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Thyroid hormone (TH) is crucial for normal brain development. TH transporters control TH homeostasis in brain
as evidenced by the complex endocrine and neurological phenotype of patients with mutations in monocarbox-
ylate transporter 8 (MCT8). We investigated the mechanisms of disease by analyzing gene expression profiles
in fibroblasts from patients with MCT8 mutations. Studying MCT8 and its transcriptional context in different
comprehensive spatial and temporal human brain transcriptome data sets revealed distinct region-specific
MCT8 expression. Furthermore, MCT8 demonstrated a clear age-dependent decrease, suggesting its impor-
tance in early brain development. Performing comparative transcriptome analysis, we linked the genes differ-
entially expressed (DE) in patient fibroblasts to the human brain transcriptome. DE genes in patient fibroblasts
were strongly over-represented among genes highly correlated with MCT8 expression in brain. Furthermore,
using the same approach we identified which genes in the classical TH signaling pathway are affected in
patients. Finally, we provide evidence that the TRa2 receptor variant is closely connected to MCT8. The present
study provides a molecular basis for understanding which pathways are likely affected in the brains of patients
with mutations in MCT8. Our data regarding a functional relationship between MCT8 and TRa2 suggest an
unanticipated role for TRa2 in the (patho)physiology of TH signaling in the brain. This study demonstrates
how genome-wide expression data from patient-derived non-neuronal tissue related to the human brain tran-
scriptome may be successfully employed to improve our understanding of neurological disease.

INTRODUCTION

Thyroid hormone (TH) is an important factor for brain devel-
opment and function (1). The transcriptional actions of the
bioactive hormone T3 are mediated by binding to its nuclear
receptors (TRa1 and TRb, encoded by THRA and THRB,
respectively) (1). Cellular action of TH requires transport
across the plasma membrane, which is facilitated by plasma
membrane transporters (2,3).

Monocarboxylate transporter 8 (MCT8) is the most specific
TH transporter known to date. Among different tissues, it is
significantly expressed in brain (4). Its biological relevance

was demonstrated in humans with psychomotor retardation
and disturbed serum TH levels caused by mutations in
MCT8 (5,6).

The molecular mechanisms underlying the neurological
abnormalities in patients with mutations in MCT8 (for brevity
hereafter called MCT8 patients) are unknown, because (i)
knowledge of the normal spatial and temporal expression
pattern of MCT8 in human brain is largely lacking; (ii) genes
downstream of MCT8 have not been identified; (iii) Mct8
knockout (KO) mice replicate the abnormal thyroid state of
MCT8 patients, but lack neurological abnormalities and are
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therefore not a suitable model to unravel the pathogenesis of the
psychomotor retardation in MCT8 patients (7,8).

In an attempt to overcome these limitations, we first examined
the gene expression profiles of human fibroblasts from MCT8
patients and controls. Next, we assessed MCT8 expression in
the brain using several comprehensive human brain transcrip-
tome data sets. Finally, comparative analysis of the transcrip-
tomes of fibroblasts from MCT8 patients and the human brain
specified the deranged molecular signature of the disease.
Furthermore, the data suggest the role of the TRa2 receptor
variant in the (patho)physiology of TH signaling.

The present study illustrates how genome-wide expression
data of patient-derived non-neuronal tissue related to the
human brain transcriptome may be successfully employed to
improve our understanding of neurological diseases.

RESULTS

Transcriptome analysis of fibroblasts from MCT8 patients
and controls

To assess differences in gene expression levels per se and in
different thyroid states, we performed microarray analysis on
fibroblasts from MCT8 patients and controls under three differ-
ent conditions. We hypothesized that T3 addition would
amplify differences between patients and controls, because
intracellular T3 availability is decreased in fibroblasts lacking
functional MCT8. Unexpectedly, PCA analysis indicated that
differences between patients and controls are much larger
than differences induced by T3. The genes that differed in
expression after T3 treatment between patients and controls
are presented in Supplementary Material, Table S1. They
include AKR1C1-3 and RCAN2/ZAKI4awhich have been pre-
viously identified as T3-responsive genes in fibroblasts. Vali-
dation of representative genes by qPCR is shown in Fig. 1A.

As only a limited number of genes responded differently to
T3 treatment in patients versus controls, we focussed on the
differentially expressed (DE) genes irrespective of thyroid
state. Applying stringent selection criteria (see Supporting
Information (SI) text for details), we identified 1617 unique
DE genes (equaling 2159 probe sets; Supplementary Material,
Table S2). Hierarchical clustering of DE genes reveals large
differences between patients and controls per se and only
subtle effects of T3 during 24 h incubation (Fig. 1B and C).

