

Abstract- The life time of transaction is divided into two

stages: executing stage and committing stage. At the

executing stage, transaction access data through a

concurrency control, while at the committing stage, a

commit protocol is executed to ensure failure atomicity. A

transaction that requests a lock can be blocked by a

committing transaction for a long time due to a long delay

in completing the committing procedure. The potential

long delay in transaction commitment makes concurrency

control wait until transaction finish the committing stage.

This study will modify concurrency control, the modified

of concurrency control allows give the locks that are still

on hold by another transaction in their completion of

committing stage. In modeling the concurrency control,

Petri Net is used. The simulation has show increase the

commit throughput of transaction, but the issue of abort

transaction has significant impact to modified

concurrency control, the simulation has show increase

the abort throughput of transaction.

Keywords: Petri Net, GSPN, Distributed Database

Systems, Concurrency Control, Commit Protocol.

I. INTRODUCTION

A transaction is considered as sequences of read and

write operations on database together with

computation steps [2]. A transaction can be thought

of as a program with embedded database access

queries. Let us first consider transaction according to

their application areas. If data is distributed, the

management of the transaction becomes more

involved in coordinating the transactions and this

may require special measures. The transactions that

operate on distributed data are commonly known as

distributed transactions. Data distribution offer

opportunities for improving performance through

parallel query execution. In order to reap the potential

performance benefits, the cost of maintaining data

consistency must be kept at an acceptable level in

spite of added complexity of the environment.

The life time of transaction is divided into two stages:

execution stage and committing stage [4]. During the

execution stage, transactions access data through a

concurrency control, while in the committing stage, a

commit protocol is executed to ensure failure

atomicity. For example, in Two Phase Locking

protocol, if a transaction in executing stage requests

data which is being locked by another transaction in

conflicting modes, then the lock request will be

blocked until the lock released. The lock of data

cannot be released until the transaction completes the

committing stage. A transaction that requests a lock

can be blocked by a committing transaction for a long

time due to a long delay in completing the commit

procedure. The potential long delay in the

committing stage will block the transaction that needs

access to a data item. The concurrency control cannot

access the data in their committing stage.

In the concurrency control area, this challenge has led

to the development of a large number of concurrency

control algorithms. The potential long delay in

transaction commitment makes concurrency control

wait until transaction finishes its committing stage.

This is an important problem for the performance of

transaction in distributed database systems. We

present a modification of concurrency control

algorithms that use the commit protocol in distributed

database system as an aid to concurrency control.

In this paper, studied about how to improve the

performance of distributed database systems by

modifying locking based concurrency control using

the concept of resource borrowing and lending from

Haritsa's et al. committing protocol. In modeling the

concurrency control, Petri Net is used.

The model assumptions are listed below:

1. The transactions have a long delay in

finishing the commitment stage.

2. The transactions can by using one operation

either single read or single write access a

data item.

PETRI NET MODELLING OF

CONCURRENCY CONTROL IN

DISTRIBUTED DATABASE SYSTEM

Djoko Haryono, Jimmy Tirtawangsa, Bayu Erfianto

Jurnal Sistem Komputer - Vol.2, No.2, November 2012, ISSN: 2087-4685, e-ISSN: 2252-3456 Jsiskom - 35

3. The operations in transaction access only

one data item at one time in distributed

database systems.

4. The issues of supporting real-time

communication and the impact of different

network issues on system performance will

not be addressed.

5. It is assumed that the network has no failure

condition.

6. It is assumed that the network has enough

capacity to support the transmission of

message.

7. It is assumed of negligible delay in

communication.

II. BASIC CONCEPT

2.1 Concurrency Control

“Concurrency control in a database is the activity of

coordinating the actions of transactions that operate

in parallel, access shared data, and therefore

potentially interfere with one another” [2]. A

transaction is an atomic action. An atomic action is a

group of operations that must be executed as a whole,

without interference from other operations.

