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Abstract 

Schizophrenia is a psychiatric disorder affecting about 1% of the world‟s 

population and manifests itself as positive symptoms (eg. hallucinations), 

negative symptoms (eg. social withdrawal) in conjunction with cognitive 

impairments (eg. working memory).  Evidence suggests that schizophrenia is, in 

part, a heritable disease.  Candidate susceptibility genes implicate the 

glutamatergic neurotransmitter system, reinforcing clinical observations of N-

methyl-D-aspartate receptor (NMDAR) hypofunction in schizophrenia.  One of 

those genes, D-amino acid oxidase (DAO), is genetically associated with 

schizophrenia and its function includes degradation of D-serine, the NMDAR co-

agonist.  DAO is a candidate gene of high interest due to schizophrenic patients‟ 

manifestation of reduced D-serine levels, increased DAO expression and 

increased DAO activity.   

 Despite mounting evidence for DAO involvement in schizophrenia, its 

regulation is poorly understood.  Characterization of DAO may lead to a more 

thorough understanding of its function and biology and ultimately to the 

identification of novel targets for this disorder. To this end, DAO-specific 

antibodies were utilized to identify DAO-interacting proteins through co-

immunoprecipitation from rat cerebellum, where DAO expression is especially 

high.  Subsequent mass spectroscopy analysis of associating proteins yielded 

twenty-four putative DAO interactors.  The most abundant and interesting 

interactors include known presynaptic active zone members such as bassoon 

(BSN) and piccolo (PCLO).  The DAO interaction with BSN was confirmed 

through co-immunoprecipitation and both proteins were shown to localize in the 

presynaptic junction.  These data suggest that BSN is a novel DAO interactor and 

defines a previously unappreciated localization of DAO perhaps as a result of a 

physiologically important interaction with BSN.  Furthermore, BSN was found to 

partially inhibit DAO enzymatic activity in transiently transfected human 

embryonic kidney (Hek293) cells.  Collectively these novel findings suggest that 

synaptic D-serine concentration may be under tight regulation by BSN via 

proximally localized DAO.  DAO may thus play a role in modulating the 

functions of the presynaptic active zone via its interaction with BSN.  
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1.1 Schizophrenia symptoms, diagnosis, and costs 

Schizophrenia is a chronic, severe, disabling brain disorder that generally 

has an onset in the early adulthood and may persist throughout life (Lewis and 

Lieberman, 2000).  It affects around 1% of the population worldwide (Harrison 

and Owen, 2003) and is highly heritable (80%) with a concordance rate of 

approximately 50% in monozygotic twins, 12% to 17% for dyzygotic twins and 

first-degree relatives (Gotesman, 1991; Sullivan et al., 2003).  The lack of 

complete concordance rate in identical twins suggests that environmental and 

epigenetic factors influence the phenotype with strong evidence for perinatal 

insults (Tsuang, 2000). 

Schizophrenia manifests itself through positive symptoms including 

delusions, hallucinations, and though disorder; negative symptoms such as 

flattening of emotional responses, apathy and social withdrawal (Andreasen, 

1995; Crow, 1985); and cognitive symptoms with impairments in attention, 

memory and executive functions (Elvevag and Goldberg, 2000).  The disease is 

heterogeneous and the diagnosis is based on symptoms and their progression 

(Andreasen, 1995) classified by the Diagnostic and Statistical Manual (DMS-IV; 

American Association of Psychiatry, 1994; Table 1.1).   

Schizophrenia is burdensome on the patient as well as the society as the 

disease has economical implications through productivity loss of the patient and 

the immediate family, cost of law-enforcement, homeless shelters, hospital stay 

and treatment.  It is estimated that schizophrenia is the seventh most costly 

medical illness in the world (Freedman, 2003).  In the United States alone the 

economic burden associated with schizophrenia in 2002 was estimated at $62.7 

billion with about 9% of that sum made up by cost of drugs (Wu et al., 2005).  

The data highlights the need for a pharmacological intervention in treatment of 

this debilitating disease. 
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Table 1.1: DSM-IV Diagnostic criteria for schizophrenia 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from American Association of Psychiatry, 1994 

 

A. Characteristic symptoms.  Two (or more) of the following, each present for a significant portion of time 

during a 1 month period (or less if successfully treated). 

a. Delusions 

b. Hallucinations 

c. Disorganized speech (e.g. frequent derailment of incoherence) 

d. Grossly disorganized or catatonic behavior 

e. Negative symptoms, i.e. affective flattening, alogia or avolition 

B. Social/occupational dysfunction.  For a significant portion of the time since the onset of the disturbance, 

one or more major areas of functioning such as work, interpersonal relations, or self-care are markedly 

below the level achieved prior to the onset (or when the onset is in childhood or adolescence, failure to 

achieve the expected level of interpersonal, academic or occupational achievement). 

C. Duration. Continuous signs of the disturbance persists for at least 6 months.  This6-month period must 

include at least 1 month of symptoms (or less if successfully treated) that meet criterion A (i.e. active-

phase symptoms) and may include periods of prodromal or residual symptoms.  During these 

prodromal or residual periods, the signs of the disturbance may be manifested by only negative 

symptoms or two or more symptoms listed in Criterion A present in an attenuated from (e.g. odd 

beliefs, unusual perceptual experiences). 

D. Schizoaffective and Mood Disorder exclusion.  Schizoaffective Disorder and Mood Disorder with 

Psychotic Features have been ruled out because either  

a. No Major Depressive, Manic, or Mixed episodes have occurred concurrently with the active-

phase symptoms; or 

b. If mood episodes have occurred during active-phase symptoms, their total duration has been 

brief relative to the active and residual periods. 

E. Substance/general medical condition exclusion.  The disturbance is not due to the direct physiological 

effects of a substance (e.g. a drug of abuse, a medication) or a general medical condition. 

F. Relationship to a Pervasive Developmental Disorder.  If there is a history of Autistic Disorder or 

another Pervasive Developmental Disorder, the additional diagnosis of Schizophrenia is made only if 

prominent delusions or hallucinations are present for at least a month (or less if successfully treated). 

Diagnostic criteria for Schizophrenia subtypes 

1. Paranoid Subtype.  A type of schizophrenia in which the following criteria are met: 

a. Preoccupation with one or more delusions or auditory hallucinations 

b. None of the following is prominent: disorganized speech, disorganized or catatonic behavior, 

or flat or inappropriate affect 

2. Disorganized subtype.  A type of Schizophrenia in which the following criteria are met: 

a. All of the following are present; i)Disorganized speech; ii)Disorganized behavior; iii) flat or 

inappropriate affect 

b. The criteria are not met for catatonic type 

3. Catatonic Subtype.  A type of schizophrenia in which the clinical picture is dominated by at least two of 

the following: 

a. Motoric inability as evidenced by catalepsy (including waxy flexibility or stupor) 

b. Excessive motor activity (that is apparently purposeless and not influenced by external stimuli) 

c. Extreme negativism (an apparently motiveless resistance to all instructions or maintenance of 

a rigid posture against attempts to be moved) or mutism 

d. Peculiarities of voluntary movement as evidenced by posturing (voluntary assumption of 

inappropriate or bizarre postures), stereotyped movements prominent mannerisms, or 

prominent grimacing 

e. Echolalia or echopraxia 

4. Undifferentiated subtype.  A type of Schizophrenia in which the symptoms that meet Criterion A are 

present but the criteria are not met for the Paranoid, Disorganized, or Catatonic Type. 
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1.2  Major pathways associated with schizophrenia  

Dopamine research has been recognized to be central to schizophrenia 

studies for many years and resulted in development of several drugs that treat the 

disease (outlined in dopamine hypothesis of schizophrenia section 1.2.1 and in 

treatment of schizophrenia section 1.4).  Abnormalities in glutamate 

neurotransmission have been highlighted more recently but have already been 

implicated in schizophrenia especially in symptoms where the dopaminergic 

treatment has limitations.  The glutamate neurotransmission deficits are 

complementary to the dopaminergic hypothesis and also impinge upon other 

important neurotransmitters such as GABA described below. 

 

1.2.1  Dopamine hypothesis of schizophrenia 

For nearly half a century, schizophrenia was though to be a disease of 

dopaminergic neurotransmission dysregulation (Carlsson, 1988).  The dopamine 

hypothesis was based upon two fundamental observations.  First, blocking 

dopamine re-uptake and increasing dopamine release through psycho stimulants 

such as amphetamine and cocaine can cause psychosis in healthy volunteers that 

resemble the positive symptoms of schizophrenia while exacerbating those 

symptoms in schizophrenic patients (Bunney et al., 1973; Einhorn et al., 1988; 

Lieberman et al., 1987; Satel and Edell, 1991; Shi et al., 2000).  Secondly, the 

typical antipsychotic medications such as haloperidol and chlorpromazine block 

dopamine D2 receptors.  Their affinity at the D2 receptors, in turn, highly 

correlates with their clinical potency in psychosis relief (Creese et al., 1976; 

Kapur et al., 2000; Peroutka and Synder, 1980; Seeman et al., 1976).  Thus the 

dopamine hypothesis of schizophrenia was based on the dopamine hyperactivity 

resulting in symptoms of schizophrenia (Matthysse, 1973).   

There are four main dopaminergic pathways in the brain that impinge on 

abnormalities found in schizophrenic patients.  They include the mesocortical, 

mesolimbic, tuberoinfundibular and nigrostriatal tracts.  The origin and respective 

target regions for each is highlighted in Figure 1.1.  The mesolimbic pathway is 

important for memory and for motivating behavior.  Through blockage of this 

pathway antipsychotics reduce intense emotions associated with schizophrenia.  
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Overactive mesocortical pathway is though to result in hallucinations and 

disorderly thinking thus toning down this pathway through antipsychotics may 

have a desirable effect in schizophrenic patients.  The nigrostriatal pathway is 

involved in motor control and excessive dopaminergic inhibition may result in 

extra pyramidal side effects.  The tuberoinfundibular pathway plays a role in 

hormonal secretion such as prolactin.   

With additional data the focus of blocking dopamine receptors and 

limiting excess dopaminergic transmission shifted to a more compartmentalized 

approach (Davis et al., 1991; Matthysse, 1973; Snyder, 1976).  Specifically it was 

observed that the destruction of dopamine afferents within the prefrontal cortex 

resulted in a chronic subcortical dopamine hyperactivity which manifested as 

increased dopamine turnover and up-regulation of postsynaptic receptors (Pycock 

et al., 1980).  These findings are strikingly similar to those of schizophrenia 

postmortem findings (Weinberger and Kleinman, 1986).  Positron emission 

tomography (PET) suggested a regional brain dysfunction because of observed 

reduced cerebral blood flow in frontal cortex of schizophrenic patients (Meyer-

Lindenberg et al., 2002).  The single most widely replicated brain dopaminergic 

changes are from PET studies of acutely psychotic patients showing elevated 

presynaptic striatal dopamine (Howes and Kapur, 2009).  Consequently, the 

dopaminergic hyperactivity theory was then refined to suggest a hyperfunction of 

mesolimbic projections and a hypofunction of mesocortical projections as 

symptomatic of schizophrenia (Davis et al., 1991; Weinberger, 1987).   

The limitation of the dopamine hypothesis is that neither negative 

symptoms nor cognitive impairments are adequately treated with dopamine D2 

receptor antipsychotics (Laruelle et al., 1999; Meltzer, 1997).  Further 

undermining the importance of this hypothesis in schizophrenia were inconsistent 

findings in post mortem studies which were not able to demonstrate consistent up 

regulation or excessive activation of the D2 receptors (Farde et al., 1990; Howes 

et al., 2009).  Thus the disease as a whole is unlikely to be explained solely by the 

dopaminergic alterations (Carlsson et al., 2001).  
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Figure 1.1: The four dopaminergic pathways.   

 

 

Taken from thebrain.mcgill.ca 

 

 

 

 

1.2.2 Glutamate and schizophrenia 

Glutamate is the major excitatory neurotransmitter in the brain and is 

utilized by 40 percent of all synapses (Tsai and Coyle, 2002).  The postsynaptic 

effects of glutamate are mediated by three families of glutamate-gated ion 

channels: the AMPA, kainate and NMDA receptors.  The AMPA receptors are 

primarily involved in generation of the excitatory postsynaptic currents (EPSCs) 

which are responsible for initiating action potentials.  While the NMDARs also 

contribute to the EPSCs and dendritic spikes they are known to have a critical role 

in synaptic plasticity.  Kainate receptors are found in pre- and postsynaptic 

neurons (Huettner, 2003) where they can affect neurotransmitter release (Schmitz 

et al., 2001).  The fourth family of glutamate receptors is the 7-TM G-protein 

coupled metabotropic glutamate receptors (mGluRs), which are known to 

modulate glutamatergic neurotransmission both pre and postsynaptically (Coyle, 

2006; Halassa et al., 2007). 

 

Mesocortical tract: projects from VTA 

to cortical regions, especially the 

prefrontal cortex 

 

Mesolimbic tract: projects from VTA 

to limbic regions including 

hippocampus, nucleus accumbens and 

amygdala 

 

Nigrostriatal tract: projects from the 

substantia nigra to the caudate and 

putamen 

 

Tuberinfundibular tract: projects 

from the hypothalamus to the pituitary 

stalk 
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1.2.2.1 N-methyl-D-aspartate receptor and schizophrenia 

Since NMDARs are central to my thesis they are described in more detail.  

NMDARs are voltage dependent ionotropic glutamate receptors responsible for 

synaptic plasticity and memory function (Li and Tsien, 2009).  NMDARs 

assemble as multi-subunit tetramers including at least one NR1 subunit and one or 

more NR2 or NR3 subunits. Seven subtypes (NR1a–g) of the NR1 subunit are 

generated by alternative splicing from a single gene while the NR2 and NR3 

subunits exist as multiple subtypes (NR2A-D and NR3A-B) each encoded by a 

distinct gene (Dingledine et al., 1999). The NR2 subunits contribute to functional 

diversity by conferring on NMDARs distinct biophysical and pharmacological 

properties (Cull-Candy and Leszkiewicz, 2004; Paoletti and Neyton, 2007).  

NMDAR subunits are organized into three functionally distinct domains, an 

extracellular N-terminal glutamate-binding domain, the transmembrane domain 

composed of three membrane-spanning helices containing the ion-channel pore 

forming loop, glycine/D-serine modulatory and kynurenic acid inhibitory sites 

and the cytoplasmic C-terminal tail that determines subcellular trafficking of the 

receptor and coupling to various intracellular signaling pathways (Figure 1.2).  

Occupancy of the modulatory site by glycine or D-serine affects channel open 

time and desensitization rate in the presence of glutamate but does not induce 

channel opening in the absence of glutamate, making these endogenous ligands 

obligatory co-agonists. Glutamate in concert with glycine/D-serine binding to the 

co-agonist modulatory site (GMS) leads to the induction of Ca
2+

 currents through 

the ionic pore of the NMDAR.  The Ca
2+

 influx, in turn mediates learning and 

memory, long-term changes in the synaptic plasticity and neural development 

(Oliet and Mothet, 2006). 

The NR1 subunit is expressed in neurons at all developmental stages 

throughout the mammalian brain while NR2 subunits display distinct regional and 

developmental expression patterns. The NR2B and NR2D subunits predominate 

in the embryonic brain while NR2A and NR2C are absent.  In the adult brain, 

NR2A is ubiquitously expressed, NR2B is restricted to forebrain areas and NR2C 

is highly enriched in the cerebellum (Akazawa et al., 1994; Monyer et al., 1994; 
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Watanabe et al., 1992).  While the NMDARs also contribute to the EPSCs and 

dendritic spikes they are known to have a critical role in synaptic plasticity.   

 

Figure 1.2: Diagram of NMDAR and its modulatory sites. 

 

 

Taken from Institute of Organic Chemistry and Biochemistry AS CR. 

 

 

Considerable evidence has accumulated in support of glutamate 

hypofunction as a contributor to schizophrenia etiology.  Data from NMDAR 

antagonist studies, pharmacologic intervention studies, postmortem studies and 

genetic studies converged on and reinforced the NMDAR hypofunction 

hypothesis (Coyle, 2006).  In the 1950‟s and 60‟s dissociative anesthetics such as 

ketamine and phencyclidine (PCP) were observed to result in a psychotic 

syndrome in healthy individuals (Luby et al., 1959) and were found to exacerbate 

those symptoms in schizophrenic patients  (Itil et al., 1967; Lahti et al., 1995).   

Although Javitt and Zukin (Javitt and Zukin, 1991) proposed that PCP induced 

NMDAR blockade resulted in schizophrenia-like symptoms the NMDAR 

involvement in schizophrenia was not widely embraced until Krystal et al. 

(Krystal et al., 1994) demonstrated that administration of chronic low doses of 

ketamine led to negative and minor positive symptoms and subtle cognitive 

impairments in healthy volunteers.  Subsequently, declarative memory 
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(Newcomer et al., 1999), and thought disorders similar to those found in 

schizophrenia (Adler et al., 1999), were shown to be affected by administration of 

low doses of ketamine in healthy volunteers.  Together the NMDAR antagonist 

studies in humans suggested the glutamate receptor hypofunction with 

schizophrenic symptoms. 

To build on the glutamate receptor hypofunction hypothesis, 

pharmacological agents were used to reverse the deficit and ascertain their 

behavioral outcome in patients.  However, since direct activation of the NMDAR 

may lead to excitotoxicity and neuronal degradation (Lynch and Guttmann, 2001; 

Misztal et al., 1996; Wolf et al., 1990), NMDAR functional enhancement through 

application of co-agonists has been used.   D-cycloserine is a partial agonist at the 

NMDAR with 60% of the efficacy of glycine (Sheinin et al., 2001).  In clinical 

trials D-cycloserine administered at 50 mg/day in conjunction with typical 

antipsychotics to schizophrenic patients characterized with prominent negative 

symptoms resulted in reduction in negative symptoms and improvement in 

cognitive impairments but no relief of the positive symptoms (Goff et al., 1995; 

Heresco-Levy et al., 2002).  Increasing synaptic glycine concentration through 

inhibition of GlyT1 by administration of sarcosine was tested in patients with 

chronic schizophrenia as an adjunct to resperidone or typical antipshychtics.  

Significant reductions in negative symptoms, increase in cognitive performance, 

and improvement in positive symptoms were observed versus placebo-controlled 

patients (Tsai et al., 2004).  Similarly administration of glycine (30-60 g/day) in 

conjunction with typical antipsychotics to chronic schizophrenic patients showed 

significant improvements in negative symptoms and cognitive impairments 

(Leiderman et al., 1996).  Milacemide is an acetylated prodrug of glycine, which 

converts into glycine upon deacetylation (O'Brien et al., 1991).  When 

administered to drug-free patients milacemide did not improve psychotic 

symptoms (Rosse et al., 1991; Tamminga et al., 1992) however, co-administration 

with conventional antipsychotics may have a different outcome as seen with other 

NMDAR co-agonists.  While d-cycloserine and glycine administration had 

encouraging early outcomes recent CONSIST clinical trial showed data that 

neither of the two compounds had any affect on negative symptoms or cognitive 



 26 

impairment in schizophrenic patients (Buchanan et al., 2007).  The CONSIST 

study had a differential response between inpatients versus outpatients and used a 

fixed dose of glycine at 60 g/day which may not be optimal for some patients 

(Buchanan et al., 2007).  While these recent results carry negative outcome for the 

glycine modulatory site (GMS) (see figure 1.2) modulation through 

administration of d-cycloserine and glycine other NMDAR co-agonists such as D-

serine and D-alanine were reported to have encouraging findings (described in D-

serine section 1.7).  The clinical application of GMS and their respective 

outcomes are summarized in table 1.2. 

Initial studies analyzing the CSF of schizophrenic patients reported 

decreased concentration of glutamate but this finding has not been consistently 

reproduced (Goff and Coyle, 2001; Kim et al., 1980).  Schizophrenic postmortem 

glutamate concentrations were found to be reduced in prefrontal cortex and 

hippocampus, brain regions implicated in schizophrenia, versus controls while 

NAAG, NMDAR antagonist and mGluR3 agonist, were increased in 

hippocampus of patients.  Furthermore, glutamate carboxypeptidase II (GCP II), 

which metabolizes NAAG to glutamate and NAA was reduced in frontal cortex, 

temporal cortex, and the hippocampus in patients (Tsai et al., 1995).  Through 

magnetic resonance spectroscopic studies the NAA levels were confirmed to be 

lower in schizophrenics (Bertolino et al., 2000).  Kynurenic acid, an NMDAR 

antagonist, was also increased in postmortem samples of schizophrenic 

hippocampus (Schwarcz et al., 2001).  Expression of NMDAR 2D subunit was 

increased in prefrontal cortex but the NR-1 subunit was decreased in the 

hippocampus of schizophrenic patients.  Despite this altered expression ligand-

binding studies did not indicate NMDAR alterations (Akbarian et al., 1996; Gao 

et al., 2000).  Some of the postmortem studies, while not always reproducible, 

support NMDAR involvement albeit indirectly through alterations in levels of 

glutamate receptor antagonists in schizophrenic patients.     

Schizophrenia appears to follow a complex inheritance pattern with 

multiple genes contributing small effects in the emergence of the phenotype 

(Kirov et al., 2005; Purcell et al., 2009).  Several possible risk genes based on 

linkage and association studies (highlighted in Table 1.4) have been implicated in 
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this disease.   Several of the candidate genes are known to modulate the NMDAR.  

For example, some dysbindin variants are concentrated on the presynaptic 

glutamatergic terminals where they modulate vesicular release of glutamate 

(Numakawa et al., 2004).  Furthermore, dysbindin expression in the prefrontal 

cortex and hippocampus of schizophrenics is reduced (Talbot et al., 2004; 

Weickert et al., 2004).  mGluR3 activity may be elevated in schizophrenia and the 

activation of mGluR3 is known to down regulate the release of glutamate 

providing supporting evidence for the glutamate hypofunction (Coyle, 2006). 

Neuregulin directly reduces NMDAR currents in cortical primary neurons (Gu et 

al., 2005) and animals with a null mutation in neuregulin display lower expression 

of NR1 subunit (Falls, 2003).  Both G72 and DAO have been implicated in 

NMDAR activation through metabolism of its mandatory co-agonist D-serine 

(Chumakov et al., 2002).  The association data is supportive of NMDAR 

importance in schizophrenia.  The risk genes, in general, are not directly 

associated with proteins within the serotonergic, muscarinic, histaminergic or 

dopaminergic systems. 

Several other observations, related to the NMDAR, suggest that glutamate 

alterations may play a critical role in brain development.  NMDAR are critically 

involved during development when they guide axons to their targets and continue 

to maintain synapses and influence synaptic plasticity (Coyle and Tsai, 2004a; 

Harrison et al., 2003) and NMDAR may be relevant in synaptic pruning 

(Feinberg, 1990).  This evidence is complementary to the neurodevelopmental 

hypothesis described in genetics and aetiology of schizophrenia section 1.5. 

Data suggest that the dopaminergic abnormalities observed in the 

schizophrenic patients may be accounted for by glutamatergic hypofunction.  

Dissociative anesthetics such as PCP and MK-801 were shown in preclinical trials 

to increase dopamine release in frontal cortex and ventral striatum to the same 

magnitude as amphetamine (Breier et al., 1998; Verma and Moghaddam, 1996; 

Vollenweider et al., 2000).  Likewise, antagonists at the glycine site of the 

NMDAR increased midbrain dopamine neuronal firing (Linderholm et al., 2007; 

Schwieler et al., 2006).  Inhibition of glutamate transmission in the ventral 

tegmental area was shown to result in increased dopaminergic release in the 
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mesolimbic pathway and reduced dopaminergic release in the mesocortical 

pathway (Takahata and Moghaddam, 2000).  Subanesthetic doses of ketamine 

produce an increased striatal release of dopamine in normal humans with 

amphetamine challenge similar to that of schizophrenic patients (Kegeles et al., 

2000).   

Likewise, glutamatergic hypofunction is complementary with the 

GABAergic deficits found in schizophrenia.  The GABA transporter 1 (GAT1) 

and glutamic acid decarboxylase (GAD67) have been shown to be expressed at a 

lower level in chronically treated rats with MK-801 reflecting observations made 

in schizophrenic patients (Guidotti et al., 2000; Paulson et al., 2003; Volk et al., 

2000).   

 

1.3  Brain regions implicated in schizophrenia 

 In addition to important pathways associated with this disorder, several 

brain regions have been identified as disease relevant through functional imaging, 

neuropathological findings and clinical observations.  Some of those regions 

include dorso-lateral prefrontal cortex (DLPFC) and hippocampus which have 

been implicated in cognitive, negative and positive symptoms of schizophrenia 

(Boyer et al., 2007; Harrison, 1999).  More recently, evidence suggests that the 

cerebellum may be an important brain region involved in cognition and displaying 

abnormalities in schizophrenia (Andreasen and Pierson, 2008).  Hence, the three 

brain regions are discussed below.  

 

1.3.1 DLPFC 

Any disease related changes within the DLPFC may be especially relevant 

for schizophrenia cognitive dysfunction as the DLPFC is known to participate in 

attention, executive function and working memory.  While schizophrenic patients 

show performance deficits in nearly all functional neuropsychological studies, 

working memory is generally most severely affected (Saykin et al., 1991; Saykin 

et al., 1994).  DLPFC gray matter volume is reduced in schizophrenic patients and 

positively correlated with cognitive dysfunction and severity of negative 

symptoms (Cannon et al., 2002).  
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Table 1.2: Antipsychotic effects of glycine site potentiators adopted from Shim 

(Shim et al., 2008) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clinical         Sample  Dur of  AD Clinical        Observ.  

Trials        size trial (weeks) observations 

 

Glycine 

(Waziri, 1988)         11   ~35      DR clin observ I psychotic/ 

           Psychosocial 

(Costa et al., 1990)     6     5       C BRPS   I 

(Potkin et al., 1992)   18     6      C CGI, SANS, BPRS I BPRS 

(Javitt et al., 1994)   14     8      C PANSS        I negative 

(Leiderman et al., 1996) 5     8     C/A PANSS/SANS  I negative 

(Heresco-Levy et al., 1996a; Heresco-Levy et al., 1996b)      

             11     6     C/A PANSS/BPRS  I negative 

(Heresco-Levy et al., 1999)    

             22     6     C/A PANSS/BPRS  I negative 

Milacemide 

(Rosse et al., 1990)     5     5     DR SANS/BPRS/CGI E negative 

(Rosse et al., 1991)     4     4     DR SANS/BPRS/CGI NI 

(Tamminga et al., 1992)  6     6     DR BPRS   NI 

 

D-serine 

(Tsai et al., 1998)     28     6  C PANSS, SANS, CGI, I cognitive 

        WCST, Ham-D 

D-Alanine 

(Tsai et al., 2006)     32     6  C PANSS, SANS, CGI I neg/cog/ 

                     psychopathology 

D-cycloserine 

(Simeon et al., 1970)   10    2-14 DR clin observ E 

(Cascella et al., 1994)  7     6      C CGI, SANS, BPRS E pos/neg/  

              gen psychopatholo 

(Goff et al., 1995)    9     2      C SANS, BPRS  E negative 

(Rosse et al., 1996)   13     4            molindone SANS, BPRS, CGI NI 

(van Berckel et al., 1996)7     3  C  PANSS, CGI  I negative 

(van Berckel et al., 1999)25   8  C PANSS, CGI  E pos/general  

Psychopathology 

(Goff et al., 1999)    39    8      C PANSS, SANS, GAS I negative 

        *cognitive, Ham-D 

(Heresco-Levy et al., 2002)        

                        16     6     C/A PANSS, SANS, Ham-D I negative 

(Duncan et al., 2004)   22     4      C PANSS, SANS, BPRS NI  

        *cognitive 

(Goff et al., 2005)     26    26      C PANSS, SANS, BPRS NI 

 

Sarcosine 

(Tsai et al., 2004)     38     6  C/risperid PANSS, SANS, Ham-D I  

positive/negative/ 

           general psychopathol 
(Lane et al., 2006)     65     6  risperidone PANSS, SANS   I positive/                           

    negative/general psychopathol 
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Rating scale: PANSS (positive and negative syndrome scale), SANS (scale for the 

assessment of negative symptoms), BPRS (brief psychiatric rating scale), CGI 

(clinical Rating scale: PANSS (positive and negative syndrome scale), SANS 

(scale for the assessment of negative symptoms), BPRS (brief psychiatric rating 

scale), CGI (clinical global impression), GAS (global assessment scale), Ham-D 

(Hamilton rating scale for depression), WCST (Wisconsin card sorting task, 

*cognitive (Abrams and Tayler rating scale, Sternbery memory/continuous 

performance)  

Symptoms outcomes: I (improved), E (exacerbated), NI (not improved) 

AD = antipsychotic drugs; DR = drug free; C = conventional; A = atypical 

 

 

Within layer III of schizophrenic patients DLPFC pyramidal cells are 

smaller (Pierri et al., 2001; Rajkowska et al., 1998), have decreased spine density 

(Glantz and Lewis, 2000), less dendritic arborization and complexity (Kalus et al., 

2000), decreased synaptic connectivity (Mirnics et al., 2001), and increased 

neuronal density (Selemon et al., 1998).  Likewise, similar findings were reported 

in layer V in respect to pyramidal cell soma size (Cotter et al., 2002) and dendritic 

spine density (Black et al., 2004).  Neuronal mis-connectivity may play a relevant 

role in schizophrenic DLPFC as evidenced by decreased levels of synaptic 

proteins such as SNAP-25 and synaptophysin (Karson et al., 1999; Thompson et 

al., 1998), complexin I (Sawada et al., 2002), synaptobrevin (Halim et al., 2003) 

and synapsin III (Porton and Wetsel, 2007).  Interestingly, both NMDA and 

AMPA receptors are enriched in the above mentioned DLPFC pyramidal cell 

layers (Beneyto and Meador-Woodruff, 2004; Conti et al., 1999; Huntley et al., 

1997) suggesting glutamatergic modulation may be relevant in this brain region 

and altered in patients.    

 

1.3.2  Hippocampus 

 The hippocampus plays an important role in memory consolidation, 

transfer of memory from short-term to long-term memory and navigation 

(Heckers and Konradi, 2002).  Single photon emission computed tomography 

(SPECT), PET and magnetic resonance imaging (MRI) functional studies suggest 

hypofunction of the hippocampus in schizophrenic patients which manifests in 

memory impairments (Weiss and Heckers, 2001). Other studies suggested 
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augmented hippocampal activity in medication-free schizophrenic patients (Lahti 

et al., 2006; Medoff et al., 2001; Nordahl et al., 1996; Weiss et al., 2006).  

Furthermore, anatomical hippocampal abnormalities in schizophrenia patients 

including decrease in area and volume were demonstrated (Harrison, 1999; 

Nelson et al., 1998; Weiss et al., 2005; Wright et al., 2000).  The volumetric 

decrease in schizophrenia was explained by neuronal loss (Falkai and Bogerts, 

1986), reduced neuronal size (Arnold et al., 1995), and pyramidal cell disarray 

(Conrad et al., 1991).  The reduced neuronal size is hypothesized to be a result of 

a less extensive or abnormal synaptic connections (Harrison and Eastwood, 2001).  

Also, decreased expression of synaptic proteins such as synaptophysin (Davidsson 

et al., 1999; Vawter et al., 1999), synapsins (Browning et al., 1993), SNAP-25 

(Young et al., 1998), complexins I and II (Sawada et al., 2005), and rab3a 

(Davidsson et al., 1999) provide more evidence of decreases in synapses.  

Abnormalities in the hippocampal architecture of schizophrenic patients have 

been observed (Arnold et al., 1997).   

 

1.3.3 Cerebellum 

The cerebellum has been primarily thought of as a coordinator of motor 

function.  However, recent neurodevelopmental and neuroimaging studies imply a 

much greater role of the cerebellum in cortical function as well as potential 

involvement in schizophrenia (Andreasen et al., 1996; Andreasen and Pierson, 

2008; Ichimiya et al., 2001; Weinberger et al., 1980).  The cerebellum and the 

prefrontal cortex are the only two brain regions greatly enlarged in the humans as 

compared to other higher primates (Middleton and Strick, 1994) suggesting an 

involvement and coordination of the two regions in higher level thinking 

associated with humans.  This hypothesis is supported by a positive correlation of 

intelligence and cerebellar volume in healthy individuals (Andreasen et al., 1993; 

Paradiso et al., 1997).   

The cerebellum is proposed to be the "cognitive coordinator" through the 

cortico-cerebellar-thalamo-cortical circuit (Figure 1.3).  Cerebellar atrophy has 

been shown to result in thought disorders and emotional disturbances 

(Schmahmann, 2004).  Functional MRI showed involvement of the cerebellum in 
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cognition and linked schizophrenic deficits in cognition to this brain region 

(Honey et al., 2005).  Working interactively with the cortex, cerebellum may help 

coordinate both motor and cognitive performance (Andreasen et al., 1996).  

Cerebellar involvement in coordination in part stems from the inhibitory Purkinje 

cells and the excitatory granule cells.  Working together, the Purkinje and granule 

cells help to modulate and coordinate the activity of the cerebral cortex by 

providing input to deep nuclei such as the dentate nucleus.  The deep nuclei, in 

turn, provide the sole output from the cerebellum to the cerebral cortex (Manto, 

2009).  Thus Purkinje cells have the important role of deciding what information 

is or is not returned to the cerebral cortex through inhibition of the output nuclei.  

Furthermore the Purkinje cells are implicated in schizophrenia because they 

display an eight percent reduction in size in schizophrenic patients (Katsetos et 

al., 1997; Tran et al., 1998).  The observed Purkinje cell size reduction may be at 

least in part due to drug use as there was a significant correlation with 

antipsychotic drug dose (Tran et al., 1998).  

Figure 1.3: The CCTCC pathway and alterations found within the pathway 

among schizophrenic patients primarily affected with positive and/or negative 

symptoms as compared to normal controls.   

 

Taken from Honey (Honey et al., 2005) 
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1.4  Treatment of Schizophrenia 

 Schizophrenia drug discovery research, in large part, focused on 

addressing deficits in the dopaminergic and glutamatergic pathways.  About sixty 

years ago, chloropromazine was one of the first generation typical antipsychotic 

and discovered by an accident as it was initially developed for surgical anesthesia 

but later found to be particularly effective in episodes of psychosis (Turner, 

2007).  Chloropromazine belongs to a group of drugs that share a common 

mechanism of action centered on blockade of dopamine D2 receptors (Snyder, 

2006).  Typical antipsychotics‟ affinity for the dopamine D2 receptor strongly 

correlates with their clinical potency (Kapur et al., 2000; Seeman et al., 1976).  

While the first generation antipsychotics are effective in reducing the positive 

symptoms they are associated with a propensity to cause extrapyramidal side 

effects (EPS), including tremor, rigidity, dystonia, bradykinesia and dyskinesia 

(Kurz et al., 1995; Peacock et al., 1996).   

 Second generation antipsychotics, including clozapine and olanzapine, 

also known as atypical antipsychotics have a more diverse pharmacological 

profile targeting for example several of the 5-HT receptors and their D2 affinity 

does not correlate as well with clinical efficacy (Kim et al., 2009).  The atypical 

antipsychotics came about due to the need for reduction in EPS associated with 

the typical antipsychotics (Farah, 2005).  As such the second generation 

antipsychotics have reduced risk for EPS but are associated with a greater risk for 

obesity, hyperlipidemia, and type II diabetes (Miyamoto et al., 2005).  Despite the 

claims of better atypical efficacy, in a head-to-head comparison between 

perphenazine, a typical antipsychotic, and the newer atypical antipsychotics no 

major differences in efficacy or tolerability were found in schizophrenic patients 

(Geddes et al., 2000; Leucht et al., 2009; Lieberman et al., 2005).  A notable 

exception to this finding was clozapine which has been shown to be effective in 

treatment resistant schizophrenics and particularly useful in targeting the negative 

symptoms (Davis et al., 2003; Kane et al., 1988; McEvoy et al., 2006).  The 

observed effectiveness of clozapine may stem from its modulation of the 

glutamatergic system (Coyle and Tsai, 2004b), however its applicability is limited 

by agranulocytosis, or a decrease in number of white blood cells, a potentially 
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dangerous side effect (Alvir et al., 1993).  In another comparative study, 

haloperidol, a typical antipsychotic was compared to several atypical drugs.  

Patients on haloperidol had significantly greater rate of discontinued treatment 

than atypicals but symptom reductions were the same in all groups suggesting that 

there may not be an advantage to atypical administration (Kahn et al., 2008).  

Similar findings were reported by Jones (Jones et al., 2006) where second 

generation antipsychotics excluding clozapine did not have the expected benefit 

over first generation antipsychotics.   

 Many patients fail to respond to current medications, are noncompliant 

due to adverse side effects, and even when the positive symptoms are treated the 

patients are for the most part still incapable of living a normal productive life 

(Browne et al., 1996; Conley and Buchanan, 1997; Fenton et al., 1997).  It 

became apparent that schizophrenia may have to be treated on the basis of 

individual symptoms of cognitive impairment, negative symptoms and positive 

symptoms instead of treatment of the disorder as a whole (Lewis and Gonzalez-

Burgos, 2006).  Based on this fractional approach alternative targets to the D2 

receptor became heavily researched including the glutamatergic system due to its 

likelihood of ameliorating negative and cognitive symptomology which have not 

been successfully addressed with either the typical or the atypical antipsychotics 

(as discussed in glutamate and schizophrenia section 1.2.2).    

To facilitate and guide the development of cognitive enhancing 

antipsychotic agenst in schizophrenia the National Institute of Mental Health 

(NIMH) Initiative, Measurement and Treatment Research to Improve Cognition 

in Schizophrenia (MATRICS) was designed.  The MATRICS Consensus 

Cognitive Battery (MCCB) was one objective for the consortium which allows for 

an evaluation of key cognitive domains relevant to schizophrenia (Table 1.3).  
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Table 1.3: MATRICS Consensus Cognitive Battery 

 

Speed of Processing 

Category Fluency 

Brief Assessment of Cognition in Schizophrenia (BACS) - Symbol-Coding 

Trail Making A 

Attention/Vigilance 

Continuous Performance Test – Identical Pairs (CPT-IP) 

Working Memory 

Verbal: 

Letter-Number Span  

Nonverbal: 

Wechsler Memory Scale (WMS) - III Spatial Span 

Verbal Learning 

Hopkins Verbal Learning Test (HVLT) – Revised 

Visual Learning 

Brief Visuospatial Memory Test (BVMT) – Revised 

Reasoning and Problem Solving 

Neuropsychological Assessment Battery (NAB) – Mazes 

Social Cognition  

Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) – Managing 

Emotions 

 

Taken from http://www.matrics.ucla.edu 

 

1.4.1  Advantages of allosteric modulation of ionotropic glutamate receptor 

 The advantage of a positive allosteric modulator (PAM) over an agonist is 

that it is unlikely to saturate the receptor with an allosteric modulator thus it is 

difficult to overdose and the receptor signal can be boosted under endogenous 

stimulation with a PAM instead of being continuously activated with an agonist 

(Yang and Svensson, 2008).  Full agonists have been shown to de-sensitize 

receptors while enhancement of the endogenous signal is unlikely to play that role 

(Kinney et al., 2005). This is especially relevant with the NMDAR where direct 

and persistent stimulation was shown to result in excitotoxicity, seizures, memory 

loss, and brain damage (Lynch and Guttmann, 2001; Misztal et al., 1996; Wolf et 

http://www.matrics.ucla.edu/
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al., 1990).  Finally PAMs are more likely to display better receptor subtype 

selectivity (Christopoulos and Kenakin, 2002). 

 NMDAR can be activated through PAMs on the NR1 subunit GMS.  It has 

been shown that both glycine and D-serine are obligatory co-agonists of the 

NMDAR at the GMS (Curras and Pallotta, 1996; Dingledine et al., 1990).  The 

NMDAR channel opens only when glycine/D-serine binds to the GMS on the 

NR1 subunit and simultaneously glutamate binds to the glutamate binding site on 

the NR2 subunit (Cull-Candy and Leszkiewicz, 2004; Curras and Pallotta, 1996).  

The combination of NR1 and NR2 subunits determines the affinity of glycine and 

D-serine.  Both of the obligatory co-agonists have a ten-fold higher affinity for the 

NR2B, NR2C or NR2D over NR2A (Buller et al., 1994; Laurie and Seeburg, 

1994; Matsui et al., 1995; Priestley et al., 1995).  This selectivity over NMDAR 

subunits suggests that instead of targeting ubiquitously expressed NR2A, D-serine 

and glycine selectively target NMDAR subunits enriched during embryonic brain, 

and adult forebrain and cerebellum. 

 

1.5  Genetics and Aetiology of Schizophrenia 

In large part (~80%), schizophrenia is believed to be a heritable disease.  

Twin studies show that environment and epigenetic factors also influence the 

phenotype (Sullivan et al., 2003).  Attempts to identify the genetics underlying 

schizophrenia have proven to be difficult.  Given the apparent genetic complexity 

involved in schizophrenia the most promising approach to identify the most 

relevant genes may be genome-wide and hypothesis-free taking into account all 

brain regions and all genes.  Such studies are likely to focus on regions most 

likely to host genes contributing to the manifestation of schizophrenia.  In fact, 

hot spots were identified through meta-analyses of over 30 studies in chromosome 

regions 2p, 6p, 8p, 20p, 1q, 5q, 11q, 13q, 14p and 22q which may contain one or 

more risk genes (Badner and Gershon, 2002; Lewis et al., 2003).  Since the above 

mentioned regions may each be encompassing multiple genes, association studies 

were undertaken to identify the most interesting candidates.  Association is 

analysis of transmission of single-nucleotide polymorphisms (SNPs) within a 

gene in a family or a control sample but in itself SNP may not be causative.  
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Several putative susceptibility genes were identified through association studies 

(Table 1.4) and are supportive of the glutamate hypothesis.  Contrary to these 

findings recent genome-wide assessment of SNPs and copy number variants 

(CNVs) concluded that very few schizophrenia patients share common genomic 

causative variants but instead very rare deleterious variants may be more 

important in schizophrenia predisposition (Need et al., 2009).  CNVs tend to be 

unique to families and are unlikely to account for more then a few percent of 

schizophrenia (2008; O'Donovan et al., 2008). 

 Non-genetic factors including maternal starvation (Susser et al., 1996), 

maternal infections (Brown et al., 2000; Buka et al., 2001a; Buka et al., 2001b; 

Mednick et al., 1988), Rhesus blood-type incompatibility (Hollister et al., 1996), 

perinatal anoxic birth injuries (Rosso et al., 2000; Zornberg et al., 2000), obstetric 

complications (Geddes, 1999; Verdoux et al., 1997), season of birth (Torrey et al., 

1996), and cannabis use in adolescence (Hall and Degenhardt, 2000; Veen et al., 

2004) have all been shown to increase the risk of developing schizophrenia.   

Individuals who went on to develop schizophrenia displayed subtle 

abnormalities in cognition, social interaction, motor function, and physical 

morphology prior to the onset of the disease suggesting that it is 

neurodevelopmental in nature (Niemi et al., 2003).  The hypothesis takes into 

account both the genetic and the environmental factors into the most likely 

pathogenic model of schizophrenia.  In this model, genetically predisposed 

individuals under the disadvantageous influence of environment beginning as 

early as in utero developed psychopathology which manifested most often 

between 15 and 24 years of age (Messias et al., 2007).   Both negative and 

cognitive symptoms are less common and less severe in the early stages of 

schizophrenia but are more likely to become prominently manifested as the 

disorder advances suggesting a neurodevelopmental aspect (McGlashan and 

Fenton, 1993; Wyatt, 1991).  The neurodevelopmental theory is further supported 

by brain imaging studies which showed a progressive enlargement of ventricles 

and reductions of cortical gray matter in schizophrenic patients (Davis et al., 

1998; Gur et al., 1998; Shenton et al., 2001).  The mechanism underlying the 
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observed phenotypic changes may be attributed to key schizophrenia genetic 

susceptibility factors such as NRG1 and DISC1 (Jaaro-Peled et al., 2009). 

 

1.6  Astrocytic involvement in NMDAR activity 

Astrocytes are proximally positioned to the synapse where they can 

participate in neurotransmission (Figure 1.4) by modulating neurons (Schousboe, 

2003).  Astrocytes express many key enzymes and transporters associated with 

maintaining glutamate, glycine and D-serine synaptic levels for optimal 

stimulation of the glutamate receptors.  Astrocytes provide glutamine for 

glutamate synthesis at the synaptic terminal, express EAAT1 and 2, the two 

glutamate transporters which protect against excitotoxicity by inactivating 

synaptic glutamate (Schluter et al., 2002).  The glycine transporter1 (GlyT1) 

responsible for synaptic glycine regulation (Zafra et al., 1995), serine racemase 

(SRR), which synthesizes D-serine and DAO, which breaks down D-serine have 

all been localized to astrocytes (Harrison and Weinberger, 2005; Kirkpatrick et 

al., 2001; Schell, 2004; Wolosker et al., 1999a).  Presynaptic mGluR3, 

responsible for down regulating glutamate release is activated by NAAG 

(Wroblewska et al., 1997).  NAAG, in turn is degraded by glutamate 

carboxypeptidase II (GCP II) which is concentrated in astrocytes (Berger et al., 

1999).  Astrocytes are the source of kynurenic acid, an endogenous competitive 

antagonist of the NMDAR at the glycine site (Jentsch and Roth, 1999).  This 

evidence suggests that astrocytes sense the level of synaptic activity and augment 

synaptic activity by release of neuromodulators (Haydon, 2001; Volterra and 

Meldolesi, 2005).   
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Table 1.4: Candidate schizophrenia susceptibility genes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from Straub (Straub and Weinberger, 2006).  Many of the identified 

genes are relevant to glutamate hypothesis. COMT, Catechol-O-methyl 

transferase; DTNBP1, dysbindin; NRG1, neuregulin; RGS4, regulator of G-

protein signaling; GRM3, metabotropic glutamate receptor 3; DISC1, disrupted in 

schizophrenia 1; DAOA (G72/G30), D-amino acid oxidase activator; PPP3CC, 

calcineurin gamma catalytic subunit; CHRNA7, alpha7 nicotinic acetylcholine 

receptor; PRODH2, proline dehydrogenase; AKT1, V-akt murine thymoma viral 

oncogene homolog 1; GAD1, glutamate decarboxylase 1; ERBB4, V-erb-a 

erythroblastic leukemia viral oncogene homolog 4; FEZ1, elongation protein zeta-

1; MRDS1, orofacial cleft 1; NPAS3, neuronal PAS domain protein 3; GRIK4, 

glutamate receptor, ionotropic, kainate 4. 

 

 

In addition to expressing key enzymes, in an eloquent study, astrocytes 

were shown to modulate neuronal activation via altering level of neuronal 

ensheathing.  NMDAR transmission in the supra-optic nucleus is dependent on 

astrocytic coverage of the synapse (Panatier et al., 2006).  During lactation, 

astrocytic ensheathing of neurons is reduced in the supra-optic nucleus resulting 

Gene   Locus Association with Linkage to  

     Schizophrenia  gene locus 

 

COMT   22q11 ++    ++++ 

DTNBP1  6p22  +++++   ++++ 

NRG1   8p12-21 +++++   ++++ 

RGS4   1q21-22 +++    +++ 

GRM3   7q21-22 +++    + 

DISC1  1q42  ++++    ++ 

DAOA(G72/G30) 13q32-34 +++    ++ 

DAO   12q24 ++    + 

PPP3CC  8p21  +    ++++ 

CHRNA7  15q13-14 +    ++ 

PRODH2  22q11 +    ++++ 

AKT1   14q22-32 +    + 

GAD1   2q31.1 ++ 

ERBB4  2q34  ++ 

FEZ1   11q24.2 ++ 

MUTED  6p24.3 ++++    ++++ 

MRDS1(OFCC1) 6p24.3 ++    ++++ 

NPAS3  9q34  ++ 

GRIK4  11q23 ++    + 
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in reduced NMDAR activation as compared to the virgin rats.  This reduced 

NMDAR activation was shown to be due to reduced D-serine release from the 

astrocytes (Panatier et al., 2006).  This data solidified an astrocytic role in 

postsynaptic control of excitatory neurotransmission by releasing D-serine.  

 

 

Figure 1.4 Electron micrograph (EM) showing the close association of astrocytes 

(blue) with the presynaptic axonal bouton (green) and postsynaptic dendrytic 

spine head (yellow) at the synapse in hippocampus of a mature rat.  Taken from 

Witcher (Witcher et al., 2007). 

 

 

 

 

1.7  D-Serine: the NMDAR obligatory co-agonist 

D-serine was thought of as an amino acid solely of bacterial origin so its 

presence in substantial quantities of about 300 nmol g
-1

 in the mammalian 

(Hashimoto et al., 1992; Hashimoto et al., 1993b; Hashimoto et al., 1993c; 

Hashimoto et al., 1995a; Hashimoto et al., 1995b) and about 100 nmol g
-1

 in 

human brain (Chouinard et al., 1993; Hashimoto et al., 1993a; Kumashiro et al., 

1995; Nagata et al., 1995) was initially surprising.  D-serine was also thought not 

to play a functional role in higher organisms (Corrigan, 1969) yet displacement of 

[
3
H]glycine by D-serine on the rat brain NMDARs (McDonald et al., 1990) 

sparked interest in the physiological role of D-serine in the human brain.  

