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1. Introduction 
The outstanding development attained in the actual state-of-the-art on Proteomics has been 
reached not only by the integration of a panel of sophisticated analytical and bioinformatics 
techniques and instrumentations but also by the intelligent application of classical and 
advanced synthetic methodologies used in protein chemistry (Lundblad, 2005; Tilley et al., 
2007). Covalent modification of proteins is a powerful way to modulate their 
macromolecular function. Nature accomplishes such alterations through a range of post-
translational modifications that in turn mediate protein activity. Artificial covalent 
modification of proteins is an arduous but fruitful task of major interest for the biophysics 
and biochemistry communities that normally pursue as goals the detection or purification of 
the protein itself in order to have a more thorough understanding of molecular mechanisms 
and the expansion of the applicability of such biomolecules. Despite the intrinsic difficulties 
associated to perform those chemical modifications of proteins, the attachment of analytical 
or engineered probes for protein tracking (labelling) (Giepmans et al., 2006; Waggoner, 2006; 
Wu & Goody, 2010) or protein profiling (chemical proteomics) (Evans & Cravatt, 2006; 
Cravatt et al., 2008), the introduction of affinity tags for separation-isolation of proteins 
(affinity chromatography) (Azarkan et al., 2007; Fang & Zhang, 2008) or for mass 
spectroscopy-based protein identification and characterization (chemical tagging) (Leitner & 
Lindner, 2006), the immobilization onto solid supports (microarray technologies) (Wong et 
al., 2009) and the conjugation with other biomolecules (post-translational modifications) 
(Gamblin et al., 2008b; Walsh, 2009; Heal & Tate, 2010) are among some of the most useful 
and frontier techniques and methodologies used in Proteomics. 
For the chemical modification of proteins, a large number of strategies are nowadays 
available (Hermanson, 2008). The straightforward and probably most used of those 
strategies takes advantage of the chemical reactivity of the endogenous amino acid side 
chains commonly by using the nucleophilic character of some of them in a nucleophile-to-
electrophile reaction pattern that leads to specific functional outcomes (Baslé et al., 2010). 
This classical residue-specific modification chemistry, however, is rarely sufficiently 
selective to distinguish one residue within a sea of chemical functionality and for this reason 
more intricate approaches have been developed in recent times to introduce a unique 
chemical handle in the target protein that is orthogonal to the remainder of the proteome 
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(Hackenberger & Schwarzer, 2008). Direct incorporation of non-canonical amino acids into 
proteins via the subversion of the biosynthetic machinery is an attractive means of 
introducing selectively new functionality by either a site-specific or residue-specific manner 
(Beatty & Tirrell, 2009; de Graaf et al., 2009; Johnson et al., 2010; Liu & Schultz, 2010; 
Voloshchuk & Montclare, 2010; Young & Schultz, 2010) that in combination with recent and 
notorious advances in bioorthogonal reactions (nucleophilic addition to carbonyl, 1,3-
dipolar cycloaddition reactions, Diels-Alder reactions, olefin cross-metathesis reactions and 
palladium-catalyzed cross-coupling reactions) has allowed an exquisite level of selectivity in 
the covalent modification of proteins (Wiltschi & Budisa, 2008; Sletten & Bertozzi, 2009; Lim 
& Lin, 2010; Tiefenbrunn & Dawson, 2010). In spite that major technical challenges have 
been overcome, a prodigious amount of lab work and the concurrently optimization of a 
larger set of parameters is normally required for those advanced and selective 
methodologies in comparison with conventional organic reaction development. 
In this general frame, the purpose of the present chapter is to provide a general outlook on the 
applications on Proteomics of a particular methodology, the vinyl sulfone chemistry 
(Simpkins, 1990; Forristal, 2005; Meadows & Gervay-Hague, 2006), with a particular emphasis 
in some recent advances that illustrate the multi-purpose character of this chemical function in 
this field. Vinyl sulfones readily forms covalent adducts with many nucleophiles (“hard” and 
“soft”) via a Michael-type 1,4-addition. Two prominent characteristics of this reactive 
behaviour have allowed its implementation on Proteomics: the possibility to perform those 
reactions in physiological conditions (aqueous media, slightly alkaline pH and room 
temperature) that preserves the biological function of the proteins and the absence of catalysts 
and by-products. In addition, the introduction of the vinyl sulfone is not a difficult task and 
the resulting functionalized reagents or intermediates are stable.  
The chapter is organized in three sections. In a first instance, a general overview of the vinyl 
sulfone chemistry in terms of the most relevant methods of synthesis and aspects of their 
reactivity will be followed by a discussion of the application of this chemical behaviour with 
proteins. Their advantages and disadvantages with other currently available methodologies 
to modify amine and thiol groups naturally present in proteins will be compared. In a 
second section the applications of vinyl sulfones to Proteomics will be enumerated. Finally, 
the wide scope of the vinyl sulfone chemistry in other omic sciences will be discussed.  

2. Vinyl sulfone chemistry 

Vinyl sulfones (D�E-unsaturated sulfones) are productive and widely used intermediates in 
organic synthesis that also have a remarkable biomedical significance owed to their capability 
to act as irreversible inhibitors of many types of cysteine proteases through conjugate addition 
of the thiol group of the active site cysteine residue. This feature is the basis of some modern 
applications of this chemical function to Proteomics as it will be discussed below (section 3.2). 
Currently, there exists a solid body of knowledge on the chemical reactivity of the vinyl 
sulfone that allows the functionalization of any organic substrate. 

