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ABSTRACT

This thesis addresses the problem of generating executable code for distributed

embedded systems in which computing nodes communicate using the Controller

Area Network (CAN). CAN is the dominant network in automotive and factory

control systems and is becoming increasingly popular in robotic, medical and

avionics applications. The requirements for functional and temporal reliabil-

ity in these domains are often stringent, and testing alone may not offer the

required level of confidence that systems satisfy their specifications. Conse-

quently, there has been considerable research interest in additional techniques

for reasoning about the behaviour of CAN-based systems. This thesis proposes

a novel approach in which system behaviour is specified in a high-level language

that is syntactically similar to Esterel but which is given a formal semantics by

translation to bCANDLE, an asynchronous process calculus. The work devel-

oped here shows that bCANDLE systems can be translated automatically, via

a common intermediate net representation, not only into executable C code but

also into timed automaton models that can be used in the formal verification

of a wide range of functional and temporal properties. A rigorous argument is

presented that, for any system expressed in the high-level language, its timed

automaton model is a conservative approximation of the executable C code,

given certain well-defined assumptions about system components. It is shown

that an off-the-shelf model-checker (UPPAAL) can be used to verify system

properties with a high-level of confidence that those properties will be exhib-

ited by the executable code. The approach is evaluated by applying it to four

representative case studies. Our results show that, for small to medium-sized

systems, the generated code is sufficiently efficient for execution on typical hard-

ware and the generated timed automaton model is sufficiently small for analysis

within reasonable time and memory constraints.
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1. INTRODUCTION AND OVERVIEW

1.1 Embedded System

An embedded system is a computer system that is part of a larger system to

perform a dedicated function such as monitoring and controlling. We see such

computer systems everywhere around us, for example: cell phones, domestic

appliances, medical systems, traffic control systems, and automotive applica-

tions. Embedded computer systems are becoming more attached to our life,

therefore embedded development methods are very important in order to en-

sure reliability particularly where a failure may cause loss of life or financial

damage. On June 4, 1996 the Ariane 5 rocket launched by the European Space

Agency exploded just 40 seconds after initiation of the flight sequence (Dowson,

1997). A software failure was identified as a primary cause of the disaster. The

catastrophe was valued at approximately $370 million. More recently, Toyota,

the world’s largest automobile manufacturer, announced in 2010 the recall of

thousands of cars because of a problem in a braking system. A software glitch

also has been suspected in the braking system. Embedded system engineers

need to ensure that the systems which they deliver will behave correctly. Tools

and techniques that support that are highly demanded.

1.2 Real-time Embedded System

Mostly, embedded systems are real-time systems. In other words, they have

real-time constraints where the correctness of their behaviour depends not only
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on the logical results of the computation, but also on the time at which these

results are produced. In a vehicle air-bag example, once a crash is detected, the

air-bag has to inflate rapidly within a short time. In this example, the system

should respond to the event of the crash on the correct time in order to prevent

driver from striking the steering wheel or window. Real-time systems are clas-

sified into two types depending on how strict are the timing requirements: soft

real-time systems and hard real-time systems (Liu, 2000). A soft real-time sys-

tem has more relaxed timing constraints. The system can continue to operate

even if it fails to meet its deadline. Examples are multimedia applications, tele-

phone switches, and on-line reservation systems. In a hard real-time system,

if a timing constraint or deadline is not met, errors consequences may occur

threatening human lives or causing sever damage or financial loss. Examples

include safety-critical applications: medical machines, automotive and avionics.

Consider the simple example shown in Fig. 1.1 (Kopetz, 1997), where the com-

puter performs a single activity. The system controls the flow of a liquid through

a pipe. For a given set-point, the computer system must maintain the flow of

the liquid despite changing environmental conditions, such as varying level of

the liquid in the vessel or temperature sensitive viscosity of the liquid. The

computer system continuously observes the rate of flow, using the flow sensor,

and adjusts the control valve accordingly. The response to a change in the

flow must occur within a finite period of time in order to prevent an overload

situation. This however may require complex calculation in order to obtain the

new valve position. Checking that the system meets some functional properties

is necessary, for example: whenever an increase of the flow rate is detected,

the valve is eventually adjusted. However, verifying non-functional (or timing)

properties is very important, for example: whenever an increase of the flow

rate is detected, the valve is eventually adjusted before x time units. Tools and

techniques that provide a prior analysis about the worst-case behaviour of such

systems, are demanded.
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Computer Control System

Flow Setpoint

Control Valve Flow Sensor

Fig. 1.1: Flow Regulator System.

1.3 Distributed Embedded System

Embedded systems tend to be distributed because of the nature of the envi-

ronment in which they operate. In this case a system may have a number of

computing nodes that are interconnected by a communication network in order

to exchange information for the purpose of monitoring and control. Modern

vehicles may have over a hundred computing units to control, for example,

air-bag, driver’s doors, anti-lock brakes, engine functions and many other ac-

tivities in the car (Pop et al., 2004). Distribution is required for various reasons

such as performance increase, location of sensors and actuators, and fault toler-

ance (Caspi et al., 1999). For instance, consider the example shown in Fig 1.1.

For a geographical reason, the computing node that reads the flow rate, may be

placed close to the flow sensor and interconnected with a suitable communica-

tion bus with another computing node that controls the valve. Unfortunately,

it is a challenging task to design and implement real-time embedded systems

in such a way that guarantees that the functional and timing properties are

satisfied under all possible workloads. The problem becomes even harder when

the system is distributed.

A lot of distributed embedded systems are implemented using Controller Area

Network (CAN). The CAN is the dominant network in automotive and factory

control systems and is becoming increasingly popular in robotic, medical and

avionics applications. In the following, a brief introduction of the CAN is
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presented.

The Controller Area Network

Controller Area Network (CAN) (Bosch, 1991; ISO-CAN, 1993; Natale et al.,

2012) is a broadcast, message-oriented communication protocol developed origi-

nally for the automotive industry by Bosch GmbH in the mid-eighties. CAN was

devised to replace the complex wiring harness in automobiles with a two-wire

bus, and suited to operate in a harsh electromagnetic environment at trans-

mission speeds of up to 1 Mbit/s over short distances. CAN is a multi-master

protocol, any node on the network can send a broadcast message to other nodes.

The message does not contain the address of the destination node(s), but it has

a unique static number which defines the priority of the message in the net-

work. CAN implements the carrier-sense, multiple-access (CSMA/CA) proto-

col with a deterministic collision avoidance policy. This feature has made CAN

particularly suitable for hard real-time systems which require high reliability.

Currently its use has been expanded to include new application domains, for

example: manufacturing, construction, agriculture and healthcare (Ortiz et al.,

2011; Eugenio, 2008; Riti and Pozzi, 1999; Parent and Cassin, 1999).
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Fig. 1.2: CAN Frame - Standard Format.

Messages are transmitted over the CAN network as fixed format frames which

consist of a data field, a message identifier field and other trailing fields, see

Fig 1.2. The data field is between 0 and 8 bytes long. The identifier field is 11

(29) bits in the standard (extended) frame format. The other fields of the frame

are explained in Table 1.1. Additional bits are inserted when a frame is trans-
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Field name Purpose

SOF Denotes the start of frame transmission.

ID Represents message identifier.

RTR Remote transmission request.

IDE Identifier for the data which also represents the message
priority.

r0 Reserved bit.

DLC Data length code which represents the number of bytes
of data.

DATA Represents message data field which is between 0 and 8
bytes long.

CRC Cyclic redundancy check.

DEL CRC delimiter.

ACK0 ACK slot.

ACK1 ACK delimiter.

EOF End of frame.

Int Inter-frame space.

Tab. 1.1: CAN frame fields.

mitted over the network for synchronisation. This process is called bit stuffing

that means after five consecutive equal bits, a complementary bit is inserted

into the bit stream. Bit stuffing occurs from SOF up to, but not including,

the CRC delimiter. Stuff bits introduce uncertainty to the transmission time of

CAN messages. However, the maximum number of stuff bits can be calculated

in order to estimate the worst-case transmission time of a CAN message. This

is discussed in detail in section 2.3.4.

The identifier represents the priority of the message which is a non-negative

integer starting from 0; the smaller the number the higher the priority. When

two or more nodes try to transmit a message, the node with the higher priority

message gains access to the bus. First when the bus is free, a number of nodes

may start to transmit at the same time. Each node first transmits the message

identifier starting from the most significant bit, and then it monitors the bus. In

this mechanism, the bit is classified as either dominant or recessive. The node

can only read a recessive bit if all other nodes write recessive bits, otherwise

it reads a dominant bit. The behaviour of the bus in this case is similar to an
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AND-gate. When a node monitors a bit value that is not the one transmitted

it stops transmission, and behaves as a receiver to the highest priority message,

and then waits until the bus becomes idle again. Therefore, during arbitration,

the node with the highest priority message wins and continues to transmit the

rest of the message. Additionally, the message identifier expresses the type of

the message. Each node may be configured to accept a subset of messages.

A receiver node performs the acceptance test to the received message. If the

message is accepted it is stored in a receive buffer, otherwise it is rejected.

1.4 Formal Methods

Embedded systems may have high reliability requirements, e.g. a mean time to

failure of 109 hours is not unusual. Traditional approaches to testing embed-

ded systems may not alone provide the required confidence in their reliability.

In (Gluck and Holzmann, 2002) two problems are identified in conventional

testing in terms of concurrent systems: “limited controllability” and “limited

observability”. The first one means that it is not possible to control the specifics

of thread interleavings; the second one means that it is very hard to reproduce

the error scenario to identify the root cause. Therefore, finding errors such as

race conditions and deadlock in concurrent software is very challenging using

conventional testing.

However, these approaches can be supplemented by a variety of analytic tech-

niques. One such technique is model-checking (Baier and Katoen, 2008). Model-

checking has proved to be a very effective method to verify requirements and the

design of concurrent systems and communication protocols. Basically, a model-

checking tool accepts an abstract model of the system and a specification of

properties of the system. The tool then performs an exhaustive state-space

search to check if the model satisfies the given specification. A counterexample

(sequence of events or path) is generated if the specification is not satisfied
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by the model. Therefore, by studying the counterexample, the error may be

discovered and corrected. A major obstacle to the widespread deployment of

model-checking in practice is the state-space explosion problem: the number of

states to be checked in a realistic model of the system may exceed the avail-

able computing resources. Furthermore, model-checking verifies a system model

which is an abstraction of the actual system. Thus the model may exhibit a be-

haviour that can not be expressed by the actual implementation of the system.

Despite of these limitations, model-checking can increase the level of confidence

in a system design.

1.5 Related Work

The problem of real-time system has been subject to exhaustive research during

the last few decades. Many approaches have been proposed to ensure that

systems hold some useful properties. The synchronous approach is based on

very conservative assumptions on system computations and communications

which make the system difficult to implement particularly when the system

is distributed. Traditional scheduling analysis has been widely used by real-

time system engineers. It provides a simple mathematical analysis of system

behaviour. Based on the success of its application to single-processor systems,

the approach has been extended to the distributed applications. However, the

approach requires restrictive assumptions on the system implementation, and

does not allow system level properties to be checked. Other approaches based

on formal languages have been proposed, but they are mainly limited to uni-

processor applications.
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1.5.1 Synchronous Approach

The synchronous languages Esterel (Berry, 2000), Lustre (Halbwachs et al.,

1991) and Signal (LeGuernic et al., 1991) are designed around the synchrony

hypothesis which assumes a system responds to its environment’s events in zero

time (Benveniste et al., 2003). Moreover, all communications between the sys-

tem components are also performed instantaneously. The concept is similar to

the synchronous model of digital circuits. The circuits are described using gates

that must react during one clock cycle which means conceptually in zero time.

This approach allows one to reason formally about the operations of the sys-

tem (Benveniste and Berry, 1991). Synchronous languages and their compilers

are now widely used in industry for automotives, railways, and avionics.

The Esterel language is suited to the development of control-dominated embed-

ded reactive applications (Potop-Butucaru et al., 2007). An Esterel program

consists of a collection of concurrently running threads which are described in

a traditional imperative syntax. The concurrency however is compiled away in

order to generate a single-threaded source program that behaves like a state

machine at run-time. Many compilers have been developed for Esterel such as

Esterel Technologies Compiler v7 (Esterel-Tech, 2005), Saxo-RT Compiler (Weil

et al., 2000; Closse et al., 2002), and Columbia Esterel Compiler (Edwards and

Zeng, 2007).

In order to validate the synchronous assumption in realistic applications of a

synchronous language, the tool TAXYS (Bertin et al., 2000; Closse et al., 2001)

has been developed. The main goal of TAXYS is to generate a formal model

that captures the temporal behaviour of a real-time application and its external

environment. The formal model is produced in a timed automata form (Alur

and Dill, 1994). Esterel is used as a development language for the application.

The KRONOS model checker (Daws et al., 1996) is used to check whether the

program satisfies its timing constraints. Although the tool is applied success-



1. Introduction and Overview 9

fully for some applications, for example (Bertin et al., 2001) and (Tripakis and

Yovine, 2001), the approach is limited to a single-task implementation of a syn-

chronous real-time application running on a single-processor platform (Sifakis

et al., 2003).

Generating an executable code from a synchronous language for a distributed ar-

chitecture has been addressed in Next-TTA (Caspi et al., 2003) and COLA (Haberl

et al., 2008a,b). The approach of Next-TTA translates a high-level control de-

sign of Simulink (MathWorks, 2012) to a SCADE/Lustre program for valida-

tion purpose. Then the implementation is derived for TTA execution layer.

TTA (Time Triggered Architecture) (Kopetz, 1997) supports distributed im-

plementations based on a synchronous bus. The TTA conforms with a nota-

tion of global synchronisation and ideally matches the synchronous assumption.

Although the tool aims to benefit from the Lustre model-checker Lesar (Ra-

tel et al., 1991) to check whether the implementation satisfies its functional

and timing properties, the analysis is limited to uni-processor implementa-

tions (Caspi et al., 2003) because the tool Lesar assumes only this kind of

implementation when its input model is constructed. COLA (Kugele et al.,

2007) is a component language for design and development embedded systems.

The language has a formal semantics based upon synchronous dataflow. An ap-

proach is presented in (Haberl et al., 2008a) to translate models given in COLA

to C code. The approach employs a time division multiple access (TDMA) com-

munication schema (similar to TTA) to ensure the timely delivery of data in

order to retain the synchronous semantics of the COLA model (Haberl et al.,

2008a). Furthermore, although COLA is defined by a rigorous formal semantics

in which automated tools, such as model-checking, can be applied to check its

correctness, such a verification tool does not yet exist for the language, and it

remains for future work (Haberl et al., 2008a).

Although time-triggered systems obey well the synchronous approach, main-
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taining a global clock for both computation and communication is difficult to

implement, and the overhead of the implementation is often large when adopting

the fully synchronous approach (Potop-Butucaru and Caillaud, 2007). Asyn-

chronous communication schemes (e.g. CAN (Bosch, 1991)) which are now

widely used in industries, allow a number of computing nodes operating at dif-

ferent rates to be connected via a communication bus with no need to a global

clock for synchronisation. Globally Asynchronous Locally Synchronous (GALS)

is an architecture emerged to combine the two approaches. In this architecture,

synchronous components are connected via an asynchronous communication

media. The requirement for a global time is removed when a synchronous spec-

ification is implemented within the GALS model (Potop-Butucaru and Caillaud,

2007).

1.5.2 Scheduling Analysis Approach

This approach has been exhaustively studied in the real-time systems litera-

ture. A real-time application is considered to be composed of a set of tasks

that interact. A task is a piece of code which is executed in response to an

event from the environment. Tasks may share resources such as processor,

memory, and communication media. Timing requirements of a system design

are represented in a form of periods, deadlines and priorities to the tasks. The

main role of the scheduling approach is to provide an analysis used to confirm

that the timing constraints of the system are satisfied. There are two main

scheduling approaches: the cyclic executive approach and the priority-based

approach (Burns and Wellings, 2001). In the former approach, each task has

cyclic access to the processor in a predefined order. In the latter approach,

each task is assigned a unique priority according to some policy (e.g., RMA

or EDF (Burns and Wellings, 2001)). When a higher priority task is released

during the execution of a lower priority one, then the processor will imme-
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diately switch to execute the instructions of the higher priority task. This

is called a preemptive schema. However, in the non-preemptive schema, the

lower priority task is allowed to complete its execution before switching to the

higher priority task. A simple schedulability analysis is given by Liu and Lay-

land (Liu and Layland, 1973) in order to test if a set of fixed-priority periodic

tasks meet their deadlines. An enhanced analysis is proposed in (Joseph and

Pandya, 1986) which calculates the worst-case response time of each task, and

then compares it with the deadline of the task. Although the main focus of

traditional analysis is on the worst-case behaviour in order to ensure that tasks

meets their deadlines, the best-case response time analysis has been addressed

in (Redell and Sanfridson, 2002) and (Bril et al., 2004). One such application

of this analysis is to estimate the maximum variation in a task response time.

The scheduling analysis has been extended to allow distributed systems per-

formance evaluation where end-to-end response times are computed for tasks

running in a distributed environment and communicate via a real-time commu-

nication protocol. For example, the work of Tindell et al (Tindell and Hansson,

1995), Henderson et al (Henderson et al., 1998), and Redell et al (Redell et al.,

2004).

The scheduling approach in general assumes very restrictive assumptions on

the system implementation in order to analysis the behaviour of the system.

For example, all tasks are periodic, tasks have deadlines equal to their periods,

and tasks are independent. Additionally, special purpose resources such as

a real-time operating system (RTOS) (e.g., (WindRiver, 1999)) and protocols

(e.g., (Sha et al., 1990)), are often required to implement preemptive scheduling

policies and to avoid deadlocks. Moreover, the approach does not allow system

level properties (e.g. safety and functionality) to be verified, and only deals

with implementation level properties (tasks meet their deadlines).
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1.5.3 Other Approaches

Process algebra languages have been widely used in the specification and design

telecommunication protocols and distributed systems. A system is represented

as a process, or composed of other smaller processes. Their formal semantics

makes them amenable to formal verification (e.g. (Garavel and Sifakis, 1990))

as well as simulation. Their formalism has been extended to allow modelling

real-time aspects of a system, for instance: ET-LOTOS (Léonard and Leduc,

1997), ATP (Nicollin and Sifakis, 1994). Despite their expressiveness and clean

formalism, and the availability of analysing tools: simulators, model-checkers,

and theorem provers, their applications have been limited to support only the

specification and verification (e.g. TRAIAN Compiler of LOTOS NT (Garavel

et al., 2002)) rather than implementation of a system (and distributed system

in particular). Moreover, they can not deal with a broadcast communication

mechanism such as CAN (Bosch, 1991; ISO-CAN, 1993) that is most frequently

employed in the implementation of distributed embedded systems. However,

generating an implementation code from a process algebra language for uni-

processor platform has been addressed in the work of Bradly et al (Bradley et al.,

1994c,b,a). A real-time system can be represented in the timed process algebra,

AORTA (Bradley, 1995). The language is designed to consider both verification

and implementation of a system. An implementation C code is generated for

each process of an AORTA design from the same graph that is used in the

generation of an analytical model (Bradley, 1995). The AORTA system can

be validated via simulation and formally verified by model-checking (Bradley

et al., 1996).

PTIDES is a programming model for distributed real-time systems (Zhao et al.,

2007; Lee et al., 2009). It is based on a discrete-event model which has been used

for simulations. In this model, a network of components reacts to input events

in time-stamp order and produces output events in time-stamp order. PTIDES
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leverages network time synchronisation with bounded error and bounded la-

tency in order to use the model to produce efficient distributed implementa-

tions. However, the approach, similarly to traditional scheduling analysis, is

limited to schedulability analysis which does not provide system level analysis,

and uses a special purpose architecture (PRET architecture (Liu et al., 2010))

to achieve timing predictability.

Additionally, other formalisms such as Time Petri Nets (Berthomieu and Diaz,

1991), Timed Automata (Alur and Dill, 1994), and State Machines have been

applied in the development of real-time embedded systems, and implemented in

the tools: Roméo (Lime et al., 2009), Times (Amnell et al., 2003) and IAR visu-

alSTATE (IAR-Systems, 2012) respectively. However, in addition to their less

expressiveness (i.e. low-level representation format) compared to the process

algebra formalism, their usages has not yet considered distributed implemen-

tations. Roméo facilitates automated verification via model-checking for the

time petri net model of real-time system. The tool does not support the im-

plementation of such systems. Other works however consider this problem,

i.e. producing an implementation program (e.g. RT Java) from a Petri net

model for a real-time system, see for example (Moreno et al., 2006). In Times,

an approach to modelling and implementing embedded systems that combines

both schedulability analysis and formal verification is presented in (Norstrom

et al., 1999). The idea is to extend the standard time automata (Alur and

Dill, 1994) with real-time tasks to allow a more relaxed task model (e.g. non-

periodic tasks) to be analysed using a formal verification tool such as UPPAAL

model checker (Behrmann et al., 2004). The approach is implemented in the

tool, Times (Amnell et al., 2003). Although an executable code can be gen-

erated from the extended timed automata model, the approach assumes that

the generated code is executed on a uni-processor platform that guarantees

the synchronous hypothesis (Amnell et al., 2003). A state machine-based ap-

proach (such as (Samek, 2008) and (IAR-Systems, 2012)) generates event-driven
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code for uni-processor embedded systems. The tool IAR visualSTATE (IAR-

Systems, 2012) can verify a fixed list of untimed properties such as the absence

of deadlocks and unreachable states. More complex properties can be verified

by constructing another state machine, that expresses the desired property,

parallel to the system design.

1.6 The Dissertation

1.6.1 Justification

The work presented in this thesis addresses the problem of generating executable

code for CAN-based distributed embedded systems in a way that guarantees

that both functional and timing properties expressed in a high-level formal

language are satisfied. The thesis proposes a novel approach in which system

behaviour is specified in CANDLE, a high-level language which is given a formal

semantics by translation to bCANDLE, an asynchronous process calculus. A

bCANDLE system is translated automatically, via a common intermediate net

representation, both into executable C code and into a timed automaton model

that can be used in the formal verification of a wide range of functional and

temporal properties.

1.6.2 Structure and Contributions

Chapter 2 introduces our code and model generation approach, and provides

all the essential details including models, languages, and formal notations. The

chapter presents no new results but provides the necessary information on which

the rest of the thesis is built.

Chapter 3 is concerned with the implementation of the formal language. The

executable code is derived from the language via an intermediate model. An
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efficient C representation of the intermediate model is presented. The chapter

presents our implementation model which defines certain assumptions about

system components. A single broadcast asynchronous communication mecha-

nism is adopted and implemented. The communication mechanism is an ab-

straction of the CAN. All communications occur through this mechanism and

never through the use of shared variables. This single notion, employed both

for external and local communication between system components, provides

flexibility to the system developer to freely distribute system components on a

number of nodes, and simplifies the process of generating a formal model of the

system. An AADL-like language is adopted to describe the system architecture.

The Architecture Analysis and Design Language (AADL) (Feiler et al., 2006)

is an industry standard language to specify a system architecture. The sys-

tem description provides details to the code generator about processes, nodes,

process-to-node allocation, scheduling algorithm, tick rate, and communication

details, including the IDs of messages and network transmission rate.

Chapter 4 presents a rigorous argument that, for any system expressed in the

high-level language, its formal model is a conservative approximation of the

executable C code. This allows the system developer to conclude that if a

model satisfies any universally quantified property, then it is guaranteed that

the implementation will also satisfy the same property.

Chapter 5 proposes a number of methods that ensure an atomic update of

data which is required to implement the semantics of the language correctly.

The methods are evaluated against some criteria we identify depending on the

worst-case behaviour analysis of the methods in order to select a suitable one

for our code generation approach.

Chapter 6 assesses the applicability and performance of the approach by imple-

menting four case studies. The performance is measured in terms of the com-

putational effort required to generate an executable code and a formal model
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for a given design, and the computational resources including memory (RAM

and ROM) and CPU load required to execute the examples on the target. Per-

formance results are compared with the results obtained from an alternative

method employing a widely-used real-time kernel that implements the same

case studies. The chapter also assesses the tractability of the formal models

which are generated from the case studies. A number of functional and tempo-

ral properties are verified using an off-the-shelf model checker.

Chapter 7 summarises the work, discusses the limitations of the work, and

suggests possible directions for future research.



2. METHODS, TECHNIQUES AND

TOOLS

This chapter introduces our code and model generation approach, and provides

all the essential details including models, languages, and formal notations, on

which the rest of the thesis is built.

2.1 Overview of the Approach

An overview of our code and model generation approach is depicted in Fig. 2.1.

The primary component in our approach is bCANDLE (Kendall, 2001b), a

timed process calculus intended for modelling CAN-based embedded systems.

The language features a value-passing, broadcast communication primitive,

message priorities and an explicit time construct. The motivation to use bCAN-

DLE is that it enables system developers to construct system models that are

amenable to formal analysis by model-checking. There is a well-defined trans-

lation from bCANDLE to timed automata (TA) models upon which standard

model checkers can be used. The existing translator is built upon a low-level

intermediate net representation (Kendall, 2001b). The idea of the thesis is to

make use of the net representation developed by the TA translator to gener-

ate executable code. The approach of generating executable code from a net

is discussed in Chapter 3. The main reason for employing the net is that it

will be easier to establish a connection between the behaviour of the model

and the executable code since they are both produced from the same source.
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This will be the subject of Chapter 4 of the thesis. The executable code is

generated in the C language. The model is generated in the form of a timed

automaton so an off-the-shelf model-checker (such as UPPAAL) can be used to

verify system properties. In order to be able to verify temporal properties of the

system, time bounds of the execution of system components can be predicted

using static analysis tools such as the Bound-T (Tidorum, 2012) and aiT (Ab-

sint, 2012). Although bCANDLE is a simple language, it is likely to be too

low level for routine use in system description. Therefore, CANDLE (Kendall,

2001b) was introduced for the purpose of a system design. The CANDLE is a

high-level programming language dedicated for CAN-based embedded systems.

The language has a formal semantics defined by translation into bCANDLE. In

summary, the system is expected to be designed in CANDLE. Then, a bCAN-

DLE model is produced from the CANDLE design of the system. Next, a net

representation is derived from the bCANDLE model. Finally, an executable C

code of the system is generated from the net.

The rest of the chapter is organised as follows. Section 2.2 presents the main

assumptions made and constraints on systems for which the code and model

generation approach is proposed. Section 2.3 introduces the bCANDLE mod-

elling language and its formal semantics. Section 2.4 introduces the intermedi-

ate representation of bCANDLE, the net and its formal semantics. Section 2.5

outlines the translation rules of bCANDLE into the net. Section 2.6 intro-

duces the high-level language of bCANDLE, CANDLE. Section 2.7 outlines the

translation rules of CANDLE into bCANDLE. Finally, section 2.8 concludes

the chapter.

2.2 System Characteristics

The proposed code and model generation approach targets a class of embedded

systems (Fig. 2.2) characterised by a number of properties:
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System Description
in CANDLE

Abstract Model
in bCANDLE

Net Intermediate
Model

Time Automata
Model

Execution Times
Executable Code

in C

Target Machine
Uppaal Model

Checker

Fig. 2.1: Overview of Code and Model Generation Approach.
Work done as part of this thesis is shown in bold.

1. A system comprises a number of software processes that are statically

distributed to computing nodes.

2. A computing node consists of a processor which has access to a local

memory, a programmable timer, zero or more communication controllers,

and zero or more sensors and actuators to interact with the physical world.

3. A restricted scheduling approach (e.g., cooperative or round-robin, dis-

cussed in section 3.2.3) is applied when two or more processes are allo-

cated to a single computing node in order to allow off-line calculation of

computation response times.

4. Processes communicate via asynchronous broadcast channels which im-

plement an abstraction of the CAN protocol in which the send operation

is non-blocking and the receive operation is blocking. The abstraction of

the CAN is formed by the following assumptions:
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Fig. 2.2: Distributed Embedded System (Kendall, 2001b).

• communication channels operate without errors,

• the details of bit-level data transmission are abstracted so that mes-

sages are assumed to be transmitted atomically,

• the CAN message ID field is 11 bits in length.

5. Processes that reside in the same computing node are not allowed to share

memory and typically use (local) broadcast channels to communicate.

6. Shared access to I/O is not allowed, i.e. in the case of multi-tasking,

access to a sensor or actuator is limited to a single software process.

2.3 The bCANDLE Modelling Language

bCANDLE (Kendall et al., 1997, 1998b; Kendall, 2001b) is a timed process cal-

culus dedicated for modelling distributed, real-time embedded systems based on

the CAN network. The language features a value-passing, broadcast communi-
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cation primitive, message priorities and an explicit time construct. A bCAN-

DLE system comprises three components: a data model, a network model, and

a process model. It is defined formally by a tuple (P,N,D). In the following,

the definition and notations are presented for each component of bCANDLE

system.

2.3.1 Data Model

Let Var be a finite set of data variables. Each variable x ∈ Var takes its value

from some non-empty, finite set of values, type(x) ⊂ V , where V is the set of

data values. We assume that V contains at least the distinguished value ⊥,

where ⊥ /∈
⋃
x∈Var type(x), which is taken to be the “undefined” data value,

then:

• V aluation =̂ Var → V

• Operation =̂ V aluation↔ V aluation

• Predicate =̂ 2V aluation

Let Ω be a finite set of operation names, Γ be a finite set of predicate names, then

a data environment D over Var ,Ω and Γ is a tupleD = (type, operation, predicate, val)

where

• type : Var → 2V is a total function, giving for each variable x ∈ Var , a

non-empty, finite set of data values, type(x), ranged over by x;

• operation : Ω → Operation is a total function, giving for each operation

name ω ∈ Ω, an operation, operation(ω), which interprets it;

• predicate : Γ → Predicate is a total function, giving for each predicate

name γ ∈ Γ, a predicate, predicate(γ), which interprets it;
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• val : Var → V is a total function which, for each variable x ∈ Var , gives

the current valuation of x, where val(x) ∈ type(x) or val(x) = ⊥.

Let D = (type, operation, predicate, val) be a data environment. Let x, y ∈ Var

be data variables, and v ∈ V a data value, then the following notational con-

ventions are employed:

• D. type, D. operation, D. predicate andD.val denote type, operation, predicate

and val, respectively.

• D.x denotes the value val(x).

• D[x := v] denotes the data environmentD′ = (type, operation, predicate, val′)

where val′(x) = v and val′(y) = val(y) for all y 6≡ x (≡ denotes syntactic

identity and 6≡ its negation).

• D ω−→dD
′ abbreviates the condition (val, val′) ∈ operation(ω) ∧ D′ =

(type, operation, predicate, val′). The operation name ID is reserved for

the identity relation on valuations, i.e. it must be interpreted in any data

environment by the operation operation(ID) , {(val, val)|val ∈ Valuation}

• D |= γ abbreviates the condition val ∈ predicate(γ).

2.3.2 Network Model

The network model of bCANDLE is an abstraction of the CAN network which

consists of a number of broadcast channels. Each channel implements an ab-

straction of the CAN protocol. A message transmitted through a channel is

viewed as a pair consisting of a data value and an identifier. The data value

and the identifier corresponds to the data field and the arbitration field of the

CAN frame respectively. Transmission of a message is divided into three phases:

pre-acceptance, acceptance, and post-acceptance phase. The acceptance phase is

the interval during the transmission of a message when receiver nodes perform
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their acceptance test. The pre-acceptance phase extends from the beginning

of the transmission to the point of acceptance. The post-acceptance phase ex-

tends from the the point of acceptance to the point at which the channel next

becomes free. In practice, the location of the acceptance point may vary from

one type of CAN controller to another. For example, for some CAN controllers,

the acceptance point may occur on the leading edge of the ACK0 bit of the

CAN frame, see Fig 1.2. It is assumed that the time which passes during the

pre-acceptance and post-acceptance phases can be calculated for all messages.

This time is called transmission latency. The transmission latency of a mes-

sage gives the upper and lower bounds on the time which passes during the

pre-acceptance and post-acceptance phases of the message.

A channel is defined by the tuple (M,≺, δ, s, u) where:

• M ⊆ I × V is a set of messages. I is a set of message identifiers and V is

a set of data values.

• ≺: I ↔ I is a priority ordering of messages.

• δ : M → R∞ × R∞ × R∞ × R∞ is a transmission latency function. The

functions δlb, δub, δlB, δuB : M → R∞ give the lower and upper bounds on

the duration of the pre- and post-acceptance phases for the transmission

of a message. δlb (resp. δub, δlB, δuB) is abbreviated as lb (resp. ub, lB,

uB).

