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Abstract

This paper examines the sources of stickiness in aggregate consumption growth. We first derive

a dynamic consumption equation which nests recent developments in consumption theory: rule-

of-thumb consumption, habit formation, non-separabilities between both private consumption and

hours worked and private consumption and government consumption, intertemporal substitution

effects and precautionary savings. Next, we estimate this dynamic consumption equation for a panel

of 15 OECD countries over the period 1972-2007 taking into account endogeneity issues and error

cross-sectional dependence. To this end, we develop a generalised method of moments version of

the common correlated effects pooled estimator and demonstrate its small sample behaviour using

Monte Carlo simulations. The estimation results support the labour-consumption complementarity

hypothesis, the rule-of-thumb consumption model and the notion that precautionary savings matter

for the aggregate economy.

JEL Classification: C23, E21

Keywords: Sticky Consumption, Dynamic Panel, Cross-Sectional Dependence

1 Introduction

The permanent income hypothesis implies that aggregate private consumption follows a random walk

(Hall, 1978). Empirical studies show that this random walk hypothesis is not supported by the data since

aggregate consumption growth is predictable, at least to some extent. More sophisticated theoretical

models reconcile this stylized fact by introducing various forms of stickiness in aggregate consumption

growth. Relevant forms are habit formation (Campbell, 1998; Carroll et al., 2008), precautionary savings
∗We thank Freddy Heylen for helpful suggestions and constructive comments on an earlier version of this paper.
†I acknowledge financial support from the Interuniversity Attraction Poles Program - Belgian Science Policy, contract

no. P5/21.
‡Corresponding author: Department of Economics, P.O. Box 1738, 3000 DR Rotterdam, the Netherlands. Email:

pozzi@ese.eur.nl. Website: http://people.few.eur.nl/pozzi.
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(Banks et al., 2001), intertemporal substitution effects in response to real interest rate changes (Campbell

and Mankiw, 1989), non-separabilities in the utility function between private consumption and govern-

ment consumption (Evans and Karras, 1998) and between private consumption and hours worked (Basu

and Kimball, 2002; Kiley, 2007) and rule-of-thumb consumption (Campbell and Mankiw, 1989, 1990,

1991). Empirically, the most robust finding is the positive impact of aggregate disposable income growth

on private consumption growth, which is in general obtained from models incorporating rule-of-thumb

consumption. This is the so-called excess sensitivity puzzle of aggregate private consumption. For the

other types of stickiness the empirical results are rather mixed. One drawback is that these studies typ-

ically focus only on a subset of possible forms of stickiness. Moreover, the empirical analysis is usually

restricted to a single country (mainly the US). Studies that present international evidence are Camp-

bell and Mankiw (1991) and Carroll et al. (2008). The disadvantage of these studies is that they use a

country-by-country approach. As a result, the additional information in the cross-sectional dimension of

the data is not fully exploited. Evans and Karras (1998) and Lopez et al. (2000) use panel data methods

but they do not tackle all the complications that arise when estimating aggregate consumption growth

equations with macroeconomic data. In particular, they disregard cross-sectional dependence that may

stem from the presence of unobserved variables that are common to all countries in the panel.

This paper examines the stickiness of aggregate private consumption growth in a panel of OECD

countries over the period 1972-2007. The contribution of the paper to the literature is both theoretical

and methodological. Theoretically we present a heterogeneous agent model with consumers who belong to

two possible types. Consumers who belong to the first type optimize intertemporally. They form habits

since their utility also depends on past consumption. They also have a precautionary savings motive

since the variance of their individual labour income affects their consumption decisions. They further

substitute consumption intertemporally when confronted with real interest rate changes. Finally, their

utility is affected by government consumption and also by the number of hours that they work. Consumers

who belong to the second type are rule-of-thumb consumers who consume their entire disposable income

in each period. After aggregation over a large population of consumers this model provides an expression

for aggregate consumption growth that can be estimated using macroeconomic data. The stickiness

factors incorporated in the model lead to the dependence of aggregate private consumption growth on

its own lag, on the disposable income to consumption ratio and its square, on the real interest rate,

on aggregate government consumption growth, on the growth rate in aggregate hours worked and on

aggregate disposable income growth and its lag. These stickiness factors constitute deviations from

perfect consumption smoothing as implied by Hall’s (1978) random walk hypothesis. Our specification

for aggregate consumption growth encompasses most of the recent developments in consumption theory.
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And while our specification nests a number of specifications that have been estimated in the literature

previously, to the best of our knowledge, no study has yet estimated a specification as general as ours.

Methodologically we estimate the dynamic consumption equation derived in our theoretical model

for a panel of 15 OECD countries over the period 1972-2007, making full use of the panel structure

of the data. First, we exploit the cross-sectional dimension by pooling information over cross-sections.

Second, we exploit the cross-sectional dependence in the data. Standard panel estimators account for

unobserved, time-invariant heterogeneity by including individual effects. Recently, the panel literature has

emphasized unobserved, time-varying heterogeneity that may stem from omitted common variables that

have differential impacts on individual units (see e.g. Coakley et al., 2002; Phillips and Sul, 2003). These

latent common variables induce error cross-section dependence and may lead to inconsistent estimates if

they are correlated with the explanatory variables. Especially when studying macroeconomic data, such

unobserved global variables or shocks (e.g. an international business cycle, oil price shocks, . . . ) are

likely to be the rule rather than the exception (see e.g. Coakley et al., 2006; Westerlund, 2008). Rather

than treating the cross-section correlation as a nuisance, we exploit it to correct for a potential omitted

variables bias stemming from unobserved common factors. To this end, we use the common correlated

effects pooled (CCEP) estimator suggested by Pesaran (2006). The basic idea behind the CCEP estimator

is to capture the unobserved common factors by including cross-sectional averages of the dependent and

the explanatory variables as additional regressors in the model. Next, we suggest a generalised method of

moments (GMM) version of the CCEP estimator to account for endogeneity of the explanatory variables.

A small-scaled Monte Carlo simulation shows that in a dynamic panel data model with both endogeneity

and error cross-sectional dependence, this CCEP-GMM performs reasonably well for the modest sample

size T = 35, N = 15 that is available for our empirical analysis, especially when compared to alternative

estimators.

The estimation results support the labour-consumption complementarity hypothesis, the rule-of-

thumb consumption model and the notion that precautionary savings matter for the aggregate economy.

We find little or no support for habit formation, non-separabilities between private consumption and

government consumption and intertemporal substitution effects. Taking into account endogeneity and

cross-sectional dependence proves to be important as it has a marked effect on the coefficient estimates.

The paper is structured as follows. In section 2 we derive a dynamic equation for aggregate private

consumption growth from a model that encompasses most of the recent developments in the consumption

literature. In section 3 we review the different estimators that can be used to estimate this equation in

a panel of OECD countries and investigate their small sample properties in a Monte Carlo experiment.

Section 4 presents the results from the estimation of the consumption growth equation with the different
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panel data estimators. Section 5 concludes.

2 The model

Consider a heterogeneous agent economy with two consumer types (see Campbell and Mankiw, 1989,

1990, 1991). Type 1 are intertemporally optimizing consumers, described in section 2.2, while type 2

are rule-of-thumb consumers, described in section 2.3. Consumers within each type are heterogeneous in

the sense that they experience different shocks to labour income and that they work different amounts

of hours. Consumption in the model is driven by three exogenous but potentially correlated stochastic

processes: individual labour income, individual hours worked, and aggregate government consumption.

Only the process for individual labour income is explicitly specified in section 2.1. Consumption is also

driven by the exogenous economy-wide interest rate which is time-varying but not stochastic. In the

remainder, upper case variables are aggregate economy-wide while lower case variables are individual

consumer-specific, i.e. they take on different values for each consumer both within and across consumer

types.

2.1 Individual labour income

Individual log labour income of each consumer in the economy (belonging to either type 1 or type 2) is

exogenous and is assumed to follow a random walk process

yt = yt−1εt, (1)

ln yt = ln yt−1 + ln εt, (2)

with

Et−1 ln εt = 0, (3)

and Vt−1 ln εt = σ2
ln ε. (4)

From this we can approximate the conditional mean and variance of the error term εt as Et−1εt = z with

z ≈ 1 + 1
2σ

2
ln ε > 1 and Vt−1εt ≈ σ2

ln ε. We refer to Appendix A.1 for the derivation.

