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Bauke Visser�
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Abstract

This paper analyses the relationship between organizational complexity (the de-

gree of detail of information necessary to correctly assign agents to positions),

robustness (the relative loss of performance due to mis{allocated agents), and

performance. More complex structures are not necessarily more pro�table, but

are less robust. One of the least complex structures always performs worst. Su-

perior organizational performance may vanish completely due to mis{allocated

agents. Organizational performance can be enhanced through training agents;
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re{assigning them when adequate knowledge about their characteristics is ob-

tained through monitoring; simplifying the organizational structure; and in
u-

encing the environment. The trade{o�s involved are analysed.

1 Introduction

The notion of complexity �gures prominently in the literature on organizational de-

sign. A structure is called complex if it is made up of a large number of divisions

or hierarchical layers or if it contains many interdependent parts the individual func-

tioning of which is of importance to the overall performance of the organization. The

more complex an organization the heavier the demands on its information processing

capacities.1

If the superiority of the information processing capacity of the overall organization

is predicated on judiciously positioned employees within the organization, the knowl-

edge requirements the organizational designer faces may well be challenging. The job of

designing and implementing the optimal complex organization may grow too diÆcult,

impractical, and too time consuming to be considered seriously. In fact, if informa-

tion about relevant characteristics of the employees is missing or partial, simplicity

and ease of optimization may outweigh the superiority of optimally structured, but

more complex organizations. The balance may shift still further in favour of simple

organizations, if the performance of complex organizations is very sensitive to small

1See for example Galbraith (1973, 1977), Huber and Daft (1987), Jablin (1987), Lawrence and

Lorsch (1967), Scott (1998), and Thompson (1967).
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deviations from whatever it takes to make them operate correctly.

Secondly, an important question is whether complex organizations are suited for

many types of environments or only for a relatively small set. Are complex organiza-

tions more sensitive to changes in the environment than simple ones, or is the reverse

the case?

Any answer to the above mentioned issues involves an assessment of the robustness

of complex organizations. If complexity stimulates pro�tability but at the cost of

diminishing robustness, organizational designers face an important trade-o�.

This paper looks at the relationship between organizational complexity, robustness,

and performance. It tries to answer the following questions: What does it mean for an

organization to be complex? How can one measure degrees of complexity? How does

one measure robustness? What does it mean for an organization to be less robust than

some other? Are more complex organizations more pro�table but less robust than less

complex ones?

I use a very simple model introduced by Sah and Stiglitz (1985, 1986) to address

these questions. Their model captures an important feature of real world organizations,

project selection, in a simple fashion. Organizations are modelled as sequential deci-

sion structures. Projects, when implemented, can either lead to a pro�t, X or a loss,

�Y . Screening takes place by error{prone agents: some good projects are rejected (R),

while some bad projects are accepted (A).2 In other words, agents are characterized

2Campbell (1958) and authors in the area of small group communication, e.g., Hirokawa and

Scheerhorn (1986) and Gouran and Hirokawa (1986), emphasize the persistence of fallible human

decision making.
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by a pair of probabilities of acceptance (pg; pb), where pg (pb) stands for the probability

of acceptance of good (bad) projects. Sah and Stiglitz limit analysis to a hierarchy H

and a polyarchy P3. In the former structure, if the �rst agent rejects a project it is

rejected by the organization, while if it is accepted it moves on to the next agent. The

decision of the second agent is �nal. In the polyarchy, projects accepted by the �rst

agent are implemented by the organization. Rejected projects are screened once more

before a �nal decision (acceptance or rejection) is taken. Sah and Stiglitz show that

the way in which an organization aggregates individual errors depends critically on the

nature of the sequential screening process. Moreover, which organization is performing

best depends on the type of environment in which it is operating. In `friendly' environ-

ments, i.e, situations in which losses made due to erroneously accepted bad projects

are small relative to the foregone pro�ts stemming from the incorrect rejection of good

projects, a polyarchy performs better than a hierarchy. The opposite holds for `tough'

environments where possible losses are substantial relative to foregone pro�ts. The

intuition is that hierarchies are `tighter' than polyarchies, which is bene�cial in case of

tough environments, but an exaggeration in friendly ones.

I extend their model by introducing heterogeneous agents (some agents accept less

bad projects and more good projects than others) and by studying three more screening

structures, see Figure 1. The nodes stand for organizational departments, bureaus or

3A note on terminology. I use the terms hierarchy and polyarchy to be as explicit as possible on the

relationship between the sequential decision structures I use and the ones used by Sah and Stiglitz.

