
A Complexity Lower Bound Based On

Software Engineering Concepts

Andrés Rojas Paredes

Universidad de Buenos Aires,
Facultad de Ciencias Exactas y Naturales, Departamento de Computación.

Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina.
arojas@dc.uba.ar

Abstract. We consider the problem of polynomial equation solving also
known as quantifier elimination in Effective Algebraic Geometry. The
complexity of the first elimination algorithms were double exponential,
but a considerable progress was carried out when the polynomials were
represented by arithmetic circuits evaluating them. This representation
improves the complexity to pseudo–polynomial time.

The question is whether the actual asymptotic complexity of circuit–
based elimination algorithms may be improved. The answer is no when
elimination algorithms are constructed according to well known soft-
ware engineering rules, namely applying information hiding and taking
into account non–functional requirements. These assumptions allows to
prove a complexity lower bound which constitutes a mathematically cer-
tified non–functional requirement trade–off and a surprising connection
between Software Engineering and the theoretical fields of Algebraic Ge-
ometry and Computational Complexity Theory.

Keywords: Non-functional requirement trade–off, information hiding,
arithmetic circuit, complexity lower bound, polynomial equation solving,
quantifier elimination in algebraic geometry

1 Introduction

The main issue of this paper is to describe the Software Engineering aspects of
the mathematical computation model introduced in [9]. This model captures the
notion of a circuit–based elimination algorithm in order to solve a thirty years old
problem in algebraic complexity theory (see e.g. [8], [10]): in arithmetic circuit–

based effective elimination theory the elimination of a single existential quantifier
block in the first order theory of algebraically closed fields of characteristic zero
is intrinsically hard (i.e. it has an exponential complexity lower bound). This
conclusion may also be expressed in terms of a trade–off between two non–
functional requirements: on one hand we have a complexity requirement and on
the other a property of mathematical functions called geometrical robustness.
This complexity lower bound in terms of software engineering concepts appears

1310

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/18604161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 A. Rojas Paredes

for first time in [5] in the context of polynomial interpolation. In this work we
study a more general case in the context of quantifier elimination.

Complexity lower bounds are undoubtedly theoretical research. But there is
also a practical aim behind that. Consider the process in software design where a
software architecture is developed in order to solve a certain computational prob-
lem. Assume also that one of the non–functional requirements of the software
design project consists of a restriction on the run time computational complex-
ity of the program which is going to be developed (this was the case during the
implementation of the polynomial equation solver Kronecker by G. Lecerf, see
[11]). Our practical aim is to provide the software engineer with an efficient tool
which allows him to answer the question whether his software design process is
entering at some moment in conflict with the given complexity requirement. If
this is the case, the software engineer will be able to change at this early stage
his design and may look for an alternative software architecture. The following
example illustrates this description.

Example 1 (Finite Set). Suppose that our task is to implement a finite set S
of cardinality n, e.g. a subset of the natural numbers N, and that we have to
satisfy the requirement that membership to the finite set S is decided using only
O(log n) comparisons. If the set S is implemented by an unordered array, we
will be unable to satisfy our complexity requirement. So we are forced to think
in alternative implementations of the abstract concept of a finite set, e.g. by
ordered arrays, special trees or any other data type which is well suited for our
task.

Example 1 represents a case where it may be impossible to satisfy a given
complexity requirement by means of a previously fixed software architecture.
Our aim is to formalise such impossibility by means of a complexity lower bound
which is usually difficult to infer when the number of components of the system
under consideration is large or when the predicate to decide or the function
to compute becomes more sophisticated like in polynomial equation solving.
This leads to the idea to fix in advance only a small selection of architectural
features, e.g. the abstraction levels or part of the language of our system (not
the algorithms themselves). The computation model we are going to explain in
following sections takes into account these considerations.

This work is organised as follows: in Section 2 we introduce quantifier elim-
ination as the subject of our complexity studies and the algorithmic approach
which is based on the transformation of arithmetic circuits. In Section 3 we de-
scribe the tool used to obtain the announced complexity lower bound. Our tool
is a computation model which captures the notion of non–functional requirement
in circuit–based elimination algorithms. Finally we present the new result in this
work: we make the following question: What does it happen if our algorithms
are not circuit–based and we found a representation which is more efficient than
circuits? The answer is that our complexity results are valid for arbitrary contin-
uous representations if the algorithms follow the principle of information hiding.
We illustrate this conclusion with a relevant example from the theory of Abstract
Data Types (see, e.g. [13] and [12]).