• s is a transmission status. The channel is either free or is transmitting

a message (pre-acceptance, acceptance or post-acceptance phase). The

notation shown in Table 2.1 denotes the transmission status.

• u is a message queue.

It is assumed that M , ≺ and δ are static components, they are defined at the

initialisation of a system and are unchanged after that. By contrast, s and u are
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Notation Transmission Status

↓ FREE, no message is in transmission.
t1,t2
 m pre-acceptance phase of transmission of messagem with bounds

t1,t2 on time to completion, 0 ≤ t1 ≤ lb , 0 ≤ t2 ≤ ub.

↑ m acceptance point in transmission of m.

m
t1,t2 post-acceptance phase of transmission of message m with

bounds t1,t2 on time to completion, 0 ≤ t1 ≤ lB , 0 ≤ t2 ≤ uB.

Tab. 2.1: Transmission Status Notation.

dynamic components which are used to model the current transmission status

and message queue as a system evolves.

The message queue modelled here represents a single shared queue for a whole

network of nodes that are communicating using the same channel. It is assumed

that a transmitting node only attempts to transmit its highest priority message.

Additionally, a node that has a number of pending messages always attempts

to transmit the highest priority message as soon as the channel becomes free.

This implies that the channel can not become free between the transmission of

messages if there are pending messages. It means that the CAN controller will

arbitrate for the bus immediately after sending the previous message, and will

only release the bus in case of lost arbitration. This is important to ensure that

the transmission of a pending message is not deferred by beginning transmission

of a lower priority message. Each CAN controller must have a suitable buffer

management mechanism to respect these assumptions. This ideal behaviour of

CAN was identified by Tindell et al (Tindell and Burns, 1994; Tindell et al.,

1994) for scheduling analysis of CAN network. If all nodes follow the same

protocol to transmit messages, then the internal queue of all nodes can be

viewed as one large queue for a whole network in which messages are placed in

priority order, assuming that each message is assigned a unique priority number

in a network.

A bCANDLE network is a set of channels in which each channel is given a

unique identifier. Let K be a set of channel identifiers, then a network N over
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K is an indexed set of channels which is expressed as follows:

N = ((M,≺, δ, s, u)k | k ∈ K)

Let c be a channel, then the notation N [k := c] denotes the network N ′, where

N ′k = c and N ′k′ = Nk′ for all k′ ∈ K \ {k}.

A channel c can act independently, by performing a discrete change in its trans-

mission status or its message queue, to become c′ which gives a new network

N ′ = N [k := c′]. Alternatively, the state of of the whole network may be af-

fected as time progresses. The relation N
λnt→n N

′ represents a change of state

from N to N ′ annotated with the label λnt which ranges over An ∪ R. An is a

set of network action labels used to annotate discrete state changes. Elements

of R are used to annotate state changes due to the passage of time.

Fig. 2.3 gives the network transition rules. The rules are expressed using the

structural operational semantics (SOS) (Plotkin, 2004; Nielson and Nielson,

1991) style. SOS is the predominant approach for giving a meaning to pro-

gramming and specification languages. It generates a labelled transition sys-

tem, whose states are the terms of the language, and whose transitions between

states are obtained inductively from a collection of transition rules of the form

premises
conclusion

. The validity of the premises of a transition rule, under a certain

substitution, implies the validity of the conclusion of this rule under the same

substitution (Aceto et al., 2001). The rules N.1, N.2, N.3 and N.4 give the

transition rules due to discrete state changes of a network, whereas the rule

N.5 gives the transition rule due to a time progress of a network. The function

tcp(N) denotes the maximum time progress allowed for N .
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N.1
Nk = (↓,m : u)

N
k m−−−→n N [k := (

lb,ub
 m,u)]

N.2
Nk = (

0,
 m,u)

N
k↑m−−→n N [k := (↑ m,u)]

N.3
Nk = (↑ m,u)

N
m k−−−→n N [k := (m

lB,uB
 , u)]

N.4
Nk = (

0,
 , u)

N
k↓−→n N [k := (↓, u)]

N.5
0 ≤ t ≤ tcp(N)

N
t→n N + t

Fig. 2.3: Network Transition Rules.

Example of network behaviour

Assume a network that consists of a single channel which can transmit messages

of type flow. The transmitted values of the flow sensor reading are abstracted,

where 0 represents a reading at the low level, and 1 represents a reading at the

high level. The network then can be defined as follows:

N = {k 7→ (M,≺, δ, ↓, 〈flow.1〉)}

Where I = {flow}, V = {0, 1} and M = I × V . As there is a single channel,

then K = {k}. The function δ gives the transmission latencies in µs, as follows:

flow.

δlb 86
δub 106
δlB 24
δuB 24

In the table, flow. could be flow.0 or flow.1. It is assumed that the message
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flow.1 has been already placed in the message queue; a possible trace of the

network behaviour is shown in Fig. 2.4. The trace starts from the initial state

(↓, 〈flow.1〉) in which the channel is free and the message is queued. Then,

the time behaviour of the network progresses following the two-phase model.

The network performs a discrete action first using one of the rules (N.1, N.2,

N.3, and N.4) and then a time elapses using the rule (N.5) until the channel

becomes free and the message queue becomes empty. After that, the network

may progress using time transitions.

(↓, 〈flow.1〉) k flow.1−→n (N.1)

(
86,106
 flow.1, 〈〉) 100−→n (N.5)

(
0,6
 flow.1, 〈〉) k↑flow.1−→n (N.2)

(↑ flow.1, 〈〉) 0−→n (N.5)

(↑ flow.1, 〈〉) flow.1 k−→n (N.3)

(flow.1
24,24
 , 〈〉) 24−→n (N.5)

(flow.1
0,0
 , 〈〉) k↓−→n (N.4)

(↓, 〈〉) 5−→n (N.5)

(↓, 〈〉) 20−→n (N.5)
...

Fig. 2.4: Example of network behaviour.

2.3.3 Process Model

bCANDLE uses a simple process-algebraic language to describe the behaviour

of processes. A process is either a primitive process or a composition of other

processes. There are four kinds of primitive processes in bCANDLE:

1. k!i.x – non-blocking send : it causes the message i.v to be queued instan-

taneously for transmission on channel k, where i is the id of the message

and v is the current value of x. Then it terminates immediately.

2. k?i.x – blocking receive: it idles until an i-message reaches its acceptance

point during transmission on channel k. Then it immediately assigns the
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data value of the message to the variable x and terminates.

3. [ω : t1, t2] – time-bounded computation: it terminates not earlier than

t1 , and not later than t2 , time units after beginning execution, and

it atomically transforms the data state at the instant of termination as

specified by the operation ω.

4. γ → P – evaluate guard : it idles until the data environment satisfies the

guard γ (which is a predicate on the data state), then it performs P .

These basic processes can be compounded using a small set of operators: se-

quential composition, choice, interrupt, parallel composition, and process re-

cursion, in order to construct a larger process:

• P ;Q (sequential composition) is a process that behaves as Q when P

terminates.

• P + Q (choice) is a process that can behave either like P or like Q de-

pending on which process can first perform an action.

• P [> Q (interrupt) it behaves as P until either Q performs an action or P

terminates.

• P |Q is the parallel composition of P and Q.

• recX.P is a recursive process which has repetitive behaviour, where X is

a process variable and P is a process term.

For details on the formal semantics of these process terms, one can refer to (Kendall,

2001b, p. 82).

2.3.4 Example of bCANDLE

The bCANDLE model of the flow regulator example presented in Chapter 1 is

shown in Fig 2.5. It consists of two processes: Flow and Valve. Flow models
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a process which periodically reads a flow sensor and broadcasts its value in a

flow message. Valve models a process which repeatedly waits to receive a flow

message, executes a control algorithm to calculate a new value for the valve

position, and instructs an actuator to move the valve to its new position. The

time bounds given to each computation represent the lower and the upper bound

on the time taken to execute the computation. For example, the execution time

of the software to read the flow sensor may take between 85 to 100 time units.

Flow | Valve

where

Flow = [ReadSensor:85,100];k!flow.x;idle

[>

[timer:10000,10250];Flow

Valve = k?flow.y;[AdjustValve:200,300]; Valve

network

/* pri lb ub lB uB */

k = (flow : 1, 86, 106, 24, 24)

data x, y

Fig. 2.5: Flow regulator in bCANDLE.

Channel k models a CAN bus which transmits messages of type flow with a

priority equals 1 and transmission latency of between 86 and 106 time units

from start of a transmission to an acceptance point, and a latency of between

24 and 24 time units from the acceptance point to bus idle respectively. In the

following we demonstrate how transmission latency function is calculated.

The CAN protocol employs a special technique, called bit stuffing. After every

5 consecutive transmitted bits of the same value, a stuff bit is inserted of the

opposite value. This ensures that there are sufficient transitions in the bit

stream to ensure that the nodes can remain synchronised. The equation of

(Davis et al., 2007) gives the maximum transmission time of a message Cm

containing n data bytes and including stuff bits:

Cm =

(
g + 8.n+ 13 +

⌊
g + 8.n− 1

4

⌋)
tbit (2.1)
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where g is 34 for the standard format or 54 for the extended format. tbit is

the transmission time of a single bit. The term

⌊
g + 8.n− 1

4

⌋
of equation 2.1

calculates the maximum number of stuff bits. The denominator of the fraction

is 4 because bit stuffing includes also the stuffed bits in the frame. It is assumed

for this particular example that the message acceptance point coincides with

the leading edge of bit ACK0, see Fig. 1.2. In practice, the location of the

acceptance point may vary from one type of CAN controller to another. In

a CAN packet with n data bytes, there are g + 8.n + 1 bits from SOF up

to, but not including, ACK0. Bit stuffing occurs from SOF up to, but not

including, DEL. Therefore, the greatest number of bits is:

⌊
g + 8.n− 1

4

⌋
which

are transmitted before the acceptance point. Therefore, the lower and upper

bound of time taken during the pre-acceptance phase can be calculated by

equation 2.2 and 2.3.

lb = (g + 8.n+ 1) tbit (2.2)

ub =

(
g + 8.n+ 1 +

⌊
g + 8.n− 1

4

⌋)
tbit (2.3)

The remaining bits from ACK0 up to Int do not include stuff bits and so they

equal 12 bits. Therefore, the lower and upper bound of time time taken during

the post-acceptance phase can be calculated by:

lB = uB = 12.tbit (2.4)

Notice that ub + uB = Cm is always true.

For example, in a standard CAN packet, supposing a CAN bus operating at

5 × 105bit/s, the transmission latency function δ(m) for a message m with 1

byte size of data (i.e, n = 1) is:
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• lb = (34 + 8 + 1) tbit = (43)5× 105 = 86µs

• ub =

(
34 + 8 + 1 +

⌊
34 + 8− 1

4

⌋)
tbit = (53)5× 105 = 106µs

• lB = uB = (12)5× 105 = 24µs

Consequently, the transmission latency function δ(m) = (86, 106, 24, 24) for the

channel k.

2.4 The Net: The intermediate model of

bCANDLE

The first stage in construction of a TA model from a bCANDLE model was per-

formed (in (Kendall, 2001b)) by translating the bCANDLE model into an in-

termediate net representation which is similar to a Petri net (Murata, 1989). A

similar approach was applied by Garavel in the translation of LOTOS (Garavel

and Sifakis, 1990), and by Yovine in the translation of ATP (Yovine, 1993). The

nets which are used in bCANDLE are similar to the extended nets of (Yovine,

1993). The aim of this work is to make use of the net representation developed

by the TA translator to generate an executable code. This will be discussed

in details in Chapter 3. In this section, we introduce the net and present its

formal semantics.

The net, as usual, consists of a set of places and a set of transitions. The

net is extended in two ways. First, each transition has an associated attribute

which is used to determine whether the transition is fireable or not in a given

system context, where a context consists of a network and data environment.

Second, a transition is associated with a set of places vulnerable to the firing

of the transition. When a transition fires, control is removed not only from the

places in its source set but also from all those places which are vulnerable to
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it. This extension allows a compact representation of the interrupt operator in

particular.

Fig. 2.6 shows the net representing the flow regulator example. Places of the

net are shown as circles and transitions as boxes. The shaded circles represent a

distinguished place, tick, modelling termination. A label inside a transition box

refers to the transition attribute. The standard flow relation is shown using

solid lines. The vulnerability relation is shown using dashed lines. A small

black circle in a place shows that the place is marked. For example, transition

2 has associated attribute [ReadSensor : 85, 100]. The places: 2, 3 and 1 are

vulnerable to the firing of transition 4. The places 2, 4 and 5 are initially

marked in the net.

idlek!flow.x[ReadSensor:85,100]

[timer:10000,10250]

12 3

4

0

5 6 [AdjustValve:200,300]k?flow.y

Fig. 2.6: Net of the flow regulator example.

2.4.1 Definitions and Notation

A net is defined formally as a tuple R = (W,Θ,W I) where:

• W is the set of places.

• Θ is the set of transitions.

• W I is the set of initial marked places.

A transition θ = (w,W V , α,W T ) ∈ Θ where:
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• w ∈W is the trigger of θ, denoted •θ.

• W V ⊆W is the set of places vulnerable to θ, denoted ◦θ.

• α is the attribute of θ, denoted αθ.

• W T ⊆W is the target set of θ, denoted θ•

A place w is a trigger of exactly one transition. Transition attributes are just

basic processes. The set Attribute is defined by the grammar:

α ::= β̂|〈γ〉|X

where α ∈ Attribute is a transition attribute. X ∈ χ is a process variable. 〈γ〉

denotes a transition attribute which consists of the predicate γ ∈ Γ. β̂ is a

clocked basic process term (k!i.x, k?i.x, or [ω : t1, t2]h). Timed automata use

clock variables to model passing the time. At the first step in the translation of

bCANDLE to timed automata, explicit clock variables are introduced into the

process terms and the network channels of the bCANDLE model. A computa-

tion, [ω : t1, t2], and its associated clock variable, h, are written as [ω : t1, t2]h,

and a process term, P , and network channel, N , when decorated with clock

variables, are written as P̂ and N̂ respectively. The set of bCANDLE systems

following clock allocation is written as b̂CAN . The set of clock variables is

represented by H and h ranges over H.

The net of the flow regulator example shown in Fig. 2.6 is then defined formally

as follows:

R = ({0, 1, 2, 3, 4, 5, 6} , {θ1, θ2, θ3, θ4, θ5, θ6} , {2, 4, 5})

where

θ1 = {1, {} , idle, {0}}
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θ2 = {2, {} , [ReadSensor : 85, 100], {3}}

θ3 = {3, {} , k!flow.x, {1}}

θ4 = {4, {2, 3, 1} , [timer : 10000, 10250], {2, 4}}

θ5 = {5, {} , k?flow.y, {6}}

θ6 = {6, {} , [AdjustV alve : 200, 300], {5}}

2.4.2 Behaviour

The behaviour semantics of a net is given as a transition system between states

consisting of a marking and a system context comprising a network and a data

environment. Given a net: R = (W,Θ,W I), a system can evolve from one

state (W1, N̂ ,D) to another state (W2, N̂
′, D′) as result of either a process

transition or a network transition where W1 ⊆ W is a marking of R, N̂ is

network context, and D is data context. In a process transition: for a trigger

w ∈W of a transition θ, if the context of N̂ and D satisfies conditions required

by the attribute α of θ, then new marking W2 is created from W1 by removing

w and vulnerable places to θ, and then including target places of θ. The new

context, N̂ ′, D′ is created according to the requirements of the attribute. In

the case of a network transition, the system can evolve to a new state if a

network component is modified, but marking and data environment remain

unchanged. The process transitions of (W1, N̂ ,D) are given by the rule R.1,

and the network transitions by the rule R.2.

R.1

w ∈W1 ∧ (w,W V , α,W T ) ∈ Θ ∧ fire(α, N̂ ,D, ψ, λ,H′, N̂ ′, D′)∧

W2 = W1 \ (w ∪W V ) ∪W T ∧ H = H′ ∪ clk(W T )

(W1, N̂ ,D)
ψ,λ,H−−−→R (W2, N̂

′, D′)
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R.2

N̂
ψ,λn,H−−−−→n N̂

′∧

∀k ∈ K, i ∈ I.(¬awaited(W,k, i) ∨ N̂k 6= (↑ i. , ) ∨ N̂k = N̂ ′k)

(W, N̂,D)
ψ,λn,H−−−−→R (W, N̂ ′, D)

The fire relation, as given in Fig. 2.7, simply determines the semantic rules for

the basic processes. λ is an action label, λn is a network action label, H is a set

of clocks, ψ is a clock constraint, K is a set of channel identifiers, and I is a set

of message identifiers. hu is a distinct clock variable used to model an urgent

transition (executed without delay). clk(W T ) denotes a set of clocks associated

with the set W T . awaited(W,k, i) holds iff, in the marking W , it is possible to

receive from channel k a message with identifier i. Formally,

awaited(W,k, i)=̂{w ∈W |αθw = k?i. } 6= ∅

F Snd
N̂k = (s, u) ∧ v = D.x

fire(k!i.x, N̂ ,D, tt, k!i.v, {hu}, N̂ [k := (s, u" i.v)], D)

F Rcv
N̂k = (↑ i.v, )

fire(k?i.x, N̂ ,D, tt, k?i.v, {hu}, N̂ ,D[x := v])

F Comp
D

ω−→d D
′ ∧ t1 ∈ N

fire([ω : t1, t2]h, N̂ ,D, h ≥ t1, ω, {hu}, N̂ ,D′)

F Gu
D |= γ

fire(〈γ〉, N̂ ,D, tt, γ, {hu}, N̂ ,D)

Fig. 2.7: Rules for fire.

We are interested only in the process transition when generating code because

both marking of the net and the data state can be changed. The network

transition can only modify the network state and we assume that the behaviour

defined by this rule is handled by the CAN controller. The following example

shows an example of a possible behaviour of a net.
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2.4.3 Example of Net Behaviour

In this example, we give a possible behaviour of the net of the flow regulator

example shown in Fig. 2.6. The following conventions are adopted:

• A system state is shown as a tuple (W, N̂,D).

• D is the initial data state where all variables are set to zero. D[var := val]

denotes a data state D′ which is the same as D except that the variable

var is associated with the value val in D′.

• The network component N̂ shows only the dynamic attributes of the single

channel k.

• Time delay is chosen arbitrarily from the allowable range of values.

• The transmitted values of the actual flow sensor reading are abstracted,

where 0 represents a reading in the low level, and 1 represents a reading

in the high level.

A possible behaviour of the net is illustrated in Fig. 2.8. The net trace starts

from the initial state ({2, 4, 5} , (↓, 〈〉), D) and evolves to a new state as result

of either the process transition rule R.1 or the network transition rule R.2.

2.5 The Translation of bCANDLE to Net

For a bCANDLE system (P̂ , N̂ ,D) ∈ b̂CAN , we briefly give in the following the

translation rules of constructing the net for P̂ , denoted N JP̂ K. We respectively

consider the basic terms, the guard γ → P̂ , the compound terms P̂1; P̂2, P̂1+P̂2,

P̂1[> P̂2, and P̂1|P̂2, the process variable, and the recursion operator. For more

details about the net construction from a bCANDLE system, one can refer

to (Kendall, 2001b, p. 112).
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({2, 4, 5} , (↓, 〈〉), D)
100−→ R.2

({2, 4, 5} , (↓, 〈〉), D)
ReadSensor−→ R.1

({3, 4, 5} , (↓, 〈〉), D[x := 1])
k!flow.1−→ R.1

({1, 4, 5} , (↓, 〈flow.1〉), D[x := 1])
k flow.1−→ R.2

({1, 4, 5} , (86,106
 flow.1, 〈〉), D[x := 1])

100−→ R.2

({1, 4, 5} , (0,6
 flow.1, 〈〉), D[x := 1])

k↑flow.1−→ R.2

({1, 4, 5} , (↑ flow.1, 〈〉), D[x := 1])
k?flow.1−→ R.1

({1, 4, 6} , (↑ flow.1, 〈〉), D[x := 1, y := 1])
flow.1 k−→ R.2

({1, 4, 6} , (flow.1 24,24
 , 〈〉), D[x := 1, y := 1])

24−→ R.2

({1, 4, 6} , (flow.1 0,0
 , 〈〉), D[x := 1, y := 1])

k↓−→ R.2

({1, 4, 6} , (↓, 〈〉), D[x := 1, y := 1])
200−→ R.2

({1, 4, 6} , (↓, 〈〉), D[x := 1, y := 1])
AdjustV alve−→ R.1

({1, 4, 5} , (↓, 〈〉), D[x := 1, y := 1])
10000−→ R.2

({1, 4, 5} , (↓, 〈〉), D[x := 1, y := 1])
timer−→ R.1

({2, 4, 5} , (↓, 〈〉), D[x := 1, y := 1]) −→
...

Fig. 2.8: Example of net behaviour.

Basic terms: Let β̂ be one of the clocked basic terms k!i.x, k?i.x or [ω : t1, t2]h,

then the net of β̂ is constructed as follows:

N Jβ̂K =̂ ({w}, {(w, {}, β̂, {tick})}, {w})

Guard: Let N JP̂ K = (W,Θ,W I), then the net of γ → P̂ is given by

N Jγ → P̂ K =̂ (W ∪ {w},Θ ∪ {(w, {}, 〈γ〉,W I)}, {w})

Sequential composition: Let (Wi,Θi,W
I
i ) = N JP̂iK, for i ∈ {1, 2}, be

disjoint nets. The net N JP̂1; P̂2K for the sequential composition P̂1; P̂2 is

given by

N JP̂1; P̂2K =̂ (W1 ∪W2,Θ
′
1 ∪Θ2,W

I
1 )
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where

Θ
′
1 =̂ {θ | θ ∈ Θ1 ∧ θ• 6= {tick}}

∪ {(•θ,◦ θ, αθ,W I
2 ) | θ ∈ Θ1 ∧ θ• = {tick}}

Choice: Let (Wi,Θi,W
I
i ) = N JP̂iK, for i ∈ {1, 2}, be disjoint nets. Then

N JP̂1 + P̂2K =̂ (W1 ∪W2,Θ,W
I
1 ∪W I

2 )

where

Θ =̂ {θ | θ ∈ Θ1 ∧• θ 6∈W I
1 }

∪ {(•θ,◦ θ ∪W I
2 , αθ, θ

•) | θ ∈ Θ1 ∧• θ ∈W I
1 }

∪ {θ | θ ∈ Θ2 ∧• θ 6∈W I
2 }

∪ {(•θ,◦ θ ∪W I
1 , αθ, θ

•) | θ ∈ Θ2 ∧• θ ∈W I
2 }

Interrupt: Let (Wi,Θi,W
I
i ) = N JP̂iK, for i ∈ {1, 2}, be disjoint nets. Then

N JP̂1[> P̂2K =̂ (W1 ∪W2,Θ,W
I
1 ∪W I

2 )

where

Θ =̂ {θ | θ ∈ Θ1 ∧ θ• 6= {tick}}

∪ {(•θ,◦ θ ∪W I
2 , αθ, θ

•) | θ ∈ Θ1 ∧ θ• = {tick}}

∪ {θ | θ ∈ Θ2 ∧• θ 6∈W I
2 }

∪ {(•θ,◦ θ ∪W1, αθ, θ
•) | θ ∈ Θ2 ∧• θ ∈W I

2 }

Parallel composition: Let (Wi,Θi,W
I
i ) = N JP̂iK, for i ∈ {1, 2}, be disjoint

nets. Then

N JP̂1|P̂2K =̂ (W1 ∪W2,Θ1 ∪Θ2,W
I
1 ∪W I

2 )
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Process variable: Let X be a process variable, then the net of X is defined:

N JXK=̂({w}, {(w, {}, X, {})}), {w})

where w 6= tick is a place.

Recursion operator: Let N JP̂ K = (W,Θ,W I), then the net of rec X.P̂ is

given by

N Jrec X.P̂ K=̂(W,Θ
′
,W I)

where

Θ
′
=̂ {θ | θ ∈ Θ ∧ αθ 6= X}

∪ {(•θ,◦ θ, αθ,W I) | θ ∈ Θ ∧ αθ = X}

2.6 The CANDLE Programming Language

bCANDLE is very low-level for system developers to be used to write a system

description. Therefore, CANDLE (Kendall, 2001b) was introduced for the pur-

pose of a system design. CANDLE (Kendall et al., 1998a; Kendall, 2001a,b) is

a high-level programming language intended for distributed embedded systems

based on the CAN network. The formal semantics of the language is defined

by translation into bCANDLE. A CANDLE program consists of a number of

processes which implement a system behaviour.

Fig 2.9 shows two CANDLE processes representing the flow regulator example.

The CANDLE which is used in this work is a simplified version of the origi-

nal one. More elaborated language is available in (Kendall, 2001b). The first

process implements the behaviour of the flow task. The second process imple-

ments the behaviour of the valve task. The actual definition of the data vari-

ables (fFlow and vFlow) and the operations (readSensor and adjustValve)

are assumed to be provided from an external language (e.g., C). The two pro-
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Flow | Valve

where

Flow =

every 10000 do

readSensor();

snd(k, FLOW, fFlow)

end every

Valve =

loop do

rcv(k, FLOW, vFlow);

adjustValve()

end loop

Fig. 2.9: Flow regulator in CANDLE.

cesses are composed together using the parallel operator (|). In addition to

primitive statements (e.g., snd, rcv, and procedure calls), the language fea-

tures constructs to control flow of a program, like any traditional programming

language, such as branching, loops, and exceptions handling. In the following,

we informally introduce the compound statements of the language.

Compound Statements

Case Statement

In the case statement, one of several statements is executed depending on the

evaluated value of an expression. The statement has the following general form:

case e

when v0 => s0

when v1 => s1

...

when vn => sn
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otherwise => s

end case

When the value of the expression e is evaluated, one of the corresponding state-

ment si will be executed when vi matches the return value of the expression. If

none of them are matched, the statement s is executed.

Select statement

The statement allows a choice between a number of statements to be executed

depending on the reception of a message or the elapse of a time. The select

statement has the following form:

select

when rcv(k1, i1.x1) => s1

when rcv(k2, i2.x2) => s2

...

when rcv(kn, in.xn) => sn

when timeout elapse(t) => s

end select

If the message ij is successfully received, then the statement sj is executed. If

more than one message is received, then the choice between which statement is

executed, is made non-deterministically. If no message is received before t time

units, then the statement s is executed. Additionally, CANDLE provides an

extended form of the statement as follows:

select

when rcv(k1, i1.x1) => s1

when rcv(k2, i2.x2) => s2

...
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when rcv(kn, in.xn) => sn

when elapse(t) => s

in

body

end select

The statement behaves similarly to the original one except that the body state-

ment is executing while waiting the message reception and the time expiry.

When a message is received or a time delay is expired, then the execution of

body is interrupted, and the execution of the corresponding statement is started.

Loop statement

The loop statement allows an expression to be executed repeatedly forever.

The statement has the following form:

loop do

s

end loop

where s is a statement.

Every statement

The every statement allows an expression to be executed periodically. The

statement has the following form:

every T do

s

end every

where s is a statement that runs periodically every T time units. The body of

this statement is initiated immediately.
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Trap and Exit statements

The trap is used to handle exceptions produced in a program block. The

statement has the following general form:

trap

when x1 => s1

when x2 => s2

...

when xn => sn

in

body

end trap

where xi is an exception identifier and si is a statement that acts as a handler

for the exception. The body of the trap begins executing. An exception can

be raised inside body using the exit statement, e.g.

exit xi

If an exception is trapped, the execution of body is interrupted and the associate

exception handler begins executing.

2.7 The Translation of CANDLE to bCANDLE

In this section, we briefly give the rules of translating the CANDLE statements

into bCANDLE. We consider the primitive statements first and the compound

statements after that. For more details about the construction of a bCANDLE

model from a CANDLE program, one can refer to (Kendall, 2001b, p. 164).

Null and Idle statements
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JnullK =̂ null

JidleK =̂ idle

Send and Receive statements

Jsnd(k, i.e)K =̂ k!i.x

Jrcv(k, i.e)K =̂ k?i.x;

Elapse statement

Jelapse(T )K =̂ [timer : T ]

Procedure Call

JP (e1, ..., en)K =̂ [ω : tlb, tub]

where P is the name of the procedure, ei is an expression that expresses

a parameter of P , and tlb (resp. tub) is the lower bound (resp. upper

bound) on the time required to execute the procedure and to evaluate its

parameters.

Case statement

Jcase e when v0=>s0 when v1=>s1 . . . when vn=>sn otherwise=>s end caseK =̂

[tlb, tub]; (γ0 → Js0K + γ1 → Js1K + . . . + γn → JsnK + γ → JsK)

where tlb (resp. tub) denotes the lower bound (resp. upper bound) on the

time required to complete the evaluation of e, γi is true iff the expression

e equals vi, and the guard γ is true when iff ¬(γ0 ∨ γ1 . . . ∨ γn).

Select statement

Jselect when g0=>s1 when g1=>s1 . . . when gn=>sn end selectK =̂

(β0; s0 + β1; s1 + . . .+βn; sn)
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where JgK = β, and β is either k?i.x or [timer : t].

The extended select statement is translated into bCANDLE as follows:

Jselect when g0=>s0 when g1=>s1 . . . when gn=>sn in s end select K =̂

(JsK [> (β0; s0 + β1; s1 + . . .+ βn; sn))

Loop statement

Jloop do s end loopK =̂ rec LOOP.JsK;LOOP

where LOOP is a new process variable.

Every statement

Jevery T do s end everyK =̂

Jloop do select when elapse T in s;idle end select end loopK

Trap and Exit statements

Jtrap when x0=>s0 when x1=>s1 . . . when xn=>sn in s end trapK =̂

(JsK[>(γ0 → Js0K + γ1 → Js1K + . . .+ γn → JsnK))

where the guard γi is the true when the exception xi is raised.

Jexit xK =̂ [exit x : tlb, tub]; idle

where exit x is an operation required to raise the exception x.

Sequential and Parallel Composition

Js1 ; s2K =̂ Js1K ; Js2K

Js1 | s2K =̂ Js1K | Js2K
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2.8 Summary

In this chapter, an overview of the code and model generation approach has been

provided. The main assumptions of the target distributed embedded systems

have been presented. The essential component of the approach which is the

bCANDLE modelling language has been introduced. The net, the intermediate

representation model at which our code and model generator are based, has

been defined. Because bCANDLE is very-low level for system developers, the

CANDLE high-level language is introduced. The translation rules of CANDLE

to bCANDLE and of bCANDLE to net have been outlined.



3. CANDLE CODE GENERATOR

3.1 Introduction

We aim in this chapter to demonstrate how an implementation is generated from

CANDLE. Our approach generates executable C code from the intermediate net

representation. The C language is chosen because is widely supported and has

available cross-compilers and static analysis tools. A program written in C is

not tied to a particular hardware platform and so it can be easily ported. There

are particular reasons for using the net to derive the implementation. First, the

net is a simple and compact representation which can yield a small size of

code suitable to a resource-constrained embedded system. Second, there are

some CANDLE constructs that lead to similar nets at translation. Therefore,

implementing the net can reduce the effort required to generate code for each

CANDLE statement. Third, the behaviour of the implementation should be

designed in a way that matches the semantics of CANDLE. This problem is

now scaled down to the problem of generating code which only needs to respect

the semantics of the net.

The chapter is organised as follows. Section 3.2 introduces our implementation

model to execute the net. Section 3.3 presents the representation of the net

in the C language. The implementation of CANDLE channels is explained

in section 3.4. A simple architecture language is presented in section 3.5. The

language is adopted to describe the system architecture including hardware and

software components. Finally, section 3.6 concludes the chapter.
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3.2 The Implementation Model

This section defines the implementation model to execute a net. This model

has been adopted in order to restrict the run-time behaviour of the system in

a way that allows off-line prediction for the execution time bounds of system

components. The system then can be analysed to verify that it conforms to a

specification and that sufficient run-time resources are available.

3.2.1 Features and Notation

Fig. 3.1 shows some features of the implementation model and introduces no-

tation used in its description. The implementation is clock-driven: a timer

provides a single interrupt source and a periodic interrupt to the implementa-

tion. The period of the interrupt is denoted by T . The interrupt is serviced by

an interrupt service routine (ISR) that takes Cs time units to execute on each

invocation. The time Cs comprises the maximum time to execute the ISR algo-

rithm, presented in section 3.3.2, and the maximum time to enter and leave the

ISR. If the actual execution time of the ISR is less than Cs for any invocation

then the completion of the ISR is deferred until Cs time units have elapsed.