Recombinant NMDARs were found to be stimulated by D-serine application 

(Hess et al., 1996; McBain et al., 1989; Priestley et al., 1995) suggesting that D-

serine may act as an NMDAR activator in vivo.  Furthermore, application of 
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exogenous DAO reduced NMDAR function in vivo and in vitro (Gustafson et al., 

2007; Mothet et al., 2000; Stevens et al., 2003; Yang et al., 2005). 

D-serine is found at much higher concentrations in the brain than it is in 

the periphery (Wolosker et al., 2008), for example, in the brain for every two L-

serine molecules there exists one D-serine molecule (Hashimoto et al., 1992; 

Hashimoto et al., 1993c).  Brain microdialysis experiments revealed extracellular 

concentration of D-serine to be twice that of glycine in the striatum and 

comparable in the cerebral cortex (Hashimoto et al., 1995b).  D-serine is enriched 

in rat forebrain areas abundant in NMDARs (Hashimoto et al., 1993a; Schell et 

al., 1997; Schell et al., 1995).  Despite the high D-serine concentration the 

NMDAR were found not to be saturated in vivo (Wood et al., 1989) because 

exogenously applied D-serine to rat cortical (Li and Han, 2007) and hippocampal 

slices (Martina et al., 2003) potentiated NMDARs.    

 D-serine was found to display up to threefold higher affinity for the 

NMDAR than glycine (Furukawa and Gouaux, 2003; Matsui et al., 1995).  

Through crystal structure examination it was noted that D-serine displaces a water 

molecule from the NR1 binding site and makes three additional hydrogen bonds 

than glycine explaining the higher D-serine affinity for NMDAR (Furukawa and 

Gouaux, 2003).  Furthermore, the L-serine isomer interacts unfavorably in the 

binding pocket due to the hydroxyl group specifically selecting for the D-serine 

isomer (Furukawa and Gouaux, 2003).  These bidning affinities and structural 

observations are consistent with experiments showing that D-serine is 100x more 

effective than L-serine in stimulating NMDAR (McBain et al., 1989; Wood et al., 

1990). 

The model for NMDAR activation is through a cascade initiated by 

neuronal glutamate release which stimulates AMPA/Kainate receptors on glial 

cells to release D-serine from glia (Kim et al., 2005; O'Brien and Bowser, 2006).  

D-serine, in turn, acts as the co-agonist on the strychnine-insensitive GMS on the 

NR1 subunit to enhance NMDAR functional flux of Ca
2+

 current through the 

ionic pore.  The Ca
2+

 influx mediates learning and memory, long-term changes in 

synaptic plasticity and neural development (Oliet and Mothet, 2006). 
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In vivo data from rodents is supportive of D-serine modulatory effects on 

the NMDAR. In rats the cognitive impairment induced by PCP could be reversed 

by treatment with D-serine (Andersen and Pouzet, 2004) while fMRI experiments 

in rats showed that administration of D-serine leads to an increase in hippocampal 

activity (Panizzutti et al., 2005).  D-serine from glial cells seems to play a role in 

synaptic plasticity because synapses with reduced astrocytic coverage showed less 

NMDA-dependent activity and this activity could be restored by D-serine addition 

(Panatier et al., 2006) as discussed earlier. 

 

1.7.1  Schizophrenia and D-serine 

Multiple publications suggest deficits in D-serine levels in schizophrenia.  

Serum levels of D-serine in schizophrenic patients were significantly lower than 

those of healthy controls (Hashimoto et al., 2003).  Schizophrenic CSF samples 

displayed reduced D/total (D+L) serine, but not D-serine levels per-se as 

compared with control subjects (Hashimoto et al., 2005b).  Complementary to this 

observation was a significant 25% decrease in CSF D-serine levels in 

schizophrenia patients versus healthy control subjects (Bendikov et al., 2007).  

However, some studies did not correlate initial observations of altered D-serine 

plasma and CSF levels (Fuchs et al., 2008; Hons et al., 2008). While CSF and 

serum D-serine concentrations were found to be inconsistent, brain tissue D-

serine concentration has been found to be unaltered (Bendikov et al., 2007; 

Hashimoto et al., 2003).  However, there was a significant positive correlation 

between serum D-serine levels and total scores, positive symptom scores, and 

negative symptom scores on the BPRS among medicated patients (Hashimoto et 

al., 2003).   

Since schizophrenic patients may have decreased brain D-serine levels, 

their antipsychotic medications were supplemented with D-serine treatment 

resulting in psychotic symptom reductions.  Chronic schizophrenia patients, 

poorly responsive to neuroleptics other then clozapine, with prominent negative 

symptoms were treated with administration of adjunct 30 mg/kg/day of D-serine.  

After six weeks of treatment the patients displayed significant reductions in 

negative symptoms, cognitive symptoms and positive symptoms.  The serum D-
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serine levels of patients were elevated 50-fold while serum glycine, glutamate, 

and aspartate levels were unchanged.  The broad improvement of the symptoms 

significantly correlated with the treatment and with the serum D-serine levels 

(Tsai et al., 1998) (see Table 1.2).  These clinical trials strongly suggest potential 

of NMDAR enhancement through D-serine administration as suitable adjunct 

treatment of schizophrenic symptoms.  A meta analysis of eighteen clinical trials 

with 343-randomized patients confirmed that D-serine is effective in reducing 

negative symptoms and trends toward effectiveness in cognitive symptoms 

(Tuominen et al., 2005). 

The clinical data with D-serine supplementation generated interest in 

proteins responsible for D-serine synthesis, transport and degradation.  As such 

serine racemase, alanine-serine-cysteine transporter-1 and DAO will be described 

individually in the next section where their impact on D-serine will be assessed. 

 

1.7.2  D-serine synthesis: Serine racemase (SRR) 

Serine racemase (SRR) is a 37 kDa protein that exhibits a high degree of 

interspecies similarity (92% identity between rat and human and 96% identity 

between rat and mouse) (Konno, 2003).  While multiple mRNAs have been 

proposed to encode SRR, only a single isoform appears to be expressed in the 

brain (Wolosker et al., 1999b; Xia et al., 2004; Yamada et al., 2005).  SRR can 

inter-convert L-serine to D-serine with a six fold higher preference for conversion 

of L- to D-form (Wolosker et al., 1999b).  Furthermore, SRR is highly selective 

toward L-serine as it fails to racemize other amino acids (Wolosker et al., 1999b).  

Regional localization of SRR coincides with that of D-serine suggesting a 

physiological role for D-serine synthesis (Wolosker et al., 1999a).  An in vivo role 

of serine racemase and its involvement in D-serine synthesis came from SRR 

knockout animals where the D-serine levels declined by 80-90% (Wolosker et al., 

2008).  As expected, the SRR homozygous knockout mice displayed decreased 

NMDAR transmission, impaired long term potentiation of synaptic activity in the 

hippocampus, attenuated synaptic plasticity and spatial memory deficit (Basu et 

al., 2009; Wolosker et al., 2008).  Recently an association between SRR and 

schizophrenia was found reinforcing the association of this enzyme in this 
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devastating disease (Labrie et al., 2009a).  SRR expression data from 

schizophrenic patients is mixed.  For example, SRR protein levels in 

schizophrenic patients were found to be marginally lower in the frontal cortex 

(BA9) and in the hippocampus (Bendikov et al., 2007).  However, in a separate 

study, SRR immunoreactivity was increased in schizophrenia in the DLPFC but 

not in cerebellum, while SRR mRNA was unchanged in both regions (Verrall et 

al., 2007).  More comprehensive SRR expression analysis is required to determine 

if SRR expression is linked to modified D-serine levels. 

 Several cofactors and modulators of SRR have been identified.  The 

purified SRR enzyme requires cofactor pyridoxal 5‟-phosphate (Wolosker et al., 

1999b) and ATP that is not hydrolyzed during SRR activation (De Miranda et al., 

2002).  Interestingly, phosphatidylinositol (4,5)-bisphosphate (PIP2) competes 

with ATP for SRR binding resulting in physiological inhibition of the catalytic 

activity (Mustafa et al., 2009).  The PIP2 inhibition has served as a bridge linking 

glutamate release with an increase in D-serine synthesis.  The mechanism of this 

coordinated action was shown to be mediated through metabotropic glutamate 

transmission via mGluR5 which upon activation stimulates phospholipase C, 

degrades PIP2 and disinhibits serine racemase (Mustafa et al., 2009).  NMDAR-

mediated calcium entry into postsynaptic neurons may contribute to SRR 

inhibition through activation of calcium/calmodulin-dependent neuronal nitric 

oxide synthase and generation of nitric oxide (Baumgart and Rodriguez-Crespo, 

2008).  The nitric oxide, in turn, nitrosylates SRR in the ATP-binding region and 

inhibits SRR catalytic activity.  Coincidentally, nitric oxide activates DAO 

activity further suppressing D-serine concentration (Shoji et al., 2006a; Shoji et 

al., 2006b).  Thus ATP binding or lack there of plays a significant role in SRR 

activity modulation.  Serine racemase is also positively modulated by divalent 

cations like Mg
2+

, Mn
2+ 

and Ca
2+

 (Cook et al., 2002; Neidle and Dunlop, 2002) 

while, glycine and L-aspartic acid metabolites such as asparagine and -threo-

3-hydroxyaspartic acid were found to competitively inhibit SRR (Dunlop and 

Neidle, 2005; Strisovsky et al., 2005).  A yeast two-hybrid screen identified 

glutamate-receptor-interacting protein (GRIP), a scaffolding protein for AMPA 

receptors as SRR interactor.  GRIP has been recognized as SRR activator leading 
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to a five-fold greater D-serine synthesis (Kim et al., 2005).  Furthermore, 

activation of AMPA receptors increases SRR activity probably through 

dissociation of GRIP from activated AMPAR enabling AMPA neurotransmission 

to enhance D-serine synthesis and release (Kim et al., 2005).   

 SRR has also been shown to have an additional function.  SRR was found 

to generate pyruvate and ammonia via -elimination of water from L-serine.  In 

fact the SRR elimination activity is stronger than racemization activity resulting 

in a synthesis of three pyruvate molecules per each D-serine molecule racemized 

(Strisovsky et al., 2003).  The dual functionality of the SRR is likely to be 

influenced by the cellular needs.  For example, the complex of ATP and Mg
2+

 was 

found to favor the elimination activity over the racemization activity (Foltyn et 

al., 2005).  The resulting pyruvate can be used for lactate synthesis which is 

known to provide neuroprotection against oxidative stress and used for neuronal 

energy needs (Foltyn et al., 2005).  D-serine was also shown to undergo -

elimination suggesting an alternative pathway for D-serine catabolism from that 

of DAO enzymatic breakdown (Foltyn et al., 2005). 

SRR has a critical function in regulation of D-serine concentration.  The 

modulation of SRR activity through the various protein interactions is a testament 

to the critical role SRR has in balancing D-serine levels.  Association and 

behavioral studies further support SRR involvement in NMDAR hypofunction 

disease suggesting that SRR may have a relevant role in schizophrenia.   

  

1.7.3  D-serine uptake: alanine-serine-cysteine transporter-1 (Asc-1) 

 The activity of the multi transmembrane-spanning amino acid uptake 

transporter of small neutral amino acids (Ala, Ser, Cys), Asc-1, has been shown to 

be a major mechanism for D-serine clearance from the extracellular space in 

forebrain and cerebellum.  Asc-1 has been cloned from mouse (Fukasawa et al., 

2000) and human (Nakauchi et al., 2000) and localized to presynaptic terminals, 

dendrites, and soma of neurons and glia where it could have the most impact on 

D-serine clearance from the synaptic cleft.  It operates via an exchange 

mechanism where upon uptake of one amino acid there is an efflux of another 

(Fukasawa et al., 2000; Helboe et al., 2003; Matsuo et al., 2004; Nakauchi et al., 
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2000).  Convincing data for a key role for Asc-1 in D-serine regulation comes 

from experiments in Asc-1 knockout mice which show that [
3
H]D-serine uptake 

in forebrain synaptosomes is significantly reduced (Rutter et al., 2007).  

Furthermore, the Asc-1 knockout animals had elevated circulating D-amino acids, 

including D-serine, in the brain (Rutter et al., 2007).  In fact, the elevated level of 

brain circulating D-serine may have lead to the seizure-propensity of these 

animals through over activation of the NMDAR (Xie et al., 2005). Administration 

of MK-801 to the KO animals significantly reduced the seizures suggesting that 

they were due to excessive NMDAR stimulation (Xie et al., 2005). 

Interestingly, Asc-1 immunoreactivity was found to be decreased in 

schizophrenic DLPFC and cerebellum independent of drug treatment (Burnet et 

al., 2008b) suggesting that the NMDAR hypofunction is not due to excessive 

reuptake.  Furthermore it may be a compensatory effect in response to reduced D-

serine concentration found in schizophrenics.  However, decreased Asc-1 

expression may not be necessary or sufficient for altered transporter activity 

(Aragon and Lopez-Corcuera, 2003; Zahniser and Doolen, 2001).  Although 

protein expression has been shown to be reduced, the same brain regions did not 

display a complementary decrease in Asc-1 mRNA suggesting that translational 

or post-translational modifications are responsible for the reduced protein 

expression (Burnet et al., 2008b). 

 

1.7.4 D-serine degradation: D-amino acid oxidase (DAO) 

Human DAO is 347 amino acids long protein (Momoi et al., 1988) 

encoded by a single gene found on chromosome 12 (Konno, 2001).  It is 

composed of 11 exons and spans 20 kb (Fukui and Miyake, 1992).  DAO is a 

flavoenzyme oxidase whose main function is degradation of certain D-amino 

acids selectively targeting those with small, neutral side chains such as D-serine 

and D-alanine (Leighton et al., 1968) with affinity (Km) of 1 to 10 mM (Kawazoe 

et al., 2007; Molla et al., 2006).  The amino acids are degraded into imino acid 

and consequently into -keto acids through hydration (Figure 1.5) (Pollegioni et 

al., 2007).  During the amino acid oxidation the flavin adenine dinucleotide 

(FAD) is reduced which upon reoxidation generates hydrogen peroxide.  FAD 



 47 

may play a relevant role in modulating DAO‟s activity as it was observed that 

FAD-unbound DAO may be catalytically inactive (Caldinelli et al., 2009).  In 

humans, FAD is weakly bound to DAO suggesting a mechanism for DAO 

regulation (Caldinelli et al., 2009). 

DAO has been detected in kidney, liver, brain and at low concentration in 

leukocytes (Cline and Lehrer, 1969; Robinson et al., 1978), small intestine, 

epididymis (Gossrau, 1991), and preputial and adrenal glands (Goldenberg et al., 

1975).  Within the central nervous system of rats, DAO has been shown to be 

more abundant in the cerebellum and brainstem then in the forebrain (Horiike et 

al., 1994).  While rat DAO was initially exclusively localized to astrocytes but not 

other glial cells or neurons (Arnold et al., 1979; Horiike et al., 1987) it was later 

found in humans and rats to be expressed in both neuronal and glial cells (Moreno 

et al., 1999; Verrall et al., 2007).  However, human DAO regional expression 

differences were noted including predominant neuronal expression in DLPFC, 

and hippocampus, predominant glial in cerebellum and both neuronal and glial in 

substantia nigra pars compacta (Verrall et al., 2007).  Furthermore, DAO 

expression is likely to be neurodevelopmentally regulated as kidney DAO activity 

is low at birth but reaches a maximum in 2-4 week old rats (Johkura et al., 1998; 

Stefanini et al., 1994).  Likewise, a similar pattern of DAO expression was 

observed in the rat cerebellum where at birth no detectable DAO activity was 

found but by 3-4 weeks of age mice were expressing DAO at maximum levels 

(Wang and Zhu, 2003). 

On a cellular level, DAO was first reported to be localized within 

peroxisomes (De Duve and Baudhuin, 1966).  While in the periphery DAO has 

been confirmed to be confined to the peroxisomes in rat liver through enzymatic 

histochemical, immunohistochemical and electron microscopy imaging 

(Angermuller and Fahimi, 1988; Stefanini et al., 1985; Usuda et al., 1986) the 

brain expression may not be limited to this organelle.  This observation is 

supported by a pericellular immunostaining of DAO brain samples from DLPFC, 

cerebellum, and hippocampus (Verrall et al., 2007) and lack of DAO expression 

overlap with peroxisomal markers (Sacchi et al., 2008).  A pericellular 

distribution, potentially outside of the peroxisome, suggests that DAO may be 
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able to directly influence how much D-serine is being released perhaps into the 

synapse.  The proposed mode for the altered DAO expression outside of the 

peroxisome is proteolysis of the peroxisomal targeting area from the c-terminal 

end of DAO (Campaner et al., 1998; Pollegioni et al., 1995) which in case of 

porcine (Tarelli et al., 1990) and yeast DAO (Yurimoto et al., 2000) have been 

shown to yield active DAO enzymes.  An expression profile outside of the 

peroxisome may have very important consequences for the proposed interaction 

study as it exposes DAO to an alternative set of putative interacting proteins.  An 

extra-peroxisomal localization also suggests an altered function or regulatory role 

for DAO which may be derived from the interactor study. 

In schizophrenic patients where decreased levels of D-serine were 

reported DAO may exacerbate the NMDAR hypofunction (Bendikov et al., 2007; 

Hashimoto et al., 2003).  In fact, DAO mRNA was increased in patients with 

schizophrenia as compared to control individuals while DAO immunoreactivity in 

the cerebellum showed a trend to being increased in schizophrenic patients 

(Verrall et al., 2007).  In the DLPFC, where DAO is expressed to a lesser extent 

than in the cerebellum, DAO mRNA was unchanged in schizophrenia (Verrall et 

al., 2007).  Furthermore DAO activity was increased as much as two-fold in the 

cerebellum in schizophrenia and DAO activity increased with duration of illness 

(Burnet et al., 2008a; Burnet et al., 2008b; Madeira et al., 2008).  Hippocampa 

CA4 DAO mRNA levels were found to be increased in schizophrenic patients 

(Habl et al., 2009).  Consistently with the increased mRNA expression, 

hippocampal DAO protein levels in schizophrenics significantly correlated with 

duration of illness but not with age, suggesting the possibility that increased 

breakdown of hippocampal D-serine is associated with the progressive nature of 

the severity of schizophrenia (Bendikov et al., 2007).  DAO levels were unaltered 

in antipsychotic treated animals suggesting that the duration of illness correlation 

study is independent of drug use (Verrall et al., 2007).    
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Figure 1.5 Schematic diagram of d-amino acid catalyzed by DAO.  

 

Taken from Pollegioni (Pollegioni et al., 2007) 

 

In addition, a mutant mouse line has been important for looking at DAO 

function in vivo.  This naturally occurring strain of mice with an inactive DAO 

enzyme (Konno and Yasumura, 1983) due to a glycine 181 to arganine mutation 

(Sasaki et al., 1992) has been identified but the expression of the inactive enzyme 

was found not to be altered in the mutated strain versus wildtype (Konno et al., 

1991).  These mice were examined for D-amino acid levels and compared to the 

wildtype mice.  D-serine concentrations were largely unchanged in most brain 

regions tested including cerebrum and hippocampus, while, it was increased about 

ten-fold in the cerebellum and medulla oblongata.  More interestingly, D-alanine, 

a good DAO substrate (D'Aniello et al., 1993), levels in the mutant mice were 

elevated on average four-fold in all seven brain regions tested.  Increased D-

alanine concentration was also found to be elevated fifteen fold in the mutant 

mice serum suggesting that catalytically inactive DAO throughout the body 

contributed to the increased D-alanine concentration by allowing for 

accumulation of D-alanine (Hamase et al., 2005).  The increased D-alanine levels 

in DAO mutant mice may be relevant to the disease state in schizophrenia as D-

alanine was found to act as an NMDAR co-agonist (Sakata et al., 1999; Tanii et 

al., 1994).  The concentration of D-aspartate, known to be oxidized by D-aspartic 

acid oxidase (DDO) and not DAO, was not altered in the mutant mice (Hamase et 

al., 2005) suggesting that there are no compensatory changes in the mutant mice.   

 Mice lacking the DAO catalytic activity displayed diminution of 

stereotypy and ataxia elicited by MK-801 compared with wild-type mice 
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(Hashimoto et al., 2005a).  Independently another group confirmed the observed 

increased occupancy of the NMDAR GMS as shown by attenuated effects of L-

701,324, a NMDAR glycine site antagonist in the DAO mutant mice (Almond et 

al., 2006).  DAO KO mice display enhanced spatial learning and long-term 

potentiation (LTP) in the hippocampus (Maekawa et al., 2005) suggesting that the 

increased D-serine/D-alanine levels at the NMDAR GMS could have contributed 

to enhanced behavioral responses relevant to schizophrenia.  This suggestion was 

confirmed by pharmacologically blocking NMDAR in wildtype mice and 

reversing schizophrenia-like behaviors including hyperlocomotion, stereotypy, 

and ataxia through D-serine/D-alanine administration (Tanii et al., 1994).  Double 

mutant mice, with the DAO mutation and NR1 aspartate 481 to asparagine 

mutation, which is characterized by a reduction in NMDAR glycine affinity, were 

found to outperform single mutant NR1 mice in tasks related to negative and 

cognitive symptoms of schizophrenia (Labrie et al., 2009b).  Taken together, 

these animal data suggest that DAO may play a role in NMDAR regulation and 

pharmacological inhibition of DAO may be therapeutically relevant for 

schizophrenia.   

 Due to the evidence of DAO involvement in schizophrenia 

pharmacological inhibitors including AS057278 (5-methylpyrazole-3-carboxylic 

acid), CBIO (6-chlorobenzo[d]isoxazol-3-ol) and Merck Compound 8 (4H-

thieno[3,2-b] pyrrole-5-carboxylic acid) were developed and tested in animal 

behavioral models (Hashimoto et al., 2009; Marino et al., 2008; Smith et al., 

2009).  All three compounds were found to increase peripheral and CNS D-serine 

levels with the exception of CBIO which only raised peripheral D-serine level 

(Williams, 2009).  AS057278 was found to acutely and chronically normalize PPI 

in PCP induced mice and chronic but not acute PCP induced hypercolomotion 

(Marino et al., 2008).  CBIO was found to potentiate D-serine attenuation of MK-

801 induced PPI deficits (Hashimoto et al., 2009).  When treated acutely with 

Merck Compound 8 rats displayed no effect in amphetamine-induced 

psychomotor activity, nucleus accumbens dopamine release, or a MK-801 

induced deficit in novel object recognition (Smith et al., 2009).  Pharmacological 

inhibition of DAO provides a mixed support for the therapeutic mechanism 
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inhibition of DAO in vivo at least when acutely treated but together with the DAO 

point mutant mice data, suggest that chronic DAO inhibition may be a suitable 

treatment alternative. 

 

1.7.4.1 G72 and DAO protein-protein interaction suggests DAO involvement 

in schizophrenia  

 Considerable evidence exists for association of a molecule known as D-

amino acid oxidase activator (DAOA), or G72, and schizophrenia.  Association of 

G72 to schizophrenia was first demonstrated by Chumakov through high-density 

mapping of SNPs to a chromosome 13q region which is linked to schizophrenia 

(Chumakov et al., 2002).  Markers in the 3‟ region of G72 such as M23 

(rs3918342) and M24 (rs141292) were found to be particularly strongly linked to 

schizophrenia (Chumakov et al., 2002). Subsequent association studies have in 

most cases confirmed the association in a wide range of populations including, for 

example, Palestinian Arabs, Chinese, Scottish, and German subjects  

(Korostishevsky et al., 2006; Liu et al., 2006; Ma et al., 2006; Mulle et al., 2005; 

Schumacher et al., 2004; Wang et al., 2004; Zou et al., 2005).  Furthermore, meta-

analysis of association studies concluded that genetic variation in G72 and in 

particular in M23/M24 region supports schizophrenia association (Detera-

Wadleigh and McMahon, 2006; Li and He, 2007; Shi et al., 2008).  Likewise 

DAO has been shown to be associated with schizophrenia (Corvin et al., 2007; 

Liu et al., 2004; Schumacher et al., 2004; Wood et al., 2007) albeit weakly as a 

recent meta-analysis of 18 association studies found a significant DAO 

association in three of them (Shi et al., 2008). 

 Interest in DAO as a schizophrenic candidate gene grew as a direct 

consequence of identification of DAO as an interacting partner for G72 

(Chumakov et al., 2002).  Initially, through yeast-two-hybrid screen DAO was 

shown to interact with G72 and purified G72 increased the catalytic activity of 

DAO in vitro (Chumakov et al., 2002).  This modulation, in turn, was 

hypothesized to be responsible, in part, for a lower D-serine concentration and 

consequently NMDAR hypoactivity.  In contrast to the initial observations, it was 

reported that G72 does not bind with DAO (Kvajo et al., 2008). However, others 
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have since suggested that G72 inhibits DAO activity in vitro and in vivo when 

both G72 and DAO are overexpressed in U87 cells (Pollegioni et al., 2007; Sacchi 

et al., 2008).  An interaction between the two proteins in vivo is likely as DAO 

was shown to co-immunoprecipitate with G72 from human cortex and both 

proteins were shown via immunohistochemistry to co-localize in cortical 

astrocytes slices from human brain (Sacchi et al., 2008).  The proposed inhibitory 

activity of G72 on DAO may be relevant to NMDAR hypofunction if in the 

schizophrenic brain G72 is down regulated (Sacchi et al., 2008).  While G72 

expression in the dorsolateral prefrontal cortex of schizophrenia patients was 

shown to be increased in one study (Korostishevsky et al., 2004), G72 mRNA and 

protein from schizophrenic and control human brains were not quantifiable in 

another (Benzel et al., 2008).  Taken together, the reported observations made it 

difficult to propose a satisfying explanation for the involvement of the two 

proteins in schizophrenic brain.  Conflicting data in terms of the interaction, 

functional implication for such an interaction and the level of G72 expression in 

vivo has been used to question the validity and proposed implications of this 

interaction.   

 As G72 is only found in anthropoid primates (Chumakov et al., 2002), 

G72 overexpressing transgenic mice were generated in order to test behavioral 

changes associated with G72 expression (Otte et al., 2009).  Interestingly, the 

mice were found to have impaired sensorimotor gating which was normalized 

with haloperidol treatment.  Sensorimotor gating enables the organism to filter 

external information and was found to be impaired in schizophrenia (Braff et al., 

2001).  They were also more sensitive to PCP treatment suggesting NMDAR 

hypofunction in the transgenic mice or altered receptor expression.  It remains to 

be seen whether DAO activity is altered in the transgenic animals and if the 

behavioral abnormalities are result of altered D-serine concentration. 

 

1.8  Objectives and aims of this thesis 

 NMDAR hypofunction has been implicated through NMDAR antagonist 

studies, GMS pharmacological intervention studies, postmortem studies, DAO 

transgenic animal characterization and genetic studies as a significant contributor 
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to schizophrenia pathology.  One way to restore NMDAR hypofunction is to 

increase the concentration of NMDAR co-agonists such as D-serine.  In fact, this 

obligatory co-agonist has been shown to be reduced in schizophrenic patients‟ 

CSF and serum which may be a function of increased DAO activity.  Supporting 

this hypothesis are findings of increased DAO activity in schizophrenic patients 

which is possible due to an increased DAO expression or potentially changes in 

activating pattern.   

 While DAO linkage and association studies had mixed results they were 

mostly suggestive of no linkage between DAO and schizophrenia.  Yet G72, the 

putative DAO interactor, through positive linkage with schizophrenia implicates 

DAO in the disease.  A case for DAO is somewhat like that for NMDAR which in 

itself did not genetically associate with schizophrenia yet many of the genes that 

do are modulators of the NMDAR.  Through characterization of DAO interacting 

proteins we aim to increase our understanding of DAO function, biology and to 

identify novel schizophrenia targets. We hope to ascertain DAO‟s intracellular 

localization and the mechanism responsible for its presence outside of the 

peroxisome.  Furthermore, we will explore the potential DAO interacting proteins 

for a modulatory role on DAO enzymatic activity resulting in the schizophrenic 

phenotype.  

 As part of our studies we set out to expand upon and identify additional 

potential DAO interacting proteins.  To do this, two independent approaches were 

undertaken; a yeast-two-hybrid screen against a human fetal brain library using 

DAO as the bait protein and an immunoprecipitation mass spectroscopy approach 

from rat cerebellum.  While the yeast-two-hybrid screen identified fifteen putative 

interactors, the samples generated from rat cerebellar co-immunoprecipitation 

against DAO antibody resulted in identification of twenty-four proteins likely to 

be interacting with DAO directly or through association of a complex of proteins 

one or more of which were interacting with DAO.  In this thesis I will outline and 

describe novel DAO interacting proteins with an emphasis on DAO‟s interaction 

with BSN, a presynaptic active zone member, and suggest a novel DAO 

localization as a result of this interaction which is likely to be relevant in 
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monitoring synaptic D-serine concentrations and in understanding more fully the 

role of DAO in disease. 
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2. Generation of a DAO stable cell line and purification of DAO protein 

from bacterial cells    

 

This chapter will focus on establishing tools necessary for validation of 

putative DAO interacting proteins and measuring functional effects they may 

have on DAO activity.  An AmplexRed functional assay was established to 

ascertain the implications of interacting proteins on DAO‟s activity.  Both hDAO 

and rDAO stable lines were established as well as purified hDAO enzyme to 

allow for in vitro experiments with putative interacting proteins. 

       

  2.1  AmplexRed functional assay for analysis of DAO activity 

To ascertain the activity of DAO either in a stable cell line or as a purified 

enzyme and to enable the examination of the impact of DAO interacting proteins 

on the enzymatic activity of DAO, an in vitro assay was required.  DAO catalyzes 

the degradation of D-amino acid substrates such as D-serine or D-alanine by 

oxidative deamination, yielding reaction products including pyruvate, ammonia 

(NH3) and hydrogen peroxide (H2O2) (Pollegioni et al., 2007) (Figure 2.1).  For 

each substrate molecule that DAO degrades, one molecule of hydrogen peroxide 

is released.  In order to measure the production of substrates, a coupled reaction in 

which the hydrogen peroxide was utilized by horseradish peroxidase (HRP) in a 

one-to-one stoichiometric ratio converts Amplex Red (10-acetyl-3,7-

dihydroxyphenoxazine), a non-fluorescent substrate, into resorufin, a red-

fluorescent (544 nm excitation, 590  nm emission) product (Zhou et al., 1997).  

Thus, this assay is dependent on the activity of two enzymes, DAO and HRP, and 

the fluorescent signal is directly proportional to the rate at which DAO 

deaminates D-serine/D-alanine as illustrated in Figure 2.1.  Should an interactor 

alter DAO configuration or modify substrate access to the catalytic site, the rate of 

reaction may be altered and measured using the Amplex Red assay. 
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Figure 2.1:  Amplex Red assay measures the production of resorufin, a 

fluorescent molecule.  DAO catalyzes the oxidative deamination of D-amino 

acids including D-alanine into pyruvate, ammonia and hydrogen peroxide.  In the 

presence of horseradish peroxidase (HRP) the Amplex Red substrate (10-acetyl-

3,7-dihydroxyphenoxazine) reacts with hydrogen peroxide with a one to one 

stoichiometry to produce resorufin, a fluorescent product.  The rate of resorufin 

production is proportional to the D-alanine deamination reaction rate. 
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2.2 Selection of host cell type line for the DAO stable lines 

 In order to enable the assessment of DAO activity in a cellular context, 

ten host cell lines were considered for the generation of human and rat DAO 

stable cell lines.  All of the lines were first examined in the Amplex Red assay 

with D-serine, D-aspartate and with no substrate and compared to signal 

generated without any cells (Figure 2.2) in order to choose a host cell line with the 

best signal to noise ratio and to identify lines that may already be expressing 

native DAO or D-aspartate oxidase (DDO), which shares a high homology with 

DAO sequence.  In this respect, no substrate was used as negative control while 

D-aspartate as the substrate for DDO.  Human embryonic kidney (Hek293) cells 

were selected as the line of choice as they produce the best balance of useful 

properties as they are readily adaptable to generation of stable cell line and had a 

low basal response in buffer as well as with treatment of D-serine and D-

aspartate.  While clonal rat pituitary tumor (GH4C1) cells and Chinese hamster 

lung (CHL) cells both had relatively low RFUs resembling that of the no cell 

control, GH4C1 are known to be slow growers and difficult to generate stable cell 

lines while CHL cells grow best as free floating cells which do not lend 

themselves well to high-throughput plate based assay formats in common use.  

The lines with the highest background noise were human cervical cancer cells 

taken from Henrietta Lacks (HeLa) and Chinese hamster ovary (CHO K1) cells.  

Baby hamster kidney (BHK-21) cells may naturally express some DAO as the 

signal from D-serine is twice that of D-aspartate or buffer.  DAO is known to be 

highly expressed in the kidney (Koibuchi et al., 1995) so this finding may suggest 

functional DAO presence within this line.  Confirmation of this activity could be 

made with a DAO specific inhibitor but we are interested in human and rat lines.  

Mouse embryonic fibroblast (NIH 3T3) cells may naturally express DDO since 

the responses of this line were elevated with the treatment of D-aspartate but not 

with buffer or D-serine.   
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Figure 2.2:  Ten different host lines were examined for spontaneous activity with 

D-serine (blue), D-aspartate (maroon) and buffer (yellow) in the AmplexRed 

assay to identify the best candidate for the DAO stable cell line.  The highest 

spontaneous activity using the Amplex Red assay was observed in CHO K1 cells 

while the lowest in CHL cells.  Hek293 line was selected due to comparable 

RFUs to that of buffer alone, low maintenance and high probability of stable cell 

line generation.  
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2.3 Identification of DAO stable cell lines 

For the purpose of generating stable lines, both hDAO and rDAO inserts 

were independently cloned into pcDNA3.1 vectors which contain a hygromycin 

resistance selection marker.  The DAO constructs were transfected into Hek293 

cells through electroporation.  Stable integration of the constructs in the cells was 

accomplished by subsequent selection for clones in hygromycin containing media 

over a three week span.  Since transcription of DAO and hygromycin resistance 

were under two independent mammalian promoters and generation of stable line 

involves incorporation of the construct into the cell‟s genome some of the 

colonies may express hygromycin resistance without expressing DAO enzyme.  

However, sufficient numbers of clones were examined to guarantee that some 

may express both genes by virtue of a close proximity of the genes on the 

pcDNA3.1 constructs.  

Nine hygromycin resistant colonies were examined for functional hDAO 

activity utilizing the Amplex Red assay with D-alanine as substrate.  One of the 

nine colonies, designated hDAO #1, displayed a particularly high level of 

functional DAO activity as compared to Hek293 and buffer only controls (Figure 

2.3 A).  The remaining eight colonies displayed very modest functional increases 

over their respective controls and were deemed as not suitable for further analysis.  

Likewise, sixteen rDAO colonies were examined for functional DAO activity.  

The highest expressing lines were identified as rDAO #12 and #24 (Figure 2.3 B) 

with stable cell lines expressing intermediate and moderate levels of DAO activity 

identified as well.  The functional activity of hDAO #1 is comparable to that of 

rDAO#12 and #24 as measured by the Amplex Red assay.  The highest 

expressing lines were selected because they provide the best signal to noise ratio. 

 In order to confirm that the increased response in the selected hDAO and 

rDAO stable lines was due to DAO activity, WAY-396964, a tool DAO inhibitor 

originally made by the company Sepracor, was used to block the response (Fang 

et al., 2005).  Because this compound specifically inhibits DAO enzymatic 

activity by competing with DAO‟s substrate a dimunition of the Amplex Red 

assay in a dose dependent fashion by the inhibitor implies that the activity is that 

of DAO (Fang et al., 2005).  The inhibitor was shown to have an IC50 of 163 nM 
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against hDAO #1 (Figure 2.4 A) and 108 nM against rDAO #12 (Figure 2.4 B) 

suggesting that both of those stable lines are expressing a functional DAO enzyme 

and that the inhibitor has about equal affinity for both DAO enzymatic species. 

 

2.4 Purification of DAO from BL21 bacteria strain 

Escherichia coli (E. coli) cells have been used routinely to successfully 

synthesize mammalian proteins (Liu et al., 2009).  In order to generate DAO 

protein, BL21 DE3 cells were transformed with an inducible pTYB2 vector 

containing DAO construct encoding human DAO-intein fusion.  Use of this 

vector allows for the bacterial over expression of target gene as a fusion construct 

with a 55 kDa self-cleavable intein affinity tag.  As depicted in Figure 2.5, an 

intein has a high affinity for a chitin column which can be used to purify the 

fusion construct from the bacterial lysate.  After selective retention of the fusion 

construct through the intein-chitin affinity and subsequent wash steps purified 

DAO enzyme was cleaved from intein through treatment with DTT whereby 

purified DAO was released leaving the intein on the chitin column.   

In order to assess the efficacy of the purification procedure, samples from 

each step in the purification of hDAO were resolved by SDS-PAGE and stained 

using Coomassie blue (Figure 2.6).  Within that figure a progression from total 

bacterial proteins representing the input, to those proteins retained on the chitin 

column, removed by the washing and finally resulting in collection of purified 

hDAO enzyme are shown.  The concentration of purified hDAO was highest in 

the initial fractions and it gradually decreased until all of the cleaved DAO was 

eluted from the column.  In fact, post elution beads show that most of the DAO 

was eluted off with the DTT cleavage.  As a positive control and for the purposes 

of purity comparison a commercially available Sigma porcine DAO was used.  

The purity of the final DAO as determined by Coomassie stain is very good and 

compares very well with a commercially available porcine DAO enzyme.  

Whereas the commercial enzyme has visible contaminating bands at 51 kDa, 28 

kDa and 20 kDa the human DAO generated through the intein pull-down does not 

have any visible contaminating bands. 
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Figure 2.3:  The hDAO (A) and rDAO (B) stable lines were established in 

Hek293 cell line and selected based on functional activity through the Amplex 

Red assay.  Several DAO colonies were identified and tested for functional 

expression of DAO enzyme.  Human DAO stable line #1 was particularly active 

as compared to the Hek293 and buffer alone controls.  Rat DAO stable line #12 

and #24 represented the high expressing DAO lines.  The other lines tested had 

intermediate to moderate enhancement of Amplex Red activity.  Sigma porcine 

DAO was used as a positive control. 
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Figure 2.4:  WAY-396964, a DAO inhibitor, completely abolishes hDAO #1 (A) 

and rDAO #12 (B) activity as determined by the Amplex Red assay.  The 

respective IC50s generated against hDAO #1 and rDAO #12 are 163 nM and 108 

nM.    
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 The protein concentration of eluates representing fractions #1 through #3 

and illustrated by lanes 7 through 9 on the Coomassie gel in Figure 2.6 were 

measured with Bradford protein assay (compared to a standard curve prepared 

using BSA according to manufacturers instructions, Biorad) to determine the 

yield of purified hDAO from 750ml of bacteria media or 7.5g of wet mass.  The 

yield from each fraction is listed in Table 2.1. The total hDAO yield was 2.69 mg 

with estimated purity of 100% as determined by absence of contaminating band 

on SDS-PAGE gel stained with Coomassie blue (Figure 2.6). 

 

 

Table 2.1:  hDAO purified enzyme yield from the intein column purification.  

Most of the soluble protein (~90%) was found in the first two eluates with a steep 

drop in yield between the second and third eluate.   

 

 Collection volume 

(ml) 

Concentration 

(mg) 

Yield 

(mg/ml) 

Fraction #1 211 6.80 1.43 

Fraction #2 156 6.67 1.04 

Fraction #3 138 1.59 0.22 

Total   2.69 

 

 

 The purified DAO fractions were tested in the Amplex Red assay to 

determine if the purified DAO enzyme is functionally active and if the activity 

would correspond to the DAO concentrations found on the Coomassie gel.  Figure 

2.7 outlines the favorable outcome of this study showing a robust DAO activity 

especially in the first two fractions where most of the hDAO was found.  The 

third fraction has some DAO activity while none is found in the fourth and last 

fraction.  All of the DAO activity is inhibited by 10  WAY-396964, a DAO 

inhibitor, proving that the activity seen in the Amplex Red assay is due to DAO.   
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As part of our purification procedure we calculated how well DAO protein 

was purified in the final eluates as compared to the initial bacterial lysate and at 

what yield.  With 7 ng of purified hDAO incubated for 30 minutes in the 

AmplexRed assay an output of about 300,000 RFUs was generated.  This RFU 

corresponded with about 15 M resorufin (see resorufin standard curve Figure 

2.8).  Consequently, the hDAO was generating about 15 M of resorufin in 30 

min or 0.5 M/min.  Since the volume in both the hDAO and resorufin was 40 l 

then the hDAO was driving the production of 20 mol resorufin/min.  Finally, if all 

of the 2.69 mg of purified hDAO were to be used instead of the 7 ng then about 

7.68 million mol of resorufin/min could be generated with a specific activity of 

about 2.8 million mol of resorufin/min/mg.  Same calculations were performed 

for the other samples in Table 2.2. 

 

2.5 Conclusions 

 Through application of the Amplex Red assay a DAO assay suitable for 

use with purified enzyme and stable cell lines was generated.  This assay was 

used to select HEK293 cells as host cell line with the least amount of background 

activity for the generation of hDAO and rDAO stable lines.  DAO stable cell lines 

with significant and specific D-alanine Amplex Red signal were identified from 

among all of the colonies that grew in selective media and confirm their 

functional DAO expression by generating IC50‟s with a known DAO inhibitor, 

WAY-396964, in line with published data.  Using these reagents functional 

hDAO enzyme was purified to homogenity.  These tools will be used for analysis 

of the effects of DAO interactors on DAO enzymatic activity.  
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Figure 2.5: Schematic diagram for the hDAO intein tag purification.  DAO fusion 

protein was expressed in BL21 E. coli cells and a chitin column was used to 

purify functional DAO enzyme.  Taken from New England BioLabs Impact kit 

manual. 
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Figure 2.6: Coomassie stain of hDAO chitin column purification and the 

intermediate steps.  Human DAO-intein fusion construct was expressed in 

bacteria and the bacterial lysate was applied to the chitin column.  After washes 

with Buffer A and B (lanes 5 and 6) the columns containing chitin-hDAO were 

treated with DTT to cleave off hDAO.  Fractions #1 through #3 (lanes 7-9) 

contain eluates of the purified hDAO which was used in subsequent enzymatic 

studies.  As a control commercially available Sigma porcine DAO was used (lane 

12). 
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Legend:       

Ln1:  Protein ladder     Ln7:  Fraction #1 post DTT cleavage 

Ln2:  Cell lysate     Ln8:  Fraction #2 post DTT cleavage 

Ln3:  Lysate after sonication / centrifugation  Ln9:  Fraction #3 post DTT cleavage 

Ln4:  Lysate after chitin bead    Ln10:Fraction #4 post DTT cleavage 

Ln5:  Elution from Buffer A wash   Ln11:Chitin beads post DTT cleavage 

Ln6:  Elution from Buffer B wash    Ln12:Sigma porcine DAO 
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Figure 2.7:  Functional analysis of hDAO purified enzyme generated through the 

intein fusion protein.  The four fractions correspond to the fractions outlined in 

Figure 2.6 on lane 7 through 10 where most of the DAO staining is found in the 

first two fractions with some in the third fraction and none in the fourth fraction 

were used at 5 l per sample in the AmplexRed assay.  This DAO distribution 

corresponds well with the DAO activity and the two observations confirm each 

other.  All of the activity is inhibited by 10 M DAO inhibitor, WAY-396964.  

Sigma porcine DAO was used as a control. 
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Figure 2.8: Resorufin standard curve.  The resorufin standard curve was used to 

estimate the amount of resorufin hDAO enzyme generates in any given period of 

time. 
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Table 2.2: Specific activity of the purified hDAO fractions.  Based on the specific 

activity of the final DAO eluate in comparison to the bacterial lysate input we 

concluded that the DAO was purified about 1850 times with a yield of about 67% 

of the total DAO enzyme.   

 

 Protein 

(mg) 

Total Activity 

(mol Resorufin/min) 

Specific Activity 

(mol Resorufin/min/mg) 

Fold  

Purification 

Lysate 7500 11,461,844 1,528 1 

Flow 

through 

7056 N/A N/A N/A 

DTT eluate 2.69 7,685,714 2,857,142 ~1870 
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3. Production and characterization of DAO polyclonal antibodies to 

identify DAO interactors and investigate DAO localization 

 

 

3.1 Identification of DAO specific sites for immunization 

One of the most important tools necessary for the investigation of DAO 

localization and identification of DAO interactors through co-

immunoprecipitation is a specific and reliable DAO antibody. In order to obtain 

such a valuable reagent, commercially available antibodies were tested but none 

of them recognized rat species DAO on a western blot (Figure 3.1).  While 

recognizing that lack of a signal on a western blot does not preclude an antibody 

from recognizing an undenatured DAO enzyme we were in need of an antibody 

which would recognize DAO in its denatured state on a western blot as well as 

natural enzymatic configuration for the immunoprecipitation experiments.    

Antibodies can be made against either whole proteins or short peptides 

with distinct advantages and disadvantages for each method.  A pure solution of 

recombinant proteins is necessary for a successful and specific immune response.  

At the time of antibody generation the purified hDAO enzyme utilized in Chapter 

2 was not available and the commercially available porcine DAO was found not 

to be pure enough (Figure 2.6, lane 12).  Furthermore, the objective was to 

generate a rat specific DAO antibody as rat brain tissue was readily available for 

the proposed experiments.  Using the whole DAO protein as the antigen the 

tertiary structure of the enzyme and any post translational modifications would 

likely be part of the purified enzyme and result in antibody generation.  However 

there would not have been any control over the region responsible for the 

immunogenicity, potential cross reactivity of the antibody with structurally 

similar proteins, and purification of the antiserum would be challenging from the 

perspective of preserving antigen configuration on the purification column.  Since 

the full length of DAO and its three dimensional structure was published 

(Kawazoe et al., 2006; Mizutani et al., 1996) and many consensus post 

translational modification sequences are known (Bairoch, 1992) suitable peptides 

can be selected which are likely to be exposed to elicit an immune reaction, are 

unlikely to be found in other proteins and do not undergo post translational 
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modifications.  After taking all of this information into consideration short 

polypeptides were utilized because polypeptides are relative easy to generate and 

use for immunization.   

Two peptides corresponding to amino terminal sequences from rat DAO 

were selected as antigens for use in generating immune response in rabbits.  

Peptide #1 (amino acid 21-38 ERYHPAQPLHMKIYADRF) was selected based 

on a proprietary analysis of DAO (Open Biosystems) which suggested that this 

region was unique to DAO and likely to be accessible to an antibody within the 

DAO enzyme.  Peptide #2 (amino acid 49-69 

GLWQPYLSDPSNPQEAEWNQQ) corresponds to the sequence of a mouse 

DAO peptide that was previously generated against mouse DAO and shown to 

yield a DAO specific antibody as determined by a western blot (Almond et al., 

2006).  As only one amino acid is different between the rat and the mouse Peptide 

#2 sequence (Figure 3.2) it was anticipated that a suitable DAO antibody may be 

generated against the rat peptide as was the case for the mouse DAO.   

The rat DAO peptide sequences were compared to corresponding mice 

and human DAO sequences for the purpose of future antibody validation.  Both of 

the peptides selected against the rat DAO show about 95% amino acid similarity 

with the mouse sequence.  In contrast, the human DAO differs considerably 

especially in the case of peptide #1 where five of the eighteen amino acids 

(~28%) were different and an extra leucine exists in the human DAO sequence.  

Peptide #2 was more conserved between the rat and the human DAO with three of 

the twenty-one amino acids differing (~17%).  Furthermore, the three amino acid 

changes retained the same polarity and electrical charges suggesting that Peptide 

#2 in rat and human are functionally conserved. 
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Figure 3.1: Comparison of commercial DAO antibodies on SDS-PAGE gel 

against 20 g of (ln1) DAO Hek293 and (ln2) Hek293 lysates.  Expected 

molecular weight of DAO is indicated by the arrow. 

 

 

 

 

 

 

Figure 3.2:  Comparison of amino acid sequences between rat, mouse and human 

DAO regions selected for polyclonal antibody synthesis.  Both of the sequences 

are found on the N-terminus of the rat DAO with Peptide #1 spanning amino 

acids 21 through 38 and Peptide #2 ranging from 49 through 69. Amino acid 

differences between the sequences are highlighted in yellow and an additional 

leucine residue in the human Peptide #1 is highlighted in red. 