2.1 Synthesis of vinyl sulfones 
Vinyl sulfone is a functional group accessible by a broad variety of traditional synthetic 
methods and other contemporary reactions that have been comprehensively reviewed 
(Simpkins, 1990; Forristal, 2005; Meadows & Gervay-Hague, 2006).  
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For Proteomics, the most relevant of these procedures are those that used 2-halo or 2-
hydroxyethylthioethers as starting materials (Fig. 1). From these compounds formation of a 
vinyl sulfone is feasible by three alternative strategies: sequential elimination and oxidation 
in either order (routes a and b) or simultaneous oxidation-elimination (route c). When the 
elimination step is firstly performed (route a), the vinyl thioether intermediate obtained can 
be easily oxidized to the corresponding vinyl sulfones by common oxidizing agents (H2O2-
acetic acid, m-chloroperbenzoic acid –mCPBA- or periodic acid -HIO4-) or the commercial 
Oxone� reagent. The slow kinetic showed by the method based in H2O2 (Bordwell & Pitt, 
1955) has been overcome by the concomitant use of some catalysts (MnSO4 or 
tetrakis(pentafluorophenyl)porphyrin) in order to exploit the goodness of this methodology: 
low cost and toxicity, and high yields (Alonso et al., 2002; Baciocchi et al., 2004). 
 

 
Fig. 1. General retrosynthetic pathway for the synthesis of vinyl sulfones from 2-halo or 2-
hydroxyethylthioethers 

In the alternative sequence (route b), the sulfone is obtained previously by using the 
reagents just mentioned followed by the elimination step that is favoured by the strong 
electron-withdrawing effect of the sulphur function, being only necessary a weak base 
(triethylamine) in case of the dehydrohalogenation (Brace, 1993) or the conversion on a good 
leaving group, usually a sulfonic ester, in the dehydration option (Lee et al., 2000; Galli et al., 
2005).  
On the other hand, ammonium molybdate in the presence of H2O2 or ozone allows the 
formation of vinyl sulfones in one-step from derivatized ethylthioethers with satisfactory 
results (route c) (Krishna et al., 2003). 
In addition to the methodologies commented, the ionic and radical addition to unsaturated 
compounds (alkenes, alkynes and allenes), the addition of sulfonyl-stabilized carbanions to 
carbonyl compounds, the manipulation of acetylenic sulfones and the use of organometallic 
reagents are other routes for the synthesis of vinyl sulfones (Simpkins, 1990; Forristal, 2005; 
Meadows & Gervay-Hague, 2006) that in practice have found limited applications in 
Proteomics up to the present.  

2.2 Reactivity of vinyl sulfones 
Vinyl sulfones as sulfonyl-containing compounds readily undergo a variety of cycloaddition 
reactions and conjugate additions as excellent Michael acceptors because of the electron 
poor nature of their double bond owed to the sulfone’s electron withdrawing capability that 
make them good electrophiles. The cycloadditions reactions have been reviewed in detail 
(De Lucchi & Pasquato, 1988; Simpkins, 1990; Forristal, 2005) but their applications in 
Proteomics have been null. For this reason these relevant reactions are considered out of the 
scope of the present chapter and an interested reader is referred to those articles. However, 
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conjugate additions to vinylsulfones involving both “hard” and “soft” nucleophiles are of 
paramount importance in Proteomics, and for this reason a general outlook of this sort of 
reactions is given.  
A significant body of work has been devoted to the conjugate additions of vinyl sulfones 
with carbon nucleophiles with both non-stabilised organometallics and stabilised anions 
(including enolates). In addition, vinyl sulfones have been widely exploited as acceptors in 
radical conjugated additions with a variety of nucleophilic radicals (Srikanth & Castle, 2005) 
and have been used in organocatalytic methodologies where they have demonstrated their 
versatility and power in asymmetric reactions for the construction of carbon-carbon bonds 
with exceptional levels of enantioselectivity (Alba et al., 2010). Aside from these reactions 
with carbon nucleophiles, heteroatomic nucleophiles involving nitrogen, sulphur and 
oxygen can participate efficiently in conjugate addition reactions with vinyl sulfones in a 
protic environment where the incipient carbanion is quickly quenched. In these reactions, 
base catalysts are often unnecessary for amines because of the strong nucleophility of the 
nitrogen atom. However, although thiols are generally more nucleophilic than amines, weak 
bases are often used to deprotonate them due to their comparatively higher acidity (Bednar, 
1990). 
All the conjugate additions with vinyl sulfones share a similar reaction pattern by addition 
at the E-position of the sulfone and, on this basis, these reactions are a well-established 
method of creating E-heterosubstituted sulfones (Fig. 2). In all cases, the resulting 1,4-
addition products contain either the sulfonyl moiety which can undergo subsequent 
functional group transformations or can be easily removed (by means of Mg or Hg/Na) 
making these compounds a perfect choice to afford easily naked alkyls (Nájera & Yus, 1999). 
 

 
Fig. 2. General conjugated Michael-type addition of vinyl sulfones and nucleophiles 

