not known BLS [14]

Confirm(C,V) 320ex 25ex 15ex 17ex+14pr 12ex+8pr
Disavow(C,V) generic ZK 60 ex 16ex 23.5ex+14pr 14.5ex+8pr

Signature Size (bits) 81,920 8,192 1,984 513 682

Table 5.2: Comparison of The Concrete DCS-UV with Some Existing DCS Schemes

5.7 A Comparison

We give a brief comparison between our DCS proposal and other knowing efficient

schemes. Here, we compare these DCS schemes according to four categories, i.e.,

whether the scheme relies on the random oracle model [5], which kinds of underlying

basic signatures are used, how about the communication efficiency, and what the sig-

nature size is. For signature size, we estimate all schemes with equivalent 1024-bits

RSA security. We use pr and ex to denote the time for computing a pairing and an

exponentiation in G and Gt, respectively. Note that the communication costs are esti-

mated on the running time of Confirm(C,V) for consistency, and already include the

overheads introduced by the transformation from HVIZK to CZK. According to Table

1, our scheme has a smaller signature size over WBWB scheme [78], which is also

provably secure in the random oracle model. Comparing to Huang et al’s scheme [48],

we have higher communication efficiency, since their HVIZK requires more computa-

tional costs when transformed into CZK version, and our scheme is conceptual simpler.

5.8 Summary

Based on BLS short signature [14] we presented a new efficient designated confirmer

signature (DCS) scheme that additionally enables the signer to disavow any invalid

signatures. We call such a scheme as a DCS with full verification. As DCS has been

117

considered for the extension of undeniable signatures, we believe this new feature is

attracting in potential applications of DCS, like fair exchange [1] of digital commit-

ments between two users over the Internet. Moreover, our scheme achieves the unified

verification, as both the signer and confirmer just use the same Confirm or Disavow

protocol to convince a verifier that an alleged DCS is valid or invalid, respectively.

Based on security models given in [18, 32], we have proposed a new security model

to accommodate a DCS with unified verification, and showed the security of the pro-

posed scheme in the random oracle model under a newly introduced computational

assumption, which is independent of interest. In addition, we have proposed a very

efficient way that transforms Σ-protocols into concurrent zero knowledge protocols.

As the future work, it would be very interesting to build new efficient DCS schemes

with unified or full verification.

118

Chapter 6

A Generic DCS Construction with Full

Verification

6.1 Introduction

At Aisacrypt ’05, Gentry, Molnar, and Ramzan[38] proposed a generic DCS scheme

(the GMR scheme for short) that involves the use of a signature on a commitment and

a separate encryption of the randomness used for commitment. By adding this “layer

of indirection”, the underlying protocols in the GMR scheme have efficient instan-

tiations that can avoid to use general zero-knowledge proofs for NP statements, and

furthermore the performance of these protocols is not tied to the selection of underly-

ing signature scheme, as the signature itself is publicly verifiable.

However, as pointed by Wang et al [78], the GMR scheme is flawed and does not

meet the security requirement of invisibility. In particular, they discovered a reason-

able attack based on the observation that in the GMR scheme, the ciphertext c of the

randomness r could be re-used in different signatures. The technique of such an attack

can be found in the section 4.2 of [78], and we omitted the details.

120

After we built the concrete designated confirmer signatures scheme in chapter 5,

it seems quite natural to explore a generic construction that still retains the feature of

full verification, i.e., either the signer or the confirmer can interactively verify arbitrary

signatures, provide a convincing proof when confirming a valid signature or when

disavowing an invalid signature. The main task of this chapter is to contribute to a

generic DCS scheme with full verification.

Our Contributions Inspired by the interesting GMR scheme [38] and the im-

proved GMR scheme in [78], we propose the first generic DCS scheme that supports

full verification. The main idea of our construction is, to issue a DCS, the targeted

message is initially sealed in a commitment ϕ. Then the randomness r used to open

the commitment is doubly encrypted, that is, two ciphertexts say c1 and c2 will be gen-

erated as part of the DCS which are the encryptions on the randomness with regard

to the signer or the confirmer’s public key. The final output DCS is a combination of

ϕ, c1, c2 and σ, where σ′ is an ordinary signature on ϕ by using the signing key. To

confirm or disavow such a DCS, either the signer or the confirmer can simply decrypt

one of the ciphertexts using its private key to get the witness, i.e., the randomness. By

checking the correctness of the commitment, the prover can later provides a ZK proof

of knowledge for the equality of the randomness existed in the commitment and in the

ciphertext.

Since our construction is a straight inheritance of the GMR transformation, our

scheme enjoys the similar benefits of the former, i.e., the proposed generic scheme

gives rise to an efficient and generic DCS construction without appealing to both ran-

dom oracles and general zero-knowledge proofs. To avoid the re-used randomness by

any adaptive adversary, we draw on the solution introduced by [78], i.e., let the un-

derlying IND-CCA2 secure encryption scheme support the use of labels. In particular,

we should let the confirmer be aware of the “context” of the ciphertext c meaning that

121

c is created with respect to which message m and which verification key. This is the

reason that we introduce such a kind of specific encryption schemes in section 2.2.

Organizations After the background information of DCS schemes in this section,

we present two cryptographic primitives in section 2, that is, the commitment scheme

which is used as a “layer of indirection”, to achieve efficient instantiations, as well as

the public key encryption scheme that supports the use of labels to enhance the security.

In section 3, we propose a generic transformation to convert any digital signatures

into designated confirmer signatures. And we give the related security analysis of our

scheme in section 4. We show how to efficiently instantiate the proposed scheme by

choosing specific building blocks in section 5. Section 6 concludes our work of this

chapter.

6.2 Cryptographic Primitives

6.2.1 Commitment Schemes

Commitment schemes play an important role in cryptography and their use is of par-

ticular importance within cryptographic protocols. A commitment can be viewed as

the “digital” analog of a safe or a sealed envelope. During the so-called commit phase,

a player (the sender) wants to commit on a value (or a bitstring) to a receiver such that

the latter cannot deduce information about the committed value (hiding property). A

second phase is revealing the commitment by disclosing some extra information al-

lowing the receiver to learn and check the committed value. The value chosen during

the commit phase must be the only one that the sender can compute and that validates

during the revealing phase (binding property). In fact, the binding property ensures

that between the two phases, the sender is not able to change its mind so that it should

be impossible for him to open the commitment on a different value from the committed

122

one.

An obvious application of commitment schemes are sealed-bid auctions. Each

participant with a key puts his bid into his lockable box, and submits the box to the

auctioneer. On receiving all bids, the auctioneer also requests the keys from those par-

ticipants, unlock the boxes publicly and announces the winner. The important aspects

of commitment schemes, the hiding property and the binding property, are reflected

in this example: the actual bid should be kept secret until the bidding phase is over,

and also no bidder should be able to change his bid after seeing a previously disclosed

opponent’s bid.

Perdesen Commitment Scheme An example of an information-theoretically hid-

ing commitment scheme is the Perdesen commitment scheme [67], which is binding

under the discrete logarithm (DL) assumption. We introduce the scheme with minor

changes.

Let p and q be two large primes such that q divides p− 1. Gq is a unique subgroup

of Z∗p of order q , and g is a generator of Gq. Let h be an element of Gq such that no

body knows logg h.

The committer commits himself to a value m ∈ Zq by choosing t ∈ Zq at random,

and computing

E(m, t) = gmht

Such a commitment can be simply opened by revealing the value of m and t. The

scheme has been proved to be statistically hiding and computationally binding under

DL assumption. In particular, the commitment E(m, t) reveals no information about

m, and the committer cannot open a commitment to m′ such that m′ 6= m unless it can

compute logg h.

123

6.2.2 Secure Encryption Scheme with Labels

An interesting attack on the invisibility of DCSs, is to link the validity of the challenge

signature to a reconstructed new signature, where the new signature has re-used the

same randomness or the same key values existed in producing the challenge signature.

Note such kind of attacks has been identified in chapter 3 and in [78].

To enhance the security of the scheme and to resist this attack, we should let the

confirmer know the “context” of the ciphertext c meaning that c is created with respect

to which message and which verification key. In particular, we introduce an adaptation

of Paillier-based encryption scheme [65] that proposed by Camenisch and Shoup [19].

This so-called “CS-Paillier cryptosystem” encryption scheme supporting the use of

labels, is an ideal solution for offering the resistance to the above attack.

We first introduce the notation system that is used to describe the scheme below.

For a real number a, bac denotes the largest integer b ≤ a, and dae the smallest integer

b ≥ a. For positive real numbers a and b, [a] denotes the set {0, ..., bac − 1}.

The Scheme Description The IND-CCA2 security of this scheme relies on the

decisional composite residuosity assumption (DCRA) in Z∗n2 , where n = pq is the

product of two Sophie-Germain primes p and q (i.e., there exist two primes p0 and

q0 such that p = 2p0 + 1 and q = 2q0 + 1). Informally, the DCRA states that it is

intractable to distinguish random elements from Z∗n2 and random elements from the

subgroup consisting of all n-th powers of elements in Z∗n2 . We give the brief review of

this encryption scheme as below.