 

                              Peptide #1                                                Peptide #2__________                         

rDAO  
21
ERYHPA-QPLHMKIYADRF

38
 

49
GLWQPYLSDPSNPQEAEWNQQ

69
 

mDAO  
21
ERYHPT-QPLHMKIYADRF

38 49
GLWQPYLSDPSNPQEAEWSQQ

69 
 

hDAO  
21
ERYHSVLQPLDIKVYADRF

39
 

49
GLWQPYLSDPNNPQEADWSQQ

69
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3.2 Generation of DAO specific antibodies 

Rabbits were immunized with Keyhole Limpet Hemocyanin (KLH) 

conjugated rDAO peptide #1 or peptide #2 according to the schedule in Table 3.1 

where the initial immunization was followed by three independent boosts (Open 

Biosystems).  Crude unpurified serum samples from day 70 collection were 

obtained and used to probe western blots of crude extracts containing rat DAO 

expressed in human embryonic kidney (Hek293) cells and rat cerebellar lysates to 

determine if the rabbits generated antibodies against DAO. 

 

3.3 Characterization of crude DAO polyclonal antibody 

Crude polyclonal antiserum obtained from rabbit immunized with Peptide 

#1 was tested for its ability to detect rat DAO expressed in Hek293 cell extract by 

western blotting analysis.  The Peptide #1 antiserum did not result in a successful 

DAO antibody generation because a 39 kDa band corresponding to the expected 

mobility of DAO unique to the DAO Hek293 lysate was not detected (Figure 

3.3A, lane 1).  Although immunoreactivity against DAO Hek293 lysate is present 

around 39 kDa, a similar response is apparent in the Hek293 cell lysate at the 

same molecular weight (Figure 3.3A, lane 2) suggestive of a lack of a specific 

DAO antibody signal.  The immunoreactivity in both of the samples was very 

similar suggesting that the antibody responsible for the signal was against a 

protein expressed in the host Hek293 cells, unlikely to be DAO.   

A murine version of Peptide #2 had previously been shown to successfully 

generate a rabbit polyclonal against mice DAO (Almond et al., 2006).  The 

polyclonal antiserum generated against rat Peptide #2 detected a specific 39 kDa 

band in rat DAO lysate and rat cerebellar lysate not present in Hek293 or rat 

spleen lysate (Figure 3.3, B).  Both Hek293 and rat spleen lysate were used as a 

negative control as both are known not to express DAO.  This evidence is 

strongly suggestive of the presence of DAO antibodies in the crude antiserum.  

The additional bands on the gel were presumed to be from contaminating 

antibodies from the rabbit serum.  The serum collected from rabbit immunized 

with Peptide #2 was likely to result in a working DAO antibody upon further 

purification. 
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Table 3.1:  Rabbit immunization schedule for DAO antibody generation.  A 70 

day protocol involving an initial immunization followed by three independent 

boosts was utilized for generation of DAO antiserum.  Peptide synthesis and 

immunization conducted by Open Biosystem. 

 

 

 

 

 

 

 

 

 

 

 

 

Procedure Protocol Day Description 

Control serum Collection Day 0   

 Primary injection Day 1 
Primary Immunization with 0.25 mg KLH 

emulsified with Freund's complete adjuvant, 
SQ 4 sites 

1st Booster Day 14 Boost with 0.10 mg KLH emulsified with 
Freund's incomplete adjuvant. 

Serum Collection Day 28 ~25mls per rabbit 

2nd Booster Day 42 Boost with 0.10 mg KLH emulsified with 
Freund's incomplete adjuvant. 

Serum Collection Day 56 ~25mls per rabbit 

3rd Booster Day 56 Boost with 0.10 mg KLH emulsified with 
Freund's incomplete adjuvant. 

Serum Collection Day 70 Large-volume production bleeds (~50mls per 
rabbit) 



 74 

 

 

 

Figure 3.3:  Western blot probed with crude unpurified DAO antiserum generated 

against Peptide #1 (A) and Peptide #2 (B).  DAO antiserum generated against 

Peptide #1 does not detect rat DAO at the expected molecular weight of 39 kDa 

(indicated by the arrow).  DAO antiserum generated against Peptide #2 detects 

band on a Western blot in rDAO Hek293 cells and in rat cerebellum 

corresponding to DAO molecular weight (indicated by the arrow) not present in 

Hek293 cells or in rat spleen.  Additional bands are present presumably 

corresponding to contaminating antibodies in the crude sample.  
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3.4  Purification of DAO antibody against immunizing peptide 

 Due to the apparent success of the early characterization of the DAO 

polyclonal antibody from the rabbit immunized with Peptide #2, the serum was 

purified against a DAO peptide-affinity column against the immunizing peptide 

(performed by Open Biosystems).  The resulting purified DAO antibody solution 

was tested by western blotting of crude lysates containing rat or human DAO 

expressed in Hek293 cells and rat cerebellar lysate.  A pronounced DAO band of 

39 kDa, predicted to be DAO, was identified in the three DAO containing 

samples and was absent in sham transfected Hek293 and rat spleen lysates (Figure 

3.4) indicating that the DAO antibody reliably detects both rat and human DAO 

when over-expressed in Hek293 cells.  This finding was expected given the 

similarity between rat and human DAO sequence within the Peptide #2 region 

(see Figure 3.2).  In order to further test the specificity, the purified antibody was 

preincubated with the immunizing peptide at 1/10
th

 the weight of the antibody 

before probing the blot.  The 39 kDa band was not present, strongly suggesting 

that the band corresponds to DAO.  In addition to the expected DAO band, 

additional bands which migrated at about 64 kDa and 97 kDa were identified in 

the DAO Hek293 and Hek293 lysates.  All of the bands were also pre-absorbed 

with the peptide suggesting that the purified DAO antibody solution has 

contaminating antibodies with affinity to the immunizing peptide or yet unknown 

DAO variants or post-translational modifications. 

BLAST analysis of the region selected for the immunizing Peptide #2 

provides alignment only to DAO suggesting that DAO should be the only protein 

detected as a result of the production of antibodies by immunization with this 

peptide.  The presence within the purified DAO antibody solution of antibodies 

capable of detecting proteins other than DAO suggests that the peptide could have 

formed a tertiary configuration resulting in the production of unexpected 

antibodies after exposure to the rabbit immune system.  These non-DAO peptide 

configurations may have been present as well in the DAO-peptide affinity column 

used to purify the crude serum thus retaining the contaminating antibodies within 

the DAO antibody solution.   
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Figure 3.4: Western blot probed with crude polyclonal serum purification against 

the immunizing peptide resulted in a cleaner DAO antibody preparation.  Western 

blot analysis of peptide purified DAO antiserum confirmed presence of DAO 

antibody in the crude serum because its signal is blockable by pre-absorbtion with 

the immunizing peptide.  Furthermore, evidence in lane 5 suggests that the 

antibody generated against Peptide #2 is suitable for detection of human DAO in 

Hek293 cells.  Additional contaminating antibodies are present as depicted by 

unexpected bands at 64 kDa and 97 kDa.  All of the unknown bands are blocked 

by preabsorbtion of the antibody with the peptide suggesting that the 

corresponding antibodies are specific to the immunizing peptide.  The expected 

molecular weight of DAO protein is indicated by the arrow. 
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3.5 Purification of DAO antibody against purified human DAO 

enzyme  

Since the DAO polyclonal antibody isolated through the immunizing 

peptide purification retained contaminating antibodies and the DAO antibody was 

shown to recognize both rat and human DAO enzymes the antibody preparation 

was subsequently purified against a pure human DAO enzyme to try to get 

additional purity of the preparation.  Given the similarity of the two species at the 

immunizing peptide sequence level purification against the human or rat DAO 

purified protein should result in generation of purified DAO antibody.  

Furthermore, unlike the peptide alone purification where the peptide can 

apparently form unexpected configurations, the configuration of the DAO enzyme 

is conformationally restrained and is likely to result in a more specific antibody 

pool (Kaumaya et al., 1992). 
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After the second purification against purified hDAO, the antibody solution 

as tested by western blotting detected no contaminating protein bands in any of 

the negative controls, suggesting we had obtained a very pure DAO antibody 

preparation (Figure 3.5).  In particular the unknown protein bands migrating at 

about 64 kDa and 97 kDa were not observed (see Figure 3.4).  Bands were only 

present in DAO containing samples including human DAO Hek293 and rat 

cerebellar lysates.  Furthermore, the DAO bands were blocked by preincubating 

the antibody with the immunizing peptide.  Unexpectedly, two 39 kDa bands were 

detected in the human DAO Hek293 sample, rather than the single protein 

corresponding to human DAO expressed in the construct that was introduced via 

transient transfection in the Hek293 cells.  The presence of two bands in the DAO 

Hek293 but none in Hek293 and the fact that both of them were blocked with the 

peptide preincubation suggests that both bands were DAO.  One potential 

explanation for the presence of two forms of DAO is the incorporation of the 

DAO coding sequence into an expression construct in a region with an additional 

start codon resulting in the transcription of the original message as well as a 

somewhat longer message consisting of the original message plus a short 

fragment of Hek293 genome.  Alternatively, DAO may have undergone a post-

transcriptional modification such as a phosphorylation or glycosylation that takes 

place in Hek293 cells or underwent a c-terminal cleavage discussed in the 

introduction.  However, it should be noted that the rat cerebellar lysate contained 

only one band corresponding to DAO.  However, post-translational modification 

cannot be ruled out because human DAO may differ from the rat DAO in a key 

sequence exposing it to a post-translational modification, which may not be the 

case for rat DAO.      

 

 

 

 

 

 

 

 

 

 



 79 

 

   

 

Figure 3.5: “Double” purified DAO antibody specifically detects DAO in human 

DAO Hek293 cell line and in rat cerebellar lysate on a western blot (indicated by 

the arrow). Membrane was probed with DAO antibody purified against the 

purified hDAO enzyme.  Immunoreactive bands are not seen when the antibody is 

blocked by its peptide. 
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3.6 DAO antibody validation against DAO KO mice lysate 

The purified DAO antibody solution was tested against a DAO KO mice 

cerebellar lysate (a kind gift from Christine Strick, Pfizer) to further test its 

specificity.  The KO mice were generated by knocking out exons 7-8 completely 

and part of exon 6 and 9 which should cause a frame shift beyond exon 9 and 

result in a truncated DAO protein encoding through exon 6 (manuscript in 

preparation).  The resulting protein is expected to weight about 20 kDa, or half of 

the full length DAO.   

 Two bands around 39 kDa were observed in the WT mice cerebellar lysate 

(Figure 3.6 lane 1) which suggests posttranslational modifications in mice.  This 

was not observed with the rat cerebellar lysate (Figure 3.5 lane 3) suggesting that 

the mice DAO construct may contain for example a phosphorylation sequence 

which is not found in the rat DAO sequence.  Alternatively, the two bands are 

representation of the full length DAO and the proposed c-terminal truncated DAO 

(Campaner et al., 1998; Pollegioni et al., 1995).  Both bands decrease in intensity 

in the HET mice (Figure 3.6 lane 2) but with a much more significant decrease in 

the lower molecular band intensity.  In the KO mice both bands completely 

disappeared (Figure 3.6 land 3).  Taken together these data suggest that both 

bands are corresponding to DAO.  Furthermore, there is no evidence of a 

truncated DAO in the HET and KO mice, which, if expressed, should be 

detectable with the N-terminal DAO antibody.  Consequently, either truncated 

DAO protein is degraded altogether or it is not synthesized at all.  The KO mice 

were not available until the very end of my thesis hence these animals were not 

used through out my experiments as a negative control. 
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Figure 3.6:  Examination of cerebellar lysate from DAO KO mice with the DAO 

antibody.  WT, HET and KO mice cerebellar lysates were probed with the DAO 

antibody on an SDS-PAGE gel.  The expected outcome would be no detectable 

DAO at 39 kDa but a band at ~20 kDa in the lysate from the KO mice.  As 

expected the band corresponding to the full length DAO at 39 kDa in the KO 

mice lysate was not present indicating a successful KO. There was no evidence of 

a 20 kDa band in the cerebellar lysate from the KO mice either.  In the HET 

cerebellar lysate where both 39 kDa and 20 kDa bands were expected at about 

half the intensity of the bands found in the WT mice a dimunition of the 39 kDa 

signal was observed without any evidence of 20 kDa band.  Actin was used as a 

control to show that same protein concentrations were loaded for each sample.  

DAO is indicated by the arrow. 
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3.7 Optimization of DAO immunoprecipitation procedures 

Once the DAO antibody was shown to be effectively and specifically 

recognizing DAO it was tested in immunoprecipitation experiments to determine 

if it would recognize undenatured DAO enzyme in complex co-

immunoprecipitation experiments.  Magnetized Dynal Protein A (Invitrogen) 

beads were used as a matrix for capturing and retaining the DAO antibody as 

outlined in Figure 3.7.  The bead-antibody complex was than used to 

immunoprecipitate DAO from various lysate solutions.   

The Dynal beads are precoated with Protein A, which has a very high 

affinity for most rabbit IgG antibodies (Deisenhofer, 1981).  The beads were 

mixed with the purified antiserum to allow for capture of the antibodies by protein 

A.  The two were then covalently crosslinked with dimethyl pimelimidate 

dihydrochloride (DMP) to prevent the antibodies from dissociating from the beads 

during washing and especially during the elution of the antigen.  The beads were 

convenient because they can be gently separated from the rest of the solution 

utilizing a magnet.  This allowed for retention of protein complexes, which might 

be otherwise disrupted during other co-immunoprecipitation procedures 

employing procedures such as centrifugation.  In addition, the Dynal beads 

allowed for removal of all the wash solutions ensuring thorough washing without 

losing the beads.   

 To test the ability of the DAO antibodies coupled to Dynal beads to 

immunoprecipitate DAO, lysates from human DAO Hek293 cells were first used 

as an input for the immunoprecipitation.  Increasing total protein amount from 50 

g to 750 g of lysate were used per set of bead/antibody ratio to determine the 

maximal amount of DAO that can be immunoprecipitated.  As seen in Figure 3.8, 

lanes 2 through 6, DAO antibody was able to successfully immunoprecipitate 

DAO enzyme.  At about 100 g of DAO Hek293 lysate (lane 3) the amount of 

DAO antibody was saturated as compared to 50 g (lane 2) and 250 g (lane 4).  

This bead/antibody set was used throughout further experiments and was able to 

pull-down as much DAO as was found in 25 g of DAO Hek293 lysate as  
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Figure 3.7:  Schematic diagram for preparation of DAO polyclonal antibody 

immunoprecipitation column.  The column is composed of Dynal Protein A beads 

which act as a matrix for the DAO antibody.   
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determined the by positive control with 2.5 g of DAO-Hek293 lysate in lane 1.  

The additional bands found in lanes 2 through 6 around 50 kDa were probably 

that of the heavy IgG chain.  Some of the antibody may have eluted off during the 

elution step despite cross-linking to the beads.  Samples from lanes 7 and 8 were 

prepared in the same way as the other immunoprecipitation samples but prior to 

the addition of DAO Hek293 lysates, immunizing peptide was used to preabsorb 

the antibody.  Lane 7 shows that 1 g of immunizing peptide could completely 

block the DAO antibody from capturing DAO protein from DAO Hek293 lysate.  

However, at one-tenth of the peptide concentration, as depicted in lane 8, some of 

the DAO protein was captured and retained by the DAO antibody beads.  Due to 

the concentration gradient of the blocking peptide the two lanes further 

underscore that the band being immunoprecipitated was DAO.  The protein smear 

migrating around 62 kDa in the peptide blocked samples was perhaps the result of 

trace amounts of the immunizing peptide.  This argument was justified by 

considering that in lane 8 where one-tenth of the amount used in lane 7 peptide 

was used was of lower intensity.  Some of the high molecular weight signal may 

be due to antibody elution from the column and subsequent recognition by the 

secondary antibody.  Perhaps the use of the peptide on the DAO Dynal beads 

resulted in the antibody elution during the stage prior to loading on the SDS-

PAGE gel. 

 The immunoprecipitation procedure using DAO antibodies coupled to 

Dynal beads was further validated using rat cerebellar lysates in order to ensure 

that the antibody was capable of recognizing native human and rat DAO and that 

the DAO enzyme may be detected at physiological levels as it is in the rat 

cerebellum and for it to be specifically pulled-down from a lysate solution.  This 

was critical to enable immunoprecipitation of native DAO protein complexes. 

The results from western blotting analysis of immunoprecipitation from 

rat cerebellar lysate are presented in Figure 3.9.  In lanes 3 through 7, a lysate 

gradient ranging from 25 g to 500 g was presented with an increasing retention 

of DAO protein.  The 500 g of rat cerebellar lysate (lane 7) corresponded to the 

amount of DAO captured from 100 g of human DAO Hek293 (lane 10) 
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suggesting that around 500 g of rat cerebellar lysate was necessary to saturate 

the beads with DAO.  Since it only takes 100 g of human DAO Hek293 lysate 

but 500 g of rat cerebellar lysate this outcome suggests that there were 

approximatelly five times as much DAO expressed in the stable line as in the 

cerebellum per g of total protein.  Such an outcome was expected as in general, 

stable lines heterologously expressing proteins are more likely to express at a 

much higher than it is in native tissue.  The first two lanes of Figure 3.9 show the 

cerebellar lysate itself at 10 g and 50 g both of which show presence of DAO.  

The relative protein band intensity between 500 g immunoprecipitation (lane 7) 

and that of 50 g lysate (lane 2) was about four-fold suggesting that the DAO 

antibody was capable of immunoprecipitating about forty percent of the total 

DAO found in the lysate.  This ratio of the retained DAO on the antibody beads 

could be increased if the immunoprecipitation was carried out for longer then the 

one hour utilized in this experiment.  However, such a retention rate is already 

high and sufficient for experimental needs.  The peptide blocked DAO antibody 

was used in lanes 8 and 9 where either 1 g or 0.1 g of the immunizing peptide 

was used respectively.  As in human DAO Hek293 sample, 1 g of the peptide 

was able to completely block DAO capture by the DAO beads even when highest 

cerebellar lysate, 500 g, was used.  The lower peptide block partially prevented 

DAO capture from the cerebellar lysate. 

 All of the immunoprecipitation samples share the IgG heavy chain band 

around 50 kDa.  Additional background signal was found especially in the peptide 

blocked samples suggesting some antibody elution from the beads and potential 

trace amount of the peptide as discussed previously (Figure 3.8).   
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Figure 3.8: Optimization of DAO immunoprecipitation protocol using DAO 

antibody covalently coupled to protein Dynal beads from hDAO Hek293 stable 

cell line lysate.  The western blot was probed with DAO antibody for presence of 

DAO after immunoprecipitation.  As the concentration of hDAO-Hek293 lysate 

was increased (lanes 2-6) from 50 g to 750 g more DAO was pulled-down until 

the antibody beads were saturated at about 100 g of lysate.  The pull-down was 

completely blocked by preabsorbtion of the antibody with 1 g of immunizing 

peptide, but partially with 0.1 g.  The expected DAO protein separation on the 

SDS-PAGE gel is indicated by the arrow. 
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Legend: 

Ln1:  2.5 g hDAO Hek293 lysate 

Ln2:  IP with 50 g hDAO Hek293 lysate 

Ln3:  IP with 100 g hDAO Hek293 lysate 

Ln4:  IP with 250 g hDAO Hek293 lysate 

Ln5:  IP with 500 g hDAO Hek293 lysate 

Ln6:  IP with 750 g hDAO Hek293 lysate 

Ln7:  IP with 500 g hDAO Hek293 lysate preabsorbed with 1 g peptide 

Ln8:  IP with 500 g hDAO Hek293 lysate preabsorbed with 0.1 g peptide 
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Figure 3.9: Optimization of the DAO immunoprecipitation from rat cerebellar 

lysate using DAO antibody covalently coupled to protein A Dynal beads.  As the 

concentration of the cerebellar lysate increases (lane 3-7) per antibody-bead 

sample the amount of immunoprecipitated DAO increases.  The amount of DAO 

immunoprecipitated from 500 g rat cerebellar lysate is equivalent to the DAO 

immunoprecipitated from 100 g of hDAO-Hek293 suggesting saturation of the 

beads.  DAO is not pulled-down when the beads are preabsorbed with 1 g of the 

immunizing peptide, but see partial pull-down with 0.1 g peptide.  The expected 

DAO protein separation on the SDS-PAGE gel is indicated by the arrow. 
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Legend: 

Ln1:  10 g rat cerebellar lysate  Ln6:  IP from 250 g cerebellar lysate 

Ln2:  50 g rat cerebellar lysate  Ln7:  IP from 500 g cerebellar lysate 

Ln3:  IP from 25 g cerebellar lysate Ln8:  IP from 500 g cerebellar lysate preabsorbed with 

1 g peptide 

Ln4:  IP from 50 g cerebellar lysate Ln9:  IP from 500 g cerebellar lysate preabsorbed with 

0.1 g peptide 

Ln5:  IP from 100 g cerebellar lysate Ln10:IP from 100 g hDAO-Hek293 lysate 
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3.8 Conclusions 

Two N-terminal rat DAO peptides were used to generate polyclonal 

antibodies in rabbits.  One of the two antiserums was shown to recognize DAO 

lysates from both rat and human DAO stable lines while the second peptide did 

not yield useful DAO antiserum.  The serum from the positively reactive rabbit 

was purified against the immunizing peptide.  Due to the likely presence of 

contaminating antiserum a second purification against human DAO purified 

enzyme resulted in a very clean DAO antibody preparation.  The purified 

antibody was successfully tested against DAO KO mice and in 

immunoprecipitation experiments with both rat DAO stable line and rat cerebellar 

lysate.  Immunoprecipitation conditions for Dynal protein A beads were 

optimized for the maximum DAO binding capacity.  These conditions were 

deemed suitable to be applied for a DAO interactor study.  
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4. Identification of putative DAO interactors through DAO antibody pull-

down from rat cerebellum  

 

 4.1  Introduction 

Protein-protein interactions are at the center of cellular processes 

including DNA replication, transcription, translation, splicing, secretion, cell 

cycle control, signal transduction and intermediary metabolism.  Those 

interactions have varying degrees of affinity and specificity.  The weaker 

interactions termed transient protein-protein interactions regulate fundamental 

processes such as cell growth, cell cycle, metabolic pathways and signal 

transduction.  Thus study of protein-protein interactions plays an important role in 

understanding biological systems (Phizicky and Fields, 1995).   

In identifying protein-protein interactions, it is important to maintain the 

native state of proteins to ensure identification of genuine interactors rather than 

aggregates of denatured proteins (Phizicky and Fields, 1995).  Techniques used to 

asses the degree of protein interaction ultimately influence the outcome of the 

interactor study.  Several methodologies (outlined in Table 4.1) have been widely 

used for the purpose of identification interacting proteins.  Each of the techniques 

has specific benefits and disadvantages associated with them.   

 An understanding of the DAO interactome may give us an insight into its 

function and also perhaps its role in schizophrenia etiology.  Knowledge of DAO 

interacting proteins may better allow us to understand what DAO does and the 

means by which its activity may be regulated through pathways which DAO has 

not previously been considered part of.  Should DAO be found to interact with 

proteins known not to be expressed in the peroxisome, for example, we may be 

able to test its localization in relation to the new interacting partners through the 

likes of immunocytochemistry and electron microscopy.  Such an observation 

would allow us to address the controversial DAO localization.  Hence we propose 

that identification of DAO interactome, or the entire set of proteins DAO interacts 

with, is a valuable tool in studying the function of this enzyme.  
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Table 4.1: Methods used in identification of protein-protein interactions. Adapted 

from Howell (Howell et al., 2006) 

 

Interaction method Description  

Yeast-2-hybrid A high throughput screen involving use of a library fusions 

where the protein of interest, the bait, is fused to a DNA-

binding domain and the potential interacting proteins, the 

prey, are fused to an activation domain.  Upon a physical 

interaction of the bait and the prey active transcription 

factor is restored allowing yeast colonies  to synthesize key 

amino acids and survive on selective media.  DNA is 

extracted from the surviving colonies and sequenced to 

identify the interacting polypeptide.  This approach is 

challenging to identify large protein interactors as those are 

unlikely to be part of the fusion library and may not be 

properly expressed.  

 

Co-immunopre- Involves specific antibody to pull-down the bait protein of  

cipitation (co-IP)  interest from a protein pool or lysate and 

coimmunoprecipitate with it interacting proteins.  After 

extensive washing to remove nonspecific proteins the 

constituents are resolved by SDS-PAGE and identified 

through mass spectroscopy. 

 

Affinity  Instead of using an antibody to pull-down the bait, the bait  

chromatography  is tagged such as with GST, TAP or His in a fusion 

construct.  A tag-specific matrix is used to retain the bait 

and any interacting proteins of the bait.  The tag may alter 

the confirmation of the bait protein thus potentially 

changing associated interactome. Interactors are identified 

via mass spectroscopy. 

 

Phage display A library-based method where the prey peptides are 

expressed as fusion proteins with the viral coat reflecting 

the genetic content of  the virus.  The phage library is 

exposed to the bait allowing for selection of prey virus 

carrying peptides capable of interacting with the bait.  The 

genetic content of the interacting viruses is sequenced 

identifying the interacting peptide. 

 

Cross-linking This is a preferable method for identification of weaker or 

transient interactions.  Cross-linkers quickly permeate cells 

and tissues allowing for stabilization of weak interactions.  

The preserved protein complexes containing the bait 

protein are separated and analyzed through mass 

spectroscopy.  The interactome is likely dependent on the 

type of cross linker used. 
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Protein chip arrays The bait protein is immobilized on a chip surface and 

exposed to potential prey proteins.  Mass spectroscopy can 

be used to identify positive interactions.   

 

 

Far-western Involves immobilization of known prey peptides to a 2-D  

blotting/ELISA  surface followed by addition of bait protein and detection 

of presence of the bait with a primary/secondary antibodies.  

Use of denatured proteins may alter the degree of 

interaction between the proteins. 

 

Biophysical Fluorescence resonance energy transfer is in vivo  

Techniques  measurement of proximity between known and tagged 

interacting proteins.  This technique is distance dependent 

measurement of electronic excited states of two dye 

molecules in which excitation from a donor is transferred 

onto the acceptor as long as the two are in a close 

proximity. 

__________________________________________________________________ 

 

    The co-immunoprecipitation (co-IP) technique for the identification of 

DAO interacting proteins was chosen.  The use of a specific antibody allows for 

retention of the antigen even when the stringency of the washes are increased 

allowing for selection of the most robust and thus most likely true interacting 

proteins.  This technique allows for the pull-down of DAO in its native form 

containing any post-translational modifications in conjunction with any preformed 

complexes of which DAO may be part of.  DAO may not be found in the same 

configuration when it is synthesized with a tag in E. coli cells for the likes of 

affinity chromatography.  The co-IP methodology may be less likely, however, to 

identify interacting proteins which are expressed at low levels (Howell et al., 

2006).  By using adult rat cerebellum, where DAO is highly expressed, as the 

source of the input for the immunoprecipitation the bait and prey concentrations 

are reflective of the native state preventing false positives that may result from 

overexpression of either the bait or the prey as could be the case in phage display.  
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4.2 Schematic flow of the proposed immunoprecipitation study 

 The immunoprecipitation with the DAO antibody and the two negative 

controls (described in section 4.3) led to isolation of protein complexes specific to 

each sample.  As outlined in Figure 4.1, the samples generated through the 

immunoprecipitation were denatured and run on SDS-PAGE gel to separate out 

the proteins based on size.  Each SDS-PAGE gel lane was cut into twenty even 

pieces and the excised bands underwent a tryptic digest resulting in shorter 

polypeptides representing proteins in each sample.  The polypeptides generated 

by the tryptic digest were sequenced by mass spectroscopy and compared with the 

NCBI protein database to translate the identity of the proteins in each sample.  

The proteins identified through DAO antibody pull-down were then compared 

and contrasted with those of the negative controls to derive a list of DAO specific 

putative interacting proteins.   

 

Figure 4.1: Schematic diagram for the proteomics strategy. 

 

 

 

 

Isolation of protein complex 

 

 

Potential candidates 

SDS-PAGE 

A    B    C 

 

Locus Unique Total Unique Total Unique Total GI numbers Description

 BSN 0 0 2 3 53 95 9506427,51315739 bassoon (presynaptic cytomatrix protein)

 PCLO 0 0 0 0 43 83 10048483,27372317,41019528,51094943 piccolo (presynaptic cytomatrix protein)

 ERC1 0 0 0 0 5 6 28972606,30017397 ELKS/RAB6-interacting/CAST family member 1

 ERC2 0 0 0 0 4 5 51701368  ELKS/RAB6-interacting/CAST family member 2

 UNC13A 0 0 0 0 3 3 12408318  unc-13 homolog A (C. elegans)

 UNC13C 0 0 0 0 3 3 21749873,49248545 unc-13 homolog C (C. elegans)

 PPFIA2 1 1 0 0 2 3 42558942,119617781

 protein tyrosine phosphatase, receptor type, f polypeptide 

(PTPRF), interacting protein (liprin), alpha 2

 RIMS1 0 0 0 0 2 3 34395745  regulating synaptic membrane exocytosis 1; RIM1

 PPFIA3 (includes EG:8541)0 0 0 0 1 1 42558929

 protein tyrosine phosphatase, receptor type, f polypeptide 

(PTPRF), interacting protein (liprin), alpha 3

 PPFIA4 0 0 0 0 1 1 4240283

 protein tyrosine phosphatase, receptor type, f polypeptide 

(PTPRF), interacting protein (liprin), alpha 4

 RIMBP2 0 0 1 1 1 1 2224577  RIMS binding protein 2

 RIMS2 0 0 0 0 1 1 71051516  regulating synaptic membrane exocytosis 2; RIM2

Lane

A (IgG) B (Peptide blocked) C (DAO)

Mass Spectroscopy  

Data Analysis  

Biological Validation  

Excise bands and 
carry out in-gel digestion 
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4.3 Rabbit IgG and peptide blocked DAO antibody as negative controls 

Immunoprecipitation experiments are likely to yield many interacting 

proteins only some of which are likely attributable to a direct interaction with the 

bait protein.  Maintaining a balance between stringency parameters to minimize 

nonspecific and matrix-dependent background signal while retaining the true 

interactors is a challenging task.  Thus parameters such as prey protein 

concentration, ionic strength, detergent, volume and frequency of washes, and 

length of time/temperature for bait-prey interactions and techniques used to 

prepare the samples have to be optimized for best outcome (Howell et al., 2006).  

Furthermore, technique specific controls are critical to ascertain the likelihood of 

true interactors.  To control for the non-specific retention of proteins by the Dynal 

Protein A beads or by sticking to the antibody chains two negative controls were 

utilized for the DAO co-immunoprecipitation: rabbit IgG and peptide blocked 

DAO antibody.  The rabbit IgG is commonly accepted as a suitable negative 

control for a rabbit specific antibody so we included it in our experiment (Law et 

al., 2009).  To more thoroughly control for non-specific sticking of proteins to the 

DAO antibody we prevented the capture of DAO by pre- and co-blocking the 

DAO antibody with the immunizing peptide during incubation with the rat 

cerebellar lysate.  This negative control may more thoroughly control for proteins 

that may have affinity to our antibody then a random rabbit IgG control.  As 

expected, both rabbit IgG pull-down and the peptide blocked DAO antibody were 

shown not to immunoprecipitate DAO protein from rat cerebellum as determined 

by SDS-PAGE gel probed with the DAO antibody (Figure 4.2).  The cerebellum 

was used because of highly enriched DAO expression in this brain region (Verrall 

et al., 2007). 
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Figure 4.2: Optimization of negative controls for the co-IP of DAO.  Two 

negative controls, rabbit IgG (lane 3) and peptide blocked DAO antibody (lane 2) 

were used to increase the confidence in the “hits” generated against the DAO 

antibody (lane 1).  The same amount of rat cerebellar lysate was applied to the 

negative controls but no DAO was immunoprecipitated from the lysate.  Rat 

cerebellar lysate, the input for the immunoprecipitation (lane 4) was used at 1/10
th

 

the volume to verify that the lysate is expressing DAO.  The resolved DAO 

protein on the SDS-PAGE gel is indicated by the arrow. 
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4.4 Coomassie stained gels of the eluates 

The interacting proteins retained by the DAO antibody and the two 

negative control columns were examined for differential protein staining on the 

SDS-PAGE gel through visualization by the Coomassie blue stain.  We expected 

to see enhanced protein bands in the DAO immunoprecipitation Coomassie 

stained SDS-PAGE lane corresponding to DAO specific interactors.  This finding 

is especially important since we did not have a positive control.  To date there are 

no known DAO interactors identified outside of the interaction with the product 

of the primate specific gene G72 (Chumakov et al., 2002).    

 A small portion (1/20) of the sample generated by immunoprecipitation 

and used for the mass spectroscopy analysis was separated on SDS-PAGE gel and 

stained with Coomassie stain (Figure 4.3).  The possible presence of DAO in the 

solution from the pull-down was indicated by the green arrow.  This band was not 

found in either of the two negative controls supporting the Western blot findings 

from Figure 4.2.  More importantly several specific bands were present in the 

DAO pull-down sample represented by the greater staining at high molecular 

weight beyond the ~100 kDa size marker.  Several small molecular weight bands 

of less then 20 kDa and between 30 and 40 kDa also appeared to be specific to the 

DAO immunoprecipitation suggesting presence of proteins that were not found in 

the negative controls. 
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Figure 4.3:  Coomassie gel of the rat cerebellar immunoprecipitation input for the 

mass spectroscopy analysis.  One-twentieth of the mass spectroscopy input was 

used for Coomassie stain of immunoprecipitation from rabbit IgG (lane 1), 

peptide blocked DAO antibody (lane 2) and DAO antibody (lane 3).  Green arrow 

indicates band likely corresponding to DAO in the DAO pull-down column.  This 

band is absent in the two negative controls.  Black arrows highlight bands specific 

to the DAO immunoprecipitation sample. 

 

 

 

 
 

 

 

4.5 Identification of novel putative DAO interactors through mass 

spectroscopy using PBS as a washing buffer 

While optimizing the washing conditions for the antibody containing 

beads we were challenged to identify an optimal procedure which would include 

retention of DAO interacting proteins but removal of sticky, nonspecific proteins.  

This was difficult to optimize because we did not have a positive control on which 

to rely.  As a result, we decided to be conservative and use very mild washing 

conditions using phosphate buffered solution (PBS) in an attempt to make sure 

that we did not lose any of the interacting proteins.  Using two negative controls 

we would be able to subtract out nonspecific proteins from the pool of DAO 
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putative interacting proteins.  At the same time, having the results from the 

Coomassie stained SDS-PAGE gels (Figure 4.3) we had reason to believe that 

DAO specific interacting proteins were identified through the proposed co-

immunoprecipitation from rat cerebellum. 

Based on the PBS washing conditions a total of 198 putative DAO 

interacting proteins were identified (Table 4.2).  This number represents proteins 

that were found in the DAO antibody immunoprecipitation column but not in 

either of the two negative controls. Exceptions were made for proteins that were 

found at very low levels (no more then two hits) in both of the two negative 

controls if they were identified at high concentrations in the DAO pull-down 

lysate.  Bassoon is an example of such an exception where 52 and 94 unique and 

total hits respectively were identified in the DAO immunoprecipitation column 

but in addition 2 and 3 unique and total hits were found in the peptide blocked 

control respectively.  The interacting proteins are highlighted in Table 4.2, where 

each pull-down experiment lists the abbreviated protein name, and the number of 

hits for each pull-down.  The hits were divided into the number of unique and 

total hits.  Unique hits were represented by the number of different polypeptides 

that were sequenced and identified by the mass spectroscopy and recognized as 

belonging to the identified protein.  The greater number of unique hits may be 

suggestive of a stronger interacting protein or be representative of a larger protein 

which was digested into more fragments.  Table 4.3 highlights the top 24 

interacting proteins based on the number of identified hits along with their full 

name and molecular weight.  As expected the proteins with the most hits were 

large proteins.  Hence it was important to examine unique hits in conjunction with 

the total hits which represent all of the hits identified for that protein when all of 

the unique hits and the frequency of each unique hit were compiled together.  The 

ideal outcome for a strong interacting protein is for a high number of unique hits 

to be accompanied by an even higher number of total hits.  An arbitrary cut off of 

at least four unique hits was used to come up with the 198 interacting proteins. 
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Table 4.2: Putative DAO interacting proteins identified from co-

immunoprecipitation experiments. 

 
 Sample 

Protein PBS Wash RIPA Supplemented Wash 

Name A (IgG) 
B (Peptide 
blocked) 

C (DAO) 
D (Peptide 
blocked) 

E (DAO) 

  Unique Total Unique Total Unique Total Unique Total Unique Total 

DYNC1H1 4 4 2 2 149 202 2 2 41 53 

BSN 0 0 2 3 52 94 0 0 32 60 

BAT2D1 0 0 0 0 46 100 0 0 19 46 

PCLO 0 0 0 0 41 79 0 0 16 27 

SACS 0 0 0 0 29 30 0 0 3 3 

MYH10 0 0 0 0 20 22 2 2 4 4 

ACZ 0 0 0 0 19 47 0 0 15 27 

ATP6V0A1 1 1 2 2 17 51 0 0 0 0 

DEPDC2 0 0 0 0 15 19 0 0 2 3 

 ATP6V1A 2 2 0 0 15 18 2 2 1 1 

AP2A1 1 1 0 0 14 16 2 2 5 7 

 PRKCG 0 0 1 1 14 16 0 0 5 5 

IMMT 0 0 0 0 14 16 1 1 2 3 

SNIP 0 0 0 0 13 24 0 0 17 24 

PC 0 0 1 1 13 14 0 0 6 7 

DAO 0 0 0 0 13 28 0 0 5 7 

ATP6V1B2 1 1 0 0 13 15 4 4 4 4 

SDHA 2 2 0 0 13 16 0 0 0 0 

NDUFA9 1 1 1 1 12 19 0 0 1 1 

ANK1 1 1 0 0 12 12 0 0 1 1 

AP2B1 1 1 0 0 11 11 2 2 7 8 

RPS3 0 0 0 0 11 13 1 1 0 0 

RAPGEF4 0 0 1 1 10 11 1 1 12 14 

CEP97 0 0 0 0 10 12 0 0 4 4 

SLC4A4 0 0 1 1 10 17 1 1 3 4 

ARBP 0 0 1 2 10 23 1 1 1 1 

MAP1A 1 1 1 1 10 13 1 1 1 1 

LOC684558 0 0 0 0 10 12 0 0 1 1 

SLC12A5 0 0 1 1 10 21 0 0 0 0 

ERLIN2 0 0 0 0 10 13 0 0 0 0 



 99 

CNTNAP1 1 1 0 0 10 13 0 0 0 0 

NDUFS2 0 0 2 2 10 10 0 0 0 0 

AP2A2 0 0 1 1 9 10 3 3 6 8 

AP1B1 1 1 0 0 9 9 2 2 6 6 

PHYHIP 0 0 0 0 9 18 0 0 5 7 

MAP1B 0 0 0 0 9 12 0 0 4 4 

PABPC1 1 1 2 2 9 12 0 0 4 4 

PYGB 0 0 0 0 9 9 3 3 4 4 

1BG3B 0 0 0 0 9 9 3 3 2 2 

C1QBP 0 0 0 0 9 11 0 0 1 1 

AQP4 0 0 0 0 9 85 0 0 0 0 

NCAM1 1 1 0 0 9 11 1 1 0 0 

ANK1 0 0 0 0 9 9 0 0 0 0 

YLPM1 0 0 0 0 8 12 0 0 16 26 

YLPM1 0 0 0 0 8 11 0 0 16 25 

AP1B1 1 1 0 0 8 8 1 1 6 6 

NAPB 1 1 0 0 8 10 2 2 4 4 

DAO 0 0 0 0 8 16 0 0 2 2 

TFSM 0 0 0 0 8 18 0 0 1 1 

NDUFA9 1 1 1 1 8 13 0 0 1 1 

MYO5A 0 0 0 0 8 9 1 1 1 1 

MYH9 0 0 0 0 8 8 0 0 1 1 

SLC1A2 1 1 0 0 8 21 0 0 0 0 

MTCH2 0 0 0 0 8 14 0 0 0 0 

ATP8A1 0 0 0 0 8 14 0 0 0 0 

NDUFB5 0 0 0 0 8 10 0 0 0 0 

ATP6V1C1 0 0 0 0 8 9 0 0 0 0 

PRKCB 0 0 0 0 8 8 0 0 0 0 

NDUFV1 0 0 1 1 8 8 1 1 0 0 
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ARF5 1 1 1 2 7 12 2 3 7 8 

RAPGEF4 0 0 0 0 7 8 0 0 7 8 

SFXN3 1 1 0 0 7 14 1 1 4 4 

PPP1CB 0 0 0 0 7 7 0 0 4 6 

NAPA 1 1 1 1 7 8 2 2 3 3 

PYGB 0 0 0 0 7 7 2 2 3 3 

RPS18 0 0 0 0 7 13 0 0 1 1 

SFXN1 1 1 0 0 7 12 0 0 1 1 

RAB7A 0 0 0 0 7 8 0 0 1 1 

ANK2 0 0 0 0 7 7 0 0 1 1 

KIF5C 0 0 0 0 7 7 0 0 1 1 

NDUFB10 0 0 0 0 7 10 0 0 0 0 

NEGR1 0 0 0 0 7 10 0 0 0 0 

ILF2 0 0 0 0 7 9 0 0 0 0 

RPS8 0 0 0 0 7 9 0 0 0 0 

FLOT1 0 0 0 0 7 8 0 0 0 0 

IGSF8 0 0 1 1 7 7 1 1 0 0 

NDUFV2 0 0 0 0 7 7 0 0 0 0 

CRMP1 1 1 0 0 6 8 1 1 16 26 

CRMP1 1 1 0 0 6 8 1 1 13 24 

ARF4 1 1 1 2 6 10 2 3 5 6 

CHAINA 0 0 1 1 6 8 2 4 5 6 

ERC1 0 0 0 0 6 8 0 0 5 5 

GNB4 1 2 1 2 6 10 1 1 3 5 

MAP1B 0 0 0 0 6 9 0 0 3 3 

PPP1CC 0 0 0 0 6 6 1 1 3 4 

MFF 0 0 0 0 6 7 0 0 2 2 

ANK2 0 0 0 0 6 6 0 0 2 2 

DMX2 0 0 0 0 6 6 0 0 2 2 

MAP1B 0 0 1 1 6 9 0 0 1 1 

ELALV1 0 0 1 1 6 8 0 0 1 1 
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ATP6VH1 0 0 1 1 6 8 0 0 1 1 

DNM1L 0 0 0 0 6 7 1 1 1 1 

RBM14 0 0 0 0 6 6 0 0 1 1 

NDUFS4 0 0 0 0 6 6 0 0 1 1 

NDUFB7 0 0 0 0 6 10 0 0 0 0 

NDUFA12 0 0 0 0 6 9 0 0 0 0 

RPS19 1 1 0 0 6 8 0 0 0 0 

MAOA 0 0 0 0 6 7 0 0 0 0 

DDX5 1 1 0 0 6 7 1 1 0 0 

MTX2 0 0 0 0 6 7 0 0 0 0 

STOML2 0 0 0 0 6 7 0 0 0 0 

NDUFB8 0 0 0 0 6 6 0 0 0 0 

RPL7 0 0 0 0 6 6 0 0 0 0 

NDUFB11 0 0 0 0 6 6 0 0 0 0 

CACNA2D1 0 0 0 0 6 6 0 0 0 0 

DPP6 0 0 0 0 6 6 0 0 0 0 

BIN1 0 0 0 0 6 6 0 0 0 0 

CACNA2D2 0 0 0 0 6 6 0 0 0 0 

SCCPDH 0 0 0 0 6 6 0 0 0 0 

CLINT1 0 0 0 0 5 6 0 0 4 4 

RAB2A 0 0 0 0 5 7 0 0 3 5 

ENTH 0 0 0 0 5 6 0 0 3 3 

EEF1A2 0 0 1 1 5 5 3 3 3 5 

ANK2 0 0 0 0 5 5 0 0 3 3 

DNM3 0 0 0 0 5 5 3 3 2 2 

LMNB1 0 0 0 0 5 5 2 2 2 2 

SYN1 1 1 0 0 5 5 2 2 2 2 

RPL30 0 0 1 1 5 10 0 0 1 1 

RPL14 0 0 0 0 5 6 0 0 1 1 

PYGM 0 0 0 0 5 5 1 1 1 1 

ELAVL1 0 0 1 1 5 5 0 0 1 1 

UQCRB 1 1 0 0 5 5 0 0 1 1 
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NDUFA5 0 0 0 0 5 5 0 0 1 1 

ATP2A3 1 1 0 0 5 10 0 0 0 0 

RAP1B 0 0 0 0 5 9 2 2 0 0 

NDUFS8 0 0 0 0 5 7 0 0 0 0 

NFASC 0 0 0 0 5 6 1 1 0 0 

HP1BP3 0 0 1 1 5 6 0 0 0 0 

CAR4 0 0 0 0 5 6 0 0 0 0 

KCTD12 0 0 0 0 5 5 0 0 0 0 

GRIA4 0 0 0 0 5 5 0 0 0 0 

RPS4X 0 0 0 0 5 5 0 0 0 0 

RAA 0 0 0 0 5 5 0 0 0 0 

NDUFC2 0 0 0 0 5 5 0 0 0 0 

  0 0 0 0 5 5 0 0 0 0 

YLPM1 0 0 0 0 4 7 0 0 9 14 

DYNLL2 0 0 1 1 4 5 0 0 6 6 

NCOA6 0 0 0 0 4 4 0 0 4 5 

IDH3B 0 0 0 0 4 4 3 3 4 4 

PURB 0 0 0 0 4 4 1 1 3 3 

SLC1A6 1 1 0 0 4 7 0 0 2 2 

LOC679221 1 1 0 0 4 6 0 0 2 3 

MYL6 0 0 0 0 4 6 0 0 2 2 

RGD1565289 0 0 1 1 4 6 0 0 2 2 

GNAQ 0 0 0 0 4 6 2 2 2 2 

RAB5C 0 0 0 0 4 5 1 1 2 2 

RTN4 0 0 0 0 4 5 0 0 2 2 

TUFM 0 0 0 0 4 4 0 0 2 2 

MGST3 0 0 0 0 4 4 0 0 2 2 

VAPA 0 0 0 0 4 8 1 1 1 1 

TARDBP 0 0 1 1 4 7 0 0 1 1 
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GJA1 0 0 0 0 4 7 0 0 1 1 

RPLP2 1 1 0 0 4 7 0 0 1 1 

LOC685320 0 0 0 0 4 6 0 0 1 1 

SEC22B 0 0 0 0 4 5 1 1 1 1 

ERC2 0 0 0 0 4 5 0 0 1 1 

LOC679739 0 0 0 0 4 4 0 0 1 1 

DDX3X 0 0 0 0 4 4 0 0 1 1 

CADM3 0 0 1 1 4 4 1 1 1 1 

ANKG119 0 0 0 0 4 4 0 0 1 1 

CYFIP2 0 0 0 0 4 4 0 0 1 1 

NDUFA11 0 0 0 0 4 4 0 0 1 1 

UQCRFS1 1 1 0 0 4 4 0 0 1 1 

FAM162A 0 0 0 0 4 4 0 0 1 1 

GRIA1 0 0 0 0 4 4 0 0 1 1 

APOE 1 1 0 0 4 7 0 0 0 0 

RPS2 1 1 0 0 4 6 0 0 0 0 

SLC32A1 0 0 0 0 4 6 0 0 0 0 

THY1 1 1 0 0 4 6 0 0 0 0 

INPP5A 0 0 1 1 4 5 0 0 0 0 

LOC683655 0 0 1 1 4 5 0 0 0 0 

SDHB 0 0 0 0 4 5 0 0 0 0 

RPL3 0 0 0 0 4 5 0 0 0 0 

ITPR3 1 1 0 0 4 5 0 0 0 0 

MAOA 0 0 0 0 4 5 0 0 0 0 

MAOB 0 0 0 0 4 5 0 0 0 0 

STX7 0 0 0 0 4 5 0 0 0 0 

AMPH 0 0 0 0 4 5 1 1 0 0 

NTM 0 0 0 0 4 5 0 0 0 0 

MYH14 1 1 0 0 4 4 0 0 0 0 

RGD1562953 1 1 0 0 4 4 0 0 0 0 

CHCHD3 0 0 0 0 4 4 1 1 0 0 
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ARL8A 0 0 0 0 4 4 0 0 0 0 

FINB 0 0 0 0 4 4 0 0 0 0 

RPS9 0 0 0 0 4 4 0 0 0 0 

RPL14 0 0 0 0 4 4 0 0 0 0 

RPL22 0 0 1 1 4 4 0 0 0 0 

RPS9 0 0 0 0 4 4 0 0 0 0 

SLC23A12 0 0 0 0 4 4 0 0 0 0 

DDOST 0 0 0 0 4 4 0 0 0 0 

OGT 0 0 0 0 4 4 0 0 0 0 

RPS6 0 0 0 0 4 4 0 0 0 0 

DYNC1LI2 0 0 0 0 4 4 0 0 0 0 

TRIM3 0 0 0 0 4 4 0 0 0 0 

STX13 0 0 0 0 4 4 0 0 0 0 

UNC13A 0 0 0 0 4 4 0 0 0 0 

RPS6 0 0 0 0 4 4 0 0 0 0 

SAMM50 0 0 0 0 4 4 0 0 0 0 

DSP 0 0 0 0 0 0 0 0 11 18 

DSP 0 0 0 0 0 0 0 0 6 11 

CHAINB 0 0 0 0 0 0 0 0 5 5 

HRNR 0 0 0 0 0 0 0 0 4 10 

PFN1 0 0 0 0 0 0 0 0 4 4 
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Table 4.3: List of the top 24 DAO-interacting-proteins identified through the PBS 

washing protocol as determined by the number of unique hits.  Generally there 

appears to be a correlation between the molecular size of the protein and the 

number of hits.   