This helps to reduce jitter in the system. The ISR is assumed to contain a

notional reaction instant, ρ, at which point all executable instantaneous actions

are deemed to be performed. It is not known when this instant will happen

exactly inside the ISR, but it could be at any time between the beginning and

the end of the ISR. This non-determinism in the model allows the omission of

many details in the model of the ISR, simplifying it and making model checking

more tractable.

A reaction may include the following ‘instantaneous’ actions:

• update active soft timers,

• transfer external CAN messages to intermediate ISR buffers,
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ρ ρ ρ

Cs χ

T

C1

e

Fig. 3.1: Features and notation of the implementation model.

• identify the termination of computations and fire associated transitions,

• transfer data to transmit buffers for any active k!i.x transitions and fire

the transitions,

• transfer message data, if available, from intermediate ISR buffers to pro-

cess variables for active k?i.x transitions and fire the transitions,

• perform local communications, if available, and fire transitions,

• evaluate active guards and fire the transitions of those that are satisfied,

• release the next computation.

Fig. 3.1 illustrates the release of a computation C1 in the reaction of the second

invocation of the ISR. Its actual execution time is denoted e. The time available

for process computation in any tick period is called a computation interval and

is denoted by χ. Notice that in any tick period, a node is executing the ISR,

executing some process computation or idling, i.e. T = Cs+ χ.

The period of the interrupt T and the ISR time Cs are not fixed; they may

vary from one computing node to another. The value of T is assumed to be

determined by the user at design time. Different values of T may have different

effects on the real system. For example, if T is selected to be short, then the

system becomes more responsive because events are noticed more quickly, but

more overhead occurs because the ISR is executed more often. On the other



3. CANDLE Code Generator 50

hand, when T is chosen to be long, the system will suffer less overhead, but it

becomes less responsive.

The proposed model has been influenced by other approaches, mainly the time-

triggered approach (Kopetz, 1997) and synchronous approach (Benveniste and

Berry, 1991). In the following, a comparison between our approach and other

approaches are discussed.

3.2.2 Comparison with Other Models

There are two distinctly different approaches to the design of real-time embed-

ded systems: event-triggered (ET) approach and time-triggered (TT) approach.

It is not the purpose of the thesis to compare the event-triggered and time-

triggered approaches. Many comparisons between the two approaches have

been published elsewhere, for example (Kopetz, 1991; Alber, 2004; Scarlett and

Brennan, 2006; Armengaud et al., 2009). The aim here is to justify the decision

behind adopting a time-triggered design to execute the net.

The majority of software architectures follow the ET paradigm. In the ET

approach, all system activities (computations and communications) are initi-

ated whenever a significant change in the environment (event) occurs, such as

a time tick, a button press, or arrival of a message. The ET approach is char-

acterised by flexibility and imposes fewer design constraints compared to the

TT approach. It requires fewer assumptions such as in constructing the system

architecture (Armengaud et al., 2009). Adding additional components to the

system does not require changes in the other system components. However, the

ET architecture uses the notation of an interrupt to observe the occurrence of

the environment events. Each event can be associated with an interrupt that

forces the system to react to the event by executing an appropriate compu-

tation (task). Because it is not known pre-runtime when the interrupts will

happen, it becomes difficult to calculate the worst-case execution times of the



3. CANDLE Code Generator 51

systems components off-line which are required to construct a model of the sys-

tem. Therefore, unless events are periodic or sporadic, the temporal behaviour

of the ET system becomes difficult to predict. Although there are some tech-

niques such as stopwatches (Cassez and Larsen, 2000) that does not require

pre-runtime calculation of worst-case execution times, using stopwatches may

make some verifications undecidable (Brihaye et al., 2006; Cassez and Larsen,

2000; Henzinger et al., 1995). Additionally, the architecture requires special

mechanisms (e.g., semaphore and mutex) to resolve data access sharing, and

inter-task communication and synchronisation. These mechanisms are resource

demanding and can make timing analysis of the system behaviour even more

complex.

In the TT approach, all system activities are initiated at pre-defined points in

time (Kopetz, 1997). The approach imposes a restriction on using interrupts in

order to preserve the predictability of the system behaviour. There is usually

one source of interrupt which is the tick timer (Kopetz, 1995). The system

periodically observes the state of the environment and triggers an appropriate

action according to a predefined plan. TT architecture employs a static or pre-

defined scheduler in which the schedule of all software components is computed

off-line (Xu and Parnas, 2000). Since the main characteristics of the components

(periods, worst-case computation times, and deadlines) are known in advance,

it is possible to verify that all timing constraints will be satisfied. Using such

a scheduler strongly facilitates timing analysis of the system (Ebner, 1998).

Moreover, the static scheduler provides pre-run time resolving of the timing

and data dependencies and so avoiding using resource demanding mechanisms

such as semaphores. However, building the TT schedule requires a number of

parameters of the system components to be determined during the design time,

such as the tick interval and the task order and offset. The problem is that de-

termining these parameters is not trivial and characterised as NP-hard (Gendy

and Pont, 2008). Moreover, slight changes to these parameters may lead to a
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significant change in the reconstruction of the schedule. This problem is called

the “fragility” of the TT design (Pont, 2008a). In contrast, our approach does

not impose restricted assumptions (e.g, periodicity) on the system components.

Once the bounds on the execution times are calculated, they are exported to the

model generator. An abstract model is produced from the system description.

Then the system behaviour can be analysed using a model-checking tool.

Additionally, the proposed approach has been influenced by the synchronous

approach (Benveniste and Berry, 1991). The synchronous approach adopts a

very conservative assumption called the synchrony hypothesis about the system

behaviour. It assumes that computations and communications of the system

components take zero time to execute. The system reacts to its environment

instantaneously. At each reaction, it reads its inputs, performs computation,

and then generates its outputs. The system components communicate through

broadcast channels. During one reaction the transmitted data becomes available

instantly to each receiver component. The broadcast communication mecha-

nism behaves similarly to wires in a synchronous digital circuit (Benveniste

et al., 2003). With the fully synchronous approach it is not always feasible to

build systems because it is often that systems are implemented on a distributed

architecture in which a set of computing nodes communicate by asynchronous

means of communication. For that reason, the globally asynchronous locally

synchronous (GALS) approach (Berry et al., 1993) has been proposed to unify

the capabilities of the synchronous and asynchronous approaches. The sys-

tem can be seen in this context as a set of synchronous components that are

connected by asynchronous communication channels. In contrast, our approach

adopts more flexible and realistic assumptions about the system behaviour than

the the synchronous approach. Computations take time to execute. The ex-

ecution times of the computations can be bounded by adopting a restrictive

software architecture similar to TT architecture. The system components com-

municate through broadcast channels which abstract the CAN protocol. If the
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components are allocated in the same computing node, they communicate via

local channels in which the transmission time is assumed to occur instantly. The

concept of local channels is discussed in section 3.4.2. When the components

are distributed, the transmission time is not instant. Moreover, the GALS ap-

proach employs two different semantics models to express the system behaviour,

which is locally synchronous and deterministic, and globally asynchronous and

non-deterministic. This however makes the task of checking whether the im-

plementation respects the semantics of its model so hard. In contrast, our

approach employs a single semantics model, which is fully asynchronous and

non-deterministic.

3.2.3 Scheduling

Many nodes in a CAN-based system may require only an elementary software

architecture in which a single process repeatedly performs a simple function,

e.g. a sensor node that samples its environment, normalises the reading given

by its ADC and broadcasts the result on the CAN bus. However, some nodes

may require a more complicated architecture in which the CPU is shared by

computations released by multiple processes. A key requirement for the appli-

cation of our method is the capability to perform offline calculation of best-case

and worst-case bounds on the total time required to complete all computa-

tions, including time when a computation is ready to run but is not allocated

to the CPU. The flexibility of the computation model that we allow means

that, in general, it is not possible to adopt typical scheduling strategies such

as fixed-priority pre-emptive or earliest-deadline-first in our implementations,

since the periodicity requirements for the application of response-time anal-

ysis techniques applicable to these strategies may not be satisfied. Instead,

we consider other standard strategies including round-robin and cooperative

scheduling (Liu, 2000; Pont, 2008b) in which an offline analysis is possible.
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These standard strategies are reviewed in the reminder of this section.

1. Pure round-robin scheduling is a simple scheduling approach in which

the processes are ordered and each process is allocated a single compu-

tation interval (‘slot’) in which to execute (part of) a computation. The

next slot is allocated to the next process in the ordering and so on, until

all processes have had a chance to use a slot. This completes a round of

the schedule. If there are n processes in the round-robin set, then every

round is of length n. The schedule is simply the repetition of rounds

executed in this fashion. This approach is reasonable for long running

computations (i.e. computations that needs more than one computation

interval to complete). However, if the set of processes allocated to the

same node contains short computations (i.e. computations that can com-

plete in a single computation interval), then the round-robin approach

could be inefficient. For example, Fig. 3.2 shows three short computa-

tions (C1, C2, and C3) scheduled using the simple round-robin approach.

The computations become ready to run in the first tick. Because they

are dispatched in order, C3 requires three ticks (one round) to complete,

even though it is a short computation.

C1 C2 C3

t

T

e3

Fig. 3.2: Simple round-robin scheduling of short computations.

2. Cooperative scheduling may be adopted when the set of processes

allocated to a node contains computations that are short enough to fit

together in a single computation interval. They can be scheduled co-

operatively, i.e. in any computation interval, each process with a ready

computation runs to completion and then relinquishes the CPU to allow
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execution of the next ready computation, if there is one (Pont, 2008b).

When all ready computations have been completed, the idle process runs

until the next timer interrupts. Fig 3.3 shows three short computations

scheduled cooperatively. Now, because C3 has a chance to run in the

same computation interval as C1 and C2, the computation will complete

in one tick time.

C1 C2 C3

t

T

e3

Fig. 3.3: Cooperative scheduling of short computations.

3. Weighted round-robin scheduling is a modification of the simple

round-robin approach in which each process is assigned a weight. The

weight of a process determines the number of consecutive slots that are

allocated to it in every round. If the round-robin set comprises processes

P1, . . . , Pn and each process Pi is assigned a weight si then the number

of slots in every round is
∑n

i=1 si. For example, Fig. 3.4 and Fig. 3.5

show two computations C1 and C2 scheduled using the simple and the

weighted round-robin approach, respectively. By using the simple round-

robin method, although C1 completes within one tick time, C2 will require

4 ticks (two rounds) to complete, see Fig. 3.4. However, in the modified

round-robin method, we could assign C1 weight 1 and C2 weight 2, then

the computation C2 will complete within 3 ticks (one round), see Fig. 3.5.

C2

t

T

C1 C2

e2

Fig. 3.4: Pure round-robin scheduling.
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C2

t

C1

e2

Fig. 3.5: Weighted round-robin scheduling.

4. Hybrid scheduling A hybrid scheduling algorithm combines cooperative

scheduling and weighted round-robin scheduling. The set of processes,

P , is divided into two disjoint subsets, Pco and Prr, of cooperatively-

scheduled and round-robin processes, respectively. The available compu-

tation time χ in a tick period is divided into a time interval, χco, for

cooperatively-scheduled processes and a time interval, χrr, for round-

robin processes. The processes in Pco are scheduled using cooperative

scheduling during χco and the processes in Prr are scheduled using weighted

round-robin scheduling during χrr. The actual values for χco and χrr can

be chosen freely by the system developer, as long as χco + χrr = χ. Hy-

brid scheduling subsumes both cooperative and round-robin scheduling:

if Pco = P (and χco = χ) then we have pure cooperative scheduling;

and if Prr = P (and χrr = χ) then we have pure weighted round-robin

scheduling. Fig.3.6 shows an example of the hybrid scheduling of three

computations. The computation C1 and C2 are scheduled cooperatively,

whereas the computation C3 is scheduled using the weighted round robin.

t

C1C2 C3

T

χco χrr

Fig. 3.6: Example of hybrid scheduling.

Four static scheduling approaches have been proposed. For the purpose of this

study, we implemented only the pure round-robin and the cooperative sched-

uler. The choice between using one of them is performed offline by the system
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developer. For example, if a process has a computation that updates a slow de-

vice, then it should not be scheduled cooperatively with other processes because

this kind of computation is considerably slower than that which illuminates a

LED for example. A general analysis of the response times of computations un-

der these scheduling policies is presented in section 4.2.4. The implementation

of the other methods will be considered in future work.

3.3 Representation of the Net

Embedded systems have constrained resources (CPU and memory) so an ef-

ficient executable code in terms of space and performance is a common re-

quirement. In this section, we demonstrate how a net is implemented in C.

Efficient data structures are proposed to store a net in memory. Attention has

been paid to splitting the code between read-only memory (ROM) and random-

access memory (RAM). Storing part of the code in ROM prevents unexpected

changes. For example, a stack may overwrite the program data as it shares

RAM area with the program. Moreover, minimising the required area of RAM

reduces the total cost of the embedded system because RAM is more expensive

than ROM storage chips. In the following, the data structures used to represent

the net are presented in section 3.3.1. The pseudo code the ISR that updates

the net state is presented in section 3.3.2.

3.3.1 Data Representation

The main architecture of the net is described using a UML class diagram de-

picted in Fig. 3.7. In this figure, the class Net consists of places, marked places

and a number of transitions. A transition is represented by the class Transition

which consists of trigger, target places, vulnerable places and an attribute.

The attribute can be one of the simple primitives: computation, send, receive,
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or guard. Therefore, the attribute is defined as an abstract class represented

by Attribute and each primitive is defined as a sub-class, Computation, Send,

Receive, or Guard respectively. A computation can be a normal computation

(that is executed outside the ISR and updates the data state) represented by

the sub-class Compt, an idle computation represented by the sub-class Idle,

a delay (timer) represented by the sub-class Delay, or an exit computation

(that raises an exception) represented by the sub-class Exit. We differentiate

between these types of computation because each one has a different implemen-

tation. A guard can arise in three ways: as a result of a function call in the

case statement, a value of a variable in the case statement, or an exception

handled in the trap-exit statement. Each type of guard is defined by the sub-

classes GuardFun, GuardV ar, and GuardExp respectively because they are

implemented in different ways.

AttributeGuard

-guard

Receive

-channel
-message ID
-variable

Send

-channel
-message ID
-variable

Computation

-operation

Transition

-trigger
-target Places
-vulnerable Places

Net

-places
-marked Places

1

1

1 1..n

Delay

Exit
GuardVar

GuardFun

GuardExp Compt

Idle

Fig. 3.7: Net architecture in UML.

In the following, we demonstrate how each element of the net is implemented.
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First, we show the representation of the marked place, target places and vul-

nerable places. Next, the structure of the transition and the net is presented.

After that, we illustrate the representation of the attribute. Then, we show

how the data of the net is split between ROM and RAM. Finally, we give an

example.

Places of the Net

The marked places, the target places and the vulnerable places of a net are

represented by using bit-set data structures. A bit-set is defined as an array of

words. A word is a platform dependent and could equal 8, 16, or 32 bits. There

is a 1 or 0 corresponding to each element, specifying whether it is a member

of the set or not. Bit-sets provide a more space efficient solution than normal

arrays. Additionally, the C language features bit operations which can facilitate

straightforward implementation of the set operations such as intersection, union

and complement. These operations are needed to implement update marking

of the net. The number of words needed to specify the size of the bit-set is

expressed by N PLACE WORDS. The number of words of a 32-bit platform (for

example) can be obtained from the total number of the net places N PLACES

using Equation 3.1.

N PLACE WORDS =

⌈
N PLACES

32

⌉
(3.1)

Transition and Net Structure

A transition is represented as an ordinary C structure containing target places,

vulnerable places and an attribute. The net is defined as an array of this

structure. There is only one unique trigger (a number of a place) for every

transition, therefore an index of a particular transition in the array expresses

the trigger of the transition. Each transition must have a storage area for



3. CANDLE Code Generator 60

an attribute. The Attribute is represented using three fields in the transition

structure: type, index, and attribute. Fig. 3.8 shows the transition structure.

index

attribute
type

vulnerable

target

Fig. 3.8: Transition Structure.

Attribute Representation

The type ∈ AttributeType indicates the type of an attribute. The set of

attribute types is defined by:

AttributeType =̂ {IDLE, COMPT, DELAY, EXIT, GFUN, GVAR, GEXP, SEND, RECV},

where the elements of the set represent the sub-classes Idle, Compt, Delay,

Exit, GuardFun, GuardV ar, GuardExp, Send, and Receive, respectively.

The index and attribute field are defined as integers and used in a variety

of ways to store the details of different attributes. This is discussed in the

following.

Computation When the attribute type is computation, there are three ways

to deal with the attribute. First, if the computation is IDLE or COMPT, the

index field of the transition refers to a particular block in a net control

block (NCB) table. Each net has an NCB which represents the state of

the net during the execution of the system. Primarily, the NCB deals

with the case at which the net is currently executing a computation and

so it indicates the status of the computation:

1. it is currently executing but not completed,

2. it is completed,

3. it is not currently executing.
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The NCB also stores the result when the computation is a function. The

attribute field of the transition contains the memory address of the C

routine that implements the computation. Second, if the computation is

DELAY, then the index field refers to a particular timer in a timer table.

The timer table consists of a number of soft timers, and each timer is

allocated to a delay transition. These timers are updated by the ISR in

order to track the elapsed time for active (marked) delay transitions. The

attribute field is used to store the number of ticks to delay. Third, if

the computation is EXIT, then the index field refers to a particular block

in an exception control block (ECB) table. Each net has an ECB used

to indicate what exception is currently raised in the net. There is a flag

associated with each exception in the net. The attribute field contains

the exception mask which is used to access a particular flag in the ECB.

Guard When the attribute type is guard, there are three ways to deal with

the attribute. First, if the guard is GFUN, then the index field refers to the

NCB which stores the result of a function. The attribute field holds the

intended value of the guard. Second, if the guard is GVAR, then the index

field contains the memory address of the variable, and the attribute field

also holds the intended value of the guard. Third, if the guard is GEXP,

then the index field refers to an ECB in the ECB table. The attribute

field contains the exception mask which is used to access to a particular

flag in the ECB.

Send and Receive When the attribute type is SEND or RECV, the message

identifier, message length, and an index to a particular block in a port

control block (PCB) table, are packed in the index field. The PCB records

the state of a particular port connected to a channel during execution.

The PCB identifies whether the communication is local or external. It

indicates if there is a new received message and provides a place to store
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type field index field attribute field

IDLE Index to NCB table. Address of idle routine.
COMPT Index to NCB table. Address of computation routine.
DELAY Index to timer table. Number of ticks.
EXIT Index to ECB table. Exception mask.

GFUN Index to NCB table. Guard value.
GVAR Address of variable. Guard value.
GEXP Index to ECB table. Exception mask.

SEND Message ID, message length, Address of variable.
and index to PCB table.

RECV Message ID, message length, Address of variable.
and index to PCB table.

Tab. 3.1: Attribute representation summary.

the details of the received message including message identifier, message

length, and data. Local and external communication is discussed later

in section 3.4. The address of a variable that stores the message data, is

stored in the attribute field.

The different representations of the attribute types in the transition structure

are summarised in Table 3.1.

ROM or RAM

Constant data are not changed during run-time. This can be implemented

in C by using the const qualifier. The const attribute allows a C compiler

to place the constant data in ROM. The transitions (which is an array of

transitions representing the net) is not changed during run-time, therefore it is

more memory efficient to store it in ROM. Because transitions is constant

variable, it must be initialised pre-run-time. The marking (which is a bit-set

representing the current marking of the net) can be be changed during run-

time, so it must be stored in RAM. The marking is defined as a usual variable

in C.
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Example

We use a modified version of the flow regulator example introduced in Chapter 2.

We add a trap-exit and a case statement to the example in order to have all type

of guards in the net representation. Additionally, the code from this example is

generated for a single-node architecture, which means that both the Flow and

Valve process run on the same node and communicate via a local channel. The

aim of this example is not to describe a realistic system, but to generate a small-

sized transition table that demonstrates the data structures of a net. Fig 3.9

shows the CANDLE program of the example. The process Valve is modified

to raise the exception ALARM when the flow rate exceeds some range. Testing

the flow rate is modelled using the case testFlow() statement. The function

testFlow() can return three values: 0, 1, and 2 representing the state of the

flow rate, low, high, or out-of-range respectively. The exception is handled by

reporting a suitable warning and moving to an idle state thereafter.

Flow | Valve

where

Flow =

every 10000 do

readSensor();

snd(k, FLOW, fFlow)

end every

Valve =

trap

when ALARM => reportWarning(); idle

in

loop do

rcv(k, FLOW, vFlow);

case testFlow()

when 0 => increaseFlow()

when 1 => decreaseFlow()

when 2 => exit ALARM

end case

end loop

end trap

Fig. 3.9: Modified flow regulator in CANDLE.
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The net representation of the example is shown in Fig. 3.10. In the figure,

there are two nets, the top net represents the Flow process, and the bottom one

represents the Valve process. The total number of transitions is 14, there is

one trigger (place) for one transition. The idle transition is repeated to simplify

the diagram. The places of the net are numbered to match their ordering in

the generated transition table where transitions are sorted by their attribute

type (in ascending order of transition number) as follows: send, receive, com-

putation, guard, and delay. This order is adopted primarily for the correctness

of the implementation (which is discussed in Chapter 4), and to improve the

performance of operations (the ISR in particular) that work with the transition

table.

[readSensor] k!FLOW.fFLOW idle

13

[testFlow] 9

10

11

〈gf0〉

〈gf1〉

〈gf2〉

[increaseFlow]

[decreaseFlow]

12

[exit ALARM] idle

idle〈gfx〉 [reportWarning]

k?FLOW.vFLOW

[timer:10000]

3

4 5

6

7

8

0

0

0

1

2

Fig. 3.10: Nets of the modified flow regulator example.

Fig. 3.11 shows the generated data structures of the example nets and the initial

marking. There is a bit-set representing the current marking of the nets. The

transition table comprises 14 transition structures representing the transitions

of the nets. The NCB table comprises three blocks: one associated with each of

the processes, Flow and Valve, and one associated with the idle process, which
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executes when no other process has a computation ready to execute. The PCB

table has one block because there is one port connected to a single local channel.

The ECB table consists of three blocks similarly to the NCB table. There is

only one delay transition in the nets so the timer table has one soft timer.

3.3.2 Overview of ISR Implementation

The state of a net is evolved (changed) according to two rules, the process tran-

sition rule R.1 and the network transition rule R.2 introduced in section 2.4.2.

R.1 can modify both marking of the net and the data state, whereas R.2 can

only modify the network state. We assume that the behaviour defined by R.2

is handled by the CAN controller. Therefore, only operations required by R.1

are considered for implementation in the ISR.

The ISR is configured to run periodically. The ISR updates the marking of a

net according to the attribute type of a transition. The ISR implements the

behaviour of the net as it is defined in the rule R.1. Algorithm 1 shows the

pseudo code of the ISR. First, all active soft timers are updated in order to

track the elapsed time. Next, the ISR polls all external receive buffers to record

new arrived messages. If a message arrives after this step is completed, then it

will only be considered in the next invocation of the ISR. After that, all local

communication buffers are marked as stale (or reset). This ensures that any

local message transmitted in the previous invocation of ISR will not be available

again for reception in the current ISR. Then, the ISR reacts to all marked places

in the net. In this step, a new marking of the net is obtained by firing all ready

transitions. This step is repeated until the marking of the net becomes stable.

This means that all ready instantaneous primitives (actions) are executed in

the current ISR. However, in the first iteration of this loop, all external receive

buffers are marked as stale. It means that any external message received at

the beginning of the current ISR, will not be available again for reception in
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Fig. 3.11: Example of transition table.
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next iteration, otherwise the ISR could enter an infinite loop. After that, one

or more ready computations are scheduled to run during the next tick interval.

Finally, the ISR makes all external messages ready for transmission just before

it returns. In this step, the messages in the external transmit buffers become

ready for transmission.

Update soft timers;
Update external port control blocks;
Mark all local port control blocks as stale;

repeat
savedMarking ← marking;
foreach marked place i do

marking ← React(i);
end
if First iteration then

Mark all external port control blocks as stale;
end

until savedMarking = marking ;

Schedule next computation(s);
Flag external transmit buffers;

return
Algorithm 1: Pseudo code of the ISR.

The ISR reacts to a marked place according to the attribute type of the tran-

sition of which the place is the trigger. When the operation is completed, the

current marking of the net is updated, and the system state (represented by

the current values of NCBs, PCBs, ECBs) is modified. The pseudo code of

the React operation is presented in Algorithm 2. When the condition of a par-

ticular attribute is satisfied, the transition is fired by executing the operation

Fire and so the current marking of the net is updated. The pseudo code of

Fire is shown in Algorithm 3. The operation consists of three steps: remove

the source place p from the current marking, remove the vulnerable places

transitions[p].vulnerable from the current marking, and add the target places

transitions[p].target to the current marking.
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Input: A transition trigger, p.
Output: Updated marking and system state.
switch transitions[p].type do

case IDLE
Skip;

end
case COMPT

if computation is ready and not completed then Skip;
else if computation is completed then Fire(p);
else if computation is not ready then Mark as ready;

end
case DELAY

if timer is active then
if timer is expired then

Fire(p);
Make timer inactive;

end

end
else if timer is inactive then

Load a delay value to timer;
Make timer active;

end

end
case EXIT

Raise the corresponding exception in ECB;
Fire(p);

end
case GFUN

if Function result in corresponding NCB = guard value then
Fire(p);

end

end
case GVAR

if The variable value = guard value then
Fire(p);

end

end
case GEXP

if The exception is raised in corresponding ECB then
Clear the exception flag in corresponding ECB;
Fire(p);

end

end
case SEND

if External channel then
Write message details to an external transmit buffer;
Fire(p);

end
else if Local channel then

Write message details to corresponding PCB;
Fire(p);

end

end
case RECV

if Fresh message available in corresponding PCB then
if message id is matched then

copy the message content to a user data variable;
Fire(p);

end

end

end

end

return
Algorithm 2: Pseudo code of React.
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Input: A transition trigger, p and the current marking, marking of the net.
Output: New marking, marking′ of the net.

marking′ = marking \ ({p} ∪ transitions[p].vulnerable) ∪ transitions[p].target

return
Algorithm 3: Pseudo code of Fire.

3.4 Implementation of Channel

A channel is an abstraction of the CAN protocol through which processes com-

municate via asynchronously broadcast messages. All communications between

system components occur through this mechanism and never through the use

of shared variables. A message is identified with the pair (id, val). The id is the

message identifier which corresponds to the message priority in CAN. The val

is the value of the message which represents the data field of the CAN frame.

bCANDLE processes can be allocated to a number of nodes which are connected

by one or more CAN buses. The allocation of processes determines the imple-

mentation of channels. When the process A communicates with the process B

by the channel k and both A and B are allocated to the same node, then k is

usually mapped to a local channel. In contrast, when A and B are allocated to

two separate nodes, then k is mapped to an external channel. Fig. 3.12 shows

four examples of the possible process-to-node mapping. In the case a, the pro-

cesses P1, P2 and P3 are completely distributed, so they must communicate

using an external channel. In the case b, all processes share the same node,

therefore a local channel must be used for communication. In the case c, the

process P1 and P2 are allocated to the same node, whereas the process P3 is

allocated to another node. The processes, in this scenario, must communicate

by using an external channel since there is at least one process that is allocated

to a separate node. In this particular case, although P1 and P2 are allocated to

the same node, the communication between the two processes occurs through

an external channel. This requires that the communication controller has the

ability to be configured for a self-reception in which a transmitted message can
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be received by the same node. For example, the CAN controller of Philips

LPC2294 supports this feature. Finally, the case d shows that the processes

P1, P2, P3, and P4 are allocated to the same node, then they must use a local

channel for communication. However, the process P5 is allocated to a separate

node, then P5 and P4 must communicate using an external channel.

P1 P2 P3

External Channel

P1 P2 P3

External Channel

P1 P2 P3

Local Channel

(a)

(b)

(c)

P1 P2

External Channel

(d)

P3

P5

P4

Local Channel

Fig. 3.12: Processes-to-nodes mapping.

Two ways of implementing a channel are introduced: external channel and local

channel. We use a simple send/receive example to demonstrate the two different
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implementations of channels. In the example, process P1 broadcasts a message

(i, var1) through the channel k and idles thereafter. The process P2 is pending

on channel k until it receives a message with the identifier i. The content of

the message is held in the variable var2. Fig. 3.13 shows bCANDLE model of

the example, and Fig. 3.14 shows the net representation of the model.

P1 | P2

where

P1 = k!i.var1 ; idle

P2 = k?i.var2 ; idle

network

k = (i: pri, lb, ub, lB, uB)

data var1, var2

Fig. 3.13: The bCANDLE model of simple send/receive example.

k!i.var1 idle

k?i.var2 idle

Fig. 3.14: The Net of simple send/receive example.

3.4.1 External Channel

When the communicating process P1 and P2 are allocated to two separate

nodes, then the channel k must be mapped onto a physical communication

link. The processor delegates responsibility for the communication to an ex-

ternal CAN controller. Fig. 3.15 illustrates the structure of a communication

between processes P1 and P2. When k!i.var1 of the process P1 is marked and

ready to run, the ISR writes the message content held in the variable var1 to

a CAN transmit buffer. The ISR then sets a flag transmit flag to indicate

that the message is available for transmission. On the receiving node, When

k?i.var2 of P2 is marked and ready to run, the ISR polls a flag receive flag
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to check the arrival of the message. This occurs periodically until the intended

message arrives. When a message is received with the identifier i, then the ISR

reads a CAN receive buffer and assigns the message content to the variable var2

of the process P2.

var1

CAN transmit
buffer

transmit flag

var2

CAN receive
buffer

receive flag

CAN buscanWrite(var1) canRead(var2)

ISR ISR

P1 P2

Fig. 3.15: P1 communicates with P2 by external channel.

3.4.2 Local Channel

If the process P1 and P2 are allocated to the same computing node, then the

channel k is mapped onto a local channel. When k!i.var1 of the process P1 and

k?i.var2 of P2 are both marked and ready to run, the memory address of var1

and var2 are passed to the ISR. The ISR then copies the value of var1 to var2

provided both the source and destination message identifiers are matched, see

Fig. 3.16. The current example has only one receiver process. However, when

there are a number of receiver processes, the ISR will provide each receiver a

copy of the value of the sent message at the same time.

3.5 Representation of the Architecture

The code generator requires information about the architecture of the execution

platform in order to produce the code correctly. This includes information

about processes, nodes, process-to-node allocation, scheduling algorithm, tick



3. CANDLE Code Generator 73

var1 var2

var2← var1

P1 P2

ISR

Fig. 3.16: P1 communicates with P2 by local channel.

rate, and communication details (e.g, network transmission rate and message

identifiers). In the current work, a special-adopted file format is used to describe

the architecture of a system. The adopted language has a simple textual syntax

but allows to specify all details which are necessary for the code generation.

Fig.3.17 shows an example of a configuration file created for the flow regulator

example. The system consists of two computing nodes: flow and valve. The

process Flow is allocated to the node flow and Valve is allocated to the node

valve. The first node uses 32 bits word size, has 1000µsec tick rate, employs

a simple round-robin scheduling algorithm, and defines a single external com-

munication port. There is a separate section to define processes. For instance,

the process Flow allows 20 words at maximum for the stack size and defines

one channel k mapped to the communication port CAN 0. Additionally, there

is a section to describe the communication channels. The section defines the

transmission rate and messages exchanged between the system components.

For instance, in the example shown in Fig 3.17, the transmission rate is set at

100 kbit/s. Messages with the identifier FLOW are used for communications, and

the size of the data field of a message is only 1 byte.

There is however an industry standard language to specify a system architec-

ture. The Architecture Analysis and Design Language (AADL) (Feiler et al.,

2006) can be used to describe the execution platform of the generated code.

The language has both a textual and a graphical representation. The AADL
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node flow

wordsize : 32

tickHz : 1000

processes : Flow

scheduler : ROUND_ROBIN

ports : CAN_0

process Flow

stacksize : 20

channels : k -> CAN_0

node valve

wordsize : 32

tickHz : 1000

processes : Valve

scheduler : ROUND_ROBIN

ports : CAN_0

process Valve

stacksize : 20

channels : k -> CAN_0

channel k

bps : 100000

messages : <FLOW:1>

Fig. 3.17: The architecture description of the flow regulator example.

comprises elements to specify software components (data, thread, process and

subprogram), hardware components (device, memory, bus and processor) and

composition (system).