The user generates a composite modulus n = pq as above. The user’s public key

includes a collision-resistant hash function H , h = 1 + n, a random g′ ∈ Z∗n2 , and

values g = g′2n, y1 = gx1 , y2 = gx2 , and y3 = gx3 , where x1, x2, x3 ∈R [n2/4]

constitute the private key. Define a function abs(·): Zn2 → Zn2 as abs(a) = a if

124

0 ≤ a ≤ n2/2, or abs(a) = n2 − a mod n2 if n2/2 < a ≤ n2.

To encrypt a value r ∈ [n] with a label L ∈ {0, 1}∗, the sender picks t ∈R [n/4]

and computes a triple (u, e, v) by u = gt, e = yt1h
r, and v = abs((y2y

H(u,e,L)
3)t). The

resulting ciphertext (u, e, v) with label L can be decrypted as follows. First, the user

checks whetherabs(v) ≡ v and u2(x2+H(u,e,L)·x3) ≡ v2. If any check fails, output ⊥.

Otherwise, the user computes r̂ = (e/ux1)2k for k = 2−1 mod n. If r̂ is of form hr for

some r ∈ [n] (i.e., r̂−1 is divisible by n), then output r = (r̂−1)/n ∈ [n]. Otherwise,

output ⊥.

6.3 A Generic Construction of DCS with Full Verifica-

tion

Intuition Behind One may find that, if using the paradigm of “sign-and-encrypt”

method, it is not so easy to let the signer prove a DCS is invalid. Because without

the decryption key, the signer has to prove the encrypted value is not a valid basic sig-

nature on the required message. Usually, to prove such a statement, the signer has to

present a general zero-knowledge proofs, while such kinds of proofs always involve

a reduction step to an NP-complete language (e.g., the language representing graphs

that are three colorable), and cannot really be used in practice. Our main idea is, the

targeted message is initially sealed in a commitment. The randomness used to open the

commitment is then repeatedly encrypted, that is, two ciphertexts will be generated as

part of the DCS which are the encryptions on the randomness with regard to the signer

and the confirmer’s public key. To confirm or disavow any DCS, either the signer or

the confirmer can simply decrypts one of the ciphertexts using its private key to get

the witness, i.e., the randomness. By checking the correctness of the commitment, the

prover can later provide a ZK proof of knowledge for the equality of the randomness

125

existed in the commitment and in the ciphertext.

The Scheme Description

To setup the scheme, the following building blocks of cryptographic primitives

are adopted: a statistically hiding and computationally binding commitment scheme

Comm = (Com,CheckReveal); an IND-CCA2 secure public key encryption scheme

which supports the use of “labels”: PKE = (PKE_Gen,Enc,Dec); and an EUF-

CMA digital signature scheme DS = (DS_Gen, Sig, V er). The following algo-

rithms/protocols describe the details of our scheme.

KGen: The signer S generates a signing key-pair (skS, vkS)← DS_Gen(1λ) for

any EUF-CMA digital signature scheme DS; Both the signer and the confirmer gen-

erate public and private keys for any IND-CCA2 secure public key encryption scheme

supporting the use of labels: (xS, yS)← PKE_Gen(1λ), (xC , yC)← PKE_Gen(1λ).

Sign: To issue an ordinary signature on a message m, the signer S computes a

statistically hiding and computationally binding commitment ψ = Com(m, r) with

the randomness r, and creates σ = Sig(skS, ψ); The basic signature is σ∗ = (σ, r).

V erify: On input an basic DCS signature σ∗ = (σ, r) for a message m, this

algorithm returns the output of V er(ψ, σ, vkS), where ψ = Com(m, r).

DCSSign: To issue a DCS on a message m, the signer S computes a statistically

hiding and computationally binding commitment ψ = Com(m, r) with the random-

ness r, and creates σ = Sig(skS, ψ); In addition, S also computes two encryptions, i.e.,

c1 = Enc(yS, r) and c2 = Enc(yC , r), and prepares a zero-knowledge proof π0 shows

that c1 and c2 are properly prepared. In particular, π0 should be a non-interactive zero

knowledge (NIZK) protocol shows that both c1 and c2 encrypt the same randomness

that is used to compute the commitment ψ. The output DCS is σ′ = (ψ, σ, c1, c2, π0).

Confirm(S,V): On receiving a message-DCS pair (m,σ′) = (m, (ψ, σ, c1, c2, π0)),

signer S first checks whether σ is signed on ψ. S aborts if this check fails. Also S

126

aborts if π0 is invalid. Otherwise, S decrypts c1 to get a value r, and then checks if

ψ ≡ Com(m, r). If any step of this procedure fails, S executesDisavow(S,V) protocol.

Otherwise, using its private key xS S runs the interactive protocol π1 with the verifier.

In particular, π1 is a ZK proof of knowledge of a value r such that c1 = Enc(yS, r)

and ψ = Com(m, r).

Disavow(S,V): On receiving a purported message-DCS pair (m,σ′) = (m, (ψ, σ, c1, c2, π0)),

signer S checks if c1 is a valid encryption of some r which can be decrypted by using

its private key xS . If not, it performs a ZK proof of knowledge showing that c1 is not

well-formed. Otherwise, S computes r′ = Dec(c1, xS). If ψ 6= Com(m, r′), S pro-

vides a ZK proof of knowledge that there is a value r′ such that ψ 6= Com(m, r′) and

c1 = Enc(yS, r
′).

Confirm(C,V): On receiving a message-DCS pair (m,σ′) = (m, (ψ, σ, c1, c2, π0)),

confirmer C first checks whether σ is signed on ψ. C aborts if this check fails. Also C

aborts if π0 is invalid. Otherwise, C decrypts c2 to get a value r by using its private key

xC , and then checks the equation ψ ≡ Com(m, r). If any step of this procedure fails,

C executes Disavow(C,V) protocol. Otherwise, using its private key xC C runs the

interactive protocol π2 with the verifier. In particular, π2 is a ZK proof of knowledge

of a value r such that c2 = Enc(yC , r) and ψ = Com(m, r).

Disavow(C,V): On receiving a purported message-DCS pair (m,σ′) = (m, (ψ, σ, c1, c2, π0)),

confirmer C checks if both c2 is a valid encryption of some r. If not, it performs

a ZK proof of knowledge such that c2 is not well-formed. Otherwise, C computes

r′ = Dec(c2, xC). If ψ 6= Com(m, r′), C provides a ZK proof of knowledge showing

that there is a value r′ such that ψ 6= Com(m, r′) and c2 = Enc(yC , r
′).

Extract: On input m and σ′ = (ψ, σ, c1, c2, π0), the confirmer C first checks

whether σ is signed on ψ, then decrypts c2 to get a value r by using its private key xC ,

and checks if ψ ≡ Com(m, r) . If any of the procedure fails, C outputs ⊥. Otherwise,

127

C outputs the basic signature σ∗ = (σ, r).

Remark 1: In multi-signer settings, to enhance the invisibility of the GMR scheme,

we should let the prover (the confirmer or one of the signers) know the “context” of

the ciphertexts c1 and c2, meaning that they are created with respect to which message

m and which verification keys. Namely, we can define a label L = m||yS||yC so that

the prover is aware of the context of the ciphertext. That is also the reason we use

the labels in our construction, though we do not explicitly disclose the labels in the

above proposition. Detailed descriptions of how to use public key encryption scheme

supporting the use of labels, are demonstrated in the next section.

Remark 2: Gentry et al. pointed out that, all the statements involving zero-

knowledge proofs can be expressed as NP statements (and have a short witness).

Therefore, it’s feasible, in theory, to instantiate the above scheme in polynomial time

for any suitably secure encryption scheme, commitment scheme, and signature scheme.

Remark 3: In our DCSSign algorithm, π0 shall be a NIZK proof that could be

validated publicly. However, sometimes to conform to reality, one may also retain the

interaction between the signature issuer, i.e., signer S, and the signature recipient, by

replacing π0 with a interactive ZK protocol π′0 that proves the equality of the encrypted

message in c1 and c2.

Remark 4: We do not include the checks on σ′ and π0 in Disavow protocols,

since σ′ is a publicly verifiable signature on ψ, and π0 is a NIZK proof in general.

Consequently, the verifier can verify these two elements by himself before performing

the Disavow protocol.

Remark 5: It is notable that the DCS σ′ signs on the commitment ψ rather than

the rare message m. The statistically hiding property of the underlying commitment

scheme ensures the inability of discovering the relations between the messages and the

DCSs. However, Our construction allows that the DCS σ′ may convince any verifier

128

that the signer indeed signed some message m, as the ordinary signature pair (ψ, σ)

is publicly verifiable. Because (ψ, σ) is always a valid signature pair if the DCS σ′

is valid, the distribution on the signature space corresponding to the random variable

σ′ for any fixed key and varying messages is not computationally indistinguishable

from a uniform distribution. Based on this observation, our construction does not meet

the requirement of the addition property in Galbraith and Mao’s proposal [33] (see in

section 2, Property A). Accordingly, our construction satisfies (weak) invisibility, while

is not covered by the security of invisibility defined by Galbraith and Mao in [33], and

a formal analysis will be provided in the next section. We emphasis that invisibility

in [33] is a little stronger than the "weak invisibility" in Def 3.6, section 2, Chapter

3 (originally introduced by Camenisch and Michels [18]. A detailed discussion and

proofs for identifying the relations of these two definitions can be seen in section 3 in

[33]). In fact, for many real life applications, we think (weak) invisibility is enough to

meet the security requirements.