Well-known T3 target genes in the brain such as RELN,
BDNF and PTGDS were markedly decreased in MCT8
patient fibroblasts, and Ingenuity Pathway Analysis revealed
an over-representation of genes in the TR/RXR pathway
(data not shown). Together with our previous observations
that TH uptake is impaired in fibroblasts from MCT8 patients
(9), the present results suggest that fibroblasts are a suitable
tool to study molecular derangements in MCT8 patients.

Validation of DE genes by qPCR

Among the DE genes, 305 unique genes were at least twice
represented with different probe sets on the microarray,
strengthening the present findings. To validate the microarray
results, we confirmed significant changes in the expression of
most of the selected genes by qPCR (Fig. 1D).

Gene ontology analysis of DE genes

Gene ontology (GO)-enrichment analysis was used to func-
tionally characterize the DE genes (10). Figure 1E shows the
most prominent biological processes identified, including
specific GO categories related to cell adhesion and actin cytos-
keleton processes.

Spatial and temporal MCT8 expression in human brain

Next, we assembled different microarray data sets generated
from in total 381 human brain samples to explore the spatial
and age-dependent expression profiles of MCT8. Data set 1
was obtained using 169 tissue samples from 30 individuals and
represents gene expression profiles in 53 anatomically distinct
human brain regions from at least three subjects [average age:
39.0 (19–90) years]. Data set 2 consisted of 173 samples (hippo-
campus, entorhinal cortex, superior-frontal gyrus and postcentral
gyrus) from 55 individuals (average age 64.4 (20–99) years].
Data set 3 consisted of dorsolateral prefrontal cortex samples
from 39 individuals (age range: 0.1–83 years). Full details are
given in Patients and Methods and SI text). Figure 2A shows
the expression pattern of MCT8 in data set 1, revealing signifi-
cant MCT8 expression in distinct brain areas. As MCT8
appears crucial for the brain development, we investigated
whether MCT8 expression changed with advancing age. Using
data set 3, demonstrating distinct age-related gene clustering

Figure 1. Gene expression profiling in fibroblasts from patients with mutations in MCT8 and controls. (A) Verification of microarray results by qPCR. Genes
which responded differently to T3 treatment were confirmed by qPCR. Results are shown as mRNA levels expressed relative to that of the house-keeping gene
Cyclophilin A (DCt+SEM). The black bars represent controls and the white bars represent patients. Underneath the figure are the gene names and the values
obtained by microarray analysis shown as 2log ratio of the fold change in gene expression between patients and controls. #P ¼ 0.07; ##P ¼ 0.08. (B) Gene
expression profiles of fibroblasts cultured in different thyroid states (0, 1, 10 nM T3) from patients (P) and controls (C). OmniViz Treescape showing the hier-
archical clustering of 1617 unique genes (2159 probe sets) which matched the selection query. Gene expression levels: red, up-regulated genes compared with the
geometric mean; green, down-regulated genes compared with the geometric mean. The color intensity correlates with the degree of change. (C) Venn diagram of
DE genes between patients (P) and controls (C) per se (red), the effects of 10 versus 0 nM T3 treatment on control fibroblasts (blue; C10 versus C0), the effects of
10 versus 0 nM T3 treatment on patient fibroblasts (green; P10 versus P0) and the overlaps. (D) Verification of microarray results by qPCR. Six down-regulated
(left panel) and three up-regulated (right panel) were selected from the microarray results. Results are shown as mRNA levels expressed relative to that of the
house-keeping gene Cyclophilin A (DCt+SEM). The black bars represent controls and the white bars represent patients. Underneath the figure are the gene
names and the values obtained by microarray analysis shown as 2log ratio of the fold change in gene expression between patients and controls. ∗P , 0.05;
∗∗P , 0.01; ∗∗∗P , 0.001. (E) GO-enrichment analysis of DE genes in fibroblasts from MCT8 patients versus controls. Enriched GO terms for biological pro-
cesses were selected from the DAVID functional annotation clustering module and corrected for multiple testing (P , 0.01; see Supplementary Material, Fig. S1
and Table S10 for extensive lists). Enrichment is shown on the upper axis. P-values are represented by the red squares.
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(Supplementary Material, Fig. S2A), MCT8 is prominently
ranked among the subset of genes with a clear age-dependent
decrease in expression (Supplementary Material, Fig. S2B).
MCT8 expression rapidly declines after the first years of life
(Fig. 2B). To assess the functional context of genes among
which MCT8 was expressed, we investigated which GO cat-
egories were over-represented in genes correlated (r ≥ 0.4)
with MCT8 in the different data sets. As might be anticipated,
consistently enriched GO terms were related to neuron develop-
ment, axonogenesis and cell adhesion (Supplementary Material,
Table S3).