2.2 Type 1: intertemporally optimizing consumers

Consumers belonging to type 1 are intertemporally optimizing consumers who accumulate and decumulate

wealth. Let wt denote individual resources in period t, defined as individual assets augmented with interest
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on these assets plus individual labour income, i.e. wt ≡ (1+Rt)at−1 +yt where at−1 are individual assets

at the end of period t−1 and where Rt is the exogenous economy-wide time-varying but risk-free interest

rate (see e.g. Deaton, 1991). The law of motion for wt is then given by

wt = (1 +Rt)(wt−1 − ct−1) + yt, (5)

where use is made of the budget constraint which implies that at−1 = wt−1−ct−1, with ct−1 denoting the

consumption level of an individual consumer at time t− 1. Note from this equation that the anticipated

part of resources equals wt = Et−1wt = (1 + Rt)(wt−1 − ct−1) + yt−1z. This is obtained by noting that

Et−1yt = yt−1Et−1εt = yt−1z. The shock to resources then equals wt−Et−1wt = wt−wt = yt− yt−1z =

yt−1(εt − z) = ηt with Et−1ηt = 0 and Vt−1ηt = y2
t−1Vt−1(εt − z) = y2

t−1Vt−1εt = y2
t−1σ

2
ln ε.

The contemporaneous utility function of an individual consumer who belongs to type 1 and who

decides on consumption ct is given by

u(ct) =
1

1− θ

[
ct

cβt−1

]1−θ

eγ ln hteπ ln Gt , (6)

where ht is the exogenous stochastic number of hours worked of this individual, Gt denotes exogenous

stochastic aggregate government consumption, θ > 0 is the coefficient of relative risk aversion, β ≥ 0

is the habit parameter (Campbell, 1998), and γ and π capture respectively the impact of hours worked

(Campbell and Mankiw, 1990) and government consumption (Evans and Karras, 1998) on the marginal

utility of private consumption. This is a utility function of the King-Plosser-Rebelo type as used e.g. by

Basu and Kimball (2002, p.5). When γ > 0 (< 0) hours worked and private consumption are complements

(substitutes). When π > 0 (< 0) government consumption and private consumption are complements

(substitutes). Note that γ > 0 and π < 0 does not imply that hours worked increase and government

consumption decrease total utility of consumption since a function φ(ht, Gt) could be added to the utility

function (with φh < 0 and φG > 0) without changing the first-order condition.

The first-order condition of an individual consumer belonging to type 1 is given by

u′(ct−1) =
(

1 +Rt

1 + δ

)
Et−1u

′(ct),

where 0 < δ < 1 is the rate of time preference. Following Banks et al. (2001) we assume that optimal

consumption ct is approximately proportional to resources wt, i.e. ct ≈ αwt. Substituting eq.(6) into the
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first-order condition gives

c−θ
t−1

(
ct−1

ct−2

)−β(θ−1)

eγ ln ht−1eπ ln Gt−1 =
(

1 +Rt

1 + δ

)
Et−1 (f(wt, lnht, lnGt)) , (7)

where f(wt, lnht, lnGt) = (αwt)−θeγ ln hteπ ln Gt .

We derive an expression for f(wt, lnht, lnGt) in the proximity of certainty, i.e. in the situation

where the shocks to the exogenous stochastic driving processes of the model (individual labour income,

individual hours worked, aggregate government consumption) equal zero. In particular, as in Banks

et al. (2001), we take a second-order Taylor approximation of f(wt, lnht, lnGt) = (αwt)−θeγ ln hteπ ln Gt

around ct = αwt = αwt (where the last step follows from setting ηt = 0), around lnht = lnht (where

lnht = Et−1 lnht), and around lnGt = lnGt (where lnGt = Et−1 lnGt). We refer to Appendix A.2 for

the derivation. After taking expectations at time t − 1 of the approximation for f(wt, lnht, lnGt) we

obtain

Et−1 (f(wt, lnht, lnGt)) ≈
[
(αwt)−θeγln hteπln Gt

]
pt−1, (8)

where

pt−1 = 1 +
1
2
α2θ(1 + θ)

(
yt−1

αwt

)2

σ2
ln ε +

1
2
γ2σ2

ln h +
1
2
π2σ2

ln G (9)

−αθγ
(
yt−1

αwt

)
σε ln h − αθπ

(
yt−1

αwt

)
σε ln G + γπσln h ln G,

with σ2
ln ε as defined in eq.(4), with σ2

ln h = Et−1(lnht − lnht)2, with σ2
ln G = Et−1(lnGt − lnGt)2, with

σε ln h = Et−1

[
(εt − z)(lnht − lnht)

]
, with σε ln G = Et−1

[
(εt − z)(lnGt − lnGt)

]
, and with σln h ln G =

Et−1

[
(lnht − lnht)(lnGt − lnGt)

]
.

Substituting eq.(8) into eq.(7) and solving for ct−1 gives

ct−1 =
(

1 +Rt

1 + δ

)− 1
θ

(αwt)e−
γ
θ Et−1∆ ln hte−

π
θ Et−1∆ ln Gt

(
ct−1

ct−2

) β(1−θ)
θ

p
− 1

θ
t−1. (10)

Now we divide ct = αwt by ct−1 as given in eq.(10) to obtain

ct
ct−1

=
(

1 +
ηt

wt

) (
1 +Rt

1 + δ

) 1
θ

e
γ
θ Et−1∆ ln hte

π
θ Et−1∆ ln Gt

(
ct−1

ct−2

) β(θ−1)
θ

p
1
θ
t−1, (11)

where we use the result that wt

wt
= 1 + ηt

wt
.

Taking logs of both sides of eq.(11) we obtain

∆ ln ct = −δ
θ

+
β(θ − 1)

θ
∆ ln ct−1 +

γ

θ
∆ lnht +

π

θ
∆ lnGt +

1
θ
Rt +

1
θ

ln pt−1 + ψt, (12)
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where we use the approximation ln(1 + x) ≈ x and where ψt = ηt

wt
− γ

θ (∆ lnht − Et−1∆ lnht) −

π
θ (∆ lnGt − Et−1∆ lnGt). Note that Et−1ψt = 0.

Note that from eq.(9) we can write

ln pt−1 = k0 + k1

(
yt−1

ct−1

)
+ k2

(
yt−1

ct−1

)2

, (13)

where again we use the approximation ln(1 + x) ≈ x, where we replace αwt by ct−1 (see Banks et al.,

2001), where k0 = 1
2γ

2σ2
ln h + 1

2π
2σ2

ln G + γπσln h ln G, where k1 = −αθ(γσε ln h + πσε ln G) and where

k2 = 1
2α

2θ (1 + θ) σ2
ln ε.

Substituting eq.(13) into eq.(12) gives the growth rate of consumption of an individual consumer

belonging to type 1,

∆ ln ct =
(
k0 − δ
θ

)
+
β(θ − 1)

θ
∆ ln ct−1 +

γ

θ
∆ lnht +

π

θ
∆ lnGt (14)

+
1
θ
Rt +

k1

θ

(
yt−1

ct−1

)
+
k2

θ

(
yt−1

ct−1

)2

+ ψt.

2.3 Type 2: rule-of-thumb consumers

Consumers belonging to type 2 are rule-of-thumb consumers who consume their entire disposable labour

income in each period due to for instance myopia (see Flavin, 1985) or liquidity constraints (see Jappelli

and Pagano, 1989; Campbell and Mankiw, 1990). Hence they do not accumulate or decumulate wealth.

For these consumers ct = yt for all t. Hence, the growth rate of consumption of an individual consumer

belonging to type 2 is given by,

∆ ln ct = ∆ ln yt. (15)

2.4 Aggregate consumption growth

The growth rate of total consumption of type 1 consumers is calculated by summing eq.(14) over all type

1 consumers. We obtain,

∆ lnC1,t =

 (
k0−δ

θ

)
+ β(θ−1)

θ ∆ lnC1,t−1 + γ
θ ∆ lnH1,t + π

θ ∆ lnGt

+ 1
θRt + k1

θ

(
Y1,t−1
C1,t−1

)
+ k2

θ

(
Y1,t−1
C1,t−1

)2

+ Ψt

 , (16)

where C1,t denotes total consumption of type 1 consumers1, H1,t denotes total hours worked by type 1

consumers, Y1,t denotes total labour income earned by type 1 consumers, Ψt =
∫
ψtdΓt is the aggregate

innovation where Γt is the measure of consumers over their state variables (see Gourinchas and Parker,

1Note that C1,t is a sum not an average.
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2001). For the aggregate innovation we have Et−1Ψt = 0.2

The growth rate of total consumption of type 2 consumers is calculated by summing eq.(15) over all

type 2 consumers. We obtain,

∆ lnC2,t = ∆ lnY2,t, (17)

where C2,t denotes total consumption of type 2 consumers3, and Y2,t denotes total labour income earned

by type 2 consumers.