Casual evidence suggests that decision structures in real world hierarchical organizations can take on

a number of forms, including the ones studied here.
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Figure 1: The �ve organizational structures studied

desks and the directed edges represent the direction in which projects 
ow in the

organizations. The label on an edge starting at a node is associated with the action

taken at that node. A node is indexed by the sequence of actions necessary to reach

the node. For example, in the polyarchy P, Figure 1 (a), the project lands on desk �rr

after a sequence of two rejections. I limit analysis to these �ve structures for various

reasons. First of all, by limiting myself to structures with an equal number of nodes,

and by assuming that agents with the same screening capabilities will be paid the same
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wage irrespective of the organization they work for, I can ignore the total wage bill in

pro�t comparisons. Secondly, as will become clear from this paper, three agents is the

minimal number required to make a discussion of complexity interesting. Thirdly, the

three structures I add have in common with the hierarchy and polyarchy introduced

by Sah and Stiglitz that decisions are taken sequentially, that one person is the �rst

to analyse any project, and that an agent can either reject or accept a project. In

the language of graph theory, analysis is limited to the class of �nite binary directed

rooted trees. I call the polyarchy and hierarchy `pure' structures. Structures PH and

HP are `hybrid' structures, as they combine in some sense characteristics of both pure

structures.

I de�ne the complexity of a structure as the level of detail of information that is

necessary and suÆcient to correctly assign agents to positions in the structure. As I

noted at the beginning of this section, the literature on organizational design views the

complexity of an organization as stemming from the number of elements or subsystems

or the type of linkages between organizational parts. This paper shows that di�erences

in level of detail of information required in the optimisation problem parallel di�erences

in type of structural connections between agents. This de�nition therefore provides a

unequivocal measure of degrees of complexity. It has the added advantage of measuring

the complexity of an organization not by a feature of its source|characteristics of the

organizational structure|but by its e�ect on human cognition. A structure is not

diÆcult, complicated or complex of itself, but in the eye of the designer or observer.

As agents are heterogeneous and as correctly assigning agents to organizational

positions may require information about these agents, it will be useful to introduce a
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measure that gauges the extent to which the optimal performance of an organization

depends on the correctness of the allocation of agents. If the organizational designer is

in possession of limited information only, or is error{prone herself, some notion of orga-

nizational robustness to such limitations is key. The notion of robustness introduced in

this paper measures the maximal extent to which the expected pro�ts on implemented

projects can fall short of the expected pro�ts in the optimal case due to the erroneous

assignment of agents to organizational positions (a worst case scenario). The smaller

the maximal reduction relative to the expected pro�ts in the optimal case, the more

robust the structure will be called.

Turning to the results, I show that the hierarchy H and the polyarchy P are of least

complexity as they do not require any information about the agents to position them

correctly. Note that the probability with which a hierarchy accepts a project is the

product of individual probabilities of acceptance. Clearly, who is �rst, second, or third

is immaterial. The same holds for a polyarchy: observe that rejection by the polyarchy

requires rejection by all members. The hybrid structures HP and PH require ordinal

information and are therefore of intermediate complexity. The agent located at the

�rst node, making as it were a pre{selection, should be the best. Once a project has

passed the �rst desk, it moves on to a structure which is really a two person hierarchy

or polyarchy. Swapping agents at these desks leaves the probability of acceptance

una�ected. Finally, in the omniarchy, cardinal information is required. Whether the

best agent should be located at �a or at �r depends crucially on the characteristics

of all the agents. This structure is therefore the most complex of the �ve structures

studied. As claimed above, di�erences in organizational complexity parallel di�erences
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in structural connections.

I show that an increase in the complexity of an organization does not necessarily

lead to superior performance. First of all, and in line with the �ndings of Sah and

Stiglitz, which structure performs best depends on the type of environment. The pol-

yarchy performs best in friendly environments, the hybrid PH in moderately friendly

environments, the HP in moderately tough environments, and �nally the hierarchy in

tough environments. That hybrid structures perform better for `intermediate' environ-

ments stems from their combining features of both the hierarchy and the polyarchy.

Secondly, the most complex structure, the omniarchy, is never the best organization.

This is quite surprising as an omniarchy in some sense also combines traits of both a hi-

erarchy and a polyarchy. The intuition is that for friendly environments, the polyarchy

P and the PH outperform the omniarchy O as the former organizations accept more

good projects than the latter. Conversely, for relatively unfriendly environments, the

in
uence of the probability of acceptance of bad projects increases, making the hierar-

chy H and the HP more suitable. Even for intermediate environments, the interaction

of the characteristics of the agents and of the environment is such that the omniarchy

is never the best.

Interestingly, it is also shown that for any type of environment, and whatever the

characteristics of the agents, the hybrid structures and the omniarchy are never the

worst. It is always one of the least complex structures, the hierarchy or the polyarchy,

that performs worst (the hierarchy when the environment is friendly; the polyarchy

in case of a hostile environment). The reason is that the hybrid structures and the

omniarchy combine structural features of both a hierarchy and a polyarchy. The former
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structures can therefore improve upon whatever is the worst performing pure structure.

In other words, the hierarchy and the polyarchy are highly geared towards a special

type of environment, and quickly loose their attractiveness in other environments.