Comparative analysis of DE genes in fibroblasts with the
human brain transcriptome

Then, we sought to integrate the data obtained in patients’ versus
control fibroblasts with the normal human brain transcriptome to
define molecular pathways and specify candidate genes, which
are possibly deranged in the brains of MCT8 patients.

Our strategy entailed the following steps. First, to avoid
potential bias, we removed from the analysis genes which
were not expressed in at least one of the brain samples.
Second, for all remaining genes in the brain data sets, corre-
lations with the expression of MCT8 (or in principle any
gene of interest) were calculated. Third, we selected genes
that were correlated (r ≥ 0.4) with MCT8 expression. Based
on the association-by-guilt principle, the resulting list was
likely enriched in MCT8-related genes. Fourth, we intersected
this list of selected genes in brain with the DE genes of fibro-
blasts from MCT8 patients. Fifth, the difference between the
observed versus expected frequency by chance was calculated
for the overlapping genes and a P-value was calculated for the
fold enrichment. This approach was performed in all data sets
and was extended to the TRs.

Figure 3 illustrates this approach for MCT8 in data set
1. Out of the 44,634 genes called present in the brain
samples of this data set, we selected 1172 genes that highly
correlated with MCT8 expression in brain (Fig. 3A and B).
From the list of 1172 selected genes, 102 were identified
among the DE genes in patients’ versus control fibroblasts,
representing a 2.1-fold enrichment (P ¼ 1.9 × 10212;
Fig. 3C and D, Supplementary Material, Table S4). In con-
trast, the same approach with 1172 randomly selected genes
did not result in an over-representation.

Thus, these findings indicate that genes that highly correlate
with MCT8 expression in the human brain are more than twice
as likely to be found among genes that differ between fibroblasts
from MCT8 patients versus controls. This approach was vali-
dated using data set 2 (2.4-fold enrichment; P ¼ 4.2 × 10219;
Supplementary Material, Table S4). Similarly, genes following
the age-related pattern of MCT8 expression in brain were over-
represented among the DE genes (data set 3; 1.5-fold enrich-
ment; P ¼ 1.7 × 1024; Supplementary Material, Table S4).

Since MCT8 expression varied highly among the different
brain regions (Fig. 2A), background noise might obscure the
number of identified genes likely associated with MCT8. There-
fore, we selected the brain regions with high versus low MCT8

Figure 2. Spatial and temporal expression of MCT8 in human brain.
(A) MCT8 expression in 53 distinct brain regions from at least three different
subjects (data set 1). High MCT8 expression is observed in the amygdaloid
nucleus, hippocampus, hypothalamus, caudate nucleus, nucleus basalis of
Meynert and Brodmann areas 6, 11, 21–24, 28, 42 and 47. (B) Age-related
MCT8 expression in 39 samples of the dorsolateral prefrontal cortex from indi-
viduals ranging from 0.1 to 83 years of age (data set 3). For hierarchical clus-
tering of all genes in data set 3, see Supplementary Material, Fig. S2. Red,
increased expression compared with the geometric mean; green, decreased
expression compared with the geometric mean. The color intensity correlates
with the degree of change.
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Figure 3. Comparative analysis of DE genes in MCT8 patient fibroblasts and the human brain transcriptome. (A) Expression of MCT8 in all 53 brain regions of
data set 1 (identical to Fig. 2A). (B) Selection of genes whose expression correlates (r ≥ 0.40) with MCT8 expression across all brain regions (in total 1172
genes) are selected. (C) The 1172 selected genes shown in (B) are intersected with the 2159 DE genes in fibroblasts from MCT8 patients (obtained from
Fig. 1A). The intersection results in 102 genes which are common to both selections. (D) Calculation of the representation of 1172 genes among the 2159
DE genes in fibroblasts from MCT8 patients indicates a strong and significant over-representation. The probe set IDs and gene symbols are shown for the
102 genes common to both selections and the degree of correlation with MCT8 in brain (data set 1) is indicated.
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expression from data set 1 and excluded samples from subjects
.60 years of age to diminish age-related effects (data set 4).
Theoretically, this data set should considerably increase the
number and accuracy of MCT8-associated genes. Indeed, a
total of 433 out of the 4152 selected transcripts were present
among the DE genes, equaling a 3-fold enrichment (P ¼
2.9 × 10267; Supplementary Material, Table S4). Again,
categories involved in cell adhesion and actin cytoskeleton
regulation were significantly over-represented.