Following Campbell and Mankiw (1990) in Appendix A.3 we replace the growth rate of labour income

of type 2 consumers ∆ lnY2,t by (1− λ)∆ lnYt where λ is the fraction of labour income in the economy

accruing to type 1 consumers with 0 < λ ≤ 1. The growth rate of total consumption Ct in the economy

is then given by

∆ ln(Ct) = ∆ ln(C1,t) + (1− λ)∆ ln(Yt). (18)

From this note that

∆ ln(C1,t) = ∆ ln(Ct)− (1− λ)∆ ln(Yt), (19)

and that

∆ ln(C1,t−1) = ∆ ln(Ct−1)− (1− λ)∆ ln(Yt−1). (20)

In Appendix A.4 we calculate approximations for (Y1,t−1/C1,t−1) and (Y1,t−1/C1,t−1)2, namely

(Y1,t−1/C1,t−1) = 1− λ−1 + λ−1(Yt−1/Ct−1), (21)

and

(Y1,t−1/C1,t−1)2 = 1− λ−1 + λ−1 (Yt−1/Ct−1)
2
. (22)

We then assume that the growth rate in total hours worked for consumers of type 1 is proportional to

the growth rate of hours worked in the entire economy where the factor of proportionality equals λ. Hence

hours worked are allocated to both consumer types in the same proportion as labour income. Hence,

∆ lnH1,t = λ∆ lnHt (23)

where Ht denotes total hours worked in the economy.

By substituting eqs.(19),(20),(21), (22), and (23) into (16) , we obtain an expression for the growth

2Note that in the aggregation we assume that
R yt−1

ct−1
dΓt−1 ≈

“
Y1,t−1
C1,t−1

”
and

R “
yt−1
ct−1

”2
dΓt−1 ≈

“
Y1,t−1
C1,t−1

”2
.

3Note that C2,t is a sum not an average.
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rate in total consumption

∆ lnCt = a0 + a1∆ lnCt−1 + a2∆ lnHt + a3∆ lnGt + a4Rt (24)

+a5

(
Yt−1

Ct−1

)
+ a6

(
Yt−1

Ct−1

)2

+ a7∆ lnYt + a8∆ lnYt−1 + Ψt,

where a0 =
(

k0−δ
θ

)
+ k1

θ (1−λ−1)+ k2
θ (1−λ−1), a1 = β(θ−1)

θ , a2 = λ
(

γ
θ

)
, a3 = π

θ , a4 = 1
θ , a5 = λ−1

(
k1
θ

)
,

a6 = λ−1
(

k2
θ

)
, a7 = (1− λ), a8 = −(1− λ)

(
β(θ−1)

θ

)
and where Et−1Ψt = 0.

It is straightforward to show that when λ = 1 (i.e. when all labour income is earned by type 1

optimizing consumers) then eq.(24) collapses to eq.(16). In Appendix A.5 we further show that for values

of λ approaching 0 (i.e. when all labour income is earned by type 2 rule-of-thumb consumers) eq.(24)

collapses to ∆ lnCt = ∆ lnYt, i.e. limλ→0∆ lnCt = ∆ lnYt.

Our consumption equation (24) nests most of the recent developments in consumption theory. The

parameter a1 ≥ 0 reflects habit formation. It is determined by the structural parameter capturing habits,

i.e. β ≥ 0. Non-zero values for a2 and a3 reflect non-separabilities between private consumption and

hours worked and private consumption and government consumption respectively. These parameters are

determined by the structural parameters γ respectively π. The parameter a4 > 0 reflects intertemporal

substitution effects in consumption caused by interest rate changes. It is determined by the structural

parameter 1/θ, i.e. the inverse of the coefficient of relative risk aversion θ > 0. The parameter a6 >

0 reflects the impact of precautionary savings on aggregate consumption growth. It depends on the

structural parameters θ (the coefficient of relative risk aversion which also reflects the degree of prudence)

and σ2
ln ε (the variance of shocks to individual labour income).4 The parameter a7 (0 ≤ a7 < 1) reflects

rule-of-thumb consumption (liquidity constraints, myopia). It depends on the structural parameter λ

(where 0 < λ ≤ 1). The parameter a8 (a8 ≤ 0) reflects the need for an additional term ∆ lnYt−1 in

the equation to correct the for the fact that only consumers belonging to type 1 form habits. Finally,

the coefficient a5 depends on the non-separabilities between private consumption and hours worked and

private consumption and government consumption, on the correlation between the labour income shocks

and shocks to hours worked, and on the correlation between the labour income shocks and shocks in
4The importance of this variance for aggregate consumption growth shows why the use of a representative agent model

would be inappropriate if we want to take the possibility of a precautionary savings effect at the aggregate level seriously.
In a representative agent model the parameter σ2

ln ε would be the variance of aggregate labour income shocks. This variance
is very small so that in a representative agent model we would a priori impose a6 ≈ 0, i.e. the variance would be too
small to explain aggregate consumption growth (see Gourinchas and Parker, 2001). To see this note that the impact of

precautionary savings on aggregate consumption growth in eq.(24) is captured by λ−1 k2
θ

= λ−1 1
2
α2(1 + θ)σ2

ln ε. If all
consumers are of type 1 (λ = 1) then under plausible values for risk aversion (0.5 < θ < 5) precautionary savings motives
are irrelevant if σ2

ln ε denotes the variance of shocks to aggregate labour income (e.g. in annual US data we find that this
variance is a mere 0.0001). If, as is the case in our model, σ2

ln ε denotes the variance of shocks to consumer-specific labour
income then it will be much larger (e.g. about 100 times larger in annual US data) and the impact of precautionary savings
on aggregate consumption growth will be non-negligible.
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aggregate government consumption. It has little intuitive appeal. Note that some of the coefficients in

eq.(24) could be given other interpretations. A positive coefficient a1 on lagged aggregate consumption

growth could also be the result of the presence of consumers who are inattentive to macro developments

(see Carroll et al., 2008). Further, a positive coefficient a7 on current aggregate labour income growth

could also be the result of consumers who are imperfectly informed about the aggregate economy (see

Goodfriend, 1992; Pischke, 1995).5

To the best of our knowledge no study has yet estimated a specification as general as ours. The

equation nests however a number of specifications that have been estimated in the literature previously.

Campbell and Mankiw (1990) conduct regressions on a version of eq.(24) with restrictions a1 = a5 = a6 =

a8 = 0 (with ∆ lnY always included and either ∆ lnH, ∆ lnG, or R added as an additional regressor).

Evans and Karras (1998) estimate a version of eq.(24) with restrictions a1 = a2 = a4 = a5 = a6 = a8 = 0

(with ∆ lnY and ∆ lnG included). Basu and Kimball (2002) estimate a version of eq.(24) with restrictions

a1 = a3 = a5 = a6 = a8 = 0 (with ∆ lnH, ∆ lnY , and R included). Kiley (2007) estimates a version

of eq.(24) with restrictions a3 = a5 = a6 = a8 = 0 (with ∆ lnH, ∆ lnY , ∆ lnCt−1, and R included).

Carroll et al. (2008) estimate a version of eq.(24) with restrictions a2 = a3 = a4 = a5 = a6 = a8 = 0

(with ∆ lnCt−1 and ∆ lnY included). They also add the lagged aggregate wealth level of households

in an ad hoc way to their equation. This serves as a proxy for both intertemporal substitution effects

and precautionary savings effects which in our equation are captured through the variables R and
(

Y
C

)2

respectively and which we obtain as an outcome of optimization.6

The error term µt is assumed to be unpredictable based on lagged information. Three features that

are not incorporated in the model could lead to a violation of this assumption and to the occurrence of

autocorrelation of the moving average form in the error term µt. First, Campbell and Mankiw (1990) note

that transitory consumption and measurement error could lead to an MA(1) structure of the error term,

i.e. a negative MA(1) coefficient. Second, Working (1960) shows that if consumption decisions are more

frequent than observed data then an MA(1) component could be present in consumption growth, i.e. a

positive MA(1) coefficient.7 Third, if durable consumption components are present in Ct this induces

negative autocorrelation in ∆ lnCt since durable consumption growth is slightly negatively autocorrelated

(see Mankiw, 1982). This negative autocorrelation could be reflected in less positive values for a1 or in

5On the basis of macro data alone - on which the empirical analysis of this paper is based - it is not possible to distinguish
the interpretations derived from the model from these alternative possibilities.