Fig. 3.18 shows the AADL representation of the flow regulator example. The

processes Flow and Valve are bound to the nodes flow and valve respectively.

The channel k is an external channel and therefore it is bound to the physical

CAN bus CAN 0. We use the system element to represent a channel. This ele-

ment is abstract and can be mapped to a software or to a hardware component.

Therefore, it is suitable for specifying both external and local channels.

The second example shown in Fig 3.19 presents another configuration for the

flow regulator example. The processes Flow and Valve are bound to the same

node flow−valve. The channel k is local channel and so it is bound to a

memory element which represents the local communication.
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flow

valve

Flow

Valve

kCAN 0

Actual Processor Binding

Actual Processor Binding

Channel Binding

Fig. 3.18: The AADL of the flow regulator example (distributed architecture).

Flow

Valve

k

Actual Processor Binding

Actual Processor Binding

Channel Binding

flow-valve

LOCAL DATA

Fig. 3.19: The AADL of the flow regulator example (single-node architecture).

AADL has built-in properties to provide information about system components.

A property has a name, type, and an associated value. For instance, the prop-

erty Actual Processor Binding allows to bind a process to a processor compo-

nent. Interestingly, the language permits defining new properties. This feature

is very useful in specifying other system information of node components (e.g,

word size, scheduling algorithm, tick rate), process components (stack size and

channel binding), and channel components (e.g, transmission rate and message
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identifiers). This can be a subject of future work.

3.6 Summary

The CANDLE code generator has been introduced in this chapter. Executable

code is derived from a net which is the intermediate model of a CANDLE sys-

tem. Our implementation model to execute the net has been presented. An

efficient C representation of the net has been designed. The implementation

of broadcast channels has been described. Finally, an AADL-like language has

been adopted to describe the system architecture including nodes, processes

and channels. The approach taken simplifies the process of reasoning about the

relationship between generated formal model and its implementation, because

both the model and code are derived from the same net. The main point of this

chapter is to generate executable code for CAN-based distributed embedded

systems in a way that guarantees that both functional and timing properties

expressed in a high-level formal language are satisfied. Chapter 4 presents a

rigorous argument demonstrating that a generated formal model is a conser-

vative approximation of its implementation. Chapter 6 demonstrates that the

approach adopted provides an efficient implementation. To the best of our

knowledge, this is the first work to apply such a method to the implementation

of distributed embedded systems.



4. CORRECTNESS OF SYSTEM

IMPLEMENTATION

4.1 Introduction

The main goal of this work is to produce a method for the development of CAN-

based embedded systems that provides both for the generation of reasonably

efficient system implementations and also formal models that conservatively

approximate their implementations; both components are to be generated auto-

matically from the same system description. This chapter addresses the imple-

mentation and modelling decisions that have been made to ensure that models

conservatively approximate their implementations.

We have adopted the time-triggered implementation model which has been

described in Chapter 3. According to the implementation model, all instanta-

neous primitives are assumed to run inside the ISR. Computation primitives

however are assumed to run outside the ISR. In this chapter, we discuss the

correctness of the implementation of each primitive. An informal argument has

been used to demonstrate that the implementation satisfies the semantics of its

model. The reason for this approach is that the target implementation language

(which is C) lacks a formal semantics. Although there have been many attempts

to provide a formal semantics to C, for example recently in (Ellison and Rosu,

2012), the validation of the translation from C to a low-level machine language

is very important to ensure that the C compiler generates an executable code
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that behaves exactly as specified by the semantics of the source program. A

rigorous solution to this problem is not trivial. The problem has been addressed

in the CompCert project (CompCert, 2012) and the results have been exten-

sively published, for instance (Blazy, 2008; Dargaye, 2009; Leroy, 2009; Blazy

and Leroy, 2009; Bedin et al., 2012).

The chapter is organised as follows. Sections 4.2, 4.3, 4.4 and 4.5 discuss the

modelling and implementation decisions made to ensure the correctness of the

formal language primitives, including computation, guard evaluation, message

reception, and message transmission respectively. Section 4.6 discusses the cor-

rectness of the process combinators (sequential composition, choice, interrupt,

and parallel composition). Finally, section 4.7 concludes the chapter.

4.2 Computation Release and Termination

In this section we consider how to calculate lower and upper execution time

bounds for the models of computations released by a process P that is assumed

to be the only user process allocated to its node. The bounds are calculated to

ensure that the model is a conservative approximation of the implementation.

We begin by distinguishing between the sets of observable computations, O,

e.g. computations that interact with the environment, perhaps by reading from

a sensor or writing to an actuator, and internal (unobservable) computations,

I, that merely update the local data state without interacting with the envi-

ronment. We assume the set of all computations, C = O ∪ I and O ∩ I = ∅.

The construction of models for internal computations is considered first.

4.2.1 Internal Computations

Fig. 4.1 shows the implementation structure and its related model for a process

fragment given by P = . . . C1();C2(); . . ., where C1, C2 ∈ I.



4. Correctness of System Implementation 79

ρ1 ρ2 ρ3

C1 C2

T − Cs

T + Cs

Fig. 4.1: Internal computation bounds (we(C1) <= χ)
[C1 : T − Cs, T + Cs]; [C2 : T − Cs, T + Cs].

The worst-case (resp. best-case) execution time of a computation C is denoted

we(C) (resp. be(C)). We assume in the case of both computations C1 and

C2 that their worst-case execution times are no greater than the length of a

computation interval. Hence we can be sure that their actual execution times,

e1 and e2 respectively, are within the computation time available in one tick, i.e.

e1 <= χ and e2 <= χ. Notice that the model [C1 : T − Cs, T + Cs]; [C2 : T −

Cs, T +Cs] allocates bounds enclosing a full tick interval to each computation

in order to account both for any idle time until the next tick and also the time

taken for execution of the ISR. This is similar to the standard approach taken

to account for the time used by a tick scheduler in the response time analysis

of fixed priority systems, e.g. as described by Liu (Liu, 2000). Fig. 4.1 shows

the actual execution time as a shaded grey box and the upper bound on the

extended time as a dashed box. The lower and upper bounds are chosen so

that the model contains behaviours that include successive reaction instants

ρ1 and ρ2 in which ρ1 occurs at the end of the first ISR and ρ2 occurs at the

beginning of the second ISR (lower bound: T −Cs), and, conversely, ρ1 occurs

at the beginning of the first ISR and ρ2 occurs at the end of the second ISR

(upper bound: T + Cs). Therefore, we can be sure that the model contains

all possible behaviours of the implementation. In the case that a computation

requires more than one tick to complete, the bounds on its completion time are

calculated accordingly. Fig. 4.2 illustrates a computation requiring more than

one tick to complete and shows its associated model. Once again, the bounds
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calculated give rise to a non-deterministic model that allows the notional time

of a reaction instant to occur at any point within an ISR.

1 2 n

C1 C1 C1 C1 C2

Fig. 4.2: Internal computation bounds (we(C1) > χ)
[C1 : n.T − Cs, n.T + Cs]; [C2 : T − Cs, T + Cs].

4.2.2 Observable Computations

We assume that all observable computations complete their execution within a

single computation interval. Even so, the model of an observable computation is

a little trickier to construct than that of an internal computation, since we need

to consider its termination not only with regard to the time of the next reaction

instant but also with regard to the time of its interaction with the environment.

Fig. 4.3 shows the implementation structure and its related model for a process

fragment given by P = . . . C1();C2(); . . ., where C1 ∈ O and C2 ∈ I.

C1

be(C1) we(C1)

C2

T − Cs

T + Cs

Fig. 4.3: Observable computation bounds (C1 ∈ O, C2 ∈ I)
([C1 : be(C1), we(C1)]; idle [> [T −Cs, T +Cs]); [C2 : T −Cs, T +Cs].

The associated model is constructed to capture both the actual termination

time of C1, since it may be observed by the environment, and also the effective

termination time of C1 in so far as it causes the release of C2 at the next

reaction instant. The first part is modelled by [C1 : be(C1), we(C1)]; idle, i.e.

C1 actually terminates, and may be observed, at some time between its best-
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case and worst-case execution times; then the idle computation executes until

the next reaction instant. The timing of the next reaction instant is within

the usual bounds for a computation executed within one tick period and is

modelled by the interruption of the idle computation by a non-deterministic

timeout, [T − Cs, T + Cs], whose termination allows the release of C2. So the

complete model in this case is

([C1 : be(C1), we(C1)]; idle [> [T − Cs, T + Cs]); [C2 : T − Cs, T + Cs]

and, in general, the model of any observable computation C is just

([C : be(C), we(C)]; idle [> [T − Cs, T + Cs])

4.2.3 Delay

Explicit delays are introduced into system descriptions using the elapse(<timeSpec>)

statement, where timeSpec is a time specification, e.g. seconds(5), millisec-

onds(10) etc. The code-generator converts timeSpec into a number of ticks and

the model-generator generates a model in which the elapse statement is repre-

sented as an internal computation that implements the identity operation in a

time whose bounds are calculated as in section 4.2.1.

For example, consider the implementation of the statement elapse(microseconds(5500))

on a node with a tick period T = 2 ms. The time specification is converted

into a number of ticks as follows:

microseconds(5500) =

⌈
5500 · 10−6

2 · 10−3

⌉
= 3

and the delay is modelled as [3T − Cs, 3T + Cs], as shown in Fig. 4.4.

Notice that if the requested delay is not a multiple of the tick period, the

implementation provides a delay that is close to the least multiple of the tick
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T

Fig. 4.4: Delay bounds (elapse(microseconds(5500)), T = 2 ms
, [3T − Cs, 3T + Cs].

period greater than the requested delay. The generated model represents this.

4.2.4 Response-Time Analysis

We must be able to perform an offline calculation of the bounds on the response

time of all computations for any chosen scheduling algorithm in order to gen-

erate a model. In the case of a computation, C, released by a cooperatively

scheduled process, we know that it will complete within one tick and so its model

is given simply as [C : T −Cs, T +Cs], as illustrated in Fig. 4.1. Computations

that cannot be scheduled in a single tick are called long-running computations

and are scheduled using a weighted round-robin algorithm. The remainder of

this section considers how to calculate the bounds on such computations.

The number of ticks required to provide e time units of execution for a long-

running computation is given by

nt(e) =

⌈
e

χrr

⌉
(4.1)

where χrr is the length of time allocated for the execution of round-robin pro-

cesses in each tick period, i.e. in the hybrid scheduling algorithm the length of

a round-robin slot is given by χrr

If a set of processes {P1, . . . , Pn} is sharing the CPU using a weighted round-

robin scheduler, a computation of length ei released by process Pi will require a

number of rounds given by dnt(ei)si
e, where si gives the weight of Pi equal to the

number of round-robin slots allocated to it in a complete round of the schedule.
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For example, let the set of processes and their weights be as follows:

{(P1, 1), (P2, 2), (P3, 3), (P4, 4)}

Then every round is of length 10 and in each round a process is allocated a

number of slots according to its weight. A round in this case would be

P1, P2, P2, P3, P3, P3, P4, P4, P4, P4,

and process P3, for example, would have 3χrr time units allocated to it in every

round for the execution of its long-running computations. �

Worst-case response time

The worst case response time for a long-running computation Ci, released by

process Pi, occurs when Ci is released just as the scheduler is about to schedule

Pi+1 for the first time in this round, i.e. when Pi must wait for all other

processes to use their full allocation and for its slot in the next round to arrive

before it can begin execution.

From this we conclude that the number of ticks required in the worst case to

complete a long-running computation of length ei, released by Pi, in a round

of length R is given by

wt(ei) =

(
R ·
⌈
nt(ei)

si

⌉)
−
(⌈

nt(ei)

si

⌉
· si − nt(ei)

)
(4.2)

The term on the left of the minus sign gives the number of rounds required for

the computation multiplied by the length of a round. The term on the right

compensates for any over-allocation of slots computed by the first term.

For example, assume the same set of processes and weights as in the example

above and a round-robin allocation χrr = 500 time units. Now, assume that
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process P3 releases a computation with a worst-case execution time of 1800 time

units. This will require d1800
500 e = 4 ticks which it will receive in d4

3e = 2 rounds.

Each round is of length 10, so we can say that the computation will complete

in no more than 20 ticks. Actually, in 2 rounds P3 will receive 6 ticks, i.e. 2

ticks more than needed for this computation. So, in fact, the computation will

complete in 18 ticks, as given by equation 4.2. �

Having calculated the number of ticks required in the worst case for the com-

pletion of a computation, Ci, the worst-case response time of Ci is given simply

by the product of this value and the length of the tick period.

W (Ci) = T · wt(we(Ci)) (4.3)

Best-case response time

In the best case the scheduler will be just about to schedule Pi for the first time

in this round, so it will not be necessary for Pi to wait for the rest of the round

to begin its slot. This gives us a formula for the number of ticks required in the

best case to complete a long-running computation of length ei, released by Pi,

in a round of length R:

bt(ei) = wt(ei)−
∑

j∈{1,...,n}\{i}

sj (4.4)

So the number of ticks required in the best case is the just the number of ticks

required in the worst case minus the number of ticks required for the rest of

the round, i.e. the number of ticks allocated to all processes except Pi. The

best-case response time of a computation Ci is then given by

B(Ci) = T · bt(be(Ci)) (4.5)
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4.3 Guard Evaluation

A guard is the name of a predicate evaluated in the current data environment

which gives a value either true or false. There are two ways in which a guard can

arise. First, in the CANDLE statement case, the result of a function call (or

the value of a variable) is compared with a number of constant values. Second,

an exception is raised when the exit statement is executed in the trap− exit

statement. In each case the guard is handled (evaluated) inside the ISR which

is performed as a simple test of one value (the result of the evaluation) with

another (e.g, a particular case expression value). The evaluation of a predicate

for a function call occurs as a computation executed outside the ISR. Then the

ISR compares the result of the computation with a simple value. In the case

of exception, a flag is set inside the ISR to raise an exception. Then the ISR

performs a simple test to see whether an exception flag is set or not.

4.4 Message Reception

Particular care needs to be taken to ensure that the generated model is a con-

servative approximation of its implementation in the case of message reception.

There are three main requirements:

1. to ensure that there is an adequate number of receive buffers to store

messages transmitted between polling operations so that messages are

not lost;

2. to identify precisely when a node is marked as ready for message reception

and to account for the time between polling operations; and finally

3. to identify the order of message receptions at different CAN controllers

in gateway nodes.
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4.4.1 Receive Buffers

If there are n receive buffers in a CAN transceiver then

1. there should be no more than n possible acceptances in any interval that

is no longer than T + Cs, and

2. the receive buffers should be flushed at each reaction in the ISR.

These requirements ensure that

1. messages are not lost, and

2. the time to react to a message is properly accounted for.

4.4.2 Reception Readiness

Fig. 4.5 illustrates the difficulty in ensuring that messages are received only

when a node is clearly ready for their reception, according to the semantics

of the model. The figure shows the behaviour of a node with a single process

executing the process fragment . . . C1(); rcv(k, i, x);C2() . . ., in three different

scenarios for the transmission of a message i.v on the CAN bus. The questions

are in which of the scenarios should the message be received and how is the

timing of the reception modelled.

First, remember in our time-triggered implementation model, CAN messages

are polled in each ISR. This is the only opportunity for message reception in an

implementation. At ISR 2 in Fig. 4.5, a message will be available for reception in

scenarios Bus (1) and Bus (2). However, in the former case, the actual execution

of computation C1 will not have completed before the message acceptance point

occurs, and so clearly message reception k?i.x cannot be enabled in time; and

in the latter case, although the actual execution of C1 will have completed

before the message acceptance point, its model represents its termination as
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Node
1 2 3 4C1

k?i.x

T + Cs

C2

Bus (1) (rejected)

Bus (2) (rejected)

Bus (3) (accepted)

Fig. 4.5: Message reception (↑ denotes the message acceptance point)
[C1 : T − Cs, T + Cs]; k?i.x; [0, T + Cs]; [C2 : T − Cs, T + Cs].

occurring at the reaction instant in ISR 2, and again k?i.x is enabled after the

message acceptance point. So, in both of these scenarios, the semantics of the

model requires that the message should not be received. In scenario Bus (3),

the reaction instant at ISR 2, when k?i.x is enabled, is clearly not later than

the message acceptance point. In this case, the message should be received at

ISR 3 and computation C2 will be released in the next computation interval.

It is clear that, at ISR 3, the model needs to allow for the message acceptance

to have occurred at any time between the reaction instants at ISR 2 and ISR 3.

It is not possible to tell, a priori, precisely when the message acceptance point

will occur. Hence, the inclusion in the model of the non-deterministic delay

[0, T + Cs].

The approach taken to ensure that the implementation corresponds with the

semantics of the model is to order the transition table so that receive transitions

are considered first (before computation terminations) and, after the first pass

through the reaction loop, external messages are marked as ‘stale’, i.e. no longer

available for reception in the current reaction. Following this procedure, it can

be seen that a message will not be received in scenarios Bus (1) and Bus (2)

but that a message will be received in scenario Bus (3).
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4.4.3 Reception Order

A node may be configured with a number of different CAN controllers. This

could happen in gateway nodes. Fig. 4.6 shows the behaviour of a gateway

node with a single process executing the process fragment

k1?i1.x; [0, T + Cs]; [C1 : T − Cs, T + Cs]

+

k2?i2.y; [0, T + Cs]; [C2 : T − Cs, T + Cs]

and two messages from two different CAN buses arrive in the same interval.

According to the model both k1?i1.x and k2?i2.y are enabled. So if the message

i1 is received first then the computation C1 is released and k2?i2.y is disabled.

However, if the message i2 is received first then the computation C2 is released

and k1?i1.x is disabled. When the acceptance point of the messages occurs in

the same interval, then both message i1 and i2 become available for reception.

The difficulty in the implementation is to determine which message should be

polled first inside the ISR. There are three possible cases to consider:

1. both channels are external,

2. one channel is external and one is local,

3. and, both channels are local.

A possible solution to the first case can be achieved by using CAN controllers

that provide a time stamp on received and transmitted messages (e.g, (Texas-

Instruments, 2005)). When the received messages are time stamped, then the

ISR can identify the order of message receptions and update the transitions

table accordingly.

For the second case, the order of message receptions is ensured by the ISR

implementation. The ISR polls the external receive buffer(s) and updates any
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ready receive transition before checking the local communications. Therefore,

if a message acceptance occurs during the previous interval, the ISR considers

that the external message arrives first. However, if the message acceptance

occurs after the beginning of the ISR, then the local message will be considered

first and the external message will not be processed until the next ISR runs.

In the third case, the order of message receptions is resolved non-deterministically.

Local communication occurs inside the ISR where the transmission and recep-

tion of a message are assumed to happen instantaneously. Therefore, any order

is chosen in the implementation would be acceptable since the model can express

both behaviours.

Node 1 2 3 4C1

k1?i1.x

T + Cs

Bus (1)

Bus (2)

Fig. 4.6: Example of message reception in a gateway node.

Receive with Interrupt Operator

Consider the following process fragment:

k?i.x; [0, T + Cs]; [C1 : t] [> [Timer : t]; [C2 : t]

The new data value of the variable x only becomes available after [0, T + Cs]

is completed. According to the semantics of the interrupt operator, the first

argument may be interrupted at any instant once it is enabled. If it is inter-

rupted just before [0, T + Cs] begins, then the new state of x must be visible

based on the semantics of k?i.x. However, the [Timer : t] is a time delay and

is only evaluated inside the ISR. The message is received and the variable is

updated inside the ISR as well. If we ensure this happen before evaluating the
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timer, then any other primitive will see the new state of the variable after it

is updated. So the term k?i.x; [0, T + Cs] behaves atomically to the second

argument of the interrupt operator.

Similarly if a guard < γ > appears in the second argument. In this case,

we have to ensure also the guard evaluation is performed after the message is

completely received inside the ISR.

Moreover, a message reception may appear in the second argument. There are

two possibilities: the two receive statements read from the same channel, or the

two receive statements read from two different channels.

For the first case, one can consider the following example:

k?i1.x; [0, T + Cs]; [C1 : t] [> k?i2.y; [0, T + Cs]; [C2 : t]

Now, if the channel k is local, then the evaluation of the two ready receive state-

ments can be performed non-deterministically because the local communication

occurs instantaneously inside the ISR.

When the channel k is external, the evaluation is performed as follows. If i1-

message is received before i2-message, then the ISR polls i1 and updates x

before processing i2. This can be guaranteed by the employed CAN controller.

For example, Motorola msCAN08 utilises a double receive buffers. The incom-

ing messages are stored in a two stage input FIFO (MC68HC08, 2012). The first

received message is stored in a foreground buffer and so it becomes available for

a polling software component. The second received message is stored in a back-

ground buffer and it only becomes available once the foreground buffer is read.

Therefore, once k?i1.x is started, it can only be interrupted after [0, T + Cs]

is completed. On the other hand, when i2-message is received first, then the

ISR polls i2 and updates y before processing i1. So k?i1.x is interrupted be-

fore it begins. Consequently k?i1.x; [0, T + Cs] is either executed at once or
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interrupted before it is started, i.e. the term behaves atomically to the second

argument of the interrupt operator.

In the second case, one can consider the following example:

k1?i1.x; [0, T + Cs]; [C1 : t] [> k2?i2.y; [0, T + Cs]; [C2 : t]

The evaluation of the message reception is resolved in a way that is similar to

the order of message reception discussed in section 4.4.3.

4.5 Message Transmission

According to our implementation model, transmission of a message is initiated

inside the ISR which is assumed to happen instantaneously. In this section

we discuss two issues that could affect the implementation correctness of the

message transmission.

4.5.1 Transmission Readiness

The implementation requires a non-zero time before a message becomes ready

for transmission. If the channel is external, the ISR accommodates the message

contents for any active k!i.x transition in an available transmitter buffer. Then

it clears a transmitter flag to indicate that the message is ready for transmission

and fires the transitions. When the channel is local, the ISR transfers the mes-

sage contents of any active k!i.x transition into an intermediate buffer and then

fires the transitions. The operation of message transmission may be completed

at any instant in between the beginning and the end of the ISR.

If we assume that the message is enqueued for external transmission at the

beginning of the ISR, then the model may exhibit a behaviour where a message

is enqueued and the bus is free. In this case the message can be transmitted
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without contention for the bus. In practice, the message may be enqueued

at any instant up to the end of the ISR. The problem is that the bus could

be occupied by another message and so the message has to wait until the bus

becomes free again. Therefore, this possible behaviour of the implementation is

not expressed in the model. Similarly if we assume that the message is enqueued

at the end the ISR, then it is possible to find a case where the implementation

exhibits a behaviour that is not expressed in the model.

The problem is that the message is allowed to be enqueued at any moment

during the ISR time. If this is prevented, then the implementation would only

have the same behaviour. To resolve this problem, the ISR should accommodate

the message contents in the transmitter buffer and clear the transmitter flag

just before the ISR terminates. Then the message can only contend for the bus

at the end the ISR.

When the message is enqueued for local transmission, the two assumptions

of the ISR can be considered. Communications using the local channels are

instantaneous, i.e. the message is enqueued, transmitted and received in the

same instant. In practice, the local communications happen inside the ISR.

The effect of executing the send statement is not visible outside the ISR except

transmitting to an external channel and a computation release. In other words,

the only visible actions that result from executing the ISR are sending a message

to an external channel and releasing a computation. Based on that, the local

communication can be safely assumed to happen either at the beginning of the

ISR or at the end of the ISR.

In the following we discuss a problem that may arise when multiple send state-

ments become ready for execution at the same instant.
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4.5.2 Multiple Ready Transmissions

Consider the following process fragment:

(k!i.x; idle) | (k!j.y; idle) | (k?i.z; [C1 : t] + k?j.w; [C2 : t])

Three processes are composed using the parallel operator. The first and the

second process send messages with particular identifiers on the channel k. The

third process waits to receive a message and execute a particular computation.

At some point, the first and the second process may become ready for execution

simultaneously. According to the semantics of the send, the message i and j

are enqueued at the same instant for transmission. When the processes are

allocated into the same node and the channel k is local, the two messages

should be sent and received at the same instant because the communication on

the local channel is assumed to happen instantaneously. The problem is that if

the message i is received first, then the message j can not be received and vice

versa because of the choice operator in the third process. In other words, the

given model exhibits two possible behaviours at the same time and the choice

between them can be made non-deterministically. However the implementation

has now a freedom to implement either one of the possible behaviour.

This problem does not arise when the processes are fully distributed on separate

nodes and communicate by an external channel. This is because transmission

on the external bus consumes a time and the highest priority message will be

selected for transmission once the arbitration on the bus begins between the

nodes. For instance, if the message i is higher priority than j, then the message

i is transmitted first. When the message is successfully received, i.e. k?i.z is

executed, the computation [C1 : t] will then be ready to run and the second

term (k?j.w; [C2 : t]) of the third process will be disabled.

Another issue may arise if the first and the second process are allocated to



4. Correctness of System Implementation 94

the same node, then it must be ensured that there are an adequate number of

transmit buffers to accommodate all the ready-to-transmit messages. The num-

ber of the transmit buffers is a feature of the adopted platform. For example,

the Motorola msCAN controller has only three transmit buffers (MC68HC08,

2012). However, it is possible to benefit from the model that is generated from

the system description and use the model checking tool to ensure that the im-

plementation never requires more than the available buffers. Therefore, for a

particular platform, a design is either accepted or rejected. If the design is

rejected, the user can modify the design or use a different platform.

4.6 Process Combinators

The bCANDLE modelling language has a set of control flow operators which

are sequential composition, choice, interrupt, and parallel composition. These

operators are used to combine the language primitives in order to construct a

system model. The code generator derives the system implementation from the

net that is generated from the system model. So the implementation implements

directly the flow control of the net. This means that the algorithm used to

control flow of the execution of the code is exactly the same algorithm that

controls the flow of the model. This algorithm is defined by the net rules R.1 and

R.2 discussed in Chapter 2. The rules are used to determine the next marking

of the net. Because the code generator is based on the net implementation,

the control flow constructs are automatically correct i.e. they behave similarly

both in the model and in the generated code. As long as the primitives are

implemented correctly and the control flows are implemented correctly, then

the implementation behaviour should comply with the model behaviour.
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4.7 Summary

In this chapter we have discussed the modelling and the implementation deci-

sions that we have made to ensure that the system model conservatively ap-

proximates its implementation. The discussion has been presented for each

primitive of the formal language, including the computation, guard evaluation,

message reception, and message transmission. Having correctly implemented

the primitives and the the control flow of the system model, we conclude that

the behaviour of the system implementation complies with the behaviour of the

system model.



5. ATOMIC UPDATE OF DATA

As introduced in Chapter 2, a bCANDLE model of a system consists of basic

process terms such as: send a message k!i.x, receive a message k?i.x, perform

a computation within a bounded period of time [ω : t1, t2], and evaluate a

guard on the data environment γ. These terms may be compounded by a small

set of operators: sequential composition ;, choice +, interrupt [>, and parallel

composition |. The bCANDLE semantics assumes that computations complete

and update their data instantaneously and atomically on completion. In this

chapter, we discuss the problem concerning the implementation of computations

in which computations are vulnerable to interruption. First, the importance of

the interrupt operator in the bCANDLE is outlined in section 5.1. Then, a

problem that may arise when implementing a computation with the interrupt

operator is discussed in section 5.2. Next, other approaches that resolve the

problem are reviewed in section 5.3. After that, a number of methods are

proposed to work out the problem in section 5.4. The proposed methods are

evaluated in order to select those suitable for the implementation of the code

generator in section 5.5. Finally, section 5.6 concludes the chapter.

5.1 The Interrupt Operator

The bCANDLE statement P [> Q behaves as P until either Q performs an

action or P terminates. The bCANDLE interrupt operator allows time to pass

and network activity to occur in both arguments. It has the same semantics as

the interrupt operator of ET-LOTOS (Léonard and Leduc, 1997). The operator
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can be used to construct a model where the execution of a process can be

disabled when an event occurs (Nicollin and Sifakis, 1994). This allows one

to state the responsiveness property of the system when it reacts or responds

to environment events (Kesten and Pnueli, 1991). For example, P [> β;Q is a

process that is allowed to behave as P as long as the termination action of β does

not occur. β can be a message reception k?i.x, a time delay [timer : t], or guard

evaluation γ. If β terminates (e.g: a message is received), then P is aborted

and Q begins its execution. The interrupt operator allows a very compact

representation of a system behaviour. To illustrate the process expression:

(a1; a2; a3)[> (b1; b2) may be recast without the interrupt operator. a3 is the

termination action of the first argument, and b1 is the initial action of the second

argument. This can be accomplished using the choice operator as follows:

(b1; b2) + (a1; b1; b2) + (a1; a2; b1; b2) + (a1; a2; a3)

Fig 5.1 and 5.2 show two nets that are generated from the interrupt expression

and the choice expression respectively. It is clearly seen that using the interrupt

operator provides a more compact representation than the choice operator in

realising the same behaviour.

a1 a2 a3

b1 b2

Fig. 5.1: Net of the interrupt expression.
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b1 b2

b1 b2

b1 b2

a1

a1 a2

a1 a2 a3

Fig. 5.2: Net of the choice expression.

5.2 The problem of the Interrupt Operator

The bCANDLE semantics assumes that computations complete and update

their data instantaneously and atomically on completion. The bounded com-

putation [ω : t1, t2] transforms the data state according to the specification

of the operation ω. The change to the data state must occur in a single in-

stantaneous action at the moment of termination. The computation may be

compounded with other primitives using the interrupt operator in one of the

following three forms:

• [ω : t1, t2] [> [timer : t];S – timeout.

• [ω : t1, t2] [> k?i.x;S – message reception.

• [ω : t1, t2] [> γ → S – guard evaluation.

Computations are not allowed to be used as the second argument of the inter-

rupt operator since they can change the data state. In other words, there is no
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possibility of interference in the interrupt operator such as in the parallel oper-

ator. The computation [timer : t] only consumes time and it does not change

the data state, therefore it can be used as second argument for the interrupt

operator. For example, assume the following bCANDLE expression:

[Comput1 : t1]; idle[> [timer : t]; [Comput2 : t2]

t

ISR

Comput1

Comput2

Incomplete
data update

Interrupt
point

t

t

Data update

Fig. 5.3: Interrupt problem.

In this expression the computation [Comput1 : t1] is executed first and time is

allowed to progress in the second argument. If the time expires in the time-

consuming computation [timer : t], the computation [Comput2 : t2] starts

executing. If the timer expires in [timer : t] and the first argument is in the idle

state, then [Comput2 : t2] can begin executing using the previous data state

which will have been updated in [Comput1 : t1]. However, the timer may expire

at a point where [Comput1 : t1] is updating some data state. This could happen

when t1 > t. Then [Comput1 : t1] will be interrupted and the control will be

given to [Comput2 : t2]. The data state may be left partially modified because
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of the interruption, see Fig. 5.3. Therefore, special attention must be taken to

implement the interrupt operator. All partial changes that may have happened

to the data state must be aborted at the point of interruption. Consequently, a

particular mechanism should be provided during the implementation to ensure

that incomplete computation leaves the data identical to the state before start

of the computation. This is a well-known problem in pre-emptive multi-tasking

systems where a number of tasks may have access to a ‘critical section’ such

as a shared area of memory (read/write global variables) or an input/output

ports. In the next section, we review a number of methods and techniques to

resolve this problem.

5.3 Related Work

The problem discussed above is a known problem in the area of concurrent

systems, and a number of solutions have been proposed. The most common ap-

proach is to use a kind of lock, known as a semaphore, when accessing a shared

resource. A process locks a semaphore and then accesses the resource. When it

finishes with the resource, it unlocks the semaphore. Any other process needing

access to the shared resource is forced to wait until it can acquire the lock. Us-

ing a semaphore requires careful programming practice otherwise it may raise a

number of problems. For instance, if one occurrence of a semaphore is omitted

or misplaced in a program, the entire program may collapse at run-time (Burns

and Wellings, 2001, p. 244). Furthermore, as the semaphore blocks a calling

process, a deadlock could occur, if semaphores access is not nested correctly,

which in turn may lead to a software failure. Moreover, priority inversion (Mall,

2009) is another problem could happen because of using semaphores. In this

case, a high priority process may be blocked for an unbounded time in ac-

cessing a shared resource that is locked by a low priority process. In order

to avoid the priority inversion problem, priority inheritance protocols were de-
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veloped (Goodenough and Sha, 1988; Sha et al., 1990). Many real-time op-

erating system (RTOS) support this, such as VxWorks (WindRiver, 1999),

MicroC/OS-II (Labrosse, 2002), and FreeRTOS (Barry, 2009). Additionally,

using semaphores is characterised by high memory requirements because the

state (context) of each blocked process should be saved in memory. Thus a

large number of processes (perhaps more than 100) would lead to unacceptable

memory usage (Poledna et al., 1996).