Locking is a mechanism commonly used to solve the

problem of synchronizing access to shared data. The

idea behind locking is intuitively simple. Each data

item has a lock associated with it. Before a

transaction T1 may access a data item, the scheduler

first examines the associated lock. If no transaction

holds the lock, then the scheduler obtains the lock on

behalf of T1. If another transactionT2 does hold the

lock, then T1 has to wait until T2 gives up the lock.

That is, the scheduler will not give T1 the lock until

T2 releases it. The scheduler thereby ensures that

only one transaction can hold the lock at a time, soon

one transaction can access the data item at a time.

2.2 Commit Protocol

Distributed database systems implement a transaction

commit protocol to ensure a transaction atomicity. A

variety of commit protocol have been devised, most

of which are based on the classical two phase commit

(2PC) protocol.

2PC protocol, as suggested by its name, operates in

two phase: in the first phase, called the voting phase,

the coordinator reaches a global decision (commit or

abort) based on the local decisions of the participant.

In the second phase, called the decision phase, the

coordinator conveys this decision to the participants.

For its successful execution, the protocol assumes

that each participant of the transaction is able

provisionally perform the actions of the transaction in

such a way that they can be undone if the transaction

is eventually aborted.

An optimistic 2PC-based commit protocol PROMPT

(Permits Reading of Modified Prepared-data for

Timeliness) is based on the assumption that a

distributed transaction will not be aborted at commit

time [3]. The committing transaction can lend data to

other transactions so that it does not block them. In

the algorithm, two situations may arise depending on

the finishing times of the committing transactions.

Lender Finishes First. In this case the lending

transaction receives its global decision before the

borrowing transaction. If the global decision is to

commit, both transactions are allowed to commit. If

the decision is to abort, both transactions are aborted.

The lender is naturally aborted because of the abort

decision. The borrower is aborted because it has read

inconsistent data.

Borrower Finishes First. In this case the borrower has

reached its committing stage before the lender. The

borrower is now made to wait and not allowed to

send a WORKDONE messages to its coordinator.

The borrower has to wait until such time as the lender

receives its global decision or its own deadline

expires, which ever comes earlier. In the former case,

if the lender commits, the borrower is allowed to

respond to the coordinator's message. In the latter

case, the borrower is aborted since it has read

inconsistent data.

2.3 Modeling Using Petri Net

“Petri nets are a graphical tool for the formal

description of systems whose dynamics are

characterized by concurrency, synchronization,

mutual exclusion, and conflict, which are typical

features of distributed environments” [6]. In

modeling which uses concept of conditions and

events, place represent conditions and transitions

represent events. A transition has a certain numbers

of input and output places representing pre-condition

and post-conditions of event. The presence of a token

in a place is interpreted as of the conditions

associated with place.

The arcs of the graph are classified (with respect to

transitions) as: input arcs: arrow-headed arcs from

places to transitions, output arcs: arrow-headed arcs

from transitions to places, inhibitor arcs: circle-

headed arcs from places to transitions

Multiple (input, output, or inhibitor) arcs between

places and transitions are permitted and annotated

with a number specifying their multiplicities. Places

Jurnal Sistem Komputer - Vol.2, No.2, November 2012, ISSN: 2087-4685, e-ISSN: 2252-3456 Jsiskom - 36

can contain tokens that are drawn as black dots

within places, as shown in Figure 2.6. The state of a

Petri Net is called marking and is defined by the

number of tokens in each place. As in classical

automata theory, in Petri Net there is a notion of

initial state (initial marking).

A transition is enabled if all its input places are

marked at least with one token. An enabled transition

may fire. If a transition fires, it destroys one token on

each of its input places and creates one token on each

of its output places.

A Petri net model can be formally defined in the

following way [5]:

Definition 2.1 A Petri Net model is a 6-tuple = (P, T,

I, O, H, PAR, PRED, MP}) where:

 P is the set of places.