Then, we aimed to identify genes which are consistently corre-
lated with MCT8 among the different data sets and are DE
in fibroblasts from MCT8 patients. Since the different data sets
represent different brain areas, this approach precluded
identification of brain region-specific genes. The search for
MCT8-correlated genes in all four data sets resulted in 224

genes, of which 28 were DE in fibroblasts from MCT8 patients
(2.7-fold enrichment; P ¼ 6.5 × 1027; Table 1). Interestingly,
among these genes, two members of the plasticity-related gene
family (LPPR2 and LPPR4) are highly expressed in neurons
and have been implicated in axonal outgrowth (11).

Taken together, the approach of selecting genes in the brain
which correlate with MCT8 expression and subsequent intersec-
tion with DE genes in MCT8 patient fibroblasts resulted in signifi-
cant over-representations using all different data sets (Table 2).

Comparative transcriptome analysis links TRa1 and TRb
to MCT8

We tested the current paradigm which assumes that MCT8
transports T3 across the plasma membrane, ultimately to

Table 1. Genes correlated with MCT8 in normal human brain are overrepresented among DE genes in MCT8 patients’ fibroblasts

Probe set ID Gene symbol Gene title Data set
1 2 3 4

204462_s_at SLC16A2 Solute carrier family 16, member 2

64899_at LPPR2 Lipid phosphate phosphatase-related protein type 2

204612_at PKIA Protein kinase (cAMP-dependent, catalytic) inhibitor alpha

213496_at LPPR4 Plasticity-related gene 1

226074_at PPM1M Protein phosphatase 1M (PP2C domain containing)

227769_at — Transcribed locus

210299_s_at FHL1 Four and a half LIM domains 1

230298_at LOC153364 Similar to metallo-beta-lactamase superfamily protein

228843_at — Full-length insert cDNA clone YZ38E04

231380_at C8orf34 Chromosome 8 open-reading frame 34

208928_at POR P450 (cytochrome) oxidoreductase

200852_x_at GNB2 Guanine nucleotide-binding protein (G protein), beta polypeptide 2

206857_s_at FKBP1B FK506-binding protein 1B, 12.6 kDa

47069_at PRR5 Proline-rich 5 (renal)

205088_at MAMLD1 Mastermind-like domain containing 1

228126_x_at CTXN1 Cortexin 1

239725_at PGAP1 Post-GPI attachment to proteins 1

205110_s_at FGF13 Fibroblast growth factor 13

209407_s_at DEAF1 Deformed epidermal autoregulatory factor 1 (Drosophila)

201117_s_at CPE Carboxypeptidase E

213469_at PGAP1 Post-GPI attachment to proteins 1

214321_at NOV Nephroblastoma overexpressed gene

221755_at EHBP1L1 EH domain-binding protein 1-like 1

213933_at PTGER3 Prostaglandin E receptor 3 (subtype EP3)

201540_at FHL1 Four and a half LIM domains 1

1554429_a_at DMWD Dystrophia myotonica, WD repeat containing

44783_s_at HEY1 Hairy/enhancer-of-split related with YRPW motif 1

207105_s_at PIK3R2 Phosphoinositide-3-kinase, regulatory subunit 2 (beta)
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ensure nuclear availability of T3 for the TRs. Thus, we
selected genes which expression correlated highly with both
MCT8 and one of the TR isoforms. A clear clustering of differ-
ent probe sets for each isoform was observed in all human
brain transcriptome data sets (Supplementary Material, Figs
S3 and S4). Specific patterning of THRA1 and THRB was
visible in line with the known expression of these genes in
the brain, providing further confidence in this approach. For
example, a much lower THRB expression was noticed in cer-
ebellum compared with cortical regions (data not shown),
which corresponds well with previous studies (12).

Since TRb appears functional in fibroblasts (13), we started
selecting genes that correlated with both MCT8 and THRB
expression in the human brain. These lists were intersected
with the DE genes in patient fibroblasts resulting in a
�2-fold enrichment (Table 3, Supplementary Material,
Table S5). An exception was data set 3, in which no genes
passed the selection criteria, which is explained by the obser-
vation that THRB does not exhibit an age-related expression
pattern similar to MCT8 (Fig. S4). Examining those genes
likely downstream of MCT8 and TRb revealed several
known T3-responsive genes (e.g. CCND2 and RELN). Further-
more, this approach also suggested many interesting candi-
dates for further investigation such as the LIM homeobox
gene LHX2 and THY1 and a hypothetical protein encoded by
the locus FLJ90757 (14).