Alternatively, a lock-free approach was proposed by Herlihy and Moss in (Her-

lihy and Moss, 1993) by using ‘transactional memory’ (TM). The concept of the

transaction first emerged in the area of database management systems. The TM

approach is implemented in two ways: hardware TM (HTM) and software TM

(STM) approach. The HTM approach relies on hardware support to execute a

transaction may be used. The transaction is defined as a set of operations that

are executed by a process satisfying ‘serializability’ and ‘atomicity’ (Herlihy and

Moss, 1993). The first term means that the steps of a transaction do not appear

to be interleaved with the steps of another transaction, so the transaction seems

to execute serially. The second term means that when a transaction completes

a sequence of changes to shared places, it commits and then the changes become

visible, or aborts and all changes are then discarded. The STM approach was

introduced in (Shavit and Touitou, 1997). It provides a software-based imple-

mentation of memory transactions exploiting the increase in processors speed.

The HTM approach provides better performance but it has architecture limi-

tations in addition to the cost of special purpose hardware for implementation.

The STM approach allows larger size of transactions but the implementations

suffer from the overhead required to manage transactions (Mankin et al., 2009;

Cascaval et al., 2008).

Another approach however deals with the source of the problem rather than

providing a solution. In the co-operative scheduling approach of (Pont, 2008b),
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the problem does not arise because only one task is active at any time. A task

runs to completion and can not be pre-empted by other tasks. As pre-emption

is eliminated, the need for a mechanism to protect shared resources does not

appear. Considering this approach requires re-design of the system in order to

satisfy the assumptions made by the approach such as the duration of tasks

must be less than the schedule tick interval (Pont, 2008b).

Additionally, some computer architectures provide some instructions that can

read and write memory locations atomically (can not be interrupted by inter-

rupts). For example, in the Motorola HC08, the LDHX instruction can load

a 16-bit memory location to the index register (MC68HC08, 2012). Similarly

STHX instruction can store the 16-bit index register in a memory location. Fur-

thermore, ARM processors have the Load/Store Multiple (LDM/STM) instruc-

tion which can transfer multiple registers of 32-bit size between memory and

the processor in a single instruction (Sloss et al., 2004). The main drawback

of using these instructions to update data is that they may increase the inter-

rupt latency since they are not interrupted while executing. For example, LDM

requires (2 +Nt) cycles to complete execution, where N is the number of reg-

isters to load and t is the number of cycles required for each sequential access

to memory (Sloss et al., 2004). Although a solution is proposed in (Maaita

and Pont, 2005) to reduce the impact of such instructions on the interrupt, this

method is a hardware specific and is not appropriate if the data update size is

large.

5.4 The Proposed Solution Ensuring Atomic

Update

In this section, we discuss a number of methods that ensure the atomicity of

data update. For each method, the worst-case response time of a computa-
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tion is calculated as the means of comparison. We adopt a traditional analysis

approach to calculate the response times. We identify the following three char-

acteristics to compare between the proposed methods:

1. ISR release jitter,

2. worst-case computation completion time,

3. ease of implementation.

Some of the methods could cause a delay to the next invocation of the ISR

because of the way they implement the atomic update. This delay is called ISR

release jitter. The problem with this delay is that it increases the worst-case

execution time of the ISR. The ISR execution time has been included explicitly

in our analysis when we produce the lower/upper bound of computations as

discussed in Chapter 4. Therefore, the method that minimises the ISR release

jitter would yield better analysis (less pessimistic result). The completion time

of a computation expresses the time needed to execute the computation and to

update its data. Then, the method that yields a shorter worst-case completion

time will be considered. The third criterion considers the method that is easier

to implement, i.e. the method that does not require more resources to be

implemented such as CPU time, memory, or hardware timers.

Additionally, the analysis provided in this work considers only a single process

running on a single node, so all computations come from the same net. When

a number of processes are allocated to the same node, some computations may

have to run at the same time. We have discussed a number of scheduling

approaches in Chapter 3. Each proposed method implements different approach

to ensure the data update atomicity, so their efficiencies are different in each

case. However, when we add the consideration of multi-process to the methods,

the additional process affects all methods in the same way and the only changes
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occur to the computation times in a consistent way for all methods. These

changes do not assist to decide between the methods.

In the following, section 5.4.1 introduces the traditional analysis, and sec-

tion 5.4.2 proposes the atomic update methods.

5.4.1 Worst-Case Response Analysis

The exact analysis of Joseph and Pandya (Joseph and Pandya, 1986) calcu-

lated the worst-case execution time (response time) of a task in a system with

pre-emptive task scheduler. The system behaviour is limited to the following

computation model in order to do this kind of analysis. All tasks have peri-

ods. All deadlines are equal to these periods. All tasks are independent and do

not communicate with each other. Finally, a task has a unique priority level

according to the rate monotonic policy in which the shorter the period, the

higher the priority. The equation (Joseph and Pandya, 1986) below shows how

the worst-case response time can be computed iteratively:

Rn+1
i = Ci +

∑
∀j∈hp(i)

⌈
Rni
Tj

⌉
Cj (5.1)

Here are the definition of the parameters in Equation (5.1):

• Ci: worst-case computation time of task i.

• Ti: period of task i.

• Ri: worst-case response time of task i.

• n: the current iteration number.

• hp(i): a set of tasks of higher priority than task i. The
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Response Time Analysis with Release Jitter

Equation (5.1) assumes that there is no delay between the invocation time -

arrival time - of a task and release time - actual running time - of the task. The

strict periodicity assumption now is relaxed. The following equation takes into

account the variable delay between the invocation and release time of a task:

wn+1
i = Ci +

∑
∀j∈hp(i)

⌈
wni + Jj
Tj

⌉
Cj

Ri = wi + Ji

(5.2)

Here are the definition of the parameters in the equation:

• wi: worst-case response time of task i once it has been released.

• Ri: worst-case response time of task i including the delay between invo-

cation and release.

• n: the current iteration number.

• Jj : is release jitter of a higher priority task j, the difference between the

longest and shortest delay from invocation to release of the task.

5.4.2 Atomic Update Methods

In order to apply the traditional response time analysis on the atomic update

methods, we employ the following assumptions. First, the ISR is treated as a

periodic task that runs with the highest priority level. The period of the ISR

is denoted by T , and the worst case computation time of the ISR is expressed

by Cs. Second, computations are considered to execute in the lower priority

level. A computation has a worst-case computation time expressed by Ci, and

the worst-case response time is denoted by Ri. The worst-case time required by
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a computation i to update its data state is represented by Ai. The completion

time of the computation is expressed by ri. Third, all ready computations are

assumed to be released at the beginning of the ISR. This assumption complies

with the critical point assumption of the traditional analysis at which all sys-

tem components (tasks) are assumed to be released at the same time. Forth,

the duration of the atomic update of a computation must be accommodated

within one tick interval: Ai < (T − Cs). This is because a longer update op-

eration would lead to missing one tick and the track of the elapsed time as a

consequence. However, a long atomic update of data could be split into a num-

ber of short operations by the programmer in a way that satisfies the previous

constraint.

Then, for each method, we calculate the worst-case response time of a com-

putation in the basic case that does not take into account the effect that a

method has on the ISR release jitter or the time of the atomic update of data.

Next, we calculate the computation response time by taking into account only

the ISR release jitter when presented. After that, we calculate the worst-case

completion time of the computation which includes the basic response time and

the atomic update time.

Method(1): One-tick duration computation

Similarly to the TT approach (Pont, 2008b), when a computation completes in

one-tick time, then the data is guaranteed to be modified without interference

of other computations. Fig. 5.4 shows two short sequential computations. The

computation 1 and 2 are completed within one tick interval. When the first

computation updates data before completion, then the update operation per-

formed by the computation 1 is ensured to be completed before running the

computation 2. Consequently, the main assumption in this approach is that

the worst-case response time of a computation plus the data update time must
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be less than the tick interval time: Ri +Ai < T .

t

T

ISR

Computation1

Computation2

R1 R2

Cs

t

Atomic Update

A1

Fig. 5.4: Method(1): One-tick duration computation.

The worst-case response time of the computation is simply calculated by Equa-

tion 5.3:

Ri = Ci + Cs (5.3)

This method has no impact on the ISR release time because a computation

completes within one tick time.

The worst-case completion time of a computation is calculated by Equation 5.4:

ri = Ri +Ai (5.4)

Method(2): Atomic Update with Enable/Disable Interrupts

A computation may disable the timer interrupt before updating the data state.

Once the computation completes, the data is modified and the timer interrupt

is enabled thereafter. The advantage of this solution is that it introduces no

delay between the computation and the data update. However, the update

operation may exceed the time available in the current time slot because of a

large size of data that needs to be changed. This will cause a release jitter to
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the next invocation of the ISR (represented by Js) before it is actually started,

see Fig. 5.5 for example. In the worst-case, the ISR release jitter could equal

Ai. This may happen when the computation starts data update operation just

before the beginning of the next invocation of the ISR. Additionally, the method

provides no opportunity to interrupt the current-running computation once it

starts an update operation.

t

t

T

ISR

Cs

Computation2

Atomic Update

Computation1

R1 A1 R2

Js

Fig. 5.5: Method(2): Computation disables interrupts.

The worst-case response time of a computation is calculated by the equation 5.5.

Rn+1
i = Ci +

⌈
Rni
T

⌉
Cs

R0
i = Ci

(5.5)

The worst-case response time of a computation that suffers from an ISR release

jitter is calculated by the equation 5.6:

Rn+1
i = Ci +

⌈
Rni + Js

T

⌉
Cs

R0
i = Ci

0 ≤ Js ≤ Ai−1

(5.6)
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where Ai−1 is the atomic update time needed by a preceding running compu-

tation.

The worst-case completion time of a computation is calculated by the equa-

tion 5.7:

ri = Ri +Ai (5.7)

Method(3): Atomic Update Inside the Interrupt Handler

In this method, a computation does not update the data state. The computa-

tion completes and then idles. The data is updated within the next execution of

the ISR. Although this method ensures the strict periodicity of the tick timer, it

introduces a delay to the execution of a succeeding ready-to-run computation.

For example, in Fig. 5.6, computation 1 idles for d1 time unit before the data

is updated in the next invocation of the ISR. Furthermore, a large size of data

may cause a large overhead to the ISR execution time, leaving no time to pro-

cess a new ready computation in the next time slot. Similarly to the previous

method, this method introduces an ISR release jitter which equals the time of

the atomic update.

t

T

ISR

Cs

Computation2

Atomic Update

Computation1

R1 R2

t

d1

A1

Fig. 5.6: Method(3): Update data inside the interrupt handler.
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The worst-case response time of a computation is calculated by the equation 5.8.

Rn+1
i = Ci +

⌈
Rni
T

⌉
Cs

R0
i = Ci

(5.8)

The worst-case response time of a computation that suffers from an ISR release

jitter is calculated by the equation 5.9:

Rn+1
i = Ci +

⌈
Rni + Js

T

⌉
Cs

R0
i = Ci

Js = Ai−1

(5.9)

where Ai−1 is the atomic update time needed by a preceding running compu-

tation.

The worst-case completion time of a computation is calculated by the equa-

tion 5.10:

ri = Ri + di +Ai

di =

⌈
Ri
T

⌉
T −Ri

(5.10)

Method(4): Atomic Update with Rollback

In this method, a computation is allowed to modify its data state immediately

after it has completed. A roll-back mechanism is provided to guarantee that the

interrupted update operation leaves the data identical to the state before the

execution of the operation. The proposed roll-back mechanism is illustrated in

Fig. 5.7. A computation first obtains a local copy of the data state. When the

computation is completed, it saves a copy of the original data sate in a log and

then updates the global data state. The roll-back mechanism is important to

protect the data from partial changes because of the interrupted (or incomplete)
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update operation, and to restore the data to the previous consistent state.

However, a considerable interrupt overhead may occur if the update operation

is interrupted at the point just before it terminates. In this case, a full recovery

procedure must be performed to all changed data, which would introduce a

delay to a succeeding ready-to-run computation. For example, in Fig. 5.8, the

update operation of computation 1 is aborted in the next invocation of the ISR

before it terminates. In this case, a roll-back recovery operation is undertaken

to restore the original state of the data. It consumes B1 time units before the

new ready computation 2 is dispatched. Similarly to the previous method, a

computation may suffer from the ISR release jitter.

Local data state

computation

Atomic update

Local data state

computation

Atomic update

Local data state

computation

Atomic update

Computation 2Computation 1 Computation n

Log

Empty-flag

Global data state

(1) read

(2) write-backup

(3) write

Fig. 5.7: Roll-back mechanism.

The worst-case response time of a computation is calculated by the equa-

tion 5.11.

Rn+1
i = Ci +

⌈
Rni
T

⌉
Cs

R0
i = Ci

(5.11)

The worst-case response time of a computation that suffers from an ISR release
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t

T

ISR

Cs

Computation2

Atomic Update

Computation1

R1 R2

t

A1

B1

Roll-back

Fig. 5.8: Method(4): Update data with roll-back.

jitter is calculated by the equation 5.12:

Rn+1
i = Ci +

⌈
Rni + Js

T

⌉
Cs

R0
i = Ci

Js = Bi−1

(5.12)

where Bi−1 is the time needed to do a roll-back recovery of data of a preceding

running computation. Similarly to the constraint we adopt for the time of the

atomic update, it must be ensured that the recovery time completes in the

worst-case within one tick interval (i.e, Bi−1 < T − Cs).

The worst-case completion time of a computation is calculated by the equa-

tion 5.13:

ri = Ri +Ai (5.13)

Method(5): Delayed Atomic Update

This method always assumes that there is insufficient time to update the data

state of a computation in the current time slot, see Fig. 5.9. When the computa-
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tion is completed, it postpones the data update operation to the next available

time slot. The main advantage of this method is that the ISR has the opportu-

nity to abort the current running computation before any changes may occur

to the data state, and run a new computation after that.

t

T

ISR

Cs

Computation2

Atomic Update

Computation1

R1 R2

t

d1 A1

Fig. 5.9: Method(5): Delayed atomic update.

The worst-case response time of a computation is calculated by the equa-

tion 5.14.

Rn+1
i = Ci +

⌈
Rni
T

⌉
Cs

R0
i = Ci

(5.14)

This method has no impact on the ISR release time.

The worst-case completion time of a computation is calculated by the equa-

tion 5.15:

ri = Ri + di + Cs+Ai

di =

⌈
Ri
T

⌉
T −Ri

(5.15)
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Method(6): Update Data Now or Delay

A computation checks the remaining time in the current time slot to see if there

is a sufficient time to update the data state before the next invocation of the

ISR. If this is the case, the computation immediately changes the data in the

current slot, otherwise the update operation is delayed to the next available

time slot and the computation idles. Fig. 5.10 illustrates the two cases. In the

figure, computation 1 modifies the date immediately when it is completed since

the remaining time d1 is longer than the time needed to update the data A1.

Computation 2, however, delays the update operation because the remaining

time d2 in the current slot is shorter than the time needed to complete the

update operation A2. The advantage of this method is that the ISR has always

the opportunity to cancel the current running computation before any changes

may occur to the data state, and to run a new computation after that.

t

T

ISR

Cs

Computation2

Atomic Update

Computation1

R1 R2

t

d1

A1 d2 A2

Immediate
atomic update

Delayed
atomic update

Fig. 5.10: Method(6): Update now or delay update.

The worst-case response time of a computation is calculated by the equa-
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tion 5.16.

Rn+1
i = Ci +

⌈
Rni
T

⌉
Cs

R0
i = Ci

(5.16)

This method has no impact on the ISR release time.

The worst-case completion time of a computation is calculated by the equa-

tion 5.17:

ri =

 Ri +Ai if Ai ≤ di

Ri + di + Cs+Ai if Ai > di

di =

⌈
Ri
T

⌉
T −Ri

(5.17)

Method Worst-case response
time

Worst-case response time
with ISR release jitter

Worst-case completion
time

1 Rn+1
i = Ci + Cs none Ri + Ai

2 Rn+1
i = Ci +

⌈
Rni
T

⌉
Cs Rn+1

i = Ci +

⌈
Rni + Js

T

⌉
Cs Ri + Ai

3 Rn+1
i = Ci +

⌈
Rni
T

⌉
Cs Rn+1

i = Ci +

⌈
Rni + Js

T

⌉
Cs

Js = Ai−1

Ri + di + Ai
di =

⌈
Ri

T

⌉
T − Ri

4 Rn+1
i = Ci +

⌈
Rni
T

⌉
Cs Rn+1

i = Ci +

⌈
Rni + Js

T

⌉
Cs

Js = Bi−1

Ri + Ai

5 Rn+1
i = Ci +

⌈
Rni
T

⌉
Cs none Ri + di + Cs + Ai

di =

⌈
Ri

T

⌉
T − Ri

6 Rn+1
i = Ci +

⌈
Rni
T

⌉
Cs none Ri + Ai, if Ai ≤ di . Or

Ri + di +Cs+Ai, if Ai > di
di =

⌈
Ri

T

⌉
T − Ri

Tab. 5.1: Response times and completion times of atomic update methods.
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5.5 Evaluation and Discussion

Six methods have been proposed to resolve the problem of atomic update. We

calculate, in each method, the worst-case response time of a computation in the

basic case, the worst-case response time of a computation that suffers from the

ISR release jitter (when presented), and the worst-case completion time of a

computation. The results are summarised in Table 5.1. The response times of a

computation are computed similarly in all methods, see the first column of the

table. The response time of the method 1 can be considered a special case of

the response time of the remaining methods because computations, according

to this method, complete within one tick interval and so the term
⌈
Rni
T

⌉
equals

1. In the second column, the response time of a computation is calculated

when the computation experiences ISR release jitter. The ISR release jitter is

caused by the overrun of a preceding computation and it is related to the data

update method. The methods 2, 3, and 4 introduce ISR release jitter and so

they have impact on a succeeding running computation. The methods 1, 5,

and 6, however, do not introduce ISR release jitter. The third column shows

the calculation of the completion time of a computation which includes the

response time of the computation and the data update time. The completion

time varies according to the methods used to update data. The methods 1,

2, and 4 have similar way of calculation of the completion time which is the

summation of the response time and data update time only. The methods 3

and 5 require calculating di, the idle (waiting) time that the computation has

to wait until the update operation is started, in addition to the response time

and data update time.

Based on the first criterion introduced in section 5.4, the methods 2, 3, and 4

are discarded because they introduce ISR release jitter and so may lead to a

pessimistic analysis. The methods 1, 5, and 6 pass this criterion because they

have no impact on the ISR release jitter.
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When the system computations are short and can complete within one tick time,

then method 1 would be suitable for implementation of our code generation

approach. Method 1 has very restrictive assumption on the duration of the

computations which would be difficult to satisfy if we require long computations

since this would require increasing the tick interval and reducing responsiveness

of the system. However, this method does not require a special mechanism to

ensure the atomicity of the data update. Moreover, a long computation can be

split by the programmer into a number of short computations in a way that

ensure all computations and their atomic updates complete within one tick

interval.

The methods 5 and 6 can be considered when the system computations (or

at least one computation) require more than one tick interval to complete.

Although, method 6 would give better performance than method 5 during run-

time because the data is updated soon after the computation completes, both

of them have the same worst-case completion time. Now, according to the third

criterion, method 5 is easier to implement than method 6 because method 6

requires access to a hardware timer during run-time in order to evaluate the

remaining time before the next invocation of the ISR. Therefore, method 5

would be more suitable for our code generation approach.

A particular mechanism to ensure the atomicity of the data update is not re-

quired in the following two cases. First, a computation takes more than one

tick interval to complete but it is not affected by the interrupt operator (i.e.

not interrupted at all). Second, a computation could take more than one tick

interval and the data update is interrupted but the computation does not use

the data again before they are reinitialised. These cases can be checked using

model-checking. It would require constructing a suitable property to verify that

the computation never be affected by the interrupt or makes use of data before

reinitialisation. When there is a computation that runs for a number of ticks
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and can be affected with the interrupt, then one of the recommended mecha-

nism must be implemented and applied in order to ensure the atomicity of the

data update. This however is outside the scope of this thesis. Future work on

the atomic update work would require implementing a chosen solution for the

code generation, and testing it in a case study.

5.6 Summary

The bCANDLE semantics requires that computations complete and update

their data atomically. The syntactic restrictions imposed by CANDLE ensure

that the interrupt operator is the only source of potential failure of this re-

quirement. This chapter has examined the problem of the interrupt operator.

Several methods have been proposed to resolve the problem, namely one-tick

duration computation, atomic update with enable/disable interrupts, atomic

update inside the interrupt, atomic update with rollback, delayed atomic up-

date, and update data now or delay. Many of these methods are well-known

in the in the context of database transactions (Haerder and Reuter, 1983). We

have presented a new analysis in the context of embedded systems by applying

response time analysis to calculate the worst-case response time of each method

and use this as our basis for comparison.



6. EVALUATION AND EXPERIMENTS

6.1 Introduction

The purpose of this chapter is to demonstrate the feasibility of our code gener-

ation approach on a number of case studies. Additionally, we are attempting to

highlight the limitations of the approach and assess the complexity of systems

that may be analysed with available computing resource. The measures used to

demonstrate the practical applicability are the performance and the formal ver-

ification capability of the proposed approach. The performance is measured in

terms of the computational effort required to generate an executable code and

a formal model for a given design, and the computational resources including

memory (RAM and ROM) and CPU load required to execute the examples on

the target. The experimental results are compared with results taking an alter-

native approach employing a real-time operating system (e.g, MicroC OS-II) to

implement the same examples. To evaluate the formal verification capability of

our approach, we generate a formal model (Timed Automata model) for each

case study and use a model checking tool (e.g, UPPAAL Model Checker) to

check if the system satisfies a number of useful properties including functional

and timing properties. The main point of this is to discover to what extend

the models which are generated are tractable. Moreover, the computation re-

sources (CPU time and memory) used by the model checker are measured for

the properties. This illustrates the cost of the computation resources required

to verify a number of different case studies.

The chapter is organised as follows. Section 6.2 briefly presents the main char-
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acteristics of the four examples we choose as case studies, namely a flow regu-

lator system, steam boiler control system, security alarm system, and anti-lock

braking and anti-slip regulation system (ABS/ASR). Section 6.3 presents our

results from the performance evaluation of the code generated for the selected

case studies. Section 6.4 provides experimental results that demonstrate the

formal verification capability of our approach. Finally, we conclude our results

in section 6.5.

6.2 Case Studies

For our practical evaluation, we use four case studies: a flow regulator system,

steam boiler control system, security alarm system, and an ABS/ASR system.

The flow regulator system is a well-known example in the literature (Kopetz,

1997). Additionally, it is especially well-suited to assess the scalability of our

approach because we readily can vary the complexity of the designs. The steam

boiler control example has multiple operational modes meaning that the sys-

tem behaves in different phases during running. This kind of system is very

difficult to analyse by traditional methods applicable only to periodic systems.

The security alarm example illustrates the usefulness of the local communica-

tion mechanism adopted by our approach because all system components are

executed on a single-processor platform and communicate only by locally pass-

ing messages. The ABS/ASR system was motivated by the fact that it is an

industry-related example, and it is recently used in the literature, for exam-

ple (Enoiu et al., 2012; Herber, 2010).

6.2.1 Flow Regulator System

The purpose of the system is to control the flow rate of a liquid through a pipe

according to a set value. The physical view of the system is depicted in Fig. 6.1.
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The system consists of two processes that run on separate nodes communicating

via a CAN bus. The first process is Flow which periodically reads the rate of

the flow using a flow sensor and then broadcasts the flow value through the

CAN bus. The second one is Valve which controls the position of a valve based

on the received flow value so that the flow rate remains within a small range

around a pre-determined flow value. The system architecture is illustrated in

Fig. 6.2. The CANDLE program of the system is shown in Appendix A.

Flow Regulator System

Flow Setpoint

Tank

Control Valve Flow Sensor

Fig. 6.1: Flow Regulator System.

CAN

Transceiver

CAN

Transceiver

CAN Bus

System Environment

Flow
process

Valve
process

Fig. 6.2: Architecture of the flow regulator system.

In order to evaluate the scalability of our approach, the size of the system design

is varied by adding more processes of Flow and Valve, and then the performance

of the generated code for the new designs is evaluated as provided later in

section 6.3. The system design is varied according to the following scenarios. We

preserve the number of nodes and duplicate the number of processes executing



6. Evaluation and Experiments 122

on each node of the original design. The processes that are allocated to one

node communicate with the corresponding processes of the other node using one

CAN bus, see Fig 6.3. For the purpose of performance evaluation, the process

of each node is duplicated up to three times. So we obtain another two versions

of the example called Flow2 and Flow3. Now, Flow2 consists of 2 processes of

Flow and 2 processes of Valve, and Flow3 consists of 3 processes of Flow and

3 processes of Valve. In the rest of this chapter, we use Flow1 to refer to the

original flow example which consists of 1 Flow process and 1 Valve process.

CAN

Transceiver

CAN

Transceiver

CAN Bus

System Environment

Flow
process

Flow
process

Valve
process

Valve
process

Fig. 6.3: Architecture of the modified flow regulator system.

6.2.2 Steam Boiler Control System

This example is a modified version of the steam boiler control problem described

in (Abrial et al., 1996). The system consists of a steam boiler, a pump, and

water-level sensor. The pump controls the flow of water into the boiler, which

is then heated and evaporated to produce steam. The steam flows out from

the top of the boiler and is used to power a generator. The water-level sensor

provides the control system with the level of water in the boiler. Fig 6.4 shows a

physical view of the system. The objective of the system is to maintain the level

of water (w) in the boiler within minimum (W1) and maximum (W2) bounds.
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This can be performed by turning the pump on or off, so it is ensured that

W1 ≤ w ≤ W2 is satisfied. It is considered unsafe to operate the system if

the sensor process fails. The system detects a sensor process failure when the

interval between sensor messages exceeds some threshold.

Steam output

W1

W2

Boiler

Pump

Level Sensor

Steam Boiler Control

System

Water

Fig. 6.4: Steam Boiler Control System.
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Fig. 6.5: Architecture of the steam boiler control system.

The control system consists of three processes: Controller, WaterLevel, and

Pump. Each process runs on a separate node and communicates with other

processes via a CAN bus. Fig. 6.5 shows the architecture of the system. The

CANDLE program of the system is shown in Appendix A. The system operates

in three different modes: initialisation, ready, and normal.
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• In the initialisation mode, the system resets its devices and initialises its

local data. It is assumed that the system starts with the water level in

the boiler between W1 and W2 and the pump is off. The system moves

to the ready mode after successful initialisation.

• In the ready mode, the processes WaterLevel and Pump repeatedly re-

port a ready message to the Controller process until they receive a start

message. After that, the system moves to the normal mode.

• In the normal operation mode, the WaterLevel process periodically reads

the water-level sensor and broadcasts the current sensor value. The

Controller process receives the sensor value and then evaluates the value

of the water level. If the level is too high, a message is sent to turn off the

pump. If the level is too low, a message is sent to turn on the pump. The

pump is kept in the current state if water is within the acceptable level.

However, the Controller process sends a shutdown message to other pro-

cesses if it does not receive a sensor level value before timing out and then

the system idles. In this case, it is assumed that the water-level sensor is

faulty.

6.2.3 Security Alarm System

The security alarm system is a simple theft-detection device (e.g, a briefcase).

The system functions as follows. A user presses a button to enable the security

mechanism. When the system detects any motion, it requires the user to enter

a security code within a pre-defined time interval. The alarm timer starts

when the motion is first detected. If the correct code is entered in time, the

security mechanism is disabled and the device can be opened by pressing a

button. When the correct code is not entered on time, the alarm sounds.

However, the alarm can be turned off only by entering the correct security

code, after that the security mechanism is disabled. The device can be locked
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and unlocked freely if the security mechanism is not enabled. The physical view

of the system is depicted in Fig 6.6. In this figure, the button E of the keypad

is used to enable/disable the security alarm system, and the button L is used

to lock/unlock the device. The LCD is used to display the status of the system.

Alarm
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Security Alarm

System

1

0

2 3

4 5 6

7 8 9

L

E

LCD Keypad

Sounder

Fig. 6.6: Security Alarm System.

The system comprises four processes that run on the same node and communi-

cate via a local broadcast channel. Fig.6.7 illustrates the system architecture.

The main process is Control which continuously monitors and reports the sta-

tus of the device. The PendingTimer process represents the alarm timer which

keeps track of the current time elapse. The Flasher process enables a suitable

alert device (e.g, sounder). The Display process outputs the current system sta-

tus to a suitable display device (e.g, LCD). The system processes communicate

by exchanging messages using a single local broadcast channel. The CANDLE

program of the system is shown in Appendix A.

6.2.4 ABS/ASR System

In a vehicle with a conventional braking system, when the driver depresses the

brake pedal in the case of emergency situation, the vehicle wheels may get

locked. The locked wheels prevent the driver from steering the vehicle while

stopping. This could threaten the driver’s life or cause severe damage. To avoid
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Fig. 6.7: Architecture of the security alarm system.

wheel lockup or loss of traction, the ABS/ASR system (Day and Roberts, 2002;

Bosch GmbH, 2011) has been developed . The ABS/ASR system monitors the

speed of each wheel and regulates the brake pressure in order to avoid locking

a wheel. This improves the driver’s control over the vehicle while the brakes

are applied.

The system consists of three process types: a Sensor process that reports a

wheel speed, a Brake process that regulates the brake pressure of a wheel, and

a Control process that executes the ABS/ASR control algorithm. There are

four sensor processes and four brake processes in the system. The sensor and

brake process are allocated to the same node, whereas the control process is

executed on a single node. All processes communicate using a CAN bus. The

control process periodically sends a speed request to the sensor processes. The

sensor processes send the speed of the wheel to the control process. The control

process executes the ABS/ASR control algorithm, and then broadcasts the

new pressure values. The brake process of each wheel reads its corresponding

pressure value and adjusts the brake pressure accordingly. The physical view

of the system and the architecture of the design are shown in Figure 6.8. The

CANDLE program of the ABS is shown in Appendix A.
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Fig. 6.8: ABS/ASR Control System.

6.3 Performance Evaluation

For the evaluation of the performance of our approach, we measured the com-

putational effort of

• the generation of executable C code for the CANDLE program,

• the transformation of a given CANDLE program into an UPPAAL model.

The code generator program and the model generator program were run on a

PC with an AMD Athlon(tm) 3GHz Dual Core Processor 5200B and 2 GB of

main memory running a Linux operating system. Table 6.1 shows the main

features of the system design for each case study. In this table, Process is the

number of processes in the CANDLE design of the example, LOC is the number

of lines of CANDLE code, and Transition is the number of transitions of the

net generated from the example design. The results show that the examples

have small nets (expressed by the number of transitions), e.g the Alarm and

ABS example have only a few tens of transitions.

The results of the code and model transformation times are presented in Ta-

ble 6.2. In this table, Code-time represents the time required to generate an

executable C code for the example, and Model-time expresses the time required
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Case-study Processes LOC Transitions

Flow1 2 15 7
Flow2 4 27 12
Flow3 6 39 17
Boiler 3 60 39
Alarm 4 61 32
ABS 9 75 38

Tab. 6.1: Features of the case studies.

to generate an UPPAAL model for the example. The transformation times are

given in seconds. The code and model generator program has been written

in the Ocaml and Python programming languages using the StringTemplate

library (Parr, 2013). The experiment shows that the measured times are ac-

ceptable (i.e. performed within a few seconds), and vary a little as a function

of the size of the example (number of processes, LOC, and transitions).

Case-study Code-time (s) Model-time (s)

Flow1 2.00 3.81
Flow2 2.02 3.83
Flow3 2.06 3.97
Boiler 2.34 4.65
Alarm 2.29 4.77
ABS 2.26 5.18

Tab. 6.2: Transformation times from CANDLE into C and UPPAAL.