 T is the set of transitions.

 I, O, H are the input arcs, output arcs, and

inhibition arcs function respectively.

 PAR is set of parameters.

 PRED is a set of predicates restricting

parameter ranges.

MP is the function that associates with each place

either a natural number or a parameter ranging on the

set of natural numbers.

Analytical models can be broadly classified into non-

state and state space models, where the most

commonly used state space models are Markov

chains. In order to determine steady-state

probabilities of a finite Markov chain, at least three

different approaches for solution of the linear system

are commonly considered: direct and iterative

numerical methods, and a technique that yields

closed form results. When real world problems are

studied, Markov chains tend to become very large.

Therefore it is attractive to be able to specify such

systems in a compact way avoiding error-prone and

tedious creation of models, and allowing designers to

focus more on the system being modeled than on

low-level modeling details [7]. GSPN (Generalized

Stochastic Petri Net) is a prominent member of such

generation models.

A GSPN is defined by a set of places, a set of

transitions, relations describing pre conditions, post

conditions, and inhibition conditions; and a mapping

from the set of places to the natural numbers

describing the model's state. The set of places

represents the set of resources, local states and

system variables.

The set of transitions represents the set of actions.

This set is divided into two subsets: the set of

immediate transitions (they are graphically

represented by thick bars) that depicts a set of

irrelevant actions under the performance point of

view; and the subset of timed transitions (they are

graphically represented by boxes) [5].

Besides, two other functions are taken into account

for representing timing and priorities. The timing

function associates to each timed transition a non-

negative real number, depicting the respective

exponential transition delay (or rate) [5]. The priority

function associates to each immediate transition a

natural number that represents the respective

transition priority level. Transitions are fired under

interleaving firing semantics, a common semantics

adopted even in the untimed place/transition model.

However, as defined, immediate transitions have

higher priority than those timed transitions. A GSPN

model is a 8-tuple = (P, T, I, O, H, PAR, PRED, MP,

π, W) [6], where:

 P, T, I, O, H, PAR, PRED, MP are Petri Net

model in Definition 2.1

 π : is the priority function that maps

transitions onto natural numbers

representing their priority level.

 W is a (possibly marking dependent) rate of

a negative exponential distribution

specifying the firing delay, when transition

is a timed transition, or is a (possibly

marking dependent) firing weight, when

transition is an immediate transition.

Recall that markings in the reachability set can be

classified as tangible or vanishing. A tangible

marking is a marking in which (only) timed

transitions are enabled. A vanishing marking is a

marking in which (only) immediate transitions are

enabled. A marking in which no transition is enabled

is tangible. The time spent in any vanishing marking

is deterministically equal to zero, while the time

spent in tangible markings is positive with probability

one. Similarly, a place is said to be vanishing if it can

contain tokens only in vanishing markings, see the

above example for GSPN.

III. MODELING AND ANALSIS

CONCURRENCY CONTROL IN

DISTRIBUTED DATABASES SYSTEM

3.1 Concurrency Control in Distributed Databases

System

The method applied in this study was a modification

of concurrency control method for distributed

database systems. When transaction arrived at

originating site, the transaction created a coordinator

process. The coordinator process then created several

participants process to access data item in several

sites. In order to allow concurrent accesses of data

item in conflicting modes, several participants tried

to request read lock or update lock before processing

the data, as shown in Figure 1.

Jurnal Sistem Komputer - Vol.2, No.2, November 2012, ISSN: 2087-4685, e-ISSN: 2252-3456 Jsiskom - 37

Figure 1 Data processing and Validating Phase

Let P1 be a participant holding a lock at data item X

and let P2 be another participant requesting the same

data item X. We have two situations may happen

depending status of P1. First situation is P1 in data

processing phase and second situation is P1 in

validating phase.