1311



A Complexity Lower Bound Based On Software Engineering Concepts 3

In the rest of the paper we shall use notions and notations from algebraic ge-
ometry and algebraic complexity theory which are all standard (see for example
[14] and [3]).

2 Quantifier elimination and its implementation

2.1 Quantifier Elimination

We start with the subject of our complexity studies. The subject is quantifier

elimination in the particular case of elementary algebraic geometry over C. Let
Φ be an existentially quantified formula. In general terms, the quantifier elimina-
tion problem consists in obtaining a quantifier free formula Ψ which is logically
equivalent to Φ (this means that Ψ and Φ define the same set). In the partic-
ular case of elementary algebraic geometry over C, the formulas Φ and Ψ are
composed by polynomial equations. In this context we are going to consider
exclusively the polynomials of these equations.

Let n and r be natural numbers. Let T , U := (U1, . . . , Ur) be parameters

and X := (X1, . . . , Xn) be variables subject to quantification. We focus our
attention to polynomials G1(X), . . . , Gn(X) and H(T, U,X) which belong to
C[X ] and to C[T, U,X ] respectively. These polynomials constitute a so called Flat

Family of Elimination Problems given by the polynomial equation system G1 =
0, . . . , Gn = 0 and the polynomial H (see, e.g. [4] and [9] for details). In general
terms this system represents the quantified formula Φ : (∃X1)(∃Xn)(G1 = 0 ∧
. . . ∧Gr = 0 ∧ Y −H = 0).

On the other hand, there exists a polynomial F ∈ C[T, U, Y ] of minimal
degree, called the associated Elimination Polynomial, such that the equation
F = 0 represents a quantifier–free formula Ψ which is equivalent to Φ.

Thus, we arrive to a functional requirement where the flat family of elimina-
tion problems given by G1 = 0, . . . , Gn = 0 and H becomes transformed into the
elimination polynomial F . This transformation is carried out by a mathematical
function f as Fig. 1 illustrates.

Φ : (∃X1) . . . (∃Xn)(G1 = 0 ∧ . . . ∧Gn = 0 ∧H − Y = 0)
︸ ︷︷ ︸

Quantified
Formula

Ψ : F = 0
︸ ︷︷ ︸

Quantifier–free
Formula

Fig. 1: Quantifier elimination problem.

At this abstract level we do not know, for example, how the polynomials are
implemented in the computer. We define now these implementation details.

An implementation option is to represent polynomials by their coefficients.
Unfortunately the coefficient representation in some elimination polynomials

1312



4 A. Rojas Paredes

may conduce to complexity blow ups, e.g. the Pochhammer polynomial
∏

0≤j<2n

(Y − j)

which has 2n terms (see [7] for open questions in complexity theory related to this
polynomial). This circumstance suggests to represent in elimination algorithms
polynomials not by their coefficients but by arithmetic circuits. This idea became
fully realised by the “Kronecker” algorithm for the resolution of polynomial
equation systems over algebraically closed fields. The algorithm was anticipated
in [6] and implemented in a software package of identical name (see [11]). The
following example illustrates the notion of arithmetic circuit.

Fig. 2: Arithmetic circuit and Horner
scheme.

q(X) := a1 + (a2 + a3X)X

+

∗

+

∗

a1 a2 a3 X

Abs

Example 2 (Horner scheme). Let
a1, a2, a3 be constants and X be a
variable. Consider the polynomial
p(X) = a1 + a2X + a3X

2 and the
Horner scheme of this polynomial
which is q(X) = a1 + (a2 + a3X)X .
From this scheme we have a directed
acyclic graph where each node is an
arithmetic operation +, ∗, a constant
a1, a2, a3 or a variable X . This arith-
metic circuit is a concrete object im-
plementing the abstract object q(X).
Fig. 2 illustrates the relation between
q(X) and its implementing circuit by
means of an abstraction function Abs.

2.2 Implementation of quantifier elimination

To understand the role of arithmetic circuits in elimination algorithms we fix the
notion of polynomials in terms of abstract data types and classes implementing
them. Here we follow the terminology in [13].