6With respect to precautionary savings note that the factor
“

Y
C

”2
implies that it is the variance of income shocks σ2

ln ε

relative to resources (here proxied by C) that determines the strength of the precautionary savings motive. The lower
resources (and therefore consumption) compared to income, the larger the precautionary savings effect, i.e. precaution
matters more if wealth is low.

7With habit formation this amounts to an MA(2) process but as noted by Carroll et al. (2008) the MA(2) coefficient is
generally small.
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a more negative MA(1) coefficient in the error term.

3 Econometric methodology

The model for aggregate consumption growth given in eq.(24) can be written in the form of a first-order

autoregressive panel data model

yit = αi + ρyi,t−1 + β′xit + µit, i = 1, 2, . . . , N, t = 2, . . . T, (25)

where yit = ∆ lnCit, xit = (x′1it, x
′
2it)

′ is a vector of explanatory variables with x1it =
((

Yi,t−1
Ci,t−1

)
,(

Yi,t−1
Ci,t−1

)2

,∆ lnYi,t−1

)′
and x2it = (∆ lnHit,∆ lnGit, Rit,∆ lnYit)

′. Unobserved time-invariant hetero-

geneity is captured by the individual effect αi.

The cases of cross-sectional independence and cross-sectional dependence in the error terms µit are

considered separately in the sections 3.1 and 3.2. Given that the WG transformation suggested in section

3.1 requires T → ∞ and the CCEP estimator suggested in section 3.2 requires N,T → ∞ jointly,

section 3.3 reports the results of a small Monte Carlo experiment which evaluates the performance of the

suggested estimators for the limited sample of T = 35 and N = 15 that is available to us for the empirical

analysis in section 4.

3.1 Model with cross-sectional independence

As noted in section 2.4, there are various reasons that could lead to the occurrence of autocorrelation of

the MA form in the error term of eq.(24). Therefore, we allow µit in the empirical model in eq.(25) to

follow an MA(q) process

µit = φ (L) εit, (26)

where φ (L) = 1 + φ1L+ . . .+ φqL
q is a lag polynomial of order q and εit is an idiosyncratic error term

satisfying the following error condition.

Assumption A1 (Error condition)

(a) E (εit) = 0 for all i and t;

(b) E (εitεjs) = 0 for either i 6= j, or t 6= s, or both;

(c) E (εitαj) = 0 for all i, j and t.
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A1(a) and A1(b) state that εit is a mean zero error process which is mutually uncorrelated over time

and over cross sections. A1(c) states that the individual effects are exogenous.

With respect to the explanatory variables we make the following assumptions.

Assumption A2 (Explanatory variables)

(a) E (x1jtεis) = 0 for all i, j, t and s ≥ t;

(b) E (x2jtεis) = 0 for all i, j, t and s > t;

(c) E (αixit) = unknown for all i and t.

A2(a) states that the variables in x1it are predetermined while A2(b) allows the variables in x2it to

be endogenous. A2(c) allows the explanatory variables to be correlated with αi.

In the remainder of this section we outline our approach to estimate the panel model in equations

(25)-(26) under A1 and A2. We start by arguing that, given the moderately large T dimension of our

panel dataset (see section 4), the WG transformation is valid to eliminate the individual effects αi. Next,

we set up a GMM version of the standard WG estimators to take into account the possible MA(q)

structure of µit and the endogeneity of x2it.

3.1.1 WG estimator

The standard within-groups (WG) estimator eliminates the individual effects αi by transforming the

model in (25) into deviations from individual means

ỹit = ρỹi,t−1 + β′x̃it + µ̃it, (27)

where ỹit = yit − yi with yi = T−1
∑T

t=1 yit and similarly for the other variables.

Even when abstracting from the MA(q) structure of µit and from the endogeneity of x2it, the least

squares (LS) estimation of equation (27) yields inconsistent estimates for N → ∞ as the within trans-

formed lagged dependent variable ỹi,t−1 is correlated with the within transformed error term µ̃it. However,

this dynamic panel data bias disappears for T → ∞ (see e.g. Nickell, 1981) as plim
T→∞

µit = 0 such that

µ̃it
p−→ µit. More specifically, the Monte Carlo experiments in Judson and Owen (1999) show that the bias

sharply decays when the time horizon exceeds 20 periods, with the bias being negligible when T is 30.

Given that our dataset covers the period 1972-2007, we therefore use the WG instead of the first-difference

transformation to eliminate the individual effects as first-difference and even system GMM estimators

have a relatively large standard error (see e.g. Arellano and Bond, 1991; Kiviet, 1995) and may suffer

from a serious weak instruments problem (see e.g. Blundell and Bond, 1998; Bun and Windmeijer, 2007).
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3.1.2 WG-GMM estimator

Even as T → ∞, the WG estimator is inconsistent, though, as A2 states that the variables in x2it are

endogenous while the MA(q) structure of µit in equation (26) implies that the predetermined variables

in x1it are also correlated with µit. Therefore, we estimate (27) using IV methods. More specifically,

provided T is sufficiently large, such that µ̃it
p−→ µit, valid WG orthogonality conditions8 are

E (ỹi,t−lµ̃it) = 0 for each t = l + 1, . . . , T and l ≥ q + 1, (28a)

E (x̃1i,t−lµ̃it) = 0 for each t = l + 1, . . . , T and l ≥ q, (28b)

E (x̃2i,t−lµ̃it) = 0 for each t = l + 1, . . . , T and l ≥ q + 1. (28c)

Note that the number of moment conditions suggested in (28a)-(28c) increases dramatically in T

as they are valid for each t and l. For the moderately large T panel we have in mind, this results in

a problem of too many instruments. This instrument proliferation may cause small sample problems

like (i) coefficient estimates that are biased towards those of non-instrumenting estimators because of

overfitting of the endogenous variables, (ii) imprecise estimates of the optimal weighting matrix, (iii) a

downward bias of the two-step standard errors and (iv) a weak Hansen test on instrument validity (see

among others Tauchen, 1986; Ziliak, 1997; Roodman, 2009). Therefore we reduce the instrument count

using two techniques described in Roodman (2009) and applied by, among others, Pozzi and Malengier

(2007). First, we do not exploit all the available linear orthogonality conditions but truncate the set of

available instruments at the first L available lags rather than using all available lags. This results in the

following reduced set of moment conditions

E (ỹi,t−lµ̃it) = 0 for each q + 1 ≤ l ≤ L+ q, (29a)

E (x̃1i,t−lµ̃it) = 0 for each q ≤ l ≤ L+ q − 1, (29b)

E (x̃2i,t−lµ̃it) = 0 for each q + 1 ≤ l ≤ L+ q. (29c)

Second, we further limit the number of moment conditions by taking linear combinations. More specif-

ically, we combine all moment conditions for a given instrument lag distance by summing them over T .

This new set of moment conditions embodies the same belief about orthogonality of the instruments and

the errors but differs in that we ask the GMM estimator to minimize the magnitude of the empirical

moments
∑

i

∑
t yi,t−lµit for each l rather that

∑
i yi,t−lµit for each t and l separately. As such, each

lag distance produces a single instrument for each variable. As in Holtz-Eakin et al. (1988) we avoid the

8See for instance Meghir and Pistaferri (2004) for an application of the WG-GMM estimator
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trade-off between instrument lag depth and sample depth by zeroing out missing observations of lags.

3.2 Model with cross-sectional dependence

Following the recent panel literature, we extend the error process in equation (26) to allow for a multi-

factor structure

µit = γ′ift + φ (L) εit, (30)

in which ft is an m× 1 vector of unobserved common variables and εit satisfies A1. This error structure

is quite general as it allows for an unknown (but fixed) number of unobserved common components with

heterogeneous factor loadings (heterogeneous cross-sectional dependence). As such, it nests common time

effects or time dummies (homogeneous cross-sectional dependence) as a special case.

Assumption A3 (Cross-sectional dependence)

(a) The unobserved factors ft can follow general covariance stationary processes;

(b) E (ftεis) = 0 for all i, t and s;

(c) E (ftxis) = unknown for all i, t and s.

A3 states that the unobserved factors in ft are exogenous but is quite general as it allows ft to exhibit

rich dynamics and to be correlated with xit. As A1 states that εit is uncorrelated over cross sections,

any dependence across countries is restricted to the common factors.