6.4 Security Analysis

Let DS = (DS_Gen, Sig, V er) be any signature scheme secure against chosen mes-

sage attack, and let PKE = (PKE_Gen,Enc,Dec) be any IND-CCA2 secure

encryption scheme and Comm = (Com,DeCom) be any statistically hiding and

computationally binding commitment scheme with perfect zero-knowledge proofs of

knowledge for committed values secure against cheating verifiers. We use DCS to

denote a DCS scheme with full verification following the construction in section 1.

According to the security model given in section 4, Chapter 5, we demonstrate the

security of the above generic construction in the following two theorems. We remark

that, theorem 2 is about the invisibility analysis in the standard model, and we follow

129

an alternative definition given in Def 3.6, section 2, Chapter 3 (and also by Camenisch

and Michels [18]). In fact, Galbraith and Mao [32] have proved that these two types of

invisibility are actually equivalent in the standard model of computation.

Theorem 6.1. If the underlying signature scheme DS = (DS_Gen, Sig, V er)

is existentially unforgeable against chosen message attacks and the commitment

scheme is computationally binding, the scheme DCS is existentially unforgeable

against chosen message attacks.

Proof: The main idea is, after the training phase, the adversary A has a non-

negligible probability of successfully outputting a fresh DCS (m,σ′) for which

V erify(m,Extract(m,σ′, xC , vkS), vkS) = Accept. From A, we can construct an

algorithm B that is able to either construct an existential forgery of the underlying sig-

nature scheme, or violate the binding property of the commitment scheme. We denote

C as an instance of the underlying signature scheme. In the simulation, C will cre-

ate related key-pairs and answer all B ’s signing queries except the challenging query.

Now we describe the simulations as follows.

Initially, C generates the signing-verification key-pair (skS, vkS) via the algorithm

KGen. B runs the algorithm PKE_Gen and generates the signer and the confirmer’s

encryption key-pairs, i.e., (xS, yS) and (xC , yC) respectively. B sends xS and xC to A.

B simulates all needed DCS oracles for A as follows:

DCSSign query: For any queried message m, B picks a randomness r, computes

a commitment ψ = Com(m, r) with the randomness r. Then B uses its own oracle

access to C, to obtain a signature on ψ, i.e., σ = Sig(skS, (ψ, vkS)). B also gen-

erates appropriate ciphertexts c1 and c2 that encrypts r, and produces a ZK proof of

knowledge π0 shows c1 and c2 encrypts the same randomness r. The output DCS is

σ′ = (ψ, σ, c1, c2, π0). Meanwhile, B maintains a DCS-List when generating any new

DCS.

130

For Confirm(S,V), Disavow(S,V), Confirm(C,V), Disavow(C,V) and Extract

queries, A can simulate and achieve correct results using xS or xC .

Suppose thatA outputs a pair (m̂, σ̂′) where σ̂′ = (ψ̂, σ̂, ĉ1, ĉ2, π̂0), and m̂ is a fresh

message. B uses xC to extract the underlying basic signature of (m̂, σ̂′), say (σ̂, r̂). B

checks its DCS-List , if σ is found for some m, and σ = σ̂, this suggests B must have

responded to A’s DCSSign query on m by generating a randomness r, for which

ψ = Com(m̂, r̂) = Com(m, r). Since m̂ 6= m, this violates the binding property of

the commitment scheme. Otherwise, B outputs σ as an existential forgery on message

(ψ, vkS). �

Theorem 6.2. If the underlying encryption scheme PKE is IND-CCA2 secure,

then the scheme DCS is invisible w.r.t. the definition of Def 3.6 in section 2, Chap-

ter 3.

Proof: The main idea is, in the invisibility game, when receiving a challenge DCS

σ′ = (ψ, σ, c1, c2, π0) on two messages m0 and m1, the adversary is to distinguish the

validities of the DCSs adaptively. Since the commitment scheme is computationally

binding, which means ψ is a valid commitment on either m0 or m1. But due to the

perfect hiding property, the DCS adversary cannot succeed via ψ.

In the following simulation process, we use A as a subroutine to construct a PPT

adversary B which will successfully break the underlying encryption scheme. We

denote C as an instance of the underlying encryption scheme. In the simulation, C will

create related key-pairs and answer all B’s decryption queries except the challenging

query.

Initially, two key-pairs (xS, yS) and (xC , yC) generated via PKE_Gen by C , are

set as the public encryption keys of the signer and the confirmer. B runs KGen for

generating a signing-verification key-pair (skS, vkS). We denote εA and εB as A and

B’s advantage for breaking the scheme DCS and the underlying encryption scheme

131

PKE respectively.

B simulates all DCS oracles for A as follows:

DCSSign query: For any queried message m, B picks a randomness r, computes

a commitment ψ = Com(m, r) with the randomness r, and creates σ = Sig(skS, ψ);

B also computes two encryptions, i.e., c1 = Enc(yS, r), c2 = Enc(yC , r), and pro-

duces a ZK proof of knowledge π0 shows c1 and c2 encrypts the same randomness r..

EventuallyB returns the DCS σ′ = (ψ, σ, c1, c2, π0) toA. In addition,B also maintains

a (m, r)-List . Whenever a new DCS σ′ created and returned to A, the corresponding

message-randomness pair (m, r) is added to (m, r)-List .

Confirm(S,V) query: For any queried message-DCS pair (m,σ′), where σ′ =

(ψ, σ, c1, c2, π0), B looks up the (m, r)-List with input m. If a saved (m, r̂) is found,

B checks the DCS’s validity with the value r̂. Namely, B checks the equation ψ =

Com(m, r̂). B terminates if the check fails. Otherwise, B performs a zero-knowledge

proof of knowledge of the value r̂ such that ψ = Com(m, r̂), c1 = Enc(yS, r̂).

Disavow(S,V) query: For any queried message-DCS pair (m,σ′), where σ′ =

(ψ, σ, c1, c2, π0), B first enquires C’s decryption oracle with input c1. Once B re-

ceives the decrypted value r̂, it checks if both c1 and c2 are valid encryptions of some

randomness. If not, it performs a ZK proof of knowledge such that either c1 or c2 is

not well-formed. Otherwise, if ψ 6= Com(m, r̂), B provides a ZK proof of knowledge

that there is a value r̂ such that ψ 6= Com(m, r̂) and c1 = Enc(yS, r̂).

Confirm(C,V) query: For any queried message-DCS pair (m,σ′), where σ′ =

(ψ, σ, c1, , c2, π0), B looks up the (m, r)-List with input m. If a saved (m, r̂) is found,

B checks the DCS’s validity with the value r̂. Namely, B checks the equation ψ =

Com(m, r̂), if it fails, B terminates. Otherwise, B performs a zero-knowledge proof

of knowledge of the value r̂ such that ψ = Com(m, r̂), and c2 = Enc(yC , r̂).

Disavow(S,V) query: For any queried message-DCS pair (m,σ′), where σ′ =

132

(ψ, σ, c1, c2, π0), B first enquires C’s decryption oracle with input c2. Once B re-

ceives the decrypted value r̂, it checks if both c1 and c2 are valid encryption of some

randomness. If not, it performs a ZK proof of knowledge such that either c1 or c2 is

not well-formed. Otherwise, if ψ 6= Com(m, r̂), B provides a ZK proof of knowledge

that there is a value r̂ such that ψ 6= Com(m, r̂) and c2 = Enc(yC , r̂).

Extract query: For any queried message-DCS pair (m,σ′), where σ′ = (ψ, σ, c1, c2),

B looks up the (m, r)-List with inputm. If a saved (m, r̂) is found,B checks the DCS’s

validity with the value r̂. Otherwise, B terminates. Namely, B checks three equation

ψ = Com(m, r̂), if it fails, B terminates. Otherwise, B outputs (σ, r̂).

In the challenge phase, After q adaptive oracle queries by A, it presents two mes-

sages m0 and m1, and sends them to B.

B picks two randomnesses respectively, i.e., r0 for committing m0, and r1 for

committing m1. B computes a “possible” commitment by flipping a fair coin b′, i.e.,

ψb′ = Com(mb′ , rb′), and further computes σb′ = Sig(skS, ψb′). B uses r0 and r1

as the equal length messages in its “find stage”, and sends them to C. By flipping

a fair coin b, C returns a tuple (c1−b, c2−b), where c1−b = Enc(yS, rb) and c2−b =

Enc(yC , rb), together with a ZK proof of knowledge π0−b shows c1−b and c2−b encrypts

the same message. B returns the challenge as σb = (ψb′ , σb′ , c1−b, c2−b, π0−b).

At the end of the simulation, A outputs its guess on b′, denote as b′′, B straightly

uses b′′ as its own guess on b and outputs b′′.

In fact, εA and εB are A and B’s advantage for guessing each coin value re-

spectively. The “failure” cases are when b′ 6= b, that is the challenge DCS σb =

(ψb′ , σb′ , c1−b, c2−b) is invalid, which means B’s responses to A’s queries deviate from

the real oracles’ responses. In that case, B’s advantage is no better than a random

guessing. Note in B’s view, flipping the coin b′ is independent from flipping the coin

b. Thus the “failure” probability is exactly 1/2.