Situation 1: P1 and P2 at data processing phase. In

this situation, we have two participants conflicting in

data processing phase, as shown in Figure 3.5. If

there are have more than two participants that request

the same data item, the rest of two participants are

made to wait until concurrency control resolving the

conflict between these two participants. P2 have two

operations, either read mode or update mode, as

shown Figure 2.

Figure 2 Resolving Conflicts between Data

Processing Phases

Situation 2: P1 at validating phase and P2 at data

processing phase. In this situation, we have conflict

between P2 at data processing phase and P1 at

validating phase.

We proposed the modification to our concurrency

control to permits given the lock that still hold by

another participant in their validating phase into new

participant in their data processing phase, as shown in

Figure 3.

Figure 3 Resolving Conflict between Data

Processing and Validating Phase

3.2 Petri Net Model of Concurrency Control for

Single Site

In this section, describe simulation setup are used in

this study. The tool for modeling Petri Net is PIPE

(Platform Independent Petri Net Editor). PIPE is an

open source, platform-independent tool for creating

and analyzing Generalized Stochastic Petri Nets

(GSPNs). PIPE offer a set of modules to carry out

different types of qualitative and quantitative

analysis. The available module in PIPE used in this

study is GSPN analysis. This module calculates

throughput of timed transitions by exploring the state

space of the given Petri net and determining the

steady state solution of the model. Petri Net model

shown in Figure 8. The description place and

transition are represented in Table 1 and Table 2.

Data Processing

Validating

Request
Read lock /
Update lock,
Process Data

Release Lock

Voting

Decision
Permanent Update

Coordinator Participants

STARTWORK

WORKDONE

PREPARE

YES / NO

COMMIT or ABORT

ACKNOWLEDGEMENT

Jurnal Sistem Komputer - Vol.2, No.2, November 2012, ISSN: 2087-4685, e-ISSN: 2252-3456 Jsiskom - 38

Table 1 Description of Places

Table 2 Description of Transitions

In this study, the concurrency control in distributed

database system was modeled in a single site. The

distributed database system accessed by the number

of different transaction arrived in this site.

In this study, transaction divided by each operation,

either read or update. In Petri Net modeling, the

number of participant process will represent by the

number of token in a place. From the above Petri Net

model, the number of token in place siteR and siteW

representation the number of participant process to

perform read or update data item. In this study,

defined the number of token in each places reqR and

reqW are between 1 into 5 token. The reason for

using maximum 5 token in each read and update

mode is the limitation of PIPE tool when we set more

tokens it is increasing complexity of the graphical

layout of the net as well as of its state space.

The experiments were carried out using these models

for analyzing the performance behavior of

concurrency control for distributed databases under

different conditions and components

parameterization. The chosen evaluation method was

stationary simulation (steady-state). The metrics

calculated were the system throughput of committing

and aborting transaction of participants. Evaluated

measure is the system throughput varying the number

of participant process.

A Petri Net model augmented with set of rates. The

rates will fill in every transition in the model. We set

transitions in the Petri Net model by fill the rates of

transition (obtained by inverse of the mean), as

shown Table 3.

Jurnal Sistem Komputer - Vol.2, No.2, November 2012, ISSN: 2087-4685, e-ISSN: 2252-3456 Jsiskom - 39

Table 1 The Specification of Transition in Petri

Net Model

IV. SIMULATION RESULT

The scenario 1a illustrates a situation when the

update mode occurs more often. We find the basic

concurrency control for update mode when 6

participants involves into the site, the concurrency

control will grant the update mode first and there is

no read mode occurs. But, when we used the

modified concurrency control, the participants

commit for read mode every 507.6 (1/0.00197) unit

time. For update mode, the basic concurrency control

has reach a constant value when 6 participants

involves into the site. The modified concurrency

control has a trend of committing throughput greater

than the basic concurrency control, as shown in

Figure 4.