The most obvious implication of ignoring error cross-sectional dependence is that it increases the

variation of standard panel data estimators. Phillips and Sul (2003) for instance show that if there is

high cross-sectional correlation there may not be much to gain from pooling the data. However, cross-

sectional dependence can also introduce a bias and even result in inconsistent estimates. For a static

panel data model, the Monte Carlo simulations in Pesaran (2006) reveal that the WG estimator ignoring

the error component structure proposed in (30) is seriously biased. Essentially, as the unobserved factors

are allowed to be correlated with the explanatory variables (see A3), this is an omitted variables bias

which does not disappear as T → ∞, N → ∞ or both. So the naive WG estimator is biased and even

inconsistent in this case. Second, Phillips and Sul (2007) show that in a dynamic panel data model,

cross-sectional dependence introduces additional small sample bias.
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3.2.1 CCEP estimator

Pesaran (2006) proposes to eliminate the error cross-sectional dependence by projecting out the factors

ft using the cross-sectional averages of yit, yi,t−1 and xit. For a model with a single factor9, inserting

(30) in (25) and taking cross-sectional averages yields

yt = α+ ρyt−1 + β′xt + γft + φ (L) εt, (31)

where yt = N−1
∑N

i=1 yit and similarly for the other variables. Solving (31) for ft

ft =
1
γ

(
yt − α− ρyt−1 − β′xt − φ (L) εt

)
, (32)

and inserting (32) in (25) with error structure (30) yields

yit = αi + ρyi,t−1 + β′xit +
γi

γ

(
yt − α− ρyt−1 − β′xt − φ (L) εt

)
+ φ (L) εit,

= α+
i + ρyi,t−1 + β′xit + c1iyt + c2iyt−1 + c′3ixt + φ (L) ε+it, (33)

with α+
i = αi − γi

γ α, c1i = γi

γ , c2i = −ργi

γ , c3i = −β′ γi

γ , ε+it = εit − γi

γ εt.

The CCEP estimator proposed by Pesaran (2006) is the WG estimator applied to the augmented

regression in (33). As A1 implies that plim
N→∞

εt = 0, the error made when approximating ft by yt, yt−1

and xt in (32) becomes negligible for N → ∞ such that ε+it
p−→ εit in (33). This is the basic result in

Pesaran (2006) that the inclusion of cross-sectional averages asymptotically eliminates the error cross-

sectional dependence induced by the unobserved common factors. As such, for N →∞ (33) is a standard

dynamic panel data model with individual effects and cross-sectional independent error terms. Similarly

to the WG estimator outlined in section 3.1.1, the CCEP estimator therefore exhibits a dynamic panel

data bias for fixed T , which disappears for T →∞. Conditional on xit being predetermined or exogenous

and φ (L) = 1, this implies that consistency of the CCEP estimator in a dynamic panel data model

requires both N and T →∞. However, endogeneity of x2it and MA(q) errors µit imply that the CCEP

estimator is inconsistent even for both N and T →∞. Therefore, we estimate (33) using IV methods in

the next section.

3.2.2 CCEP-GMM estimator

For notational convenience, note that the CCEP estimator can also be obtained as the pooled OLS

estimator after projecting out the individual effects and the cross-sectional means from the model in
9Multiple factors can be treated in the same way (see Phillips and Sul, 2007), and yield the same (unrestricted) model

as the one presented in (33) below, but are not presented here for notational convenience.
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(25), i.e.

y̆it = ρy̆i,t−1 + β′x̆it + µ̆it, (34)

where y̆it is the residual from a country-by-country regression of yit on a constant, yt, yt−1 and xt and

similarly for the other variables. Letting both N and T →∞ we have that µ̆it
p−→ φ (L) εit where N →∞

is required for the elimination of the country-specific effects of the unobserved common factors using the

cross-sectional averages and T →∞ is required to avoid correlation between within transformed variables

and errors10.

Provided both N and T are sufficiently large, such that µ̆it
p−→ φ (L) εit, valid moment conditions are

E (y̆i,t−sµ̆it) = 0 for each q + 1 ≤ s ≤ L+ q, (35a)

E (x̆1i,t−sµ̆it) = 0 for each q ≤ s ≤ L+ q − 1, (35b)

E (x̆2i,t−sµ̆it) = 0 for each q + 1 ≤ s ≤ L+ q. (35c)

where in line with the discussion in section 3.1.2 we only use a reduced set of instruments as we have

truncated the set of available instruments at the first L available lags and combine all moment conditions

for a given instrument lag distance by summing them over T .

3.3 Monte Carlo simulation

This section provides Monte Carlo evidence on the small sample properties of the WG, WG-GMM, CCEP

and CCEP-GMM estimators under both cross-sectional dependence and endogeneity. Although we are

mainly interested in the setting T = 35 and N = 15, we also present results for a range of alternative

sample sizes to illustrate the more general properties of the estimators.

3.3.1 Experimental design

The data generating process is given by

yit = αi + ρyi,t−1 + βxit + µit, µit = γift + εit, (36)

xit = θxi,t−1 + λift + ϕεit + νit, (37)

ft = τft−1 + ηt, (38)

10Note that in (34) the individual effects have been removed using a within transformation as the inclusion of a country
specific constant in the construction of the de-factored variables implies that, as in (27), these variables are all transformed
into deviations from individual means.
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where in each replication αi, εit, νit and ηt are all drawn from i.i.d.N (0, 1).11 The model for the

individual specific regressors in equation (37) is fairly general as they are allowed to be correlated with

the unobserved factors (i.e. λi 6= 0) and to be endogenous (i.e. ϕ 6= 0).

We fix ρ = 0.25, β = 1, θ = 0.5 and τ = 0.512 and conduct three different experiments:

• Experiment 1: no cross-sectional dependence (γi = λi = 0) and no endogeneity (ϕ = 0)

• Experiment 2: cross-sectional dependence (γi ∼ i.i.d.U (1, 4) and λi ∼ i.i.d.U (1, 4)) and no endo-

geneity (ϕ = 0)

• Experiment 3: cross-sectional dependence (γi ∼ i.i.d.U (1, 4) and λi ∼ i.i.d.U (1, 4)) and endogene-

ity (ϕ = 0.5)

The initial value of yit is set equal to zero and the first 50 observations are discarded before choosing

our sample. Each experiment was replicated 2000 times for the (T,N) pairs with T = 20, 35, 50 and

N = 15, 50. The GMM estimators are one-step estimators using yi,t−1 and xi,t−1 as instruments.

3.3.2 Results

Table B-1 in Appendix B reports mean bias (bias), estimated standard deviation (stde), standard de-

viation (stdv) and root mean squared error (rmse) in estimating ρ and β. The first experiment is a

standard dynamic panel data model with no cross-sectional dependence and no endogeneity. In line with

the results in Judson and Owen (1999), the bias of the WG estimator is negligibly small for T = 35.

The CCEP only has a slightly higher bias and dispersion. As can be expected, the GMM estimators are

relatively more biased and have a larger dispersion but are consistent for T →∞. The second experiment

adds cross-sectional dependence, with the unobserved factor being correlated with xit. Both the WG and

the WG-GMM estimator now exhibit a considerable omitted variable bias which does not disappear as

T → ∞, N → ∞ or both. Moreover the stde considerably underestimates the true stdv. The CCEP

estimator is now preferred with the bias being negligibly small for T = 35. Again, the CCEP-GMM

estimator is relatively more biased and has a larger dispersion for small values of T but is consistent for

T → ∞. Estimated standard deviations are fairly accurate for both estimators. The third experiment

adds endogeneity. This implies that also the CCEP is inconsistent. The CCEP-GMM estimator is bi-

ased for small values of T but this bias disappears as T → ∞. Estimated standard deviations are fairly

accurate for moderate values of T . Important to note is that, over the 3 experiments, the bias of the
11Note that it is not necessary to control the relative impact of the two error components αi and µit, as in Sarafidis and

Robertson (2009), since the considered estimators are all of the WG type such that they are invariant to the ratio σ2
α

‹
σ2

µ .
12Results for alternative parameter values are available from the authors on request.
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CCEP-type estimators is highly similar for N = 15 and N = 50. This suggests that a relatively low

cross-sectional dimension (N = 15) is not really a source of concern.