Heteroatomic nucleophiles differ in the kinetic of their conjugate addition to Michael 
acceptors including vinyl sulfones, fact that is relied to their nucleophilicity. Studies on 
model compounds, including amino-acids, were performed to evaluate the influence on the 
reaction rates of these D�E�unsaturated compounds of different factors either inherent to the 
nucleophiles (charge, electronic structure and size) or depending on the environment 
(interactions with neighbouring ionisable groups, steric factors and pH) (Friedman et al., 
1965; Morpurgo et al., 1996; Lutolf et al., 2001). As a general rule, it is observed a direct 
correlation between the reaction rates and the anion concentration which is determined by 
the pKa values and the pH of the medium in such a way that rates increase with pH due to 
the increased concentration of the anion. However, comparative studies performed in these 
pioneering contributions concerning the relative nucleophilic reactivities of amino groups 
and mercaptide ions showed that at comparable pKa values and steric environments vinyl 
sulfones react with thiols significantly quicker than with amines or other nucleophiles. From 
these results, it has been assumed that vinyl sulfones are selective in the reactions with thiol 
groups relative to reaction with amino groups providing that the reaction is not carried out 
at alkaline pH. The implementation of these observations in protein chemistry is on the 
rationale behind numerous chemoselective modifications of cysteine-containing peptides 
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and proteins by the Michael-type addition reaction of vinyl sulfone derivatives. However, 
given the multifunctional character and complexity of proteins, the preference of vinyl 
sulfones for thiol groups should be considered with precaution as recent findings have 
demonstrated (vide infra section 2.3.).  
Considering that selectivity is a key point in bioconjugation and particularly in Proteomics, 
the next section is devoted to give a general overview of the different strategies currently 
available for the modification of the side groups of amino and thiol-containing amino acids 
to put in context vinyl sulfone-based strategies in relation with those methodologies. 

2.3 Vinyl sulfones and other methodologies for chemical modification of proteins at 
amino and thiol-containing residues 
The most popular but one of the least site-specific and residue-specific strategies for 
modification of proteins targets the lysine residue because of its predominant presence (up 
to 6% of the overall amino acid sequence, the 11th most frequent residue) (Villar & Kauvar, 
1994; Villar & Koehler, 2000; UniProtKB/TrEMBL database, 2011-06), the reactivity of the ǆ-
amine group of its side chain, its minor relevance from a biological point of view and its 
accessibility at the surface of those biomolecules.  
Although the primary amine group of lysine is protonated under physiological pH, it can 
still react as a nucleophile (Fig. 3). Amine reactive electrophilic reagents used with proteins 
are usually acylating agents, such as succinimidyl esters, sulfonyl chlorides and 
isothiocyanates (1, 2 and 3, respectively). However they are not exempt of drawbacks. 
Succinimidyl esters (1) are the best suited amine reactive compounds as they react with 
lysines without exogenous reagents such as bases. More soluble but less reactive 
sulfosuccinimidyl esters have been used to overcome their poor water solubility (Staros et 
al., 1986). Sulfonyl chlorides (2) are highly reactive but are also unstable in water (Lefevre et 
al., 1996), specially at the high pH required for the reaction with aliphatic amines, and they 
can also react with phenols (tyrosine), aliphatic alcohols (serine, threonine), thiols (cysteine) 
and imidazole (histidine). Isothiocyanates (3) are stable in water although their reactivity is 
only moderate and the degradation of the resulting thiourea has been reported (Banks & 
Paquette, 1995). In addition, the optimal pH needed for the reaction with lysine of these 
reagents (pH 9-9.5) is higher than for the formation of succinimidyl esters (pH 8-9) and may 
be unsuitable for modifying alkaline-sensitive proteins.  
Other approaches are: a) the reductive amination of an aldehyde (4) using water compatible 
hydrides, a two-step procedure that make this route more challenging (Jentoft & Dearborn, 
1979); b) the amidination with imidoesters (5) at elevated pH (a9) or with iminothiolane (6, 
Traut’s reagent) near pH 8, reagents that conserve the overall charge of the side group 
(Means & Feeney, 1990), and c) the use of thioesters or dithioesters (7, X=O or S, 
respectively), being these last mild reagents for lysine residues in the absence of competing 
cysteine residues (Wieland et al., 1953) that reacts very fast, specifically and irreversibly 
although they have a limited solubility in water. 
In contrast with lysine, cysteine residues are perhaps the most convenient target of the 
proteogenic amino acids for selective modification of proteins owing to their low natural 
abundance (the second less abundant amino acid in proteins with a frequency of 1.36%) 
(Villar & Kauvar, 1994; Villar & Koehler, 2000; UniProtKB/TrEMBL database, 2011-06)  
and the strong nucleophilic character of the sulfhydryl side chain higher than a  
primary amine, especially at pH below 9, that results in a general kinetic selective 
modification of cysteine over lysine residues. Despite thiols often form disulphide  

Fernando Hernandez Mateo




 
Integrative Proteomics 

 

306 

NH2

RN
H

N
H

R
S

N
H

NH

O

O

O

R

O
Cl

S
R

O O

O O

S=C=N
R

N
H

S

R

O R
R

O

NH2
+Cl-

R

NH R

NH2
+Cl-N

H
R

S
NH2

+Cl-

NH

NH2
+Cl-

SH

X

R'
S

X

R

(X= O,S)

(X= O,S)