Turning to the results on robustness, I show that in virtually all instances the

maximal drop in expected pro�ts ensues from (a) interchanging the optimal position

of the best and the worst agent and (b) agents that are maximally heterogeneous.

This is quite intuitive if one recalls the de�nition of robustness as the maximal drop

in performance due to erroneously assigned agents. Any drop in performance is absent

if all agents are equal, and is likely to be larger (a) the more the precise assignment

a�ects overall performance and (b) the larger the di�erences in individual qualities. As

a consequence, the most complex structure, the omniarchy, is uniformly less robust than

both hybrid structures. That is, for all environments the drop in relative performance

is largest for the omniarchy. That this drop can be substantial is illustrated by a

comparison of the hybrid structure and the omniarchy on the one hand, and the pure

structures on the other. Remember that in the latter structures, no mis{allocation can

occur as the ordering of heterogeneous agents is immaterial. I show that the maximal

reduction in performance is such as to eliminate any advantage the hybrid structures

and the omniarchy have over pure structures.

Which of the hybrid structures is most robust depends on the type of environ-

ment. The PH is more robust in relatively friendly environments, while the HP is less

sensitive to errors when environments are relatively hostile. This is an important obser-

vation as it means that the superior performance of the PH in terms of expected pro�ts

in friendly environments does not come at the cost of relatively low robustness when
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compared to the HP. The same applies for the HP in case of tough environments.

These results suggest a number of means an organizational designer has at her dis-

position when intending to improve the organization's performance: one can improve

the quality of the agents; reduce the gap between information required and information

actually possessed either by monitoring the existing agents or simplifying the organi-

zational structure; and in
uence the environment. These means and the concomitant

trade{o�s are discussed in section 4 in an informal way.

The Sah and Stiglitz model I use in this paper is simple in many respects. It should

be interesting to study the interplay of organizational complexity, robustness, and per-

formance in di�erent decision structures. Possible extensions include the introduction

of authority, departmental specialisation, and incentives. In Visser (2000) I study hier-

archies and polyarchies with agents that are fully rational. Their decision rules re
ect

the position in the organization they occupy and the information revealed by the ac-

tion taken by any preceding agent. In that paper I show that although agents may be

heterogeneous, switching their position in the organization leaves the expected pro�t

una�ected. That is, the result that polyarchies and hierarchies are of least complexity

carries over to a model with fully rational agents.

Although I am not aware of other studies formally analysing the relationship be-

tween robustness, complexity, and performance, two papers are clearly related to the

present study. Ioannides (1987) applies �ndings from information theory to sequential

decision structures to show that one can increase the performance of some organiza-

tions by a special type of replication called composition. Composition means that one

replaces an individual agent by a replica of the entire organization. In this way, one
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can at the same time arbitrarily increase the probability of acceptance of good projects

and, at the same time, reduce the probability of acceptance of bad projects. Such

organizations will be very complex. Within the realm of quali�ed majority decision

rules, Ben{Yashar and Nitzan (2001) study the robustness of optimal decision rules.

Robustness is measured by the maximal change in the total number of agents that does

not alter the optimal quali�ed majority. They establish that, in general, such decision

rules are not very robust. In particular, neither the hierarchy and the polyarchy are

very robust according to this measure.4

In the next section, I introduce the model and the main concepts used. Section 3

presents the main results. The section that follows discusses the e�ectiveness of various

means of improving organizational performance. Section 5 concludes. Proofs can be

found in the Appendix.

2 The Model and Concepts Used

2.1 The Project Environment

There exists a pool of projects of size 1. Projects can be either of good quality, q = g

(which is the case with probability �) or of bad quality, q = b. An implemented, good

project gives rise to a pro�t X, while an implemented, bad project leads to a loss equal

to �Y . It will be useful to summarise the state of the environment by � := 1��
�

Y

X
.

4Note that a hierarchy implements projects with the same probability as a majority voting rule

requiring acceptance by all, whereas polyarchies behave like a voting rule requiring acceptance by just

one agent for a project to be implemented.
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The higher �, the tougher the environment. This means that either possible losses rise

relative to potential pro�ts, or that bad projects become predominant.

2.2 The Agents

There are three agents i 2 f1; 2; 3g. Each agent can either accept, A, or reject, R, a

project. Ideally, one would like the agents to accept all good projects and to reject

all bad projects. Let pb
i
(p

g

i
) stand for the probability with which agent i accepts bad

(good) projects. I assume that every agent is fallible: 0 < pb
i
< 1=2 < p

g

i
< 1. In

words, agents accept bad projects, reject good ones, but do so less frequently than a

randomizing device that accepts one out of two projects. Agent i is more skilled than

j if the former accepts more good projects, p
g

i
> p

g

j
, and less bad projects, pb

i
< pb

j
.

This will be denoted by i � j. I assume that 1 � 2 � 3. The characteristics of the

agents can be denoted by the ordered pair of vectors (pb; pg) = (pb1; p
b

2; p
b

3; p
g

3; p
g

2; p
g

1).