133

Hence we have 1
2
+εB = 1

2
×(1

2
+εA)+ 1

2
× 1

2
, i.e., 2·εB = εA. If εB is non-negligible,

εA is non-negligible as desired. �

6.5 Implementation and Evaluation of the DCS Scheme

We show how to efficiently instantiate the above scheme. To fulfill the building blocks,

we select the scheme by Camenisch and Shoup which was discussed in sub-section

2.2, as the underlying encryption scheme PKE. The commitment scheme will be a

Pedersen-type commitment scheme as described in sub-section 2.1. We choose BLS

short signature [14] as the underlying digital signature scheme. The reason we do not

choose the very interesting Boneh-Boyen signature [8, 9] (BB signature) which also

has short signature size, is that the underlying computational problem seems a little

ornate and contrived. In fact, Boneh and Boyen give a reductionist security argument

showing that a chosen message attacker cannot forge a signature provided that the so-

called Strong Diffie-Hellman (SDH) problem is hard. This problem is parametrised by

an integer l (which is a bound on the number of signature queries the attacker is allowed

to make) and is denoted l-SDH. In particular, recently Jao and Yoshida[50] showed by

using the techniques in [24], one can forge signatures in roughly p2/5 operations (with

roughly p1/5signature queries) under certain conditions., where p represents the order

of the underlying cyclic groups.

6.5.1 The instantiation

Considering a symmetric bilinear map e : G × G → Gt, where G is a multiplicative

cyclic group of prime order q and g is a generator of G. H : {0, 1}∗ → G is a full-

domain hash function. H ′ is a collision-resistant hash function. Let n = p′q′ be the

product of two Sophie-Germain primes p′ and q′ (i.e., there exist two primes p0 and q0

134

such that p′ = 2p0 + 1 and q′ = 2q0 + 1). Similar to the subsection 2.2, we define a

function abs(·): Zn2 → Zn2 as abs(a) = a if 0 ≤ a ≤ n2/2, or abs(a) = n2 − a mod

n2 if n2/2 < a ≤ n2. To obtain a verifiable encryption scheme from the CS-Paillier

cryptosystem, we assume there is an additional composite modulus n2 = p2q2, where

p2 = 2p′2 + 1 and q2 = 2q′2 + 1 are two safe primes, along with elements g2, h2 ∈ Z∗n2

of order p′2q
′
2.

In addition, we select a third group Γ of prime order ρ, with two generators δ and

γ , and the discrete logarithm problem is assumed to be hard in Γ. In our scheme,

a message m shall be committed by Com(m, r) = δmγr, where r ∈R [ρ]. We re-

quire n2 6= n, ρ =| Γ |< n · 2−k−k′−3, and 2k < min{p′, q′, p′2, q′2} for two further

security parameters k and k′. Actually, {0, 1}k defines the “challenge space” of the

verifier, while k′ controls the quality of the ZK property. In addition, it is required

that the prover does not know the factorization of n2. For simplicity, we suppose that

(n2, g2, h2,Γ, δ, γ) are generated by a trusted party and viewed as a common reference

string. Note implementation details of the ZK protocols in DCSSign, Confirm(S,V),

Disavow(S,V), Confirm(C,V), and Disavow(C,V) can be seen in Appendix A.

KGen: The signer S picks a random value x ∈R Z∗q as its private key of the

signing key-pair, and computes gx as its public key of the signing key-pair. The signer

generates its encryption/decryption keys as follows: it picks xS1 , xS2 , xS3 ∈R [n2/4],

wherexS = (n, xS1 , xS2 , xS3) constitute the decryption key. The signer computes h =

1 + n, picks a random value g′S ∈ Z∗n2 , and computes gS = g′2nS , yS1 = gxS1 , yS2 =

gxS2 , and yS3 = gxS3 where yS = (h, n, gS, yS1 , yS2 , yS3) constitute the encryption

key. The confirmer computes its encryption/decryption key similarly, and denotes as

xC = (h, n, xC1 , xC2 , xC3), and yC = (h, n, gC , yC1 , yC2 , yC3).

Sign: To issue an ordinary signature on a message m, the signer S computes

a statistically hiding and computationally binding commitmentψ = δmγr with the

135

randomness r, and creates σ = H(ψ)x; The basic signature is σ∗ = (σ, r).

V erify: On input an basic DCS signature σ∗ = (σ, r) for a message m, this

algorithm returns Accept if e(σ, g) = e(H(ψ), gx), where ψ = δmγr.

DCSSign: To issue a DCS on a message m, the signer S computes a commitment

ψ = δmγr with the randomness r, and creates σ = H(ψ)x; In addition, S also com-

putes two encryptions, i.e., c1 = (u1, e1, v1) = Enc(yS,m) and c2 = (u2, e2, v2) =

Enc(yC ,m). In particular, to compute c1, the signer should choose a random value

tem ∈R [n/4], and computes u1 = gtemS , e1 = ytemS1
hr, v1 = abs((yS2y

H(u1,e1,L1)
S3

)tem)

with a label L1 = m ‖ yS . Similarly, to compute c2, the signer should choose an-

other randomness tem′ ∈R [n/4], and computes u2 = gtem
′

C , e2 = ytem
′

C1
hr, v2 =

abs((yC2y
H(u2,e2,L2)
C3

)tem
′
) with the label L2 = m ‖ yC . S also provides a zero knowl-

edge proof π0 shows that both c1 and c2 encrypt the same randomness that is used

to compute the commitment ψ. Finally, the output designated confirmer signature is

σ′ = (ψ, σ, c1, c2, π0) on the message m,

π0 = PK{(tem, tem′, r, s) : e1 = ytemS1
hr ∧ e2 = ytem

′

C1
hr}

Note in the CS-Paillier encryption scheme, the randomness r is hidden in the value

ewhich is actually a “commitment”, to prove the equality of the randomness encrypted

by c1 and c2, is equivalent to prove that two commitments, e1 and e2, hide the same

secret r. we use the NIZK protocol proposed by Boudot [15] which in fact is derived

from proofs of equality of two discrete logarithms combined with a proof of knowledge

of a discrete logarithm modulo n.

Confirm(S,V): On receiving a message-DCS pair (m,σ′) = (m, (ψ, σ, c1, c2, π0)),

signer S first checks if e(σ, g) ≡ e(H(ψ), gx). S aborts if this check fails. Otherwise,

S decrypts c1 to get a value r′, and then checks if ψ ≡ δmγr
′ . Specifically, to decrypt

c1, the signer first checks if abs(v1) ≡ v1 and u
2(xS2

+H(u1,e1,L1)·xS3
)

1 ≡ v2
1; If this does

136

not hold, then output⊥ and halt, otherwise the signer computes r̂ = (e1/u
xS1
1)2k where

k = 2−1 mod n. If r̂ is of form hd for some d ∈ [n] (i.e., r̂ − 1 is divisible by n), then

output r′ = (r̂ − 1)/n ∈ [n]; otherwise, output ⊥. If any of this procedure fails, S

executesDisavow(S,V) protocol. Otherwise, S runs a ZK proof of knowledge of values

(xS1 , xS2 , xS3 , r, s) with the verifier, where s ∈ [n2/4]:

π1 = PK{(xS1 , xS2 , xS3 , r, s) : yS1 = gxS1 ∧ yS2 = gxS2 ∧ yS3 = gxS3

∧e2
1 = u

2xS1
1 h2r ∧ v2

1 = u
2xS2
1 u

2H(u1,e1,L1)xS3
1

∧ψδ−m = γr ∧ l = gr2h
s
2 ∧ −n/2 < r < n/2}

Disavow(S,V): On receiving a message-DCS pair (m,σ′) = (m, (ψ, σ, c1, c2, π0)),

signer S checks if c1 is a valid encryption of some r with respect to label L1. If not,

it performs a ZK proof of knowledge such that c1 is not well-formed. Otherwise, S

computes r′ = Dec(c1, xS). If ψ 6= δmγr
′ , S provides a ZK proof of knowledge r′

such that ψ 6= δmγr and c1 = Enc(yS, r
′). In general, S will provides a ZK proof for

the following statement:

[c1 is invalid w.r.t. L1 = m ‖ yS] OR [∃ r′ s.t. r′ = Dec(c1, xS) AND ψ 6= δmγr
′]

Confirm(C,V): On receiving a message-DCS pair (m,σ′) = (m, (ψ, σ, c1, c2, π0)),

the confirmer C first checks whether σ is signed on ψ by checking if e(σ, g) =

e(H(ψ), gx). C aborts if this check fails. Otherwise, C decrypts c2 to get a value

r by using xC , and then checks if ψ ≡ δmγr. If any of this procedure fails, C exe-

cutes Disavow(C,V) protocol. Otherwise, C runs the interactive protocols π2 with the

verifier. Specially, π2 is a ZK proof of knowledge of values (xC1 , xC2 , xC3 , r, s), where

s ∈ [n2/4].

