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Abstract. We analyze the family of stream ciphers N-viums: Trivium and 
Bivium. We present the Trivium algorithm and its variants. In particular, we 
study the NLFSRs used in these generators, their feedback functions and their 
combination. Two reduced variants of these models are presented, labeled 
Toys. Finally, we delve into the open problems ingrained in these 
cryptosystems. 
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1 Introduction 

The revolution of communications and technology has taken cryptology from the 
military and diplomatic realm into everyday life.  
E-mailing, home banking, user authentication in social networks, mobile 
communications, and wireless technology have increased the requirements for 
confidentiality while data is transferred via insecure channels. 

Some ciphering systems meet the requirements to protect data satisfactorily. 
However, they do not meet the increasing demand for higher transfer rates. 

Because of the resources used and the processing power required, the existing 
algorithms lag behind the increasing needs for data transfer security. 

Stream ciphers may prove suitable to use in portable devices. Their hardware 
adaptability turns them into feasible solutions, responding to the increasing demand 
and high transfer rate standards. 

1.1 Stream Ciphers. 

A perfect cryptosystem entails the capacity for an algorithm to cipher a message 
which can be deciphered only by the intended receiver. 
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Vernan and Mauborge created such a system in 1917 at the AT&T labs. In their 
design, the required key is as long as the length of the message. Both, transmitter and 
receiver must have the key which must be destroyed after use. Otherwise, security is 
jeopardized. 

Because of this feature, the system is known as One-Time-Pad. The key must be 
random and is used for both processes: ciphering and deciphering. Hence, users need 
to share it at both ends. Cryptosystems under this particular secret key configuration 
belong to a class known as symmetric-key algorithms.  

In 1949, Shannon demonstrated the invulnerability of this system by satisfying the 
requirements for perfect secrecy established by the rising field of Information Theory. 

Nonetheless, two weaknesses become apparent, not in the algorithm itself, but in 
its application. On one hand, a problem arises in the generation of the secret key; and, 
on the other, in the security of key distribution.  

A possible solution is to find a deterministic procedure to generate the key. Such a 
key would not be random, but pseudorandom, and shall meet additional requirements 
to be considered secure. 

1.2 LFSRs and Non-LFSRs 

Currently, Linear Feedback Shift Registers (LFSRs) are used extensively to generate 
pseudorandom sequences with controlled period and linear complexity. 

Research on LFSRs began in the 60s [6] and continued through several years. A 
significant number of results and applications have been produced: algorithm design, 
error control codes, and linear complexity analysis of binary sequences with the 
Berlekamp-Massey algorithm [7].  

Because of their linearity, LFSRs alone are insecure. It is widely known that, when 
2n-1 consecutive bits of an outbound sequence are known, it becomes predictable. 
Attempts to add linear complexity by combining LFSRs with, among other things, 
nonlinear functions have not met the desired standards yet. 

Nonlinear Feedback Shift Registers (NLFSRs), a generalization of their linear 
counterparts, have been relegated for a long time. While LFSR theory is robust and 
well understood, many fundamental problems with NLFSRs remain unanswered. 

One such problem is the determination of the period of outbound sequences in 
NLFSRs. In recent years, research has focused on nonlinear registers and stream 
ciphers using NLFSRs in some form. This is the case for the class TRIVIUM [1][2], 
BIVIUM [10]. 

Our research focuses in the development of a new family of the TRIVIUM-
BIVIUM stream cipher class, designated as Toys. 

In our Toys, in which the sizes of the NLFSRs are reduced significantly, we have 
modified their taps while maintaining the original design principles. 

With these models, observation in a constrained environment may foster more 
realistic research projects, as well as allow researchers to compare results within 
smaller samples and to conduct tests in a reduced space.  

In the future, the Toy family may help contribute in the development of a solid 
algebra involving NLFSRs, in particular for generators of the TRIVIUM-BIVIUM 
class. 
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2. FSR Overview 

An n-bit feedback shift register (FSR) is an n-bit length register with a feedback 
function: 

  
f:{0,1}n →{0,1} (1) 

 
where the feedback bit (at the tap positions of the register) or the output bit is of the 
form: 
 

xn+t = f(xn-1+t,xn-2+t ,…….xt) (t≥0) (2) 
 

For each step t, the register bits shift one position to the right and the taps are fed 
into the function and become the bit input for the following step. The n bits of the 
register constitute the state of the register at step t. The initial state is defined when 
t=0. The period of a FSR is the length of the largest cycle generated by the output 
sequence of the register. 