1
2

3

4

5
6

7

 
Fig. 3. Reagents for the chemical modification of Lysine residues in proteins 

oxidized dimers, the enduring utility of this amino acid in protein modification is evidenced 
for the wide panel of methodologies that allow the mild, selective, rapid and quantitative 
reaction at cysteine and their derivatives under appropriate conditions in either a reversible or 
irreversible way (Fig. 4) (Chalker et al., 2009). Direct alkylation methods with a variety of 
electrophilic reagents such as D�halocarbonyls (8, iodoacetamide), Michael acceptors 
(including maleimides 9, vinyl sulfones 10 and related D�E-unsaturated systems) and 
E�haloethylamine (11) (Lindley, 1956) are common techniques for cysteine modification. More 
specific reactions of the sulfhydryl groups that do not interfere with other amino acids are 
oxidation and desulfuration of cysteine. Protein modifications via oxidative disulfide bond 
formation is one of the simplest methods that can be accomplished by simple air oxidation, 
disulfide exchange with Ellman's reagent (5,5'-dithiobis-(2-nitrobenzoic acid) -DTNB-) or some 
others activated reagents (iodine or sulfenyl halides) (12-14) (Anson, 1940; Fontana et al., 1968). 
Desulfurization at cysteine may involve its transformation into a thioether, the reductive 
removal of the thiol group to yield alanine (Yan & Dawson, 2001) or the oxidative elimination 
of cysteine to yield dehydroalanine (Bernardes et al., 2008), which behaves as a Michael 
acceptor with thiol nucleophilic reagents. Finally, some metal-mediated reactions (cross-
metathesis and Kirmse-Doyle reactions) performed in ally sulfide derivatives have recently 
extended the panoply of chemical modifications at cysteine (Lin et al., 2008).  
However, cysteine modification is not exempt of some drawbacks because besides the low 
frequency of cysteine in proteins and its relevance for the function, the difference of 
nucleophility between amine and thiol groups in proteins is dependent on surrounding 
residues (Bednar, 1990), the selectivity being compromised, and the use of specific reaction 
on the sulfhydryl group may be limited by the compatibility of the reaction conditions with 
the functionality of the protein. 
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Fig. 4. Reagents for the chemical modification of Cysteine residues in proteins 

In this context, the excellent capability of vinyl sulfones to act as Michael acceptors has been 
used but not fully exploited up to the present for protein modification, despiste attractive 
characteristics offered by this methodology such as water stability of the sulfur function for 
extended periods, particulary at neutral pH where they are resistant to hydrolysis, the lack 
of by-products in conjugated reactions, the needless use of organometallic catalysts, and the 
stability of the linkages formed.  
It is generally accepted that i) the larger nucleophilic character of thiol makes cysteine 
residues the preferential target of vinyl sulfone derivatized reagents, ii) the ǆ-amino groups 
of lysine and to a lesser extent the imidazole ring of histidine side chain are secondary 
targets and iii) the pH of the reaction medium may be use to control the relative reactivity of 
these funtional group (Friedman & Finley, 1975; Masri & Friedman, 1988). Studies on the 
reactivity of poly(ethylene glycol) vinyl sulfone toward reduced ribonuclease (Morpurgo et 
al., 1996) found that the reaction with cysteine groups is rapid and selective at pH 7-9 and 
with lysines proceeds slowly at pH 9.3. Other residues were described as not reactive. These 
results have been the dogma of the reactivity of vinyl sulfone with proteins. However, as 
early as 1965, it was reported that at comparable pKa values and steric enviroment thiols are 
280 times more reactive than amine groups but also that the reactivity of the thiol group in 
an aminothiol acid is influenced by the presence of charge on neighboring amino groups 
and caution in the use of specific sulfhydryl specific reagents in proteins was recommended 
(Friedman et al., 1965). A systematic study of the thio Michael additions confirmed the 
importance of the charges close to the cysteine and the existence of a linear correlation 
between thiolate concentration and kinetic constants (Lutolf et al., 2001). More recently, the 
authors’ group also found unexpected reactivity of His at pH 7.7 in the reaction of lysozyme 
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with sugar vinyl sulfone derivatives and a double addition to a single Lys while other Lys 
residues remained unreacted (Lopez-Jaramillo et al., 2005). In fact, the reaction of lysozyme 
proceeds very fast even at pH 5. At this point, it is important to recall that the non 
equivalence of identical residues present in proteins is an important concept frequently 
overlooked. The different nucleophilic character of identical residues is a well illustrated 
concept. Thus, it has been reported pKa values for internal lysines as low as 5.3 (Isom et al., 
2011), the standard pKa being ~10.4, and also pKa values for histidine ranging from 9.2 
(His72 in tyrosine phosphatase) to 4.6 (His40 of bovine chymiotrypsinogen), the standard 
pKa value being 6.6 (Edgcomb & Murphy, 2002). Thus, the presence of a plethora of 
potential reactive groups in proteins and the dependence of their reactivity on the 
neighboring residues make group-specific modification chemistry unsuited as a general 
strategy for the selective modification of a particular residue but still valid for many omics 
applications. 
Finally, it should be mentioned that in comparison with maleimides, one of the most 
widely-used conjugated reagent for chemical modifications of thiol-containing proteins, 
vinyl sulfones offers as advantages the aforementioned enhanced stability in aqueous 
alkaline conditions and the fact that the reaction product is a single stereoisomer, unlike 
conjugation with maleimides, which produces two potential stereoisomers.  

3. Application of vinyl sulfones in proteomics 
Vinyl sulfones have found application in most of the subdomains of modern Proteomics. 
Overall, these applications can be group in two main areas: labeling in their different 
variants (attachment of analytical or engineered probes for protein tracking, protein 
identification or protein profiling) and immobilization with different purposes (affinity 
chromatography and microarray technologies), two of the cornerstones of any omic science. 
In addition, vinyl sulfones have found applications in the conjugation of proteins with other 
biomolecules to yield post-translational modifications. 