To summarize, in a dynamic panel data model with both endogeneity and error cross-sectional de-

pendence the CCEP-GMM is the preferred estimator, both in terms of bias of the coefficients and of

the estimated standard deviations. Especially when compared to the alternative estimators, it performs

reasonably well for the modest sample size T = 35, N = 15 that is available for the empirical analysis

presented in section 4.

4 Empirical results

Table 2 reports the results from estimating eq.(25) using aggregate yearly data from 15 OECD countries

over the period 1972-2007 with the WG, WG-GMM, CCEP, and CCEP-GMM estimators discussed in

section 3. The data are described in Appendix C. The CCEP-GMM estimator is our preferred estimator

since it corrects for both endogeneity and cross-sectional dependence among the countries in the panel.

The latter correction is necessary because (i) table 1 shows that all variables exhibit moderate to strong

correlation over countries and (ii) the CD tests for cross-sectional independence reported in table 2 point

toward cross-sectional dependence in the errors of the WG-type estimators. Further, as discussed in our

Monte Carlo simulations in section 3.3, CCEP-GMM performs reasonably well in samples of modest size.

Table 1: Diagnostic tests for cross-sectional independence

Sample period: 1972-2007, 15 countries

∆ lnCit ∆ lnHit ∆ lnGit Rit (Yi,t−1 /Ci,t−1 ) (Yi,t−1 /Ci,t−1 )2 ∆ lnYit

ρ̂ 0.274 0.251 0.278 0.678 0.620 0.618 0.288

Note: The average cross correlation coefficient bρ = (2 /N (N − 1) )
PN−1

i=1

PN
j=i+1 bρij is the simple average

of the pair-wise cross correlation coefficients bρij .

The instrument sets used for the GMM estimators are determined by setting q = 1 and L = 3.

From the Sargan/Hansen overidentifying restrictions test S1 reported in table 2 we note that the implied

moment conditions are not rejected by the data. This contrasts with the case q = 0 and L = 4 for which

the moment conditions are rejected by the Sargan/Hansen test S0. These results suggest that there

might be serial correlation of order 1 in the error term. This is confirmed by the Difference-in-Sargan

test ∆S1 which rejects the null of no serial correlation of order 1 for all estimators. When we look at the

Difference-in-Sargan test ∆S2 which tests the null of no serial correlation of order 2 we find that the null

is still rejected at conventional levels of significance for the WG-GMM estimators. It is not rejected for

the CCEP-GMM estimator however. This further contributes to its status as our preferred estimator.

From table 2 we first note that the coefficient on lagged aggregate consumption growth is positive
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Table 2: Alternative panel data estimation results using labour income

Dependent variable: ∆ lnCit Sample period: 1972-2007, 15 countries

WG WG-GMM CCEP CCEP-GMM

one-step two-step one-step two-step
Coefficient estimates (q = 1, L = 3)
∆ lnCi,t−1 0.00 0.14 0.10 0.05 −0.17 −0.21∗

(0.04) (0.17) (0.15) (0.05) (0.13) (0.12)
∆ lnHit 0.04 0.59∗∗∗ 0.61∗∗∗ 0.04 0.52∗∗∗ 0.49∗∗∗

(0.04) (0.15) (0.14) (0.04) (0.14) (0.13)
∆ lnGit 0.33∗∗∗ 0.28 0.29∗ 0.30∗∗∗ 0.17 0.21

(0.03) (0.17) (0.16) (0.04) (0.16) (0.15)
Rit 0.01 0.05 0.08∗ −0.01 −0.15 −0.22

(0.03) (0.04) (0.04) (0.03) (0.21) (0.19)
(Yi,t−1 /Ci,t−1 ) 0.18 0.08 0.10 −0.10 −2.09∗ −2.66∗∗

(0.16) (0.19) (0.19) (0.46) (1.08) (1.05)
(Yi,t−1 /Ci,t−1 )2 −0.05 −0.02 −0.02 0.22 1.39∗∗ 1.74∗∗∗

(0.08) (0.10) (0.09) (0.24) (0.61) (0.59)
∆ lnYit 0.03 0.17 0.16 0.05 0.52∗∗∗ 0.72∗∗∗

(0.02) (0.27) (0.23) (0.04) (0.18) (0.16)
∆ lnYi,t−1 0.50∗∗∗ −0.31∗∗ −0.28∗∗ 0.47∗∗∗ 0.13 0.16

(0.04) (0.15) (0.14) (0.04) (0.12) (0.11)
Residual cross-sectional independence tests
ρ̂ 0.18 0.10 0.10 −0.06 −0.05 −0.03
CD 10.93 6.16 5.98 −3.38 −2.87 −1.52

[0.00] [0.00] [0.00] [0.00] [0.00] [0.13]
Overidentifying restrictions tests
Sargan/Hansen
S0 (q = 0, L = 4, df = 21) 45.54 36.73 35.09 32.75

[0.00] [0.02] [0.03] [0.05]
S1 (q = 1, L = 3, df = 14) 20.18 17.59 18.68 19.42

[0.12] [0.23] [0.18] [0.15]
S2 (q = 2, L = 2, df = 7) 2.22 1.89 12.09 10.49

[0.95] [0.97] [0.10] [0.16]
Difference-in-Sargan
∆S1 = S0 − S1 (df = 7) 25.36 19.14 16.41 13.33

[0.00] [0.01] [0.02] [0.06]
∆S2 = S1 − S2 (df = 7) 17.96 15.7 6.59 8.93

[0.01] [0.03] [0.47] [0.26]

Notes: Standard errors are in parentheses, p-values are in square brackets. One-step GMM uses the ‘two stage
least squares’ suboptimal choice of weighting matrix while two-step GMM uses a consistent estimate for the optimal
weighting matrix constructed from a Newey-West type of estimator allowing for general cross-section and time
series heteroscedasticity and MA(1) errors. Both one-step and two-step GMM standard errors are robust to general
cross-section and time series heteroscedasticity and to MA(1) errors. *, ** and *** indicate significance at the 10%,
5% and 1% level respectively.

The average cross correlation coefficient bρ is defined in Table 1. CD is the Pesaran (2004) test defined asp
2T /N (N − 1)

PN−1
i=1

PN
j=i+1 bρij , which is asymptotically normal under the null of cross-sectional independence.

The Sargan/Hansen test of overidentifying restrictions is χ2 distributed under to null of joint validity of all moment
conditions defined in equations (29) or (35) for given choice of q and L. The difference-in-Sargan test is χ2 distributed
under to null of joint validity of a subset of moment conditions, i.e. ∆S1 under the null of no first order serial
correlation in the error terms and ∆S2 under the null of no second order serial correlation in the error terms.

only if we do not model cross-sectional dependence (WG-type estimators) or do not use instruments

(CCEP estimator). When we model cross-sectional dependence and correct for endogeneity we find that
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the coefficient on lagged aggregate consumption growth turns negative, albeit it is either insignificant or

its significance is quite low. This result is in accordance with Kiley (2007) who finds generally negative

and insignificant estimates for the habit formation parameter. This result differs from the conclusions

reported by Carroll et al. (2008) who generally find positive and significant values for this parameter.

We further find that the impact of aggregate disposable income growth on aggregate consumption

growth is positive and strongly significant for the WG estimator and for the CCEP and CCEP-GMM esti-

mators. Estimated with our preferred CCEP-GMM estimator, the magnitude of the estimated coefficient

on disposable income growth is 0.52 for the one-step CCEP-GMM estimator and 0.72 for the two-step

CCEP-GMM estimator. The former estimate is in accordance with the magnitude of the estimates found

for this coefficient in other studies (see e.g. Campbell and Mankiw, 1989, 1990, 1991).

Contrary to Carroll et al. (2008) our results thus favour the Campbell and Mankiw model over the

model with habit formation. One reason may be that our specification is more elaborate since we include

other variables like the growth rate in hours worked which is not included in Carroll et al.13. In particular,

we find that this variable is positive and highly significant across all GMM estimators. In fact, the growth

rate in hours worked turns out to be the most robust explanatory variable for aggregate consumption

growth. This provides support for the analysis of Basu and Kimball (2002) who argue in favour of

complementarity between consumption and labour in the US. Kiley (2007) finds, also for the US, that

hours worked explain aggregate consumption growth better than either lagged consumption growth or

disposable income growth. Hence our analysis seems to confirm this complementarity hypothesis between

consumption and labour in a panel of OECD countries.