 

Abbreviation Protein Name Size (kDa) 

DYNC1H1 Dynein heavy chain 532 

BSN Bassoon 418 

BAT2D1 HBxAg transactivated protein 2 313 

PCLO Piccolo 553 

PRKCG Protein kinase C, Gamma 78 

SNIP SNAP-25-interacting protein 130 

PC Pyruvate carboxylase, mitchondrial 130 

RAPGEF4 Exchange factor directly activated by cAMP 2 123 

CEP97 Centrosomal protein 97 94 

PHYHIP Phyhip protein 48 

MAP1B Microtubule-associated protein 1B 270 

PABPC1 Poly(A) binding protein, cytoplasmic 1 71 

YLPM1 YLP motif containing 1 241 

AP1B1 Adopted-related protein complex 1, beta 1 106 

PPP1CB Protein phosphate 1 37 

CRMP1 Crmp 1 protein 74 

ERC1 
ELKS/RAB6-interacting/CAST family 

member 

128 

CLINT1 Clathrin interactor 1 68 

DYNLL2 Dynein, light chain 24 

NCOA6 
Peroxisome proliferator activater receptor 

interacting protein 

218 

DSP Desmoplakin 1 332 

CHAINB 
Chain B, perchloric acid soluble protein-a 

translational inhibi 

14 

HRNR Homeric precursor 282 
PFN1 Profilin 1 15 

 

 

4.6 Optimization of harsh washing conditions 

The number of putative interacting proteins identified through the mild 

PBS wash was much greater then could be reasonably evaluated experimentally 

making it difficult to select direct DAO interactors.  Proteins identified in the 

DAO pull-down lysate may be part of larger protein complexes which were 

retained because a mild washing procedure was employed.  A schematic of such 

interaction is depicted in Figure 4.4.  Alternatively, some of the hits were non-
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specific but retained because a mild wash was employed.  Consequently, a more 

stringent washing was optimized to narrow down the number of interacting 

proteins and focus on the strongest of interactors. 

 

 

Figure 4.4: A schematic diagram depicting a direct interaction of DAO (back 

circle) with protein x (green oval) result in immunoprecipitation of two other 

proteins (red and blue rectangles) which are not in a direct contact with DAO 

itself. 

 

 

 

 

 

 

 While using the PBS wash as a control other conditions including RIPA 

buffer alone and in combination with higher salt (NaCl) and SDS were tested.  

Initially the harsher washing options were tested to determine if DAO protein was 

washed away.  This was shown not to be the case as DAO was retained during 

every washing condition (Figure 4.5).  Subsequently, the sensitivity of the Silver 

stain was used to observe differences between the PBS wash and the other 

washes.  The SDS-PAGE lane corresponding to the PBS washed samples 

contained the most silver staining (Figure 4.6) out of all of the samples.  

Consequently, the RIPA buffer supplemented with 500 mM NaCl and 0.1% SDS 

was selected for a repeat of the DAO immunoprecipitation from adult rat 

cerebellum (six weeks of age), and precipitates were separated on SDS-PAGE gel 

and Coomassie stained (Figure 4.7).  In this gel, the DAO immunoprecipitation 

sample is darker with specific pronounced 200 kDa and higher molecular weight 

bands suggesting pull-down of specific DAO interactors.  Consistent with this 

observation several high molecular DAO specific interacting proteins such as 

DAO antibody/bead 

complex 
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bassoon, piccolo and dynein heavy chain were identified in the DAO pull-down 

lysate but not in the negative controls (Table 4.2).  A total of 24 hits with the 

more stringent washing conditions were identified (Table 4.2).  Thus the harsher 

wash conditions likely eliminated transient or weak interacting proteins and 

proteins that were part of a larger complex resulting in a core of proteins which 

are likely interacting with the DAO enzyme directly when the cerebellar cell 

membranes are ruptured and all of the proteins are free to interact with each other.   

 The proteins identified in the two immunoprecipitation experiments were 

grouped based on bioinformatics analysis of function and localization.  This 

analysis resulted in identification of distinct groups consisting of presynaptic 

active zone, vesicle, syntaxin, RAB, NADH dehydrogenase, and ATPase/proton 

transporting protein subunits.  Each group is described below. 

 

    

Figure 4.5: Optimization of washing conditions for the DAO antibody beads 

using SDS-PAGE gel probed with the DAO antibody.  DAO is 

immunoprecipitated under all of the washing conditions suggesting that once 

captured by the antibody it does not easily dissociate from the antibody-bead 

complex.  DAO was immunoprecipitated from 800 g  of rat cerebellar lysate and 

subsequently washed with PBS (lane 1), RIPA (lane 2), Ripa supplemented with 

500 mM NaCl (lane 3), RIPA with 0.1% SDS (lane 4), RIPA with 500 mM NaCl 

and 0.1% SDS (lane 5), RIPA with 0.5% SDS (lane 6), and the input lysate 1/10
th

 

volume (lane 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   1            2          3          4           5           6         7 
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Figure 4.6: Optimization of washing conditions for the DAO antibody beads 

using SDS-PAGE gel stained with Silver stain.  The immunoprecipitate using 

DAO specific antisera beads were washed with several stringent washing buffers 

to remove weak interacting proteins.  The PBS wash (lane 1) leaves the most 

proteins on the beads as reflected by higher staining between 28 and 39 kDas then 

in any of the other washes: RIPA (lane 2), RIPA supplemented with 500 mM 

NaCl (lane 3), RIPA with 0.1% SDS (lane 4), RIPA with 500 mM NaCl and 0.1% 

SDS (lane 5), RIPA with 0.5% SDS (lane 6), and the input lysate (lane 7).  The 

DAO band is visible just above the 39 kDa marker reflecting the observations 

made in Figure 4.5 with the DAO antibody.  The expected DAO protein 

separation on the SDS-PAGE gel is indicated by the arrow.   
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Figure 4.7: SDS-PAGE gel stained with Coomassie blue representing the samples 

generated using the high stringency wash for the mass spectroscopy analysis.  The 

DAO immunoprecipitation sample, in lane 2, is darker with specific pronounced 

200 kDa and higher molecular weight bands suggesting pull-down of specific 

DAO interactors.  The expected DAO protein separation on the SDS-PAGE gel is 

indicated by the arrow.   

 

 

 

 

 

 

 

 

 

 

 

 

 

               1                    2 
MW 

DAO 

Legend: 

Ln 1: IP from 800 g cerebellum preabsorbed with 1 g peptide 

Ln 2: IP from 800 g cerebellum  
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4.6.1 Presynaptic active zone interacting proteins 

The presynaptic active zone, also known as „cytomatrix assembled at 

active zone‟ (CAZ) consists of a complex network of proteins involved in the 

organization of docking and priming of synaptic vesicles for their release into the 

synaptic cleft (Figure 4.8).  Thus at the CAZ electrical signals are converted into 

chemical messages which are propagated in the form of neurotransmitter release 

mediating communication with the postsynaptic membrane on adjacent neurons 

(Rizo and Rosenmund, 2008).  Proteins including Munc13s, RIMs, ELKS, PCLO 

and BSN have been shown to be enriched in the active zones where they play 

diverse functions in vesicle fusion and neurotransmitter release (Schoch and 

Gundelfinger, 2006).   

Many of the above mentioned proteins were identified as putative DAO 

interactors (Table 4.4) suggesting DAO localization within the active zone where 

it may contribute to D-serine metabolism or take on alternative functions.  The 

presynaptic active zone proteins were found to be the strongest set of interacting 

proteins identified in both immunoprecipitation experiments as determined by the 

greatest number of unique and total hits as well as by the percent of the protein 

identified by the mass spectroscopy (Table 4.5).  Out of the presynaptic proteins 

identified in the DAO interactome, BSN stood out as the most likely interacting 

protein with DAO as 29% of the entire BSN protein was identified in the DAO 

immunoprecipitate.  This coverage is very close to that of DAO itself (30%) 

implying a significant interaction between the two proteins.  A 30% coverage 

suggests a good retention of the DAO by its antibody as others have reported 18% 

in case of TRAF2 and NCK interacting kinase (TNIK) self immunoprecipitation 

(Mahmoudi et al., 2009).  The percent protein coverage is not a function of a 

protein‟s size as other large proteins such as PCLO were found to be recovered 

and sequenced at a rate of 18%.  Hence the larger the amount of any given protein 

that is being immunoprecipitated the greater the percent of that protein being 

sequenced by mass spectroscopy because the tryptic fragments are more abundant 

and are more likely to be picked up as hits.  Finally, the CAZ interactors suggest a 

novel DAO localization, potentially outside of the peroxisome. 
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Figure 4.8: Diagram of the presynaptic active zone including the proteins that 

were identified through the DAO immunoprecipitation highlighted in red.  

Adopted from Schoch (Schoch and Gundelfinger, 2006).  

 

 

 

 
Table 4.4: Summary of the presynaptic active zone proteins identified by the 

mass spectroscopy from the DAO immunoprecipitation experiments from adult 

rat cerebellum using both mild and harsh washing conditions. 

 
 Sample 

Protein PBS Wash RIPA Supplemented Wash 

Name A (IgG) 
B (Peptide 
blocked) 

DAO 
D (Peptide 
blocked) 

DAO 

  Unique Total Unique Total Unique Total Unique Total Unique Total 

BSN 0 0 2 3 52 94 0 0 32 60 

PCLO 0 0 0 0 41 79 0 0 16 27 

STXBP1 7 7 4 4 28 36 7 11 13 17 

DNM1  2 2 1 1 11 12 4 4 11 11 

ERC1 0 0 0 0 6 8 0 0 5 5 

DNM1L 0 0 0 0 6 7 1 1 1 1 

DNM3 0 0 0 0 5 5 3 3 2 2 

ERC2 0 0 0 0 4 5 0 0 1 1 

UNC13A 0 0 0 0 4 4 0 0 0 0 

RUMS1 0 0 0 0 2 3 0 0 1 1 

PPFIA3 0 0 0 0 2 3 0 0 0 0 

RIMS3 0 0 0 0 1 2 0 0 0 0 

Proteins coprecipitating 

with DAO 
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Table 4.5: The strength of the interaction was measured in terms of the percent 

protein coverage for the presynaptic active zone constituents.  As a control DAO 

was found at 30% suggesting that Bassoon at 29% may be a strong interacting 

partner. 

 

 

 

Protein 
Protein MW 

(kDa) 
% Protein 
Coverage 

Bassoon  418 29 

Piccolo 552 18 

Epac2 123 25 

ELKS 128 12 

Munc13-1 196 5 

RIM1 110 10 

Liprin- -3 149 3 

DAO 39 30 

 

 

 

4.6.2 Vesicle-associated membrane proteins (VAMPs) 

The vesicle-associated membrane proteins (VAMPs) are soluble N-

ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins 

that are required for synaptic vesicle fusion (Chen and Scheller, 2001).  Eight 

VAMP proteins (1-8) have been cloned and identified many of which were co-

immunoprecipitated with DAO (Table 4.6).  VAMP 1 and 2 (also known as 

synaptobrevins), found on membrane of synaptic vesicles, trigger vesicle fusion 

with the presynaptic membrane through an interaction with presynaptically 

expressed syntaxin-SNAP25 (Wang and Tang, 2006).  Some of the VAMPs 

appear to be more critical then others.  VAMP3 knockout mice were found not to 

be adversely affected (Yang et al., 2001) while VAMP2 knockout mice died 

immediately after birth and embryonic hippocampal neurons from the VAMP2 

animals displayed 100-fold decrease in calcium mediated synaptic vesicle fusion 

as compared to hippocampal neurons from wildtype animals (Schoch et al., 2001).  

The difference may be due to functional redundancy in one instance but not the 

other.    

 The VAMPs represent a potential group of DAO interacting proteins 

which are part of the active zone.  These proteins, however, are not as robustly 
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pulled-down as the active zone constituents outlined in Table 4.4 or the syntaxins 

in Table 4.7, especially with the harsh washing conditions.  Furthermore, the 

VAMPs are much more likely to non-specifically interact with the matrix or the 

rabbit IgG since there are substantial hits in either the rabbit IgG or the peptide 

blocked negative controls as compared to the DAO pull-down (Table 4.6).   

 

 

 

Table 4.6:  Summary of the vesicle-associated membrane proteins identified by 

the mass spectroscopy from the DAO immunoprecipitation experiments from 

adult rat cerebellum using both mild and harsh washing conditions.   

 

 

 

 

 

4.6.3 Syntaxin interacting proteins 
 

The syntaxin family consists of 15 genes in mammals, many of which are 

expressed as different isoforms depending on the tissue and developmental stage 

(Teng et al., 2001).  Syntaxin 1A interacts with SNAP-25 at the presynaptic 

membrane to form the target-membrane SNARE which forms a tight bond with 

VAMPs found on the synaptic vesicles allowing for release of neurotransmitters 

(Wang and Tang, 2006).  The syntaxins are restricted in expression with syntaxin 

18 localized to the endoplasmic reticulum, syntaxin 5 to the cis-Golgi and 

syntaxins 7, 8, 11, 12 and 13 to endosomes (Teng et al., 2001).  

The identification of syntaxins in the DAO immunoprecipitates look 

relatively specific to the DAO pull-down with the exception of the strongest two 

 Sample 

Protein PBS Wash RIPA Supplemented Wash 

Name A (IgG) 
B (Peptide 
blocked) DAO 

D (Peptide 
blocked) DAO 

  Unique Total Unique Total Unique Total Unique Total Unique Total 

VAMP2 3 3 1 1 5 8 2 4 4 9 

SEC22B 0 0 0 0 4 5 1 1 1 1 

VAMP1 0 0 0 0 2 2 0 0 2 2 

VAMP3 2 2 1 1 5 7 2 4 2 6 

SV2B 0 0 1 1 1 5 0 0 0 0 

VAMP5 0 0 1 1 1 1 0 0 1 1 

VAPB 0 0 0 0 1 1 0 0 0 0 
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interacting proteins STX1B1 and STS1B which where also found in the negative 

controls (Table 4.7).  Since all of the hits retained after the mild wash were 

removed by the harsh wash, the syntaxins may represent a transient group of 

DAO interacting proteins or they may have been retained by indirectly interacting 

with DAO. 

 

 

 

Table 4.7: Summary of the syntaxins identified by the mass spectroscopy from 

the DAO immunoprecipitation experiments from adult rat cerebellum using both 

mild and harsh washing conditions.   

 
 Sample 

Protein PBS Wash RIPA Supplemented Wash 

Name A (IgG) 
B (Peptide 
blocked) 

DAO 
D (Peptide 
blocked) 

DAO 

  Unique Total Unique Total Unique Total Unique Total Unique Total 

STX1B1 2 2 0 0 9 19 0 0 1 1 

STS1B 3 5 2 3 7 32 0 0 0 0 

STX7 0 0 0 0 4 5 0 0 0 0 

STX12 0 0 0 0 4 4 0 0 0 0 

STX13 0 0 0 0 4 4 0 0 0 0 

STXBP1 1 1 0 0 3 4 0 0 0 0 

STX16 0 0 0 0 2 2 0 0 0 0 

STX6 0 0 0 0 2 2 0 0 0 0 

STX3 0 0 0 0 1 1 0 0 0 0 

STXBP5 0 0 0 0 1 1 0 0 0 0 

STXBP5L 0 0 0 0 1 1 0 0 0 0 

STX1A 0 0 0 0 1 1 0 0 1 1 

 

 

 

4.6.4 RAS oncogene family (Rab) interacting proteins 
 

Unlike the CAZ proteins, Rabs are small (20-29 kDa) ubiquitously 

expressed proteins belonging to the Ras superfamily of monomeric G-proteins 

with more then 60 members found in mammalian cells, 28 of which were 

identified on neuronal synaptic vesicles (Fukuda, 2008; Schultz et al., 2000).  

Rabs have specific functions, for example, Rab1 and Rab 2 are involved in vesicle 

creation in the Golgi, while Rab3 and Rab27 assist in transport along the actin and 

tubulin framework and assist vesicle membrane fusion (Fukuda, 2008).  Rabs 

cycle between cytoplasm and the membrane of the targeting organelles where 
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conformational changes associated with guanidine-nucleotide binding and 

hydrolysis regulate the activity of Rabs.  GTP coupled Rabs are in the active form 

and are membrane bound where they are recognized by effectors while Rabs in 

the GDP-form are inactive (Lang and Jahn, 2008).  Rabs have been shown to play 

a role in regulation of membrane docking, priming and stimulus dependent fusion 

(Grosshans et al., 2006) highlighting a potential DAO involvement in 

neurotransmitter release.  

Among the Rabs identified through the immunoprecipitation, Rab7A and 

Rab2A,  (Table 4.8) are more likely to represent DAO interactors because they 

are only found in the DAO pull-down lysate in both of the immunoprecipitation 

experiments and at a fairly high level given their relatively small size.  Rab7A 

have been found to associate with Charcot-Marie-Tooth (CMT) type 2 neuropathy 

which is an autosomal-dominant axonal disorder (Spinosa et al., 2008).  Rab2A 

was found to be essential for protein transport from the endoplasmic reticulum to 

the Golgi complex (Tisdale and Balch, 1996).   

 

 

Table 4.8:  Summary of the Rabs identified by the mass spectroscopy from the 

DAO immunoprecipitation experiments from adult rat cerebellum using both mild 

and harsh washing conditions.   

 
 Sample 

Protein PBS Wash RIPA Supplemented Wash 

Name A (IgG) 
B (Peptide 
blocked) 

DAO 
D (Peptide 
blocked) 

DAO 

  Unique Total Unique Total Unique Total Unique Total Unique Total 

Rab7A 0 0 0 0 7 8 0 0 1 1 

ERC1 0 0 0 0 6 8 0 0 5 5 

Rab35 2 3 2 2 6 11 2 3 2 3 

Rab2A 0 0 0 0 5 7 0 0 3 5 

Rab6B 1 2 2 4 5 9 3 7 2 8 

Rab3A 1 2 4 6 5 15 3 3 5 6 

Rab6A 1 2 1 1 5 9 2 2 2 3 

Rab10 2 3 2 2 5 10 2 3 2 3 

Rab1B 2 3 2 2 4 10 2 3 3 4 

Rab1A 2 3 2 2 4 12 2 3 3 4 

Rab14 1 2 1 1 4 8 1 1 2 3 

Rab5C 0 0 0 0 4 5 1 1 2 2 

Rab5B 0 0 0 0 3 4 1 1 1 1 

Rab11B 0 0 1 1 3 5 1 1 1 1 

Rab21 0 0 0 0 3 4 0 0 0 0 
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Rab2B 0 0 0 0 3 4 0 0 1 1 

Rab8A 2 3 2 2 3 8 2 3 2 3 

Rab39 1 2 1 1 2 5 1 1 1 2 

Rab23 0 0 0 0 2 2 0 0 0 0 

Rab3C 1 2 1 1 2 5 1 1 1 2 

Rab39B 1 2 1 1 2 5 1 1 1 2 

Rab5A 0 0 0 0 1 2 0 0 1 1 

Rab3IP 0 0 0 0 1 1 0 0 0 0 

Rab15 0 0 0 0 1 2 0 0 0 0 

Rab18 0 0 0 0 1 1 0 0 1 1 

 

 

4.6.5 Nicotinamide adenine dinucleotide dehydrogenase (NADH) interacting 

proteins 

The nicotinamide adenine dinucleotide dehydrogenase interacting proteins 

identified through the DAO co-immunoprecipitation are part of the mammalian 

mitochondrial respiratory complex I.  This complex consists of at least 46 

subunits, seven of which are encoded by mitochondrial DNA (Carroll et al., 

2003).  Complex I is embedded in the inner mitochondrial membrane where it 

transfers electrons from NADH to ubiquinone (Benit et al., 2001).  Deficiency in 

the complex I leads to neurological disorders such as Parkinson‟s disease 

(Schapira et al., 1990), Alzheimer‟s disease (Coskun et al., 2004), Huntington 

disease (Arenas et al., 1998) and most commonly Leigh syndrome (Iuso et al., 

2006). 

Most of the apparent interactions between DAO and NADH 

dehydrogenase proteins are weak at best as the complex I subunits were for the 

most part only immunoprecipitated when the weak wash was used (Table 4.9).  

None of the proteins were retained with the harsh wash.  Furthermore, the 

potential expression of DAO within the mitochondria suggested by this data is in 

contrast to what has been published in cultured human astrocytes (Sacchi et al., 

2008).  Hence the likelihood of the interaction between DAO and NADH 

dehydrogenase proteins in vivo may be low.  An interaction in vitro between 

NADH complex and DAO may explain the quantity of proteins identified through 

the mass spectroscopy in the immunoprecipitated lysate. 
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Table 4.9:  Summary of the NADH dehydrogenase proteins identified by the 

mass spectroscopy from the DAO immunoprecipitation experiments from adult 

rat cerebellum using both mild and harsh washing conditions.   

 
 Sample 

Protein PBS Wash RIPA Supplemented Wash 

Name A (IgG) 
B (Peptide 
blocked) 

DAO 
D (Peptide 
blocked) 

DAO 

  Unique Total Unique Total Unique Total Unique Total Unique Total 

NDUFS1 4 4 1 1 18 31 1 1 0 0 

NDUFA9 1 1 1 1 12 19 0 0 1 1 

NDUFS2 0 0 2 2 10 10 0 0 0 0 

NDUFS3 2 2 1 1 8 11 0 0 1 1 

NDUFB5 0 0 0 0 8 10 0 0 0 0 

NDUFV1 0 0 1 1 8 8 1 1 0 0 

NDUFB10 0 0 0 0 7 10 0 0 0 0 

NDUFV2 0 0 0 0 7 7 0 0 0 0 

NDUFS4 0 0 0 0 6 6 0 0 1 1 

NDUFB7 0 0 0 0 6 10 0 0 0 0 

NDUFB8 0 0 0 0 6 6 0 0 0 0 

NDUFB11 0 0 0 0 6 6 0 0 0 0 

NDUFA13 1 1 1 1 4 4 0 0 1 1 

NDUFA5 0 0 0 0 5 5 0 0 1 1 

NDUFS7 1 1 1 1 5 10 0 0 0 0 

NDUFS8 0 0 0 0 5 7 0 0 0 0 

NDUFC2 0 0 0 0 5 5 0 0 0 0 

LOC679739 0 0 0 0 4 4 0 0 1 1 

NDUFA11 0 0 0 0 4 4 0 0 1 1 

NDUFB4 1 1 0 0 3 3 0 0 1 1 

NDUFS5 0 0 0 0 3 5 0 0 0 0 

NDUFB9 0 0 0 0 3 4 0 0 0 0 

NDUFA8 0 0 0 0 3 4 0 0 0 0 

CYB5R3 0 0 0 0 3 4 0 0 0 0 

CYB5R1 0 0 0 0 3 4 0 0 0 0 

NDUFAB1 0 0 0 0 3 3 0 0 0 0 

ND4 0 0 0 0 2 7 0 0 0 0 

NDUFA7 0 0 0 0 2 3 0 0 0 0 

ND1 0 0 0 0 2 2 0 0 0 0 

NDUFA2 1 1 0 0 2 2 0 0 0 0 

NDUFA6 0 0 0 0 1 3 0 0 1 1 

NDUFB6 0 0 0 0 1 2 0 0 0 0 

ND3 0 0 0 0 1 1 0 0 0 0 

ND2 0 0 0 0 1 1 0 0 0 0 
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4.6.6 ATPase/H+ transporting subunits interacting proteins 

 

Proton transporting proteins are involved in acidification of intracellular 

organelles including clathrin coated vesicles, endosomes, lysosomes, synaptic 

vesicles and others.  The function of the proton pumping allows for protein 

processing and degradation, intracellular targeting, and receptor-mediated 

endocytosis (Nishi et al., 2003).  

Many of the proton transporting proteins identified are not specific to the 

DAO immunoprecipitation suggesting non-specific interaction with the Protein A 

beads or to the antibody (Table 4.10).  A notable exception is ATP6V0A1 which 

is robustly immunoprecipitated specifically with DAO pull-down. However the 

observed pull-down of ATP6V0A1 and of other proton transporting proteins is 

reduced with a harsh wash.   

 

4.7 Conclusions 

The immunoprecipitation experiment with the purified DAO antibody 

utilizing rat cerebellum lysate from six weeks old rats resulted in a robust pull-

down of DAO (Table 4.2).  This methodology in conjunction with a mild PBS 

wash resulted in identification of 198 putative DAO interactors which were co-

immunoprecipitated with DAO but were not found at significant levels in either of 

the two negative controls, the rabbit IgG or the peptide blocked DAO antibody.  

The extent of the interacting proteins identified necessitated use of means by 

which only a handful of interacting proteins representing the strongest interactors 

would be selected.  To this end, harsher washing conditions utilizing RIPA buffer 

supplemented with salt (NaCl) and SDS were used in subsequent 

immunoprecipitation experiments.  The harsh wash allowed DAO retention by the 

DAO antibody but led to significantly fewer interacting proteins (Figure 4.5 and 

4.6).  The list of 198 interacting proteins identified with the mild wash was 

reduced to 24 proteins through application of the RIPA supplemented buffer 

which are likely representing stronger DAO interactors.  The putative interacting 

proteins were grouped based on function and localization suggesting DAO 

presence within the active zone potentially interacting with BSN.  The focus of 
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the next chapter will be on elaboration of the interaction between those two 

proteins. 

 

Table 4.10:  Summary of ATPase/H+ transporting proteins identified by the mass 

spectroscopy from the DAO immunoprecipitation experiments from adult rat 

cerebellum using both mild and harsh washing conditions.   

 

 

 

 

 

 

 

 

 

 Sample 

Protein PBS Wash RIPA Supplemented Wash 

Name A (IgG) 
B (Peptide 
blocked) 

DAO 
D (Peptide 
blocked) 

DAO 

  Unique Total Unique Total Unique Total Unique Total Unique Total 

ATP6V0A1 1 1 2 2 17 51 0 0 0 0 

ATP6V1A 2 2 0 0 15 18 2 2 1 1 

ATP6V1B2 1 1 0 0 13 15 4 4 4 4 

ATP6V0D1 2 2 2 2 11 23 1 1 1 1 

ATP50 5 5 5 5 11 15 5 8 6 9 

ATP6V1E1 2 3 1 1 8 10 2 2 5 5 

ATP6V1C1 0 0 0 0 8 9 0 0 0 0 

ATP5H 2 2 0 0 7 11 2 2 3 7 

ATP6V1H 0 0 1 1 6 8 0 0 1 1 

ATP5L 2 4 3 3 5 6 0 0 4 5 

ATP12A 0 0 0 0 3 5 2 7 1 9 

ATP4A 1 2 1 1 3 5 1 5 1 2 

ATP5I 0 0 2 2 3 4 0 0 0 0 

ATP6V1E2 0 0 0 0 3 3 0 0 0 0 

ATP5J2 1 1 1 1 2 3 1 2 2 2 

ATP6V0C 1 1 0 0 2 5 0 0 0 0 

ATPF8 0 0 0 0 2 3 0 0 1 1 

ATP5C1 1 1 1 1 2 3 1 1 1 1 

ATP12A 1 1 0 0 2 2 1 1 1 1 

ATP6V1D 0 0 0 0 2 2 0 0 0 0 

ATP6AP1 0 0 0 0 2 2 0 0 0 0 

ATP6AP2 0 0 0 0 1 1 0 0 0 0 

ATP6V0D2 0 0 0 0 1 1 0 0 0 0 
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5. The Synapse 

5.1  Introduction 

 The synapses of the central nervous system are contact points between 

neurons where messages are relayed from the presynaptic axon across the 

synaptic cleft to the postsynaptic dendrites.  At the synapse, an electrical signal is 

converted into a chemical message through release of neurotransmitters from 

synaptic vesicles which cross the synaptic cleft and induce an electrical signal on 

the postsynaptic end through neurotransmitter receptors (Specht and Triller, 

2008).  Both the presynaptic and the postsynaptic plasma membranes at the 

synaptic junctions are characterized by electron-dense meshworks of proteins.  

The cytoskeletal protein matrix on the presynaptic side is called the „cytometrix 

assembled at the active zones‟ (CAZ) (Garner et al., 2000).  The CAZ is a 

specialized region where synaptic vesicles are anchored and primed prior to the 

membrane fusion and neurotransmitter release (Owald and Sigrist, 2009).  This 

region is composed of dense network of filaments which extend out from the 

presynaptic membrane into the cytoplasm (Figure 5.1).  The CAZ is thought of as 

a “core scaffold” for the presynaptic, cytosolic and membranous protein 

constituents as it is especially resistant to extraction procedures (Schoch and 

Gundelfinger, 2006).  Despite the apparent stability of the CAZ many of its 

members including bassoon were found to be more fluid and “jump” between 

neighboring active zones (Kalla et al., 2006; Tsuriel et al., 2009).  Five protein 

families have been found to be highly enriched in the active zone including 

Munc13s, which are essential for neurotransmitter release (Betz et al., 2001; 

Varoqueaux et al., 2002), scaffolding proteins including RIMs (Schoch et al., 

2002; Wang et al., 2000), and ELKS (Takao-Rikitsu et al., 2004), liprin- and 

BSN and PCLO (Schoch and Gundelfinger, 2006).  BSN and PCLO are large 

proteins (>400 kDa) and play a major role in the organization of the CAZ likely 

as scaffolding elements (Fenster et al., 2000; tom Dieck et al., 1998).  Many of 

these and other proteins have been shown to physically associate in the active 

zone.  For example, Munc13 has been shown to interact with RIM (Betz et al., 

2001) while BSN and PCLO interact with ELKS (Takao-Rikitsu et al., 2004).   
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 The presynaptic components are transported from the trans-Golgi to the 

designated axonal regions through specialized vesicular organelles that contain at 

least two classes of transport vesicle (Goldstein et al., 2008).  The PCLO-BSN 

transport vesicles are dense-core 80 nm vesicles which were shown to carry the 

two large proteins into the nascent synapses (Zhai et al., 2001).  The synaptic 

vesicle precursors are more heterogeneous and carry other synaptic proteins (Jin 

and Garner, 2008).  The presynaptic proteins have been shown to be preassembled 

in the transport vesicles thus a functional synapse can be formed within minutes 

upon fusion of the vesicles in the axon.    

 

Figure 5.1: An electron micrograph image of the synapse.  The presynaptic 

terminus is marked by the presence of synaptic vesicles in the central part of the 

image (labeled with a green arrow).  The synapse is between the dark stained 

region which represents the pre and post synaptic density (labeled with the red 

arrow).    Taken from Siksou (Siksou et al., 2007) 

 

 

 

5.2 Bassoon 

 In an effort to determine the bassoon region responsible for synaptic 

targeting GFP-tagged BSN truncation mutants were generated based on functional 

domains (Dresbach et al., 2003).  Intact full-length BSN C-terminally labeled with 

GFP was targeted to the axonal synapses where it was incorporated into the 

cytoplasmic active zone.  When transiently transfected in cultured hippocampal 

neurons 72% of the BSN-GFP co-localized with PCLO.  This construct, however, 

generated diffuse fluorescence in dendrites and nuclei which corresponded to a 
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GFP cleavage product. A BSN construct lacking the first 94 amino acids had the 

same presynaptic targeting properties as the full length protein but lacked the 

diffuse GFP cleavage product.  Subsequent deletion constructs showed that 

neither the N-terminus (1691 amino acids) nor the C-terminus (675 amino acids) 

of BSN were required for presynaptic targeting.  The central portion of BSN 

containing amino acids 1692-3263 was targeted to the presynapse and retained by 

the active zone (Dresbach et al., 2003).  This finding is consistent with data 

obtained from bassoon transgenic mice lacking amino acids 505-2889 in which 

BSN was absent from the synapse (Altrock et al., 2003). 

 The N-terminal BSN construct, consisting of the first 609 amino acids, 

expression resembled synaptic vesicle clusters in shape and size suggesting that it 

may be involved in binding of synaptic organelles such as synaptic vesicles 

(Dresbach et al., 2003).  This observation is consistent with previous studies 

where bassoon was found to be associated with synaptophysin-positive vesicles in 

a synaptic vesicle preparation (Sanmarti-Vila et al., 2000).  The two double zinc 

finger domains found within the first 609 amino acids of bassoon are most likely 

to mediate the interaction with synaptic vesicles as was shown to be the case with 

zinc fingers of PCLO binding PRa-1 (Fenster et al., 2000) and resulting in an 

interaction with synaptic vesicles.  The functional domains of BSN are outlined in 

Figure 5.2. 

 The BSN functional knockout (Bsn Ex4/5) mice were found to have 

significantly reduced concentration of N-acetyl aspartate and glutamine in the 

cortex and hippocampus but not cerebellum.  N-acetyl aspartate is a neuron 

specific metabolite and its reduced concentration is indicative of a decreased 

neuronal population in the cortex of these mice (Angenstein et al., 2008).  It is 

interesting that no apparent changes were found in the cerebellum since BSN was 

found to be widely expressed in the brain (Richter et al., 1999). 

 The active zone precursor vesicle hypothesis suggests that the active zone 

proteins are preassembled at the Golgi apparatus from where they are shipped as a 

complex to form presynapses (Ziv and Garner, 2004).  This hypothesis is 

consistent with observations of an intact Golgi apparatus as necessary for delivery 

of BSN and PCLO to nascent synapses (Dresbach et al., 2006). 
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Figure 5.2: Functional domains of BSN and their published expression and 

localization in transiently transfected rat hippocampal neurons.  Taken from 

Dresbach (Dresbach et al., 2003). 
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5.3  Co-immunoprecipitation of BSN with DAO from rat cerebellum 

 Bassoon was found to be one of the strongest, most specific, and 

consistent interacting proteins in the two DAO immunoprecipitation experiments.  

An interaction of the two proteins implies DAO presence in the presynaptic active 

zone where BSN has been shown to be exclusively localized (Richter et al., 

1999).  However, in the past DAO has been thought of as a peroxisomal enzyme 

(Usuda et al., 1986).  Consistent with localization at the cellular periphery recent 

immunohistological examination of DAO in the cortex and cerebellum of human 

brains showed a pericellular DAO distribution (Verrall et al., 2007).  This novel 

observation suggests DAO presence outside of the peroxisome and fits with our 

immunoprecipitation data suggested by interaction with non-peroxisome 

complexes.  Consequently we chose to focus on these two proteins and study the 

likelihood of their interaction in vivo and the implications of such interactions. 

 Initial experiments to understand the DAO and BSN interaction were 

conducted from rat adult cerebellum lysate where the DAO antibody was used to 

immunoprecipitate DAO and the resulting isolated proteins were separated by 

SDS-PAGE and probed with an anti-BSN antibody (Figure 5.3).  

Immunoprecipitation with both DAO antibody and BSN antibody successfully 

pulled down BSN from adult rat cerebellum reinforcing the mass spectroscopy 

study and showed that the BSN antibody was capable of self 

immunoprecipitation.  The immunoprecipitation was blocked by DAO blocking 

peptide.  The reciprocal of this experiment where the BSN antibody was used to 

pull down BSN from the rat cerebellar lysate and the SDS-PAGE gel containing 

the respective precipitate was probed with the DAO antibody (Figure 5.3) was 

successful as well.  Immunoprecipitation with BSN antibody but not mouse IgG 

resulted in the co-immunoprecipitation of DAO confirming a physical interaction 

between the two proteins in rat cerebellar lysate.  This data was encouraging 

because both DAO and BSN antibodies were able to immunoprecipitate their 

respective target proteins and retain the interacting proteins as well.  These data 

suggest that this apparent interaction was specific and not due to antibody 

reactivity with non-specific protein and that the observed co-immunoprecipitation 

results were instead due to a physical interaction of the two proteins. 
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Figure 5.3:  Co-immunoprecipitation of BSN with DAO antibody from rat 

cerebellar lysate. A) Immunoprecipitation with both DAO antibody and BSN 

antibody but not their respective negative controls successfully pulled down BSN 

from rat cerebellum reinforcing the mass spectroscopy study and showing that the 

BSN antibody was capable of self immunoprecipitation.  B) DAO was 

immunoprecipitated with the DAO antibody and co-immunoprecipitated with 

BSN antibody but not with either of the two negative controls.   
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5.4 Does BSN serve as a scaffold for DAO, ASC-1 and SRR? 

 The identification of an interaction between DAO and BSN suggested that 

BSN, given its size, may act as a scaffolding protein for DAO, ASC-1 and SRR to 

interact and modulate D-serine concentration.  This suggestion is possible since 

ASC-1 has been localized to cerebellar neurons and the synapse specifically 

(Matsuo et al., 2004).  Likewise, SRR has been primarily localized in neurons 

(Takayasu et al., 2008; Yoshikawa et al., 2007).  Hence, rat cerebellar lysates 

were immunoprecipitated with the BSN antibody and the immunoprecipitates 

were probed with ASC-1 and SRR antibodies (Figure 5.4).  Neither ASC-1 nor 

SRR were found to interact with BSN.   
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Figure 5.4: ASC-1 and SRR do not co-immunoprecipitate with BSN.  

Immunoprecipitates generated from rat cerebellar lysate against bassoon antibody 

were separated on SDS-PAGE gel and probed with BSN, ASC-1 and SRR 

antibodies for evidence of an interaction among the proteins.  Two ASC-1 

antibodies were utilized, both of which detected ASC-1 in the input lysate.  ASC-

1 was found not to co-immunoprecipitate with bassoon.  Similarly robust SRR 

expression in the cerebellar lysate was identified and confirmed to be that of SRR 

through application of SRR peptide which blocked the signal.  However SRR was 

found not to co-immunoprecipitate with bassoon. 
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5.5  Immunohistochemistry localization of BSN and DAO in rat cerebellum 

slices 

 While the co-immunoprecipitation results from the rat cerebellar lysate 

were very encouraging, further evidence that DAO and BSN physically interact in 

vivo and are expressed in the same cerebellar regions was sought.  

Immunohistochemistry with the DAO and BSN antibodies was used to test if the 

two proteins are localized to the same cerebellar cell types.  DAO 

immunofluorescence was found to be primarily localized to the Purkinje cellular 

layer, the granular layer and to a lesser extent to the molecular layer (Figure 5.5 

A).  The signal generated with the DAO antibody was completely blocked by 

preabsorbing the antibody with the peptide towards which it was generated 

suggesting that the staining identified with the antibody is that of DAO (Figure 

5.5 B).  Rat spleen does not express DAO (Figure 3.5) hence rat spleen slices 

were generated and examined with the DAO antibody as an additional negative 

control.  The spleen did not display any more immunofluorescence with the DAO 

antibody than it did with the secondary antibody only (Figure 5.5 C and D) further 

suggesting DAO antibody selectively recognized DAO.  Finally, the DAO 

immunofluorescence data was consistent with published immunostaining in the 

rat cerebellum (Moreno et al., 1999) but differed in respect to Purkinje cell 

staining from human cerebellar immunostaining utilizing DAO antibody made 

against the C-terminal end of human DAO (Verrall et al., 2007).  While some 

mRNA was detected in human Purkinje cells no DAO protein was found (Verrall 

et al., 2007).  This discrepancy may be species dependent.  BSN 

immunofluorescence was primarily localized to the molecular layer and to a lesser 

extent to the granule layer with no staining detected in the Purkinje cellular layer 

(Figure 5.5 E).  A peptide against which BSN was generated was not available so 

no primary antibody was used as a negative control (Figure 5.5 F).  In addition, 

the BSN antibody was previously shown to detect BSN specifically (Tao-Cheng, 

2007).  When the rat cerebellar slices were co-stained with the DAO and the BSN 

antibodies the granule layer emerged as a likely region of co-localization with the 

molecular layer also possible but less likely as little yellow signal was visible 

(Figure 5.5 G). 
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Figure 5.5: Immunofluorescence localization of DAO (red) and BSN (green) in 

rat cerebellar and spleen slices.  DAO was primarily detected in the Purkinje 

cellular layer, the granule layer and to a lesser extent in the molecular layer (A).  

This signal was completely blocked (B) by preabsorption of the antibody with the 

DAO peptide toward which the antibody was generated suggesting a DAO 

specific immunofluorescence.  Rat spleen slices were used because no DAO was 

found in this organ when tested on SDS-PAGE gel.  Lack of DAO signal on the 

rat spleen slices (C) as compared to secondary antibody only (D) further validated 

the purity of the DAO antibody.  BSN was found to be localized to the molecular 

layer and to a lesser extent to the granule layer (E).  BSN peptide was not 

available for antibody quenching but secondary antibody alone did not have any 

background signal (F).  A merged image co-stained with DAO and BSN shows 

that the two proteins may co-localize in the granule layer and/or in the molecular 

layer but not likely in the purkinje cellular layer (G). ML = molecular layer; GR = 

granule layer; PCL = purkinje cell layer 
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5.6  Cerebellar fractionation and localization of DAO in synaptic junction 

membrane fraction 

 While the co-immunoprecipitation and immunofluorescence results from 

the rat cerebellar lysate suggested colocalization of DAO and BSN, further 

evidence was required to prove that the two proteins physically interact in vivo.  

In order to test if the two proteins were found in synaptic junction membrane 

fraction free of peroxisomal markers, a subcellular fractionation experiment 

(schematically outlined in Figure 5.6) was employed.  This approach was adopted 

from Altrock (Altrock et al., 2003) and results in the isolation of neuronal pre and 

post synaptic terminus. 
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Figure 5.6:  Schematic diagram of the fractionation protocol employed to show 

presence of DAO in the synaptic junction membrane fraction without any 

contaminating catalase, a peroxisomal marker.  The green indicates fractions that 

were advanced while the red shows those that were left behind. 

 

 

 

 

 

 

 

 The results of the fractionation are found in Figure 5.7. Each fraction was 

probed for presence of markers of sub-cellular organelles including BSN, PSD-

95, microtubule associated protein 2 (MAP2), DAO and catalase.  BSN and PSD-

95 are known pre and post synaptic markers respectively and were used to verify 

that the final fraction contained the proteins which this procedure is designed to 

purify.  MAP2 is a neuron-specific cytoskeletal protein enriched in dendrites but 

not in the active zone.  MAP2 is also comparable in size to BSN and PSD-95 

making it a particularly suitable negative control.  Catalase is a peroxisomal 

marker used to determine if any of the fractions were free of catalase but still 

contained DAO.  Both BSN and catalase blots were overexposed to better 

illustrate presence or absence of the two proteins in various fractions which are 
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described below.  All of the proteins probed for were found in the starting 

solution from the rat cerebellar lysate (Figure 5.7 lane 1).  During the sequential 

fractionation MAP2 was lost when the synaptosome fraction was isolated (Figure 

5.7 lane 4) but BSN, PSD-95, DAO and catalase were retained.  While no BSN or 

PSD-95 was found in the synaptosomal cytoplasm both DAO and catalase 

positively identified in this fraction (Figure 5.7 lane 5). All four proteins were 

also found in the synaptosomal membranes (Figure 5.7 lane 6) suggesting 

peroxisomal association with this fraction.  When the synaptosomal membranes 

were further fractioned to yield a pure synaptic junction membrane fraction BSN, 

PSD-95 and DAO were retained while catalase was lost.  This finding suggests 

DAO localization outside of the peroxisome and within the synaptic junction 

membrane fraction where it may interact with BSN. 

 

Figure 5.7:  Fractionation of rat cerebellum suggests DAO localization outside of 

the peroxisome and among the synaptic membrane junction proteins.  Three rat 

adult cerebellums were fractioned and analyzed for key proteins presence through 

Western blot.  The fractions examined included S1, S2, P1, synaptosomal fraction 

(SnpF), S3, P3, S4, P4 and synaptic junction membrane proteins (Sjmp).  
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5.7  Immunohistochemistry localization studies in cerebellar granule neurons 
 

 Since mouse DAO cerebellar expression was shown to follow a 

neurodevelopmental pattern with no detectable DAO activity from birth until 3
rd

 

week of age  (Wang and Zhu, 2003) rat cerebellar samples from two week old 

pups were probed for expression of DAO (Figure 5.8).  Postnatal 14 day old pups 

were found to express cerebellar DAO albeit at about a fourth of the amount 

found in adult rat cerebellum.  To follow up on the fractionation studies and 

examine DAO localization in relation to BSN, oil immersion 

immunocytochemistry imaging was utilized with samples from two week old 

cerebellar granule neurons (CGNs) from two week old rat pups.  The DAO 

antibody showed staining within the neuronal processes (Figure 5.9 A) while the 

secondary antibody alone (Figure 5.9 B) and peptide blocked DAO antibody 

(Figure 5.9 B) did not give rise to a meaningful signal. 

 

 

Figure 5.8: Verification of rat cerebellar DAO expression in two week old pups.  

Cerebellar DAO expression was compared between adult (ln1; 15 g) and two 

week old pup (ln2; 30 g) lysates on SDS-PAGE gel.  The pups were found to 

express DAO at about a fourth of the amount found in the adult rat cerebellum.  

This data is consistent with published reports. 
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Figure 5.9: Immunocytochemistry of rat cerebellar granule neurons (CGNs) with 

DAO antibody (A), secondary antibody only (B) and peptide blocked DAO 

antibody (C).  A fluorescent secondary antibody was used for visualization of the 

DAO probed CGN cells.  The DAO immunofluorescence suggests punctuate 

DAO localization within the neuronal processes. 
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 Antibodies against synaptophysin, a synaptic vesicle protein uniquely 

expressed at the synapse, were used in conjunction with DAO antibody to help 

determine DAO localization in relation to the synapses in CGNs and to compare 

with those of DAO and BSN.  In the merged and enlarged image (Figure 5.10) 

DAO appears in close proximity to synaptophysin but not overlapping as would 

be implied by yellow spots.  The lack of DAO co-localization with synaptophysin 

is consistent with the mass spectroscopy data as synaptophysin was not one of the 

putative DAO interacting proteins. However, these data suggest DAO presence 

within the synapse because the red fluorescence signal associated with the DAO is 

found within the neuronal processes. 

 

Figure 5.10:  Cerebellar granule neurons (CGNs) were cultured for two weeks 

before they were fixed with paraformaldehyde and used for 

immunocytochemistry.  In the merged image, DAO and synaptophysin, a synaptic 

marker, were found in a proximity to each other but not co-localizing as 

determined by lack of yellow spots.  This lack of co-localization is to be expected 

given that synaptophysin was not one of the DAO interactors.  The fluorescence is 

attributable to the secondary antibody. 
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 Having established initial evidence of the presence of DAO through 

fractionation and immunocytochemistry in neuronal presynaptic terminus we 

were interested if this novel DAO localization overlapped with that of BSN.  

CGNs were probed with DAO and BSN antibodies.  While most of the DAO does 

not appear to overlap with BSN some co-localization between the two proteins 

exists as depicted by the yellow fluorescence (Figure 5.11).  This moderate level 

of the two proteins colocalized suggests that not all BSN need be complexed with 

DAO. 

 

 

Figure 5.11:  Cerebellar granule neurons (CGNs) were cultured for two weeks 

before they were fixed with paraformaldehyde and used for 

immunocytochemistry.  In the merged image, DAO and BSN may be co-

localizing at the synaptic termini as depicted by the yellow spotting indicative of 

the two proteins in a very close proximity to each other. 
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 Unlike paraformaldehyde fixation which immobilizes both soluble and 

attached proteins in place at the time of the fixation, methanol fixation is known 

to wash out soluble proteins (Hoetelmans et al., 2001).  The methanol fixation 

was shown not to wash out DAO from the presynaptic terminus (Figure 5.12) 

suggesting that DAO is firmly attached in the matrix.  In the merged, zoom-in 

image DAO localization appears to partially co-localize with BSN reinforcing the 

data generated with paraformaldehyde fixation in Figure 5.11. 

  

 

Figure 5.12:  Cerebellar granule neurons (CGNs) were cultured for two weeks 

before they were fixed with ice cold methanol and used for 

immunocytochemistry.  Unlike paraformaldehyde fixation, methanol fixation 

washes away free floating proteins.  With this fixation method DAO continues to 

be present at the synaptic junctions.  In the merged image, DAO and BSN may be 

co-localizing at the synaptic termini as depicted by the yellow spotting indicative 

of the two proteins in a very close proximity to each other. 
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5.8 Immunoprecipitation from Hek293 cells 

 Hek293 cells were derived from human embryonic kidney cells hence they 

are unlikely to express the five members of the CAZ described in section 5.1.  