137

π2 = PK{(xC1 , xC2 , xC3 , r, s) : yC1 = gxC1 ∧ yC2 = gxC2 ∧ yC3 = gxSC

∧e2
2 = u2xC1

2 h2r ∧ v2
2 = u

2xC2
2 u

2H(u2,e2,L2)xC3
2

∧ψδ−m = γr ∧ l = gr2h
s
2 ∧ −n/2 < r < n/2}

Disavow(C,V):On receiving a message-DCS pair (m,σ′) = (m, (ψ, σ, c1, c2, π0)),

confirmer C checks if c2 is a valid encryption of some r with respect to label L2. If

not, it performs a ZK proof of knowledge such c2 is not well-formed. Otherwise, C

computes r′ = Dec(c2, xC). If ψ 6= δmγr, C provides a ZK proof of knowledge that

there is a value r′ such that ψ 6= δmγr and c2 = Enc(yC , r
′). In general, C will

provides a ZK proof for the following statement:

[c2 is invalid w.r.t. L2 = m ‖ yC] OR [∃ r′ s.t. r′ = Dec(c2, xC) AND ψ 6= δmγr
′]

Extract: On input m and σ′ = (ψ, σ, c1, c2), the confirmer C first checks whether

σ is signed on ψ, then decrypts c2 to get a value r by using xC , and checks if ψ = δmγr

. If any of the procedure fails, C outputs ⊥. Otherwise, C outputs the basic signature

σ∗ = (σ, r).

we remark that the above DCS scheme is actually proposed for a message digest

m ∈ [ρ] . That means, to sign a message M with arbitrary length, we should first

compress M to a short digest m using a collision-resistant hash function.

6.5.2 Implementation Details

We describe how to implement π0, π1, π2, and Disaow protocols as follows.

π0 in DCSSign Algorithm. The details of this ZK protocol, which should be trans-

formed into a CZK protocol in our DCS scheme, are illuminated as follows.

π0 = PK{(tem, tem′, r, s) : e1 = ytemS1
hr ∧ e2 = ytem

′

C1
hr}

138

1. The signer S randomly picks η1, η2 ∈R [−n2k+k′−2, n2k+k′−2], and

ω ∈R [−ρ2k+k′ , ρ2k+k′], and computes W1 = yη1S1
hω, W2 = yη2C1

hω.

2. S computes c = H(W1 ‖ W2) where H is a hash function that outputs 2k-bit

strings.

3. S computes D = ω + c · r, D1 = η1 + c · tem, D2 = η2 + c · tem′, and sends

(c,D,D1, D2) to the verifier. Note D, D1, D2 are all computed in Z.

4. The verifier checks whether c = H(yD1
S1
hDe−c1 ‖ yD2

C1
hDe−c2).

π1 in Confirm(S,V) Protocol. At the end of Confirm(S,V) protocol, S shall run a ZK

proof of knowledge of values (xS1 , xS2 , xS3 , r, s) with the verifier, where s ∈ [n2/4]:

π1 = PK{(xS1 , xS2 , xS3 , r, s) : yS1 = gxS1 ∧ yS2 = gxS2 ∧ yS3 = gxS3

∧e2
1 = u

2xS1
1 h2r ∧ v2

1 = u
2xS2
1 u

2H(u1,e1,L1)xS3
1

∧ψδ−m = γr ∧ l = grhs ∧ −n/2 < r < n/2}

Let α = ψδ−m. For three integers a, b and c with c > 0, a = b rem c denotes the

balanced remainder of b modulo c. Namely, a = b+kc ∈ [−c/2, c/2) for some integer

k. The details of this ZK protocol, which should be transformed into a CZK protocol

in DCS setting, are described as follows.

S first selects a random s ∈R [n2/4], and computes l = gr2h
s
2. Then S randomly

selects x′S1
, x′S2

, x′S3
∈R [−n2k+k′−2, n2k+k′−2], r′ ∈R [−ρ2k+k′ , ρ2k+k′] , and s′ ∈R

[−n2k+k′−2, n2k+k′−2], and computes (y′S1
, y′S2

, y′S3
, e′1, v

′
1, α

′, l′) as follows:

y′S1
= gx

′
S1 , y′S2

= gx
′
S2 , y′S3

= gx
′
S3

e′1 = u
x′S1
1 hr

′
, v′1 = u

x′S2
1 u

H(u1,e1,L1)x′S3
1

α′ = γr
′
, l′ = gr

′

2 h
s′

2

139

After that, S sends (l, y′S1
, y′S2

, y′S3
, e′1, v

′
1, α

′, l′) to the verifier.

The verifier selects a random challenge c ∈R {0, 1}k and sends c to the signer S.

S responds with (x̃S1 , x̃S2 , x̃S3 , r̃, s̃) by computing

x̃S1 = x′S1
− cxS1 , x̃S2 = x′S2

− cxS2 , x̃S3 = x′S3
− cxS3

r̃ = r′ − cr, s̃ = s′ − cs

The verifier outputsAccept or⊥, according to whether all the following equations/conditions

hold or not respectively:

y′S1
= ycS1

gx̃S1 , y′S2
= ycS2

gx̃S2 , y′S3
= ycS3

gx̃S3 , e′21 = e2c
1 u

2x̃S1
1 h2r̃,

v′21 = v2c
1 u

2x̃S2
1 u

2H(u1,e1,L1)x̃S3
1 , α′ = αcγ r̃, l′ = lcgr̃2h

s̃
2
,−n/4 < r̃ < n/4.

The Disavow(S,V) Protocol. The signer needs to provide an ZK proof showing

that: [c1 is invalid w.r.t. L1 = m ‖ yS] OR [∃ r′ s.t. r′ = Dec(c1, xS) AND

ψ 6= δmγr
′] holds. According to the analysis given in section 7.3 [19] , this means

that the confirmer needs to prove that at least one of the following equations does not

hold: u
2(xS2

+H(u1,e1,L1)xS3
)

1 = 1, (e1/u
xS1
1)2n = 1, α = γ[logh2 (e1/u

xS1
1)2 remn]

where label L1 = m ‖ yS and α = ψδ−m. We can directly adopt the ZK protocol

specified in section 7.3 of the full paper [19], which is the same as our Disavow(P,V)

protocol and is used to prove verifiable decryption of a discrete logarithm. Note

one should replace the notations, i.e., change the variables x1, x2, x3, u, e, v, L, δ into

xS1 , xS2 , xS3 , u1, e1, v1, L1, α respectively.

140

π2 in Confirm(C,V) Protocol. Analogically, one could derive the detailed steps of

running π2 by replacing the related notations, i.e., changing

xS1 , xS2 , xS3 , u1, e1, v1, L1, x
′
S1
, x′S2

, x′S3
, y′S1

, y′S2
, y′S3

, e′1, v
′
1, x̃S1 , x̃S2 , x̃S3

in the procedure of running π1 into

xC1 , xC2 , xC3 , u2, e2, v2, L2, x
′
C1
, x′C2

, x′C3
, y′C1

, y′C2
, y′C3

, e′2, v
′
2, x̃C1 , x̃C2 , x̃C3 ,

respectively.

The Disavow(C,V) Protocol. The confirmer needs to provide an ZK proof show-

ing that: [c2 is invalid w.r.t. L2 = m ‖ yC] OR [∃ r′ s.t. r′ = Dec(c2, xC) AND

ψ 6= δmγr
′] holds. Let α = ψδ−m. Similar to Disavow(C,V)protocol above, one

could directly use the ZK protocol in section 7.3 of [19], by replacing the notations of

x1, x2, x3, u, e, v, L, δ with xC1 , xC2 , xC3 , u2, e2, v2, L2, α, respectively.

6.5.3 Efficiency Analysis

We give a brief comparison between our instantiation in subsection 5.1 and two schemes,

i.e., the GMR scheme [38], and the WBWB scheme introduced by Wang et al. in

section 6 in [78]. Similar to the comparison made in [38], we also compare these

DCS schemes in three categories, i.e., whether the scheme relies on the random oracle

model, which kinds of the underlying ordinary signatures are adopted, and how about

the computational efficiency. We also list the estimated numbers of exponentiations

needed in each interactive protocol. Recall λ is a security parameter, let exG and exGT

denote the time for computing an exponentiation in cyclic group G and Gt respec-

tively. In fact, no exponentiation in group Gt is required to execute in our practical

implementation. Not surprisingly, from Table 6.1, our scheme has the similar effi-

ciency with the original GMR scheme, since our construction is a straight inheritance

from the GMR scheme. And without using random oracles, we achieve Confirm and

141

GMR [38] WBWB [78] Our Scheme

Random Oracle No Yes No
Underlying Signatures Any Any Any

Confirm(C,V) 25 exG 15 exG 25 exG
Disavow(C,V) 60 exG 16 exG 60 exG

Table 6.1: Comparison of The Generic DCS-FV with Two Similar Schemes

Disavow protocols with an acceptable efficiency.

6.6 Summary

We have shown that by extending the constructions of the improved GMR scheme in

[78], a new generic DCS scheme could be derived which supports the signer’s disavow-

ability. Since both the signer and the confirmer can do confirmation and disavowal on

any alleged signature, our proposed scheme is so-called “DCS with full verification”.