3.1 Vinyl sulfone-based labeling and chemical tagging 
Proteomic often requires labeling of compounds for detection/isolation. Mass spectrometry 
offers a label-less method currently used in quantitative Proteomics. Stricto sensu it involves 
an isotopic labeling, usually referred as isotope tagging (Nakamura & Oda, 2007; Iliuk et al., 
2009), that can be carried out in vivo in the cell culture by metabolic incorporation or 
alternatively after protein extraction by chemical labeling, the former highlighting the 
importance of chemical tagging reactions (Leitner & Lindner, 2006). The reactivity of the 
vinyl sulfone group toward amino acids naturally occurring in proteins is conceptually an 
attractive derivatization strategy to promote the covalent attachment of labels to proteins. 
Despite that bibliographic references are scarce, vinyl sulfone derivatized dyes, 
fluorophores and other tags (biotin) have been already described and implemented in 
Proteomics.  
The use of vinyl sulfone derivatized reagent for detection in Proteomic dates back to 1972 
when Remazol dyes were reported as prestaining reagents during denaturation prior to 
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) that also allow the 
tracking by eye of the migration of the protein during the electrophoretic separation 
(Griffith, 1972). Remazol dyes are easily converted to vinyl sulfone derivatives at alkaline 
pH and upon reaction the electrophoretic mobility of the sample is not seriously affected 
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since the dodecyl sulfate bound to the protein renders irrelevant any small charge difference 
in the proteins. Ulterior studies found that pre-stained proteins eluted from the gels retained 
immunological reactivity and were suitable to raise monospecific antibodies (Saoji et al., 
1983). The original idea is still valid and Remazol dyes are currently used in prestained 
color-coded molecular weight markers for gel electrophoresis (Compton et al., 2002).  
In a mass spectrometry-driven proteomic scenario gel electrophoresis is still part of the 
workflow, the in gel digestion of proteins being a cornerstone (Shevchenko et al., 2006). 
However, the staining of the gel, selection and extraction, in-gel reduction, alkylation and 
destain for the subsequent tryptic digestion is a time and labor demanding process that 
represents a bottleneck. Pre-electrophoresis staining is an attractive approach that has not 
been extensively used because of the slight mobility differences that have been reported, 
despite the availability of fluorescent dyes that are charge-matched to preserve the pI of the 
proteins upon labeling (Miller et al., 2006). In this context, the use of Uniblue A (16, Fig. 5), 
the vinyl sulfone derivative of Remazol Brilliant Blue R colorant, has been proposed as a 
straightforward strategy that i) yields the covalently stain of both simple and complex 
protein samples within 1 minute and ii) does not compromised protein profiles on the gels 
(Mata-Gomez, 2010). Another application in this area proposed the use of the reactivity of 
divinyl sulfone with the ǂ-amino groups of N-terminal residues in Proteomics since it 
enhances the abundance of the a1 fragments, defining the N-terminal residue and providing 
a “one step Edman like information”(Boja et al., 2004).  
 

 
Fig. 5. Some vinyl sulfone derivatized dyes, fluorescent probes and tags (biotin) used in 
Proteomics 

On that concerning fluorophores, to our knowledge Lucifer Yellow vinyl sulfone (17, Fig. 
5) was the first vinyl sulfone derivatized fluorophore applied to protein studies. This 
compound was the fluorescent probe used for fluorescence resonance energy transfer 
experiments on the chloroplast coupling factor 1 that showed that ATP induces changes 
on the nucleotide binding site and switches properties (Shapiro & McCarty, 1988; 1990) 
and allowed to gain insight into the asymmetry of the ǂ subunit of CF1 (Lowe & McCarty, 
1998). Lucifer Yellow vinyl sulfone was also used to study the interaction between Rod G-
protein D subunit and cGMP-phosphodiesterase Ǆ-subunit (Artemyev et al., 1992). More 
recently the synthesis of vinyl sulfone derivatized rhodamine B and dansyl (18a and 19a, 
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Fig. 5) and their reactivity with a pool of commercial proteins has been reported (Morales-
Sanfrutos et al., 2010b). The results showed that the protein itself influences the extend of 
coupling and that the labeling is feasible regardless of isoelectric point, number of 
potential nucleophiles or presence of glycosylation in the protein. The study also showed 
the potential of the rhodamine B vinyl sulfone as a prestaining reagent since the labelling 
does not affect the electrophoretic mobility or post-electrophoresis silver stain. The 
analysis of the influence of the reaction conditions on the reactivity between vinyl sulfone 
and Henn Egg-white (HEW) lysozyme revealed that the reaction takes place even in acidic 
media and that slight variations of pH or temperature exert a clear direct effect on the 
number of labels coupled to lysozyme. In a later work the same authors developed a 
series of alkyne vinyl sulfone derivatized tags (AVST reagents) bearing rhodamine B or 
dansyl (18b and 19b, Fig. 5) and demonstrated their applicability as self-reporter reagents 
for monitoring the introduction of the alkyne function and their potential to carry out 
further functionalization in any scenario based on click-chemistry (Morales-Sanfrutos et 
al., 2010a). 
Vinyl sulfone derivatization has been used to attach other tags to proteins such as biotin. 
The authors’ group has described (Morales-Sanfrutos et al., 2010b) the conjugation of biotin 
vinyl sulfone (20a, Fig. 5) to promote the coupling of the biotinylated protein to avidin in the 
context of what is known as avidin-biotin technology (Savage et al., 1992). In the more 
advanced contribution mentioned above (Morales-Sanfrutos et al., 2010a), the synthesis of 
vinyl sulfone bifunctional tags bearing simultaneously biotin and a fluorophore as a single-
attachment-point reagents (BTSAP, 22 and 23 Fig. 6) was easily performed by click copper-
catalyzed azide-alkyne cycloaddition (CuAAC) attachment of the AVST fluorophores 
reagents (18-20b, Fig. 5 and Fig. 6). The combination of vinyl sulfone as reactive group, 
biotin as an anchor point and a fluorophore as a reporter group in the BTSAP reagents made 
of versatile compounds with a clear potential in Proteomics as illustrated in the labeling of 
the low reactive protein horseradish peroxidase (HRP) (Fig. 6, route a). Alternatively, the 
dual labeling of this protein was also attained by a CuAAC-based sequential approach 
consisting in the labeling with an AVST reagent and ulterior click conjugation with an azide-
containing biotin derivative (21) (Fig. 6, route b). 