If the feedback function is linear, i.e.: 
 

f(xn-1,xn-2 ,…….x0)  =  c0x0 + c1x1 + c2x2 +………+ cn-1xn-1 (ci ∈ {0,1}) (3) 
 

we say that the registry is an LFSR (Linear Feedback Shift Register). Otherwise, 
with a nonlinear feedback function, we have a NLFSR (Nonlinear Feedback Shift 
Register). 

 

Fig.1: n-bit FSR Structure. 

In the LFSR case, when the coefficients ci belong to a primitive polynomial, the 
LFSR output sequence has a maximum length of 2n

-1, regardless of the chosen initial 
(non-trivial) state. The LFSR output sequences of maximum length are called 
maximal sequences or m-sequences [6]. If 2n-1 output bits of an n-length LFSR are 
known, then the sequence becomes predictable using the Berlekamp-Massey 
algorithm [10]. 

NLFSRs are more robust to algebraic attacks. However, no systematic and efficient 
method is known to construct secure NLFSRs [3][4]. Furthermore, for a given 
nonlinear feedback function, it is difficult to predict the period of the output sequence. 

A stream cipher is a symmetric ciphering system which takes a sequence of 
plaintext and a secret key, and operates on the plaintext, generally bit by bit with the 
key bit stream, generated by the secret key and the algorithm. 
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Fig.2 Stream Cipher Example 
 

The key bit stream must meet certain cryptologic security conditions, i.e.: the 
length of the sequence and the linear complexity must be sufficiently large, and the 
binary sequence must satisfy a series of pseudo-random tests [6]. 

3. Trivium and Bivium 

The stream algorithm TRIVIUM was designed by Christophe De Cannière and Bart 
Preneel. It was selected as a finalist algorithm in the e-STREAM Project [5]. It was 
designed to generate at least 264 bits with the use of an 80-bit secret key and an 
initialization vector (IV) of also 80 bits. 
 

 
Fig.3: Trivium algorithm 

 
It consists of three combined NLFSRs. The first register controls the second, the 

second controls the third, and this last register controls the first. 
 

 

Fig.4: Trivium-Like Structure 

The core idea behind the design focuses on using the principles of block cipher 
construction in order to create equivalent components in stream ciphers. 
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The output consists of three combined non-linear shift registers of length 93, 84, 
and 111, and where specific positions are selected to obtain a key bit stream. Whereas 
no efficient attack has been encountered to break this generator so far [8][9], its 
period remains undetermined and an open research problem. 

A complete description is given by the following simple pseudo-code: 

INPUT: s0, s1,…,s287 initial state, integer n, si ∈{0,1}. 

OUTPUT: binary sequence {kt} 

1. Initialization 

t1 ← s65  ⊕ s92  
t2 ← s161  ⊕ s176 

t3 ← s242  ⊕ s287 
 

2. While ( t<n ) do the following: 
 

2.1  kt ← t1 ⊕ t2  ⊕ t3   

2.2  t1 ← t1 ⊕ s90  ⊗ s91 ⊕ s170    

     t2 ← t2 ⊕ s174 ⊗s175 ⊕ s263 

     t3 ← t3 ⊕ s285 ⊗s286 ⊕ s68    

  2.3  (s0, s1,…,s92)    ← (t3, s0,…,s91) 

       (s93, s94,…,s176)  ← (t1, s93,…,s175)  

       (s177, s178,…,s287) ← (t2, s177,…,s285) 

 

3. Return {kt} 

 
Note that ⊕ is the XOR operation and ⊗ the AND operation. 
 
BIVIUM was designed by Hårvard Raddum to obtain a reduced sized version of 

TRIVIUM. It consists of two combined NLFSRs (while TRIVIUM has three) of 
lengths 93 and 84. 

Despite the improved security under specific attacks granted by this model, the 
results are not entirely satisfactory. 

4. The Toy Model 

We present reduced variants of TRIVIUM and BIVIUM algorithms as a strategy to 
tackle the open problems discussed and the mathematical theory behind the behavior 
of NLFSRs. The reduced models (decimated by 3) are based on previous work by 
Yun Tian et al, who developed an extended model of the TRIVIUM structure [11]. 
We have named these models Toys, considering they are miniatures of the originals. 

It is noted that every reduction of a model focuses on a quest for simplicity in its 
mathematical study and it is not meant to be used in operative information security 
environments. 
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We assume the following: 
A1) Property invariance after size reduction: the reduced size structure of the models 
maintains the mathematical properties of the original model. 
A2) Computational complexity reduction: The reduction in size contributes to a 
reduction of the problem, making the model more manageable under computational as 
well as algebraic considerations. 
A3) Property invariance after size increase: In the case of identified patterns in the 
behavior and mathematical properties in the reduced model, they may be extrapolated 
to the original model. 