Also with the security analysis in section 4, we can use any digital signature scheme

that is existentially unforgeable against chosen message attacks (EUF-CMA) and any

commitment scheme that is computationally binding, together with a public encryption

scheme that is IND-CCA2 secure, to build a specific secure instantiation of our DCS

cryptosystem.

we explicitly specify how to use labels in the DCS scheme by implementing an in-

stantiation which uses Pedersen commitments and CS-Paillier cryptosystem. For our

Confirm(P,V) protocol (P = {S,C}), it requires proving the verifiable encryption

of a discrete logarithm as described in subsection 5.2 of [19], and our Disavow(P,V)

protocol requires proving the verifiable decryption of a discrete logarithm as described

in subsection 7.3 of [19]. Meanwhile, to make the underlying zero-knowledge proofs

efficient, we should use the Gennaro’s approach [36] or CDM techniques [25] to trans-

form SHVZK protocols to CZK protocols.

142

Going further, we may look for commitment schemes and efficient protocols based

on different assumptions. For example, can we find some new technique to obtain an

even more efficient instantiation based on bilinear mappings?

Chapter 7

Conclusions and Future Works

In this thesis, we have mainly investigated how to design and analyse designated con-

firmer signature schemes, as well as clarifying the relations of different security no-

tions. By investigating the existing DCS schemes, we discovered that the security no-

tion called “invisibility” is an essential property of DCS schemes, and some adaptive

attacks that break invisibility, have been identified in different schemes. We explored

previous DCS models, and found several security notions including invisibility are not

very clear which bring confusions to future studies of DCS schemes. To address this

issue, we made further analysis on related security notions in a more thorough way.

More specifically, we reconciled the DCS model by comparing four properties, i.e.,

unimpersonation, invisibility, non-transferability and transcript-simulatability, and we

provided formal proofs about the implications/equivalences between these properties.

A important result is, we found that transcript-simulatability in GMR model [38] is

covered by the combination of invisibility and non-transferability in CM model [18];

on the other hand, transcript-simulatability actually implies invisibility, and a different

type of non-transferability.

Apart from the contributions of DCS modeling aspect, this thesis also improves the

144

design of DCS schemes by proposing new constructions. As far as we know, none of

the previously published DCS cryptosystems support the signer’s disavow-ability, that

is, the signer cannot convince a verifier that an alleged designated confirmer signature

is invalid. From this observation, we proposed a new efficient pairing based DCS

scheme that both the signer and the designated confirmer can run the same protocols to

confirm a valid DCS or disavow an invalid signature, which we called DCS with unified

verification. To achieve this, we introduced a new computational assumption, called

Decisional Co-efficient Linear (D-co-L) assumption, whose intractability in pairing

settings was analyzed in generic group model. The proposed scheme is composed

by encrypting Boneh, Lynn and Shacham’s pairing based short signatures [14] with

signed ElGamal encryption [72]. The resulting solution is efficient in both aspects

of computation and communication. Since the proposed scheme can be generalised by

allowing the signer to run different protocols for confirming and disavowing signatures,

which leads to a more practical version called DCS with full verification, for which we

do not necessarily require the signer and the confirmer run the same confirm/disavow

protocol.

We also introduced a new technique that gives the possibility of constructing generic

DCS schemes with full verification. Our proposal is inspired by GMR scheme [38] and

the improved GMR scheme in [78], where both use a commitment scheme as a “layer

of indirection”. The generic scheme is a straight inheritance of the GMR transforma-

tion, and it enjoys the similar benefits of the former, i.e., the proposed scheme gives rise

to an efficient generic DCS construction without appealing to both random oracles and

general zero-knowledge proofs. Furthermore, to avoid the re-used randomness by any

adaptive adversary, we draw on the solution introduced by [78], i.e., let the underlying

IND-CCA2 secure encryption scheme support the use of “labels”. By implementing

an instantiation which uses Pedersen commitments and CS-Paillier cryptosystem, we

145

explicitly specify how to use labels in the DCS scheme.

Besides the above contributions, this work gives rise to some new open problems.

Firstly, it is worthwhile to clarify the relations between the original version of non-

transferability defined in Chapter 3 (also in [18]) and our proposed new definition

as specified in Chapter 4, because if either an implication or an equivalence relation

between the two types of non-transferability is found, the relations among transcript-

simulatability, invisibility and non-transferability will be more complete and accurate.

Secondly, we believe by finding some new techniques, one could construct a more

efficient concrete DCS scheme with full verification (or even unified verification) in

the standard model, comparing to the proposed scheme in Chapter 5. Furthermore,

we could investigate the strong witness hiding proofs of knowledge approach of Gold-

wasser and Waisbard [45] with an eye towards weakening the assumptions required for

an efficient instantiation.

146

Bibliography

[1] ASOKAN, N., SHOUP, V., AND WAIDNER, M. Optimistic fair exchange of

digital signatures. IEEE J.Sel. A. Commun. 18, 4 (Sept. 2006), 593–610.

[2] BARRETO, P. S., GALBRAITH, S. D., HÉIGEARTAIGH, C. O., AND SCOTT,

M. Efficient pairing computation on supersingular abelian varieties. Des. Codes

Cryptography 42, 3 (Mar. 2007), 239–271.

[3] BELLARE, M. Practice-oriented provable security. In Lectures on data security:

modern cryptology in theory and practise (1998), I. Damgård, Ed., vol. 1561 of

Lecture Notes in Computer Science, Springer-Verlag, Berlin Germany, pp. 1–15.

[4] BELLARE, M., DESAI, A., POINTCHEVAL, D., AND ROGAWAY, P. Relations

among notions of security for public-key encryption schemes. In Advances in

Cryptology – CRYPTO ’ 98 (1998), H. Krawczyk, Ed., vol. 1462 of Lecture

Notes in Computer Science, International Association for Cryptologic Research,

Springer-Verlag, Berlin Germany, pp. 26–45.

[5] BELLARE, M., AND ROGAWAY, P. Random oracles are practical: a paradigm

for designing efficient protocols. In Proceedings of the 1st ACM conference on

Computer and communications security (New York, NY, USA, 1993), CCS ’93,

ACM, pp. 62–73.

148

[6] BELLARE, M., AND ROGAWAY, P. Random oracles are practical: a paradigm

for designing efficient protocols. In Proceedings of the 1st ACM conference on

Computer and communications security (New York, NY, USA, 1993), CCS ’93,

ACM, pp. 62–73.

[7] BELLARE, M., AND ROGAWAY, P. Optimal asymmetric encryption. In Advances

in Cryptology—EUROCRYPT 94 (9–12 May 1994), A. D. Santis, Ed., vol. 950

of Lecture Notes in Computer Science, Springer-Verlag, 1995, pp. 92–111.

[8] BONEH, D., AND BOYEN, X. Short signatures without random oracles. In

EUROCRYPT (2004), C. Cachin and J. Camenisch, Eds., vol. 3027 of Lecture

Notes in Computer Science, Springer, pp. 56–73.

[9] BONEH, D., AND BOYEN, X. Short signatures without random oracles and the

sdh assumption in bilinear groups. J. Cryptol. 21, 2 (Feb. 2008), 149–177.

[10] BONEH, D., BOYEN, X., AND GOH, E.-J. Hierarchical identity based encryp-

tion with constant size ciphertext. In Advances in Cryptology - EUROCRYPT

2005, 24th Annual International Conference on the Theory and Applications

of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceed-

ings (2005), R. Cramer, Ed., vol. 3494 of Lecture Notes in Computer Science,

Springer, pp. 440–456.

[11] BONEH, D., BOYEN, X., AND SHACHAM, H. Short group signatures. In Ad-

vances in Cryptology — CRYPTO 2004: 24th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 15–19, 2004. Proceedings

(pub-SV:adr, 2004), M. Franklin, Ed., vol. 3152 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 41–??

149

[12] BONEH, D., AND FRANKLIN, M. K. Identity-based encryption from the weil

pairing. In Proceedings of the 21st Annual International Cryptology Conference

on Advances in Cryptology (London, UK, UK, 2001), CRYPTO ’01, Springer-

Verlag, pp. 213–229.

[13] BONEH, D., GENTRY, C., LYNN, B., AND SHACHAM, H. Aggregate and ver-

ifiably encrypted signatures from bilinear maps. In Proceedings of the 22nd in-

ternational conference on Theory and applications of cryptographic techniques

(Berlin, Heidelberg, 2003), EUROCRYPT’03, Springer-Verlag, pp. 416–432.

[14] BONEH, D., LYNN, B., AND SHACHAM, H. Short signatures from the weil

pairing. J. Cryptol. 17, 4 (Sept. 2004), 297–319.

[15] BOUDOT, F. Efficient proofs that a committed number lies in an interval. In Pro-

ceedings of the 19th international conference on Theory and application of cryp-

tographic techniques (Berlin, Heidelberg, 2000), EUROCRYPT’00, Springer-

Verlag, pp. 431–444.

[16] BOUDOT, F., AND TRAORÉ, J. Efficient publicly verifiable secret sharing

schemes with fast or delayed recovery. In Proceedings of the Second Interna-

tional Conference on Information and Communication Security (London, UK,

UK, 1999), ICICS ’99, Springer-Verlag, pp. 87–102.

[17] BROWN, M., HANKERSON, D., LÓPEZ, J., AND MENEZES, A. Software im-

plementation of the nist elliptic curves over prime fields. In Proceedings of the

2001 Conference on Topics in Cryptology: The Cryptographer’s Track at RSA

(London, UK, UK, 2001), CT-RSA 2001, Springer-Verlag, pp. 250–265.