Consequently this immortalized cell line provides means of ascertaining a direct 

interaction between DAO and BSN when both proteins are co-transfected.  The 

proposed direct interaction hypothesis is valid at least when the CAZ members are 

taken into account but other common proteins found in both cerebellar neurons 

and Hek293 cells may still be responsible for facilitating the interaction between 

the two proteins and cannot be ruled out as irrelevant to the described interaction.  

A GFP-tagged BSN construct (kind gift from Dr. Gundelfinger, Germany) 

encoding BSN amino acids 95 through 3963 was transiently transfected into 

rDAO Hek293 stable line.  The resulting lysate was shown to express the BSN 

fusion protein with an expected molecular weight of 397 kDa (Figure 5.13 A lane 

2) and resulted in immunoprecipitation with the GFP antibody (Figure 5.13 A 

lane 4) but not with mouse IgG (Figure 5.13 A lane 3).  The same samples were 

shown to co-immunoprecipitate DAO with the GFP-BSN construct (Figure 5.13 

B).  DAO and BSN were shown to co-localize through immunocytochemistry in 

the Hek293 cells overexpressing both proteins suggesting that the proteins 

associate in these cells (Figure 5.14).     

Truncation mutants of BSN were generated to identify the region 

responsible for the interaction.  All of the BSN truncation mutants contain N-

terminal GFP tag and include amino acids 95-609, 95-3263, 1692-3263, 2715-

3263 and 3263-3963 (for reference see Figure 5.2).  While the zinc finger domain 

containing 95-609 BSN amino acids was well expressed and immunoprecipitated 

by GFP antibody it did not co-immunoprecipitate with DAO (Figure 5.15).  The 

predicted coiled-coiled regions found in construct 95-3263 may play a role in the 

interaction with DAO as this BSN truncation mutant was able to co-

immunoprecipitate DAO from rDAO Hek293 lysate (Figure 5.16).  Construct 

1692-3263, containing two of the three coiled-coiled regions was also able to co-

immunoprecipitate DAO from the rDAO Hek293 stable line (Figure 5.17) as well 

as construct 2715-3263 containing a single predicted coiled-coiled region (Figure 

5.18).  The final 3263-3963 amino acids construct characterized by a long 
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glutamine chain did not express in rDAO Hek293 stable line (Figure 5.19) so we 

can not conclusively rule out whether this region is important for BSN-DAO 

interaction.  We were however able to identify 2715-3263 BSN polypeptide as an 

important potential interaction site with DAO. 

 

5.9 Functional effect of rBSN on rDAO enzymatic activity 

 The rDAO Hek293 stable line was used to ascertain if transiently 

transfected full length and truncation mutants of GFP-rBSN had any effect on 

DAO‟s functional activity.  About 30% inhibition of DAO‟s enzymatic activity 

was observed with the full length BSN, 95-3263, 1692-3263, and 2715-3263 but 

not with BSN 95-609 as compared to GFP only transiently tranfected cells after 3 

days post transfection (Figure 5.20).  This data suggests that BSN may regulate 

DAO‟s enzymatic activity within the presynaptic active zone. 

 

5.10 Conclusions 

 Following up on the mass spectroscopy results, BSN was confirmed to 

interact with DAO in rat cerebellar lysate through co-IP.  The DAO antibody 

pulled-down BSN along with DAO and likewise the BSN antibody pulled-down 

DAO with BSN.  Through a fractionation experiment of rat cerebellum DAO was 

found in the synaptic junction membrane fraction which contained BSN but no 

catalase suggesting that DAO may be found in the presynaptic terminus outside of 

the peroxisome where it may interact with BSN in vivo.  Immunocytochemistry of 

CGNs confirmed the likely localization of DAO in neuronal processes co-

localizing with BSN.  In rat cerebellar slices DAO may be co-localizing with BSN 

in the granule and molecular layer as determined by immunohistochemistry.  BSN 

was co-immunoprecipitated with DAO from Hek293 cells overexpressing both 

proteins suggesting that the two may directly interact as none of the other 

members of the presynaptic active zone are expressed in the Hek293 cells (Figure 

5.21).  Within the DAO Hek293 cells overexpression of BSN was found to inhibit 

DAO‟s enzymatic activity.  Furthermore BSN region spanning amino acids 2715-

3263 representing predicted single coiled coiled region was found to co-IP with 

DAO when both were overexpressed in Hek293 cells.   
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Figure 5.13: Immunoprecipitation of full-length bassoon from rDAO stable line 

transiently transfected with rat GFP-BSN construct and probed with GFP 

antibody (A) and DAO antibody (B).  The bassoon fusion construct was 

successfully transfected into rDAO Hek293 cell line as evidenced by the presence 

of expected 397 kDa band in GFP-bassoon transiently transfected rDAO Hek293 

cells (A, lane 2) but not in mock transfected rDAO Hek293 cells (A, lane 1).  The 

GFP antibody was able to immunoprecipitate the fusion construct as evidenced by 

the presence of BSN (A, lane 4) but absence in mouse IgG immunoprecipitation 

(A, lane 3).  DAO was found to co-immunoprecipitate along with BSN (B, lane 4) 

but not with mouse IgG (B, lane 3).  The expected GFP-BSN truncated protein 

molecular weight on the SDS-PAGE gel is indicated by the arrow.   
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Figure 5.14: Co-localization of DAO and BSN through immunocytochemistry in 

Hek293 cells.  When both proteins were overexpressed in Hek293 cells they 

displayed a level of co-localization and proximal localization along the cell 

membrane (C).  While BSN was found primarily along the cell membrane (B), 

DAO was found along the membrane and in the cytoplasm (A). 
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Figure 5.15: Immunoprecipitation of BSN from rDAO stable line transiently 

transfected with rat GFP-BSN 95-609 construct and probed with GFP antibody 

(A) and DAO antibody (B).  The BSN fusion construct was successfully 

transfected into rDAO Hek293 cell line as evidenced by the presence of expected 

92 kDa band in GFP-BSN transiently transfected rDAO Hek293 cells (A, lane 1).  

The GFP antibody was able to specifically immunoprecipitate the GFP-BSN 

fusion construct as shown by the presence of BSN (A, lane 3) but absence in 

mouse IgG immunoprecipitation (A, lane 2).  DAO was found not to co-

immunoprecipitate along with BSN (B, lane 3) or with mouse IgG (B, lane 3).  

The expected GFP-BSN truncated protein molecular weight on the SDS-PAGE 

gel is indicated by the arrow.   
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Figure 5.16: Immunoprecipitation of BSN from rDAO stable line transiently 

transfected with rat GFP-BSN 95-3263 construct and probed with GFP antibody 

(A) and DAO antibody (B).  The BSN fusion construct was successfully 

transfected into rDAO Hek293 cell line as evidenced by the presence of expected 

377 kDa band in GFP-BSN transiently transfected rDAO Hek293 cells (A, lane 

1).  The GFP antibody was able to immunoprecipitate the fusion construct as 

evidenced by the presence of BSN (A, lane 3) but absence in mouse IgG 

immunoprecipitation (A, lane 2).  DAO was found to co-immunoprecipitate along 

with BSN (B, lane 3) but not with mouse IgG (B, lane 2).  The expected GFP-

BSN truncated protein molecular weight on the SDS-PAGE gel is indicated by the 

arrow.   
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Figure 5.17: Immunoprecipitation of BSN from rDAO stable line transiently 

transfected with rat GFP-BSN 1692-3263 construct and probed with GFP 

antibody (A) and DAO antibody (B).  The BSN fusion construct was successfully 

transfected into rDAO Hek293 cell line as evidenced by the presence of expected 

204 kDa band in GFP-BSN transiently transfected rDAO Hek293 cells (A, lane 

1).  The GFP antibody was able to immunoprecipitate the fusion construct as 

evidenced by the presence of BSN (A, lane 3) but absence in mouse IgG 

immunoprecipitation (A, lane 2).  DAO was found to co-immunoprecipitate along 

with BSN (B, lane 3) but not with mouse IgG (B, lane 2).  The expected GFP-

BSN truncated protein molecular weight on the SDS-PAGE gel is indicated by the 

arrow.   
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Figure 5.18: Immunoprecipitation of BSN from rDAO stable line transiently 

transfected with rat GFP-BSN 2715-3263 construct and probed with GFP 

antibody (A) and DAO antibody (B).  The BSN fusion construct was successfully 

transfected into rDAO Hek293 cell line as evidenced by the presence of expected 

64 kDa band in GFP-BSN transiently transfected rDAO Hek293 cells (A, lane 1).  

The GFP antibody was able to immunoprecipitate the fusion construct as 

evidenced by the presence of BSN (A, lane 3) but absence in mouse IgG 

immunoprecipitation (A, lane 2).  DAO was found to co-immunoprecipitate along 

with BSN (B, lane 3) but not with mouse IgG (B, lane 2).  The expected GFP-

BSN truncated protein molecular weight on the SDS-PAGE gel is indicated by the 

arrow.   
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Figure 5.19: Immunoprecipitation of BSN from rDAO stable line transiently 

transfected with rat GFP-BSN 3263-3963 construct and probed with GFP 

antibody (A) and DAO antibody (B).  The BSN fusion construct was found not to 

express as evidenced by lack of presence of expected 111 kDa band in GFP-BSN 

transiently transfected rDAO Hek293 cells (A, lane 1).  Blot B was probed with 

DAO antibody.   
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Figure 5.20: Transiently transfected GFP-BSN inhibits DAO‟s enzymatic activity 

as measured by the AmplexRed assay.  Transiently transfected full length GFP-

BSN (95-3963), 1692-3263 BSN, and 2715-3263 BSN partially inhibited DAO‟s 

acitivity in relation to GPF only and 95-609 BSN. 

 

Activity of Transiently Transfected DAO Stable Line With BSN or GFP 

60

70

80

90

100

110

120

GFP BSN 95-3963 BSN 1692-3263 BSN 2715-3263 BSN 95-609

%
 o

f 
C

o
n

tr
o

l

 

 

 

 

 

 

Figure 5.21: No evidence of BSN, PCLO or Liprin- -3 expression in Hek293 

cell lysate.  SDS-PAGE gel containing Hek293 and rat cerebellar lysates was 

probed for presence of the above mentioned presynaptic active zone proteins with 

respective antibodies.  Anti-actin antibody was used to show equal protein 

concentration in the two samples.   
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* P < 0.01 as compared to the GFP control based on One-way  ANOVA according 

to Dunnett‟s method. 
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6.  Yeast-two-hybrid screen for identification of DAO interacting proteins 

from human fetal brain 

 

6.1 Introduction 

 Yeast-two-hybrid (Y2H) is a high-throughput technique used to identify 

protein-protein interactions (Young, 1998).  As summarized in Table 4.1 and 

illustrated in Figure 6.1, this molecular biology tool relies on the observation that 

the GAL4 transcriptional factor may be divided into functional regions, the 

binding domain (BD) and the activating domain (AD), which act coordinately to 

activate reporter gene(s) under control of the GAL upstream activating sequence 

(UAS).  The BD interacts with GAL4 UAS while the activating domain initiates 

transcription (Joung et al., 2000). Neither the AD nor the BD on its own can 

activate the reporter genes but when both are in a close physical proximity they 

form a functional transcriptional factor (Verschure et al., 2006).  Since the AD 

and BD are two separate entities which otherwise do not interact with each other, 

they can be brought together by fusion with proteins that have an affinity for each 

other.  Hence in a yeast-two-hybrid screen, plasmids containing the BD are 

constructed as fusion with known proteins, e.g. DAO, which serves as a “bait” 

protein.  The AD plasmid is engineered with DNA encoding protein fragments 

representing a pool of proteins transcribed from a given organism or tissue which 

represents the “prey” in this instance from human brain.  The AD containing 

fusion protein with an affinity for the BD-DAO fusion protein will allow for the 

AD and BD to come to a close proximity and initiate transcription of reporter 

genes.  The yeast strains utilized in the Y2H screen are genetically modified to 

lack key biosynthetic enzymes essential for amino acids or nucleic acids 

synthesis.  When grown on dropout media, or media lacking the necessary 

nutrients, the strains will not grow unless the transcription factor is functional 

through an interaction of the bait with the prey which promotes expression of 

enzymes need for the biosynthesis of essential nutrients and survival on the drop 

out media.  Y2H is a commonly used technique has been repeatedly and 

successfully used in identifying physiological relevant protein-protein interactors 

(Millar et al., 2005).   
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 While this approach has been successful it has been plagued with 

occasional shortcomings including a high degree of false positives and negatives.  

Amongst the explanations is that the proteins are over expressed which may force 

an interaction which otherwise would not be possible.  Since the proteins are 

expressed as fusion constructs their three dimensional configuration may be 

altered.  Large proteins are unlikely to be expressed at a full length and may be 

represented as fragments resulting in lack of interaction in cases where the protein 

must be intact to form the interacting domain.  Both bait and prey proteins may 

undergo posttranslational modifications in vivo which may not happen in the yeast 

cells altering affinity between proteins.  The proteins may never be expressed in 

the same cell type in vivo or in the same cellular compartment or alternatively 

they may be co-expressed in a certain organelle while they have to be expressed 

in the yeast nucleus to come up as a hit.  All of these factors contribute to false 

positive rates of as much as 50% and necessitate further confirmatory studies and 

independent methodologies such as co-immunoprecipitation to confirm the 

preliminary findings (Deane et al., 2002).  

 

 

Figure 6.1: Schematic diagram of the yeast-two-hybrid principle.  Two proteins, 

the bait and the prey, are separately expressed in yeast as fusion constructs with 

the BD and the AD respectively.  In an event of an interaction between the bait 

and the prey the GAL4 transcriptional factor is reconfigured by virtue of physical 

proximity of the BD and the AD resulting in transcription of reporter gene(s). 

 

 

Taken from Clontech Matchmaker user manual. 
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6.2 The Matchmaker Pretransformed Library 

 A fetal brain library generated through poly-T primer by Clontech 

Laboratories (#638831) was used for the yeast-two-hybrid screen.  The poly-T 

primer is complementary to the poly-A tails found on mRNAs allowing for 

reverse transcription of the mRNA found in the human fetal brain.  The poly-T 

primer generates a library encoding mostly C-terminal fragments of proteins 

especially in case of large proteins.  Through application of this approach we 

would be highly unlikely to identify large DAO interactors or those that may be 

interacting at the N-terminus.  The poly-T library was cloned into pACT2 vector 

and transformed into Y187 MAT  yeast strain.  Human DAO lacking the 

peroxisomal targeting sequence was cloned into pGBKT7 vector and transformed 

into AH109 MATa strain (Figure 6.2).  The yeast strains used in this screen were 

genetically engineered to lack capabilities of synthesizing adenine (Ade), histidine 

(His), leucine (Leu), and tryptophan (Trp).  Thus they cannot survive on media 

lacking any one of those nutrients unless they have been transformed with both 

the bait and prey vectors conferring expression of tryptophan and leucine 

biosynthetic enzymes respectively as selectable markers for maintaining the 

presence of the plasmids within the cells and fusion proteins that interact with 

each other conferring transcription of adenine and histidine biosynthetic enzymes.  

When the strains express interacting proteins they also can break down X- -Gal 

through expression of MEL1 and LacZ enzymes transforming otherwise white 

colonies into blue colonies (Figure 6.2).   
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Figure 6.2:  Schematic for the yeast-two-hybrid mating and selection.  The two 

yeast haploid strains, AH109 and Y187, were transformed with pGBKT7-DAO 

and pACT2-library vectors respectively and mated.  The resulting diploids 

expressing proteins conferring interaction with DAO survived on quadruple 

dropout media and turned blue color. 

 

 

Taken from Clontech Matchmaker user manual. 

 

 

This plate is an example of successful mating and a 

robust interaction between the bait and the prey 

resulting in growth of blue colonies. 



 152 

6.3 Yeast-two-hybrid Control Experiments 

 Prior to the Y2H screen the pGBKT7-DAO construct was tested for auto 

activation.  This is a critical experiment in which the bait construct was 

transformed into the AH109 yeast strain and plated out on tryptophan dropout and 

quadruple dropout media.  In our case, the yeast strain transformed with the 

pGBKT7-DAO construct grew on tryptophan dropout media while mock 

transformed yeast did not, confirming successful transformation of cells.  More 

importantly, no colonies were identified on the quadruple dropout medium even 

after seven days post transformation suggesting that the BD-DAO on its own 

cannot activate the transcription of reporter genes. 

 The DAO construct was also tested for toxicity.  Growth rates of 

transformed yeast cells with the pGBKT7-DAO were compared to those 

transformed with the bait vector without DAO.  The number of colonies and the 

colony sizes between the two transformations did not differ when grown on 

tryptophan dropout media suggesting that the DAO bait construct is not toxic to 

the yeast cells.  Through this set of control experiments we determined that DAO 

was a suitable candidate for a Y2H screen. 

 

6.4 DAO Truncation Mutants 

 DAO truncation mutants were generated to assist in identification of the 

DAO interacting site with the yeast-two-hybrid interacting proteins.  An 

interacting site is a polypeptide or a single amino acid within the protein 

responsible for the interaction with the interacting protein.  Identification of an 

interactor with a truncated DAO protein may be used as a confirmation step for 

the Y2H screen and allows for an eventual recognition of the amino acids 

responsible for the physical interaction.  DAO truncation mutants were generated 

through polymerase chain reaction (PCR) of the 5‟ primer and a 3‟ primer 

progressively closer to the 5‟ end.  This resulted in generation of progressively 

shorter DAO fragments in increments of about 50 amino acids for a total of five 

truncation mutants and the full length DAO without the peroxisomal targeting 

sequence (Figure 6.3).  The PCR bands generated during the synthesis of the 

DAO truncation are illustrated in Figure 6.4 while the corresponding Western blot 
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with the fusion protein between DAO and the transcriptional factor binding 

domain are in Figure 6.5.  

 

 

Figure 6.3: Schematic diagram of the DAO truncation mutants.  The DAO 

fragments were synthesized in increments of about 50 amino acids extending out 

from the 5‟ end until the entire protein length was covered.    

 

 

 

 

 

 

Figure 6.4:  DNA fragments generated through PCR during synthesis of DAO 

truncation mutants.  Primers complementary to the 5‟ end and a truncated 3‟ end 

of the DAO sequence were used to synthesize truncated DAO encoding 

constructs.  Sample of the constructs are shown below on ethydium bromide agar 

gel visualized under UV light. 
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Figure 6.5:  Western blot showing expression of the truncated DAO fusion 

proteins.  The DAO fragments generated through PCR were cloned into the 

pGBKT7 vector resulting in expression of the DAO fusion proteins of the 

expected molecular weight.  This blot was probed with Gal4 antibody. 

 

 

 

6.5 Results from the Mating Screen 

 A pretransformed human fetal brain library from Clontech (#638831) was 

used to mate with the DAO AH109 yeast cells.  A mating efficiency of 9% was 

obtained between the DAO AH109 and human fetal brain library in 

Y187 yeast.  A total of 1.85 million colonies were screened. One million colonies 

is the minimum recommended by Clontech to screen the entire library.   Sixteen 

colonies were identified, fifteen of which were blue on the quadruple dropout 

media after three to four days post mating.  The prey vectors were extracted, 

amplified and sequenced to identify the interactors.  Yeasts were retransformed 

with the isolated prey vector to test for auto activation and in conjunction with the 

DAO bait vector to verify the initial observations.  None of the sixteen colonies 

displayed auto activation and all of them grew on the quadruple dropout media.   

 Out of the sixteen colonies that grew on the quadruple dropout media, two 

colonies were represented by WW domain binding protein 2 (WBP-2).  The 

remaining fourteen colonies ranged in size from 5 to 153 polypeptides when 

configured in frame with the AD but did not have corresponding protein 
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sequences in the NCBI library.  The two WBP-2 clones identified encoded in-

frame 124 amino acid peptide suggesting that both originated from the same 

colony.  Similarly three 94 amino acid peptides corresponding to an unknown 

protein from a chromosome 1 genomic contig probably originated from the same 

starting colony as each had the exact same sequence.  Eight of the peptides 

without a corresponding NCBI sequence were identifiable proteins in a different 

reading frame from that of the expected based on the prey vector cloning.  

However, since it is unlikely for any of the constructs to be expressed in other 

frame then the expected we did not pursue analysis of the impact of the unknown 

polypeptides on DAO.  None of the clones displayed auto activation on their own 

or when expressed with pGBKT7 vector suggesting that in yeast they formed a 

physical interaction with the DAO protein.     

 

6.6 Characterization of DAO and WBP-2 interaction 

 WBP-2 is a 139 amino acid protein.  Through the yeast-two-hybrid screen 

we identified a 124 amino-acid peptide which represents nearly 90% of the entire 

length of the protein.  There was a perfect homology between the yeast-two-

hybrid protein and that of the expected NCBI WBP-2 sequence (Figure 6.6). 

WBP-2 has been shown to play an important role in activation of progesterone 

receptor and estrogen receptor (Dhananjayan et al., 2006).  It has been shown to 

interact with and activate Pax8, a protein required for morphogenesis of the 

thyroid gland (Nitsch et al., 2004).  WBP-2 has also been shown to interact with 

Yes kinase-associated protein (Sudol et al., 1995). 

 Both WBP-2 fragments identified were tested with the DAO truncation 

mutants to ascertain if any portion of the DAO protein was responsible for the 

physical interaction with WBP-2.  Neither the vector nor the N-terminal 50 amino 

acids of DAO interacted with the WBP-2 fragment as no colonies grew on the 

quadruple dropout media post mating.  However, longer DAO fragments of 100, 

150, 200 and 250 amino acids successfully interacted with the WBP-2 (Figure 

6.7).  This suggests that the portion of DAO responsible for the interaction with 

WBP-2 in yeast cells is between n-terminal 50 and 100 amino acids.  
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Figure 6.6: Alignment of the NCBI WBP-2 amino acid sequence and that of our 

yeast-two-hybrid polypeptide.  WBP-2 is a 139 amino acid long protein which 

was identified as a putative DAO interacting protein based on identification of 

124 interacting polypeptide.  The identified polypeptide has a complete homology 

to the WBP-2 sequence. 

 

 

  

 

 

Figure 6.7: Mapping of the DAO interacting site with WBP-2.  C-terminal DAO 

truncation mutants every 50 amino acids were used to ascertain the DAO region 

responsible for the physical interaction with WBP-2.  Neither the vector nor the n-

terminal 50 amino acid long DAO fragment formed an interaction with WBP-2.  

However, longer DAO fragments of 100, 150, 200 and 250 amino acids 

successfully interacted with the WBP-2.  These data suggest that the DAO region 

responsible for the interaction with WBP-2 is found between n-terminal 50 and 

100 amino acids. 
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 Through the Allen Brain Atlas which shows mRNA expression profiles 

we were able to conclude that WBP-2 is likely to be expressed in the cerebellum 

where DAO expression is especially high (Figure 6.8).  This data suggests that the 

two proteins may exist in the same tissue and be relevant interactors in vivo.   

 

Figure 6.8:  The mouse mRNA expression profile of WBP-2 

 

Taken from Allen Brain Atlas. 

 

 

 A FLAG-tagged C-terminal full length human WBP-2 was expressed in 

hDAO stable line to ascertain its effect on the DAO activity.  Increasing amounts 

of the WBP-2 construct ranging from 1 to 100 ng per 50,000 DAO cells in 96-

well plate were transiently transfected but the DAO enzymatic activity remained 

unchanged (Figure 6.9). 

 Expression of the flag-tagged WBP-2 was confirmed in the hDAO 

Hek293 lysate by probing SDS-PAGE gel with a flag antibody.  However, WBP-

2 was not immunoprecipitated with DAO by DAO antibody from the DAO stable 

line lysate over expressing WBP-2 (Figure 6.10). 

 The mass spectroscopy data described in chapter 4 was examined for 

presence of WBP-2.  Interestingly, WBP-2 was found to be co-

immunoprecipitated with DAO by DAO antibody from rat cerebellar lysate when 

the mild wash conditions were utilized (Figure 6.11).  WBP-2 was not identified 

in any of the negative controls or in the DAO immunoprecipitate with the harsh 

washing.  The Y2H and the co-immunoprecipitation screens suggest that WBP-2 
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may be a relevant DAO interacting protein.  However it is likely that WBP-2 a 

very weak DAO interactor or WBP-2 has a very low cerebellar expression profile. 

 

Figure 6.9: Analysis of functional impact of WBP-2 expression on DAO activity.  

Overexpression of WBP-2 in hDAO stable line did not effect the DAO enzymatic 

activity. 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: WBP-2 does not immunoprecipitate with DAO when over expressed 

in the hDAO stable line.  DAO was immunoprecipitated with the DAO antibody 

and probed for the flag-WBP-2 presence.  While WBP-2 was detected with FLAG 

antibody in the input lysate, none was found in the immunprecipitation lanes.  The 

expected molecular weight of WBP-2 is designated with the arrow. 
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Figure 6.11: The mass spectroscopy data suggest that WBP-2 is specifically 

immunoprecipitated with DAO via DAO antibody from rat cerebellar lysate.  

Despite the specificity of WBP-2 to DAO column the single polypeptide 

identified may be a random event, representing a very weak interaction or 

indicative of a low WBP-2 expression. 

 

 Sample 

Protein PBS Wash RIPA Supplemented Wash 

Name A (IgG) 
B (Peptide 
blocked) 

C (DAO) 
D (Peptide 
blocked) 

E (DAO) 

  Unique Total Unique Total Unique Total Unique Total Unique Total 

WBP-2 0 0 0 0 1 1 0 0 0 0 

 

 

6.7 Y2H screening of human adult brain library  

 To complement our Y2H screen of human fetal brain library we 

collaborated with Hybrigenics to perform a Y2H screen on a human adult brain 

library.  A different library was tested to account for DAO developmental 

expression changes described in chapter 1.  While Hybrigenics used the same 

GAL4 screening strategy as we have they used a library synthesized through 

random primers instead of the poly-T primer.  The difference between the two 

libraries is that with a random primer approach potentially a better coverage of the 

library is possible especially with large proteins.  Through the Hybrigenics screen 

four hits were identified.  An important advantage to the Hybrigenics screen is the 

proprietary algorithm used to determine the strength of and likelihood of the 

interaction allowing for a ranking of the hits.  Of the four putative interacting 

proteins, mitochondrial tumor suppressor-1 (MTUS1) was identified as having a 

very high likelihood of interaction, one unidentified protein with a moderate 

likelihood of an interaction and TAF1 and COPS5 with a very low likelihood.  

None of these proteins were identified in either the Y2H fetal brain library screen 

or the rat brain immunoprecipitation. 
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6.8 Conclusions 

 The Matchmaker pretransformed human fetal brain library and 

collaboration with Hybrigenics were successfully used in identification of DAO 

interacting proteins through yeast-two-hybrid screens.  Through these approaches 

twenty colonies on the quadruple dropout media were identified representing 

seventeen putative DAO interacting proteins.  Of the group four corresponded to 

identifiable proteins based on the NCBI alignment matching with a perfect 

homology.  Our confirmatory experiments focused on WBP-2.  The interaction 

between DAO and WBP-2 was characterized through DAO truncation mutants 

suggesting that WBP-2 interacts between amino acid 50 and 100 of DAO protein.  

mRNA expression pattern suggests that WBP-2 may be highly transcribed in the 

cerebellum suggesting that it may be found in the same tissue as DAO.  However, 

WBP-2 was shown not to affect activity of DAO when both proteins were over 

expressed in Hek293 cells.  More importantly, the interaction identified in the 

yeast-two-hybrid did not confirm in co-immunoprecipitation from the over 

expressed Hek293 cell lysates.  Interestingly, WBP-2 was found to be a very 

weak DAO interacting protein through the DAO immunoprecipitation from rat 

cerebellar lysate suggesting that the two proteins may have a weak affinity for 

each other. 

 

6.9 Conclusions and Future Studies 

 I started my doctorate work by focusing on necessary tools for 

identification and characterization of DAO interacting proteins.  As such, one 

specific DAO antibody was generated, purified and validated.  This antibody was 

shown to detect human, rat and mouse DAO on SDS-PAGE gel and to 

immunoprecipitate DAO protein from lysate.  The DAO antibody in conjunction 

with Dynal beads was used to co-immunoprecipitate DAO and its interacting 

proteins from rat cerebellar lysate.  The interacting proteins were then identified 

through mass spectroscopy.  As part of this experiment, two negative controls 

were used, a rabbit IgG and a peptide blocked DAO antibody, to eliminate sticky, 

non-specific proteins from being considered as putative DAO interacators.  

Furthermore, the co-immunoprecipitation was performed with a mild and a harsh 
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washing conditions to identify the strongest DAO interacting proteins.  DAO 

yeast expression constructs were also generated to explore DAO interacting 

proteins through a Y2H methodology.    Additional tools generated for validation 

and characterization of the interacting proteins include purified human DAO 

enzyme, and rat and human DAO stable lines.  Amplex Red assay was found to 

reliably measure DAO‟s activity and was used to ascertain effect of DAO‟s 

interacting proteins on DAO‟s activity. 

Through co-IP and Y2H approaches many putative DAO interacting 

proteins have been identified.  Those interacting proteins represent several 

different groups of proteins suggesting DAO expression outside of the 

traditionally assumed peroxisome region and speculate to explore consequences 

of such an altered expression and potentially alternative DAO functions.  The 

number of interacting proteins identified made it difficult to pursue them all hence 

we focused on WBP-2 and BSN.  WBP-2 was identified in both Y2H and the co-

IP experiments.  The interation between the two proteins was confirmed in Y2H 

and it is likely that WBP-2 interacts between DAO‟s 50
th

 and 100
th

 amino acid.  

However, no functional effects were observed on DAO‟s activity when both 

proteins were over expressed in Hek293 cells.  The DAO antibody did not 

immunoprecipitate WBP-2 from Hek293 lysate over expressing both proteins 

either suggesting that in the context of Hek293 cells there is no relevant 

interaction between the two proteins.  On the other hand, the outcome of co-IPs, 

fractionations, and immunocytochemistry studies suggest that DAO interacts with 

BSN within the presynaptic active zone where its enzymatic activity is modulated 

by BSN.   It is yet unknown what function DAO plays at the presynaptic active 

zone.  If DAO is FAD bound then it is likely to be enzymatically active but this 

has to be explored in future studies as well as any other functions DAO may have 

at the synapse.  Such DAO localization may directly play into modulating 

synaptic D-serine concentration as this neurotransmitter is reabsorbed from the 

synapse by Asc-1 into neurons.  Before D-serine is recycled back into the 

synapses some of it may be degraded by DAO.  However, metabolism of D-serine 

at the CAZ poses a threat of oxidative stress on the synapse due to the hydrogen 

peroxide synthesis.  Hence DAO‟s activity, if unchecked can lead to excessive 
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synaptic pruning.  Does this occur, to what extent, and does it contribute to 

schizophrenia?  Do the interacting proteins represent dirct interactors and if so are 

those interactions true for other species than rat DAO?  The DAO KO mice 

represent a tool to start addressing these questions in the future. 
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Chapter 7: Discussion 

 

7.1: Dynein: a potential DAO interacting protein 

We used Spotfire software designed in-house by Andrew Hill to cluster 

the putative DAO interacting proteins resulting in the main six groups described 

in sections 4.6.1 through 4.6.6.  In addition to these six clusters, individual 

proteins such as the heavy and light chains of dynein have been identified in the 

co-immunoprecipitation experiments with the DAO antibody utilizing both PBS 

and modified RIPA buffer washes (Table 4.2).  The robust retention of dynein 

polypeptide chains by the DAO antibody, which was abrogated by immunogenic 

peptide and absent in non-immune IgG control experiments (Table 4.2), suggests 

a potential interaction between DAO and dynein.  Nevertheless, we did not pursue 

this finding because we were interested in the novelty posed by presynaptic active 

zone proteins in the context of DAO localization.  However, DAO transport to the 

CAZ may be explained by an interaction with dynein.  Since dynein is a motor 

protein that uses ATP-derived energy for transport of intracellular cargo from the 

cell center to the periphery (Mallik et al., 2004; Reck-Peterson et al., 2006; Vallee 

et al., 2004), a DAO interaction with dynein may be relevant for DAO movement 

from the cytoplasm into the CAZ.   

 

7.2: Discrepancies with published literature 

 As depicted in Figure 5.5, DAO immunofluorescence in the rat cerebellar 

sections appears to be concentrated to the Purkinje cells of the Purkinje cell layer.  

This observation is further supported by DAO specific immunofluorescence in the 

molecular layer originating from Purkinje cell dendrites.  It is unlikely that the 

immunofluorescence attributable to the Purkinje cells stems from other cells that 

may be either synapsing upon or in a close proximity to the Purkinje cells.  Our 

findings are supported by a published report showing DAO immunoreactivity in 

Purkinje cells (Moreno et al., 1999) but the DAO antibody used in this study was 

later shown to cross-react with D-aspartate oxidase (Shleper et al., 2005) 

suggesting that the Purkinje cell immunoreactivity may not be specific to DAO 

itself.  In contrast to our findings, other reports, examining mRNA and protein 
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DAO expression in human and rat, reported a distinct lack of DAO presence in 

the Purkinje cells (Ono et al., 2009; Verrall et al., 2007).  Furthermore, we failed 

to show DAO immunoreactivity in Bergmann glia, which was reported earlier 

(Ono et al., 2009; Verrall et al., 2007).  To understand this apparent discrepancy 

we could examine DAO expression through the avidin-biotin-peroxidase 

technique using the Vectastain Elite ABC kit (Vector Labs, Burlingame, CA), as 

in aforementioned published reports, instead of the immunofluorescence.  

Alternatively, we could test for DAO mRNA expression in the Purkinje cells 

through in situ hybridization.  We chose to do the former.  When the same tissue 

used for immunofluorescence was instead visualized with the avidin-biotin-

peroxidase, DAO immunoreactivity was much more consistent with that of the 

above mentioned reports (Figure 7.1).  Specifically, we no longer observed 

Purkinje cell staining but did see predominant Purkinje cell layer 

immunoreactivity likely to be that of Bergmann glia as depicted by the small 

round cells.  In addition we observed moderate staining of small round cells in the 

molecular layer.   

It is hard to reconcile this noticeable difference between the 

immunofluorescence and avidin-biotin-peroxidase immunoreactivity as the only 

difference between the two experiments was the secondary antibody and the 

visualization method.  In each instance the secondary antibody was shown not to 

have any signal of its own suggesting that the observed difference is not due to 

the secondary antibody.   

 The DAO expression utilizing the avidin-biotin-peroxidase visualization 

do not preclude it from co-localization with BSN as rat cerebellar slices also 

displayed immunoreactivity to small round cells in the Purkinje cell layer and the 

molecular layer (Figure 7.1).  However, this method does not allow for co-

staining with both antibodies so we cannot be completely sure of their co-

localization. 

  

 

 

 



 165 

Figure 7.1:  DAO and BSN immunoreactivity in rat cerebellar slices.  When the 

rat cerebellar slices were prepared in the exact same way as for the 

immunofluorescence but visualized using avidin-biotin-peroxidase technique the 

DAO was mainly shown to localize to small cells likely to be Bergmann glia 

within the Purkinje cell layer but not to the Purkinje cells themselves and 

modestly to small round cells in the molecular layer (A).  This immunoreactivity 

was abolished when rabbit IgG was used instead of the DAO antibody (B).  A 

zoom in of DAO stained image (C) clearly shows immunoreactivity of small 

round cells surrounding the Purkinje cell (*).  BSN immunoreactivity also was 

found in small round cells of the Purkinje cell layer, small round cells of the 

molecular layer and modestly to the Purkinje cells and small round cells in the 

granule layer (D).  No immunoreactivity was observed when a mouse IgG was 

used instead of BSN antibody (E).   
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7.3:  Additional imaging studies 

 In the past, substantial discrepancies have emerged with respect to DAO 

localization on regional, cellular and subcellular levels (described earlier and 

review in (Verrall et al., 2010).   As depicted in this thesis the detection method 

utilizing the same antibody may result in a different outcome.  To build 

confidence in DAO localization it would be ideal to probe for DAO with multiple 

DAO antibodies generated against different regions of the DAO polypeptide.  

Also, an Electron microscopy imaging of the rat cerebellum may more definitely 

pinpoint DAO localization and address its likely presynaptic localization. In 

particular, Electron microscopy immunogold would allow us to pinpoint the 

subcellular localization, cell types, and address co-localization with BSN. 

 

7.4: Thesis summary 

Through a co-immunoprecipitation and mass spectrometry approach we 

have identified twenty-four putative DAO interacting proteins from rat 

cerebellum (Table 4.3).  Many of the proteins, including BSN, PCLO, SNIP, 

ERC1, and RAPGEF4 are enriched in the presynaptic active zone (Chin et al., 

2000; Dresbach et al., 2003; Li et al., 2006; Wang et al., 1999; Wang et al., 2002) 

suggesting an alternative subcellular localization for DAO to that of the widely 

accepted astrocytic, peroxisome bound DAO (Cristiano et al., 2001; Usuda et al., 

ml = molecular layer, pcl = Purkinje cell layer; gr = granule layer; * = Purkinje cell 

D                                                                 E 

ml ml 

pcl pcl 

gr 

gr 
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1986; Wanders and Waterham, 2006).  Our findings are supported by recent 

observations of DAO expression 1) in neurons, as exemplified by reports of DAO 

expression in Golgi and Purkinje cells of the rat cerebellum (Moreno et al., 1999) 

and pyramidal neurons of human hippocampus and cerebral cortex (Verrall et al., 

2007); 2) in the extra-peroxisomal space, as exemplified by a pericellular 

distribution of DAO in human brain combined with the lack of an overlap 

between DAO and peroxisomal markers in human astrocyte cultures (Sacchi et 

al., 2008; Verrall et al., 2007).  Thus, since published reports hint at DAO 

localization outside of the peroxisome, we explored an alternative localization for 

DAO at the presynaptic active zone by virtue of its interaction with BSN.   

BSN was confirmed to interact with DAO in rat cerebellar detergent 

extracts through co-immunoprecipitation combined with western blotting using 

DAO- and BSN-specific antibodies (Figure 5.3).  Subcellular fractionation studies 

of rat cerebellum showed that DAO is present in the synaptic junction membrane 

fraction which contained BSN but not catalase (Figure 5.7).  This data suggests a 

DAO localization outside of the peroxisome, where DAO was historically 

believed to be localized (De Duve and Baudhuin, 1966).  In light of our 

immunoprecipitation findings, these fractionation data suggest that DAO may be 

found in the presynaptic terminus where it may interact with BSN in vivo.  

Immunocytochemistry of cultured CGNs confirmed the localization of DAO in 

neuronal processes partially colocalizing with BSN (Figures 5.11 and 5.12).   

BSN was co-immunoprecipitated with DAO from HEK293 cells over 

expressing both proteins (Figure 5.13) suggesting that the two may directly 

interact as none of the major members of the presynaptic active zone are 

expressed in the HEK293 cells (Figure 5.21).  The presence of other presynaptic 

active zone proteins in the DAO immunoprecipitate suggests that they may have 

been pulled-down with DAO or indirectly through an interaction with BSN itself 

(Wang et al., 2009).  While the carboxyl terminus of BSN was shown to be 

responsible for an interaction with many of the other presynaptic active zone 

proteins (Wang et al., 2009), the BSN region spanning amino acids 2715-3263, 

representing a predicted single coiled coil domain, was found to co-

immunoprecipitate with DAO when both were over-expressed in HEK293 cells 
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(Figure 5.18).  This data suggests that an interaction of BSN with other members 

of the presynaptic active zone would not be disrupted by a DAO-BSN interaction 

as it involves a different region of BSN. 

The presynaptic cytoskeletal protein matrix, called the „cytometrix 

assembled at the active zones‟ (CAZ) (Garner et al., 2000), is a specialized 

subcellular domain where synaptic vesicles are anchored and primed prior to 

membrane fusion and neurotransmitter release (Owald and Sigrist, 2009).  BSN 

and PCLO play a major role in the organization of the CAZ likely as scaffolding 

elements (Fenster et al., 2000; tom Dieck et al., 1998).  Another member of the 

presynaptic terminus, Asc-1, a D-serine uptake transporter, has a major role in D-

serine clearance from the synapse in forebrain and cerebellum (Fukasawa et al., 

2000; Helboe et al., 2003; Matsuo et al., 2004; Nakauchi et al., 2000; Rutter et al., 

2007; Shao et al., 2009).  The presence of DAO at the CAZ suggests that some of 

the reabsorbed D-serine may be metabolized; further fine-tuning the D-serine 

concentration within the synapse and influencing NMDAR activation.  Our 

findings are important in light of a recent report of D-serine release from neurons 

via a nonvesicular mechanism (Rosenberg et al., 2010), suggesting that this 

nonvesicular pool of D-serine might be readily metabolized by presynaptically-

localized DAO.   

The interaction of DAO with BSN may be especially relevant in the 

forebrain where DAO has been reported to be predominantly expressed in 

neurons (Kapoor et al., 2006; Sacchi et al., 2008; Verrall et al., 2007).  Such 

expression, in conjunction with our observation of an inhibitory effect of BSN on 

the activity of DAO, may in part explain why the enzymatic activity of DAO has 

been consistently undetectable in the forebrain (Neims et al., 1966; Weimar and 

Neims, 1977).  In the hindbrain, however, where DAO is more likely to be 

expressed in glia rather than in neurons, BSN would not be expected to influence 

DAO‟s activity since BSN is not expressed in glia.  In fact, within the brain, DAO 

activity is most robust in hindbrain when compared to all other brain regions 

(Arnold et al., 1979; Horiike et al., 1994; Madeira et al., 2008; Weimar and 

Neims, 1977).  
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A loss of the inhibitory effect of BSN on neuronal DAO activity may also 

explain observations made in BSN functional knockout mice(Altrock et al., 

2003).  These mice express a fragment of BSN that lacks amino acids 505-2889, a 

region that partially overlaps with the DAO binding site identified in the present 

study (Figure 5.18).  Moreover, this BSN fragment only partially partitions 

(between 10 and 30%) with the synaptic protein fraction.  Hippocampal cultures 

derived from these mice have been shown to express twice as many functionally 

silent synapses than wild-type mice (Altrock et al., 2003).  The functional silence 

may be a direct consequence of lack of sufficient NMDAR activation as 

exemplified by reduced LTP in striatal medium spiny neurons of the BSN mutant 

mice (Ghiglieri et al., 2009).  Therefore, in the neuronal hippocampal cultures 

from the BSN functional knockout mice, DAO may still act within the 

presynaptic active zone without the inhibitory effect elicited by BSN.  It is 

tempting to speculate that presynaptic DAO, in the absence of the inhibitory 

influence of BSN, as would be the case in these BSN mutant mice, is functionally 

overactive, metabolizing synaptic D-serine and resulting in NMDAR 

hypoactivity.   

The mechanism underlying the inhibition of DAO enzymatic activity by 

BSN is yet unknown.  Since human DAO catalytic activity has been shown to be 

absent in flavin adenine dinucleotide-unbound DAO (Caldinelli et al., 2009), BSN 

may compete with flavin adenine dinucleotide (FAD) binding rendering DAO 

inactive.  BSN inhibition of presynaptic active zone DAO may be critical to 

maintaining healthy synapses.  Uncontrolled and excessive DAO catalytic activity 

may be cytotoxic through hydrogen peroxide production (Park et al., 2006), 

resulting in excessive synaptic pruning and a reduction of synapses.  However, the 

connection between BSN and these molecular and cellular consequences have yet 

to be experimentally established. 

It is as yet unknown what function DAO plays at the presynaptic active 

zone.  If DAO is FAD-bound, then it is likely to be enzymatically active but must 

be explored directly in future studies.  The metabolism of D-serine by DAO at the 

CAZ poses a threat of oxidative damage to synaptic components due to excessive 

hydrogen peroxide synthesis.  Hence the catalytic activity of DAO, if unchecked, 
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can lead to excessive synaptic pruning as well as other pathological cellular 

consequences.  BSN may be playing an important homeostatic role, inhibiting 

excessive DAO activity at the presynaptic active zone.  Whether this occurs, to 

what extent, and whether it may serve as a contributing factor to NMDAR 

hypofunction are critical questions that need to be addressed. 

 

7.5: Relevance of our findings 

 Synaptic D-serine is critical to NMDAR activity.  Our findings of DAO 

localization at the CAZ, outside of the peroxisome, suggest a direct involvement 

of DAO in modulating how much D-serine is available for synaptic release.  In 

the absence of an inhibitory effect mediated by BSN on DAO, the presynaptic 

DAO activity may excessively metabolize D-serine resulting in a decreased 

concentration of readily releasable D-serine into the synaptic cleft.  This 

decreased level of D-serine, in turn, may contribute to the NMDAR hypofunction 

observed in schizophrenic patients.  Our data suggests that a potent DAO inhibitor 

may at least in part reverse NMDAR hypofunction by increasing synaptic D-

serine concentration. 
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8.  Materials and Methods 

 

8.1  Molecular Biology 

 

8.1.1  Bacterial and yeast strains  

Subcloning and PCR cloning were performed unless otherwise stated using the 

One Shot
R
 MAX Efficiency

R
 DH5

TM 
– T1

R
 Chemical Competent E. coli 

(Invitrogen; 12297-016).   

 

BL21 (DE3) competent cells were purchased from Stratagene for the purpose of 

generating purified hDAO enzyme. 

 

Saccharomyces cerevisiae host strain Y187 pretransformed with the human fetal 

brain library were purchased from Clontech Laboratories.  For mating and 

subcloning untransfected AH109 (Clontech; 630444) and Y187 yeast strains 

(Clontech; 630457) were used. 

 

8.1.2 Growth media and agar plates 

Luria-Bertani (LB) broth containing 1% tryptone, 0.5% yeast extract and 0.5% 

NaCl (Gibco; 10855) was used to grow all of the bacterial cultures.  For plasmids 

encoding Ampicillin resistance, Ampicillin (amp) (EMD Biosciences; 171254), 

was added to a concentration of 100 g/ml and for Kanamycin resistance, 

Kanamycin (kan) (EMD Biosciences; 420311) was added to a concentration of 50 

g/ml. 

 

Luria-Bertani (LB) agar plates containing antibiotic were purchased from 

Teknova (50 g/ml Ampicillin – L1150-02; 50 g/ml Kanamycin – L1025). 

 

S.O.C medium (2% Tryptone, 0.5% Yeast Extract, 10 mM NaCl, 25 mM KCl, 10 

mM MgCl2, 10 mM MgSO4, 20 mM glucose) was purchased from Invitrogen 

(15544-034). 
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Yeast media purchased from Clontech include YPD (a blend of yeast extract, 

peptone, and dextrose) medium (630409), YPD agar medium (630410), minimal 

synthetically defined (SD) base medium (630411), minimal SD agar base 

(630412), Trp dropout (DO) supplement (630413), Leu DO supplement (630414), 

His DO supplement (630415), Ura DO supplement (630416), Leu/Trp DO 

supplement (630417), His/Leu DO supplement (630418), His/Leu/Trp DO 

supplement (630419) and Ade/His/Leu/Trp DO supplement (630428).   

 

8.1.3 Chemical transformation protocol 

Competent bacterial cells were thawed out on ice and 0.1-1 g (in a total volume 

of 1 l) of plasmid was mixed into 50 l of cell solution in 14 ml Falcon tubes 

(Beckton Dickinson; 352059), incubated on ice for 30 min, heat shocked for 45 

seconds at 42
o
C and cooled on ice for 2 min.  The cells were removed from ice 

bath and mixed with 200 l of S.O.C medium and incubated for 45 min at 37
o
C in 

a shaker at 150 rmp.  The entire solution and 1/10 and 1/100 dilutions there of 

were spread out on selective LB plates for incubation overnight at 37
o
C.  

Individual colonies were selected the following day. 

 

8.1.4 DNA electrophoresis 

See Sambrooke et al (1989) chapter 6 

Briefly, agarose was added 1x TAE (Invitrogen; 15558-042) and melted in a 

microwave oven.  The concentration of agarose used depended on the size of 

fragments to be resolved, on a scale of 0.6% for large fragments (>5kb) up to 

2.5% for small fragmens (<0.5 kb).  Ethydium bromide (BioRad; 161-0433) was 

added to a concentration of 100 ng/ml.  A 6x loading buffer (Promega; 25223001) 

was added to samples prior to loading on the gel.  Samples were run in 1x TAE 

buffer at a constant voltage of 60-130V depending on the gel box size.  DNA was 

visualized by placing the gel on the UV transilluminator. 

 

8.1.5 Ethanol precipitation of DNA 

To concentrate DNA from aqueous solution, 0.1 volume of 3M Sodium Acetate 

pH 5.2 (Rockland; RLMB-041) followed by 2 volumes of 100% ethanol were 
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added, and incubated in -20
o
C for at least 10 min.  For small amounts of DNA, 

such as ligations and preparation of fragments prior to ligation, 1 l of glycogen 

(1mg/ml) was added before the salt and ethanol.  After centrifugation at 13,000 

rpms for 15 min, the pellet was washed with 70% ethanol and dried at room 

temperature for 5 min before it was resuspended in sterile water.  