As the characteristics of the agents di�er, it will be useful to introduce a measure

H of heterogeneity of agents. A useful measure is the spread of the probabilities of

acceptance of either good or bad projects:

Hq =

3X
i

 
p
q

i
�

P3

i
p
q

i

3

!2

; q = b; g (1)

This is similar to the variance of a random variable. Note that I measure the het-

erogeneity per type of project separately, without establishing a measure of overall

heterogeneity.
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2.3 Organizations

An organization (�; �) consists of a structure � and an allocation � of agents to

positions in this structure. As explained in the introduction, I limit attention to the

�ve structures, � 2 fH;HP ;O;PH;Pg depicted in Figure 1. A structure �xes the


ow of projects. The nodes in the structure are indexed by the sequence of decisions

necessary to reach the node, e.g., �ar is reached after �rst an acceptance at the root

and a rejection at node �a. For every structure �, an allocation � places agents 1, 2

and 3 at a desk.

An organization (�; �) accepts projects of quality q with probability pq(�; �). The

organizational structure �xes the functional form of p(�; �), the same for both good

and bad projects. Its precise value depends on the allocation �, the characteristics

of the agents, and the type of project q. The functional forms of p(�; �) for � 2

fH;HP;O;PH;Pg are as follows:

p(�) + (1� p(�))[p(�r) + (1� p(�r))p(�rr)] if � = P

p(�) + (1� p(�))p(�r)p(�ra) if � = PH

p(�)p(�a) + (1� p(�))p(�r) if � = O

p(�)[p(�a) + (1� p(�a))p(�ar)] if � = HP

p(�)p(�a)p(�aa) if � = H

(2)

Note that I have dropped the reference q to a type of project as the functional form

does not depend on the type of project.
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2.4 Organizational Performance

The overall goal of the organizational designer is to maximize the expected value of

the implemented projects. This is determined by characteristics of the environment

�, X and Y ; the characteristics of the agents (pb; pg); and by the structure � and the

allocation �. That is, W (�; �; (pb; pg);�;X; Y ) = �Xpg(�; �) � (1 � �)Y pb(�; �). It

will be useful to work with a monotone transformation of W :

V (�; �; (pb; pg); �) = pg(�; �)� �pb(�; �) (3)

An allocation � such that, say, (�(1); �(2); �(3)) = (�a; �; �r) in the omniarchy leads

to a pro�t of V (�; �; (pb; pg); �) = p
g

2p
g

1 + (1� p
g

2)p
g

3 � �
�
pb2p

b

1 + (1� pb2)p
b

3

�
.

For a given structure � and agents with characteristics (pb; pg), the designer is

interested in �nding an optimal allocation �� that maximizes Equation 3:

��(�; (pb; pg); �) = argmax
�

V (�; �; (pb; pg); �) (4)

Equation 4 makes clear that the optimal allocation may depend on the organizational

structure, on the characteristics of the agents, and on the environment.

2.5 Knowledge

Although the optimal allocation may depend on the characteristics of the agents, the

organizational designer may not know these characteristics. Indeed, I distinguish three

types of information the organizational designer may have concerning the screening

capabilities of her agents. She may have no information at all about the screening

capabilities of the agents, ordinal information about the agents' characteristics, or

cardinal information. This is made precise in the three de�nitions that follow.
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De�nition 1 There is no information about the screening capabilities of agents 1,

2, and 3, if the organizational designer does not know the pair (pb
i
; p

g

i
) of any of these

agents, nor can she order the agents. Indeed, she only knows that agents are fallible.

The other extreme in terms of richness of information about the agents is cardinal

information:

De�nition 2 The organizational designer has cardinal information about the screen-

ing capabilities of the agents if she knows the vector (pb; pg).

In between no information at all and cardinal information about all the agents, there

is the situation of ordinal information.

De�nition 3 The organizational designer is in possession of ordinal information

about the screening capabilities of the agents if she knows 1 � 2 � 3, and if agents are

known to be fallible.

2.6 Complexity

One of the main tasks of the designer is to assign agents to positions within a given

structure. Ideally, she would like to �nd the best allocation given the characteristics

of the agents. To do so, she may have to use information about the (relative) qualities

of the agents. The more information is required, the more demanding the structure.

The notion of complexity I use here captures di�erences in demands placed on the

organizational designer.
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De�nition 4 A structure �1 is called more complex than �2, if �nding the optimal

allocation of agents to positions requires more detailed knowledge about these agents in

�1 than in �2.

In fact, I will call structures of least complexity if no information is required to assign

agents correctly. If ordinal information is necessary and suÆcient, structures will be

called of intermediate complexity. Structures requiring cardinal information are most

complex.

2.7 Organizational Robustness

If the designer does not possess the information needed to correctly allocate agents to

positions in the organization, errors can be made. In an HP or a PH, an error may

occur if the designer misses ordinal information. In an omniarchy, additional errors

can arise if information about the precise qualities, or cardinal information, is lacking.