Next, we intersected genes correlated with both MCT8 and
THRA1 expression in human brain with the DE genes in
patient fibroblasts. As this query resulted in only a few genes
in data sets 1–3, enrichment did not reach significance (data
not shown). This could be explained if MCT8 and TRa1

co-expression is not brain-wide, but restricted to a few distinct
brain areas. Indeed, in data set 4, genes that correlated with
MCT8 and THRA1 expression were highly over-represented
among the DE genes (3.7-fold enrichment; P ¼ 1.6 × 10211;
Supplementary Material, Table S7). In addition, we performed
a similar approach using a probe set which specifically detects
THRA1 mRNA with an extended 3′-UTR (Supplementary
Material, Fig. S3) also resulting in a strong enrichment
(11-fold; P ¼ 4.4 × 10223; Supplementary Material, Table S6).

Taken together, our results specify genes in a functional
pathway putatively downstream of MCT8 and each of the
T3-binding TRs, which are dysregulated in MCT8 patients.

TRa2 appears functionally linked to MCT8

The THRA1 and THRA2 mRNAs encoding TRa1 and TRa2,
respectively, result from differential splicing of the THRA
gene (Supplementary Material, Fig. S3). Scrutinizing the
different probe sets, we found that two probe sets specifically
target the mRNA coding for TRa2 (designated as THRA2;
Supplementary Material, Fig. S3). Blasting the sequence of
these probes in an independent sequence database verified
this finding. In addition, the intensities of the probe sets for
THRA2 were 3–10-fold higher (P , 1 × 10237 in data sets
1–3) than for THRA1, which is in perfect agreement with
the previous findings of higher THRA2 than THRA1 expression
in the brain (12,15). In contrast to TRa1 and TRb, T3 does not
bind to TRa2, leaving it an ‘orphan receptor’ (16).

The first striking observation was that THRA2 expression
closely followed MCT8 expression in human brain, much
more so than the other TR isoforms (Supplementary Material,
Fig. S4, Table 4). To test the hypothesis that MCT8 and TRa2
are functionally linked, we selected genes correlating with
both MCT8 and THRA2 expression in the brain. After intersec-
tion of these lists with the DE genes in patients’ fibroblasts,
strong and consistent enrichments (Table 5, Supplementary
Material, Table S7) were found, which is illustrated in
Fig. 4. We first separately identified 4152 and 4877 genes
which highly correlated with MCT8 and THRA2 expression,
respectively. Intersection of these lists with the DE genes in

Table 3. Genes correlated with MCT8 and THRB in normal human brain are
over-represented among DE genes in MCT8 patients’ fibroblasts

Data
set

Number of selected
genes in human brain
transcriptome data
sets

Number of
overlapping genes
(selected genes: DE
genes in MCT8
patients fibroblasts)

Enrichment P-value

1 713 58 1.9 2.3 × 1026

2 147 15 2.3 1.5 × 1023

3 0
4 448 48 2.2 5.5 × 1027

Table 4. Correlations between expression of MCT8 and the different TR iso-
forms expression in human brain

Data set Pearson’s correlation P-value

MCT8-THRA2 (two probe sets)
1 0.38 2.8 × 1027

2 0.47 1.1 × 10210

3 0.82 1.1 × 10211

4 0.54 0.0043
MCT8-THRA1
1 0.03 NS
2 0.05 NS
3 0.30 5.0 × 1022

4 0 NS
MCT8-THRB
1 0.12 NS
2 20.17 2.0 × 1022

3 20.29 NS (6.0 × 1022)
4 0.09 NS

Table 2. Genes consistently correlated with MCT8 in normal human brain are
over-represented among DE genes in MCT8 patients fibroblasts

Data set Number of
selected genes in
human brain
transcriptome
data sets

Number of
overlapping
genes (selected
genes: DE
genes in MCT8
patients
fibroblasts)

Enrichment P-value

1 1172 102 2.1 1.9 × 10212

2 1207 121 2.4 4.2 × 10219

3 6418 413 1.5 1.7 × 1024

4 4152 433 2.9 2.9 × 10267

1 + 2 + 3 + 4 224 28 2.7 6.5 × 1027
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patients’ fibroblasts yielded 433 and 552 overlapping genes for
MCT8 and THRA2, respectively (Fig. 4A and B). Importantly,
the large majority of genes were identical between these two
lists (Fig. 4C, Supplementary Material, Table S7). Survey of
this list uncovered not only genes important for cerebral func-
tion (e.g. NPDC1, PEA-15 and ZNF706) but also numerous
genes whose function in the brain is as yet unknown (e.g.
JOPS2 and CTXN1). The number of DE genes that overlapped
with the genes in brain selected on the MCT8/THRA2 combi-
nation was much larger than on all other possible combi-
nations (Fig. 4D).