3.2 Vinyl sulfone-based chemical proteomics 
Vinyl sulfones have been used in activity-based protein profiling (ABPP) (Evans & Cravatt, 
2006; Hagenstein & Sewald, 2006), a methodology of interest in the so-called chemical 
Proteomics subdomain devoted to measure the activity of proteins to gain insight into the 
functional role of proteins in cell physiology and pathology. ABPP is a chemical strategy 
based on the use of activity-based probes (ABPs), small molecules that form activity 
dependent covalent bonds to a target enzyme (Fig. 7). These probes contain three main 
elements: (1) a warhead or reactive functional group that forms the covalent bond with the 
active site catalytic residue of a target (2) a linker that can be used to control the specificity 
of binding interactions between the probe and target enzyme and (3) a tagging group that 
allows probe labeled targets to be isolated, biochemically characterized or imaged. The 
majority of ABPs contain electrophilic warheads derived from well-known irreversible 
enzyme inhibitors. Many of the most versatile ABPs represent the simple conjugation of 
well-characterized covalent inhibitors to reporter tags such as fluorophores and biotin. The 
research efforts performed in this field have engendered ABPP probes for numerous 
enzyme classes.  
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Fig. 6. Vinyl sulfone derivatized bifunctional tag single-attachment-point reagents (BTSAP)  

Traditionally vinyl sulfones have been recognized as Cys protease inhibitors (Palmer et al., 
1995; Wang & Yao, 2003) and hence a large number of vinyl sulfone-containing peptides 
have been synthesized and exploited to inhibit them. On this basis, the reactivity of the vinyl 
sulfone function toward thiols has been used in ABPs to address cysteine proteases. As 
representative examples of these vinyl sulfone-based ABPs, it can be mentioned the studies 
performed on deubiquitinating enzymes with ABPs consisting of a truncated ubiquitinn or 
ubiquitin-like probe and biotin as reporter (24, Fig. 7A) (Borodovsky et al., 2005). In addition, 
aryl vinyl sulfone and sulfonate probes have been developed to investigate the activity of 
protein tyrosine phosphatases (PTP) (Fig 7B.). In this case an azide group has been 
incorporated to the tag (25) to attach by click chemistry alkyne labels (26) such as biotin in 
order to facilitate the analysis (Liu et al., 2008). Finally, in other studies dipeptidyl peptidase 
I (i.e. cathepsin C) has been selectively labeled by a vinyl sulfone norvaline-
homophenylalanine dipeptide ABP (27, Fig. 7C) (Yuan et al., 2006).  
Vinyl sulfone-based ABPs have been also used for other class of hydrolases (Fig. 8). Thus, a 
series of tripeptide and tetrapeptide vinyl sulfone has been used as proteasome-directed 
ABPs to selectively engage the catalytic threonine nucleophile within proteasome active 
sites (Bogyo et al., 1998; Nazif & Bogyo, 2001). By varying the peptide portion of the probes 
in a positional scanning library (29), the researchers gained insights into the substrate 
recognition properties of specific proteasomal subunits, culminating in the development of 
Z-subunit specific inhibitors that were used to identify this subunit as the principal trypsin-
like activity of the proteasome. More recently, azide versions of vinyl sulfone probes (30) 
were used as tag-free ABPs to profile proteasomal activities in living cells, detection 
accomplished by tandem labeling strategies using highly specific bioorthogonal Staudinger 
ligation with a phosphine reporter tag (Ovaa et al., 2003). 

3.3 Vinyl sulfone-based affinity chromatography applications 
Two dimensional gels resolve no more than several thousand proteins, only the most 
abundant ones being visualized, and Proteomics also includes the analysis of post- 
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Fig. 7. General structure of vinyl sulfone-based ABPs and representative examples of those 
targeting cysteine proteases.  

translational modifications (Mann & Jensen, 2003) and protein-protein interactions (Blagoev 
et al., 2003). In this context, the immobilization of ligands plays a central role either for 
bioseparation and concentration of biomolecules (Lee & Lee, 2004; Azarkan et al., 2007), for 
pull-down assays and mass spectrometry analysis (Bécamel et al., 2002) or for high-
throughput screening in array format (Cahill, 2000). However, examples of vinyl sulfone 
functionalized supports either for affinity chromatography or arrays are scarce.  
Still in use, divinyl sulfone-activated agarose was the first support bearing the vinyl sulfone 
function to turn it out into an affinity support upon reaction with a wide variety of ligands. 
Described in 1975 (Porath et al., 1975), Lihme et al. (Lihme et al., 1986) were who reported its 
application in affinity chromatography as an alternative to CNBr-activated gels. They 
coupled i) rabbit immunoglobulin for preparation of goat anti-rabbit immunoglobulin, ii) 
goat anti-rabbit immunoglobulin for preparation of rabbit immunoglobulin, iii) lectins and 
iv) L-fucose. Remarkably beads coupled to lectins or saccharides are currently used in 
glycomics (Kaji et al., 2003; Bunkenborg et al., 2004; Yang & Hancock, 2004). Vinyl sulfone 
activated agarose has been the bead of choice to study the interaction of pepsin with 
aromatic amino acids (Frydlova et al., 2004; Frydlova et al., 2008) or for the isolation of  
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Fig. 8. Representative examples of vinyl sulfone-based ABPs targeting proteasomal 
proteases.  