These assumptions need to hold throughout the entire research. In case one of them 
does not hold or inconsistences among them are encountered, the procedure presented 
here ought to be revised. 

4.1. Trivium-Toy 

The model consists of three NLFSRs X, Y, and Z of lengths 31, 28 and 37 with the 
following states: 

X(31): X0, X1,…………,X30 
Y(28): Y0,Y1,………….,Y27 
Z(37): Z0, Z1,………….,Z36 

(4) 

 
Being the feedback of each register, i.e. the bit input in each: 
 

X0: Z21 ⊕ Z36 ⊕ Z35 ⊗ Z34 ⊕ X22 
Y0: X21 ⊕ X30 ⊕ X29 ⊗ X28 ⊕ Y25 
Z0 : Y22 ⊕ Y27 ⊕ Y26 ⊗ Y25 ⊕ Z28 

(5) 

 

and the key bit stream:  
Kt:X21 ⊕ X30 ⊕ Y22 ⊕ Y27 ⊕ Z21 ⊕ Z36 (6) 

 
Also, the cipher of the plaintext with the key bit stream is: 
 

Ct = Pt ⊕ Kt (7) 
 

 
 

Fig.5 Trivium vs Trivium Toy 
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Pseudo-code of the Trivium is changed to a reduced form as follows: 
 

INPUT:   s0, s1,…,s95 initial state, integer n, si ∈ {0,1}. 

OUTPUT: binary sequence {kt} 

1. Initialization. 

t1 ← s21 ⊕ s30  
t2 ← s53 ⊕ s58 

t3 ← s80 ⊕ s95 
 

2. While ( t<n ) do the following: 
 

2.1  kt ← t1⊕ t2 ⊕ t3   

 

2.2  t1 ← t1 ⊕ s28 ⊗ s29 ⊕ s55  

     t2 ← t2 ⊕ s56 ⊗ s57 ⊕ s87 

     t3 ← t3 ⊕ s93 ⊗ s94 ⊕ s22 
 

  2.3  (s0, s1,…,s30)  ← (t3, s0,…,s29) 

       (s31, s32,…,s58) ← (t1, s31,…,s57)  

       (s59, s60,…,s95) ← (t2, s59,…,s94) 

 

3. Return {kt} 

4.2. Bivium-Toy 

The model consists of two NLFSRs X, and Y of lengths 31 and 28 respectively with 
the following states: 

X(31): X0, X1,…………,X30 
Y(28): Y0, Y1,…………,Y27 

(8) 

 

Being the feedback of each register: 
 

X0: Y22 ⊕ Y27 ⊕ Y26 ⊗Y25 ⊕ X22 
Y0: X21 ⊕ X30 ⊕ X29 ⊗X28 ⊕ Y25 

(9) 

 

and the key bit stream:  
 

Kt: X21 ⊕ X30 ⊕ Y22 ⊕ Y27 (10) 
 

The cipher process is the same as detailed in formula (7). 
Pseudo-code of this reduced cipher is given below: 

 
INPUT:   s0, s1,…,s58 initial state, integer n., si ∈ {0,1}. 

OUTPUT: binary sequence {kt}  
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1. Initialization. 

t1 ← s21 ⊕ s30  
t2 ← s53 ⊕ s58  
 

2. While ( t<n ) do the following: 
 

2.1 kt ← t1⊕ t2    
  

2.2   t1 ← t1 ⊕ s28 ⊗ s29 ⊕ s55  

      t2 ← t2 ⊕ s56 ⊗ s57 ⊕ s22 
   

  2.3  (s0, s1,…,s30)  ← (t2, s0,…,s29) 

       (s31, s32,…,s58) ← (t1, s31,…,s57)  

 

3. Return {kt} 

5. Conclusions 

In this article we present the class of Trivium-Bivium random sequence generators 
using non-linear shift registers (NLFSR). 

Because of their size, several research problems remain unanswered: patterns of 
behavior, algebraic properties, period lengths, and weak keys among others. 

Under this framework, we present reduced sized variants of these generators for 
research and applications in cryptology, laying out the formulae of the feedback 
functions as well as the key bit streams. We assume that the properties identified in 
the reduced sized models would remain invariant in the original ones. 

6. Further research. 

The Toy family may foster additional research in the following areas:  
- Search for length of the period or cycles. 
- Distribution of taps and their changes to determine algebraic properties and 

personalization of N-viums. 
- Algebraic analysis of the non-linear functions used in the models. 
- Search for possible weak keys. 
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