As these observations point to an unanticipated role of
TRa2 in the (patho)physiology of TH signaling, we aimed
to substantiate the robustness of our strategy. Therefore,
genes whose expression changed only after T3 treatment in
control fibroblasts were retrieved (Supplementary Material,
Table S1 and Fig. S5). This list of genes was searched for cor-
relation with the TR isoforms in brain. As might be expected,
the list of T3-responsive genes was not enriched for genes
highly correlated with THRA2 in brain. In contrast, a signifi-
cant enrichment was noted for genes correlated with THRA1
or THRB in multiple human brain data sets (Supplementary
Material, Table S8). Furthermore, a comparative analysis of
T3-responsive genes in fibroblasts identified previously (13)
yielded a preferential enrichment in the THRB-correlated
genes. In addition, several well-known T3-responsive genes
identified in the mouse brain (HR, NGRN/RC3, BTEB and
BDNF) all markedly correlated with THRA1 or THRB in the
human brain. Thus, T3-responsive genes were mapped to the
T3-binding TRs in human brain, substantiating the validity
of our approach. Finally, we performed similar analyses with
MCT8 and nuclear receptors unrelated to TH signaling to sub-
stantiate our method. In contrast with the TRs, only a few
genes correlated with both MCT8 and either the glucocorticoid
receptor or the estrogen receptor, none of which resulted in a
significant enrichment among the DE genes. Taken together,
these findings strongly suggest that MCT8 and TRa2 are
closely linked and may act together in controlling specific
gene sets.

DISCUSSION

Understanding the neurological phenotype in MCT8 patients is
currently hampered as knowledge of MCT8 expression in the
human brain is limited. A few studies reported MCT8 staining
in some parts of the brain, but a systematic analysis of MCT8

expression in the human brain has not been performed yet
(17–19). In the present study, we explored the MCT8 mRNA
expression across multiple human brain regions, using genome-
wide expression profiles. The present results indicate that MCT8
is significantly expressed in the limbic system, cortical regions
involved in language function and areas important for motor
control. Although confirmatory studies are needed before ana-
tomical MCT8 expression may be linked to the disease pheno-
type, the affected cognitive functions in patients are
comprehensive if MCT8 is normally expressed in these
regions in unaffected subjects. Species-specific cerebral pat-
terning of MCT8 may partially explain the differences
between humans and mice lacking functional MCT8 (8,20).
Furthermore, we noted that MCT8 has a strong age-dependent
expression pattern in humans, at least in the dorsolateral pre-
frontal cortex, which provides a basis for the hypothesis that
treatment during the first years of life may improve the neuro-
logical development of MCT8 patients (21).

In the present study, we analyzed and compared the transcrip-
tome of fibroblasts from MCT8 patients with the transcriptome
of normal human brain. Microarray studies have advanced the
understanding of numerous processes in normal and diseased
brain (22–26). Although conventional microarray analysis
has yielded novel insights, important information may be
missed. Therefore, integrating data from different sources
may truly increase further our understanding (26).

Recently, several studies have improved the understanding
of the complexity of human brain by the application of
network analysis on gene expression profiles in different
brain regions, demonstrating intrinsic organizational transcrip-
tion patterns (27–30). An intuitive disadvantage of analyzing
gene expression in brain is that cell-type-specific gene
expression levels are missed. However, Oldham et al. (29)
clearly demonstrated the existence of specific modules
comprising co-expressed genes, which enabled to distinguish
cell-specific gene expression signatures in bulk brain tissue.
Correlative analysis of gene expression in the brain more pre-
cisely defined specific functional units than based on classical
morphological markers (31).

In many neurological disorders, especially rare syndromes,
diseased tissue is not available for analysis. Therefore, geneti-
cally engineered mice are frequently used as models for
disease. However, this approach is often limited by species
differences in brain function. Alternatively, peripheral cells
obtained from patients with neurological disease have been
used to seek for abnormalities, which is limited by the uncer-
tainty to which extent differences reflect abnormalities in the
brain (32,33). Obviously, the absence of neurological abnorm-
alities in the Mct8 KO mice precludes their use as models for the
human brain phenotype (7,8). We aimed to overcome these dif-
ficulties by integrating and comparing the DE genes in patient
cells with the human brain transcriptome. To our knowledge,
the present study is the first linking a human model of neurologi-
cal disease (MCT8 patients) with different large human brain
transcriptome data sets from as many as 381 samples.