Suppose that we have an abstract data type specification for polynomials in
terms of query and creator functions (observers and constructors in the termi-
nology of [12]). Thus the elimination problem of Fig. 1 may be expressed as a
specification in terms of abstract data types.

Consider now the classes implementing the abstract data type of polynomials.
We have a class for polynomials and a class for circuits. The connection between
these two classes is that the class of circuits is a private part of the class of
polynomials. This private part is used to implement the interface of the class
of polynomials in terms circuits. In this context polynomials are encapsulated
circuits which are mapped into instances of the abstract data type of polynomials
by an abstraction function Abs.

Now recall our functional requirement: transform en elimination problem
given by polynomials G1, . . . , Gn and H into an elimination polynomial F . Since

1313



A Complexity Lower Bound Based On Software Engineering Concepts 5

polynomials become implemented by circuits, an elimination algorithm works
directly with circuits taking care of satisfy class invariants and the abstraction
function Abs. In this sense, an elimination algorithm A transforms an input
circuit β representing G1, . . . , Gn, H into an output circuit γ representing the
elimination polynomial F as Fig. 3 illustrates.

G1, . . . , Gn,H
f

−−−−−−−−−−−−−→ F

Abs

x




x



Abs

β
A

−−−−−−−−−−−−−→ γ

Fig. 3: Elimination problem and its implementation.

The transformation of β into γ is carried out by means of circuit opera-
tions, e.g. join of circuits which mimics the composition of functions (see also
union of circuits and recursive routine in [9]). If we require the algorithm A to
be branching parsimonious (see Section 3.1 below), then A captures all known
circuit–based elimination algorithms including the polynomial equation solver
Kronecker.

At this point the question is how we measure the complexity of algorithm
A. We shall mainly be concerned with the size of the output circuit γ. Here
we refer with “size” to the number of internal nodes which count for the given
complexity measure. Our basic complexity measure is the non–scalar one (also
called Ostrowski measure) over the ground field C. This means that we count,
at unit costs, only essential multiplications and divisions (see [3] for details).

3 Software engineering–based approaches to complexity

lower bounds

3.1 A circuit–based computation model

The polynomials G1, . . . , Gn, H and F described before belong to mathematical
structures C[X ], C[T, U,X ] and C[T, U, Y ] respectively. In these mathematical
structures polynomials have a natural property called geometrical robustness

which interpreted as a non–functional requirement constitutes a key ingredient
in our complexity result (see Theorem 1 below). This property is invisible if
we only consider abstract data type specifications in the sense of [13]. Thus,
in order to include geometrical robustness in the specification of elimination
problems we model the notion of abstract data type of polynomials with the
corresponding mathematical structure and we call this structure an abstract
data type. For example, the polynomials G1, . . . , Gn, H will be instances of the
abstract data type O ⊂ C[T, U,X ] and F will be an instance of the abstract

1314



6 A. Rojas Paredes

data type O∗ ⊂ C[T, U, Y ] and the elimination problem will be specified by a
geometrically robust map f : O → O∗.

Geometrical robustness The map f is a function (mathematical application)
which we require to be constructible, i.e. definable by a boolean combination
of polynomial equations. The mapping is called geometrically robust if it is
continuous (see [9] and [5] for an algebraic characterisation of robustness). Since
geometrical robustness is a property belonging to the specification level of our
elimination task, we have to describe how this non–functional property is realised
by the circuit–based algorithms implementing the elimination.

Branching parsimoniousness The intuitive meaning of geometrical robust-
ness is reflected by the algorithmic notion of branching parsimoniousness. We
call an algorithm branching parsimonious if it avoids unnecessary branchings.
We may restrict branchings by means of only considering division–free circuits,
or circuits where divisions by zero were replaced by suitable limits and divisions
may only involve parameter nodes (nodes without variables). In this sense our
circuits are essentially division–free and will be called robust if all intermediate
results (functions represented by each node) are geometrically robust.

The notion of branching parsimoniousness as a tactic In the context of
software architecture, the satisfaction of quality attributes requires techniques
which are called tactics. For example, a system is easily modified when it is struc-
tured, modularised and well documented. A tactic is, according to [2], a design
decision that influences the control of a quality attribute response. Considering
this definition we may describe branching parsimoniousness as a tactic for elim-
ination algorithms. We require an algorithm to be branching parsimonious in
order to achieve the non–functional requirement of geometrical robustness. In
this sense we say that branching parsimoniousness is a tactic to achieve geometri-
cal robustness. For example, the reader may identify branching parsimoniousness
with modularity which is a tactic to achieve the modifiability quality attribute.