[18] CAMENISCH, J., AND MICHELS, M. Confirmer signature schemes secure

against adaptive adversaries. In Proceedings of the 19th international confer-

150

ence on Theory and application of cryptographic techniques (Berlin, Heidelberg,

2000), EUROCRYPT’00, Springer-Verlag, pp. 243–258.

[19] CAMENISCH, J., AND SHOUP, V. Practical verifiable encryption and decryption

of discrete logarithms. Lecture Notes in Computer Science 2729 (2003), 126–

144.

[20] CANETTI, R., GOLDREICH, O., AND HALEVI, S. The random oracle method-

ology, revisited. J. ACM 51, 4 (July 2004), 557–594.

[21] CHAUM, D. Designated confirmer signatures. In Advances in Cryptology—

EUROCRYPT 94 (9–12 May 1994), A. D. Santis, Ed., vol. 950 of Lecture Notes

in Computer Science, Springer-Verlag, 1995, pp. 86–91.

[22] CHAUM, D., AND PEDERSEN, T. P. Wallet databases with observers. In Pro-

ceedings of the 12th Annual International Cryptology Conference on Advances

in Cryptology (London, UK, UK, 1993), CRYPTO ’92, Springer-Verlag, pp. 89–

105.

[23] CHAUM, D., AND VAN ANTWERPEN, H. Undeniable signatures. In Advances

in Cryptology (CRYPTO ’89) (Berlin - Heidelberg - New York, Aug. 1990),

Springer, pp. 212–217.

[24] CHEON, J. H. Security analysis of the strong diffie-hellman problem. In Pro-

ceedings of the 24th annual international conference on The Theory and Applica-

tions of Cryptographic Techniques (Berlin, Heidelberg, 2006), EUROCRYPT’06,

Springer-Verlag, pp. 1–11.

[25] CRAMER, R., DAMGÅRD, I., AND MACKENZIE, P. D. Efficient zero-

knowledge proofs of knowledge without intractability assumptions. In Proceed-

ings of the Third International Workshop on Practice and Theory in Public Key

151

Cryptography: Public Key Cryptography (London, UK, UK, 2000), PKC ’00,

Springer-Verlag, pp. 354–372.

[26] CRAMER, R., AND SHOUP, V. Signature schemes based on the strong rsa as-

sumption. ACM Trans. Inf. Syst. Secur. 3, 3 (Aug. 2000), 161–185.

[27] DAMGÅRD, I. Efficient concurrent zero-knowledge in the auxiliary string model.

In Proceedings of the 19th international conference on Theory and applica-

tion of cryptographic techniques (Berlin, Heidelberg, 2000), EUROCRYPT’00,

Springer-Verlag, pp. 418–430.

[28] DIFFIE, W., AND HELLMAN, M. New directions in cryptography. IEEE Trans.

Inf. Theor. 22, 6 (Sept. 2006), 644–654.

[29] DWORK, C., NAOR, M., AND SAHAI, A. Concurrent zero knowledge. In Pro-

ceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC-

98) (New York, May 23–26 1998), ACM Press, pp. 409–418.

[30] ELGAMAL, T. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE Trans. Inf. Theor. 31, 4 (Sept. 2006), 469–472.

[31] FIAT, A., AND SHAMIR, A. How to prove yourself: Practical solutions to

identification and signature problems. In Advances in Cryptology – CRYPTO

’ 86 (Santa Barbara, CA, USA, 1987), A. M. Odlyzko, Ed., vol. 263 of Lecture

Notes in Computer Science, International Association for Cryptologic Research,

Springer-Verlag, Berlin Germany, pp. 186–194.

[32] GALBRAITH, S. D., AND MAO, W. Invisibility and anonymity of undeniable

and confirmer signatures. In Proceedings of the 2003 RSA conference on The

cryptographers’ track (Berlin, Heidelberg, 2003), CT-RSA’03, Springer-Verlag,

pp. 80–97.

152

[33] GALBRAITH, S. D., AND MAO, W. Invisibility and anonymity of undeniable

and confirmer signatures. In Proceedings of the 2003 RSA conference on The

cryptographers’ track (Berlin, Heidelberg, 2003), CT-RSA’03, Springer-Verlag,

pp. 80–97.

[34] GALBRAITH, S. D., PATERSON, K. G., AND SMART, N. P. Pairings for cryp-

tographers. Discrete Appl. Math. 156, 16 (Sept. 2008), 3113–3121.

[35] GALBRAITH, S. D., AND SMART, N. P. A cryptographic application of weil

descent. In IMA Int. Conf (1999), M. Walker, Ed., vol. 1746 of Lecture Notes in

Computer Science, Springer, pp. 191–200.

[36] GENNARO, R. Multi-trapdoor commitments and their applications to proofs of

knowledge secure under concurrent man-in-the-middle attacks. In Advances in

Cryptology — CRYPTO 2004: 24th Annual International Cryptology Confer-

ence, Santa Barbara, California, USA, August 15–19, 2004. Proceedings (pub-

SV:adr, 2004), M. Franklin, Ed., vol. 3152 of Lecture Notes in Computer Science,

Springer-Verlag, pp. 220–236.

[37] GENNARO, R., HALEVI, S., AND RABIN, T. Secure hash-and-sign signatures

without the random oracle. In Proceedings of the 17th international confer-

ence on Theory and application of cryptographic techniques (Berlin, Heidelberg,

1999), EUROCRYPT’99, Springer-Verlag, pp. 123–139.

[38] GENTRY, C., MOLNAR, D., AND RAMZAN, Z. Efficient designated confirmer

signatures without random oracles or general zero-knowledge proofs. In Proceed-

ings of the 11th international conference on Theory and Application of Cryp-

tology and Information Security (Berlin, Heidelberg, 2005), ASIACRYPT’05,

Springer-Verlag, pp. 662–681.

153

[39] GOLDREICH, O. Foundations of Cryptography, Volume I Basic Tools. Cam-

bridge Univeristy Press, 2001.

[40] GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. How to construct random

functions. J. ACM 33, 4 (Aug. 1986), 792–807.

[41] GOLDREICH, O., MICALI, S., AND WIGDERSON, A. Proofs that yield nothing

but their validity or all languages in np have zero-knowledge proof systems. J.

ACM 38, 3 (July 1991), 690–728.

[42] GOLDWASSER, S., AND MICALI, S. Probabilistic encryption. Journal of Com-

puter and System Sciences 28, 2 (1984), 270–299.

[43] GOLDWASSER, S., MICALI, S., AND RACKOFF, C. The knowledge complexity

of interactive proof systems. SIAM J. Comput. 18, 1 (Feb. 1989), 186–208.

[44] GOLDWASSER, S., MICALI, S., AND RIVEST, R. L. A digital signature scheme

secure against adaptive chosen-message attacks. SIAM J. Comput. 17, 2 (Apr.

1988), 281–308.

[45] GOLDWASSER, S., AND WAISBARD, E. Transformation of digital signature

schemes into designated confirmer signature schemes. In TCC (2004), M. Naor,

Ed., vol. 2951 of Lecture Notes in Computer Science, Springer, pp. 77–100.

[46] HITCHCOCK, Y., DAWSON, E., CLARK, A., AND MONTAGUE, P. Imple-

menting an efficient elliptic curve cryptosystem over gf(p) on a smart card. In

Proc. of 10th Computational Techniques and Applications Conference CTAC-

2001 (Apr. 2003), K. Burrage and R. B. Sidje, Eds., vol. 44, pp. C354–

C377. [Online] http://anziamj.austms.org.au/V44/CTAC2001/

Hitc [April 1, 2003].

http://anziamj.austms.org.au/V44/CTAC2001/Hitc
http://anziamj.austms.org.au/V44/CTAC2001/Hitc

154

[47] HUANG, Q., AND WONG, D. S. New constructions of convertible undeniable

signature schemes without random oracles. Cryptology ePrint Archive, Report

2009/517, 2009. http://eprint.iacr.org/.

[48] HUANG, Q., WONG, D. S., AND SUSILO, W. A new construction of designated

confirmer signature and its application to optimistic fair exchange. In Proceed-

ings of the 4th international conference on Pairing-based cryptography (Berlin,

Heidelberg, 2010), Pairing’10, Springer-Verlag, pp. 41–61.

[49] HWANG, T. Cryptosystem for group oriented cryptography. In Advances in

Cryptology—EUROCRYPT 90 (21–24 May 1990), I. B. Damgård, Ed., vol. 473

of Lecture Notes in Computer Science, Springer-Verlag, 1991, pp. 352–360.

[50] JAO, D., AND YOSHIDA, K. Boneh-boyen signatures and the strong diffie-

hellman problem. In Proceedings of the 3rd International Conference Palo

Alto on Pairing-Based Cryptography (Berlin, Heidelberg, 2009), Pairing ’09,

Springer-Verlag, pp. 1–16.

[51] JOUX, A. A one round protocol for tripartite diffie-hellman. In Proceedings of

the 4th International Symposium on Algorithmic Number Theory (London, UK,

UK, 2000), ANTS-IV, Springer-Verlag, pp. 385–394.

[52] KOBLITZ, N. Elliptic curve cryptosystems. Mathematics of Computation 48,

177 (Jan. 1987), 203–209.