The current working hypothesis assumes that in MCT8
patients transport of T3 across the blood–brain barrier and/
or transport of T3 into central neurons is hampered. From
this, it is commonly speculated that T3 target genes important
for brain development are dysregulated. However, proof of

Table 5. Genes correlated with MCT8 and THRA2 in normal human brain are
over-represented among DE genes in MCT8 patients’ fibroblasts

Data
set

Number of selected
genes in human
brain transcriptome
data sets

Number of
overlapping genes
(selected genes: DE
genes in MCT8
patients fibroblasts)

Enrichment P-value

1 155 19 3.0 3.0 × 1026

2 170 22 3.1 3.1 × 1027

3 3530 264 1.9 9.7 × 10215

4 2555 332 3.5 1.6 × 10284
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Figure 4. Comparative analysis of DE genes in MCT8 patients; fibroblasts and the human brain transcriptome (data set 4) suggests a role for TRa2. (A) Selection of
genes whose expression correlates (r ≥ 0.40) with MCT8 expression in the human brain (data set 4) resulted in 4152 genes. Intersection with the 2159 DE genes in
fibroblasts from MCT8 patients yielded 433 overlapping genes. (B) Selection of genes whose expression correlates (r ≥ 0.40) with expression of THRA2, encoding
the orphan receptor TRa2, in the human brain (data set 4) resulted in 4877 genes. Intersection with the 2159 DE genes in fibroblasts from MCT8 patients yielded 552
overlapping genes. (C) Intersection of the genes obtained from the analysis in (A) and (B), resulted in 332 identical genes. (D) Venn diagrams representing the
overlap of genes correlated with all combinations of MCT8, THRA1, THRA2 and THRB in data set 4 and DE genes in fibroblasts from MCT8 patients.
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this concept is currently lacking and the molecular mechan-
isms underlying the neurological phenotype are elusive. By
using patient-derived fibroblasts, we now demonstrate that
numerous genes are dysregulated in patients. We first focussed
on the direct effects of T3 addition to the cultured fibroblasts.
Different T3 exposure levels resulted in distinct clustering of
responsive genes with modest differences between patients
and controls.

The modest response to T3 is partially related to the strict
cut-off values used to exclude false-positives. Approximately
half of the genes responding to T3 treatment in the present
study were reported previously as T3 responsive in fibroblasts
or other cells and tissues, supporting the validity of our findings
(9,13,34–37). Furthermore, 24 h T3 treatment may be insuffi-
cient to induce large changes in T3-responsive genes in fibro-
blasts (36). It is likely that fibroblasts from MCT8 patients are
in a chronic hypothyroid state, which was also suggested by
the enrichment of the TR/RXR pathway among DE genes irre-
spective of the cultured thyroid state. Interestingly, we observed
reduced levels of several genes which are known to be
T3-responsive in brain. Other classical genes which are regu-
lated by T3 in brain (MBP, NGRN/RC3 and HR) were very
low or not expressed in fibroblasts, precluding T3-dependent
regulation. Nevertheless, the possibility remains that MCT8
transports an as-yet-unknown ligand the absence of which
affects the gene expression in patient fibroblasts.

The comparative analysis with genome-wide expression
data in the human brain enabled us to explore the relevance
of DE genes in patient fibroblasts for brain. The list of down-
regulated genes included genes that cause mental retardation
when disrupted, such as the SLC6A8, GAMT, MECP2 and
NLGN4X (38). Among the up-regulated genes in MCT8
patients, the Notch-ligand JAG1 and Notch-signaling targets
HES1 and HEY1 are of particular interest, because these
genes are important transcriptional repressors of neurogenesis
(39). Interestingly, many of these genes (e.g. HES1, HEY1,
JAG1, GAMT and NLGN4X) are strongly correlated with
MCT8 expression in one or more of the studied brain transcrip-
tome data sets. This specifies them as genes likely affected in
brains of MCT8 patients.

An over-representation of genes related to cell adhesion and
actin skeleton processes was noted among the DE genes. As
these processes are intimately linked and act together in
synapse formation, dysregulation of these molecules likely
affects brain development (40). Furthermore, this approach
identified a number of DE genes which are highly correlated
with both MCT8 and the classic TRs in brain, providing evi-
dence for the hypothesis that deficiency in MCT8 results in
insufficient T3 supply to the TRs and consequent dysregula-
tion of T3-responsive genes. Furthermore, this method
suggests the concrete identities of putative T3 target genes
(e.g. CTXN1 and DEAF1), which likely underlie the neuro-
logical abnormalities as examples for future studies.