Now recall our elimination algorithm A in Fig. 3 which transform the circuit
β (representing G1, . . . , Gn, H) into circuit γ (representing F ). The elimination
algorithm A implements the additional property of geometrical robustness if we
require A to be banching parsimonious.

Thus in the input we have an essentially division–free, robust parameterized
arithmetic circuit β of size O(n) with basic parameters T , U := U1, . . . , Un

and input X := X1, . . . , Xn which computes polynomials G1, . . . , Gn ∈ C[X ]
and H ∈ C[T, U,X ] constituting a flat family of zero–dimensional elimination
problems with associated elimination polynomial F ∈ C[T, U, Y ].

The branching parsimoniousness allows to affirm that each circuit operation
gives as result a robust circuit. Thus we conclude that the property of geometrical
robustness is transmitted from the input β to the output γ. Then γ := A(β) is
an essentially division–free, robust parameterized arithmetic circuit with basic
parameters T, U1, . . . , Un and input Y representing the elimination polynomial
F .

1315



A Complexity Lower Bound Based On Software Engineering Concepts 7

These notations and assumptions, in particular the property of robustness in
the output γ, allows to conclude the following theorem.

Theorem 1 ([9], Theorem 10). The circuit γ has, as ordinary arithmetic

circuit over C, non–scalar size at least Ω(2n).

Theorem 1 corresponds to circuit–based algorithms, now we ask what does
it happen if we found a representation which is more efficient than arithmetic
circuits? We argue that Information Hiding–based algorithms have the same
complexity status. This implies that our complexity results are valid for arbitrary
continuous representations. This is part of future work but we give preliminary
results in the following section.

3.2 Towards an Information Hiding–based computation model

Since polynomials G1, . . . , Gn, H and F are objects belonging to suitable ab-
stract data types, we may define the function f of Fig. 3 in terms of query and
creator functions (observers and constructors) of the given abstract data type
specification obtaining a transformation which does not involve circuits directly
because they become encapsulated. To illustrate this kind of transformation con-
sider the following example.

Example 3. Suppose a case where f is the identity function of binary trees. In
this context let us consider the following abstract functions of the corresponding
abstract data type specification: root(), left(), right() and isNil?() as query
functions (observers) and bin() and nil() as creator functions (constructors).
Then, we propose the following definition for f :

f(X) =

{

nil() if isNil?(X)
bin(root(X), id(left(X)), id(right(X))) otherwise

(1)

This specification of function f may be implemented in such a way that, at an
abstract level the implementation is the identity function of binary trees, whereas
at a concrete level the implementation is a transformation of the representation
of binary trees (compare this with the transformation of circuits in elimination
algorithm A). This hidden transformation is carried out by the classes imple-
menting the abstract data type of binary trees where the implementation of f
may be called f. Notice that we write the implementation in verbatim font in
order to distinguish the difference with abstract data type expressions which we
write in cursive font.

Let Tree<E> be a class implementing the abstract data type of binary trees.
Let Tree1<E> and Tree2<E> be subclasses of class Tree<E> with the following
property: Tree1<E> implements trees as arrays (the internal representation of
trees is given by arrays) and Tree2<E> implements trees as nested nodes. Let
root, left, right and isNil be routines in the class Tree<E> implementing the
corresponding query functions (observers) in the abstract data type specification.

1316



8 A. Rojas Paredes

Let p1 be a variable of type E and p2 y p3 be variables of type Tree2<E>, then
Tree2<E>() and Tree2<E>(p1,p2,p3) are constructors of the class Tree2<E>

implementing the creator functions nil() and bin() respectively. Then the imple-
mentation in java code is as follows:

Tree<E> f(Tree<E> t){
if(t.isNil()) return new Tree2<E>();

else return new Tree2<E>(t.root(),

(Tree2<E>) f(t.left()),

(Tree2<E>) f(t.right()) );

}

(2)

Notice that the effective transformation of the representation is carried out
when an instance of Tree1<E> is passed as parameter and the constructor of the
other class is applied, say the constructor of Tree2<E>.