phophorylcholine-binding proteins (Liberda et al., 2002a) by affinity chromatography. To 
our knowledge the only work using vinyl sulfone activated sepharose that may resemble 
Proteomics is that published by Liberda et al, (Liberda et al., 2002b) who immobilized 
mannan to isolate mannan-binding bull seminal proteins that were identified by N-terminal 
amino acid sequencing. 
In principle, the use of silica in Proteomics is discouraged since as predicted by Arai and 
Norde (Arai & Norde, 1990) macromolecules are adsorbed onto silica via strong electrostatic 
interactions and the secondary structure of the proteins can be distorted. However, the 
authors’ group has reported the functionalization of silica with vinyl sulfone (31, Fig. 9) to 
yield a novel “ready to use” pre-activated material that reacts with biomolecules in mild 
conditions, preserves the activity of enzymes and can be used as an open support in 
Proteomics (Morales-Sanfrutos et al., 2010b; Ortega-Munoz et al., 2010). In a recent work 
(Traverso et al., 2010), the application of this hybrid organic-inorganic material to Proteomics 
was further validated in a pull down experiment that demonstrated the different affinity of 
two pea h-type thioredoxins for proteins from a crude extract: thioredoxin h2 interacted 
with classical antioxidant proteins whereas thioredoxin h1 was able to capture a 
transcription factor, suggesting a regulatory role. These results support the use of vinyl 
sulfone silica in Proteomics for the study of protein-protein interactions.  

3.4 Vinyl sulfone-based microarray technologies 
Arrays are another important tool in Proteomics. They rely on the interaction between an 
immobilized probe and the molecules in the sample being analyzed. Immobilization is an 
important variable and different methods of both covalent and non-covalent immobilization 
are used with their pros and cons. Up to the present, a limited number of reports have 
described the preparation and use of different vinyl sulfone-modified surfaces in the 
construction of microarrays, the majority of them focused on potential applications in other 
omics (vide infra section 4). Only one of these contributions describes a gelatin-based 
substrate functionalized with vinyl sulfone groups for fabricating protein arrays (Fig. 10)  
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Fig. 9. Immobilization of enzymes onto vinyl sulfone silica  

 

 
Fig. 10. Vinyl sulfone-gelatine protein microarrays  

(Qiao et al., 2003). The rationale behind the design of these materials are the use of gelatin 
coating to eliminate non-specific protein binding and the affixing to this gelatin surface of a 
vinyl sulfone derivatized polymer scaffold to enable them for the direct immobilization of 
proteins (strategy A). In an alternatively strategy, the gelatin surface is first affixed with a 
polymer scaffold rich in thiols or amine groups, then reacted with a bis(vinylsulfonyl) 
compound (32) and finally bonded to a protein capture agent such as an antibody (strategy 
B). 

3.5 Vinyl sulfone-based post-translational modifications 
Protein post-translational modifications increase the functional diversity of the proteome 
and the access to pure protein derivatives is essential in order to gain insight into structure-
activity relationships and their biological role. Among the different post-translational 
modifications of proteins, glycosylation is the most prevalent one, occurring in at least 50% 
of all proteins (Apweiler et al., 1999). However, the fact that glycosylation is not template 
driven makes the large scale production of glycoproteins a challenging task that has been 
approached by biological, enzymatic and chemical strategies (Davis, 2002; Bennett & Wong, 
2007; Gamblin et al., 2008a; Bernardes et al., 2009). The authors’ group has already 
demonstrated the feasibility of the vinyl sulfone functionalization of the anomeric carbon on 
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different carbohydrates (33) as a procedure for the chemical glycosylation of proteins (Fig. 
11) (Lopez-Jaramillo et al., 2005) and current work is focused on its application in the context 
of glycoscience to explore protein-carbohydrate interactions. In this context, a model system 
comprising four monosaccharides (L-fucose, D-glucose, D-mannose and N-acetyl-D-
glucosamine) and three disaccharides (lactose, maltose and melibiose) with a vinyl sulfone 
group at the anomeric carbon were reacted with four model proteins (lysozyme, BSA, 
concanavalin A and lumazine) (unpublished results). Enzyme-linked lectine assays (ELLA) 
of the resulting neoglycoconjugates with lectins revealed that the extent of binding of the 
lectins was consistent with their carbohydrate-binding specificity: Concanavalin A (ConA) 
showed binding with proteins derivatized with vinyl sulfone D-mannose while peanut 
agglutinin (PNA), ulex europeaus aggluttinin (UEA) and wheat germ agglutinin (WGA) 
interacted with those proteins reacted with vinyl sulfone derivatized lactose, L-fucose and 
N-acetyl-D-glucosamine, respectively.  
 

 
Fig. 11. Vinyl sulfone based glycosylation and PEGylation of proteins  

Although stricto sensu PEGylation (covalent attachment of polyethylene glycol –PEG- 
chains) is not a post-translational modification, it is important for pharmaceutical and 
biological applications (Brannon-Peppas, 2000). Covalent attachment of PEG to proteins 
shields their antigenic and immunogenic epitopes, interferes with the receptor mediated 
uptake and prevents recognition and degradation by proteolytic enzymes. Vinyl sulfone 
chemistry has been exploited in this field. Poly(ethylene glycol) vinyl sulfone (34, Fig. 11) 
was synthesized and its highly selective reaction with thiol groups relative to amino groups 
at pH lower than 9 was described (Morpurgo et al., 1996). The idea of using vinyl sulfone 
derivatives for PEGylation at cysteine residues is still accepted and later contributions 
reported the use of these methodology although being aware of the side reaction with lysine 
at elevated pH (Roberts et al., 2002). 