Figure 4 Throughput of Commit Transaction

from Scenario 1a

Figure 5 Throughput of Abort Transaction from

Scenario 1b

The scenario 2a illustrated a situation when the read

mode occur more often than the update mode. It has a

trend of the committing throughput greater than the

basic concurrency control. Our modified concurrency

control can improve the throughput for commit of

participants under the read mode or the update mode.

It is happened when the read mode occur more often

the modified concurrency control allows the new

participants hold the lock and process the data. If the

site has an update mode in the committing stage, the

modified concurrency control will allow the new

participants hold the lock and process data, as shown

in Figure 6.

Figure 6 Throughput of Commit Transaction

from Scenario 2a

Figure 7 Throughput of Abort Transaction from

Scenario 2b

The scenario 1b and 2b, we find the abort throughput

of modified concurrency control for the read mode

and the update mode are greater than the commit

throughput of basic concurrency control. It shown

our concurrency control has abort decision often

Read

Read
Modified

Aborting
Read

Aborting
Read
Modified

Read

Read
Modified

Aborting
Read

Aborting
Read
ModifiedNumber of Participants

Abort Throughput

Jurnal Sistem Komputer - Vol.2, No.2, November 2012, ISSN: 2087-4685, e-ISSN: 2252-3456 Jsiskom - 40

occur than the basic concurrency control. This is

happen because the borrower depends on the decision

of the lender, as shown in Figure 5 and 7.

V. CONCLUSIONS AND

RECOMMENDATIONS

5.1 Conclusions

The simulation has shown increase the throughput of

committing transaction, but the issue of the aborted

transaction has significant impact to our concurrency

control. This happened in situation where the aborting

transactions occur more often because the borrowers

depended to their lender.

5.2 Recommendations

Our performance studies are based on the assumption that

there is no replication. Hence, a study of relative

performance of the topic discussed here deserves a further

look under assumption of replicated distributed database

system. There is need for modeling Petri Net for multiple

sites. The multiple sits will shown the performance of the

concurrency control for distributed database system on

multiple sites.

VI. REFERENCES
[1] P.A. Bernstein and N.Goodman, “Concurrency

Control in Distributed Database Systems”, Addison-

Wesley, U.S.A., 1981.

[2] M. Tamer Ozsu and Patrick Valduriez, “Principles of

Distributed Database Systems”, Prentice Hall, U.S.A.,

1991.

[3] J. R. Haritsa, K. Ramamritham, and R. Gupta, “The

PROMPT real time commit protocol,” IEEE

Transaction on Parallel and Distributed Systems, Vol.

11, No. 2, pp.160–181, 2000.

[4] Y. Lam, C.L. Pang, S. H. Son, and J. Cao, “Resolving

executing-committing conflicts in distributed real-time

database systems”, Computer Journal, Vol. 42, No. 8,

pp.674–692, 1999.

[5] James L. Peterson, “Petri Nets”, Computing Surveys,

Vol 9, No. 3, U.S.A, 1977.

[6] M. Ajone Marsan, G. Balbo, S. Donatelli, G.

Franceschinis, “Modeling with Generalized Stochastic

Petri Nets”, Jhon Willey & Sons, England, 1995.

[7] Roberta A. A. Fagundes, Paulo R. M. Maciel, and

Nelson S. Rosa, “Performance Eveluation of CORBA

Concurrency Control Service Using Stochastic Petri

Nets”, RITA, Vol 14, 2007.

Jurnal Sistem Komputer - Vol.2, No.2, November 2012, ISSN: 2087-4685, e-ISSN: 2252-3456 Jsiskom - 41

Figure 8 Petri Net Model of Modified Concurrency Control in Distributed Database System

Jurnal Sistem Komputer - Vol.2, No.2, November 2012, ISSN: 2087-4685, e-ISSN: 2252-3456 Jsiskom - 42

	Materi Utama
	Petri Net Modelling of Concurrency Control in Distributed Database System
	Djoko Haryono
	Jimmy Tirtawangsa
	Bayu Erfianto