 

8.1.6 Gel extraction 

The QIAquick Gel Extraction Kit (Qiagen; 28704) was used to extract DNA from 

agar.  Briefly, the DNA sample was run on agarose and the band of interest was 

excised and weighted.  The sample was dissolved in three times its weight in 

buffer QG at 42
o
C before isopropyl alcohol was added at one times the sample 

weight.  The solution was spun down at 13,000 rpm at room temperature for 1 

min in the QIAquick spin column before 500 l of buffer QG was reapplied to the 

filter QIA tubes. The tubes were again spun down at 13,000 rpm for 1 min and the 

DNA containing filter was washed with 750 l of buffer PE spun down for 1 min.  

The residual solution was discarded followed by one more spin.  The sample was 

eluted off with 20 l of sterile water into an eppendorf tube.  

 

8.1.7 PCR purification 

The QIAquick PCR purification kit (Qiagen; 28104) was used to purify PCR 

product from contaminating enzymes and oligos.  Briefly, five volumes of buffer 

PBI were added to one volume of PCR sample.  The mixture was centrifuged for 

1 min at 13,000 rpms in the QIAquick column.  The column was washed with 750 

l of buffer PE and centrifuged at 13,000 rpm for 1 min.  Flow through was 

discarded and the sample was spun down for another minute.  DNA was collected 

by applying 20 l and spinning the sample for 1 min. 

 

8.1.8 Subcloining with TOPO TA and Zero Blunt TOPO 

When cloning, PCR constructs were first cloned into the TOPO TA pCR
R
II-

TOPO
R
 (Invitrogen; K4620-01) or Zero Blunt

R
 TOPO

R
 PCR cloning vector 

(Invitrogen; K2800-20).  The TOPO TA allows for a one-step cloning strategy of 
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Taq polymerase-amplified PCR products into the TOPO vector without ligase 

because the TOPO vector contains topoisomerase facilitating the ligation reaction.  

The Zero Blunt TOPO allows for direct insertion of a blunt-end PCR products 

into the plasmid vector.  Both vectors allowed for a quick and convenient 

selection of plasmid containing cells and growth for a mini-DNA preparation for 

sequencing.  Upon sequencing results, mutation-free clones where digested out of 

the TOPO vector with restriction endonucleases and ligated into expression 

vectors. 

 

The PCR reaction was run on agarose gel and the band of interest was excised 

using gel extraction kit (Qiagen) and resuspended into 20 l of sterile water 

(EMD; 7732-18-5).  For the TOPO reaction, 4 l of the PCR product was mixed 

with 1 l with salt solution (included in the kit) and 1 l of TOPO vector.  The 

mixture was incubated at room temperature for 5 min.  Chemically competent 

bacteria cells were transformed with 1 l of the TOPO solution. 

 

8.1.9 DNA Maxi- and mini-preparations 

For preparation of purified DNA on both small and large scale Qiagen mini 

(27106) and maxi (12662) kits were utilized.  5 ml or 150 ml of bacterial culture 

containing plasmid of choice were grown on selective media overnight for the 

mini or the maxi DNA preparations respectively.  The cells were centrifuged at 

5,000 rpm for 20 min at 4
o
C and the resulting pellets were resuspened in 250 l or 

10 ml of buffer P1.  Cells were lysed with 250 l or 10 ml with buffer P2 for no 

more then 5 min.  The lysis buffer was neutralized with equal volume of buffer 

P3.  For the mini kit the solution was centrifuged at 13,000 rpm for 10 min at 

room temperature to remove genomic DNA and cellular debris.  The solution was 

captured in a filter through a 1 min spin in the provided collection tubes, washed 

with buffer PE and finally eluted off of the filter with 20 l of sterile water.   For 

the maxi kit the resulting solution was passed through a filter to remove genomic 

DNA and cell debris, washed with 60 ml of buffer QC.  The DNA was eluted off 

with 15 ml of buffer QF and precipitated with 10.5 ml of isopropyl alcohol.  This 
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solution was passed through the QIA filter which retained the DNA plasmid.  It 

was washed with 70% ethanol before a final elution into 1 ml of sterile water.  

 

8.1.10 DNA digestion with restriction endonucleases 

All of the restriction endonucleases unless otherwise stated were purchased from 

New England Biosciences. 

 

Approximately, 5-10 g of DNA was digested in a total volume of 25 l with the 

appropriate restriction enzymes and buffer.  Approximately, 2 l or 40 units were 

used per digest carried out at 37
o
C for 2 hrs.  In a double digestion, if the enzymes 

had compatible buffer requirements then both digestions were concurrently run 

otherwise single digestion was prepared.  The resulting fragment was run on 

agarose gel and excised through gel extraction kit before the second digestion 

with another restriction enzyme. 

 

8.1.11 DNA ligation 

All of the ligation reactions were 5 min reactions at room temperature utilizing 

Rapid DNA Ligation kit (Roche; 11635379001).  For the ligation, 7 l of insert 

DNA was mixed with 1 l of the vector DNA and 2 l of DNA dilution buffer.  

An additional 10 l of T4 DNA ligation buffer was added and 1 l of T4 DNA 

ligase.   

 

8.1.12 Polymerase chain reaction (PCR) 

To generate fusion proteins containing either bassoon truncations or the full 

length DAO construct, regions were amplified by the polymerase chain reaction 

(PCR) using primers to introduce restriction sites into the products which would 

allow for in-frame cloning into the appropriate pcDNA 3.1 (Invitrogen; V790-20) 

and pTYB2 (New England Biolabs; N6702S)(for DAO), pCSM-EGFP 

(Clonetech; 6101-1)(for bassoon). 

 

 

 



 176 

8.1.12.1 Preparation of vector fragments 

Both human and rat DAO were cloned into pcDNA3.1 vector (Invitrogen).  EcoRI 

(5‟) and NotI (3‟) were used for the rDAO and HindIII (5‟) and XbaI (3‟) were 

used for the hDAO.   

 

Primers for rDAO include 

5‟ AAAAGAATTCACCATGCGCGTGGCCGTGATTGGAGCG 

3‟ TTTTGCGGCCGCTCAGAGGTGGGATGGAGGCATC 

 

Primers for hDAO include 

5‟ AAAGCTTACCATGCGTGTGGTGGTGATT 

3‟ TTTTCTAGATCAGAGGTGGGATGGTGGCATTCTG 

  

The pCSM-EGFP vector containing rat Bsn95-3963 was obtained kindly from the 

lab of Dr. Gundelfinger (Leibniz Insitute for Neurobiology, Germany).  The 

bassoon construct was cloned into the vector using HindIII (5‟) and SacII (3‟) 

with the GFP fused at the N-terminus.  This construct was subsequently used by 

me to synthesize truncation mutants representative of various functional domains 

of this protein. 

 

8.1.12.2 Preparation of inserts synthesized by PCR 

PCR reactions were carried out with the following KOD Xtreme
TM

 Hot Start 

DNA Polymerase reaction mixture from Novagen (71975): 

12.5 l    2x Xtreme buffer 

5 l         dNTPs (2 mM each) 

7 l          PCR grade water 

0.4 l       Sense (5‟) primer (100 M) 

0.4 l       Anti-sense (3‟) primer (100 M) 

0.1 l       Template DNA 

0.5 l       KOD Xtreme hot start DNA polymerase 

Reaction was run in a total volume of 26 l. 
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The reaction mixture was subject to 25 cycles of the following program on a 

BioRad Gene Cycler: 10 sec at 98
o
C, 30 sec at 55

o
C, 1 min per kb length at 68

 o
C. 

 

The PCR reaction was run on agarose gel (section 6.1.6), appropriate DNA band 

was extracted from gel (section 6.1.6) and subcloned into TOPO vector (section 

6.1.8).   

 

List of primers used for synthesizing bassoon PCR cloning inserts each containing 

5‟ HindIII and 3‟ SacII restriction sites.   

All are written in a 5‟ to 3‟ direction. 

Bsn95-609   

5‟ CAGATCTCGAGCTCAAGCTTCTGCTACTGCTCCT 

3‟ TTTTTCCGCGGGATCCCTGTCTTCTTTTCCGGG 

 

Bsn2715-3014             

5‟ AAAAAAGCTTATGGGCAGGCTCAGGGTGTGGCTGGGCC 

3‟  TTTTCCGCGGCCGCAGCTGGTTGAGCTCGCTGTCAGACA 

 

Bsn1692-3263            

5‟  AAAAAAGCTTTTCCAGGCCGCCAGTCAACCGCCGTGCA 

3‟       TTTTCCGCGGGGGATCCTTCCCGGGACGCCCACTGA 

 

Bsn95-3263  

5‟ CAGATCTCGAGCTCAAGCTTCTGCTACTGCTCCT 

3‟    TTTTCCGCGGGGGATCCTTCCCGGGACGCCCACTGA 

 

Bsn3263-3963   

5‟ AAAAAAAAGCTTAGAGAACCAGCTGTCCTAGAGGGACCC 

3‟    TTTTTCCGCGGCCAGAATGAGGAAAATTTTTTGCC 
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8.1.13 Sequencing 

All of the samples were sent out to internal Wyeth sequencing department.  

Sequences of the inserts were sent back electronically indicating the exact content 

of the insert which was compared to the template to make sure that it reflected the 

expected sequence. 

 

8.1.14 Preparation of competent yeast cells 

Streaked yeast on YPDA agar and incubated upside down for 3 days at 30
o
C.  

Inoculated 3 mls YPDA medium in sterile 15 Falcon tube with single colony with 

a diameter of 2-3 mm.  Incubated at 30
o
C for 8-12 hrs and shaked at 200 rpm.  

Tranfered 5 l of the culture to 250 ml flast containing 50 mls of YPDA.  

Incubated the cells at 30
o
C while shaking for ~16 hrs until OD600 reached 0.15-

0.3.  Centrifuged down the cells for 5 min at 700 g at room temperature and 

resuspend the pellet in 100 mls of fresh YPDA.  Incubated the cells at 30
o
C while 

shaking until they reach OD600 of 0.4 – 0.5 (about 3-5 hrs).  Spun 50 mls of 

culture as before and resuspend the pellet in 30 mls of sterile, deionized water.  

Spun the cells again and resuspend the pellet in 1.5 ml of 1.1xTE/LiAc.  Pelleted 

the cells in a table top centrifuge at top speed for 15 sec.  Resuspend the pellet in 

600 l of 1.1xTE/LiAc.   

 

8.1.15 Yeast transformation 

In a prechilled 1.5 ml microfuge mixed 100 ng of plasmid DNA with 5 l Herring 

Testes Carrier DNA (10 ml/ml) and 50 l of competent cells.  Added 0.5 ml 

PEG/LiAc and gently mixed.  Incubated for 30
o
C for 30 min with occasionally 

mix of the cells. Added 20 l DMSO and mixed.  Incubated at 42
o
C for 15 min 

with an occasional mix.  Pelleted the cells in a table top centrifuge at top speed for 

15 sec.  Resuspend the pellet in 1 ml of YPD liquid medium and incubated with 

shaking at 30
o
C for 90 min.  Pelleted the cells in a table top centrifuge at top 

speed for 15 sec.  Resuspended cells in 1 ml of 0.9% (w/v) NaCl and plated out 

the cells on appropriate dropout plates.  Incubate upside down at 30
o
C. 
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8.1.16 Yeast mating 

Streaked out yeast cells containing the prey vector and the bait vector on 

appropriate single dropout media and grew at 30
o
C for 3 days.  Picked single 

colony about 2-3 mm from each plate (one for bait and one for prey containing 

strain) into 1.5 ml centrifuge tube containing 500 l of 2xYPDA and vortexed to 

mix.  Incubated overnight while shaking at 200 rpm at 30
o
C.  Spreaded the mated 

culture on double and quadruple dropout media and incubated at 30
o
C for 3 to 5 

days.  The double dropout was used to determine mating efficiency while the 

quadruple dropout for interactor study. 

 

8.1.17 Yeast DNA extraction 

Done with the Yeastmaker yeast plasmid isolation kit (Clontech; 630441).  

Inoculated single colony into 0.5 ml of appropriate SD liquid mdium and 

incubated at 30
o
C overnight with vigorous shaking (250 rpm).  Pelleted the cells 

through centrifugation at 14,000 rpm for 5 min.  Resuspended in 50 l of 

potassium phosphate (67 mM KH2PO4; pH 7.5) and mixed with 10 l of Lyticase 

solution.  Incubated at 37
o
C fro 30 min.  Added 10 l of 20% SDS and vortexd 

for 1 min.  Prepared a Chroma Spin-1000 DEPC-water column by vortexing the 

spin column until resuspended the gel matrix, removed the cap and broke off the 

tip, placed the column into 2 ml polypropylene tube, centrifuged column for 5 

min at 700 x g and saved the column in a fresh microcentrifuge tube.  Applied the 

cell sample to the center of the gel bed‟s flat surface.  Spun the column for 5 min 

at 700 x g.  The purified DNA was in the eluate. 

 

8.2 Biochemistry 

 

8.2.1 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-

PAGE) 

SDS-PAGE sample buffer (3x) (80 mM Tris-HCl pH 6.8, 100 mM DTT, 10% 

glycerol, 2% SDS and 0.1% bromophenol blue) was added to samples before they 

were boiled for 3 min and loaded onto gels. 
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Samples were run in 4-12% gradient w/v polyacrylamide 

(Invitrogen;NP0321BOX).  gels were run in MOPS (NuPage; NP0001) at 130V 

for about 2 hrs.   

 

8.2.1.1  Coomassie Blue staining 

If proteins were to be visualized directly, gel was fixed and stained with 1% 

Coomassie Blue (BioRad; 161-0436) in 10% acetic acid and 20% methanol for 30 

min at room temperature.  The gels were destained in 10% acetic acid and 20% 

methanol. 

 

8.2.1.2  Silver stain 

For more sensitive protein detection Silver stain was utilized.  A brief protocol for 

Silver stain kit (Invitrogen; LC6100) includes fixing the SDS-PAGE gels with 

200 ml of fixing solution for 10 min, 2 x 10 min x 100 ml washes in sensitizing 

solution, 2 x 5 min x 200 ml washes in pure water, 15 min incubation in 100 ml of 

staining solution, 2 x 5min x 200 ml of rinse with pure water, 5 min incubation in 

developing solution, and stopping the reaction with 5 ml of the stopping solution.   

 

8.2.2 Western blotting 

The SDS-PAGE gel was placed against pre-wetted 0.45 m nitrocellulose 

(BioRad; 162-0215) with two pieces of Whatman 3mm filter paper on each side 

into a BioRad western blot cassette.  Transfer was carried out in a BioRad western 

blotting apparatus with 1x Transfer buffer at 30V.  Transfer normally lasted 

between 60 and 90 min.  After transfer the positions of proteins lanes and 

molecular weight markers were indented.  The blot was blocked with blocking 

buffer (Rockland; MB-070) for 30 min.  The antibodies were diluted at 1:1000 

dilution unless otherwise stated into the blocking buffer and applied to the filter 

for at least 1 hr with vigorous shaking.  Excess antibody was washed off with 

0.1% Tween-20 in 100 mM PBS (Gibco; 14190) 5min x 3.  Secondary antibody 

was conjugated to red fluorescence or green fluorescence (Invitrogen; A21109; 

Rockland; 610-131-121).  The blots were visualized on the Odyssey (Li-Cor). 
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8.2.2.1 Primary antibodies used in this study for western blotting 

DAO (rabbit polyclonal custom made through OpenBiosystems as described in 

chapter 2) 

Catalase   Sigma; C0979 

Bassoon  StressGen; VAM-PS003 

PSD-95  UC Davis/NINDS/NIMH NeuroMab ; 75-028 

MAP2   Sigma; M2320 

Actin   Sigma; A-2066 

Synaptophysin  Sigma; S5768 

GFP   Clontech; 632375 

GAL4 DNA-BD Clontech; 630403 

Mouse IgG  SantaCruz; sc-2025 

Rabbit IgG  Abcam; ab37415-5 

 

8.2.3 Synaptic junction membrane fractionation experiments 

The fractionation experiment was derived from tom Dieck (tom Dieck et al., 

1998), Wyneken (Wyneken et al., 2001) and Carlin (Carlin et al., 1980).  Rat 

cerebellum from four animals was collected for a total weight of about 2 g of wet 

tissue was homogenized by hand 10 times in 8 ml of solution A (320 mM sucrose/ 

5 mM HEPES / protease inhibitors).  The resulting lysate was centrifuged for 10 

min at 1,000g at 4
o
C.  The resulting supernatant (S1) was centrifuged at 12,000g 

for 20 min at 4
o
C.  For every 1 g of pellet (P2), 2.4 ml of solution A was used to 

resuspend it into solution.  This solution was layered onto a sucrose gradient 

consisting of 10 ml each of 0.85 M, 1.0 M, and 1.2 M.  The gradient was 

centrifuged for 2 hrs at 82,500g.  The synaptosomal fraction was collected 

between the 1.0M and 1.2M and it was layered on top of the 1.0M fraction.  This 

fraction was lysed for 30 min on ice in 5x volume of solution B (5 mM Tris-HCl 

pH 8.1/ 1 mM DTT).  The solution was centrifuged at 33,000g for 30 min and the 

resulting pellet (P3) was resuspended in solution C (320 mM sucrose / 2 mM DTT 

/ 12 mM Tris-HCl pH 8.1) at a volume of 60 ml/ 10 g of starting material.  The 

resuspended P3 was mixed with equal volume of 320 mM sucrose / 1% Triton X-

100 and incubated on ice for 15 min.  The sample was centrifuged at 4
o
C for 30 
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min at 33,000g and the resulting pellet (P4) was resuspended in solution A.  The 

resuspended P4 was layered on top of sucrose gradient composed of 1.0 M, 1.5 M 

and 2.0 M and centrifuged at 4
o
C for 2 hr at 201,000g.  The pellet resulting from 

this centrifugation represents the synaptic junction membrane fraction. 

 

8.2.4 Amplex Red DAO assay 

The hDAO enzymatic assay was run in 20 mM Tris-HCl pH 7.5, 1.0 % glycerol, 

0.01% Brij-35 and 0.01% BSA buffer.  Each 384 well in 384 well plate (Matrix; 

4328) was loaded with 20 l of purified DAO enzyme at 7 ng per well, 10 l of 

4x compound in 8% DMSO (WAY-396964 or just buffer) and following 5-10 

minute incubation 10 l of D-alanine (5 mM) (VWR; IC10028025), Amplex Red 

(100 M)(Invitrogen; A36006), HRP (1 U/ml)(Sigma; P8375-100KU) was added.  

The reaction took place in the dark at room temperature for 30 min before the 

RFU were read on Victor2 (PerkinElmer) using 544nm excitation, and 590 nm 

emission.   

 

For the hDAO and rDAO stable line 20 k cells per well in 384 well plates were 

plated overnight.  The media was replaced with 35 l of 50 mM NaHPO4 pH 7.4 

and 5 l of 10x compound in 3% DMSO or just assay buffer was added for 5-10 

min incubation prior to adding 10 l of 50 mM D-alanine, 100 M Amplex Red, 

1 U/ml HRP.  The cells were incubated at room temperature for 45-60 min in the 

dark prior to reading the fluorescence on Victor2 with 544 nm excitation 

wavelength and 596 nm emission. 

 

8.2.5 Bacterial culture preparation and chitin column hDAO purification 

BL21 (DE3) E. coli cells were transiently transfected with the hDAO/pTYB2 

construct and plated on LB amp plates overnight at 37
o
C.  A single colony was 

selected and incubated at 37
o
C in 100 ml of LB amp at 175 rpm until the solution 

reached optical density of 0.6 at 600 nm.  The solution was then ten fold diluted 

into LB amp supplemented with 0.5 mM IPTG.  The cells grew overnight at 30
o
C 
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in a shaker at 200 rpms.  The following day the cells were centrifuged at 5,000 

rpms for 20 min and the pellet was frozen and kept at -80
o
C. 

 

The cell pellet was processed according to Raibek (2000).  For every 10g of wet 

pellet 80 ml of cold 50 mM Tris-HCl pH 8.0, 1 mM sodium benzoate, 1 mM 

EDTA, 1 mM ATP, and protease inhibitor solution was used to resuspend the 

cells. The solution was thoroughly sonicated and centrifuged at 13,000 rpms for 

15 min at 4
o
C to remove cellular debris.  The remaining supernatant was 

normalized with NaCl (to a concentration of 1 M) before the solution was applied 

to an equilibrated 5-ml affinity column (Chitin beads from Stratagene) with 

solution A (50 mM Tris-HCl pH 8.0, 1 mM sodium benzoate, 1 mM EDTA, 1 M 

NaCl).  The beads were subsequently washed with 100 ml of buffer A and 20 ml 

of buffer B (buffer A without the NaCl or sodium benzoate).  Finally, the column 

was washed with 10 ml of buffer C (buffer B with 50 mM hydroxylamine) and 

left at 4
o
C overnight in buffer C solution.  The cleaved hDAO was collected the 

following day and examined for purity on SDS-PAGE gel stained with Coomassie 

Blue and for activity with the Amplex Red assay.   

 

8.2.6 Protein assay 

Protein concentration was determined based on a standard protein curve as 

measured with BioRad DC protein assay.  A total of 20 l of reagent S per 1.0 ml 

of reagent A were added to make the working reagent.  Several dilutions of a 

protein standard containing 0.2 mg/ml to 1.5 mg/ml protein were prepared 

(Pierce; prediluted protein standards).  A total volume of 100 l of standards and 

samples were added to cuvetts and mixed with 500 l of working reagent 

followed by addition of 4 ml of reagent B.  The samples were incubated for 15 

min at room temperature before absorbance was read at 750 nm on Spectromax. 

 

8.3 Cell Culture 

8.3.1 Maintenance of HEK293 cells 

Human embryonic kidney cell fibroblasts were grown at 37
o
C with 5% CO

2
 in 

Dulbecco‟s Modified Eagles Medium (DMEM; Gibco) containing 10% (v/v) fetal 
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calf serum (FCS; Gibco) and 1% (v/v) penicillin and streptomycin (Gibco). At 

approximately 90% confluence, cells were passaged by treatment in 5 ml 

prewarmed trypsin (0.25% w/v) (Gibco).  Once in suspension the cells were 

diluted 1:10 with prewarmed DMEM (as above), and seeded out onto T175 (BD 

Falcon). 

 

8.3.2 Transient transfection of Hek293 

One 10 cm poly-D-lysine coated dish (Becton Dickinson) containing 30-50% 

confluence was used per transfection with Lipofectamine 2000 (Invitrogen).  15 

g of DNA was suspended in 500 l of OptiMem (Gibco) in 5 ml polystyrene 

tube (Falcon).  In another polystyrene tube 30 l of lifopectamine 2000 was 

suspended in 500 l of OptiMem and both solutions were incubated individually 

at room temperature for 5 min.  The tube containing the DNA was then mixed 

with the tube containing the lipofectamine and incubated at room temperature for 

20 min before the solution was added to the dish containing the cells.  The cells 

were harvested 24-72 hr post transfection depending on the expression level of the 

recombinant protein. 

 

8.3.3 Stable line generation 

T175 flast was grown to 90% confluency before the cells were harvested and 

resuspended in 0.5 ml Optimem.  The cells were transferred to a 0.4 cm 

electroporation cuvette (BioRad) and 10 g total plasmid DNA was added.  

Electroporation was carried out with the settings 400 V, 250 Fm The 

cells were then added to 20 ml DMEM and plated out at 100 l and at dilutions of 

1:10 and 1:100 on 96-well plates.  After 24 hr incubation additional 100 l of 

DMEM media containing 1.6 mg/ml of hygromycin or G418 were added.  The 

cells were left in the incubator for 2 weeks before they where examined for 

growth.  Wells containing single colonies per well were selected and screened for 

presence of the recombinant gene through western blotting and functional activity 

screening. 
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8.3.4 Culturing of cerebellar granule neurons 

Animal handling in accordance with animal welfare regulations.  Cerebellum was 

dissected from postnatal day 14-21 rat pups, the meninges were removed under a 

dissecting microscope and the tissue was stored in ice cold PBS.  The tissue was 

dissociated using papain solution (Worthington).  The tissue was incubated for 30 

min at 37
o
C in 250 l of DNase (tube 3) and 5 ml papain (tube 2).  The solution 

was then removed and the tissue was triturated in 2 ml of DNase (vial 3)/ inhibitor 

(vial 4)/ EBSS (vial 1) 10x with a 1 ml tips.  Once the tissue settled down the 

supernatant was removed into a separate tube and the trituration was repeated 3 

more times with 6 more ml on the pelleted tissue sample.  All of the supernatants 

were pulled together and centrifuged at 300g for 5 min.   The pellet was 

resuspended in 2 ml of DNase (vial 3)/ inhibitor (vial 4)/ EBSS (vial 1) and 

layered on top of 6 ml of inhibitor (vial 4).  This solution was centrifuged at 300g 

for 5 min and the pelleted cells were resuspended in Neurobasal complete media 

(500 ml of neurobasal media w/o L-glutamine, 10 ml of B27 supplement 50x, 

0.75 g of KCl, 200 mM glutamine, 6.6 mg/ml Aphidicolin, and 1% penicillin and 

streptomycin.  The cells were counted and plated out at 50,000 cells per 24-well 

poly-D-lysine coated coverslips and incubated at 37
o
C with 5% CO2 for two 

weeks without changing the media.  After the two weeks the cells were processed 

for imaging. 

 

8.4 Immunofluorescence 

 

8.4.1 Cerebellar granule neurons preparation for immunofluorescence 

The CGN containing coverslips were washed 5 x 5 min in cold PBS.  To remove 

autofluorescence the cells were washed with 1% sodium borohydride 3 x 5 min 

and then washed with cold PBS to wash out the sodium borohydride.  They were 

then soaked in 0.5% Triton X-100 in PBS for 1 hr at 4
o
C and washed twice for 5 

min in cold PBS.  1 hr block in 5% normal goat serum (Vector) with 0.2% Triton 

X-100 in cold PBS followed.  Primary antibody was added to the blocking 

solution at 1:100 dilution for 1-3 hr before wash in cold PBS 5 x 5 min.  

Secondary antibody at 1:200 dilution suspended in the blocking reagent was then 
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applied to the coverslips for 1 hr.  It was then washed away with 5 x 5 min PBS.  

The coverslips were mounted onto slides with prolong gold (Invitrogen) and 

visualized under fluorescent microscopy.   

 

8.4.2 Rat cerebellar immunofluorescence preparation 

Fresh 4% paraformaldehyde for rat perfusion was made according to the 

following protocol for 1L: 40 g of paraformaldehyde was mixed into 500 ml of 

water heated to 60
o
C.  NaOH was titrated into this solution until all of the 

paraformaldehyde solubilized from a milky appearance to clear solution.  Then 

500 ml of 0.2 M phosphate buffer was added and the pH was adjucted to 7.4. 

 

Animal handling in accordance with animal welfare regulations.  Animals were 

anestized prior to any work.  Through a cardiac tap 100 ml of PBS was infused to 

wash out blood out of the blood vessels.  After the PBS wash the solution was 

switched to perfusion with 500 ml/animal of 4% paraformaldehyde running at 

about 50 ml per minute.  The intact cerebellum was dissociated and soaked in 4% 

paraformaldehyde for additional 10 min.  The cerebellum was then soaked in 30% 

sucrose solution for about 2 days until the tissue sunk to the bottom of the vessel.   

 

The cerebellar tissue was frozen by application of dry ice on the stage of 

microtome and cut into 20 m slices.  The slices were washed 5 x 5 min in cold 

PBS and treated with 1% sodium borohydrate 3 x 5 min to remove 

autofluorescence.  The slices were washed with cold PBS 2 x 5 min and soaked in 

0.5% Trion X-100 for 1 hr.  They were washed 2 x 5 min in PBS and blocked for 

1 hr in 5% normal goat serum with 0.2% Triton X-100.  Primary antibody was 

added to the blocking buffer at 1:100 dilution and incubated overnight while 

gently racking at 4
o
C.  The following day the slices were washed in cold PBS 5 x 

5 min.  Secondary antibody diluted in the blocking buffer at 1:200 dilution was 

added to the slices for 1 hr and then washed away with 5 x 5 min PBS.  The slices 

were mounted on slides and preserved with prolong gold.  The sections were 

imaged on fluorescent microscope.   
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8.5 Immunoprecipitation 

 

8.5.1 Application of Dynal Protein A beads 

Dynal protein A beads (Invitrogen) have a strong binding capacity for rabbit IgG 

hence they were used to capture DAO antibody and consequently 

immunoprecipite DAO from cellular lysate such as the rat cerebellum or the DAO 

stable line.  More background information on the Dynal beads can be found in 

chapter 2 where the principle is more thoroughly outlined. 

 

The beads were thoroughly mixed through vortexing to make sure that they are in 

solution before 100 l was removed into ependorf tube.  The tube was placed on a 

Dynal MPC magnet which separated the beads out of the solution.  Media was 

removed and replaced with 0.5 ml of 0.1 M NaPO4 pH 8.0.  The beads were 

resuspended and again precipitated with the magnet, sodium phosphate was 

removed and replaced with fresh sodium phosphate solution two more times.  The 

beads were resuspended in 90 l of sodium phosphate buffer and 10 l rabbit 

antibody solution was added to the bead solution.  This solution was gently mixed 

for 10 min at room temperature to all the beads to capture the antibody.  The 

beads were then applied to the magnet and the solution was removed and replaced 

with 0.5 ml of sodium phosphate buffer 3 x 5 min.  The antibody was crosslinked 

to the beads by removing the sodium phosphate buffer and replacing it with 1 ml 

of 0.2 M triethanolamide pH 8.2, 3 x 2 min.  The beads were resuspended in 

freshly made 1 ml of 0.2 M triethanolamide pH 8.2 supplemented with 20 mM 

DMP (dimethyl pimelimidate dihydrochloride) (Pierce) and incubated for 30 min 

at room temperature with a gentle rotation.  The reaction was stopped by 

removing the solution and replacing it with 50 mM Tris pH 7.5 for 15 min at 

room temperature with a gentle rotation.  The beads were washed 3 x 5 min in 

PBS and resuspended in 100 l of PBS.  The protein A beads are now coated with 

the rabbit antibody which is covalently coupled to the beads.  Fresh cellular or 

tissue lysates in RIPA buffer were added to the bead-antibody complex and 

incubated for 1 hr at 4
o
C with gentle rocking.  The lysate was washed away with 

PBS or stronger washing detergents 3 x 5 min at room temperature and the beads 
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were resuspended in 20 l of PBS.  SDS-PAGE loading dye was added to this 

solution and it was boiled for 3 min to extract attached proteins. 

 

8.5.2 Application of Dynal Protein G beads 

Dynal protein G beads (Invitrogen) have a strong binding capacity for monoclonal 

IgG (Akerstrom 1985) hence they were used to capture bassoon and GFP 

antibodies which were then used to immunoprecipite bassoon and GFP-tagged 

bassoon from cellular lysate such as the rat cerebellum or transiently transfected 

cells. 

 

The Dynal protein G beads were vortexed to resuspend them in solution and 100 

l sample was removed.  The beads were separated from the solution via a 

magnet and resuspended in 0.5 ml of 0.1 M citrate-phosphate buffer pH 5.0.  The 

washing was repeated two more times and the beads were resuspended in 50 l of 

the citrate-phosphate buffer.  10 l of monoclonal antibody solution was added to 

the bead solution and incubated for 40 min at room temperature while gently 

rocking.  The supernatant was then removed and the beads were washed 3 x 5 min 

with 0.5 ml of the citrate-phosphate buffer.  The antibody was crosslinked to the 

beads in the same manner as the rabbit IgG was to protein A beads (see 6.5.1).  

After the crosslinking, the beads were resuspended in 100 l of PBS and cellular 

or tissue lysate was added to this solution for 1 hr incubation at 4
o
C with gentle 

rocking.  The beads were then washed with PBS or stronger washing detergent 3 

x 5 min at room temperature and the beads were resuspended in 20 l of PBS.  

SDS buffer was added to this solution and it was boiled for 3 min to extract 

attached proteins. 

 

8.6 Mass spectroscopy 

Immunoprecipitate collected from the DAO immunoprecipitation column was 

loaded and separated on 10-20% Tricine SDS-PAGE gel (Invitrogen).  The 

proteins on the SDS-PAGE gel were stained with Imperial Protein Stain Solution 

(Pierce).  Each gel lane was cut into twenty pieces of about 1 x 1 mm
2
.  The 
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pieces were excised and the stain was removed by dehydration in acetonitrile 

(ACN), rehydrated, and washed in 25 mM sodium phosphate (pH 6.0), and 

dehydrated again in ACN.  Proteins within the gel pieces were digested in a 

solution containing 0.5 g of trypsin in 25 mM sodium phosphate (pH 6.0) at 

37
o
C for 4 hrs.  The trypsonized peptides were extracted from gel with 60% ACN 

/ 1 % fomic acid (FA) followed by extraction with 90 % ACN / 5 % FA.  The 

eluates were concentrated to near dryness by vacuum and reconstituted in 20 l of 

2% ACN / 0.1 % FA in preparation for the mass spectroscopic analysis. 

 

Agilent 1100 nanoflow system connected to a linear ion trap mass spectrometer 

(LTQ, ThermoFinnigan) was used for the mass spectrometric analysis.  The 

peptide samples were pressure-loaded onto a C18 PicoFrit microcapillary column 

(New Objective) packed with Magic C18 beads (5 m, 75 m x 11 cm, Michron 

BioResources) and desalted on-line with solvent A (2% ACN and 0.1% FA).  The 

peptides were eluted with a gradient from 4 to 60% solvent B (90% ACN and 

0.1% FA) over 70 min with a flow rate of 250 nl/min.  The fragment ion spectra 

(MS/MS scan) were acquired in a data-dependent manner in which each fragment 

ion scan was followed by consecutive MS/MS scan on the first three most intense 

ions from the MS scan. 

 

 

 

 

 

 

 

 

 

 

 

 

  



 190 

References 

 

(2008). Rare chromosomal deletions and duplications increase risk of 

schizophrenia. Nature 455, 237-241. 

Adler, C. M., Malhotra, A. K., Elman, I., Goldberg, T., Egan, M., Pickar, D., and 

Breier, A. (1999). Comparison of ketamine-induced thought disorder in healthy 

volunteers and thought disorder in schizophrenia. Am J Psychiatry 156, 1646-

1649. 

Akazawa, C., Shigemoto, R., Bessho, Y., Nakanishi, S., and Mizuno, N. (1994). 

Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in 

the cerebellum of developing and adult rats. J Comp Neurol 347, 150-160. 

Akbarian, S., Sucher, N. J., Bradley, D., Tafazzoli, A., Trinh, D., Hetrick, W. P., 

Potkin, S. G., Sandman, C. A., Bunney, W. E., Jr., and Jones, E. G. (1996). 

Selective alterations in gene expression for NMDA receptor subunits in prefrontal 

cortex of schizophrenics. J Neurosci 16, 19-30. 

Almond, S. L., Fradley, R. L., Armstrong, E. J., Heavens, R. B., Rutter, A. R., 

Newman, R. J., Chiu, C. S., Konno, R., Hutson, P. H., and Brandon, N. J. (2006). 

Behavioral and biochemical characterization of a mutant mouse strain lacking D-

amino acid oxidase activity and its implications for schizophrenia. Mol Cell 

Neurosci 32, 324-334. 

Altrock, W. D., tom Dieck, S., Sokolov, M., Meyer, A. C., Sigler, A., 

Brakebusch, C., Fassler, R., Richter, K., Boeckers, T. M., Potschka, H., et al. 

(2003). Functional inactivation of a fraction of excitatory synapses in mice 

deficient for the active zone protein bassoon. Neuron 37, 787-800. 

Alvir, J. M., Lieberman, J. A., Safferman, A. Z., Schwimmer, J. L., and Schaaf, J. 

A. (1993). Clozapine-induced agranulocytosis. Incidence and risk factors in the 

United States. N Engl J Med 329, 162-167. 

Andersen, J. D., and Pouzet, B. (2004). Spatial memory deficits induced by 

perinatal treatment of rats with PCP and reversal effect of D-serine. 

Neuropsychopharmacology 29, 1080-1090. 

Andreasen, N. C. (1995). Symptoms, signs, and diagnosis of schizophrenia. 

Lancet 346, 477-481. 

Andreasen, N. C., Flaum, M., Swayze, V., 2nd, O'Leary, D. S., Alliger, R., 

Cohen, G., Ehrhardt, J., and Yuh, W. T. (1993). Intelligence and brain structure in 

normal individuals. Am J Psychiatry 150, 130-134. 

Andreasen, N. C., O'Leary, D. S., Cizadlo, T., Arndt, S., Rezai, K., Ponto, L. L., 

Watkins, G. L., and Hichwa, R. D. (1996). Schizophrenia and cognitive 



 191 

dysmetria: a positron-emission tomography study of dysfunctional prefrontal-

thalamic-cerebellar circuitry. Proc Natl Acad Sci U S A 93, 9985-9990. 

Andreasen, N. C., and Pierson, R. (2008). The role of the cerebellum in 

schizophrenia. Biol Psychiatry 64, 81-88. 

Angenstein, F., Hilfert, L., Zuschratter, W., Altrock, W. D., Niessen, H. G., and 

Gundelfinger, E. D. (2008). Morphological and metabolic changes in the cortex of 

mice lacking the functional presynaptic active zone protein bassoon: a combined 

1H-NMR spectroscopy and histochemical study. Cereb Cortex 18, 890-897. 

Angermuller, S., and Fahimi, H. D. (1988). Heterogenous staining of D-amino 

acid oxidase in peroxisomes of rat liver and kidney. A light and electron 

microscopic study. Histochemistry 88, 277-285. 

Aragon, C., and Lopez-Corcuera, B. (2003). Structure, function and regulation of 

glycine neurotransporters. Eur J Pharmacol 479, 249-262. 

Arenas, J., Campos, Y., Ribacoba, R., Martin, M. A., Rubio, J. C., Ablanedo, P., 

and Cabello, A. (1998). Complex I defect in muscle from patients with 

Huntington's disease. Ann Neurol 43, 397-400. 

Arnold, G., Liscum, L., and Holtzman, E. (1979). Ultrastructural localization of 

D-amino acid oxidase in microperoxisomes of the rat nervous system. J 

Histochem Cytochem 27, 735-745. 

Arnold, S. E., Franz, B. R., Gur, R. C., Gur, R. E., Shapiro, R. M., Moberg, P. J., 

and Trojanowski, J. Q. (1995). Smaller neuron size in schizophrenia in 

hippocampal subfields that mediate cortical-hippocampal interactions. Am J 

Psychiatry 152, 738-748. 

Arnold, S. E., Ruscheinsky, D. D., and Han, L. Y. (1997). Further evidence of 

abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial 

point pattern analyses. Biol Psychiatry 42, 639-647. 

Badner, J. A., and Gershon, E. S. (2002). Meta-analysis of whole-genome linkage 

scans of bipolar disorder and schizophrenia. Mol Psychiatry 7, 405-411. 

Bairoch, A. (1992). PROSITE: a dictionary of sites and patterns in proteins. 

Nucleic Acids Res 20 Suppl, 2013-2018. 

Basu, A. C., Tsai, G. E., Ma, C. L., Ehmsen, J. T., Mustafa, A. K., Han, L., Jiang, 

Z. I., Benneyworth, M. A., Froimowitz, M. P., Lange, N., et al. (2009). Targeted 

disruption of serine racemase affects glutamatergic neurotransmission and 

behavior. Mol Psychiatry 14, 719-727. 

Baumgart, F., and Rodriguez-Crespo, I. (2008). D-amino acids in the brain: the 

biochemistry of brain serine racemase. FEBS J 275, 3538-3545. 



 192 

Bendikov, I., Nadri, C., Amar, S., Panizzutti, R., De Miranda, J., Wolosker, H., 

and Agam, G. (2007). A CSF and postmortem brain study of D-serine metabolic 

parameters in schizophrenia. Schizophr Res 90, 41-51. 

Beneyto, M., and Meador-Woodruff, J. H. (2004). Expression of transcripts 

encoding AMPA receptor subunits and associated postsynaptic proteins in the 

macaque brain. J Comp Neurol 468, 530-554. 

Benit, P., Chretien, D., Kadhom, N., de Lonlay-Debeney, P., Cormier-Daire, V., 

Cabral, A., Peudenier, S., Rustin, P., Munnich, A., and Rotig, A. (2001). Large-

scale deletion and point mutations of the nuclear NDUFV1 and NDUFS1 genes in 

mitochondrial complex I deficiency. Am J Hum Genet 68, 1344-1352. 

Benzel, I., Kew, J. N., Viknaraja, R., Kelly, F., de Belleroche, J., Hirsch, S., 

Sanderson, T. H., and Maycox, P. R. (2008). Investigation of G72 (DAOA) 

expression in the human brain. BMC Psychiatry 8, 94. 

Berger, U. V., Luthi-Carter, R., Passani, L. A., Elkabes, S., Black, I., Konradi, C., 

and Coyle, J. T. (1999). Glutamate carboxypeptidase II is expressed by astrocytes 

in the adult rat nervous system. J Comp Neurol 415, 52-64. 

Bertolino, A., Esposito, G., Callicott, J. H., Mattay, V. S., Van Horn, J. D., Frank, 

J. A., Berman, K. F., and Weinberger, D. R. (2000). Specific relationship between 

prefrontal neuronal N-acetylaspartate and activation of the working memory 

cortical network in schizophrenia. Am J Psychiatry 157, 26-33. 

Betz, A., Thakur, P., Junge, H. J., Ashery, U., Rhee, J. S., Scheuss, V., 

Rosenmund, C., Rettig, J., and Brose, N. (2001). Functional interaction of the 

active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30, 

183-196. 

Black, J. E., Kodish, I. M., Grossman, A. W., Klintsova, A. Y., Orlovskaya, D., 

Vostrikov, V., Uranova, N., and Greenough, W. T. (2004). Pathology of layer V 

pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J 

Psychiatry 161, 742-744. 

Boyer, P., Phillips, J. L., Rousseau, F. L., and Ilivitsky, S. (2007). Hippocampal 

abnormalities and memory deficits: new evidence of a strong pathophysiological 

link in schizophrenia. Brain Res Rev 54, 92-112. 

Braff, D. L., Geyer, M. A., Light, G. A., Sprock, J., Perry, W., Cadenhead, K. S., 

and Swerdlow, N. R. (2001). Impact of prepulse characteristics on the detection of 

sensorimotor gating deficits in schizophrenia. Schizophr Res 49, 171-178. 

Breier, A., Adler, C. M., Weisenfeld, N., Su, T. P., Elman, I., Picken, L., 

Malhotra, A. K., and Pickar, D. (1998). Effects of NMDA antagonism on striatal 

dopamine release in healthy subjects: application of a novel PET approach. 

Synapse 29, 142-147. 



 193 

Brown, A. S., Schaefer, C. A., Wyatt, R. J., Goetz, R., Begg, M. D., Gorman, J. 

M., and Susser, E. S. (2000). Maternal exposure to respiratory infections and adult 

schizophrenia spectrum disorders: a prospective birth cohort study. Schizophr 

Bull 26, 287-295. 

Browne, S., Roe, M., Lane, A., Gervin, M., Morris, M., Kinsella, A., Larkin, C., 

and Callaghan, E. O. (1996). Quality of life in schizophrenia: relationship to 

sociodemographic factors, symptomatology and tardive dyskinesia. Acta 

Psychiatr Scand 94, 118-124. 

Browning, M. D., Dudek, E. M., Rapier, J. L., Leonard, S., and Freedman, R. 

(1993). Significant reductions in synapsin but not synaptophysin specific activity 

in the brains of some schizophrenics. Biol Psychiatry 34, 529-535. 

Buchanan, R. W., Javitt, D. C., Marder, S. R., Schooler, N. R., Gold, J. M., 

McMahon, R. P., Heresco-Levy, U., and Carpenter, W. T. (2007). The Cognitive 

and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of 

glutamatergic agents for negative symptoms and cognitive impairments. Am J 

Psychiatry 164, 1593-1602. 

Buka, S. L., Tsuang, M. T., Torrey, E. F., Klebanoff, M. A., Bernstein, D., and 

Yolken, R. H. (2001a). Maternal infections and subsequent psychosis among 

offspring. Arch Gen Psychiatry 58, 1032-1037. 

Buka, S. L., Tsuang, M. T., Torrey, E. F., Klebanoff, M. A., Wagner, R. L., and 

Yolken, R. H. (2001b). Maternal cytokine levels during pregnancy and adult 

psychosis. Brain Behav Immun 15, 411-420. 

Buller, A. L., Larson, H. C., Schneider, B. E., Beaton, J. A., Morrisett, R. A., and 

Monaghan, D. T. (1994). The molecular basis of NMDA receptor subtypes: native 

receptor diversity is predicted by subunit composition. J Neurosci 14, 5471-5484. 

Bunney, B. S., Walters, J. R., Roth, R. H., and Aghajanian, G. K. (1973). 

Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single 

cell activity. J Pharmacol Exp Ther 185, 560-571. 

Burnet, P. W., Eastwood, S. L., Bristow, G. C., Godlewska, B. R., Sikka, P., 

Walker, M., and Harrison, P. J. (2008a). D-amino acid oxidase activity and 

expression are increased in schizophrenia. Mol Psychiatry 13, 658-660. 

Burnet, P. W., Hutchinson, L., von Hesling, M., Gilbert, E. J., Brandon, N. J., 

Rutter, A. R., Hutson, P. H., and Harrison, P. J. (2008b). Expression of D-serine 

and glycine transporters in the prefrontal cortex and cerebellum in schizophrenia. 

Schizophr Res 102, 283-294. 

Caldinelli, L., Molla, G., Sacchi, S., Pilone, M. S., and Pollegioni, L. (2009). 

Relevance of weak flavin binding in human D-amino acid oxidase. Protein Sci 18, 

801-810. 



 194 

Campaner, S., Pollegioni, L., Ross, B. D., and Pilone, M. S. (1998). Limited 

proteolysis and site-directed mutagenesis reveal the origin of microheterogeneity 

in Rhodotorula gracilis D-amino acid oxidase. Biochem J 330 ( Pt 2), 615-621. 

Cannon, T. D., Thompson, P. M., van Erp, T. G., Toga, A. W., Poutanen, V. P., 

Huttunen, M., Lonnqvist, J., Standerskjold-Nordenstam, C. G., Narr, K. L., 

Khaledy, M., et al. (2002). Cortex mapping reveals regionally specific patterns of 

genetic and disease-specific gray-matter deficits in twins discordant for 

schizophrenia. Proc Natl Acad Sci U S A 99, 3228-3233. 

Carlin, R. K., Grab, D. J., Cohen, R. S., and Siekevitz, P. (1980). Isolation and 

characterization of postsynaptic densities from various brain regions: enrichment 

of different types of postsynaptic densities. J Cell Biol 86, 831-845. 

Carlsson, A. (1988). The current status of the dopamine hypothesis of 

schizophrenia. Neuropsychopharmacology 1, 179-186. 

Carlsson, A., Waters, N., Holm-Waters, S., Tedroff, J., Nilsson, M., and Carlsson, 

M. L. (2001). Interactions between monoamines, glutamate, and GABA in 

schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41, 237-260. 

Carroll, J., Fearnley, I. M., Shannon, R. J., Hirst, J., and Walker, J. E. (2003). 

Analysis of the subunit composition of complex I from bovine heart 

mitochondria. Mol Cell Proteomics 2, 117-126. 

Cascella, N. G., Macciardi, F., Cavallini, C., and Smeraldi, E. (1994). d-

cycloserine adjuvant therapy to conventional neuroleptic treatment in 

schizophrenia: an open-label study. J Neural Transm Gen Sect 95, 105-111. 

Chen, Y. A., and Scheller, R. H. (2001). SNARE-mediated membrane fusion. Nat 

Rev Mol Cell Biol 2, 98-106. 

Chin, L. S., Nugent, R. D., Raynor, M. C., Vavalle, J. P., and Li, L. (2000). SNIP, 

a novel SNAP-25-interacting protein implicated in regulated exocytosis. J Biol 

Chem 275, 1191-1200. 

Chouinard, M. L., Gaitan, D., and Wood, P. L. (1993). Presence of the N-methyl-

D-aspartate-associated glycine receptor agonist, D-serine, in human temporal 

cortex: comparison of normal, Parkinson, and Alzheimer tissues. J Neurochem 61, 

1561-1564. 

Christopoulos, A., and Kenakin, T. (2002). G protein-coupled receptor allosterism 

and complexing. Pharmacol Rev 54, 323-374. 

Chumakov, I., Blumenfeld, M., Guerassimenko, O., Cavarec, L., Palicio, M., 

Abderrahim, H., Bougueleret, L., Barry, C., Tanaka, H., La Rosa, P., et al. (2002). 