We then look at potential intertemporal substitution effects, i.e. the effects of the real interest rate

on aggregate consumption growth. Our results are fully in line with the literature in the sense that the

real interest rate has an insignificant impact on aggregate consumption growth in almost all cases (see

e.g. Campbell and Mankiw, 1990). The exception is the result obtained with the two-step WG-GMM

estimator where the impact of the real interest rate is positive and significant. While this seems to suggest

that there are intertemporal substitution effects of modest magnitude in our sample, we do not favour

these results. The reason is that the WG-GMM estimator does not take into account cross-sectional

dependence in the panel. When estimating the effect of the real interest rate on aggregate consumption

growth with the CCEP-GMM estimator instead we find no evidence of intertemporal substitution effects.

The impact of government consumption growth on private consumption growth is less clear-cut. We
13Another reason may be that we use aggregate total consumption instead of consumption of non-durables and services

(which Carroll et al. use for about half their countries). Durable components in our consumption measure may bias our
habit parameter estimate downward since durable consumption growth is somewhat negatively autocorrelated (see Mankiw,
1982). Kiley (2007) reports negative and insignificant estimates for the habit parameter both when total consumption and
non-durable consumption and services are used to measure consumption. In the latter case the estimates are less negative
however.
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find that the estimates of this impact are positive and significant when estimated using WG or CCEP but

insignificant when estimated with the GMM estimators. The only exception is again the result obtained

with the two-step WG-GMM estimator. Hence, we don’t find strong support for the complementarity

between private and public consumption as reported for instance by Evans and Karras (1998).

Evidence of precautionary savings effects on aggregate consumption growth can be obtained by looking

at the estimate for the coefficient on the squared income to consumption ratio. We find that this coefficient

is insignificant for all estimators but the CCEP-GMM estimator. When using our preferred estimator

this coefficient has the expected positive sign and is highly significant. The CCEP-GMM estimator thus

facilitates the detection of significant precautionary effects at the aggregate level in a panel of OECD

countries. This result adds to the literature that finds evidence that precautionary savings matter for

aggregate consumption growth (see e.g. Parker and Preston, 2005).

To summarize, our newly introduced CCEP-GMM estimator - which corrects for endogeneity and error

cross-sectional dependence and is robust to heteroscedasticity and MA(1) serial correlation - indicates

that aggregate consumption growth depends positively on aggregate hours worked (hence supporting the

labour-consumption complementarity hypothesis), depends positively on aggregate disposable income

growth (hence supporting the rule-of-thumb consumption model of Campbell and Mankiw), and depends

positively on the squared income to consumption ratio (hence supporting the notion that precautionary

savings matter for the aggregate economy).

5 Conclusions

This paper examines the sources of stickiness in aggregate private consumption growth. We first derive a

dynamic consumption equation which nests recent developments in consumption theory: rule-of-thumb

consumption, habit formation, non-separabilities between both private consumption and hours worked

and private consumption and government consumption, intertemporal substitution effects and precau-

tionary savings. Next, we estimate this dynamic consumption equation for a panel of 15 OECD countries

over the period 1972-2007. We follow recent developments in panel data econometrics by allowing for

unobserved common factors which have heterogeneous impacts on the countries in the panel. We develop

a CCEP-GMM estimator by combining the CCEP estimator advanced by Pesaran (2006) to account for

error cross-sectional dependence and the GMM estimator to account for endogeneity of the regressors.

We show that the moment conditions imposed by this CCEP-GMM estimator are valid as N,T → ∞

jointly. A Monte Carlo experiment shows that the CCEP-GMM estimator performs reasonably well even

for the modest sample size T = 35, N = 15 that is available for our empirical analysis. In our dynamic
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panel data setting with both endogeneity and error cross-sectional dependence, it is preferred over stan-

dard WG, WG-GMM and CCEP estimators both in terms of bias of the coefficients and in terms of the

estimated standard deviations.

Taking into account endogeneity and cross-sectional dependence proves to be important as it has

a marked effect on our estimation results. These suggest that the growth rate in aggregate private

consumption depends positively on aggregate hours worked. This supports the labour-consumption com-

plementarity hypothesis of Basu and Kimball (2002). It also depends positively on aggregate disposable

income growth. This supports the rule-of-thumb consumption model of Campbell and Mankiw (1989,

1990, 1991). Finally it depends positively on the squared income to consumption ratio. This supports

the notion that precautionary savings matter for aggregate consumption growth (see Parker and Preston,

2005). We find little or no support for habit formation, non-separabilities between private consump-

tion and government consumption and intertemporal substitution effects as lagged consumption growth,

government consumption and the real interest rate are generally found to be insignificant.
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Appendix A Derivations

A.1 Approximating Et−1εt and Vt−1εt

First, a second order Taylor expansion of a function f(x) around x = x0 is given by f(x) = f(x0) +

f ′(x0)(x − x0) + 1
2f
′′(x0)(x − x0)2. Now for f(x) = εt = exp(ln εt) , x = ln εt, and x0 = Et−1 ln εt = 0

we find that εt = 1 + ln εt + 1
2 (ln εt)2 so that, with the use of eqs. (3) and (4), we can write Et−1εt =

1 + 1
2σ

2
ln ε = z (with z > 1).

Second, note that Vt−1εt = Et−1ε
2
t − z2. Now for f(x) = ε2t = exp(2 ln εt), x = ln εt, and x0 =

Et−1 ln εt = 0 we can use a second order Taylor expansion of f(x) around x = x0 to calculate ε2t =

1 + 2 ln(εt) + 2(ln εt)2 so that Et−1ε
2
t = 1 + 2σ2

ln ε. Now we have Vt−1εt = Et−1ε
2
t − z2 = (1 + 2σ2

ln ε) −

(1 + σ2
ln ε + 1

4 (σ2
ln ε)

2) = σ2
ln ε − 1

4 (σ2
ln ε)

2 ≈ σ2
ln ε.

A.2 Approximating the function f(wt, ln ht, ln Gt) around certainty

A second order Taylor expansion of a function f(x, y, z) around x = x0, y = y0, and z = z0 is given by

f(x, y, z) = f(x0, y0, z0)+
∑

i
∂f
∂i (x0, y0, z0)(i−i0)+ 1

2

∑
i

∑
j

∂2f
∂i∂j (x0, y0, z0)(i−i0)(j−j0) for i = x, y, z and

j = x, y, z. With this formula we approximate f(wt, lnht, lnGt) = (αwt)−θeγ ln hteπ ln Gtaround wt = wt,

around lnht = lnht (where lnht = Et−1 lnht), and around lnGt = lnGt (where lnGt = Et−1 lnGt) by

calculating the necessary derivatives.

A.3 Calculating aggregate consumption growth ∆ ln(Ct)

Define total consumption in the economy Ct as

Ct = C1,t + C2,t. (A-1)

Following Campbell and Mankiw (1990) we assume that the labour income of type 2 consumers Y2,t is a

fixed fraction (1− λ) of total income Yt where 0 < λ ≤ 1. Hence Y2,t = (1− λ)Yt. Since Yt = Y1,t + Y2,t

this implies Y1,t = λYt. Since C2,t = Y2,t this gives,

C2,t = (1− λ)Yt.

Eq.(A-1) is now given by

Ct = C1,t + (1− λ)Yt. (A-2)
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We now take the log of Ct. Following Campbell and Mankiw (1990, p.268) we approximate the log of an

average by an average of logs ln(ax+ bz) ' a ln(x) + b ln(z) so that from eq.(A-2) we have

ln(Ct) ' ln(C1,t) + (1− λ) ln(Yt). (A-3)

In first differences this gives eq.(18) in the main text.

A.4 Replacing the ratios Y1,t/C
1
t and (Y1,t/C1,t)

2

We replace Y1,t/C1,t and (Y1,t/C1,t)2 in eq.(16) with their observable counterparts Yt/Ct and (Yt/Ct)2.

First, note that C1,t = Ct − (1− λ)Yt and Y1,t = λYt. Hence, C1,t/Y1,t = (1/λ)(Ct/Yt)− (1− λ)/λ =

a+ b(Ct/Yt) where b = 1/λ > 0 and a = −(1− λ)/λ < 0. We have a+ b = 1. Now from this we want an

expression for Y1,t/C1,t. Note that we can write Y1,t/C1,t = (a+ b(Ct/Yt))−1. We write this expression

as f(z) = (a + bz−1)−1 where f(z) = Y1,t

C1,t
, and where z = Yt

Ct
. We then linearize this expression with a

first-order Taylor expansion of f(z) around z = 1. This gives f(z) ' (a+b)−1−b(a+b)−2+b(a+b)−2z or

f(z) ' (1−b)+bz since a+b = 1. Hence we find (Y1,t/C1,t) = (1−b)+b(Yt/Ct) = 1−λ−1 +λ−1(Yt/Ct).