An erroneous allocation reduces the performance of a structure: too many good

projects are rejected, and too few bad ones are rejected. Is there something the de-

signer can do about this? She could consider to improve her knowledge of the agents, in

line with the requirements of the structure. Agents could then be re{allocated within

the given structure. Alternatively, she could simplify the structure in line with the

knowledge she has. Agents could then be correctly allocated within the simpler struc-

ture. The dilemma she faces is that the more complex structure may be performing

better than the simpler structure if she possesses the required information, but worse

in case an error is made. However, a badly organized but more complex structure may
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still outperform a well organized, but less complex structure.

In any event, it is important to evaluate the impact a mis{allocation may have

on the performance of an organization. The smaller the drop in performance, the

more robust the structure will be called. For the purpose of this paper I measure the

robustness of an organization in the following way.

De�nition 5 Consider a structure �, and let �� = ��(�; (pb; pg); �) be an optimal allo-

cation and � any allocation. Then the robustness of a structure � in the environment

� is de�ned as

R(�; �) = min
�;(pb;pg)

V (�; �; (pb; pg); �)

V (�; ��; (pb; pg); �)
(5)

That is, R(�; �) measures the maximal extent to which an erroneous allocation in

conjunction with characteristics of agents may lead to a reduction in performance.

The larger the value of the ratio in Equation 5, i.e., the smaller the relative drop in

expected pro�ts, the more robust the structure. R(�; �) is typically a function of the

environment, �. In fact, the allocation ~� and the vector of characteristics (pb; pg) that

minimize
V (�;�;(pb;pg);�)

V (�;��;(pb;pg);�)
may themselves vary with �.

The measure R(�; �) can be used to compare the robustness of di�erent organiza-

tions, for speci�c values of � or for all values. A de�nition that will prove useful is the

following.

De�nition 6 A structure �1 will be called uniformly more robust than �2 if for

all �

R(�1; �) > R(�2; �) (6)
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Of course, one may not be able to order organizations using this strong de�nition: �1

could be more robust than �2 in speci�c environments, while the opposite holds in

other environments.

Nothing in the de�nition of robustness excludes the possibility that although �1 is

uniformly more robust than �2, yet �2 attains higher pro�ts even when it performs at

its worst. The robustness of an organization measures the variability of its performance,

not its absolute level of performance. The robustness of an organization, although of

interest in itself, should also be studied in conjunction with the organization's expected

pro�ts.

3 Results

I now classify the structures H;HP;O;PH and P in terms of their complexity. I also

provide the optimal allocations of heterogeneous agents in each of these structures and

compare their performance of the organizational structures. Finally, I compute their

robustness.

3.1 Organizational Complexity

I now apply the de�nition of organizational complexity to the �ve structures presented

in Figure 1.

Proposition 1 H and P are structurally of least complexity as no information is

required to �nd the optimal assignment of agents. HP and PH are of intermediate

complexity. Ordinal information is necessary and suÆcient: the best agent should be
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located at the root. The allocation of agent 2 and 3 to the remaining nodes is immaterial.

The structure O is the most complex: cardinal information is necessary. The worst

agent should be located at the root. Agent 1 should be at �a and agent 2 at �r if and

only if

� <
(2p

g

3 � 1)(p
g

2 � p
g

1)

(2pb3 � 1)(pb2 � pb1)
(7)

I provide the proof here. Note that in the hierarchy implementation requires accep-

tance by all three agents, with the probability of implementation equal to the product

of the probability of acceptance by the individual agents. Obviously, the precise allo-

cation of agents to these three nodes is immaterial. In the polyarchy, the probability

of �nal rejection equals the product of the individual probabilities of rejection. This

is independent of the way agents are assigned to nodes. As the probability of imple-

mentation equals one minus the probability of �nal rejection, the polyarchy does not

require information about the agents either. Hence, the hierarchy and the polyarchy

are of least complexity.

Now consider HP. Switching the agents located at �a and �ar leaves the probabil-

ity of implementation unchanged: the `substructure' that starts at �a is a two{node

polyarchy in which the allocation is immaterial. To understand why the best agent

should be positioned at the root, observe that the expected pro�ts stem from projects

implemented by (i) both the �rst two agents, with probability p(�)p(�a), or (ii) by

the third agent after acceptance by the �rst and rejection by the second, with prob-

ability p(�)(1 � p(�a))p(�ar). In (i), who is the �rst or the second is immaterial for

expected pro�ts. In (ii), however, the ordering matters. This can easily be seen from
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a hypothetical switch of agents. Suppose initially the best agent were located at �a

and the second or third best agent at �. Switching these agents leads to an increase

in the probability of acceptance of good projects at � and an increase of rejected good

projects at �a. Hence, the probability of good projects reaching �ar increases, and

therefore the probability of implementation of good projects. By the same token this

switch leads to a reduction in bad projects being accepted at � and rejected at �a, and

therefore to a lower probability of bad projects reaching �ar. That is, both assignments

�� 2 f(�; �a; �ar); (�; �ar; �a)g are optimal. The same line of reasoning holds in case

of PH. Ordinal information is necessary and suÆcient in both HP and PH. These

structures are therefore of intermediate complexity.