[53] KUROSAWA, K., AND HENG, S.-H. 3-move undeniable signature scheme. In

Proceedings of the 24th annual international conference on Theory and Applica-

tions of Cryptographic Techniques (Berlin, Heidelberg, 2005), EUROCRYPT’05,

Springer-Verlag, pp. 181–197.

http://eprint.iacr.org/

155

[54] LAY, G.-J., AND ZIMMER, H. G. Constructing elliptic curves with given group

order over large finite fields. In Proceedings of the First International Symposium

on Algorithmic Number Theory (London, UK, UK, 1994), ANTS-I, Springer-

Verlag, pp. 250–263.

[55] MAO, W. Modern Cryptography: Theory and Practice. Prentice Hall PTR, 2003.

[56] MENEZES, A., VANSTONE, S., AND OKAMOTO, T. Reducing elliptic curve log-

arithms to logarithms in a finite field. In Proceedings of the twenty-third annual

ACM symposium on Theory of computing (New York, NY, USA, 1991), STOC

’91, ACM, pp. 80–89.

[57] MICHELS, M., AND STADLER, M. Efficient convertible undeniable signature

schemes. Proceedings of 4th International Workshop on Selected Areas in Cryp-

tography, SAC 1997 (1997), 231–244.

[58] MICHELS, M., AND STADLER, M. Generic constructions for secure and efficient

confirmer signature schemes. In Advances in Cryptology - EUROCRYPT ’98,

International Conference on the Theory and Application of Cryptographic Tech-

niques, Espoo, Finland, May 31 - June 4, 1998, Proceeding (1998), K. Nyberg,

Ed., vol. 1403 of Lecture Notes in Computer Science, Springer, pp. 406–421.

[59] MILLER, V. S. Use of elliptic curves in cryptography. In Advances in

Cryptology—CRYPTO ’85 (18–22 Aug. 1985), H. C. Williams, Ed., vol. 218

of Lecture Notes in Computer Science, Springer-Verlag, 1986, pp. 417–426.

[60] M’RAÏHI, D., NACCACHE, D., POINTCHEVAL, D., AND VAUDENAY, S. Com-

putational alternatives to random number generators. In Proceedings of the Se-

lected Areas in Cryptography (London, UK, UK, 1999), SAC ’98, Springer-

Verlag, pp. 72–80.

156

[61] NAOR, M., AND YUNG, M. Public-key cryptosystems provably secure against

chosen ciphertext attacks. In Proceedings of the twenty-second annual ACM sym-

posium on Theory of computing (New York, NY, USA, 1990), STOC ’90, ACM,

pp. 427–437.

[62] NECHAEV. Complexity of a determinate algorithm for the discrete logarithm.

MATHNASUSSR: Mathematical Notes of the Academy of Sciences of the USSR

55 (1994).

[63] NIELSEN, J. B. Separating random oracle proofs from complexity theoretic

proofs: The non-committing encryption case. In Proceedings of the 22nd An-

nual International Cryptology Conference on Advances in Cryptology (London,

UK, UK, 2002), CRYPTO ’02, Springer-Verlag, pp. 111–126.

[64] OKAMOTO, T. Designated confirmer signatures and public-key encryption are

equivalent. In Proceedings of the 14th Annual International Cryptology Con-

ference on Advances in Cryptology (London, UK, UK, 1994), CRYPTO ’94,

Springer-Verlag, pp. 61–74.

[65] PAILLIER, P. Public-key cryptosystems based on composite degree residuos-

ity classes. In Proceedings of the 17th international conference on Theory

and application of cryptographic techniques (Berlin, Heidelberg, 1999), EURO-

CRYPT’99, Springer-Verlag, pp. 223–238.

[66] PASS, R. On deniability in the common reference string and random oracle

model. In Advances in Cryptology - CRYPTO 2003, 23rd Annual International

Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003,

Proceedings (2003), D. Boneh, Ed., vol. 2729 of Lecture Notes in Computer

Science, Springer, pp. 316–337.

157

[67] PEDERSEN, T. P. Non-interactive and information-theoretic secure verifiable

secret sharing. In Proceedings of the 11th Annual International Cryptology Con-

ference on Advances in Cryptology (London, UK, UK, 1992), CRYPTO ’91,

Springer-Verlag, pp. 129–140.

[68] POINTCHEVAL, D. Contemporary cryptology provable security for public

keyschemes. Advanced Course on Contemporary Cryptology (2005), 133–189.

[69] RACKOFF, C., AND SIMON, D. R. Non-interactive zero-knowledge proof of

knowledge and chosen ciphertext attack. In Proceedings of the 11th Annual In-

ternational Cryptology Conference on Advances in Cryptology (London, UK,

UK, 1992), CRYPTO ’91, Springer-Verlag, pp. 433–444.

[70] RIVEST, R. The md5 message-digest algorithm. RFC 1321 (1992).

[71] RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. A method for obtaining digital

signatures and public-key cryptosystems. Commun. ACM 21, 2 (Feb. 1978), 120–

126.

[72] SCHNORR, C.-P., AND JAKOBSSON, M. Security of signed elgamal encryption.

In Proceedings of the 6th International Conference on the Theory and Applica-

tion of Cryptology and Information Security: Advances in Cryptology (London,

UK, UK, 2000), ASIACRYPT ’00, Springer-Verlag, pp. 73–89.

[73] SEMAEV, I. A. Evaluation of discrete logarithms in a group of p-torsion points

of an elliptic curve in characteristic p. Mathematics of Computation 67, 221 (Jan.

1998), 353–356.

[74] SHOUP, V. Lower bounds for discrete logarithms and related problems. In Pro-

ceedings of the 16th annual international conference on Theory and applica-

158

tion of cryptographic techniques (Berlin, Heidelberg, 1997), EUROCRYPT’97,

Springer-Verlag, pp. 256–266.

[75] SMART, N. P. The discrete logarithm problem on elliptic curves of trace one. J.

Cryptology 12, 3 (1999), 193–196.

[76] TATE, J. Duality theorems in galois cohomology over number fields. Proceedings

of the International Congress of Mathematicians (Stockholm, 1962) (1962), 288–

295.

[77] U.S. DEPARTMENT OF COMMERCE AND NATIONAL INSTITUTE OF STAN-

DARDS AND TECHNOLOGY. Secure Hash Standard - SHS: Federal Information

Processing Standards Publication 180-4. CreateSpace Independent Publishing

Platform, USA, 2012.

[78] WANG, G., BAEK, J., WONG, D. S., AND BAO, F. On the generic and efficient

constructions of secure designated confirmer signatures. In Proceedings of the

10th international conference on Practice and theory in public-key cryptography

(Berlin, Heidelberg, 2007), PKC’07, Springer-Verlag, pp. 43–60.

[79] WANG, G., QING, S., WANG, M., AND ZHOU, Z. Threshold undeniable rsa

signature scheme. In Proceedings of the Third International Conference on In-

formation and Communications Security (London, UK, UK, 2001), ICICS ’01,

Springer-Verlag, pp. 221–232.

[80] WANG, G., XIA, F., AND ZHAO, Y. Designated confirmer signatures with

unified verification. In Proceedings of the 13th IMA international conference

on Cryptography and Coding (Berlin, Heidelberg, 2011), IMACC’11, Springer-

Verlag, pp. 469–495.

159

[81] WANG, G. AND XIA, F. A pairing based designated confirmer signature scheme

with unified verification. Tech. rep., Univerisity of Birmingham.

[82] WEI, B., ZHANG, F., AND CHEN, X. Society-oriented designated confirmer sig-

natures. In Proceedings of the Third International Conference on Natural Com-

putation - Volume 05 (Washington, DC, USA, 2007), ICNC ’07, IEEE Computer

Society, pp. 707–712.

[83] WEI, B., ZHANG, F., AND CHEN, X. A new type of designated confirmer

signatures for a group of individuals. International Journal of Network Security

7, 2 (2008), 293–300.

[84] WEIL, A. Sur les fonctions algebriques a corps de constantes fini. Les Comptes

rendus de Academie des sciences 210 (1940), 592–594.

[85] WIKSTRÖM, D. Designated confirmer signatures revisited. In Proceedings of the

4th conference on Theory of cryptography (Berlin, Heidelberg, 2007), TCC’07,

Springer-Verlag, pp. 342–361.

[86] XIA, F., WANG, G., AND XUE, R. On the invisibility of designated confirmer

signatures. In Proceedings of the 6th ACM Symposium on Information, Com-

puter and Communications Security (New York, NY, USA, 2011), ASIACCS

’11, ACM, pp. 268–276.

[87] XIE, Q., WANG, G., XIA, F., AND CHEN, D. Improvement of provably se-

cure self-certified proxy convertible authenticated encryption scheme. In INCoS

(2012), pp. 360–364.

[88] ZHANG, F., CHEN, X., SUSILO, W., AND MU, Y. A new signature scheme

without random oracles from bilinear pairings. In Proceedings of the First in-

160

ternational conference on Cryptology in Vietnam (Berlin, Heidelberg, 2006), VI-

ETCRYPT’06, Springer-Verlag, pp. 67–80.

[89] ZHANG, F., CHEN, X., AND WEI, B. Efficient designated confirmer signature

from bilinear pairings. In Proceedings of the 2008 ACM symposium on Infor-

mation, computer and communications security (New York, NY, USA, 2008),

ASIACCS ’08, ACM, pp. 363–368.