Genetic and physiological data implicating the new human gene G72 and the gene 

for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A 99, 13675-

13680. 



 195 

Cline, M. J., and Lehrer, R. I. (1969). D-amino acid oxidase in leukocytes: a 

possible D-amino-acid-linked antimicrobial system. Proc Natl Acad Sci U S A 62, 

756-763. 

Conley, R. R., and Buchanan, R. W. (1997). Evaluation of treatment-resistant 

schizophrenia. Schizophr Bull 23, 663-674. 

Conrad, A. J., Abebe, T., Austin, R., Forsythe, S., and Scheibel, A. B. (1991). 

Hippocampal pyramidal cell disarray in schizophrenia as a bilateral phenomenon. 

Arch Gen Psychiatry 48, 413-417. 

Conti, F., Barbaresi, P., Melone, M., and Ducati, A. (1999). Neuronal and glial 

localization of NR1 and NR2A/B subunits of the NMDA receptor in the human 

cerebral cortex. Cereb Cortex 9, 110-120. 

Cook, S. P., Galve-Roperh, I., Martinez del Pozo, A., and Rodriguez-Crespo, I. 

(2002). Direct calcium binding results in activation of brain serine racemase. J 

Biol Chem 277, 27782-27792. 

Corrigan, J. J. (1969). D-amino acids in animals. Science 164, 142-149. 

Corvin, A., Donohoe, G., McGhee, K., Murphy, K., Kenny, N., Schwaiger, S., 

Nangle, J. M., Morris, D., and Gill, M. (2007). D-amino acid oxidase (DAO) 

genotype and mood symptomatology in schizophrenia. Neurosci Lett 426, 97-100. 

Coskun, P. E., Beal, M. F., and Wallace, D. C. (2004). Alzheimer's brains harbor 

somatic mtDNA control-region mutations that suppress mitochondrial 

transcription and replication. Proc Natl Acad Sci U S A 101, 10726-10731. 

Costa, J., Khaled, E., Sramek, J., Bunney, W., Jr., and Potkin, S. G. (1990). An 

open trial of glycine as an adjunct to neuroleptics in chronic treatment-refractory 

schizophrenics. J Clin Psychopharmacol 10, 71-72. 

Cotter, D., Mackay, D., Chana, G., Beasley, C., Landau, S., and Everall, I. P. 

(2002). Reduced neuronal size and glial cell density in area 9 of the dorsolateral 

prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 12, 

386-394. 

Coyle, J. T. (2006). Glutamate and schizophrenia: beyond the dopamine 

hypothesis. Cell Mol Neurobiol 26, 365-384. 

Coyle, J. T., and Tsai, G. (2004a). NMDA receptor function, neuroplasticity, and 

the pathophysiology of schizophrenia. Int Rev Neurobiol 59, 491-515. 

Coyle, J. T., and Tsai, G. (2004b). The NMDA receptor glycine modulatory site: a 

therapeutic target for improving cognition and reducing negative symptoms in 

schizophrenia. Psychopharmacology (Berl) 174, 32-38. 



 196 

Creese, I., Burt, D. R., and Snyder, S. H. (1976). Dopamine receptor binding 

predicts clinical and pharmacological potencies of antischizophrenic drugs. 

Science 192, 481-483. 

Cristiano, L., Bernardo, A., and Ceru, M. P. (2001). Peroxisome proliferator-

activated receptors (PPARs) and peroxisomes in rat cortical and cerebellar 

astrocytes. J Neurocytol 30, 671-683. 

Crow, T. J. (1985). The two-syndrome concept: origins and current status. 

Schizophr Bull 11, 471-486. 

Cull-Candy, S. G., and Leszkiewicz, D. N. (2004). Role of distinct NMDA 

receptor subtypes at central synapses. Sci STKE 2004, re16. 

Curras, M. C., and Pallotta, B. S. (1996). Single-channel evidence for glycine and 

NMDA requirement in NMDA receptor activation. Brain Res 740, 27-40. 

D'Aniello, A., Vetere, A., and Petrucelli, L. (1993). Further study on the 

specificity of D-amino acid oxidase and D-aspartate oxidase and time course for 

complete oxidation of D-amino acids. Comp Biochem Physiol B 105, 731-734. 

Davidsson, P., Gottfries, J., Bogdanovic, N., Ekman, R., Karlsson, I., Gottfries, C. 

G., and Blennow, K. (1999). The synaptic-vesicle-specific proteins rab3a and 

synaptophysin are reduced in thalamus and related cortical brain regions in 

schizophrenic brains. Schizophr Res 40, 23-29. 

Davis, J. M., Chen, N., and Glick, I. D. (2003). A meta-analysis of the efficacy of 

second-generation antipsychotics. Arch Gen Psychiatry 60, 553-564. 

Davis, K. L., Buchsbaum, M. S., Shihabuddin, L., Spiegel-Cohen, J., Metzger, 

M., Frecska, E., Keefe, R. S., and Powchik, P. (1998). Ventricular enlargement in 

poor-outcome schizophrenia. Biol Psychiatry 43, 783-793. 

Davis, K. L., Kahn, R. S., Ko, G., and Davidson, M. (1991). Dopamine in 

schizophrenia: a review and reconceptualization. Am J Psychiatry 148, 1474-

1486. 

De Duve, C., and Baudhuin, P. (1966). Peroxisomes (microbodies and related 

particles). Physiol Rev 46, 323-357. 

De Miranda, J., Panizzutti, R., Foltyn, V. N., and Wolosker, H. (2002). Cofactors 

of serine racemase that physiologically stimulate the synthesis of the N-methyl-D-

aspartate (NMDA) receptor coagonist D-serine. Proc Natl Acad Sci U S A 99, 

14542-14547. 

Deane, C. M., Salwinski, L., Xenarios, I., and Eisenberg, D. (2002). Protein 

interactions: two methods for assessment of the reliability of high throughput 

observations. Mol Cell Proteomics 1, 349-356. 



 197 

Deisenhofer, J. (1981). Crystallographic refinement and atomic models of a 

human Fc fragment and its complex with fragment B of protein A from 

Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry 20, 2361-2370. 

Detera-Wadleigh, S. D., and McMahon, F. J. (2006). G72/G30 in schizophrenia 

and bipolar disorder: review and meta-analysis. Biol Psychiatry 60, 106-114. 

Dhananjayan, S. C., Ramamoorthy, S., Khan, O. Y., Ismail, A., Sun, J., 

Slingerland, J., O'Malley, B. W., and Nawaz, Z. (2006). WW domain binding 

protein-2, an E6-associated protein interacting protein, acts as a coactivator of 

estrogen and progesterone receptors. Mol Endocrinol 20, 2343-2354. 

Dingledine, R., Borges, K., Bowie, D., and Traynelis, S. F. (1999). The glutamate 

receptor ion channels. Pharmacol Rev 51, 7-61. 

Dingledine, R., Kleckner, N. W., and McBain, C. J. (1990). The glycine coagonist 

site of the NMDA receptor. Adv Exp Med Biol 268, 17-26. 

Dresbach, T., Hempelmann, A., Spilker, C., tom Dieck, S., Altrock, W. D., 

Zuschratter, W., Garner, C. C., and Gundelfinger, E. D. (2003). Functional 

regions of the presynaptic cytomatrix protein bassoon: significance for synaptic 

targeting and cytomatrix anchoring. Mol Cell Neurosci 23, 279-291. 

Dresbach, T., Torres, V., Wittenmayer, N., Altrock, W. D., Zamorano, P., 

Zuschratter, W., Nawrotzki, R., Ziv, N. E., Garner, C. C., and Gundelfinger, E. D. 

(2006). Assembly of active zone precursor vesicles: obligatory trafficking of 

presynaptic cytomatrix proteins Bassoon and Piccolo via a trans-Golgi 

compartment. J Biol Chem 281, 6038-6047. 

Duncan, E. J., Szilagyi, S., Schwartz, M. P., Bugarski-Kirola, D., Kunzova, A., 

Negi, S., Stephanides, M., Efferen, T. R., Angrist, B., Peselow, E., et al. (2004). 

Effects of D-cycloserine on negative symptoms in schizophrenia. Schizophr Res 

71, 239-248. 

Dunlop, D. S., and Neidle, A. (2005). Regulation of serine racemase activity by 

amino acids. Brain Res Mol Brain Res 133, 208-214. 

Einhorn, L. C., Johansen, P. A., and White, F. J. (1988). Electrophysiological 

effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral 

tegmental area. J Neurosci 8, 100-112. 

Elvevag, B., and Goldberg, T. E. (2000). Cognitive impairment in schizophrenia 

is the core of the disorder. Crit Rev Neurobiol 14, 1-21. 

Falkai, P., and Bogerts, B. (1986). Cell loss in the hippocampus of 

schizophrenics. Eur Arch Psychiatry Neurol Sci 236, 154-161. 

Falls, D. L. (2003). Neuregulins: functions, forms, and signaling strategies. Exp 

Cell Res 284, 14-30. 



 198 

Fang, Q. K., Hopkins, S., and Jones, S. (2005). Benzol[d]isoxazol-3-ol DAAO 

inhibitors. In,  (US). 

Farah, A. (2005). Atypicality of atypical antipsychotics. Prim Care Companion J 

Clin Psychiatry 7, 268-274. 

Farde, L., Wiesel, F. A., Stone-Elander, S., Halldin, C., Nordstrom, A. L., Hall, 

H., and Sedvall, G. (1990). D2 dopamine receptors in neuroleptic-naive 

schizophrenic patients. A positron emission tomography study with 

[11C]raclopride. Arch Gen Psychiatry 47, 213-219. 

Feinberg, I. (1990). Cortical pruning and the development of schizophrenia. 

Schizophr Bull 16, 567-570. 

Fenster, S. D., Chung, W. J., Zhai, R., Cases-Langhoff, C., Voss, B., Garner, A. 

M., Kaempf, U., Kindler, S., Gundelfinger, E. D., and Garner, C. C. (2000). 

Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron 

25, 203-214. 

Fenton, W. S., Blyler, C. R., and Heinssen, R. K. (1997). Determinants of 

medication compliance in schizophrenia: empirical and clinical findings. 

Schizophr Bull 23, 637-651. 

Foltyn, V. N., Bendikov, I., De Miranda, J., Panizzutti, R., Dumin, E., Shleper, 

M., Li, P., Toney, M. D., Kartvelishvily, E., and Wolosker, H. (2005). Serine 

racemase modulates intracellular D-serine levels through an alpha,beta-

elimination activity. J Biol Chem 280, 1754-1763. 

Freedman, R. (2003). Schizophrenia. N Engl J Med 349, 1738-1749. 

Fuchs, S. A., De Barse, M. M., Scheepers, F. E., Cahn, W., Dorland, L., de Sain-

van der Velden, M. G., Klomp, L. W., Berger, R., Kahn, R. S., and de Koning, T. 

J. (2008). Cerebrospinal fluid D-serine and glycine concentrations are unaltered 

and unaffected by olanzapine therapy in male schizophrenic patients. Eur 

Neuropsychopharmacol 18, 333-338. 

Fukasawa, Y., Segawa, H., Kim, J. Y., Chairoungdua, A., Kim, D. K., Matsuo, 

H., Cha, S. H., Endou, H., and Kanai, Y. (2000). Identification and 

characterization of a Na(+)-independent neutral amino acid transporter that 

associates with the 4F2 heavy chain and exhibits substrate selectivity for small 

neutral D- and L-amino acids. J Biol Chem 275, 9690-9698. 

Fukuda, M. (2008). Regulation of secretory vesicle traffic by Rab small GTPases. 

Cell Mol Life Sci 65, 2801-2813. 

Fukui, K., and Miyake, Y. (1992). Molecular cloning and chromosomal 

localization of a human gene encoding D-amino-acid oxidase. J Biol Chem 267, 

18631-18638. 



 199 

Furukawa, H., and Gouaux, E. (2003). Mechanisms of activation, inhibition and 

specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. 

EMBO J 22, 2873-2885. 

Gao, X. M., Sakai, K., Roberts, R. C., Conley, R. R., Dean, B., and Tamminga, C. 

A. (2000). Ionotropic glutamate receptors and expression of N-methyl-D-aspartate 

receptor subunits in subregions of human hippocampus: effects of schizophrenia. 

Am J Psychiatry 157, 1141-1149. 

Garner, C. C., Kindler, S., and Gundelfinger, E. D. (2000). Molecular 

determinants of presynaptic active zones. Curr Opin Neurobiol 10, 321-327. 

Geddes, J. (1999). Prenatal and perinatal and perinatal risk factors for early onset 

schizophrenia, affective psychosis, and reactive psychosis. BMJ 318, 426. 

Geddes, J., Freemantle, N., Harrison, P., and Bebbington, P. (2000). Atypical 

antipsychotics in the treatment of schizophrenia: systematic overview and meta-

regression analysis. BMJ 321, 1371-1376. 

Ghiglieri, V., Picconi, B., Sgobio, C., Bagetta, V., Barone, I., Paille, V., Di 

Filippo, M., Polli, F., Gardoni, F., Altrock, W., et al. (2009). Epilepsy-induced 

abnormal striatal plasticity in Bassoon mutant mice. Eur J Neurosci 29, 1979-

1993. 

Glantz, L. A., and Lewis, D. A. (2000). Decreased dendritic spine density on 

prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57, 

65-73. 

Goff, D. C., and Coyle, J. T. (2001). The emerging role of glutamate in the 

pathophysiology and treatment of schizophrenia. Am J Psychiatry 158, 1367-

1377. 

Goff, D. C., Henderson, D. C., Evins, A. E., and Amico, E. (1999). A placebo-

controlled crossover trial of D-cycloserine added to clozapine in patients with 

schizophrenia. Biol Psychiatry 45, 512-514. 

Goff, D. C., Herz, L., Posever, T., Shih, V., Tsai, G., Henderson, D. C., 

Freudenreich, O., Evins, A. E., Yovel, I., Zhang, H., and Schoenfeld, D. (2005). A 

six-month, placebo-controlled trial of D-cycloserine co-administered with 

conventional antipsychotics in schizophrenia patients. Psychopharmacology 

(Berl) 179, 144-150. 

Goff, D. C., Tsai, G., Manoach, D. S., and Coyle, J. T. (1995). Dose-finding trial 

of D-cycloserine added to neuroleptics for negative symptoms in schizophrenia. 

Am J Psychiatry 152, 1213-1215. 

Goldenberg, H., Huttinger, M., Ludwig, R., Kramar, R., and Bock, P. (1975). 

Catalase-positive particles ("microperoxisomes") from rat preputial gland and 

bovine adrenal cortex. Exp Cell Res 93, 438-442. 



 200 

Goldstein, A. Y., Wang, X., and Schwarz, T. L. (2008). Axonal transport and the 

delivery of pre-synaptic components. Curr Opin Neurobiol 18, 495-503. 

Gossrau, R. (1991). Catalytic histochemistry of acid and neutral hydrolases in 

plant seedlings. Histochem J 23, 483-489. 

Gotesman, I. (1991). Schizophrenia Genesis: The origins of Madness. ,  (New 

York Freeman Press). 

Grosshans, B. L., Ortiz, D., and Novick, P. (2006). Rabs and their effectors: 

achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103, 11821-

11827. 

Gu, Z., Jiang, Q., Fu, A. K., Ip, N. Y., and Yan, Z. (2005). Regulation of NMDA 

receptors by neuregulin signaling in prefrontal cortex. J Neurosci 25, 4974-4984. 

Guidotti, A., Auta, J., Davis, J. M., Di-Giorgi-Gerevini, V., Dwivedi, Y., 

Grayson, D. R., Impagnatiello, F., Pandey, G., Pesold, C., Sharma, R., et al. 

(2000). Decrease in reelin and glutamic acid decarboxylase67 (GAD67) 

expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch 

Gen Psychiatry 57, 1061-1069. 

Gur, R. E., Cowell, P., Turetsky, B. I., Gallacher, F., Cannon, T., Bilker, W., and 

Gur, R. C. (1998). A follow-up magnetic resonance imaging study of 

schizophrenia. Relationship of neuroanatomical changes to clinical and 

neurobehavioral measures. Arch Gen Psychiatry 55, 145-152. 

Gustafson, E. C., Stevens, E. R., Wolosker, H., and Miller, R. F. (2007). 

Endogenous D-serine contributes to NMDA-receptor-mediated light-evoked 

responses in the vertebrate retina. J Neurophysiol 98, 122-130. 

Habl, G., Zink, M., Petroianu, G., Bauer, M., Schneider-Axmann, T., von 

Wilmsdorff, M., Falkai, P., Henn, F. A., and Schmitt, A. (2009). Increased D: -

amino acid oxidase expression in the bilateral hippocampal CA4 of schizophrenic 

patients: a post-mortem study. J Neural Transm. 

Halassa, M. M., Fellin, T., and Haydon, P. G. (2007). The tripartite synapse: roles 

for gliotransmission in health and disease. Trends Mol Med 13, 54-63. 

Halim, N. D., Weickert, C. S., McClintock, B. W., Hyde, T. M., Weinberger, D. 

R., Kleinman, J. E., and Lipska, B. K. (2003). Presynaptic proteins in the 

prefrontal cortex of patients with schizophrenia and rats with abnormal prefrontal 

development. Mol Psychiatry 8, 797-810. 

Hall, W., and Degenhardt, L. (2000). Cannabis use and psychosis: a review of 

clinical and epidemiological evidence. Aust N Z J Psychiatry 34, 26-34. 



 201 

Hamase, K., Konno, R., Morikawa, A., and Zaitsu, K. (2005). Sensitive 

determination of D-amino acids in mammals and the effect of D-amino-acid 

oxidase activity on their amounts. Biol Pharm Bull 28, 1578-1584. 

Harrison, P. J. (1999). The neuropathology of schizophrenia. A critical review of 

the data and their interpretation. Brain 122 ( Pt 4), 593-624. 

Harrison, P. J., and Eastwood, S. L. (2001). Neuropathological studies of synaptic 

connectivity in the hippocampal formation in schizophrenia. Hippocampus 11, 

508-519. 

Harrison, P. J., Law, A. J., and Eastwood, S. L. (2003). Glutamate receptors and 

transporters in the hippocampus in schizophrenia. Ann N Y Acad Sci 1003, 94-

101. 

Harrison, P. J., and Owen, M. J. (2003). Genes for schizophrenia? Recent findings 

and their pathophysiological implications. Lancet 361, 417-419. 

Harrison, P. J., and Weinberger, D. R. (2005). Schizophrenia genes, gene 

expression, and neuropathology: on the matter of their convergence. Mol 

Psychiatry 10, 40-68; image 45. 

Hashimoto, A., Kumashiro, S., Nishikawa, T., Oka, T., Takahashi, K., Mito, T., 

Takashima, S., Doi, N., Mizutani, Y., Yamazaki, T., and et al. (1993a). 

Embryonic development and postnatal changes in free D-aspartate and D-serine in 

the human prefrontal cortex. J Neurochem 61, 348-351. 

Hashimoto, A., Nishikawa, T., Hayashi, T., Fujii, N., Harada, K., Oka, T., and 

Takahashi, K. (1992). The presence of free D-serine in rat brain. FEBS Lett 296, 

33-36. 

Hashimoto, A., Nishikawa, T., Konno, R., Niwa, A., Yasumura, Y., Oka, T., and 

Takahashi, K. (1993b). Free D-serine, D-aspartate and D-alanine in central 

nervous system and serum in mutant mice lacking D-amino acid oxidase. 

Neurosci Lett 152, 33-36. 

Hashimoto, A., Nishikawa, T., Oka, T., and Takahashi, K. (1993c). Endogenous 

D-serine in rat brain: N-methyl-D-aspartate receptor-related distribution and 

aging. J Neurochem 60, 783-786. 

Hashimoto, A., Oka, T., and Nishikawa, T. (1995a). Anatomical distribution and 

postnatal changes in endogenous free D-aspartate and D-serine in rat brain and 

periphery. Eur J Neurosci 7, 1657-1663. 

Hashimoto, A., Oka, T., and Nishikawa, T. (1995b). Extracellular concentration 

of endogenous free D-serine in the rat brain as revealed by in vivo microdialysis. 

Neuroscience 66, 635-643. 



 202 

Hashimoto, A., Yoshikawa, M., Niwa, A., and Konno, R. (2005a). Mice lacking 

D-amino acid oxidase activity display marked attenuation of stereotypy and ataxia 

induced by MK-801. Brain Res 1033, 210-215. 

Hashimoto, K., Engberg, G., Shimizu, E., Nordin, C., Lindstrom, L. H., and Iyo, 

M. (2005b). Reduced D-serine to total serine ratio in the cerebrospinal fluid of 

drug naive schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 

29, 767-769. 

Hashimoto, K., Fujita, Y., Horio, M., Kunitachi, S., Iyo, M., Ferraris, D., and 

Tsukamoto, T. (2009). Co-administration of a D-amino acid oxidase inhibitor 

potentiates the efficacy of D-serine in attenuating prepulse inhibition deficits after 

administration of dizocilpine. Biol Psychiatry 65, 1103-1106. 

Hashimoto, K., Fukushima, T., Shimizu, E., Komatsu, N., Watanabe, H., Shinoda, 

N., Nakazato, M., Kumakiri, C., Okada, S., Hasegawa, H., et al. (2003). 

Decreased serum levels of D-serine in patients with schizophrenia: evidence in 

support of the N-methyl-D-aspartate receptor hypofunction hypothesis of 

schizophrenia. Arch Gen Psychiatry 60, 572-576. 

Haydon, P. G. (2001). GLIA: listening and talking to the synapse. Nat Rev 

Neurosci 2, 185-193. 

Heckers, S., and Konradi, C. (2002). Hippocampal neurons in schizophrenia. J 

Neural Transm 109, 891-905. 

Helboe, L., Egebjerg, J., Moller, M., and Thomsen, C. (2003). Distribution and 

pharmacology of alanine-serine-cysteine transporter 1 (asc-1) in rodent brain. Eur 

J Neurosci 18, 2227-2238. 

Heresco-Levy, U., Ermilov, M., Shimoni, J., Shapira, B., Silipo, G., and Javitt, D. 

C. (2002). Placebo-controlled trial of D-cycloserine added to conventional 

neuroleptics, olanzapine, or risperidone in schizophrenia. Am J Psychiatry 159, 

480-482. 

Heresco-Levy, U., Javitt, D. C., Ermilov, M., Mordel, C., Horowitz, A., and 

Kelly, D. (1996a). Double-blind, placebo-controlled, crossover trial of glycine 

adjuvant therapy for treatment-resistant schizophrenia. Br J Psychiatry 169, 610-

617. 

Heresco-Levy, U., Javitt, D. C., Ermilov, M., Mordel, C., Silipo, G., and 

Lichtenstein, M. (1999). Efficacy of high-dose glycine in the treatment of 

enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 56, 29-36. 

Heresco-Levy, U., Silipo, G., and Javitt, D. C. (1996b). Glycinergic augmentation 

of NMDA receptor-mediated neurotransmission in the treatment of schizophrenia. 

Psychopharmacol Bull 32, 731-740. 



 203 

Hess, S. D., Daggett, L. P., Crona, J., Deal, C., Lu, C. C., Urrutia, A., Chavez-

Noriega, L., Ellis, S. B., Johnson, E. C., and Velicelebi, G. (1996). Cloning and 

functional characterization of human heteromeric N-methyl-D-aspartate receptors. 

J Pharmacol Exp Ther 278, 808-816. 

Hoetelmans, R. W., Prins, F. A., Cornelese-ten Velde, I., van der Meer, J., van de 

Velde, C. J., and van Dierendonck, J. H. (2001). Effects of acetone, methanol, or 

paraformaldehyde on cellular structure, visualized by reflection contrast 

microscopy and transmission and scanning electron microscopy. Appl 

Immunohistochem Mol Morphol 9, 346-351. 

Hollister, J. M., Laing, P., and Mednick, S. A. (1996). Rhesus incompatibility as a 

risk factor for schizophrenia in male adults. Arch Gen Psychiatry 53, 19-24. 

Honey, G. D., Pomarol-Clotet, E., Corlett, P. R., Honey, R. A., McKenna, P. J., 

Bullmore, E. T., and Fletcher, P. C. (2005). Functional dysconnectivity in 

schizophrenia associated with attentional modulation of motor function. Brain 

128, 2597-2611. 

Hons, J., Zirko, R., Ulrychova, M., Cermakova, E., and Libiger, J. (2008). D-

serine serum levels in patients with schizophrenia: relation to psychopathology 

and comparison to healthy subjects. Neuro Endocrinol Lett 29, 485-492. 

Horiike, K., Tojo, H., Arai, R., Nozaki, M., and Maeda, T. (1994). D-amino-acid 

oxidase is confined to the lower brain stem and cerebellum in rat brain: regional 

differentiation of astrocytes. Brain Res 652, 297-303. 

Horiike, K., Tojo, H., Arai, R., Yamano, T., Nozaki, M., and Maeda, T. (1987). 

Localization of D-amino acid oxidase in Bergmann glial cells and astrocytes of rat 

cerebellum. Brain Res Bull 19, 587-596. 

Howell, J. M., Winstone, T. L., Coorssen, J. R., and Turner, R. J. (2006). An 

evaluation of in vitro protein-protein interaction techniques: assessing 

contaminating background proteins. Proteomics 6, 2050-2069. 

Howes, O. D., Egerton, A., Allan, V., McGuire, P., Stokes, P., and Kapur, S. 

(2009). Mechanisms underlying psychosis and antipsychotic treatment response 

in schizophrenia: insights from PET and SPECT imaging. Curr Pharm Des 15, 

2550-2559. 

Howes, O. D., and Kapur, S. (2009). The dopamine hypothesis of schizophrenia: 

version III--the final common pathway. Schizophr Bull 35, 549-562. 

Huettner, J. E. (2003). Kainate receptors and synaptic transmission. Prog 

Neurobiol 70, 387-407. 

Huntley, G. W., Vickers, J. C., and Morrison, J. H. (1997). Quantitative 

localization of NMDAR1 receptor subunit immunoreactivity in inferotemporal 



 204 

and prefrontal association cortices of monkey and human. Brain Res 749, 245-

262. 

Ichimiya, T., Okubo, Y., Suhara, T., and Sudo, Y. (2001). Reduced volume of the 

cerebellar vermis in neuroleptic-naive schizophrenia. Biol Psychiatry 49, 20-27. 

Itil, T., Keskiner, A., Kiremitci, N., and Holden, J. M. (1967). Effect of 

phencyclidine in chronic schizophrenics. Can Psychiatr Assoc J 12, 209-212. 

Iuso, A., Scacco, S., Piccoli, C., Bellomo, F., Petruzzella, V., Trentadue, R., 

Minuto, M., Ripoli, M., Capitanio, N., Zeviani, M., and Papa, S. (2006). 

Dysfunctions of cellular oxidative metabolism in patients with mutations in the 

NDUFS1 and NDUFS4 genes of complex I. J Biol Chem 281, 10374-10380. 

Jaaro-Peled, H., Hayashi-Takagi, A., Seshadri, S., Kamiya, A., Brandon, N. J., 

and Sawa, A. (2009). Neurodevelopmental mechanisms of schizophrenia: 

understanding disturbed postnatal brain maturation through neuregulin-1-ErbB4 

and DISC1. Trends Neurosci 32, 485-495. 

Javitt, D. C., and Zukin, S. R. (1991). Recent advances in the phencyclidine 

model of schizophrenia. Am J Psychiatry 148, 1301-1308. 

Javitt, D. C., Zylberman, I., Zukin, S. R., Heresco-Levy, U., and Lindenmayer, J. 

P. (1994). Amelioration of negative symptoms in schizophrenia by glycine. Am J 

Psychiatry 151, 1234-1236. 

Jentsch, J. D., and Roth, R. H. (1999). The neuropsychopharmacology of 

phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of 

schizophrenia. Neuropsychopharmacology 20, 201-225. 

Jin, Y., and Garner, C. C. (2008). Molecular mechanisms of presynaptic 

differentiation. Annu Rev Cell Dev Biol 24, 237-262. 

Johkura, K., Usuda, N., Liang, Y., and Nakazawa, A. (1998). 

Immunohistochemical localization of peroxisomal enzymes in developing rat 

kidney tissues. J Histochem Cytochem 46, 1161-1173. 

Jones, P. B., Barnes, T. R., Davies, L., Dunn, G., Lloyd, H., Hayhurst, K. P., 

Murray, R. M., Markwick, A., and Lewis, S. W. (2006). Randomized controlled 

trial of the effect on Quality of Life of second- vs first-generation antipsychotic 

drugs in schizophrenia: Cost Utility of the Latest Antipsychotic Drugs in 

Schizophrenia Study (CUtLASS 1). Arch Gen Psychiatry 63, 1079-1087. 

Joung, J. K., Ramm, E. I., and Pabo, C. O. (2000). A bacterial two-hybrid 

selection system for studying protein-DNA and protein-protein interactions. Proc 

Natl Acad Sci U S A 97, 7382-7387. 

Kahn, R. S., Fleischhacker, W. W., Boter, H., Davidson, M., Vergouwe, Y., Keet, 

I. P., Gheorghe, M. D., Rybakowski, J. K., Galderisi, S., Libiger, J., et al. (2008). 



 205 

Effectiveness of antipsychotic drugs in first-episode schizophrenia and 

schizophreniform disorder: an open randomised clinical trial. Lancet 371, 1085-

1097. 

Kalla, S., Stern, M., Basu, J., Varoqueaux, F., Reim, K., Rosenmund, C., Ziv, N. 

E., and Brose, N. (2006). Molecular dynamics of a presynaptic active zone protein 

studied in Munc13-1-enhanced yellow fluorescent protein knock-in mutant mice. 

J Neurosci 26, 13054-13066. 

Kalus, P., Muller, T. J., Zuschratter, W., and Senitz, D. (2000). The dendritic 

architecture of prefrontal pyramidal neurons in schizophrenic patients. 

Neuroreport 11, 3621-3625. 

Kane, J., Honigfeld, G., Singer, J., and Meltzer, H. (1988). Clozapine for the 

treatment-resistant schizophrenic. A double-blind comparison with 

chlorpromazine. Arch Gen Psychiatry 45, 789-796. 

Kapoor, R., Lim, K. S., Cheng, A., Garrick, T., and Kapoor, V. (2006). 

Preliminary evidence for a link between schizophrenia and NMDA-glycine site 

receptor ligand metabolic enzymes, d-amino acid oxidase (DAAO) and 

kynurenine aminotransferase-1 (KAT-1). Brain Res 1106, 205-210. 

Kapur, S., Zipursky, R., Jones, C., Shammi, C. S., Remington, G., and Seeman, P. 

(2000). A positron emission tomography study of quetiapine in schizophrenia: a 

preliminary finding of an antipsychotic effect with only transiently high dopamine 

D2 receptor occupancy. Arch Gen Psychiatry 57, 553-559. 

Karson, C. N., Mrak, R. E., Schluterman, K. O., Sturner, W. Q., Sheng, J. G., and 

Griffin, W. S. (1999). Alterations in synaptic proteins and their encoding mRNAs 

in prefrontal cortex in schizophrenia: a possible neurochemical basis for 

'hypofrontality'. Mol Psychiatry 4, 39-45. 

Katsetos, C. D., Hyde, T. M., and Herman, M. M. (1997). Neuropathology of the 

cerebellum in schizophrenia--an update: 1996 and future directions. Biol 

Psychiatry 42, 213-224. 

Kaumaya, P. T., VanBuskirk, A. M., Goldberg, E., and Pierce, S. K. (1992). 

Design and immunological properties of topographic immunogenic determinants 

of a protein antigen (LDH-C4) as vaccines. J Biol Chem 267, 6338-6346. 

Kawazoe, T., Tsuge, H., Imagawa, T., Aki, K., Kuramitsu, S., and Fukui, K. 

(2007). Structural basis of D-DOPA oxidation by D-amino acid oxidase: 

alternative pathway for dopamine biosynthesis. Biochem Biophys Res Commun 

355, 385-391. 

Kawazoe, T., Tsuge, H., Pilone, M. S., and Fukui, K. (2006). Crystal structure of 

human D-amino acid oxidase: context-dependent variability of the backbone 

conformation of the VAAGL hydrophobic stretch located at the si-face of the 

flavin ring. Protein Sci 15, 2708-2717. 



 206 

Kegeles, L. S., Abi-Dargham, A., Zea-Ponce, Y., Rodenhiser-Hill, J., Mann, J. J., 

Van Heertum, R. L., Cooper, T. B., Carlsson, A., and Laruelle, M. (2000). 

Modulation of amphetamine-induced striatal dopamine release by ketamine in 

humans: implications for schizophrenia. Biol Psychiatry 48, 627-640. 

Kim, D. H., Maneen, M. J., and Stahl, S. M. (2009). Building a better 

antipsychotic: receptor targets for the treatment of multiple symptom dimensions 

of schizophrenia. Neurotherapeutics 6, 78-85. 

Kim, J. S., Kornhuber, H. H., Schmid-Burgk, W., and Holzmuller, B. (1980). Low 

cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on 

schizophrenia. Neurosci Lett 20, 379-382. 

Kim, P. M., Aizawa, H., Kim, P. S., Huang, A. S., Wickramasinghe, S. R., 

Kashani, A. H., Barrow, R. K., Huganir, R. L., Ghosh, A., and Snyder, S. H. 

(2005). Serine racemase: activation by glutamate neurotransmission via glutamate 

receptor interacting protein and mediation of neuronal migration. Proc Natl Acad 

Sci U S A 102, 2105-2110. 

Kinney, G. G., O'Brien, J. A., Lemaire, W., Burno, M., Bickel, D. J., Clements, 

M. K., Chen, T. B., Wisnoski, D. D., Lindsley, C. W., Tiller, P. R., et al. (2005). 

A novel selective positive allosteric modulator of metabotropic glutamate receptor 

subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral 

models. J Pharmacol Exp Ther 313, 199-206. 

Kirkpatrick, B., Buchanan, R. W., Ross, D. E., and Carpenter, W. T., Jr. (2001). A 

separate disease within the syndrome of schizophrenia. Arch Gen Psychiatry 58, 

165-171. 

Kirov, G., O'Donovan, M. C., and Owen, M. J. (2005). Finding schizophrenia 

genes. J Clin Invest 115, 1440-1448. 

Koibuchi, N., Konno, R., Matsuzaki, S., Ohtake, H., Niwa, A., and Yamaoka, S. 

(1995). Localization of D-amino acid oxidase mRNA in the mouse kidney and the 

effect of testosterone treatment. Histochem Cell Biol 104, 349-355. 

Konno, R. (2001). Assignment of D-amino-acid oxidase gene to a human and a 

mouse chromosome. Amino Acids 20, 401-408. 

Konno, R. (2003). Rat cerebral serine racemase: amino acid deletion and 

truncation at carboxy terminus. Neurosci Lett 349, 111-114. 

Konno, R., Yamamoto, K., Niwa, A., and Yasumura, Y. (1991). Presence of D-

amino-acid oxidase protein in mutant mice lacking D-amino-acid oxidase activity. 

Int J Biochem 23, 1301-1305. 

Konno, R., and Yasumura, Y. (1983). Mouse mutant deficient in D-amino acid 

oxidase activity. Genetics 103, 277-285. 



 207 

Korostishevsky, M., Kaganovich, M., Cholostoy, A., Ashkenazi, M., Ratner, Y., 

Dahary, D., Bernstein, J., Bening-Abu-Shach, U., Ben-Asher, E., Lancet, D., et al. 

(2004). Is the G72/G30 locus associated with schizophrenia? single nucleotide 

polymorphisms, haplotypes, and gene expression analysis. Biol Psychiatry 56, 

169-176. 

Korostishevsky, M., Kremer, I., Kaganovich, M., Cholostoy, A., Murad, I., 

Muhaheed, M., Bannoura, I., Rietschel, M., Dobrusin, M., Bening-Abu-Shach, U., 

et al. (2006). Transmission disequilibrium and haplotype analyses of the G72/G30 

locus: suggestive linkage to schizophrenia in Palestinian Arabs living in the North 

of Israel. Am J Med Genet B Neuropsychiatr Genet 141B, 91-95. 

Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, 

J. D., Heninger, G. R., Bowers, M. B., Jr., and Charney, D. S. (1994). 

Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in 

humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. 

Arch Gen Psychiatry 51, 199-214. 

Kumashiro, S., Hashimoto, A., and Nishikawa, T. (1995). Free D-serine in post-

mortem brains and spinal cords of individuals with and without neuropsychiatric 

diseases. Brain Res 681, 117-125. 

Kurz, M., Hummer, M., Oberbauer, H., and Fleischhacker, W. W. (1995). 

Extrapyramidal side effects of clozapine and haloperidol. Psychopharmacology 

(Berl) 118, 52-56. 

Kvajo, M., Dhilla, A., Swor, D. E., Karayiorgou, M., and Gogos, J. A. (2008). 

Evidence implicating the candidate schizophrenia/bipolar disorder susceptibility 

gene G72 in mitochondrial function. Mol Psychiatry 13, 685-696. 

Labrie, V., Fukumura, R., Rastogi, A., Fick, L. J., Wang, W., Boutros, P. C., 

Kennedy, J. L., Semeralul, M. O., Lee, F. H., Baker, G. B., et al. (2009a). Serine 

racemase is associated with schizophrenia susceptibility in humans and in a 

mouse model. Hum Mol Genet 18, 3227-3243. 

Labrie, V., Wang, W., Barger, S. W., Baker, G. B., and Roder, J. C. (2009b). 

Genetic loss of D-amino acid oxidase activity reverses schizophrenia-like 

phenotypes in mice. Genes Brain Behav. 

Lahti, A. C., Koffel, B., LaPorte, D., and Tamminga, C. A. (1995). Subanesthetic 

doses of ketamine stimulate psychosis in schizophrenia. 

Neuropsychopharmacology 13, 9-19. 

Lahti, A. C., Weiler, M. A., Holcomb, H. H., Tamminga, C. A., Carpenter, W. T., 

and McMahon, R. (2006). Correlations between rCBF and symptoms in two 

independent cohorts of drug-free patients with schizophrenia. 

Neuropsychopharmacology 31, 221-230. 



 208 

Lane, H. Y., Huang, C. L., Wu, P. L., Liu, Y. C., Chang, Y. C., Lin, P. Y., Chen, 

P. W., and Tsai, G. (2006). Glycine transporter I inhibitor, N-methylglycine 

(sarcosine), added to clozapine for the treatment of schizophrenia. Biol Psychiatry 

60, 645-649. 

Lang, T., and Jahn, R. (2008). Core proteins of the secretory machinery. Handb 

Exp Pharmacol, 107-127. 

Laruelle, M., Abi-Dargham, A., Gil, R., Kegeles, L., and Innis, R. (1999). 

Increased dopamine transmission in schizophrenia: relationship to illness phases. 

Biol Psychiatry 46, 56-72. 

Laurie, D. J., and Seeburg, P. H. (1994). Ligand affinities at recombinant N-

methyl-D-aspartate receptors depend on subunit composition. Eur J Pharmacol 

268, 335-345. 

Law, I. K., Liu, L., Xu, A., Lam, K. S., Vanhoutte, P. M., Che, C. M., Leung, P. 

T., and Wang, Y. (2009). Identification and characterization of proteins 

interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic 

effects of sirtuins. Proteomics 9, 2444-2456. 

Leiderman, E., Zylberman, I., Zukin, S. R., Cooper, T. B., and Javitt, D. C. 

(1996). Preliminary investigation of high-dose oral glycine on serum levels and 

negative symptoms in schizophrenia: an open-label trial. Biol Psychiatry 39, 213-

215. 

Leighton, F., Poole, B., Beaufay, H., Baudhuin, P., Coffey, J. W., Fowler, S., and 

De Duve, C. (1968). The large-scale separation of peroxisomes, mitochondria, 

and lysosomes from the livers of rats injected with triton WR-1339. Improved 

isolation procedures, automated analysis, biochemical and morphological 

properties of fractions. J Cell Biol 37, 482-513. 

Leucht, S., Corves, C., Arbter, D., Engel, R. R., Li, C., and Davis, J. M. (2009). 

Second-generation versus first-generation antipsychotic drugs for schizophrenia: a 

meta-analysis. Lancet 373, 31-41. 

Lewis, C. M., Levinson, D. F., Wise, L. H., DeLisi, L. E., Straub, R. E., Hovatta, 

I., Williams, N. M., Schwab, S. G., Pulver, A. E., Faraone, S. V., et al. (2003). 

Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: 

Schizophrenia. Am J Hum Genet 73, 34-48. 

Lewis, D. A., and Gonzalez-Burgos, G. (2006). Pathophysiologically based 

treatment interventions in schizophrenia. Nat Med 12, 1016-1022. 

Lewis, D. A., and Lieberman, J. A. (2000). Catching up on schizophrenia: natural 

history and neurobiology. Neuron 28, 325-334. 

Li, D., and He, L. (2007). G72/G30 genes and schizophrenia: a systematic meta-

analysis of association studies. Genetics 175, 917-922. 



 209 

Li, F., and Tsien, J. Z. (2009). Memory and the NMDA receptors. N Engl J Med 

361, 302-303. 

Li, Y., Asuri, S., Rebhun, J. F., Castro, A. F., Paranavitana, N. C., and Quilliam, 

L. A. (2006). The RAP1 guanine nucleotide exchange factor Epac2 couples cyclic 

AMP and Ras signals at the plasma membrane. J Biol Chem 281, 2506-2514. 

Li, Y. H., and Han, T. Z. (2007). Glycine binding sites of presynaptic NMDA 

receptors may tonically regulate glutamate release in the rat visual cortex. J 

Neurophysiol 97, 817-823. 

Lieberman, J. A., Kane, J. M., and Alvir, J. (1987). Provocative tests with 

psychostimulant drugs in schizophrenia. Psychopharmacology (Berl) 91, 415-433. 

Lieberman, J. A., Stroup, T. S., McEvoy, J. P., Swartz, M. S., Rosenheck, R. A., 

Perkins, D. O., Keefe, R. S., Davis, S. M., Davis, C. E., Lebowitz, B. D., et al. 

(2005). Effectiveness of antipsychotic drugs in patients with chronic 

schizophrenia. N Engl J Med 353, 1209-1223. 

Linderholm, K. R., Andersson, A., Olsson, S., Olsson, E., Snodgrass, R., Engberg, 

G., and Erhardt, S. (2007). Activation of rat ventral tegmental area dopamine 

neurons by endogenous kynurenic acid: a pharmacological analysis. 

Neuropharmacology 53, 918-924. 

Liu, X., He, G., Wang, X., Chen, Q., Qian, X., Lin, W., Li, D., Gu, N., Feng, G., 

and He, L. (2004). Association of DAAO with schizophrenia in the Chinese 

population. Neurosci Lett 369, 228-233. 

Liu, Y., Li, Q., Zhu, H., and Yang, J. (2009). High soluble expression of D-amino 

acid oxidase in Escherichia coli regulated by a native promoter. Appl Biochem 

Biotechnol 158, 313-322. 

Liu, Y. L., Fann, C. S., Liu, C. M., Chang, C. C., Wu, J. Y., Hung, S. I., Liu, S. 

K., Hsieh, M. H., Hwang, T. J., Chan, H. Y., et al. (2006). No association of G72 

and D-amino acid oxidase genes with schizophrenia. Schizophr Res 87, 15-20. 

Luby, E. D., Cohen, B. D., Rosenbaum, G., Gottlieb, J. S., and Kelley, R. (1959). 

Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 

81, 363-369. 

Lynch, D. R., and Guttmann, R. P. (2001). NMDA receptor pharmacology: 

perspectives from molecular biology. Curr Drug Targets 2, 215-231. 

Ma, J., Qin, W., Wang, X. Y., Guo, T. W., Bian, L., Duan, S. W., Li, X. W., Zou, 

F. G., Fang, Y. R., Fang, J. X., et al. (2006). Further evidence for the association 

between G72/G30 genes and schizophrenia in two ethnically distinct populations. 

Mol Psychiatry 11, 479-487. 



 210 

Madeira, C., Freitas, M. E., Vargas-Lopes, C., Wolosker, H., and Panizzutti, R. 

(2008). Increased brain D-amino acid oxidase (DAAO) activity in schizophrenia. 

Schizophr Res 101, 76-83. 

Maekawa, M., Watanabe, M., Yamaguchi, S., Konno, R., and Hori, Y. (2005). 

Spatial learning and long-term potentiation of mutant mice lacking D-amino-acid 

oxidase. Neurosci Res 53, 34-38. 

Mahmoudi, T., Li, V. S., Ng, S. S., Taouatas, N., Vries, R. G., Mohammed, S., 

Heck, A. J., and Clevers, H. (2009). The kinase TNIK is an essential activator of 

Wnt target genes. EMBO J. 

Mallik, R., Carter, B. C., Lex, S. A., King, S. J., and Gross, S. P. (2004). 

Cytoplasmic dynein functions as a gear in response to load. Nature 427, 649-652. 

Manto, M. (2009). Mechanisms of human cerebellar dysmetria: experimental 

evidence and current conceptual bases. J Neuroeng Rehabil 6, 10. 

Marino, M. J., Knutsen, L. J., and Williams, M. (2008). Emerging opportunities 

for antipsychotic drug discovery in the postgenomic era. J Med Chem 51, 1077-

1107. 

Martina, M., Krasteniakov, N. V., and Bergeron, R. (2003). D-Serine differently 

modulates NMDA receptor function in rat CA1 hippocampal pyramidal cells and 

interneurons. J Physiol 548, 411-423. 

Matsui, T., Sekiguchi, M., Hashimoto, A., Tomita, U., Nishikawa, T., and Wada, 

K. (1995). Functional comparison of D-serine and glycine in rodents: the effect on 

cloned NMDA receptors and the extracellular concentration. J Neurochem 65, 

454-458. 

Matsuo, H., Kanai, Y., Tokunaga, M., Nakata, T., Chairoungdua, A., Ishimine, 

H., Tsukada, S., Ooigawa, H., Nawashiro, H., Kobayashi, Y., et al. (2004). High 

affinity D- and L-serine transporter Asc-1: cloning and dendritic localization in 

the rat cerebral and cerebellar cortices. Neurosci Lett 358, 123-126. 

Matthysse, S. (1973). Antipsychotic drug actions: a clue to the neuropathology of 

schizophrenia? Fed Proc 32, 200-205. 

McBain, C. J., Kleckner, N. W., Wyrick, S., and Dingledine, R. (1989). Structural 

requirements for activation of the glycine coagonist site of N-methyl-D-aspartate 

receptors expressed in Xenopus oocytes. Mol Pharmacol 36, 556-565. 

McDonald, J. W., Penney, J. B., Johnston, M. V., and Young, A. B. (1990). 

Characterization and regional distribution of strychnine-insensitive [3H]glycine 

binding sites in rat brain by quantitative receptor autoradiography. Neuroscience 

35, 653-668. 



 211 

McEvoy, J. P., Lieberman, J. A., Stroup, T. S., Davis, S. M., Meltzer, H. Y., 

Rosenheck, R. A., Swartz, M. S., Perkins, D. O., Keefe, R. S., Davis, C. E., et al. 

(2006). Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone 

in patients with chronic schizophrenia who did not respond to prior atypical 

antipsychotic treatment. Am J Psychiatry 163, 600-610. 

McGlashan, T. H., and Fenton, W. S. (1993). Subtype progression and 

pathophysiologic deterioration in early schizophrenia. Schizophr Bull 19, 71-84. 

Mednick, S. A., Machon, R. A., Huttunen, M. O., and Bonett, D. (1988). Adult 

schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen 

Psychiatry 45, 189-192. 

Medoff, D. R., Holcomb, H. H., Lahti, A. C., and Tamminga, C. A. (2001). 

Probing the human hippocampus using rCBF: contrasts in schizophrenia. 

Hippocampus 11, 543-550. 

Meltzer, H. Y. (1997). Treatment-resistant schizophrenia--the role of clozapine. 

Curr Med Res Opin 14, 1-20. 

Messias, E. L., Chen, C. Y., and Eaton, W. W. (2007). Epidemiology of 

schizophrenia: review of findings and myths. Psychiatr Clin North Am 30, 323-

338. 

Meyer-Lindenberg, A., Miletich, R. S., Kohn, P. D., Esposito, G., Carson, R. E., 

Quarantelli, M., Weinberger, D. R., and Berman, K. F. (2002). Reduced prefrontal 

activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat 

Neurosci 5, 267-271. 

Middleton, F. A., and Strick, P. L. (1994). Anatomical evidence for cerebellar and 

basal ganglia involvement in higher cognitive function. Science 266, 458-461. 

Millar, J. K., Pickard, B. S., Mackie, S., James, R., Christie, S., Buchanan, S. R., 

Malloy, M. P., Chubb, J. E., Huston, E., Baillie, G. S., et al. (2005). DISC1 and 

PDE4B are interacting genetic factors in schizophrenia that regulate cAMP 

signaling. Science 310, 1187-1191. 