For the evaluation of the computational resource of the approach, the memory

usage of the executable C code has been measured for each case study. The

case studies were implemented using an Olimex LPC-2378STK development

prototype board with MCU LPC2378 16/32 bit ARM7TDMI-STMt processor,

512K Bytes of Program Flash, and 16K Bytes of RAM. The source codes of the

examples were compiled using the IAR Embedded Workbench IDE version 6.21

with the compiler setting shown in Table 6.3. The results of the experiments

are shown in Table 6.4. When the example is implemented using more than one

node, the memory usage is presented separately for each computing node. For

instance, the Flow1 case study consists of two computing nodes: node flow and

node valve. The scheduling algorithm employed in each node of the case study is
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shown. Currently, we use two scheduling methods: cooperative (co) and round-

robin (rr) scheduling method. The memory usage of the application code (which

is generated code by our framework) and the device-driver code (which is used

to access the IO, e.g. CAN, LCD, LEDs, and ADC) were shown separately,

see Table 6.4. For the application code, the RAM and ROM requirements

were measured to assess the efficiency of the generated code. The experimental

results of the memory usage were encouraging because the examples consumed

relatively little RAM. The RAM area is approximately 20% of the ROM area,

see Fig.6.9. The memory usage of the device-driver code was presented in total

(RAM and ROM), see the column IO code of the table. The experimental

results showed that the alarm example requires the greatest IO code compared

to the others (approx. 11.5 KB). This is because the example makes use of the

LCD that requires much more code than other devices such as turning on/off

an LED.

General Options

Target device NXP LPC2378

Endian mode little

Output file executable

C/C++ Compiler Options

Language C

C dialect C99

Language conformance standard with IAR extensions

Generate interwork code true

Processor mode ARM

Optimisation level high, balanced

Tab. 6.3: IAR C compiler options.

Additionally, the ISR time has been estimated empirically for each case study

with expected uncertainty of about ±5µsec. Although, an analytical study

using some static analysis tools (e.g. (Absint, 2012; Tidorum, 2012)) would be

interesting to obtain the worst-case execution time of the ISR, such tools are not

supported by the current IDE. The ISR times are presented in the last column of

Table 6.4. We can notice that the ISR time increases in according to the size of
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Case-study App. Code (Byte) IO Code (Byte) ISR
RAM ROM Total RAM+ROM time (µs)

Flow1 node flow (co) 381 2677 3058 2472 25
node valve (co) 373 2561 2934 2004 20

Boiler node controller (co) 396 2600 2996 1992 40
node pump (co) 396 2596 2992 1992 40
node waterlevel (co) 408 2836 3244 2472 20

Alarm node alarm (rr) 1324 5332 6656 11557 150
ABS node control (co) 832 3776 4608 2008 40

node wheel0 (co) 506 2729 3235 2480 30
node wheel1 (co) 506 2729 3235 2480 30
node wheel2 (co) 506 2729 3235 2480 30
node wheel3 (co) 506 2729 3235 2480 30

Tab. 6.4: Memory usage of the case studies.

Fig. 6.9: RAM vs. ROM memory usage of the case studies.

the example. The ISR time of the alarm example required considerably longer

execution time compared to the other examples because all system components

are allocated on the same computing node.

Furthermore, the memory requirement of the generated code for some examples

have been compared with alternative method that employs the MicroC/OS-II

real-time kernel to implement the same examples. The examples that we use

are the original flow regulator system (Flow1) and its varied versions (Flow2

and Flow3) that already discussed in section 6.2.1. The examples implemented
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in MicroC/OS-II have been obtained from undergraduate student assignments

performed in Northumbria University. Table 6.5 shows the measurements of the

memory usage for the two implementation methods. The device driver code was

omitted in this experiment since it is fixed in both methods. The results show

that our approach can generate C code in which the required memory size is

competitive to the traditional method that employs a widely used real-time

kernel. Fig. 6.5 presents the results of the comparison. It is apparent that the

required RAM of our approach is at least 50% smaller than the required RAM

of the MicroC/OS-II implementation.

Generated App. Code (Byte) RTOS App. Code (Byte)
Case-study RAM ROM Total RAM ROM Total

Flow 1 node flow 381 2677 3058 1000 2402 3402
node valve 373 2561 2934 1340 2906 4246

Flow 2 node flow 485 2821 3306 1164 2472 3636
node valve 461 2673 3134 1488 2994 4482

Flow 3 node flow 589 2953 3542 1368 2538 3906
node valve 565 2725 3290 1680 3078 4758

Alarm node alarm 1324 5332 6656 2914 5614 8528

Tab. 6.5: Comparison with RTOS code.

6.4 Formal Verification

For the evaluation of the formal verification capability of our approach, we gen-

erated TA models from the CANDLE designs of the provided case studies using

an existing framework. The main point of this is to discover to what extend the

models which are generated are tractable. We verified safety (something wrong

never happens) and bounded-response time properties (something useful will

happen before some time), see section 6.4.1. Additionally, the model checking

tool is used to assess the capability of the available hardware resources. An ex-

ample of that is a number of transmit/receive buffers required of an employed

CAN controller. This demonstrates the usefulness of the generated model dur-

ing the design phase, see section 6.4.2.
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Fig. 6.10: Memory usage comparison.

We used the UPPAAL model checker version 4.0.11 with the verification setting

shown in Table 6.6. The model checker program was run on a PC with an AMD

Athlon(tm) 3GHz Dual Core Processor 5200B and 2 GB main memory running

a Linux operating system.

Option Value

Search Order Breadth First

State Space Reduction Conservative

State Space Representation DBM

Diagnostic Trace None

Extrapolation Automatics

Hash table size 16MB

Tab. 6.6: UPPAAL verification options.



6. Evaluation and Experiments 133

6.4.1 Model Checking Properties

Flow Regulator System

For the flow regulator example, we verified the following properties:

P1.1 deadlock freedom,

P1.2 whenever the flow sensor is read, the valve is adjusted within t time units,

P1.3 whenever the flow sensor is read, it is read again within t time units,

P1.4 whenever the valve is adjusted, it is adjusted again within t time units,

P1.5 whenever the flow message is enabled, then it will be received within t

time units.

The property P1.1 is a safety property. The property P1.2, P1.3, and P1.4 are

bounded-response time properties. They required a separate test automaton

to be expressed in the UPPAAL language. The property P1.5 represents the

worst-case transmission time of the message. It is also a bounded-response time

property. The specification and the verification of the properties are illustrated

in the following.

The property P1.1 can be expressed easily in the UPPAAL query language

as follows:

A[] not deadlock (P1.1)

The property P1.2 is an example of bounded-response time property. The

property has the following general form:

∀�(P → ∀♦Q ∧ g ≤ T )

which means that whenever P (request) is satisfied at a certain time, then Q

(response) will eventually be satisfied within T time units, where g is a global
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clock which is reset once P has occurred. To express the property we, following

the approach of (Jensen et al., 1996; Aceto et al., 1998), introduce a separate test

automaton that probes the system processes. In the system model, the edges

that have observable computations are provided with probe actions. The test

automaton is designed to enter a new location when an observable computation

is fired. Then a simple form of liveness property (something useful will happen)

in UPPAAL is used to construct the property.

The test automaton of the property P1.2 is depicted in Fig 6.11. The test au-

tomaton interacts with the system model by using two synchronisation actions:

ReadSensor? and AdjustV alve?. The corresponding actions ReadSensor! and

AdjustV alve! are added into the edges that contain the computationReadSensor

and AdjustV alve respectively. The TA model of the Flow and Valve process

are presented in Appendix B. For example, when the system fires the observable

computation ReadSensor, the test automaton is forced to enter the location

L1.

Fig. 6.11: Test automaton of the property P1.2 of the flow regulator example.

The properties are translated into a liveness property in UPPAAL, written

ϕ  ψ, which is read as whenever ϕ is satisfied, then eventually ψ will be

satisfied. ϕ event means that the test automaton reaches the state L1 and ψ

event means that the automaton reaches the state L2. In order to measure the

time required between the two events, we use a clock variable tt. The clock

variable is reset whenever the system enters L1 state. Moreover, the location

L2 is chosen to be committed which means that time is a not allowed to progress

in this location, and the outgoing edge of the location must be involved in the
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next state transition. This is very useful when construct the property in order

to capture the moment at when the test automaton first enters this location.

Then we can write property P1.2 in UPPAAL as follows:

(Test1.L1 and Test1.tt == 0) -->

(Test1.L2 and Test1.tt <= C1) (P1.2)

where C1 is the upper bound time of the property and it is obtained by trial

and error. We have exploited the UPPAAL simulator to obtain the value of C1.

First, we run the verifier on a property that simply demonstrates the location

L2 is reachable in order to get the initial value of C1:

E<>(Test1.L2)

When the verifier returns, we read the maximum value of the clock variable

Test1.tt from its range in the simulator window. We then assign this value

to C1 and run the property P1.2. If the property is satisfied, we can conclude

the final value of C1. If the property is not satisfied, we enable the diagnostic

trace in the simulator window and read the maximum value of Test1.tt from

its range that violates the property. We use the new value to run the property

P1.2 again. We repeat this process until the property P1.2 becomes satisfied

for a particular value of C1.

The properties P1.3 and P1.4 represent the periodicity of executing the op-

eration ReadSensor and AdjustV alve respectively. It is useful to predict the

worst case time between two consecutive activations of an operation in the sys-

tem. For example, the operation ReadSensor can sense a change in the value of

the flow rate only at regular intervals (i.e. the flow rate is sampled). The change

in the value may happen just after the completion of the operation. Therefore,

to calculate the maximum time to adjust the valve for a new value of the flow

rate, we have compute the maximum interval time of the operation ReadSensor
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and the maximum time between the ReadSensor and AdjustV alve operation.

This requirement can be expressed simply by combining the property P1.3 and

P1.2.

We use the same approach above to construct properties P1.3 and P1.4. How-

ever, the second observable action in the test automaton is replaced with the

action that is enabled when the operation is executed again. For example, the

test automaton in Fig. 6.12 observes the two consecutive occurrences of the

operation AdjustV alve, so the probe action AdjustV alve? is used in the first

two edges of the automaton. The property is written in UPPAAL as follows:

(Test2.L1 and Test2.tt == 0) -->

(Test2.L2 and Test2.tt <= C2) (P1.3)

where C2 is the upper bound time of the property and it is obtained by trial

and error as well.

Fig. 6.12: Test automaton of the property P1.3 of the flow regulator example.

The test automaton of the property P1.4 is shown in Fig 6.13 and similarly we

can write the property as follows:

(Test3.L1 and Test3.tt == 0) -->

(Test3.L2 and Test3.tt <= C3) (P1.4)

where C3 is the upper bound time of the property obtained also by trial and

error.
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Fig. 6.13: Test automaton of the property P1.4 of the flow regulator example.

The property P1.5 represents the worst-case response time (WCRT) of a mes-

sage delivered by the CAN. This time includes the queueing time in a transmit

buffer and the transmission time of the message. Comparing to traditional

methods (e.g, (Davis et al., 2007)), our approach does not require a complex

analysis and restricted assumptions (e.g, periodic messages) in order to calcu-

late the WCRT of a message. The approach benefits of the model-checking tool

to predict the WCRT of (periodic or aperiodic) messages as long as a TA model

of the system is available.

We use the same approach to construct the property. The test automaton

observes the communication model of the system. The provided framework

generates this model in parallel with the model of the system processes from

the design. Appendix B shows the TA model of the communication. The test

automaton of the property is depicted in Fig. 6.14. In this figure, the action

k e? is enabled whenever a message is queued for transmission. The action k a?

is enabled when the message is accepted. The variable k v denotes the message

identifier (e.g, FLOW ). A guard (e.g, k v == FLOW ) is added into the first

two edges of the automaton to ensure that the transition is enabled only for a

particular message id. The property can be written:

(Test4.L1 and Test4.tt == 0) -->

(Test4.L2 and Test4.tt <= C4) (P1.5)

where C4 is the upper bound time of the property obtained by trial and error.
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Fig. 6.14: Test automaton of the property P1.5 of the flow regulator example.

The UPPAAL model checker was run in command-line mode because the GUI

version does not provide the verification time and memory usage needed to

obtain the verification results. If flow model.xml contains the TA model gener-

ated for the flow example, and flow model.q is a file containing a statement of

a property, the property can be checked in UPPAAL using the command:

verifyta -u flow_model.xml flow_model.q

The verification time and the memory usage needed to check the property are

computed using the Memtime tool (Bengtsson, 2012) with version 1.3 which

is the default performance measuring tool used by the UPPAAL development

team:

memtime verifyta flow_model.xml flow_model.q

The result when model checking the properties are presented in Table. 6.7. In

this table, the second column shows the time needed to check the property

in seconds. The third column shows the number of states generated to verify

the property. The fourth column shows the size of memory used to verify the

property. The result of the verification is shown in the fifth column. The

symbol
√

is used to represent that the property is satisfied, the symbol × is

used when the property is unsatisfied, and the symbol ? is used for unknown

result. The last column shows the upper bound of the time Ci required for a

property. The values of Ci have been obtained for the ISR period T = 1000µs

and the ISR time Cs = 250µs with CAN bus equals 100 kbit/s. These value
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are also assumed for the remaining case studies. Notice that the first property

(deadlock freedom) has no time bound, so we show the symbol − instead.

The measurements show that the properties required less than 2MB of memory

to be verified within a fraction of second. However, notice that the values of

the CPU time (0.10secs) and memory usage (1988KB) shown in the table are

minimum values that are generated by the Memtime tool.

Property Time (s) State Memory (KB) Satisfied Ci (µs)

P1.1 0.10 28 1988
√

−
P1.2 0.10 28 1988

√
C1 = 1870

P1.3 0.10 33 1988
√

C2 = 11600

P1.4 0.10 28 1988
√

C3 = 11250

P1.5 0.10 28 1988
√

C4 = 620

Tab. 6.7: Model-checking results of the flow regulator example.

Steam Boiler Control System

For the steam boiler example, we verified the following properties:

P2.1 deadlock freedom,

P2.2 whenever the sensor reads a low level of water, the pump is turned on

within t time units,

P2.3 whenever the sensor reads a high level of water, the pump is turned off

within t time units.

The property P2.1 is a safety property, whereas P2.2 and P2.3 are bounded-

response time properties. The properties are specified and verified similarly to

the properties of the flow example. The result of model checking of the prop-

erties are presented in Table. 6.8. The measurements show that the properties

required less than 2.MB of memory to be verified within a fraction of second.
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Property Time (s) State Memory (KB) Satisfied Ci (µs)

P2.1 0.10 233 1988
√

−
P2.2 0.10 233 1988

√
C1 = 2320

P2.3 0.10 233 1988
√

C2 = 2320

Tab. 6.8: Model-checking results of the steam boiler example.

Security Alarm System

For the alarm example, we verified the following properties:

P3.1 deadlock freedom,

P3.2 whenever a motion is detected, the alarm timer is enabled within t time

units,

P3.3 whenever the alarm timer is expired and the correct code is entered, the

sounder (LED) alerts (toggle) within t time units,

P3.4 if the sounder (LED) is in alert (toggle) state and the correct code is

entered, the sounder (LED) is turned off within t time units.

The property P3.1 is a safety property, whereas P3.2, P3.3, and P3.4 are

bounded-response time properties. The properties are specified and verified

similarly to the properties of the flow example. The result of model checking

of the properties are presented in Table. 6.9. The measurements show that the

properties require less than 70.MB of memory to be verified in less than 15sec.

Property Time (s) State Memory (KB) Satisfied Ci (µs)

P3.1 13.42 183942 47160
√

−
P3.2 12.62 188328 64632

√
C1 = 1350

P3.3 11.42 184056 64240
√

C2 = 2920

P3.4 12.21 183944 64372
√

C3 = 2920

Tab. 6.9: Model-checking results of the security alarm example.

Anti-lock Braking System

For the ABS example, we verified the following properties:
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P4.1 deadlock freedom,

P4.2 if the acceleration is changed, the brake pressure of the wheels are regu-

lated within t time units,

P4.3 whenever the first request of speed is sent to a wheel, the brake pressure

of the wheels are regulated within t time units.

The property P4.1 is a safety property, whereas P4.2 and P4.3 are bounded-

response time properties. The properties are specified and verified similarly to

the properties of the flow example. The result of model checking of the proper-

ties are presented in Table. 6.10. The measurements show that the properties

required less than 60.MB of memory to be verified within a few seconds. This

demonstrates a potential advantage of our approach since complex systems can

be expressed by quite small models. By contrast, in the approach of (Herber,

2010), the UPPAAL model of the ABS system generated from SystemC code

has approximately 10 times more processes than the UPPAAL model generated

by our approach from the CANDLE program which implements the same func-

tionality. Table 6.11 summarises the main characteristics of the two TA models

of the ABS example. This has a considerable impact on the tractability of the

generated model. For instance, the UPPAAL model checker has been used to

check a basic property (deadlock freedom) on the TA model generated from the

SystemC code for the ABS example. The verification ended after more than

5 hours with an out-of-memory error and 16777216 states stored during the

verification. The same experiment, undertaken on our TA model of the same

case study, terminated positively within 0.60 second, having stored 11469 (see

Table 6.10).
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Property Time (s) State Memory (KB) Satisfied Ci (µs)

P4.1 0.60 11469 38492
√

−
P4.2 0.60 11469 55408

√
C1 = 3320

P4.3 1.20 11469 56192
√

C2 = 14220

Tab. 6.10: Model-checking results of the ABS example.

ABS TA Model (CANDLE) ABS TA Model (SystemC)

Process 12 121

Channel 8 168

Clock 0 global and 12 local 1 global and 1 local

Variable 8 283

Tab. 6.11: TA model comparison of the ABS system.

6.4.2 Verifying Transmit/Receive Buffer Resources

It is very useful for system developers to be able to assess the capability of

the available hardware that will be used to run the system. An example is the

number of transmit/receive buffers of the CAN controller required by the system

implementation. For that reason, TA models have been generated for varied

versions of the flow example because it was simple to change the complexity of

the example. The example was varied by adding new processes of Flow and

Valve to the original design in according to the second scenario discussed in

section 6.2.1. In this scenario the system architecture consists of two computing

nodes sharing a single CAN bus. The Flow processes are allocated to the first

node, and the Valve processes are allocated to the second one. The employed

CAN controller (NXP, 2009) features triple transmit buffers and double receive

buffers. The UPPAAL model checker was used to determine the number of

transmit/receive buffers required by the examples in the worst-case.

Firstly, to determine the maximal number of the transmit buffers, the TA model

of the CAN shown in Appendix B is amended as follows. Whenever a new mes-

sage is enqueued, a counter is incremented. Each node transmits a particular

set of messages which can be known at design time. Therefore, if we wish to

calculate the number of the transmit buffers for a particular node, we have to
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constrain the operation of the counter increment. For example:

if((k_v==id1)||(k_v==id2)||(k_v==id3)){

tCounter++;

}

where k v holds the current message ID (id1, id2, or id3) that can be sent

by the node. tCounter is a variable that holds the number of the transmit

buffers. When the message is successfully transmitted, the counter is decre-

mented. This happens when the model fires the post-acceptance transition.

Then the property is expressed in UPPAAL as:

A[] (k.tCounter <= C1)

The property will be satisfied if the number of buffers never exceeds the value

C1 which denotes the number of the available transmit buffers.

Secondly, to determine the number of the receive buffers, we introduced a sep-

arate TA model, see Fig.6.15. The model consists of three locations, L0, L1

and L2. It is possible to move from location L0 to L1 at any time. Once the

automaton enters L1, it can stays in this location up to (T + Cs) time units.

This time expresses the maximum interval time that a message may wait in the

buffer until it is polled by the ISR. This time equals the ISR period (T) plus the

ISR execution time (Cs). A counter is incremented whenever a new message

from a predefined set is accepted. A particular node can receive a predefined set

of messages. The counter is used to hold the number of buffers. The UPPAAL

property:

A[] (rBuff.rCounter <= C2)

is true if the number of buffers never exceeds the value C2, where C2 expresses

the number of the available receive buffers.
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Fig. 6.15: Test automaton of receive buffer verification.

The results of the transmit/receive buffer verification are presented in Table 6.12

and Table 6.13 respectively. The verification was run for the following setting:

T = 1000µs, Cs = 250µs, the transmission rate of 200kbit/s, and a message

payload of 1byte. In these tables, the first column shows the number of Flow

and Valve processes used in the example, the second column shows the available

number of buffers. The computation resources (CPU time, state-space size,

and memory usage) to run the verification are shown in the next three columns

respectively. Finally, the result of the verification is shown in the last column.

The experiments showed that it is possible to verify the transmit buffer number

of 15 processes of Flow and Valve in the current computing resources. It took

less than 4 minutes of CPU time, and approximately 110MB of memory us-

age, see Table 6.12. However, the number of receive buffer was verified for the

examples with only up to 12 processes. The example with 12 processes took

about 75 minutes of CPU time, and 800MB of memory usage, see Table 6.13.

The verification of 13 processes was terminated after 16 hours of running the

experiment with reported memory usage exceeds 2GB. The experiment took

an unexpectedly long time because the model checker program made use of the

swap memory. When a state-space size becomes larger than an available mem-

ory, a part of the state space is usually stored in a swap area. It is well known

that reading/writing operations from/to the swap memory are slower than that
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performed in the main memory. The observed time and space complexity of

the verification of receive buffer is shown in Fig. 6.16 and Fig. 6.17 respectively.

The figures show that the CPU time and memory usage are increased rapidly

as the number of processes is increased.

Process C1 Time (s) State Memory (KB) Satisfied

1 3 0.10 43 2008
√

2 3 0.10 284 2008
√

3 3 0.10 1030 2008
√

4 3 0.10 457 2008 ×
5 3 0.20 1266 37840 ×
6 3 0.30 2999 37984 ×
7 3 0.70 6367 38108 ×
8 3 1.60 12444 38508 ×
9 3 3.90 22786 39296 ×
10 3 8.41 39573 40376 ×
11 3 18.02 65776 41988 ×
12 3 36.13 105351 44952 ×
13 3 69.46 163462 65812 ×
14 3 128.82 246735 87364 ×
15 3 236.16 363545 112708 ×

Tab. 6.12: Transmit buffer verification of the flow regulator examples.

Process C2 Time (s) State Memory (KB) Satisfied

1 2 0.10 43 2008
√

2 2 0.10 284 2008
√

3 2 0.10 315 2008 ×
4 2 0.20 883 37840 ×
5 2 0.30 2599 37844 ×
6 2 0.80 7887 38112 ×
7 2 3.10 24383 39076 ×
8 2 13.62 76283 41816 ×
9 2 58.76 240519 50632 ×
10 2 252.15 762055 112500 ×
11 2 1073.58 2420911 289392 ×
12 2 4423.76 7698483 814088 ×
13 2 ≥57615.16 ? 2220692 ?

Tab. 6.13: Receive buffer verification of flow regulator examples.

The results show that only the examples that have up to three Flow and Valve

processes satisfy the available transmit buffer of the employed CAN controller,
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Fig. 6.16: Time complexity of receive buffer verification.

Fig. 6.17: Space complexity of receive buffer verification.
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see Table 6.12, whereas the examples with up to two Flow and Valve processes

satisfy the available receive buffer, see Table 6.13. This is because the Flow

processes have similar behaviour, i.e. they run periodically at the same rate, so

they all come to the same instant when they enqueue their messages into the

transmit buffer. A way of investigating this further was considered by adding

an offset to each Flow process, so they run at different rates. The offsets were

assigned as follows. If there are N Flow processes in the example, the first

Flow process will have 1 tick offset, the second will have 2 ticks offset, ... and

so on. Interestingly, this modification enables the examples to satisfy both

the available transmit and receive buffer for some examples, see Table 6.14

and Table 6.15 respectively. In the first experiment, we verified the number

of transmit buffers for 11 processes of Flow and Valve and the verification

returns positive results for this examples. The 12 processes example however

was not determined. The verification for this example was terminated after

approximately 65 hours, see Table 6.14. In the second experiments, we were able

to verify the number of receive buffers for 14 processes in the current computing

resources. For instance, the verification of 14 process took less than 6 hours to

return the result, see Table 6.15. However, the verification of 15 processes was

terminated after about 16 hours and so the result was not determined.

Process C1 Time (s) State Memory (KB) Satisfied

1 3 0.10 48 2008
√

2 3 0.10 278 2008
√

3 3 0.20 906 37832
√

4 3 0.20 2669 37844
√

5 3 0.60 6765 38112
√

6 3 1.70 16041 38644
√

7 3 5.01 37662 39692
√

8 3 15.12 87949 42232
√

9 3 45.34 203551 47924
√

10 3 148.86 502548 62684
√

11 3 1680.50 3316922 220852
√

12 3 ≥235006.00 − − ?

Tab. 6.14: Transmit buffer verification of flow regulator examples with offset.
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Process C2 Time (s) State Memory (KB) Satisfied

1 2 0.10 48 2008
√

2 2 0.10 278 2008
√

3 2 0.10 906 2008
√

4 2 0.20 2669 37848
√

5 2 0.60 6765 38116
√

6 2 1.60 16041 38508
√

7 2 5.01 37662 39692
√

8 2 15.13 87949 42232
√

9 2 45.35 203551 47932
√

10 2 148.79 502548 62680
√

11 2 560.68 1137807 97684 ×
12 2 4247.32 4844946 309928 ×
13 2 8213.91 10231159 623748 ×
14 2 19925.65 21003639 1233312 ×
15 2 ≥57996.51 − 2081260 ?

Tab. 6.15: Receive buffer verification of flow regulator examples with offset.

Surprisingly, only the verification of the examples with up to 10 processes re-

turns positive results. The examples with more than 10 processes do not satisfy

the number of the available receive buffer. The counter-example generated by

the model checker program was analysed to figure out the source of the problem.

The investigation leads to a problem in our policy of assigning offsets. Although

each Flow process runs periodically with different offset, the offset value should

not exceed the period of the process. The current period of Flow processes is

10 ticks. So the process 11 will coincide with the process 1, the process 12 will

coincide with the process 2, ... and so on. This explains the unsatisfied result

of the verification for the examples with more than 10 processes.

Alternatively, we could modify the system architecture by employing more com-

puting nodes. Then we can allocate a fewer number of Flow and Valve processes

in each node. This will decrease the number of transmit/receive buffer required

by each node. Although this solution has an impact on the cost of the sys-

tem implementation, it could be more feasible in the cost than using higher

performance hardware to comply with the provided design. Consequently, the

experiments demonstrate the usefulness of having a model of the system early
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during the design phase, because the user can then verify the applicability of

the available resources before running the system implementation.

6.5 Summary

The experiments have successfully demonstrated the feasibility, the performance

and the formal verification capability, of our code generation approach. The

computational time of the transformation from CANDLE to executable C code

and UPPAAL model is modest and varies only a little as a function of the num-

ber of processes, the code size, and the net size. It requires only a few seconds

even for large examples. The efficiency of the generated code has been com-

pared with other code that employs a real-time kernel. The measurements have

shown that our generated code is competitive in size to the version implemented

by a widely-used RTOS, and the required RAM is at least 50% smaller in size

than that is required by the RTOS. This demonstrates that our approach can

generate an efficient code suitable for limited resource embedded systems. Addi-

tionally, the generated code is guaranteed to realise the behaviour of CANDLE

model which can be formally verified against key properties. The experimental

results of the formal verification capability are promising. A number of useful

properties of a broad class of interesting examples have been successfully verified

within acceptable computation resources. The results have shown that using

a model-checking tool is very useful during the design time to assess run-time

resources requirements.



7. CONCLUSIONS AND FUTURE WORK

In this chapter, we present a summary of the contributions of the thesis, discuss

the limitations of the work, and present possible directions for future research.

7.1 Summary of Contributions

The work presented in this thesis addressed the problem of generating exe-

cutable code for CAN-based distributed embedded systems in a way that guar-

antees that both functional and timing properties expressed in a high level

formal language are satisfied. The thesis proposed a novel approach in which

system behaviour is specified in CANDLE, a high-level language which is given

a formal semantics by translation to bCANDLE, an asynchronous process cal-

culus. A bCANDLE system is translated automatically, via a common interme-

diate net representation, both into executable C code and into timed automaton

model that can be used in the formal verification of a wide range of functional

and temporal properties.

A code generator was developed that can automatically produce executable C

code from a CANDLE specification. The code is generated from CANDLE

via an intermediate net representation. An efficient C representation of the

net was presented. We introduced a time-triggered execution (implementation)

model to execute the net in which, at each tick, a scheduler determines which

computation should run next. The schedulers that we have considered include
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simple round-robin, weighted round-robin, cooperative, and hybrid methods.

The hybrid scheduler combines cooperative and round-robin scheduling tech-

niques. These scheduling strategies facilitate off-line prediction of the worst-

case response time of system computations. A single broadcast asynchronous

communication mechanism was adopted and implemented. The communication

mechanism is an abstraction of the CAN. All communications occur through

this mechanism and never through the use of shared variables. This single

notion, employed both for external and local communication between system

components, provides flexibility to the system developer to freely distribute

system components on a number of nodes, and simplifies the process of gener-

ating a formal model of the system. An AADL-like language was introduced

to describe the system architecture. The description file provides details to the

code generator about processes, nodes, process-to-node allocation, scheduling

algorithm, tick rate, and communication details, including the IDs of messages

and network transmission rate.

The bCANDLE semantics assumes that computations complete and update

their data instantaneously and atomically on completion. Therefore, a num-

ber of methods were proposed that ensure the atomicity of data update. The

methods were evaluated based on three criteria we identified. It was concluded

that for short computations that complete within one tick, the method on-tick

duration computation would be suitable, and for long running computations,

the delayed atomic update method would be considered for our code generator.

A rigorous argument was presented that, for any system expressed in the high-

level language, its formal model is a conservative approximation of the exe-

cutable C code. This allows the system developer to conclude that if a model

satisfies any universally quantified property, then it is guaranteed that the im-

plementation will also satisfy the same property.

A variety of experiments were conducted to assess the applicability and per-
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formance of our approach. We used four representative case studies: a flow

regulator control system, a boiler control system, a security alarm system, and

an anti-lock braking system. Executable C code and formal models were suc-

cessfully generated for the case-studies in a reasonable time. The memory

consumption of the generated code was assessed and compared with an alter-

native method employing a widely-used real-time kernel. The experimental

results showed that overall memory consumption of generated code is compet-

itive with that used by the real-time kernel. Additionally, the results showed

that RAM usage is at least 50% less than that required by the real-time kernel.

These results give us confidence in the viability of implementing a code genera-

tor based on the net representation of the CANDLE system under development.

The tractability of the model checking problem for the generated formal mod-

els was assessed by using an off-the-shelf model checker. A number of useful

properties were successfully verified within acceptable computation resources.

The experimental results showed that the generated models are comparatively

small. We believe this demonstrates the power of the abstractions adopted by

our approach. The results showed also that using a model-checking tool is very

useful during system design phase to assess run-time resource requirements in

addition to typical functional and temporal properties.

This is the first time that a code generator for CAN-based systems has been

developed that allows model checking of specifications that can be guaranteed

to retain the behaviour of implementations.

7.2 Limitations

The main motivation behind our approach is the capability of generating a

model amenable to model checking and executable C code suitable for imple-

mentation. An informal argument was proposed to confirm that the formal

model conservatively approximates its implementation. This work did not for-
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mally verify the relationship between the model and the code. The reason for

that is that the target implementation language (which is C) lacks a formal

semantics. Moreover, further validation would be required also for the trans-

lation from C to a low-level machine language. This is important to ensure

that the behaviour described in C is preserved during the compilation to the

target machine code. A rigorous solution to this problem is not trivial. The

problem has been addressed in the CompCert project (CompCert, 2012) and

the results have been extensively published, for instance (Blazy, 2008; Dargaye,

2009; Leroy, 2009; Blazy and Leroy, 2009; Bedin et al., 2012).

Additionally, a model checking technique was used to verify that the model ex-

hibits some useful properties. The main drawback with such a technique is the

state-space explosion. This work did not investigate methods and techniques

to tackle this problem. However, computer capacity has been significantly im-

proved in terms of processing speeds and main memory sizes. This allows user

to tackle larger problem sizes that were previously impossible to verify. Fur-

thermore, model checking algorithms and tools are also exploiting the trend

in increasing hardware performance. An example of this is the capability of

executing a model checker on multi-core machines or a network of computers.

For instance, the Spin model checker has been recently enhanced to support

such features, see (Holzmann et al., 2011; Holzmann, 2012).