Substituting Y1,t/C1,t (lagged once) into eq.(16) gives an expression for aggregate consumption growth

in terms of the observable Yt/Ct.

Second, note that (C1,t)2 = (Ct−(1−λ)Y )2 = C2
t +(1−λ)2Y 2

t −2(1−λ)CtYt and that (Y1,t)2 = λ2Y 2
t .

Hence, (C1,t/Y1,t)2 = (1/λ2)(Ct/Yt)2 − (2(1 − λ)/λ2)(Ct/Yt) + (1 − λ)2/λ2 = a + b(Ct/Yt) + c(Ct/Yt)2

where a = (1 − λ)2/λ2 > 0, b = −(2(1 − λ)/λ2) < 0, c = 1/λ2 > 0. We have a + b + c = 1. Now

from this we want an expression for (Y1,t/C1,t)2. Note that we can write (Y1,t/C1,t)2 = (a+ b(Ct/Yt) +

c(Ct/Yt)2)−1. We write this expression as f(z) = (a + bz−0.5 + cz−1)−1 where f(z) = (Y1,t/C1,t)2, and

where z = (Yt/Ct)
2. We then take a first-order Taylor expansion of f(z) around z = 1. This gives

f(z) ' (a+ b+ c)−1− (b/2 + c)(a+ b+ c)−2 + (b/2 + c)(a+ b+ c)−2z or f(z) ' 1− (b/2 + c) + (b/2 + c)z

since a+b+c = 1. Hence we find (Y1,t/C1,t)2 = 1−(b/2+c)+(b/2+c) (Yt/Ct)
2 = 1−λ−1 +λ−1 (Yt/Ct)

2

where the latter equality follows from b/2 + c = λ−1. Substituting (Y1,t/C1,t)2 (lagged once) into eq.(16)

gives an expression for aggregate consumption growth in terms of the observable (Yt/Ct)2.

A.5 Proof of limλ→0 ∆ ln Ct = ∆ ln Yt in eq.(24)

We first take the limits of eqs.(21) and (22),

lim
λ→0

(Y1,t−1/C1,t−1) = lim
λ→0

λ− 1 + (Yt−1/Ct−1)
λ

=
0
0
, (A-4)

lim
λ→0

(Y1,t−1/C1,t−1)2 = lim
λ→0

λ− 1 + (Yt−1/Ct−1)2

λ
=

0
0
, (A-5)
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where in the last step we use limλ→0 (Yt−1/Ct−1) = 1 and limλ→0(Yt−1/Ct−1)2 = 1 as when all income

is earned by consumers of type 2 then total consumption in the economy equals total income. With the

use of l’Hopital rule we obtain

lim
λ→0

(Y1,t−1/C1,t−1) = lim
λ→0

d(λ−1+(Yt−1/Ct−1))
dλ
dλ
dλ

= lim
λ→0

1 + d(Yt−1/Ct−1)
dλ

1
= 1, (A-6)

lim
λ→0

(Y1,t−1/C1,t−1)2 = lim
λ→0

d(λ−1+(Yt−1/Ct−1)
2)

dλ
dλ
dλ

= lim
λ→0

1 + d((Yt−1/Ct−1)
2)

dλ

1
= 1, (A-7)

where in the last step we use limλ→0
d(Yt−1/Ct−1)

dλ = 0 and limλ→0
d((Yt−1/Ct−1)

2)
dλ = 0 as the derivatives

of the ratios (Yt−1/Ct−1) and (Yt−1/Ct−1)2 approach zero because when λ → 0 the ratios (Yt−1/Ct−1)

and (Yt−1/Ct−1)2 approach the constant 1.

We now take the limit of eq.(16) while using eqs.(A-6) and (A-7),

lim
λ→0

∆ lnC1,t =

 (
k0−δ

θ

)
+ β(θ−1)

θ limλ→0 ∆ lnC1,t−1 + γ
θ limλ→0 ∆ lnH1,t

+π
θ ∆ lnGt + 1

θRt + k1
θ + k2

θ + limλ→0 Ψt

 . (A-8)

When λ→ 0, type 1 consumers have no income hence they do not work hours and they do not consume,

i.e limλ→0 ∆ lnC1,t = 0, limλ→0 ∆ lnC1,t−1 = 0, and limλ→0 ∆ lnH1,t = 0. Substituting these results

into eq.(A-8) gives (
k0 − δ
θ

)
+
k1

θ
+
k2

θ
+
π

θ
∆ lnGt +

1
θ
Rt + lim

λ→0
Ψt = 0. (A-9)

Note that we can write eq.(24) as,

∆ lnCt =
(
k0 − δ
θ

)
+
k1

θ

(
Y1,t−1

C1,t−1

)
+
k2

θ

(
Y1,t−1

C1,t−1

)2

+
π

θ
∆ lnGt +

1
θ
Rt + Ψt (A-10)

+
β(θ − 1)

θ
∆ lnCt−1 +

γ

θ
∆ lnH1,t + (1− λ)∆ lnYt − (1− λ)

(
β(θ − 1)

θ

)
∆ lnYt−1.

Taking the limit of eq.(A-10) while using the result limλ→0 ∆ lnH1,t = 0 as well as eqs.(A-6), (A-7)

and (A-9) gives

lim
λ→0

∆ lnCt −
β(θ − 1)

θ
lim
λ→0

∆ lnCt−1 = lim
λ→0

∆ lnYt −
(
β(θ − 1)

θ

)
lim
λ→0

∆ lnYt−1. (A-11)

The last equality can only hold if ∆ lnCt = ∆ lnYt and if ∆ lnCt−1 = ∆ lnYt−1.
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Appendix C Data

Data are annual. All data are taken from OECD Economic Outlook (different years) except population

data which are taken from OECD National Accounts Volume II Population and Employment (2009) and

hours worked data which are taken from the Conference Board and Groningen Growth and Development

Centre (2009). Data availability determines the sample period which is 1972-2007. The sample contains

15 countries: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan,

the Netherlands, Spain, Sweden, the United Kingdom, and the United States. To calculate aggregate

private consumption (C) we deflate private final consumption expenditures by the consumer price index.14

To calculate the real interest rate (R) we subtract from the short-term nominal interest rate15 the

inflation rate which is calculated as the growth rate of the consumer price index. To calculate government

consumption (G) we deflate government final consumption expenditures by the consumer price index.

For aggregate hours worked (H) we use the series total hours worked as reported by the Conference

Board. To calculate aggregate disposable labour income (Y ) we first add the following three components.

The first component is compensation of employees (a) which contains wages of the private sector as

well as government wages and the social security contributions paid by private employers. The second

component is the labour income of the self-employed (b) which we calculate as in Fiorito and Padrini

(2001) by multiplying wages and salaries by the ratio of the number of self-employed to total employees.

The third component is net social security transfers paid by the government (c), i.e. social security

transfers paid by the government minus social security contributions received by the government. From

(a)+(b)+(c) we then subtract taxes. To calculate taxes we follow Carey and Rabesona (2004) and make

a distinction between countries where households cannot deduce their social security contributions from

their tax base (Australia, Canada, United Kingdom, United States) and countries where households can

deduce their social security contributions (all other countries). For the first group of countries the tax

rate (d1) can be calculated as direct taxes on households divided by the sum of wages and salaries,

property income received by households and total income of the self-employed. For the first group of

countries the tax base (e1) is the sum of wages and salaries and labour income of the self-employed. Total

14For a few countries we use the deflator of private final consumption expenditures instead.
15For most countries we use the treasury bill rate. In some instances we use the money market rate or the discount rate.
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taxes for the first group then equal (d1) x (e1). For the second group of countries the tax rate (d2) can

be calculated as direct taxes on households divided by compensation of employees plus property income

received by households plus total income of the self-employed minus social security contributions received

by the government. For the second group of countries the tax base (e2) is compensation of employees

plus labour income of the self-employed minus social security contributions received by the government.

Total taxes for the second group then equal (d2) x (e2). Aggregate disposable labour income (Y ) for the

first group then equals (a)+(b)+(c)-(d1) x (e1) deflated by the consumer price index. For the second

group it equals (a)+(b)+(c)-(d2) x (e2) deflated by the consumer price index. The variables C, G, H

and Y are all divided by population to obtain per capita figures.
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