In the omniarchy, the optimal allocation depends on the values of the characteristics

of the agents and the type of environment. First of all, agent 3, the worst agent, should

be located at �. The intuition is that the agent at � merely delegates the decision to

implement to the agents at �a and �r. Hence, the agents located at the latter two

nodes should be better than the one at the former.

Formally, consider the two possible allocations with agent 3 at the root. As I

leave unde�ned the allocation of agents 1 and 2 to nodes �a and �r, the probability

of implementation can be written as p3p(�a) + (1 � p3)p(�r). Switching agent 3 and

whoever was initially located at �a leads to a probability of implementation of p(�a)p3+

(1�p(�a))p(�r). The di�erence in probability ensuing from this switch equals p(�r)(p3�

p(�a)). Now observe that, irrespective of whether agent 1 or 2 was initially assigned

to �a, p
g

3 � pg(�a) < 0 and pb3 � pb(�a) > 0. That is, starting with agent 3 at the root,

the switch leads to fewer good projects being accepted, and less bad projects being
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rejected. This has an unambiguous negative e�ect on expected pro�ts. Similarly, it

can be shown that switching agent 3 at � and agent 1 or 2 at �r leads to a reduction

in expected pro�ts. This establishes that in any optimal allocation agent 3 should be

assigned to the root.

The question that remains is the allocation of agent 1 and 2. Consider allo-

cation �1 = (�a; �r; �) and compare its expected pro�ts with those of allocation

�2 = (�r; �a; �). That is, agents 1 and 2 are being switched.

V (O; �1; (pb; pg); �)�V (O; �2; (pb; pg); �) = (2p
g

3�1)(p
g

2�p
g

1)��(2p
b

3�1)(pb2�p
b

1) (8)

That is, agent 1 should be located at �a and agent 2 at �r (or, �
1 is better than �2) if

and only if

� <
(2p

g

3 � 1)(p
g

2 � p
g

1)

(2pb3 � 1)(pb2 � pb1)
(9)

This shows that cardinal information is required in an omniarchy. It is therefore the

most complex organization studied. This completes the proof.

Equation 9 says that, for suÆciently friendly environments, the best agent should

be located at �a, whereas for relatively tough environments this agents is best located

at �r. The reason is as follows. Most good projects land on �a (as p
g

3 > 1=2), while

most bad projects go to �r (as 1 � pb3 > 1=2). Therefore, if there are relatively many

good projects, or the pro�t X is high relative to the possible loss Y , that is, if � is

relatively low, it is more important to have the best agent at �a. The opposite holds

for high values of �.
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3.2 Comparing Performance

In the preceding subsection, I determined the correct ordering of agents for di�erent

structures. In this subsection I will assume agents have been correctly assigned, and

compare the ensuing expected pro�ts of the �ve structures. Before presenting some

general results formally, I use Figure 2 to illustrate a few characteristics that generally

hold.

0 1 2 3 4
0

0:2

0:4

0:6

0:8

1:0

�

V (�; �; ��) P

PH
O

HP
H

Figure 2: The expected pay{o�s of the �ve organizational structures studied, with

(pb; pg) = (0:1; 0:2; 0:3; 0:7; 0:8; 0:9)

Although Figure 2 is based on speci�c values of (pb; pg), it illustrates a few important

general features of the pro�t comparison that hold for all possible vectors of agents'

capabilities.

Note �rst of all that by moving from left to right, from friendly to hostile environ-

ments, �rst the polyarchy, then the hybrid PH, then HP, and �nally the hierarchy is
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the best structure. This follows from the progressively growing demands imposed on

project implementation experienced when moving from a polyarchy to a hierarchy.

The second observation is that the omniarchy is never the best structure. The intu-

ition is as follows. The performance of O is a convex combination of the performance

of agents 1 and 2, where the optimal weights depend on condition 7. Hence, O behaves

approximately as a single agent organization. In friendly environments, the polyarchy

P and the PH outperform the omniarchy O as the former organizations accept more

good projects than the latter. Conversely, for rising values of �, the in
uence of the

probability of acceptance of bad projects increases, making the hierarchy H and the

HP more suitable. The formal proof establishes that the interaction of the various

dimensions is such that even for intermediate environments the omniarchy is never the

best.

Thirdly, the worst performing structure is either the polyarchy or the hierarchy.

Their superior performance in extremely friendly or extremely hostile environments,

respectively, comes at the cost of quickly loosing performance outside these environ-

ments.