7.3 Future Work

Preliminary work has been conducted. The experimental results demonstrate

the viability of the proposed approach. Its performance is adequate and promis-

ing. In the following, a number of avenues of future investigation are suggested.

A number of different case studies were successfully applied in this work to

demonstrate the practical applicability of our approach. An interesting avenue
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of further investigation is to push our approach to the limit by applying larger

case studies. This would be very useful to explore the industrial strength of

the approach when it is applied to industrial examples. Then we could gain

a better idea about the capability of the approach, including code and model

generation.

A time-triggered software architecture was employed to execute the net in which

a single periodic interrupt is allowed in the system implementation. Currently

the interrupt service routine (ISR) is modelled implicitly avoiding a detailed

modelling of the ISR. This simplifies our models and makes model checking

more tractable. This however introduces pessimism into the models by intro-

ducing wider time bounds on system computations. One direction for future

work would be investigating the impact of including the ISR details explicitly

in the models. This can yield narrower bounds but the verification can be-

come more expensive since the size of the state space is expected to increase.

Modelling the ISR explicitly can also provide more flexibility in the selection of

scheduling algorithms because this allows modelling the scheduler in more detail

and thereby makes a wider range of schedulers available to the code generator.

Another avenue of investigation involves the application of software model

checking directly on the generated code. This would require applying abstrac-

tion methods on the code such as counterexample-guided abstraction refinement

(CEGAR) (Clarke et al., 2000). Then it would be interesting to compare the

tractability of our generated code to an existing software model checking tool

with that of code that is hand-crafted and implements the same functionality.

This would evaluate the generated code amenability for software model checking

technique.

A number of methods were proposed that ensure the atomicity of the data

update. The current case studies applied in the experimental chapter are not

affected by the problem of data interruption because computations are either
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short that complete within one tick, or long running that are not interrupted

by other computations. Future work on this work would require implementing

a chosen solution for the code generation, and testing it in different case studies

that could encounter this problem.

The intermediate net representation of CANDLE is the base of the model gen-

erator and the code generator. One possible direction of further research is

to investigate optimisation techniques that can be applied to reduce the size

of the net. For example, in the translation of LOTOS to C programs, a col-

lection of optimisations have been applied on the control and data flow of an

intermediate Petri net stage (Garavel et al., 2011). It is interesting to inves-

tigate the applicability of such techniques (e.g, (Garavel and Serwe, 2006)) to

our net that is generated from bCANDLE. This would contribute both during

model-checking and code generation stage. In other words, the optimised net

could yield a smaller executable code, and a possible reduction in the size of

the formal model. Although some techniques in (Kendall, 2001b) were applied

to tackle the problem of the state-space size, this approach could consider the

state-space explosion problem early before the model is generated. Addition-

ally, a finite state-machine (FSM) representation can be generated from the net

representation in order to generate the executable code. Although we think this

would have a considerable impact on the size of the generated code since FSM

has a higher representation cost compared to the Petri net, such code would

be faster to execute. An example of comparison between FSM and Petri net

representation can be found in (Zhu and Brooks, 2009). The system developer

may then have an option to select between two alternative methods to generate

the code.

For some scenarios, verifying the model of the whole system can be not possible

because of the state-space explosion problem. An interesting avenue of future

work would be incorporating compositional techniques to handle this problem.
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In this approach of analysis, several components of the system can be modelled

in more abstract way, and only one component is modelled in detail. After

that, we move to the next component and we do the same. If each of these

components considered in the abstract environment satisfies some properties,

then we can claim that the composition of these components satisfies also the

same properties. Some compositional methods have been already applied to

bCANDLE in the work of (Brockway, 2010). Therefore, extending the current

work to consider such techniques can be straightforward.

We proposed an approach that can automatically generate executable C from

specification of CAN-based system. In some industries such as automotive,

aerospace, medical devices, and others, a particular software development stan-

dard is followed, specifically for those systems that are programmed in C. One

such example is the MISRA C standard (MISRA, 2004) which is mainly de-

veloped to ensure the products are suitable for application in the automotive

industry. The MISRA C standard defines a number of rules (constraints) in

using the C language on safety-related systems. We think that it is interesting

for the industry that the code generator are able to produce a C code that con-

forms to such standard. This feature would improve the code quality and could

make the code generator more accepted by the previously mentioned industries.

Multi-core platforms provide high performance computing capability compared

to traditional single-core platforms. They integrate many processors on a sin-

gle chip which are connected through a Network on Chip (NoC). For instance,

the Intel Single-Chip Cloud Computer (SCC) comprises of 48 cores on a single

chip (Petrović et al., 2012). Our approach facilitates executing a number of

processes in a single-processor platform via using the concept of local channel

introduced in Chapter 3. The local channel has been already implemented us-

ing shared memory where the processes communicate by message passing. We

think it would be straightforward to extend this concept to leverage the power
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of multi-core platforms. Then each process could be executed on a separate

processor (core) and communicate via local channels. This can offer an alter-

native implementation option to the system developer to improve the overall

performance of the system implementation.

The CAN is the dominant network in automotive and factory control systems

and is becoming increasingly popular in robotic, medical and avionics appli-

cations. There are a wide variety of other broadcast protocols available in

practice, each is dedicated for a particular application area. For example,

Profibus (Tovar and Vasques, 1999) for process control, LON (Rabbie, 2005)

for building automation, and ZigBee (Baronti et al., 2007) for wireless sensor

network. It would be interesting to extend the current work to consider more

communication protocols than the CAN. The formal language bCANDLE has

been constructed with the CAN protocol in mind. The network model of the

language defines a number of semantics rules to describe the network behaviour.

We think that these semantics rules should be revisited in order to adopt the

behaviour of other network protocols.
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A. CASE STUDIES

In this section, we show the CANDLE program, the architecture description,

the computations bounds, the bCANDLE model, and the net representation

respectively of the examples introduced in Chapter 6.

A.1 Flow Regulator System

CANDLE Program

Flow | Valve

where

Flow =

every 10000 do

readSensor();

snd(k, FLOW, fFlow)

end every

Valve =

loop do

rcv(k, FLOW, vFlow);

adjustValve()

end loop

Architecture Description

node flow

wordsize : 32

tickHz : 1000

processes : Flow

scheduler : COOPERATIVE

ports : CAN_0
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process Flow

stacksize : 20

channels : k -> CAN_0

node valve

wordsize : 32

tickHz : 1000

processes : Valve

scheduler : COOPERATIVE

ports : CAN_0

process Valve

stacksize : 20

channels : k -> CAN_0

channel k

bps : 100000

messages : <FLOW:1>

Computations Bounds

readSensor 1000 1250

adjustValve 1000 1250

bCANDLE Model

(Flow | Valve)

where

Flow = __LOOP__0

Valve = __LOOP__1

__LOOP__0 = (((([readSensor:1000,1250] ; k!FLOW.fFlow) ; idle)

[> [__timer__:10000,10000]) ; __LOOP__0)

__LOOP__1 = ((k?FLOW.vFlow ; [adjustValve:1000,1250]) ; __LOOP__1)
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Net Representation

1

[readSensor:1000,1250]^H2

[__timer__:10000,10000]^H4

4

5

k?FLOW.vFlow

2

k!FLOW.fFlow^H1

3

idle

6

[adjustValve:1000,1250]^H3

A.2 Steam Boiler Control System

CANDLE Program

WaterLevel | Pump | Controller

where

WaterLevel =

initSensor();

select

when rcv(k, START) => null

in

every 5000 do

snd(k, SENSOR_READY)

end every

end select;

select

when rcv(k, SHUTDOWN) => idle

in

every 10000 do
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case readSensor()

when 0 => snd(k, LEVEL_OK)

when 1 => snd(k, LEVEL_LOW)

when 2 => snd(k, LEVEL_HIGH)

end case

end every

end select

Pump =

initPump();

select

when rcv(k, START) => null

in

every 5000 do

snd(k, PUMP_READY)

end every

end select;

select

when rcv(k, SHUTDOWN) => pumpOff(); idle

in

loop do

select

when rcv(k, PUMP_ON) => pumpOn()

when rcv(k, PUMP_OFF) => pumpOff()

end select

end loop

end select

Controller =

initController();

select

when rcv(k, SENSOR_READY) => rcv(k, PUMP_READY)

when rcv(k, PUMP_READY) => rcv(k, SENSOR_READY)

end select;

snd(k, START);

loop do

select

when rcv(k, LEVEL_OK) => null

when rcv(k, LEVEL_LOW) => snd(k, PUMP_ON)

when rcv(k, LEVEL_HIGH) => snd(k, PUMP_OFF)

timeout elapse(15000) => snd(k, SHUTDOWN); idle

end select

end loop

Architecture Description

node waterlevel
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wordsize : 32

tickHz : 1000

processes : WaterLevel

scheduler : COOPERATIVE

ports : CAN_0

process WaterLevel

stacksize : 25

channels : k -> CAN_0

node pump

wordsize : 32

tickHz : 1000

processes : Pump

scheduler : COOPERATIVE

ports : CAN_0

process Pump

stacksize : 25

channels : k -> CAN_0

node controller

wordsize : 32

tickHz : 1000

processes : Controller

scheduler : COOPERATIVE

ports : CAN_0

process Controller

stacksize : 25

channels : k -> CAN_0

channel k

bps : 100000

messages : <START:0, SENSOR_READY:0, SHUTDOWN:0, LEVEL_HIGH:0, LEVEL_LOW:0,

LEVEL_OK:0, PUMP_READY:0, PUMP_ON:0, PUMP_OFF:0>

Computations Bounds

initSensor 1000 1250

readSensor 1000 1250

initPump 1000 1250

pumpOn 1000 1250

pumpOff 1000 1250

initController 1000 1250
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testLevel 1000 1250

bCANDLE Model

(WaterLevel | (Pump | Controller))

where

WaterLevel =

([initSensor:1000,1250] ;

((__LOOP__0 [> (k?START._ ; [__null__:0,0])) ;

(__LOOP__1 [> (k?SHUTDOWN._ ; idle))))

Pump =

([initPump:1000,1250] ;

((__LOOP__2 [> (k?START._ ; [__null__:0,0])) ;

(__LOOP__3 [> (k?SHUTDOWN._ ; ([pumpOff:1000,1250] ; idle)))))

Controller =

([initController:1000,1250] ;

(((k?SENSOR_READY._ ; k?PUMP_READY._) + (k?PUMP_READY._ ; k?SENSOR_READY._)) ;

(k!START._ ; __LOOP__4)))

__LOOP__0 =

(((k!SENSOR_READY._ ; idle) [> [__timer__:5000,5000]) ; __LOOP__0)

__LOOP__1 =

(((([__result__readSensor:1000,1250] ;

((__gf__0 -> k!LEVEL_OK._) + ((__gf__1 -> k!LEVEL_LOW._) +

(__gf__2 -> k!LEVEL_HIGH._)))) ; idle)

[> [__timer__:10000,10000]) ; __LOOP__1)

__LOOP__2 =

(((k!PUMP_READY._ ; idle) [> [__timer__:5000,5000]) ; __LOOP__2)

__LOOP__3 =

(((k?PUMP_ON._ ; [pumpOn:1000,1250]) + (k?PUMP_OFF._ ; [pumpOff:1000,1250])) ; __LOOP__3)

__LOOP__4 =

(((k?LEVEL_OK._ ; [__null__:0,0]) + ((k?LEVEL_LOW._ ; k!PUMP_ON._) +

((k?LEVEL_HIGH._ ; k!PUMP_OFF._) +

([__timer__:15000,15000] ; (k!SHUTDOWN._ ; idle))))) ; __LOOP__4)

Net Representation
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A.3 Security Alarm System

CANDLE Program

Control | PendingTimer | Flasher | Display

where

Control =

loop do

select

timeout elapse(50000) => snd(k, CONTROL, controlMsg)

in

select

when rcv(k, PENDING_TIME, controlTimeLeft) => controlStatePendingTime()

in

case control()

when 0 => null

when 1 => snd(k, PENDING, controlTimeInterval)

when 2 => snd(k, ALERT)

when 3 => snd(k, ABORT)

end case;

idle

end select;

idle

end select

end loop

PendingTimer =

loop do

rcv(k, PENDING, ptTimeLeft);

trap

when PENDING_DONE => null

in

select

when rcv(k, ABORT) => exit PENDING_DONE

in

every 1000000 do

case pendingExpired()

when true => snd(k, PENDING_TIME, ptTimeLeft); exit PENDING_DONE

when false => snd(k, PENDING_TIME, ptTimeLeft)

end case

end every

end select

end trap

end loop

Flasher =

loop do

rcv(k, ALERT);

select
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when rcv(k, ABORT) => linkLEDOff()

in

every 250000 do

linkLEDToggle()

end every

end select

end loop

Display =

initDisplay();

loop do

rcv(k, CONTROL, displayMsg);

Display()

end loop

Architecture Description

node alarm

wordsize : 32

tickHz : 1000

processes : Control, PendingTimer, Flasher, Display

scheduler : ROUND_ROBIN

ports : LOCAL_DATA

process Control

stacksize : 25

channels : k -> LOCAL_DATA

process PendingTimer

stacksize : 25

channels : k -> LOCAL_DATA

process Flasher

stacksize : 25

channels : k -> LOCAL_DATA

process Display

stacksize : 128

channels : k -> LOCAL_DATA

channel k

bps : 100000

messages : <CONTROL:8, PENDING_TIME:8, PENDING:8, ALERT:8, ABORT:8>

Computations Bounds
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controlStatePendingTime 1000 1250

control 1000 1250

pendingExpired 1000 1250

linkLEDOff 1000 1250

linkLEDToggle 1000 1250

initDisplay 1000 1250

Display 10000 20250

bCANDLE Model

(Control | (PendingTimer | (Flasher | Display)))

where

Control = __LOOP__0

PendingTimer = __LOOP__1

Flasher = __LOOP__3

Display = ([initDisplay:1000,1250] ; __LOOP__5)

__LOOP__0 =

(((((([__result__control:1000,1250] ;

((__gf__0 -> [__null__:0,0]) + ((__gf__1 -> k!PENDING.controlTimeInterval) +

((__gf__2 -> k!ALERT._) + (__gf__3 -> k!ABORT._))))) ; idle)

[> (k?PENDING_TIME.controlTimeLeft ; [controlStatePendingTime:1000,1250])) ; idle)

[> ([__timer__:50000,50000] ; k!CONTROL.controlMsg)) ; __LOOP__0)

__LOOP__1 =

((k?PENDING.ptTimeLeft ;

((__LOOP__2 [> (k?ABORT._ ; ([__exit__PENDING_DONE:0,0] ; idle)))

[> (__gx__PENDING_DONE -> [__null__:0,0]))) ; __LOOP__1)

__LOOP__2 =

(((([__result__pendingExpired:1000,1250] ;

((__gf__1 -> (k!PENDING_TIME.ptTimeLeft ; ([__exit__PENDING_DONE:0,0] ; idle))) +

(__gf__0 -> k!PENDING_TIME.ptTimeLeft))) ; idle)

[> [__timer__:1000000,1000000]) ; __LOOP__2)

__LOOP__3 = ((k?ALERT._ ; (__LOOP__4 [> (k?ABORT._ ; [linkLEDOff:1000,1250]))) ; __LOOP__3)

__LOOP__4 = ((([linkLEDToggle:1000,1250] ; idle) [> [__timer__:250000,250000]) ; __LOOP__4)

__LOOP__5 = ((k?CONTROL.displayMsg ; [Display:10000,20250]) ; __LOOP__5)

Net Representation
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A.4 Anti-lock Braking System

CANDLE Program

Control | Brake_0 | Brake_1 | Brake_2 | Brake_3 | Sensor_0 | Sensor_1 | Sensor_2 | Sensor_3

where

Control =

every 16000 do

snd(k, SPEED_REQ_0);

rcv(k, SPEED_0, sSpeed_0);

snd(k, SPEED_REQ_1);

rcv(k, SPEED_1, sSpeed_1);

snd(k, SPEED_REQ_2);

rcv(k, SPEED_2, sSpeed_2);

snd(k, SPEED_REQ_3);

rcv(k, SPEED_3, sSpeed_3);

case comput_acc()

when 0 => null

when 1 => ABS(); snd(k, PRESSURE, cPressure)

when 2 => ASR(); snd(k, PRESSURE, cPressure)

end case

end every

Brake_0 =

loop do

rcv(k, PRESSURE, bPressure);

adjustPressure_0()

end loop

Brake_1 =

loop do

rcv(k, PRESSURE, bPressure);

adjustPressure_1()

end loop

Brake_2 =

loop do

rcv(k, PRESSURE, bPressure);

adjustPressure_2()

end loop

Brake_3 =

loop do

rcv(k, PRESSURE, bPressure);

adjustPressure_3()
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end loop

Sensor_0 =

loop do

rcv(k, SPEED_REQ_0);

readSensor_0();

snd(k, SPEED_0, sSpeed_0)

end loop

Sensor_1 =

loop do

rcv(k, SPEED_REQ_1);

readSensor_1();

snd(k, SPEED_1, sSpeed_1)

end loop

Sensor_2 =

loop do

rcv(k, SPEED_REQ_2);

readSensor_2();

snd(k, SPEED_2, sSpeed_2)

end loop

Sensor_3 =

loop do

rcv(k, SPEED_REQ_3);

readSensor_3();

snd(k, SPEED_3, sSpeed_3)

end loop

Architecture Description

node control

wordsize : 32

tickHz : 1000

processes : Control

scheduler : COOPERATIVE

ports : CAN_0

process Control

stacksize : 125

channels : k -> CAN_0

node w_0

wordsize : 32

tickHz : 1000

processes : Brake_0, Sensor_0
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scheduler : COOPERATIVE

ports : CAN_0

process Brake_0

stacksize : 25

channels : k -> CAN_0

process Sensor_0

stacksize : 25

channels : k -> CAN_0

node w_1

wordsize : 32

tickHz : 1000

processes : Brake_1, Sensor_1

scheduler : COOPERATIVE

ports : CAN_0

process Brake_1

stacksize : 25

channels : k -> CAN_0

process Sensor_1

stacksize : 25

channels : k -> CAN_0

node w_2

wordsize : 32

tickHz : 1000

processes : Brake_2, Sensor_2

scheduler : COOPERATIVE

ports : CAN_0

process Brake_2

stacksize : 25

channels : k -> CAN_0

process Sensor_2

stacksize : 25

channels : k -> CAN_0

node w_3

wordsize : 32

tickHz : 1000

processes : Brake_3, Sensor_3

scheduler : COOPERATIVE

ports : CAN_0
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process Brake_3

stacksize : 25

channels : k -> CAN_0

process Sensor_3

stacksize : 25

channels : k -> CAN_0

channel k

bps : 100000

messages : <PRESSURE:4, SPEED_REQ_0:0, SPEED_0:1, SPEED_REQ_1:0, SPEED_1:1,

SPEED_REQ_2:0, SPEED_2:1, SPEED_REQ_3:0, SPEED_3:1>

Computations Bounds

comput_acc 1000 1250

ABS 1000 1250

ASR 1000 1250

adjustPressure_0 1000 1250

adjustPressure_1 1000 1250

adjustPressure_2 1000 1250

adjustPressure_3 1000 1250

readSensor_0 1000 1250

readSensor_1 1000 1250

readSensor_2 1000 1250

readSensor_3 1000 1250

bCANDLE Model

(Control | (Brake_0 | (Brake_1 | (Brake_2 | (Brake_3 |

(Sensor_0 | (Sensor_1 | (Sensor_2 | Sensor_3))))))))

where

Control = __LOOP__0

Brake_0 = __LOOP__1

Brake_1 = __LOOP__2

Brake_2 = __LOOP__3

Brake_3 = __LOOP__4

Sensor_0 = __LOOP__5

Sensor_1 = __LOOP__6

Sensor_2 = __LOOP__7
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Sensor_3 = __LOOP__8

__LOOP__0 =

((((k!SPEED_REQ_0._ ; (k?SPEED_0.sSpeed_0 ;

(k!SPEED_REQ_1._ ; (k?SPEED_1.sSpeed_1 ;

(k!SPEED_REQ_2._ ; (k?SPEED_2.sSpeed_2 ;

(k!SPEED_REQ_3._ ; (k?SPEED_3.sSpeed_3 ;

([__result__comput_acc:1000,1250] ;

((__gf__0 -> [__null__:0,0]) +

((__gf__1 -> ([ABS:1000,1250] ; k!PRESSURE.cPressure)) +

(__gf__2 -> ([ASR:1000,1250] ; k!PRESSURE.cPressure))))))))))))) ; idle)

[> [__timer__:16000,16000]) ; __LOOP__0)

__LOOP__1 = ((k?PRESSURE.bPressure ; [adjustPressure_0:1000,1250]) ; __LOOP__1)

__LOOP__2 = ((k?PRESSURE.bPressure ; [adjustPressure_1:1000,1250]) ; __LOOP__2)

__LOOP__3 = ((k?PRESSURE.bPressure ; [adjustPressure_2:1000,1250]) ; __LOOP__3)

__LOOP__4 = ((k?PRESSURE.bPressure ; [adjustPressure_3:1000,1250]) ; __LOOP__4)

__LOOP__5 = ((k?SPEED_REQ_0._ ; ([readSensor_0:1000,1250] ; k!SPEED_0.sSpeed_0)) ; __LOOP__5)

__LOOP__6 = ((k?SPEED_REQ_1._ ; ([readSensor_1:1000,1250] ; k!SPEED_1.sSpeed_1)) ; __LOOP__6)

__LOOP__7 = ((k?SPEED_REQ_2._ ; ([readSensor_2:1000,1250] ; k!SPEED_2.sSpeed_2)) ; __LOOP__7)

__LOOP__8 = ((k?SPEED_REQ_3._ ; ([readSensor_3:1000,1250] ; k!SPEED_3.sSpeed_3)) ; __LOOP__8)

Net Representation
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B. UPPAAL MODELS

This section shows the generated UPPAAL models of the CAN communication

and the flow regulator example respectively.

B.1 The CAN Communication Model

Fig. B.1: The UPPAAL model of the CAN communication.

B.2 Flow Regulator System Model
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Fig. B.2: The UPPAAL model of the Flow process.

Fig. B.3: The UPPAAL model of the Valve process.



C. C SOURCE CODE

In this section, we present the C source code of the interrupt service routine

(ISR), and the generated C code of the flow regulator example, respectively.

C.1 The C code of the ISR

1 /∗
2 ∗ f i l e : bc . h

3 ∗∗/
4

5 #ifndef BC H

6 #define BC H

7

8 #include <s tdboo l . h>

9 #include <s t d i n t . h>

10 #include <bcport . h>

11

12 enum bcGuardMasks {
13 BC GUARD EXCEPTION FLAG = 0x80000000U ,

14 BC GUARD EXCEPTION RESULT MASK = 0x7FFFFFFFU,

15 } ;

16

17 typedef u i n t 3 2 t bcResu l t t ;

18

19 typedef u i n t 3 2 t bcGuardSe lect t ;

20

21 typedef void (∗ bcComputation t ) (void ) ;

22

23 typedef struct bcNCB {
24 u i n t 3 2 t ∗ptos ; /∗ po in t e r to top o f s t a c k ; must be f i r s t

f i e l d ∗/
25 i n t 3 2 t index ; /∗ index to t r a n s i t i o n f o r current

computation ∗/
26 /∗ 0 : no curren t computation ∗/
27 /∗ −t : computation ongoing f o r t r a n s i t i o n

t ∗/
28 /∗ t : computation completed f o r

t r a n s i t i o n t ∗/
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29 bcResu l t t r e s u l t ; /∗ i f t he computation i s a func t ion , s t o r e

the r e s u l t here ∗/
30 } bcNCB t ;

31

32

33 typedef struct bcPCB {
34 u i n t 3 2 t index ; /∗ Index s e t as f o l l o w s :

35 0 i f data i s s t a l e ,

36 1 i f data i s f r e s h and channel i s e x t e r na l

37 p i f p i s the p l ace number o f t r i g g e r o f

sender t r a n s i t i o n

38 and data i s f r e s h

39 and t h i s i s a LOCAL channel

40 ∗/
41 bcPortCanMessage t message ;

42 } bcPCB t ;

43

44

45 typedef enum bcAttributeType {
46 BC TICK,

47 BC IDLE ,

48 BC COMP,

49 BC DELAY,

50 BC GFUN,

51 BC GEXN,

52 BC GVAR,

53 BC EXIT ,

54 BC SEND,

55 BC RECV

56 } bcAttr ibuteType t ;

57

58

59 /∗
60 ∗ At t r i b u t e s shou ld be as s i gned as f o l l o w s :

61 ∗
62 ∗ BC TICK − a t t r i b u t e shou ld be 0 ; i gnored

63 ∗ BC IDLE − a t t r i b u t e shou ld be 0 ; i gnored

64 ∗ BCCOMP − a t t r i b u t e shou ld be po in t e r to func t i on f o r t h i s

computation

65 ∗ BC DELAY − a t t r i b u t e shou ld be i n i t i a l va lue o f de l ay

66 ∗ BC GFUN − a t t r i b u t e shou ld be 0 f o r nega t i v e guard , 1 f o r

p o s i t i v e guard and between 2 and 255 f o r excep t i on guard

67 ∗ BC GEXN − a t t r i b u t e shou ld be 0 f o r nega t i v e guard , 1 f o r

p o s i t i v e guard and between 2 and 255 f o r excep t i on guard

68 ∗ BC GVAR − a t t r i b u t e shou ld be 0 f o r nega t i v e guard , 1 f o r

p o s i t i v e guard and between 2 and 255 f o r excep t i on guard

69 ∗ BC SEND − a t t r i b u t e shou ld be address o f a CAN message v a r i a b l e
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70 ∗ BC RECV − a t t r i b u t e shou ld be address o f a CAN message v a r i a b l e

71 ∗/
72 typedef u i n t 3 2 t bcAt t r i bu t e t ;

73

74

75 typedef struct bcTimer {
76 u i n t 3 2 t index ; /∗ index to t r a n s i t i o n f o r current t imer ∗/
77 /∗ 0 : t imer not a c t i v e ∗/
78 /∗ t : t imer f o r t r a n s i t i o n t ∗/
79 u i n t 3 2 t va lue ; /∗ curren t va lue f o r a c t i v e t imer ∗/
80 /∗ undef ined f o r i n a c t i v e t imer ∗/
81 } bcTimer t ;

82

83

84 extern bcResu l t t volat i le bcExcept ionResult ;

85

86 void bcISR (void ) ;

87 void bcRunSystem (void ) ;

88 void bcNullComputation (void ) ;

89 void bcIdleComputation (void ) ;

90

91

92

93 #endif

1 /∗
2 ∗ f i l e : bc . c

3 ∗∗/
4

5 #include <s tdboo l . h>

6 #include <a s s e r t . h>

7 #include <bc . h>

8 #include <bcport . h>

9 #include <bcgen . h>

10 #include <b c b i t s e t . h>

11

12 bcResu l t t volat i le bcGuardResult = 0 ;

13

14 #ifde f BCGEN CAN REQUIRED

15

16 stat ic bcPortCanMessage t sendBuf fe r ;

17 stat ic u i n t 3 2 t port ;

18 stat ic u i n t 3 2 t l en ;

19 stat ic u i n t 3 2 t msgId ;

20 stat ic u i n t 8 t ∗ from ;

21 stat ic u i n t 8 t ∗ to ;

22

23 #endif
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24

25 stat ic void r e a c t ( u i n t 3 2 t p) ;

26 stat ic void f i r e ( u i n t 3 2 t p) ;

27 stat ic void scheduleNextComputation (void ) ;

28

29 void bcISR (void ) {
30 i n t 3 2 t i ;

31 i n t 3 2 t j ;

32 bool s t a b l e = f a l s e ;

33 bcGenPlaceSet t lastMarking ;

34

35 /∗ Jus t s t a r t i n g the ISR ∗/
36 bcPortISREntryHook ( ) ;

37

38 #ifde f BCGEN TIMERS REQUIRED

39

40 /∗ update s o f t t imers ∗/
41 for ( i =0; i < BCGEN N TIMERS; i +=1) {
42 i f ( bcGenTimers [ i ] . index != 0) {

/∗ t imer i s a c t i v e . . . ∗/
43 bcGenTimers [ i ] . va lue −= 1 ;

/∗ . . . so decrement

count ∗/
44 }
45 }
46

47 #endif

48

49 #ifde f BCGEN CAN REQUIRED

50

51 /∗ update e x t e r na l por t c on t r o l b l o c k s ∗/
52 for ( i =0; i < BCGEN N EXTERNAL PORTS; i +=1) {
53 i f ( bcPortCanReady ( i ) ) {
54 bcPortCanRead ( i , &bcGenPCB [ i ] . message ) ;

55 bcGenPCB [ i ] . index = 1 ;

56 }
57 else {
58 bcGenPCB [ i ] . index = 0 ;

59 }
60 }
61

62 /∗ mark a l l l o c a l por t c on t r o l b l o c k s as s t a l e ∗/
63 for ( i=BCGEN N EXTERNAL PORTS; i<BCGEN N PORTS; i +=1) {
64 bcGenPCB [ i ] . index = 0 ;

65 }
66

67 #endif
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68

69 /∗ r eac t to marked p l a c e s ∗/
70 #i f de f ined (BCGEN DEBRUIJN)

71 {
72 /∗
73 ∗ See C. Leiserson , H. Prokop , and K. Randal l .

74 ∗ Using de Brui jn sequences to index a 1 in a computer

word .

75 ∗ MIT Laboratory f o r Computer Science , 1998

76 ∗ f o r an exp l ana t i on o f t h i s approach to i d e n t i f y i n g the b i t

number

77 ∗ o f the r i gh tmos t 1 in a computer word . Used here to i d e n t i f y

the

78 ∗ cu r r en t l y marked p l a c e s during the r eac t i on c y c l e .

Pre l iminary

79 ∗ t e s t s s u g g e s t t h a t i t ’ s about 30% qu i c k e r than t e s t i n g every

b i t

80 ∗ f o r t h i s a p p l i c a t i o n .

81 ∗
82 ∗ I t seems to s low the ISR by about 2.5% i f you dec l a r e the

f o l l ow i n g array as

83 ∗ cons t ( and hence f o r c e i t i n t o f l a s h ) .

84 ∗/
85 stat ic u i n t 3 2 t debru i jn [ 3 2 ] =

86 {0 , 1 , 28 , 2 , 29 , 14 , 24 , 3 , 30 , 22 , 20 , 15 , 25 , 17 , 4 , 8 ,

87 31 , 27 , 13 , 23 , 21 , 19 , 16 , 7 , 26 , 12 , 18 , 6 , 11 , 5 , 10 , 9} ;

88

89 u i n t 3 2 t o f f s e t = 0 ;

90 u i n t 3 2 t word = 0 ;

91 u i n t 3 2 t r ightmostBitVal = 0 ;

92 u i n t 3 2 t p lace = 0 ;

93

94 bool f i r s t I t e r a t i o n = true ; // Used to d e t e c t the f i r s t

i t e r a t i o n o f wh i l e loop .