Mirnics, K., Middleton, F. A., Stanwood, G. D., Lewis, D. A., and Levitt, P. 

(2001). Disease-specific changes in regulator of G-protein signaling 4 (RGS4) 

expression in schizophrenia. Mol Psychiatry 6, 293-301. 

Misztal, M., Skangiel-Kramska, J., Niewiadomska, G., and Danysz, W. (1996). 

Subchronic intraventricular infusion of quinolinic acid produces working memory 

impairment--a model of progressive excitotoxicity. Neuropharmacology 35, 449-

458. 

Miyamoto, S., Duncan, G. E., Marx, C. E., and Lieberman, J. A. (2005). 

Treatments for schizophrenia: a critical review of pharmacology and mechanisms 

of action of antipsychotic drugs. Mol Psychiatry 10, 79-104. 



 212 

Mizutani, H., Miyahara, I., Hirotsu, K., Nishina, Y., Shiga, K., Setoyama, C., and 

Miura, R. (1996). Three-dimensional structure of porcine kidney D-amino acid 

oxidase at 3.0 A resolution. J Biochem 120, 14-17. 

Molla, G., Sacchi, S., Bernasconi, M., Pilone, M. S., Fukui, K., and Polegioni, L. 

(2006). Characterization of human D-amino acid oxidase. FEBS Lett 580, 2358-

2364. 

Momoi, K., Fukui, K., Watanabe, F., and Miyake, Y. (1988). Molecular cloning 

and sequence analysis of cDNA encoding human kidney D-amino acid oxidase. 

FEBS Lett 238, 180-184. 

Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., and Seeburg, P. H. 

(1994). Developmental and regional expression in the rat brain and functional 

properties of four NMDA receptors. Neuron 12, 529-540. 

Moreno, S., Nardacci, R., Cimini, A., and Ceru, M. P. (1999). 

Immunocytochemical localization of D-amino acid oxidase in rat brain. J 

Neurocytol 28, 169-185. 

Mothet, J. P., Parent, A. T., Wolosker, H., Brady, R. O., Jr., Linden, D. J., Ferris, 

C. D., Rogawski, M. A., and Snyder, S. H. (2000). D-serine is an endogenous 

ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad 

Sci U S A 97, 4926-4931. 

Mulle, J. G., Chowdari, K. V., Nimgaonkar, V., and Chakravarti, A. (2005). No 

evidence for association to the G72/G30 locus in an independent sample of 

schizophrenia families. Mol Psychiatry 10, 431-433. 

Mustafa, A. K., van Rossum, D. B., Patterson, R. L., Maag, D., Ehmsen, J. T., 

Gazi, S. K., Chakraborty, A., Barrow, R. K., Amzel, L. M., and Snyder, S. H. 

(2009). Glutamatergic regulation of serine racemase via reversal of PIP2 

inhibition. Proc Natl Acad Sci U S A 106, 2921-2926. 

Nagata, Y., Borghi, M., Fisher, G. H., and D'Aniello, A. (1995). Free D-serine 

concentration in normal and Alzheimer human brain. Brain Res Bull 38, 181-183. 

Nakauchi, J., Matsuo, H., Kim, D. K., Goto, A., Chairoungdua, A., Cha, S. H., 

Inatomi, J., Shiokawa, Y., Yamaguchi, K., Saito, I., et al. (2000). Cloning and 

characterization of a human brain Na(+)-independent transporter for small neutral 

amino acids that transports D-serine with high affinity. Neurosci Lett 287, 231-

235. 

Need, A. C., Ge, D., Weale, M. E., Maia, J., Feng, S., Heinzen, E. L., Shianna, K. 

V., Yoon, W., Kasperaviciute, D., Gennarelli, M., et al. (2009). A genome-wide 

investigation of SNPs and CNVs in schizophrenia. PLoS Genet 5, e1000373. 

Neidle, A., and Dunlop, D. S. (2002). Allosteric regulation of mouse brain serine 

racemase. Neurochem Res 27, 1719-1724. 



 213 

Neims, A. H., Zieverink, W. D., and Smilack, J. D. (1966). Distribution of D-

amino acid oxidase in bovine and human nervous tissues. J Neurochem 13, 163-

168. 

Nelson, M. D., Saykin, A. J., Flashman, L. A., and Riordan, H. J. (1998). 

Hippocampal volume reduction in schizophrenia as assessed by magnetic 

resonance imaging: a meta-analytic study. Arch Gen Psychiatry 55, 433-440. 

Newcomer, J. W., Farber, N. B., Jevtovic-Todorovic, V., Selke, G., Melson, A. 

K., Hershey, T., Craft, S., and Olney, J. W. (1999). Ketamine-induced NMDA 

receptor hypofunction as a model of memory impairment and psychosis. 

Neuropsychopharmacology 20, 106-118. 

Niemi, L. T., Suvisaari, J. M., Tuulio-Henriksson, A., and Lonnqvist, J. K. 

(2003). Childhood developmental abnormalities in schizophrenia: evidence from 

high-risk studies. Schizophr Res 60, 239-258. 

Nishi, T., Kawasaki-Nishi, S., and Forgac, M. (2003). Expression and function of 

the mouse V-ATPase d subunit isoforms. J Biol Chem 278, 46396-46402. 

Nitsch, R., Di Palma, T., Mascia, A., and Zannini, M. (2004). WBP-2, a WW 

domain binding protein, interacts with the thyroid-specific transcription factor 

Pax8. Biochem J 377, 553-560. 

Nordahl, T. E., Kusubov, N., Carter, C., Salamat, S., Cummings, A. M., O'Shora-

Celaya, L., Eberling, J., Robertson, L., Huesman, R. H., Jagust, W., and Budinger, 

T. F. (1996). Temporal lobe metabolic differences in medication-free outpatients 

with schizophrenia via the PET-600. Neuropsychopharmacology 15, 541-554. 

Numakawa, T., Yagasaki, Y., Ishimoto, T., Okada, T., Suzuki, T., Iwata, N., 

Ozaki, N., Taguchi, T., Tatsumi, M., Kamijima, K., et al. (2004). Evidence of 

novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. 

Hum Mol Genet 13, 2699-2708. 

O'Brien, E. M., Tipton, K. F., Strolin Benedetti, M., Bonsignori, A., Marrari, P., 

and Dostert, P. (1991). Is the oxidation of milacemide by monoamine oxidase a 

major factor in its anticonvulsant actions? Biochem Pharmacol 41, 1731-1737. 

O'Brien, K. B., and Bowser, M. T. (2006). Measuring D-serine efflux from mouse 

cortical brain slices using online microdialysis-capillary electrophoresis. 

Electrophoresis 27, 1949-1956. 

O'Donovan, M. C., Craddock, N., Norton, N., Williams, H., Peirce, T., Moskvina, 

V., Nikolov, I., Hamshere, M., Carroll, L., Georgieva, L., et al. (2008). 

Identification of loci associated with schizophrenia by genome-wide association 

and follow-up. Nat Genet 40, 1053-1055. 

Oliet, S. H., and Mothet, J. P. (2006). Molecular determinants of D-serine-

mediated gliotransmission: from release to function. Glia 54, 726-737. 



 214 

Ono, K., Shishido, Y., Park, H. K., Kawazoe, T., Iwana, S., Chung, S. P., Abou 

El-Magd, R. M., Yorita, K., Okano, M., Watanabe, T., et al. (2009). Potential 

pathophysiological role of D-amino acid oxidase in schizophrenia: 

immunohistochemical and in situ hybridization study of the expression in human 

and rat brain. J Neural Transm 116, 1335-1347. 

Otte, D. M., Bilkei-Gorzo, A., Filiou, M. D., Turck, C. W., Yilmaz, O., Holst, M. 

I., Schilling, K., Abou-Jamra, R., Schumacher, J., Benzel, I., et al. (2009). 

Behavioral changes in G72/G30 transgenic mice. Eur Neuropsychopharmacol 19, 

339-348. 

Owald, D., and Sigrist, S. J. (2009). Assembling the presynaptic active zone. Curr 

Opin Neurobiol 19, 311-318. 

Panatier, A., Theodosis, D. T., Mothet, J. P., Touquet, B., Pollegioni, L., Poulain, 

D. A., and Oliet, S. H. (2006). Glia-derived D-serine controls NMDA receptor 

activity and synaptic memory. Cell 125, 775-784. 

Panizzutti, R., Rausch, M., Zurbrugg, S., Baumann, D., Beckmann, N., and 

Rudin, M. (2005). The pharmacological stimulation of NMDA receptors via co-

agonist site: an fMRI study in the rat brain. Neurosci Lett 380, 111-115. 

Paoletti, P., and Neyton, J. (2007). NMDA receptor subunits: function and 

pharmacology. Curr Opin Pharmacol 7, 39-47. 

Paradiso, S., Andreasen, N. C., O'Leary, D. S., Arndt, S., and Robinson, R. G. 

(1997). Cerebellar size and cognition: correlations with IQ, verbal memory and 

motor dexterity. Neuropsychiatry Neuropsychol Behav Neurol 10, 1-8. 

Park, H. K., Shishido, Y., Ichise-Shishido, S., Kawazoe, T., Ono, K., Iwana, S., 

Tomita, Y., Yorita, K., Sakai, T., and Fukui, K. (2006). Potential role for 

astroglial D-amino acid oxidase in extracellular D-serine metabolism and 

cytotoxicity. J Biochem 139, 295-304. 

Paulson, L., Martin, P., Persson, A., Nilsson, C. L., Ljung, E., Westman-

Brinkmalm, A., Eriksson, P. S., Blennow, K., and Davidsson, P. (2003). 

Comparative genome- and proteome analysis of cerebral cortex from MK-801-

treated rats. J Neurosci Res 71, 526-533. 

Peacock, L., Solgaard, T., Lublin, H., and Gerlach, J. (1996). Clozapine versus 

typical antipsychotics. A retro- and prospective study of extrapyramidal side 

effects. Psychopharmacology (Berl) 124, 188-196. 

Peroutka, S. J., and Synder, S. H. (1980). Relationship of neuroleptic drug effects 

at brain dopamine, serotonin, alpha-adrenergic, and histamine receptors to clinical 

potency. Am J Psychiatry 137, 1518-1522. 

Phizicky, E. M., and Fields, S. (1995). Protein-protein interactions: methods for 

detection and analysis. Microbiol Rev 59, 94-123. 



 215 

Pierri, J. N., Volk, C. L., Auh, S., Sampson, A., and Lewis, D. A. (2001). 

Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex 

of subjects with schizophrenia. Arch Gen Psychiatry 58, 466-473. 

Pollegioni, L., Ceciliani, F., Curti, B., Ronchi, S., and Pilone, M. S. (1995). 

Studies on the structural and functional aspects of Rhodotorula gracilis D-amino 

acid oxidase by limited trypsinolysis. Biochem J 310 ( Pt 2), 577-583. 

Pollegioni, L., Piubelli, L., Sacchi, S., Pilone, M. S., and Molla, G. (2007). 

Physiological functions of D-amino acid oxidases: from yeast to humans. Cell 

Mol Life Sci 64, 1373-1394. 

Porton, B., and Wetsel, W. C. (2007). Reduction of synapsin III in the prefrontal 

cortex of individuals with schizophrenia. Schizophr Res 94, 366-370. 

Potkin, S. G., Costa, J., Roy, S., Jin, Y., and Gulasekaram, B. (1992). Glycine in 

the treatment of Schizophrenia. In: Meltzer HY (ed) Glycine in the treatment of 

Schizophrenia (New York: Raven Press). 

Priestley, T., Laughton, P., Myers, J., Le Bourdelles, B., Kerby, J., and Whiting, 

P. J. (1995). Pharmacological properties of recombinant human N-methyl-D-

aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies 

expressed in permanently transfected mouse fibroblast cells. Mol Pharmacol 48, 

841-848. 

Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O'Donovan, M. C., 

Sullivan, P. F., and Sklar, P. (2009). Common polygenic variation contributes to 

risk of schizophrenia and bipolar disorder. Nature 460, 748-752. 

Pycock, C. J., Kerwin, R. W., and Carter, C. J. (1980). Effect of lesion of cortical 

dopamine terminals on subcortical dopamine receptors in rats. Nature 286, 74-76. 

Rajkowska, G., Selemon, L. D., and Goldman-Rakic, P. S. (1998). Neuronal and 

glial somal size in the prefrontal cortex: a postmortem morphometric study of 

schizophrenia and Huntington disease. Arch Gen Psychiatry 55, 215-224. 

Reck-Peterson, S. L., Yildiz, A., Carter, A. P., Gennerich, A., Zhang, N., and 

Vale, R. D. (2006). Single-molecule analysis of dynein processivity and stepping 

behavior. Cell 126, 335-348. 

Richter, K., Langnaese, K., Kreutz, M. R., Olias, G., Zhai, R., Scheich, H., 

Garner, C. C., and Gundelfinger, E. D. (1999). Presynaptic cytomatrix protein 

bassoon is localized at both excitatory and inhibitory synapses of rat brain. J 

Comp Neurol 408, 437-448. 

Rizo, J., and Rosenmund, C. (2008). Synaptic vesicle fusion. Nat Struct Mol Biol 

15, 665-674. 



 216 

Robinson, J. M., Briggs, R. T., and Karnovsky, M. J. (1978). Localization of D-

amino acid oxidase on the cell surface of human polymorphonuclear leukocytes. J 

Cell Biol 77, 59-71. 

Rosenberg, D., Kartvelishvily, E., Shleper, M., Klinker, C. M., Bowser, M. T., 

and Wolosker, H. (2010). Neuronal release of D-serine: a physiological pathway 

controlling extracellular D-serine concentration. FASEB J 24, 2951-2961. 

 

Rosse, R. B., Fay-McCarthy, M., Kendrick, K., Davis, R. E., and Deutsch, S. I. 

(1996). D-cycloserine adjuvant therapy to molindone in the treatment of 

schizophrenia. Clin Neuropharmacol 19, 444-450. 

Rosse, R. B., Schwartz, B. L., Davis, R. E., and Deutsch, S. I. (1991). An NMDA 

intervention strategy in schizophrenia with "low-dose" milacemide. Clin 

Neuropharmacol 14, 268-272. 

Rosse, R. B., Schwartz, B. L., Leighton, M. P., Davis, R. E., and Deutsch, S. I. 

(1990). An open-label trial of milacemide in schizophrenia: an NMDA 

intervention strategy. Clin Neuropharmacol 13, 348-354. 

Rosso, I. M., Cannon, T. D., Huttunen, T., Huttunen, M. O., Lonnqvist, J., and 

Gasperoni, T. L. (2000). Obstetric risk factors for early-onset schizophrenia in a 

Finnish birth cohort. Am J Psychiatry 157, 801-807. 

Rutter, A. R., Fradley, R. L., Garrett, E. M., Chapman, K. L., Lawrence, J. M., 

Rosahl, T. W., and Patel, S. (2007). Evidence from gene knockout studies 

implicates Asc-1 as the primary transporter mediating d-serine reuptake in the 

mouse CNS. Eur J Neurosci 25, 1757-1766. 

Sacchi, S., Bernasconi, M., Martineau, M., Mothet, J. P., Ruzzene, M., Pilone, M. 

S., Pollegioni, L., and Molla, G. (2008). pLG72 modulates intracellular D-serine 

levels through its interaction with D-amino acid oxidase: effect on schizophrenia 

susceptibility. J Biol Chem 283, 22244-22256. 

Sakata, K., Fukushima, T., Minje, L., Ogurusu, T., Taira, H., Mishina, M., and 

Shingai, R. (1999). Modulation by L- and D-isoforms of amino acids of the L-

glutamate response of N-methyl-D-aspartate receptors. Biochemistry 38, 10099-

10106. 

Sanmarti-Vila, L., tom Dieck, S., Richter, K., Altrock, W., Zhang, L., Volknandt, 

W., Zimmermann, H., Garner, C. C., Gundelfinger, E. D., and Dresbach, T. 

(2000). Membrane association of presynaptic cytomatrix protein bassoon. 

Biochem Biophys Res Commun 275, 43-46. 

Sasaki, M., Konno, R., Nishio, M., Niwa, A., Yasumura, Y., and Enami, J. 

(1992). A single-base-pair substitution abolishes D-amino-acid oxidase activity in 

the mouse. Biochim Biophys Acta 1139, 315-318. 



 217 

Satel, S. L., and Edell, W. S. (1991). Cocaine-induced paranoia and psychosis 

proneness. Am J Psychiatry 148, 1708-1711. 

Sawada, K., Barr, A. M., Nakamura, M., Arima, K., Young, C. E., Dwork, A. J., 

Falkai, P., Phillips, A. G., and Honer, W. G. (2005). Hippocampal complexin 

proteins and cognitive dysfunction in schizophrenia. Arch Gen Psychiatry 62, 

263-272. 

Sawada, K., Young, C. E., Barr, A. M., Longworth, K., Takahashi, S., Arango, 

V., Mann, J. J., Dwork, A. J., Falkai, P., Phillips, A. G., and Honer, W. G. (2002). 

Altered immunoreactivity of complexin protein in prefrontal cortex in severe 

mental illness. Mol Psychiatry 7, 484-492. 

Saykin, A. J., Gur, R. C., Gur, R. E., Mozley, P. D., Mozley, L. H., Resnick, S. 

M., Kester, D. B., and Stafiniak, P. (1991). Neuropsychological function in 

schizophrenia. Selective impairment in memory and learning. Arch Gen 

Psychiatry 48, 618-624. 

Saykin, A. J., Shtasel, D. L., Gur, R. E., Kester, D. B., Mozley, L. H., Stafiniak, 

P., and Gur, R. C. (1994). Neuropsychological deficits in neuroleptic naive 

patients with first-episode schizophrenia. Arch Gen Psychiatry 51, 124-131. 

Schapira, A. H., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., and Marsden, 

C. D. (1990). Mitochondrial complex I deficiency in Parkinson's disease. J 

Neurochem 54, 823-827. 

Schell, M. J. (2004). The N-methyl D-aspartate receptor glycine site and D-serine 

metabolism: an evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 

359, 943-964. 

Schell, M. J., Brady, R. O., Jr., Molliver, M. E., and Snyder, S. H. (1997). D-

serine as a neuromodulator: regional and developmental localizations in rat brain 

glia resemble NMDA receptors. J Neurosci 17, 1604-1615. 

Schell, M. J., Molliver, M. E., and Snyder, S. H. (1995). D-serine, an endogenous 

synaptic modulator: localization to astrocytes and glutamate-stimulated release. 

Proc Natl Acad Sci U S A 92, 3948-3952. 

Schluter, K., Figiel, M., Rozyczka, J., and Engele, J. (2002). CNS region-specific 

regulation of glial glutamate transporter expression. Eur J Neurosci 16, 836-842. 

Schmahmann, J. D. (2004). Disorders of the cerebellum: ataxia, dysmetria of 

thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin 

Neurosci 16, 367-378. 

Schmitz, D., Mellor, J., and Nicoll, R. A. (2001). Presynaptic kainate receptor 

mediation of frequency facilitation at hippocampal mossy fiber synapses. Science 

291, 1972-1976. 



 218 

Schoch, S., Castillo, P. E., Jo, T., Mukherjee, K., Geppert, M., Wang, Y., 

Schmitz, F., Malenka, R. C., and Sudhof, T. C. (2002). RIM1alpha forms a 

protein scaffold for regulating neurotransmitter release at the active zone. Nature 

415, 321-326. 

Schoch, S., Deak, F., Konigstorfer, A., Mozhayeva, M., Sara, Y., Sudhof, T. C., 

and Kavalali, E. T. (2001). SNARE function analyzed in synaptobrevin/VAMP 

knockout mice. Science 294, 1117-1122. 

Schoch, S., and Gundelfinger, E. D. (2006). Molecular organization of the 

presynaptic active zone. Cell Tissue Res 326, 379-391. 

Schousboe, A. (2003). Role of astrocytes in the maintenance and modulation of 

glutamatergic and GABAergic neurotransmission. Neurochem Res 28, 347-352. 

Schultz, J., Doerks, T., Ponting, C. P., Copley, R. R., and Bork, P. (2000). More 

than 1,000 putative new human signalling proteins revealed by EST data mining. 

Nat Genet 25, 201-204. 

Schumacher, J., Jamra, R. A., Freudenberg, J., Becker, T., Ohlraun, S., Otte, A. 

C., Tullius, M., Kovalenko, S., Bogaert, A. V., Maier, W., et al. (2004). 

Examination of G72 and D-amino-acid oxidase as genetic risk factors for 

schizophrenia and bipolar affective disorder. Mol Psychiatry 9, 203-207. 

Schwarcz, R., Rassoulpour, A., Wu, H. Q., Medoff, D., Tamminga, C. A., and 

Roberts, R. C. (2001). Increased cortical kynurenate content in schizophrenia. 

Biol Psychiatry 50, 521-530. 

Schwieler, L., Erhardt, S., Nilsson, L., Linderholm, K., and Engberg, G. (2006). 

Effects of COX-1 and COX-2 inhibitors on the firing of rat midbrain 

dopaminergic neurons--possible involvement of endogenous kynurenic acid. 

Synapse 59, 290-298. 

Seeman, P., Lee, T., Chau-Wong, M., and Wong, K. (1976). Antipsychotic drug 

doses and neuroleptic/dopamine receptors. Nature 261, 717-719. 

Selemon, L. D., Rajkowska, G., and Goldman-Rakic, P. S. (1998). Elevated 

neuronal density in prefrontal area 46 in brains from schizophrenic patients: 

application of a three-dimensional, stereologic counting method. J Comp Neurol 

392, 402-412. 

Shao, Z., Kamboj, A., and Anderson, C. M. (2009). Functional and 

immunocytochemical characterization of D-serine transporters in cortical neuron 

and astrocyte cultures. J Neurosci Res 87, 2520-2530. 

Sheinin, A., Shavit, S., and Benveniste, M. (2001). Subunit specificity and 

mechanism of action of NMDA partial agonist D-cycloserine. 

Neuropharmacology 41, 151-158. 



 219 

Shenton, M. E., Dickey, C. C., Frumin, M., and McCarley, R. W. (2001). A 

review of MRI findings in schizophrenia. Schizophr Res 49, 1-52. 

Shi, J., Badner, J. A., Gershon, E. S., and Liu, C. (2008). Allelic association of 

G72/G30 with schizophrenia and bipolar disorder: a comprehensive meta-

analysis. Schizophr Res 98, 89-97. 

Shi, W. X., Pun, C. L., Smith, P. L., and Bunney, B. S. (2000). Endogenous DA-

mediated feedback inhibition of DA neurons: involvement of both D(1)- and 

D(2)-like receptors. Synapse 35, 111-119. 

Shim, S. S., Hammonds, M. D., and Kee, B. S. (2008). Potentiation of the NMDA 

receptor in the treatment of schizophrenia: focused on the glycine site. Eur Arch 

Psychiatry Clin Neurosci 258, 16-27. 

Shleper, M., Kartvelishvily, E., and Wolosker, H. (2005). D-serine is the 

dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic 

hippocampal slices. J Neurosci 25, 9413-9417. 

Shoji, K., Mariotto, S., Ciampa, A. R., and Suzuki, H. (2006a). Mutual regulation 

between serine and nitric oxide metabolism in human glioblastoma cells. 

Neurosci Lett 394, 163-167. 

Shoji, K., Mariotto, S., Ciampa, A. R., and Suzuki, H. (2006b). Regulation of 

serine racemase activity by D-serine and nitric oxide in human glioblastoma cells. 

Neurosci Lett 392, 75-78. 

Siksou, L., Rostaing, P., Lechaire, J. P., Boudier, T., Ohtsuka, T., Fejtova, A., 

Kao, H. T., Greengard, P., Gundelfinger, E. D., Triller, A., and Marty, S. (2007). 

Three-dimensional architecture of presynaptic terminal cytomatrix. J Neurosci 27, 

6868-6877. 

Simeon, J., Fink, M., Itil, T. M., and Ponce, D. (1970). d-Cycloserine therapy of 

psychosis by symptom provocation. Compr Psychiatry 11, 80-88. 

Smith, S. M., Uslaner, J. M., Yao, L., Mullins, C. M., Surles, N. O., Huszar, S. L., 

McNaughton, C. H., Pascarella, D. M., Kandebo, M., Hinchliffe, R. M., et al. 

(2009). The behavioral and neurochemical effects of a novel D-amino acid 

oxidase inhibitor compound 8 [4H-thieno [3,2-b]pyrrole-5-carboxylic acid] and 

D-serine. J Pharmacol Exp Ther 328, 921-930. 

Snyder, S. H. (1976). The dopamine hypothesis of schizophrenia: focus on the 

dopamine receptor. Am J Psychiatry 133, 197-202. 

Snyder, S. H. (2006). Dopamine receptor excess and mouse madness. Neuron 49, 

484-485. 

Specht, C. G., and Triller, A. (2008). The dynamics of synaptic scaffolds. 

Bioessays 30, 1062-1074. 



 220 

Spinosa, M. R., Progida, C., De Luca, A., Colucci, A. M., Alifano, P., and Bucci, 

C. (2008). Functional characterization of Rab7 mutant proteins associated with 

Charcot-Marie-Tooth type 2B disease. J Neurosci 28, 1640-1648. 

Stefanini, S., Farrace, M. G., and Argento, M. P. (1985). Differentiation of liver 

peroxisomes in the foetal and newborn rat. Cytochemistry of catalase and D-

aminoacid oxidase. J Embryol Exp Morphol 88, 151-163. 

Stefanini, S., Serafini, B., Cimini, A., and Sartori, C. (1994). Differentiation of 

kidney cortex peroxisomes in fetal and newborn rats. Biol Cell 82, 185-193. 

Stevens, E. R., Esguerra, M., Kim, P. M., Newman, E. A., Snyder, S. H., Zahs, K. 

R., and Miller, R. F. (2003). D-serine and serine racemase are present in the 

vertebrate retina and contribute to the physiological activation of NMDA 

receptors. Proc Natl Acad Sci U S A 100, 6789-6794. 

Straub, R. E., and Weinberger, D. R. (2006). Schizophrenia genes - famine to 

feast. Biol Psychiatry 60, 81-83. 

Strisovsky, K., Jiraskova, J., Barinka, C., Majer, P., Rojas, C., Slusher, B. S., and 

Konvalinka, J. (2003). Mouse brain serine racemase catalyzes specific elimination 

of L-serine to pyruvate. FEBS Lett 535, 44-48. 

Strisovsky, K., Jiraskova, J., Mikulova, A., Rulisek, L., and Konvalinka, J. 

(2005). Dual substrate and reaction specificity in mouse serine racemase: 

identification of high-affinity dicarboxylate substrate and inhibitors and analysis 

of the beta-eliminase activity. Biochemistry 44, 13091-13100. 

Sudol, M., Chen, H. I., Bougeret, C., Einbond, A., and Bork, P. (1995). 

Characterization of a novel protein-binding module--the WW domain. FEBS Lett 

369, 67-71. 

Sullivan, P. F., Kendler, K. S., and Neale, M. C. (2003). Schizophrenia as a 

complex trait: evidence from a meta-analysis of twin studies. Arch Gen 

Psychiatry 60, 1187-1192. 

Susser, E., Neugebauer, R., Hoek, H. W., Brown, A. S., Lin, S., Labovitz, D., and 

Gorman, J. M. (1996). Schizophrenia after prenatal famine. Further evidence. 

Arch Gen Psychiatry 53, 25-31. 

Takahata, R., and Moghaddam, B. (2000). Target-specific glutamatergic 

regulation of dopamine neurons in the ventral tegmental area. J Neurochem 75, 

1775-1778. 

Takao-Rikitsu, E., Mochida, S., Inoue, E., Deguchi-Tawarada, M., Inoue, M., 

Ohtsuka, T., and Takai, Y. (2004). Physical and functional interaction of the 

active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release. J 

Cell Biol 164, 301-311. 



 221 

Takayasu, N., Yoshikawa, M., Watanabe, M., Tsukamoto, H., Suzuki, T., 

Kobayashi, H., and Noda, S. (2008). The serine racemase mRNA is expressed in 

both neurons and glial cells of the rat retina. Arch Histol Cytol 71, 123-129. 

Talbot, K., Eidem, W. L., Tinsley, C. L., Benson, M. A., Thompson, E. W., 

Smith, R. J., Hahn, C. G., Siegel, S. J., Trojanowski, J. Q., Gur, R. E., et al. 

(2004). Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the 

hippocampal formation in schizophrenia. J Clin Invest 113, 1353-1363. 

Tamminga, C., Cascella, N., Fakouhi, T., and Herting, R. (1992). Enhancement of 

NMDA-mediated transmission in schizophrenia,  (New York: Raven Press). 

Tanii, Y., Nishikawa, T., Hashimoto, A., and Takahashi, K. (1994). 

Stereoselective antagonism by enantiomers of alanine and serine of 

phencyclidine-induced hyperactivity, stereotypy and ataxia in the rat. J Pharmacol 

Exp Ther 269, 1040-1048. 

Tao-Cheng, J. H. (2007). Ultrastructural localization of active zone and synaptic 

vesicle proteins in a preassembled multi-vesicle transport aggregate. 

Neuroscience 150, 575-584. 

Tarelli, G. T., Vanoni, M. A., Negri, A., and Curti, B. (1990). Characterization of 

a fully active N-terminal 37-kDa polypeptide obtained by limited tryptic cleavage 

of pig kidney D-amino acid oxidase. J Biol Chem 265, 21242-21246. 

Teng, F. Y., Wang, Y., and Tang, B. L. (2001). The syntaxins. Genome Biol 2, 

REVIEWS3012. 

Thompson, P. M., Sower, A. C., and Perrone-Bizzozero, N. I. (1998). Altered 

levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol 

Psychiatry 43, 239-243. 

Tisdale, E. J., and Balch, W. E. (1996). Rab2 is essential for the maturation of 

pre-Golgi intermediates. J Biol Chem 271, 29372-29379. 

tom Dieck, S., Sanmarti-Vila, L., Langnaese, K., Richter, K., Kindler, S., Soyke, 

A., Wex, H., Smalla, K. H., Kampf, U., Franzer, J. T., et al. (1998). Bassoon, a 

novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active 

zone of presynaptic nerve terminals. J Cell Biol 142, 499-509. 

Torrey, E. F., Rawlings, R. R., Ennis, J. M., Merrill, D. D., and Flores, D. S. 

(1996). Birth seasonality in bipolar disorder, schizophrenia, schizoaffective 

disorder and stillbirths. Schizophr Res 21, 141-149. 

Tran, K. D., Smutzer, G. S., Doty, R. L., and Arnold, S. E. (1998). Reduced 

Purkinje cell size in the cerebellar vermis of elderly patients with schizophrenia. 

Am J Psychiatry 155, 1288-1290. 



 222 

Tsai, G., and Coyle, J. T. (2002). Glutamatergic mechanisms in schizophrenia. 

Annu Rev Pharmacol Toxicol 42, 165-179. 

Tsai, G., Lane, H. Y., Yang, P., Chong, M. Y., and Lange, N. (2004). Glycine 

transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for 

the treatment of schizophrenia. Biol Psychiatry 55, 452-456. 

Tsai, G., Passani, L. A., Slusher, B. S., Carter, R., Baer, L., Kleinman, J. E., and 

Coyle, J. T. (1995). Abnormal excitatory neurotransmitter metabolism in 

schizophrenic brains. Arch Gen Psychiatry 52, 829-836. 

Tsai, G., Yang, P., Chung, L. C., Lange, N., and Coyle, J. T. (1998). D-serine 

added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44, 

1081-1089. 

Tsai, G. E., Yang, P., Chang, Y. C., and Chong, M. Y. (2006). D-alanine added to 

antipsychotics for the treatment of schizophrenia. Biol Psychiatry 59, 230-234. 

Tsuang, M. (2000). Schizophrenia: genes and environment. Biol Psychiatry 47, 

210-220. 

Tsuriel, S., Fisher, A., Wittenmayer, N., Dresbach, T., Garner, C. C., and Ziv, N. 

E. (2009). Exchange and redistribution dynamics of the cytoskeleton of the active 

zone molecule bassoon. J Neurosci 29, 351-358. 

Tuominen, H. J., Tiihonen, J., and Wahlbeck, K. (2005). Glutamatergic drugs for 

schizophrenia: a systematic review and meta-analysis. Schizophr Res 72, 225-

234. 

Turner, T. (2007). Chlorpromazine: unlocking psychosis. BMJ 334 Suppl 1, s7. 

Usuda, N., Yokota, S., Hashimoto, T., and Nagata, T. (1986). 

Immunocytochemical localization of D-amino acid oxidase in the central clear 

matrix of rat kidney peroxisomes. J Histochem Cytochem 34, 1709-1718. 

Vallee, R. B., Williams, J. C., Varma, D., and Barnhart, L. E. (2004). Dynein: An 

ancient motor protein involved in multiple modes of transport. J Neurobiol 58, 

189-200. 

van Berckel, B. N., Evenblij, C. N., van Loon, B. J., Maas, M. F., van der Geld, 

M. A., Wynne, H. J., van Ree, J. M., and Kahn, R. S. (1999). D-cycloserine 

increases positive symptoms in chronic schizophrenic patients when administered 

in addition to antipsychotics: a double-blind, parallel, placebo-controlled study. 

Neuropsychopharmacology 21, 203-210. 

van Berckel, B. N., Hijman, R., van der Linden, J. A., Westenberg, H. G., van 

Ree, J. M., and Kahn, R. S. (1996). Efficacy and tolerance of D-cycloserine in 

drug-free schizophrenic patients. Biol Psychiatry 40, 1298-1300. 



 223 

Varoqueaux, F., Sigler, A., Rhee, J. S., Brose, N., Enk, C., Reim, K., and 

Rosenmund, C. (2002). Total arrest of spontaneous and evoked synaptic 

transmission but normal synaptogenesis in the absence of Munc13-mediated 

vesicle priming. Proc Natl Acad Sci U S A 99, 9037-9042. 

Vawter, M. P., Howard, A. L., Hyde, T. M., Kleinman, J. E., and Freed, W. J. 

(1999). Alterations of hippocampal secreted N-CAM in bipolar disorder and 

synaptophysin in schizophrenia. Mol Psychiatry 4, 467-475. 

Veen, N. D., Selten, J. P., van der Tweel, I., Feller, W. G., Hoek, H. W., and 

Kahn, R. S. (2004). Cannabis use and age at onset of schizophrenia. Am J 

Psychiatry 161, 501-506. 

Verdoux, H., Geddes, J. R., Takei, N., Lawrie, S. M., Bovet, P., Eagles, J. M., 

Heun, R., McCreadie, R. G., McNeil, T. F., O'Callaghan, E., et al. (1997). 

Obstetric complications and age at onset in schizophrenia: an international 

collaborative meta-analysis of individual patient data. Am J Psychiatry 154, 1220-

1227. 

Verma, A., and Moghaddam, B. (1996). NMDA receptor antagonists impair 

prefrontal cortex function as assessed via spatial delayed alternation performance 

in rats: modulation by dopamine. J Neurosci 16, 373-379. 

Verrall, L., Burnet, P. W., Betts, J. F., and Harrison, P. J. (2010). The 

neurobiology of D-amino acid oxidase and its involvement in schizophrenia. Mol 

Psychiatry 15, 122-137. 

Verrall, L., Walker, M., Rawlings, N., Benzel, I., Kew, J. N., Harrison, P. J., and 

Burnet, P. W. (2007). d-Amino acid oxidase and serine racemase in human brain: 

normal distribution and altered expression in schizophrenia. Eur J Neurosci 26, 

1657-1669. 

Verschure, P. J., Visser, A. E., and Rots, M. G. (2006). Step out of the groove: 

epigenetic gene control systems and engineered transcription factors. Adv Genet 

56, 163-204. 

Volk, D. W., Austin, M. C., Pierri, J. N., Sampson, A. R., and Lewis, D. A. 

(2000). Decreased glutamic acid decarboxylase67 messenger RNA expression in 

a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with 

schizophrenia. Arch Gen Psychiatry 57, 237-245. 

Vollenweider, F. X., Vontobel, P., Oye, I., Hell, D., and Leenders, K. L. (2000). 

Effects of (S)-ketamine on striatal dopamine: a [11C]raclopride PET study of a 

model psychosis in humans. J Psychiatr Res 34, 35-43. 

Volterra, A., and Meldolesi, J. (2005). Astrocytes, from brain glue to 

communication elements: the revolution continues. Nat Rev Neurosci 6, 626-640. 



 224 

Wanders, R. J., and Waterham, H. R. (2006). Biochemistry of mammalian 

peroxisomes revisited. Annu Rev Biochem 75, 295-332. 

Wang, L. Z., and Zhu, X. Z. (2003). Spatiotemporal relationships among D-

serine, serine racemase, and D-amino acid oxidase during mouse postnatal 

development. Acta Pharmacol Sin 24, 965-974. 

Wang, X., He, G., Gu, N., Yang, J., Tang, J., Chen, Q., Liu, X., Shen, Y., Qian, 

X., Lin, W., et al. (2004). Association of G72/G30 with schizophrenia in the 

Chinese population. Biochem Biophys Res Commun 319, 1281-1286. 

Wang, X., Hu, B., Zieba, A., Neumann, N. G., Kasper-Sonnenberg, M., Honsbein, 

A., Hultqvist, G., Conze, T., Witt, W., Limbach, C., et al. (2009). A protein 

interaction node at the neurotransmitter release site: domains of Aczonin/Piccolo, 

Bassoon, CAST, and rim converge on the N-terminal domain of Munc13-1. J 

Neurosci 29, 12584-12596. 

Wang, X., Kibschull, M., Laue, M. M., Lichte, B., Petrasch-Parwez, E., and 

Kilimann, M. W. (1999). Aczonin, a 550-kD putative scaffolding protein of 

presynaptic active zones, shares homology regions with Rim and Bassoon and 

binds profilin. J Cell Biol 147, 151-162. 

Wang, Y., Liu, X., Biederer, T., and Sudhof, T. C. (2002). A family of RIM-

binding proteins regulated by alternative splicing: Implications for the genesis of 

synaptic active zones. Proc Natl Acad Sci U S A 99, 14464-14469. 

Wang, Y., Sugita, S., and Sudhof, T. C. (2000). The RIM/NIM family of neuronal 

C2 domain proteins. Interactions with Rab3 and a new class of Src homology 3 

domain proteins. J Biol Chem 275, 20033-20044. 

Wang, Y., and Tang, B. L. (2006). SNAREs in neurons--beyond synaptic vesicle 

exocytosis (Review). Mol Membr Biol 23, 377-384. 

Watanabe, M., Inoue, Y., Sakimura, K., and Mishina, M. (1992). Developmental 

changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 

3, 1138-1140. 

Waziri, R. (1988). Glycine therapy of schizophrenia. Biol Psychiatry 23, 210-211. 

Weickert, C. S., Straub, R. E., McClintock, B. W., Matsumoto, M., Hashimoto, 

R., Hyde, T. M., Herman, M. M., Weinberger, D. R., and Kleinman, J. E. (2004). 

Human dysbindin (DTNBP1) gene expression in normal brain and in 

schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry 61, 544-555. 

Weimar, W. R., and Neims, A. H. (1977). The development of D-amino acid 

oxidase in rat cerebellum. J Neurochem 29, 649-656. 

Weinberger, D. R. (1987). Implications of normal brain development for the 

pathogenesis of schizophrenia. Arch Gen Psychiatry 44, 660-669. 



 225 

Weinberger, D. R., and Kleinman, J. E. (1986). Observations on the brain in 

schizophrenia. In Psychiatry update: the American Psychiatric Association annual 

review, A.J. Frances, and R.E. Hales, eds. (Alexandria, VA: American Psychiatry 

Press, Inc). 

Weinberger, D. R., Kleinman, J. E., Luchins, D. J., Bigelow, L. B., and Wyatt, R. 

J. (1980). Cerebellar pathology in schizophrenia: a controlled postmortem study. 

Am J Psychiatry 137, 359-361. 

Weiss, A. P., Dewitt, I., Goff, D., Ditman, T., and Heckers, S. (2005). Anterior 

and posterior hippocampal volumes in schizophrenia. Schizophr Res 73, 103-112. 

Weiss, A. P., Goff, D., Schacter, D. L., Ditman, T., Freudenreich, O., Henderson, 

D., and Heckers, S. (2006). Fronto-hippocampal function during temporal context 

monitoring in schizophrenia. Biol Psychiatry 60, 1268-1277. 

Weiss, A. P., and Heckers, S. (2001). Neuroimaging of declarative memory in 

schizophrenia. Scand J Psychol 42, 239-250. 

Williams, M. (2009). Commentary: genome-based CNS drug discovery: D-amino 

acid oxidase (DAAO) as a novel target for antipsychotic medications: progress 

and challenges. Biochem Pharmacol 78, 1360-1365. 

Witcher, M. R., Kirov, S. A., and Harris, K. M. (2007). Plasticity of perisynaptic 

astroglia during synaptogenesis in the mature rat hippocampus. Glia 55, 13-23. 

Wolf, G., Keilhoff, G., Fischer, S., and Hass, P. (1990). Subcutaneously applied 

magnesium protects reliably against quinolinate-induced N-methyl-D-aspartate 

(NMDA)-mediated neurodegeneration and convulsions in rats: are there 

therapeutical implications. Neurosci Lett 117, 207-211. 

Wolosker, H., Blackshaw, S., and Snyder, S. H. (1999a). Serine racemase: a glial 

enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate 

neurotransmission. Proc Natl Acad Sci U S A 96, 13409-13414. 

Wolosker, H., Dumin, E., Balan, L., and Foltyn, V. N. (2008). D-amino acids in 

the brain: D-serine in neurotransmission and neurodegeneration. FEBS J 275, 

3514-3526. 

Wolosker, H., Sheth, K. N., Takahashi, M., Mothet, J. P., Brady, R. O., Jr., Ferris, 

C. D., and Snyder, S. H. (1999b). Purification of serine racemase: biosynthesis of 

the neuromodulator D-serine. Proc Natl Acad Sci U S A 96, 721-725. 

Wood, L. S., Pickering, E. H., and Dechairo, B. M. (2007). Significant support for 

DAO as a schizophrenia susceptibility locus: examination of five genes putatively 

associated with schizophrenia. Biol Psychiatry 61, 1195-1199. 

Wood, P. L., Emmett, M. R., Rao, T. S., Mick, S., Cler, J., and Iyengar, S. (1989). 

In vivo modulation of the N-methyl-D-aspartate receptor complex by D-serine: 



 226 

potentiation of ongoing neuronal activity as evidenced by increased cerebellar 

cyclic GMP. J Neurochem 53, 979-981. 

Wood, P. L., Rao, T. S., Iyengar, S., Lanthorn, T., Monahan, J., Cordi, A., Sun, 

E., Vazquez, M., Gray, N., and Contreras, P. (1990). A review of the in vitro and 

in vivo neurochemical characterization of the NMDA/PCP/glycine/ion channel 

receptor macrocomplex. Neurochem Res 15, 217-230. 

Wright, I. C., Rabe-Hesketh, S., Woodruff, P. W., David, A. S., Murray, R. M., 

and Bullmore, E. T. (2000). Meta-analysis of regional brain volumes in 

schizophrenia. Am J Psychiatry 157, 16-25. 

Wroblewska, B., Wroblewski, J. T., Pshenichkin, S., Surin, A., Sullivan, S. E., 

and Neale, J. H. (1997). N-acetylaspartylglutamate selectively activates mGluR3 

receptors in transfected cells. J Neurochem 69, 174-181. 

Wu, E. Q., Birnbaum, H. G., Shi, L., Ball, D. E., Kessler, R. C., Moulis, M., and 

Aggarwal, J. (2005). The economic burden of schizophrenia in the United States 

in 2002. J Clin Psychiatry 66, 1122-1129. 

Wyatt, R. J. (1991). Early intervention with neuroleptics may decrease the long-

term morbidity of schizophrenia. Schizophr Res 5, 201-202. 

Wyneken, U., Smalla, K. H., Marengo, J. J., Soto, D., de la Cerda, A., 

Tischmeyer, W., Grimm, R., Boeckers, T. M., Wolf, G., Orrego, F., and 

Gundelfinger, E. D. (2001). Kainate-induced seizures alter protein composition 

and N-methyl-D-aspartate receptor function of rat forebrain postsynaptic 

densities. Neuroscience 102, 65-74. 

Xia, M., Liu, Y., Figueroa, D. J., Chiu, C. S., Wei, N., Lawlor, A. M., Lu, P., Sur, 

C., Koblan, K. S., and Connolly, T. M. (2004). Characterization and localization 

of a human serine racemase. Brain Res Mol Brain Res 125, 96-104. 

Xie, X., Dumas, T., Tang, L., Brennan, T., Reeder, T., Thomas, W., Klein, R. D., 

Flores, J., O'Hara, B. F., Heller, H. C., and Franken, P. (2005). Lack of the 

alanine-serine-cysteine transporter 1 causes tremors, seizures, and early postnatal 

death in mice. Brain Res 1052, 212-221. 

Yamada, K., Ohnishi, T., Hashimoto, K., Ohba, H., Iwayama-Shigeno, Y., 

Toyoshima, M., Okuno, A., Takao, H., Toyota, T., Minabe, Y., et al. (2005). 

Identification of multiple serine racemase (SRR) mRNA isoforms and genetic 

analyses of SRR and DAO in schizophrenia and D-serine levels. Biol Psychiatry 

57, 1493-1503. 

Yang, C., Mora, S., Ryder, J. W., Coker, K. J., Hansen, P., Allen, L. A., and 

Pessin, J. E. (2001). VAMP3 null mice display normal constitutive, insulin- and 

exercise-regulated vesicle trafficking. Mol Cell Biol 21, 1573-1580. 



 227 

Yang, C. R., and Svensson, K. A. (2008). Allosteric modulation of NMDA 

receptor via elevation of brain glycine and D-serine: the therapeutic potentials for 

schizophrenia. Pharmacol Ther 120, 317-332. 

Yang, S., Qiao, H., Wen, L., Zhou, W., and Zhang, Y. (2005). D-serine enhances 

impaired long-term potentiation in CA1 subfield of hippocampal slices from aged 

senescence-accelerated mouse prone/8. Neurosci Lett 379, 7-12. 

Yoshikawa, M., Takayasu, N., Hashimoto, A., Sato, Y., Tamaki, R., Tsukamoto, 

H., Kobayashi, H., and Noda, S. (2007). The serine racemase mRNA is 

predominantly expressed in rat brain neurons. Arch Histol Cytol 70, 127-134. 

Young, C. E., Arima, K., Xie, J., Hu, L., Beach, T. G., Falkai, P., and Honer, W. 

G. (1998). SNAP-25 deficit and hippocampal connectivity in schizophrenia. 

Cereb Cortex 8, 261-268. 

Young, K. H. (1998). Yeast two-hybrid: so many interactions, (in) so little time. 

Biol Reprod 58, 302-311. 

Yurimoto, H., Hasegawa, T., Sakai, Y., and Kato, N. (2000). Physiological role of 

the D-amino acid oxidase gene, DAO1, in carbon and nitrogen metabolism in the 

methylotrophic yeast Candida boidinii. Yeast 16, 1217-1227. 

Zafra, F., Gomeza, J., Olivares, L., Aragon, C., and Gimenez, C. (1995). Regional 

distribution and developmental variation of the glycine transporters GLYT1 and 

GLYT2 in the rat CNS. Eur J Neurosci 7, 1342-1352. 

Zahniser, N. R., and Doolen, S. (2001). Chronic and acute regulation of Na+/Cl- -

dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, 

and signaling systems. Pharmacol Ther 92, 21-55. 

Zhai, R. G., Vardinon-Friedman, H., Cases-Langhoff, C., Becker, B., 

Gundelfinger, E. D., Ziv, N. E., and Garner, C. C. (2001). Assembling the 

presynaptic active zone: a characterization of an active one precursor vesicle. 

Neuron 29, 131-143. 

Zhou, M., Diwu, Z., Panchuk-Voloshina, N., and Haugland, R. P. (1997). A stable 

nonfluorescent derivative of resorufin for the fluorometric determination of trace 

hydrogen peroxide: applications in detecting the activity of phagocyte NADPH 

oxidase and other oxidases. Anal Biochem 253, 162-168. 

Ziv, N. E., and Garner, C. C. (2004). Cellular and molecular mechanisms of 

presynaptic assembly. Nat Rev Neurosci 5, 385-399. 

Zornberg, G. L., Buka, S. L., and Tsuang, M. T. (2000). Hypoxic-ischemia-

related fetal/neonatal complications and risk of schizophrenia and other 

nonaffective psychoses: a 19-year longitudinal study. Am J Psychiatry 157, 196-

202. 



 228 

Zou, F., Li, C., Duan, S., Zheng, Y., Gu, N., Feng, G., Xing, Y., Shi, J., and He, 

L. (2005). A family-based study of the association between the G72/G30 genes 

and schizophrenia in the Chinese population. Schizophr Res 73, 257-261. 

 

 