Formally, these three observations amount to:

Result 1 For every vector (pb; pg), there are values �1 < �2 < �3, such that P attains

higher pro�ts than any other organization for � < �1; PH for �1 < � < �2; HP for

�2 < � < �3; and H for � > �3. This implies that for every vector (pb; pg) and for

any �, there is always an organization (�; ��) with � 2 fH;HP;PH;Pg that attains

higher expected pro�ts than (O; ��).
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Result 2 For every vector (pb; pg) and for any �, either the hierarchy H or the pol-

yarchy P attains the lowest expected pro�ts. For low values of �, the hierarchy performs

the worst, whereas for high values of �, the polyarchy does.

What do these results mean in terms of the relationship between complexity and ex-

pected pro�ts? The �rst result indicates that complexity is not bene�cial per se: only

for intermediate environments does the extra complexity that comes with a hybrid

structure pay o�. The �rst result also implies that the most complex structure is never

the best. Hence, in the present model and with de�nition of complexity used here, com-

plexity is not unequivocally bene�cial: only for speci�c environments in combination

with particular values of the characteristics of the agent do structures of intermediate

complexity outperform ones of least complexity. The second result can be restated as

follows. It is a structure of least complexity that attains the lowest expected pro�ts

for any given environment.

Jointly, these results suggest an important trade{o� between complexity and per-

formance, especially in case of uncertainty about the type of environment. Hierarchies

and polyarchies require little information and they perform best in speci�c environ-

ments. This is a plus. However, they perform worse than other structures virtually as

soon as they are not the best anymore. Hybrid structures require more information,

which may be costly to acquire, but their performance is not as susceptible to changes

in the environment as is the performance of a hierarchy or a polyarchy. Moreover, they

are best for some types of environment. There is no trade{o� at the most advanced

level of complexity: the omniarchy is never better than all other organizations, yet is
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requires the highest level of detail of information.

3.3 Robustness

The robustness of an organization measures the maximal drop in expected pro�ts due

to an erroneous allocation of agents. The smaller this drop, the less sensitive the

organization is to errors, the higher is the organization's robustness.

Before discussing the �ndings, let me explain the method used to establish the

results. Remember that to �nd R(�; �) one has to minimise over both the admissible

values of the characteristics of the agents and any possible allocation. This space is

seven dimensional. Fortunately, the minimisation problem can be split up in two parts.

First of all, for every structure I determine whether some mis{allocation would lead

to uniformly larger errors, i.e., for all values of (pb; pg), than other mis{allocations.

Both in case of HP and PH, the allocation with the worst agent instead of the best

at node � creates uniformly the largest relative drop in performance. The allocation of

agent 1 and 2 to the remaining positions is immaterial. In the omniarchy, locating the

best agent instead of the worst agent at � leads uniformly to the largest error. Where

agent 2 and 3 should be located, at �a or at �r, depends on the characteristics of the

agents.

Result 3 For both � = HP and � = PH and for any characteristics of the agents

(pb; pg), switching the best and the worst agents leads to the maximal drop in expected

pro�ts. For � = O, assigning the best agent to the optimal position of the worst agent

is necessary to create the largest fall in pro�ts.
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This comes close to saying that the maximum drop in pro�tability is always a con-

sequence of assigning the best and the worst agents to each other's correct position.

This statement is correct for the hybrid structures, but not quite for the omniarchy:

although the best agent should be located at node �, the position of the worst agent

depends on the agents' characteristics and the type of environment.

Then I determine for each structure and the selected mis{allocation(s) the charac-

teristics of the agents that maximize the drop in performance. Here I allow for the

possibility of boundary cases, i.e., pb
i
2 [0; 1=2] or p

g

i
2 [1=2; 1]. If maximising the rela-

tive error actually requires a boundary value, this should be interpreted as an interior

solution arbitrarily close to the boundary. The continuity of V (�) in the characteristics

of the agents ensures the correctness of such an interpretation.

Result 4 summarizes for which values of (pb; pg) and for which mis{allocation the

drop in performance is maximal.

Result 4 For every structure � 2 fHP;PH;Og, Table 1 reports the correct allocation

��, the one that maximizes the drop in relative performance ~�, and the values of (pb; pg)

that minimize the relative performance.

Clearly, in virtually all cases the drop in relative performance is largest when the

characteristics of the agents take on extreme values, like 0, 1
2
, or 1. The only exceptions

are the hybrid structures in case of speci�c environments: for � = HP and � = 2
3
, and

for � = PH and � = 5
6
, the values of pb1 and p

g

1, respectively, can be freely chosen. As

these are non{generic cases, I do not discuss them.