95

96 while ( ! s t a b l e ) {
97 for ( i = 0 ; i < BCGEN N PLACE WORDS; i +=1) {
98 lastMarking [ i ] = bcGenMarked [ i ] ;

99 }
100 for ( i = 0 , o f f s e t = 0 ; i < BCGEN N PLACE WORDS; i +=1,

o f f s e t +=32) {
101 word = bcGenMarked [ i ] ;

102 while ( word != 0) {
103 r ightmostBitVal = ( word & (−word ) ) ;

104 word −= rightmostBitVal ;

105 p lace = debru i jn [ ( ( r ightmostBitVal ∗ 0x077CB531 ) >> 27) ] +

o f f s e t ;
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106 r e a c t ( p lace ) ;

107 #ifde f BCGEN TIMERS REQUIRED

108 for ( j =0; j<BCGEN N TIMERS; j+=1) {
109 i f ( ! ( b i tTes t ( bcGenMarked , bcGenTimers [ j ] . index ) ) ) {
110 bcGenTimers [ j ] . index = 0 ;

111 }
112 }
113 #endif

114 }
115 }
116 s t a b l e = true ;

117 for ( i = 0 ; i < BCGEN N PLACE WORDS; i +=1) {
118 i f ( bcGenMarked [ i ] != lastMarking [ i ] ) {
119 s t a b l e = f a l s e ;

120 break ;

121 }
122 }
123

124 #ifde f BCGEN CAN REQUIRED

125 /∗ mark a l l e x t e r na l por t c on t r o l b l o c k s as s t a l e a f t e r the

f i r s t i t e r a t i o n ∗/
126 i f ( f i r s t I t e r a t i o n == true ) {
127 for ( i =0; i<BCGEN N EXTERNAL PORTS; i +=1) {
128 bcGenPCB [ i ] . index = 0 ;

129 }
130 f i r s t I t e r a t i o n = f a l s e ;

131 }
132

133 for ( i=BCGEN N EXTERNAL PORTS; i<BCGEN N PORTS; i +=1) {
134 bcGenPCB [ i ] . index = 0 ;

135 }
136 #endif

137

138 }
139 }
140

141 #else

142 while ( ! s t a b l e ) {
143 for ( i = 0 ; i < BCGEN N PLACE WORDS; i +=1) {
144 lastMarking [ i ] = bcGenMarked [ i ] ;

145 }
146 for ( i =0; i < BCGEN N PLACES; i +=1) {
147 i f ( b i tTes t ( bcGenMarked , i ) ) {
148 r e a c t ( i ) ;

149 }
150 }
151 s t a b l e = true ;
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152 for ( i = 0 ; i < BCGEN N PLACE WORDS; i +=1) {
153 i f ( bcGenMarked [ i ] != lastMarking [ i ] ) {
154 s t a b l e = f a l s e ;

155 break ;

156 }
157 }
158 }
159 #endif

160

161 /∗ s chedu l e next computation ∗/
162 scheduleNextComputation ( ) ;

163

164 /∗ About to l e a v e the ISR ∗/
165 bcPortISRExitHook ( ) ;

166 }
167

168 stat ic void r e a c t ( u i n t 3 2 t p) {
169 u i n t 3 2 t tIndex = bcGenTransit ions [ p ] . index ;

170

171 switch ( bcGenTransit ions [ p ] . type ) {
172 case BC IDLE : {
173 bcGenNCB [ tIndex ] . index = 0 ; /∗ a l l ow the s chedu l e r to

pass over t h i s computation i f i t wants ∗/
174 break ;

175 }
176 case BC COMP : {
177 i f (bcGenNCB [ tIndex ] . index < 0) {
178 /∗ computation has been schedu l ed but i s not ye t complete ;

noth ing to do ∗/
179 }
180 else i f (bcGenNCB [ tIndex ] . index == 0) { /∗ computation shou ld

be schedu l ed ∗/
181 bcGenNCB [ tIndex ] . index = −p ; /∗ show computation

has been schedu l ed but i s not completed ∗/
182 bcGenNCB [ tIndex ] . ptos = bcGenComputationInit ( tIndex ,

( bcComputation t ) bcGenTransit ions [ p ] . a t t r i b u t e ) ;

183 }
184 else { /∗ (bcGenNCB[ t Index ] . index > 0) so computation has been

completed ∗/
185 bcGenNCB [ tIndex ] . index = 0 ; /∗ . . . so r e s e t index to

show computation i s no l onger a c t i v e . . . ∗/
186 f i r e (p) ; /∗ . . . f i r e the

t r a n s i t i o n ∗/
187 }
188 break ;

189 }
190 case BC DELAY : {
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191 #ifde f BCGEN TIMERS REQUIRED

192 i f ( bcGenTimers [ t Index ] . index != 0) { /∗ t imer i s a c t i v e ∗/
193 i f ( bcGenTimers [ t Index ] . va lue == 0) { /∗ . . . and has exp i r ed

∗/
194 f i r e (p) ;

195 bcGenTimers [ tIndex ] . index = 0 ;

196 }
197 }
198 else { /∗ s t a r t the t imer ∗/
199 bcGenTimers [ t Index ] . index = p ;

200 bcGenTimers [ t Index ] . va lue =

( u i n t 3 2 t ) bcGenTransit ions [ p ] . a t t r i b u t e ;

201 }
202 #endif

203 break ;

204 }
205 case BC GFUN : {
206 i f ( ( bcGuardSe lect t )bcGenNCB [ tIndex ] . r e s u l t ==

( bcGuardSe lect t ) bcGenTransit ions [ p ] . a t t r i b u t e ) { /∗ t h i s

guard s e l e c t e d . . . ∗/
207 /∗ bcGuardResult = bcGenNCB[ t Index ] . r e s u l t ;

save the r e s u l t in case i t ’ s an excep t i on ∗/
208 f i r e (p) ;

/∗ . . . and f i r e t r a n s i t i o n ∗/
209 }
210 break ;

211 }
212 case BC GVAR : {
213 i f ( ( ( i n t 3 2 t ) bcGenTransit ions [ p ] . a t t r i b u t e == INT32 MAX) | |

( (∗ ( bcGuardSe lect t ∗) tIndex ==

( bcGuardSe lect t ) bcGenTransit ions [ p ] . a t t r i b u t e ) ) ) {
/∗ t h i s guard s e l e c t e d . . . ∗/

214 f i r e (p) ;

/∗ . . . so f i r e t r a n s i t i o n ∗/
215 }
216 break ;

217 }
218 case BC GEXN : {
219 #ifde f BCGEN EXN REQUIRED

220 i f (bcGenECB [ tIndex ] & (1 <<

( u i n t 3 2 t ) bcGenTransit ions [ p ] . a t t r i b u t e ) ) {
/∗ excep t i on i s r a i s e d . . . ∗/

221 bcGenECB [ tIndex ] &= ˜(1 <<

( u i n t 3 2 t ) bcGenTransit ions [ p ] . a t t r i b u t e ) ;
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/∗ . . . c l e a r the excep t i on . . .

∗/
222 f i r e (p) ;

/∗ . . . and f i r e t r a n s i t i o n ∗/
223 }
224 #endif

225 break ;

226 }
227 case BC EXIT : {
228 #ifde f BCGEN EXN REQUIRED

229 bcGenECB [ tIndex ] |= (1 <<

( u i n t 3 2 t ) bcGenTransit ions [ p ] . a t t r i b u t e ) ;

/∗ r a i s e the excep t i on ∗/
230 f i r e (p) ;

/∗ . . . and f i r e t r a n s i t i o n ∗/
231 #endif

232 break ;

233 }
234 case BC SEND : {
235 #ifde f BCGEN CAN REQUIRED

236 port = ( tIndex & 0x00000007 ) ;

237 l en = ( ( tIndex >> BCGEN MSG LEN OFFSET) & 0x0000000F ) ;

238 msgId = tIndex >> BCGEN MSG ID OFFSET;

239 from = ( u i n t 8 t ∗) bcGenTransit ions [ p ] . a t t r i b u t e ;

240

241 i f ( (BCGEN N EXTERNAL PORTS > 0) && ( port <

BCGEN N EXTERNAL PORTS) ) {
242 u i n t 3 2 t i ;

243 to = ( u i n t 8 t ∗)&sendBuf fe r . dataA ;

244 for ( i=l en ; i != 0 ; i−−) {
245 ∗ to++ = ∗ from++;

246 }
247 sendBuf fe r . id = msgId ;

248 sendBuf fe r . l en = len ;

249 bcPortCanWrite ( port , &sendBuf fe r ) ;

250 f i r e (p) ;

251 }
252 else {
253 u i n t 3 2 t i ;

254 i f (bcGenPCB [ port ] . index == 0) {
255 bcGenPCB [ port ] . index = p ;

256 to = ( u i n t 8 t ∗)&bcGenPCB [ port ] . message . dataA ;

257 for ( i=l en ; i != 0 ; i−−) {
258 ∗ to++ = ∗ from++;

259 }
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260 bcGenPCB [ port ] . message . id = msgId ;

261 bcGenPCB [ port ] . message . l en = len ;

262 f i r e (p) ;

263 }
264 }
265 #endif

266 break ;

267 }
268 case BC RECV : {
269 #ifde f BCGEN CAN REQUIRED

270 port = ( tIndex & 0x00000007 ) ;

271 msgId = tIndex >> BCGEN MSG ID OFFSET;

272 i f ( (bcGenPCB [ port ] . index != 0) &&

/∗ f r e s h

data a v a i l a b l e ∗/
273 (bcGenPCB [ port ] . message . id == msgId ) ) {

/∗ and

matching id ∗/
274 u i n t 3 2 t i ;

275 l en = ( ( tIndex >> BCGEN MSG LEN OFFSET) & 0x0000000F ) ;

276 a s s e r t ( l en == bcGenPCB [ port ] . message . l en ) ;

/∗ check t ha t

we ’ ve go t the r i g h t number o f b y t e s ∗/
277 to = ( u i n t 8 t ∗) bcGenTransit ions [ p ] . a t t r i b u t e ;

278 from = ( u i n t 8 t ∗)&bcGenPCB [ port ] . message . dataA ;

279 for ( i=l en ; i != 0 ; i−−) {

/∗ copy to the user data v a r i a b l e ∗/
280 ∗ to++ = ∗ from++;

281 }
282 f i r e (p) ;

/∗ and f i r e the t r a n s i t i o n ∗/
283 }
284 #endif

285 break ;

286 }
287 default :

288 a s s e r t ( f a l s e ) ; /∗ shou ld not happen ∗/
289 }
290 }
291

292 stat ic void f i r e ( u i n t 3 2 t p) {
293 bcGenTrans i t ion t t = bcGenTransit ions [ p ] ;

294 u i n t 3 2 t i ;

295

296 b i tC l ea r ( bcGenMarked , p) ;
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297 for ( i = 0 ; i < BCGEN N PLACE WORDS; i++) {
298 bcGenMarked [ i ] &= ˜( t . vu lne rab l e [ i ] ) ;

299 bcGenMarked [ i ] |= t . t a r g e t [ i ] ;

300 }
301 }
302

303

304 stat ic u i n t 3 2 t scheduleNextNCBindex = 0 ;

305

306 #i f de f ined (BCGEN SCHEDULE ROUND ROBIN)

307 stat ic void scheduleNextComputation (void ) {
308 i f (++scheduleNextNCBindex == BCGEN N NETS) {
309 scheduleNextNCBindex = 1 ;

310 }
311

312 i f (bcGenNCB [ scheduleNextNCBindex ] . index != 0) { /∗ t h e r e i s a

computation to cons ider ∗/
313 i f ( b i tTes t ( bcGenMarked ,

−(bcGenNCB [ scheduleNextNCBindex ] . index ) ) ) {
314 bcGenCurrentNCBPtr = &bcGenNCB [ scheduleNextNCBindex ] ; /∗

t r i g g e r s t i l l marked so schedu l e t h i s computation ∗/
315 }
316 else {
317 bcGenNCB [ scheduleNextNCBindex ] . index = 0 ; /∗ t r i g g e r

no longer marked ; abandon t h i s computation ∗/
318 bcGenCurrentNCBPtr = &bcGenNCB [ 0 ] ; /∗ and

schedu l e the i d l e computation ∗/
319 }
320 }
321 else {
322 bcGenCurrentNCBPtr = &bcGenNCB [ 0 ] ; /∗ no

computation a v a i l a b l e here ; s chedu l e the i d l e computation

∗/
323 }
324 }
325

326 #e l i f de f ined (BCGEN SCHEDULE FIXED PRIORITY)

327

328 stat ic void scheduleNextComputation (void ) {
329 scheduleNextNCBindex = 0 ;

330 while (++scheduleNextNCBindex < BCGEN N NETS) {
331 i f (bcGenNCB [ scheduleNextNCBindex ] . index != 0) {
332 i f ( b i tTes t ( bcGenMarked ,

−(bcGenNCB [ scheduleNextNCBindex ] . index ) ) ) {
333 bcGenCurrentNCBPtr = &bcGenNCB [ scheduleNextNCBindex ] ; /∗

t r i g g e r s t i l l marked so schedu l e t h i s computation ∗/
334 return ;
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335 }
336 else {
337 bcGenNCB [ scheduleNextNCBindex ] . index = 0 ; /∗

t r i g g e r no longer marked ; abandon t h i s computation ∗/
338 }
339 }
340 }
341 bcGenCurrentNCBPtr = &bcGenNCB [ 0 ] ; /∗ no

computation a v a i l a b l e ; s chedu l e the i d l e computation ∗/
342 }
343

344 #e l i f de f ined (BCGEN SCHEDULE COOPERATIVE)

345

346 stat ic bool coroutineRunning = f a l s e ;

347

348 void bcCoroutine (void ) {
349 bcNCB t volat i le ∗savedNCBPtr = bcGenCurrentNCBPtr ;

350 i n t 3 2 t tIndex = 0 ;

351 i n t 3 2 t index = 0 ;

352

353 coroutineRunning = true ;

354 while (++scheduleNextNCBindex < BCGEN N NETS) {
355 tIndex = −(bcGenNCB [ scheduleNextNCBindex ] . index ) ;

356 i f ( tIndex != 0) {
/∗ t h e r e i s a computation to cons ider ∗/

357 i f ( b i tTes t ( bcGenMarked , tIndex ) ) {
358 bcGenCurrentNCBPtr = &bcGenNCB [ scheduleNextNCBindex ] ;

/∗ t r i g g e r s t i l l marked so . . . ∗/
359 ( ( bcComputation t ) bcGenTransit ions [ tIndex ] . a t t r i b u t e ) ( ) ;

/∗ . . . run the computation ∗/
360 index = bcGenCurrentNCBPtr−>index ;

361 bcGenCurrentNCBPtr−>index = −index ;

362 }
363 else {
364 bcGenNCB [ scheduleNextNCBindex ] . index = 0 ;

/∗ t r i g g e r no longer marked ; abandon t h i s computation ∗/
365 }
366 }
367 }
368 bcGenCurrentNCBPtr = savedNCBPtr ;

/∗ no more computat ions a v a i l a b l e ; re turn ∗/
369 coroutineRunning = f a l s e ;

370 }
371

372 bool bcExecutingAsCoroutine (void ) {
373 return coroutineRunning ;

374 }
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375

376

377 stat ic void scheduleNextComputation (void ) {
378 scheduleNextNCBindex = 0 ;

379 while (++scheduleNextNCBindex < BCGEN N NETS) {
380 i f (bcGenNCB [ scheduleNextNCBindex ] . index != 0) {
381 i f ( b i tTes t ( bcGenMarked ,

−(bcGenNCB [ scheduleNextNCBindex ] . index ) ) ) {
382 bcGenCurrentNCBPtr = &bcGenNCB [ scheduleNextNCBindex ] ; /∗

t r i g g e r s t i l l marked so schedu l e t h i s computation ∗/
383 return ;

384 }
385 else {
386 bcGenNCB [ scheduleNextNCBindex ] . index = 0 ; /∗

t r i g g e r no longer marked ; abandon t h i s computation ∗/
387 }
388 }
389 }
390 bcGenCurrentNCBPtr = &bcGenNCB [ 0 ] ; /∗ no

computation a v a i l a b l e ; s chedu l e the i d l e computation ∗/
391 }
392

393 #else

394

395 #error : No schedu l ing p o l i c y de f ined

396

397 #endif

398

399

400 void bcRunSystem (void ) {
401 bcPortBSPinit ( ) ;

402 bcGenStackInit ( ) ;

403 bcPortTimerInit ( ) ;

404 bcPortStartSystem ( ) ;

405 }
406

407

408 void bcNullComputation (void ) {
409 i n t 3 2 t index = bcGenCurrentNCBPtr−>index ;

410 bcGenCurrentNCBPtr−>index = −index ;

411 bcIdleComputation ( ) ;

412 }
413

414

415 void bcIdleComputation (void ) {
416 while ( t rue ) {
417 }
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418 }

C.2 The C code of the flow node

1 /∗
2 ∗ F i l e : bcgen . h o f f l ow node .

3 ∗/
4

5 #ifndef BCGEN H

6 #define BCGEN H

7

8 #include <bcport . h>

9 #include <bc . h>

10

11 /∗
12 ∗ Define the t i c k ra t e f o r the ISR

13 ∗/
14 #define BCGEN TICK HZ 1000

15

16 /∗
17 ∗ Define BCGEN TIMERS REQUIRED to inc l ude code f o r use

18 ∗ o f s o f t t imers

19 ∗/
20 #define BCGEN TIMERS REQUIRED

21

22

23 /∗
24 ∗ Define BCGEN CAN REQUIRED to inc l ude code f o r communication

25 ∗ between proce s s e s e i t h e r v ia CAN or l o c a l l y

26 ∗/
27 #define BCGEN CAN REQUIRED

28

29

30

31 /∗
32 ∗ Define BCGEN DEBRUIJN to choose f a s t i t e r a t i o n through marked

p l a c e s in the

33 ∗ main loop in the ISR

34 ∗/
35 #define BCGEN DEBRUIJN

36

37

38 /∗ Must d e f i n e one o f BCGEN SCHEDULE ROUND ROBIN or

BCGEN SCHEDULE FIXED PRIORITY

39 ∗ or BCGEN SCHEDULE COOPERATIVE or BCGEN SCHEDULE HYBRID

40 ∗/
41 #define BCGEN SCHEDULE ROUND ROBIN
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42

43 #i f de f ined (BCGEN SCHEDULE COOPERATIVE) | |
de f ined (BCGEN SCHEDULE HYBRID)

44 void bcCoroutine (void ) ;

45 bool bcPrimaryCoopCall (void ) ;

46 bool bcSecondaryCoopCall (void ) ;

47 #endif

48

49 enum {
50 BCGEN N NETS = 2 ,

51 BCGEN N PLACES = 4 ,

52 BCGEN N PLACE WORDS = 1 ,

53 BCGEN N TIMERS = 1 ,

54 BCGEN N PORTS = 1 ,

55 BCGEN N EXTERNAL PORTS = 1 ,

56 BCGEN MSG ID OFFSET = 7 ,

57 BCGEN MSG LEN OFFSET = 3 ,

58 BCGEN N STACK WORDS = 40

59 } ;

60

61 typedef bcPortWord t bcGenPlaceSet t [BCGEN N PLACE WORDS ] ;

62

63 /∗
64 ∗ The index f i e l d in bcGenTrans i t ion t be low has a v a r i e t y o f

uses .

65 ∗ I t depends on the a t t r i b u t e type and i s s e t as f o l l o w s :

66 ∗
67 ∗ BC TICK − index shou ld be 0 ; ignored

68 ∗ BC IDLE − index shou ld be 0 ; ignored

69 ∗ BCCOMP − index shou ld be index o f the NCB tha t owns t h i s

computation

70 ∗ BC DELAY − index shou ld be index o f the s o f t t imer t r a c k i n g

t h i s de l ay

71 ∗ BCGUARD − index shou ld be index o f the NCB tha t owns t h i s guard

72 ∗ BC SEND − index shou ld be ( ( message id << i d o f f s e t ) |
(message l en << l e n o f f s e t ) | pcb id )

73 ∗ BC RECV − index shou ld be as f o r BC SEND

74 ∗
75 ∗
76 ∗ a t t r i b u t e shou ld be s e t as de f i ned in bc . h

77 ∗/
78 typedef struct bcGenTransit ion {
79 bcAttr ibuteType t type ;

80 u i n t 3 2 t index ;

81 bcGenPlaceSet t vu lne rab l e ;

82 bcAt t r i bu t e t a t t r i b u t e ;

83 bcGenPlaceSet t t a r g e t ;
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84 } bcGenTrans i t ion t ;

85

86

87 extern bcNCB t volat i le bcGenNCB [BCGEN N NETS ] ;

88 extern bcNCB t volat i le ∗ volat i le bcGenCurrentNCBPtr ;

89 extern bcTimer t volat i le bcGenTimers [BCGEN N TIMERS ] ;

90 extern bcPCB t bcGenPCB [BCGEN N PORTS ] ;

91 extern bcGenPlaceSet t bcGenMarked ;

92 extern bcGenTrans i t ion t const bcGenTransit ions [BCGEN N PLACES ] ;

93

94 void bcGenStackInit (void ) ;

95 u i n t 3 2 t ∗ bcGenComputationInit ( u i n t 3 2 t net , bcComputation t comp) ;

96

97 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ User procedure and func t i on pro t o t ype s

∗∗∗∗∗∗∗∗∗ ∗/
98

99 void bcGenCompT2(void ) ;

100

101 #endif

1 /∗
2 ∗ F i l e : bcgen . c o f f l ow node .

3 ∗/
4

5 #include <s t d i n t . h>

6 #include <bc . h>

7 #include <bcport . h>

8 #include <bcgen . h>

9 #include <user . h>

10

11 stat ic void computationDone (void ) ;

12

13 stat ic u i n t 3 2 t s tack [BCGEN N STACK WORDS ] ;

14 stat ic u i n t 3 2 t const stackBaseIndex [BCGEN N NETS] = {39 , 19} ;

15

16 bcNCB t volat i le bcGenNCB [BCGEN N NETS] = {
17 {( u i n t 3 2 t ∗) 0 , 0 , ( bcResu l t t ) 0} ,

18 {( u i n t 3 2 t ∗) 0 , 0 , ( bcResu l t t ) 0}
19 } ;

20

21 bcNCB t volat i le ∗ volat i le bcGenCurrentNCBPtr = &bcGenNCB [ 0 ] ;

22 bcPortWord t bcGenMarked [BCGEN N PLACE WORDS] = {
23 0x0000000CU

24 } ;

25

26 bcGenTrans i t ion t const bcGenTransit ions [BCGEN N PLACES] = {
27 {BC IDLE , 0 , {0x00000000U } , ( b cAt t r i bu t e t ) bcIdleComputation ,

{0x00000000U }} ,
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28 {BC SEND, ( u i n t 3 2 t ) ( (0 << BCGEN MSG ID OFFSET) | ( s izeof ( fFlow )

<< BCGEN MSG LEN OFFSET) | 0) , {0x00000000U } ,

( b cAt t r i bu t e t )&fFlow , {0x00000000U }} ,

29 {BC COMP, 1 , {0x00000000U } , ( b cAt t r i bu t e t )bcGenCompT2 ,

{0x00000002U }} ,

30 {BC DELAY, 0 , {0x00000006U } , ( b cAt t r i bu t e t ) 10 , {0x0000000CU}}
31 } ;

32

33 bcTimer t volat i le bcGenTimers [BCGEN N TIMERS] = {
34 {0U, 0U}
35 } ;

36

37 bcPCB t bcGenPCB [BCGEN N PORTS] = {
38 {0U, {0U, 0U, 0U, 0U}}
39 } ;

40

41 void bcGenStackInit (void ) {
42 u i n t 3 2 t i ;

43

44 for ( i =0; i<BCGEN N NETS; i +=1) {
45 i f ( i > 0) {
46 /∗ Put some s t a c k markers in to he l p debugg ing ∗/
47 stack [ stackBaseIndex [ i ]+1] = 0xFEEDFACE;

48 }
49 bcGenNCB [ i ] . ptos =

50 bcPortComputationInit(&stack [ stackBaseIndex [ i ] ] ,

51 bcIdleComputation ) ;

52 }
53 stack [ 0 ] = 0xFEEDFACE;

54 }
55

56 u i n t 3 2 t ∗ bcGenComputationInit ( u i n t 3 2 t net , bcComputation t

comp) {
57 return bcPortComputationInit(&stack [ stackBaseIndex [ net ] ] , comp) ;

58 }
59

60 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ User procedure c a l l s

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
61

62 void bcGenCompT2(void ) {
63 readSensor ( ) ;

64 computationDone ( ) ;

65 }
66

67 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Local f unc t i on s

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
68
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69 stat ic void computationDone (void ) {
70 i n t 3 2 t index = bcGenCurrentNCBPtr−>index ;

71

72 bcGenCurrentNCBPtr−>index = −index ;

73 #i f de f ined (BCGEN SCHEDULE COOPERATIVE) | |
de f ined (BCGEN SCHEDULE HYBRID)

74 i f ( bcPrimaryCoopCall ( ) ) {
75 bcCoroutine ( ) ;

76 }
77 else i f ( bcSecondaryCoopCall ( ) ) {
78 return ;

79 }
80 #endif

81 bcIdleComputation ( ) ;

82 }

C.3 The C code of the valve node

1 /∗
2 ∗ F i l e : bcgen . h o f v a l v e node .

3 ∗/
4

5 #ifndef BCGEN H

6 #define BCGEN H

7

8 #include <bcport . h>

9 #include <bc . h>

10

11 /∗
12 ∗ Define the t i c k ra t e f o r the ISR

13 ∗/
14 #define BCGEN TICK HZ 1000

15

16 /∗
17 ∗ Define BCGEN TIMERS REQUIRED to inc l ude code f o r use

18 ∗ o f s o f t t imers

19 ∗/
20

21 /∗
22 ∗ Define BCGEN CAN REQUIRED to inc l ude code f o r communication

23 ∗ between proce s s e s e i t h e r v ia CAN or l o c a l l y

24 ∗/
25 #define BCGEN CAN REQUIRED

26

27

28

29 /∗
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30 ∗ Define BCGEN DEBRUIJN to choose f a s t i t e r a t i o n through marked

p l a c e s in the

31 ∗ main loop in the ISR

32 ∗/
33 #define BCGEN DEBRUIJN

34

35

36 /∗ Must d e f i n e one o f BCGEN SCHEDULE ROUND ROBIN or

BCGEN SCHEDULE FIXED PRIORITY

37 ∗ or BCGEN SCHEDULE COOPERATIVE or BCGEN SCHEDULE HYBRID

38 ∗/
39 #define BCGEN SCHEDULE ROUND ROBIN

40

41 #i f de f ined (BCGEN SCHEDULE COOPERATIVE) | |
de f ined (BCGEN SCHEDULE HYBRID)

42 void bcCoroutine (void ) ;

43 bool bcPrimaryCoopCall (void ) ;

44 bool bcSecondaryCoopCall (void ) ;

45 #endif

46

47 enum {
48 BCGEN N NETS = 2 ,

49 BCGEN N PLACES = 3 ,

50 BCGEN N PLACE WORDS = 1 ,

51 BCGEN N PORTS = 1 ,

52 BCGEN N EXTERNAL PORTS = 1 ,

53 BCGEN MSG ID OFFSET = 7 ,

54 BCGEN MSG LEN OFFSET = 3 ,

55 BCGEN N STACK WORDS = 40

56 } ;

57

58 typedef bcPortWord t bcGenPlaceSet t [BCGEN N PLACE WORDS ] ;

59

60 /∗
61 ∗ The index f i e l d in bcGenTrans i t ion t be low has a v a r i e t y o f

uses .

62 ∗ I t depends on the a t t r i b u t e type and i s s e t as f o l l o w s :

63 ∗
64 ∗ BC TICK − index shou ld be 0 ; ignored

65 ∗ BC IDLE − index shou ld be 0 ; ignored

66 ∗ BCCOMP − index shou ld be index o f the NCB tha t owns t h i s

computation

67 ∗ BC DELAY − index shou ld be index o f the s o f t t imer t r a c k i n g

t h i s de l ay

68 ∗ BCGUARD − index shou ld be index o f the NCB tha t owns t h i s guard

69 ∗ BC SEND − index shou ld be ( ( message id << i d o f f s e t ) |
(message l en << l e n o f f s e t ) | pcb id )
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70 ∗ BC RECV − index shou ld be as f o r BC SEND

71 ∗
72 ∗
73 ∗ a t t r i b u t e shou ld be s e t as de f i ned in bc . h

74 ∗/
75 typedef struct bcGenTransit ion {
76 bcAttr ibuteType t type ;

77 u i n t 3 2 t index ;

78 bcGenPlaceSet t vu lne rab l e ;

79 bcAt t r i bu t e t a t t r i b u t e ;

80 bcGenPlaceSet t t a r g e t ;

81 } bcGenTrans i t ion t ;

82

83

84 extern bcNCB t volat i le bcGenNCB [BCGEN N NETS ] ;

85 extern bcNCB t volat i le ∗ volat i le bcGenCurrentNCBPtr ;

86 extern bcPCB t bcGenPCB [BCGEN N PORTS ] ;

87 extern bcGenPlaceSet t bcGenMarked ;

88 extern bcGenTrans i t ion t const bcGenTransit ions [BCGEN N PLACES ] ;

89

90 void bcGenStackInit (void ) ;

91 u i n t 3 2 t ∗ bcGenComputationInit ( u i n t 3 2 t net , bcComputation t comp) ;

92

93 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ User procedure and func t i on pro t o t ype s

∗∗∗∗∗∗∗∗∗ ∗/
94

95 void bcGenCompT2(void ) ;

96

97 #endif

1 /∗
2 ∗ F i l e : bcgen . c o f v a l v e node .

3 ∗/
4

5 #include <s t d i n t . h>

6 #include <bc . h>

7 #include <bcport . h>

8 #include <bcgen . h>

9 #include <user . h>

10

11 stat ic void computationDone (void ) ;

12

13 stat ic u i n t 3 2 t s tack [BCGEN N STACK WORDS ] ;

14 stat ic u i n t 3 2 t const stackBaseIndex [BCGEN N NETS] = {39 , 19} ;

15

16 bcNCB t volat i le bcGenNCB [BCGEN N NETS] = {
17 {( u i n t 3 2 t ∗) 0 , 0 , ( bcResu l t t ) 0} ,

18 {( u i n t 3 2 t ∗) 0 , 0 , ( bcResu l t t ) 0}
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19 } ;

20

21 bcNCB t volat i le ∗ volat i le bcGenCurrentNCBPtr = &bcGenNCB [ 0 ] ;

22 bcPortWord t bcGenMarked [BCGEN N PLACE WORDS] = {
23 0x00000002U

24 } ;

25

26 bcGenTrans i t ion t const bcGenTransit ions [BCGEN N PLACES] = {
27 {BC IDLE , 0 , {0x00000000U } , ( b cAt t r i bu t e t ) bcIdleComputation ,

{0x00000000U }} ,

28 {BC RECV, ( u i n t 3 2 t ) ( (0 << BCGEN MSG ID OFFSET) | ( s izeof ( vFlow )

<< BCGEN MSG LEN OFFSET) | 0) , {0x00000000U } ,

( b cAt t r i bu t e t )&vFlow , {0x00000004U }} ,

29 {BC COMP, 1 , {0x00000000U } , ( b cAt t r i bu t e t )bcGenCompT2 ,

{0x00000002U}}
30 } ;

31

32 bcPCB t bcGenPCB [BCGEN N PORTS] = {
33 {0U, {0U, 0U, 0U, 0U}}
34 } ;

35

36 void bcGenStackInit (void ) {
37 u i n t 3 2 t i ;

38

39 for ( i =0; i<BCGEN N NETS; i +=1) {
40 i f ( i > 0) {
41 /∗ Put some s t a c k markers in to he l p debugg ing ∗/
42 stack [ stackBaseIndex [ i ]+1] = 0xFEEDFACE;

43 }
44 bcGenNCB [ i ] . ptos =

45 bcPortComputationInit(&stack [ stackBaseIndex [ i ] ] ,

46 bcIdleComputation ) ;

47 }
48 stack [ 0 ] = 0xFEEDFACE;

49 }
50

51 u i n t 3 2 t ∗ bcGenComputationInit ( u i n t 3 2 t net , bcComputation t

comp) {
52 return bcPortComputationInit(&stack [ stackBaseIndex [ net ] ] , comp) ;

53 }
54

55 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ User procedure c a l l s

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
56

57 void bcGenCompT2(void ) {
58 adjustValve ( ) ;

59 computationDone ( ) ;
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60 }
61

62 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Local f unc t i on s

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
63

64 stat ic void computationDone (void ) {
65 i n t 3 2 t index = bcGenCurrentNCBPtr−>index ;

66

67 bcGenCurrentNCBPtr−>index = −index ;

68 #i f de f ined (BCGEN SCHEDULE COOPERATIVE) | |
de f ined (BCGEN SCHEDULE HYBRID)

69 i f ( bcPrimaryCoopCall ( ) ) {
70 bcCoroutine ( ) ;

71 }
72 else i f ( bcSecondaryCoopCall ( ) ) {
73 return ;

74 }
75 #endif

76 bcIdleComputation ( ) ;

77 }
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Systèmes Temporisés. PhD thesis, Institut National Polytechnique de Greno-

ble.

Zhao, Y., Liu, J., and Lee, E. A. (2007). A programming model for time-

synchronized distributed real-time systems. In 13th IEEE Real Time and

Embedded Technology and Applications Symposium, 2007. RTAS ’07, pages

259 – 268.

Zhu, M. and Brooks, R. (2009). Comparison of Petri Net and Finite State

Machine Discrete Event Control of Distributed Surveillance Networks. Inter-

national Journal of Distributed Sensor Networks, 5(5):480–501.