4. Vinyl sulfones in other omics sciences 

The complete sequencing of the human genome has led to a new era referred to as omic 
sciences that comprise a wide range of disciplines aims at analyzing the relationships among 
the different elements of various omes. A common characteristic is the use of innovative 
technology platforms that allow the high-throughput detection and identification of the 
large amount and variety of molecules expressed in living organisms. Both immobilization 
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on a solid surface either for affinity chromatography applications or as arrays and coupling 
to other biomolecules are important elements shared by all omic sciences.  
In the context of immobilization, vinyl sulfone activated sepharose and vinyl sulfone silica 
are two open affinity chromatographic supports valid not only in Proteomics (vide supra 
section 3.4) but also in glycomics to isolate glycoproteins if lectins are immobilized or in 
genomics if amine or thiol functionalized oligonucleotides are used. In the particular case of 
glycomics, divinyl sulfone (DVS) has been used for the surface functionalization of either 
the wells of microtiter plates containing primary amino groups (Hatakeyama et al., 1996; 
Hatakeyama et al., 1997) or hydroxyl-terminated self-assembled monolayers (SAMs) on Au 
(Cheng et al., 2011). Both materials have demonstrated their capability for the direct 
chemical immobilization of natural and chemically derived carbohydrates as well as 
glycoproteins and their applicability for the development of a simple assay to determine 
lectin activity, in case of the vinyl sulfone functionalized microplates, and for the fabrication 
of a glycan microarray, in case of the vinyl sulfone derivatized SAMs. On the other hand, 
the activation of molecules via vinyl sulfone functionalization is a wide scope strategy for 
labeling (colorants and fluorophores) and tagging (biotin) not limited to Proteomics. Finally, 
in the particular case of glycomics, vinyl sulfone derivatization of sugars is especially 
appealing since as described above (section 3.5) it is suitable for the synthesis of 
neoglycoconjugates that are recognized by lectins. 
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Fig. 12. Divinyl sulfone (DVS) functionalization of surfaces (SAM and microtiter plates) for 
applications in glycomics  

In lipidomics, immobilized lipids are a valuable tool for the characterization and study of 
the lipid-protein interaction. This issue is not new in pharmaceutical industry where some 
of the most famous drugs target lipid-metabolizing enzymes. For example, atorvastatin 
(Lipitor from Pfizer) is a competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A 
reductase (HMG-CoA), the rate controlling enzyme involve in the metabolic pathway of 
cholesterol, or Celecoxib (Celebrex from Pfizer) is a selective inhibitor of cyclooxygenase-2, 
enzyme responsible for the conversion of arachidonic acid into prostaglandin that is the 
molecule involved in inflammation and pain. Thus, lipid profiling for the identification of 
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metabolic pathways and enzymes involved is an area of interest in lipidomics (Wenk, 2005). 
Both covalent and non-covalent immobilization strategies do not seem to compromise the 
activities of the group of phosphoinostides (Feng, 2005). In order to promote the covalent 
immobilization with surfaces, reactive groups including amine among others are introduced 
in the lipid molecule and in this context the above mentioned microarrays based in vinyl 
sulfone derivatized monolayers (SAMs) (Cheng et al., 2011) can be applied to the synthesis 
of lipid microarrays. Another important issue is protein lipidization where vinyl sulfone 
chemistry can play a role. In general it is assumed that the hydrophobic acyl groups are 
involved in protein-membrane interaction and protein-protein interactions (McCabe & 
Berthiaume, 1999; Taniguchi, 1999). Historically, fatty acylation has been divided into two 
classes: cotranslational addition of myristate to N-terminal glycine through amide linkage 
(myristoylation) and post-translational addition of palmitate through a thioester linkage to 
cystein. Both N-terminal and thiol groups can be targeted by vinyl sulfone chemistry. 
Finally, it should be mentioned that, although for a different purpose, the authors’ group 
has reported the synthesis of alkyl vinyl sulfones and vinyl sulfone functionalization of 
cholesterol and their reaction with poly(amidoamine) (PAMAM) dendrimers for the 
preparation of dendrimers-based nonviral gene delivery vectors with improved transfection 
efficiencies (Fig. 13) (Morales-Sanfrutos et al., 2011). 
 

 
Fig. 13. Alkyl sulfonyl derivatized PAMAM-G2 dendrimers engineered by vinyl sulfone 
chemistry as nonviral gene delivery vectors with improved transfection efficiencies. 

In the field of genomics, a method for gene analysis by simultaneously performing the 
polymerase chain reaction (PCR) reaction and the hybridization reaction of an 
oligonucleotide, a polynucleotide or a peptide nucleic acid fixed on a vinylsulfonyl 
functionalized silicate glass micro-array obtained by a tandem treatment with an amino 
silane coupling agent and a bis(vinylsulfonyl) compound has been reported (Iwaki et al., 
2004). This method avoids traditional operations where PCR and hybridization reactions are 
separately performed for gene analysis. 

5. Conclusion 

The reactivity of the vinyl sulfone function toward thiol and amine groups that are naturally 
present or routinely introduced in most of biomolecules makes it a wide scope strategy for 
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functionalization with a clear potential in omic sciences. The examples in the previous 
sections are indicative to the usefulness of vinyl sulfone reactivity in Proteomics owed to 
their excellent capability to act as Michael acceptors in physiological conditions (aqueous 
media, slightly alkaline pH and room temperature) that preserves the biological function of 
the proteins with no formation of by-products. However, despite the existence of a body of 
knowledge in bibliography, the applications of vinyl sulfones are only partially exploited 
and the vast potential of these compounds for targeting biological macromolecules is yet to 
be unearthed. For the particular case of Proteomics it is important to recall the presence of a 
panoply of potential reactive groups in proteins and the dependence of their reactivity on 
the neighboring residues. Nevertheless, vinyl sulfone group is appealing despite the 
modification of a particular residue is far from trivial since this is not a critical issue for 
many applications in Proteomics. Its impact in other sciences is promising but still 
unexplored.  
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