The most unexpected observation was the strong link
between MCT8 and the TRa2 receptor variant. In contrast
to TRa1 and TRb, it has been established that TRa2 does
not bind T3 (15,41). TRa2 is able to inhibit effects mediated
by either TRa1 or TRb, but it is unknown whether this is a
biologically relevant mechanism (41,42). There are several
indications to believe that TRa2 has physiological relevance

beyond this antagonistic mechanism of action. First, TRa2
has a ligand-binding domain. Although it does not bind T3,
this does not preclude the binding of other ligands to TRa2
which could thus be regarded as an orphan receptor. Second,
brain expression of TRa2 is roughly 10-fold higher than
TRa1, whereas this ratio is lower in other tissues (12). The
divergent expression pattern between cerebral TRa1 and
TRa2 may hint at a specific role for TRa2 in brain.

The present results add several lines of evidence suggesting a
direct role of TRa2 in TH signaling in brain. First, the expression
patterns of THRA2 and MCT8 were highly similar in the human
brain transcriptome. Second, the functional link between MCT8
and TRa2 was suggested by our comparative analysis which
demonstrated that much more DE genes in patient fibroblasts
were among the selection of genes in the human brain correlated
with the combination MCT8/THRA2 than with the combinations
MCT8/THRA1 or MCT8/THRB. The scenario in which TRa2
antagonizes TRa1 or TRb function does not explain the
present results. Rather less than more DE genes would be
expected to overlap with the selected genes in the brain correlat-
ing with the combination MCT8/THRA2.

We like to emphasize that T3-responsive genes among the
DE genes in patient fibroblasts clearly overlapped with the
selected genes in brain correlating with the combination
MCT8/THRA1 or MCT8/THRB, but not with MCT8/THRA2.
These data are perfectly in line with the current dogma of
T3 binding to the classic TRs and provide further confidence
in our analysis method. What could be the functional relation-
ship between MCT8 and TRa2? It may be speculated that
MCT8 transports a ligand across the plasma membrane,
which subsequently binds to TRa2, thereby controlling gene
transcription. Therefore, future studies may address the poss-
ible MCT8/THRA2 relationship by extending co-expression
and functional studies, for example, using animal models
such as the TRa22/2 mice (43). Taken together, our findings
indicate a novel role for TRa2 in TH signaling in the brain,
independent of the actions mediated by the T3 receptors.

In conclusion, the present study demonstrates for the first time
which genes are DE in cells derived from patients with mutations
in MCT8. Furthermore, we analyzed the expression of MCT8 and
its transcriptional context in several comprehensive data sets of
the human brain transcriptome. Comparative analysis of the tran-
scriptome of cells from MCT8 patients with the human brain
transcriptome enabled us to identify genes that are putatively
dysregulated in the brains of MCT8 patients. Our approach indi-
cated a functional relationship between MCT8 and TRa2. This
may have not only implications for the understanding of the
disease, but also suggests an important role for the ‘orphan recep-
tor’ TRa2 and its relevance for TH signaling in the brain. Finally,
this study exemplifies how genome-wide expression data from
patient-derived non-neuronal tissue related to the human brain
transcriptome may be successfully employed to improve our
understanding of neurological diseases.

PATIENTS AND METHODS

Microarray analysis

Microarray analysis was performed on skin fibroblasts from
patients with MCT8 mutations, which have been described
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previously (9). Complete data sets are available online as GEO
entry GSE20538. The microarray data of data set 1 were
obtained from Gene Logic Inc. (Gaithersburg, MD, USA).
The microarrays used to assemble data sets 2 and 3 were col-
lected from two published studies (44,45). Raw data from
these studies are available in GSE11512 (data set 2) and
GSE11882 (data set 3). For additional information on microar-
ray processing, see SI text. qPCR was performed with SYBR
Green I (Eurogentec, Maastricht, The Netherlands). For
details, see the SI text.

Functional annotation

Functional annotation was done using Ingenuity Pathway
Analysis (Ingenuity, Mountain View, CA, USA) and the web-
based DAVID program (david.abcc.ncifcrf.gov) (10).

Comparative analysis

A Pearson-based correlation metric was used to compare the
seed genes (MCT8 and the TRs) with all other probe sets
present on the chip. Selected genes were intersected with
DE genes in fibroblasts from MCT8 patients versus controls.
Likelihood and significance of the overlap were tested using
x2-test (or the Fisher exact test if appropriate).
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