Equation 2 illustrates the definition of an algorithm in terms of observers
and constructors. In the case of elimination problems such an algorithm has a
similar structure but we do not exhibit an example here. This is left for a future
work (see [1]) where the notion of information hiding is modelled in full detail.
Such a model allows to conclude the following:

– if the complexity measure is given by the number of parameters instead of
the size of circuits, we obtain an exponential complexity lower bound for this
quantity which implies the result in Theorem 1,

– this allows to conclude that elimination algorithms programmed with infor-
mation hiding, i.e. hiding the circuits or any other representation of polyno-
mials, have the same complexity status.

Final comments The circuit–based computation model described in Section
3.1 corresponds to the tool for the software engineer we described at the intro-
duction. Of course this model cannot be applied to any software project since
it is restricted to the particular case of elimination. However, it gives the key
ingredients for the definition of a computation model suitable for complexity
questions where another non–functional requirement must be considered.

On the other hand, our description of an Information Hiding–based compu-
tation model in Section 3.2 constitutes an stronger result which together with
Theorem 1, allows to conclude that the Kronecker algorithm is asymptotically
optimal. This suggest that the Kronecker is a good option to use in applications
of scientific computing where polynomial equation solving is needed.

Finally, a computation model which captures algorithms constructed in a
professional way, namely applying software engineering concepts, in combination
with the complexity lower bound obtained in Section 3.1 allows to conclude the
following idea which we repeat from [9]: neither mathematicians nor software
engineers, nor a combination of them will ever produce a practically satisfactory,
generalistic software for elimination tasks in Algebraic Geometry. This is a job
for hackers which may find for particular elimination problems specific efficient
solutions.

1317



A Complexity Lower Bound Based On Software Engineering Concepts 9

Acknowledgements The author thanks Joos Heintz for his insistent encour-

agement to finish this work and Pablo Barenbaum, Gastón Bengolea Monzón,

Mariano Cerrutti, Carlos Lopez Pombo, Hvara Ocar and Alejandro Scherz, Uni-

versidad de Buenos Aires, for discussions about the topic of this paper and/or

comments and ideas on earlier drafts.

References

1. Bank, B., Heintz, J., Pardo, L.M., Rojas Paredes, A.: Quiz games: A new ap-
proach to information hiding based algorithms in scientific computing, manuscript
Universidad de Buenos Aires (2013)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison–
Wesley, Boston, MA, 2. edn. (2003)

3. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory.
Grundlehren der mathematischen Wissenschaften, vol. 315. Springer Verlag (1997)

4. Castro, D., Giusti, M., Heintz, J., Matera, G., Pardo, L.M.: The hardness of polyno-
mial equation solving. Foundations of Computational Mathematics 3(4), 347–420
(2003)

5. Giménez, N., Heintz, J., Matera, G., Solernó, P.: Lower complexity bounds for
interpolation algorithms. Journal of Complexity 27, 151–187 (2011)

6. Giusti, M., Heintz, J., Morais, J., Morgenstern, J., Pardo, L.: Straight-line pro-
grams in geometric elimination theory. Journal of Pure and Applied Algebra 124,
101–146 (1998)

7. Heintz, J., Morgenstern, J.: On the intrinsic complexity of elimination theory.
Journal of Complexity 9, 471–498 (1993)

8. Heintz, J., Sieveking, M.: Absolute primality of polynomials is decidable in random
polynomial time in the number of variables. Automata, languages and program-
ming (Akko, 1981). Lecture Notes in Computer Science 115, 16–28 (1981)

9. Heintz, J., Kuijpers, B., Rojas Paredes, A.: Software engineering and complexity
in effective algebraic geometry. Journal of Complexity (2012)

10. Kaltofen, E.: Greatest common divisors of polynomials given by straight–line pro-
grams. J. Assoc. Comput. Mach. 35(1), 231–264 (1988)

11. Lecerf, G.: Kronecker: a Magma package for polynomial system solving. Web page.
http://lecerf.perso.math.cnrs.fr/software/kronecker/index.html

12. Liskov, B., Guttag, J.: Program development in Java: Specification, and Object–
Oriented Design. Addison-Wesley, 3. edn. (2001)

13. Meyer, B.: Object-Oriented Software Construction. Prentice-Hall, 2. edn. (2000)
14. Shafarevich, I.R.: Basic algebraic geometry: Varieties in projective space. Springer,

Berlin Heidelberg, New York (1994)

1318