The most important observation to make, however, concerns the relationship be-
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� (��(1); ��(2); ��(3)) (~�(1); ~�(2); ~�(3)) (pb; pg)

HP (�; �a; �ar) (�ar; �a; �)

8>>>>>><
>>>>>>:

(0; 1=2; 1=2; 1=2; 1; 1) if � 2 [0; 2=3)

([0; 1
2
]; 1=2; 1=2; 1=2; 1; 1) if � = 2=3

(1=2; 1=2; 1=2; 1=2; 1; 1) if � 2 (2
3
; 4
3
]

PH (�; �r; �ra) (�ra; �r; �)

8>>>>>><
>>>>>>:

(0; 0; 1=2; 1=2; 1=2; 1) if � 2 [0; 5
6
)

(0; 0; 1=2; 1=2; 1=2; [1
2
; 1]) if � = 5

6

(0; 0; 1=2; 1=2; 1=2; 1=2) if � 2 (5
6
; 5
4
]

O (�a; �r; �) (�; �r; �a) (0; 1=2; 1=2; 1=2; 1; 1)

Table 1: Characteristics of the agents and allocations that jointly maximize the relative

drop in performance per structure.

tween these extreme values and the heterogeneity of agents: in virtually all instances

the maximal drop in performance is the result of having agents that are maximally

heterogeneous. In case of three agents, maximal heterogeneity is characterized by

Lemma 1:

Lemma 1 Suppose one wants to maximize the heterogeneity H of agents as measured

by

H =

3X
i

 
p
q

i
�

P3

i
p
q

i

3

!2

(10)

for q = b and q = g, subject to 0 � pb1 � pb2 � pb3 � 1=2 and 1=2 � p
g

3 � p
g

2 �

p
g

1 � 1, respectively. The values that solve these problems are
�
pb1; p

b

2; p
b

3

�
= (0; 0; 1=2)

or (0; 1=2; 1=2) in case of bad projects, and (p
g

3; p
g

2; p
g

1) = (1=2; 1=2; 1) or (1=2; 1; 1) for

good projects.
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One directly observes, by comparing the values of (pb; pg) in Table 1 with Lemma 1,

that in case of the omniarchy O, the HP for � < 2=3, and the PH for � < 5=6, the

maximal drop in pro�tability stems from maximal heterogeneity of the agents, both

as far as good projects and bad projects are concerned. In case of HP or PH and

high values of �, maximal heterogeneity is limited to one dimension of the agents'

characteristics (probability of acceptance of good projects in case of HP , and of bad

projects for PH). It is quite intuitive that the maximal drop in pro�tability stems

from agents that are as heterogeneous as possible. Any change in assignment will then

have a maximal impact.

Result 5 For all structures � 2 fHP ;PH;Og and for virtually all environments �, a

maximal reduction in expected pro�ts requires agents that are maximally heterogeneous.

Roughly speaking, the implication of Results 3 and 5 is that the maximal drop in

performance stems from, �rstly, switching the best and the worst agent, and secondly

making agents maximally di�erent.

Complementing the information in Table 1 is information about expected pro�ts

associated with the allocations and characteristics reported in that Table. This infor-

mation, together with the ensuing robustness of each structure, R(�; �), can be found

in Table 2. That is, the information presented in Tables 1 and 2 corresponds line

by line. Take for example the line concerning HP . The vector �� given in Table 1,

�� = (�; �a; �ar), is the one used in the calculation of V (�; ��; �) for � = HP in

Table 2. Similarly for ~� and V (�; ~�; �). Of course, R(�; �) = V (�; ~�; �)=V (�; ��; �).

Figure 3 shows the graphs of R(�; �). It reveals that O is uniformly the least robust
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� V (�; ��; �) V (�; ~�; �) R(�; �)

HP

1 for � 2 [0; 2
3
)

1� 1
2
pb1 for � = 2

3

1� 0:375� for � 2 (2
3
; 4
3
]

0:5� 0:25�

1
3
�

1
6
pb1

0:5� 0:375�

0:5� 0:25�

1
3

0:5� 0:375�

1� 0:375�

PH

1 for � 2 [0; 5
6
)

3
4
p
g

1 +
1
4

for � = 5
6

0:625 for � 2 (5
6
; 5
4
]

0:75� 0:5�

1
4
p
g

1 +
1
12

0:625� 0:5�

0:75� 0:5�

1
3

1� 0:8�

O 1� 0:25� 0:5� 0:5�
0:5� 0:5�

1� 0:25�

Table 2: Expected pro�ts with correctly allocated agents, with mis{allocated agents,

and the robustness per structure.

structure. The PH is the most robust structure in relatively friendly environments,

as is HP in tougher environments. Roughly speaking, when PH outperforms HP in

terms of expected pay{o�s V (�; ��; �) it is also more robust than HP5. This is an

interesting result as it shows that good performance of a hybrid structure does not

come at the cost of increased sensitivity to mis{allocations.

Proposition 2 O is uniformly the least robust structure. The PH is the most robust

structure in relatively friendly environments, as is HP in tougher environments.

This proposition and Figure 3 capture to what extent the performance of a given

structure is maximally reduced due to a misallocation. Given that the pure hierarchy

and polyarchy are fully error{proof, it is interesting to see to what extent superior

5Roughly speaking, since an exact comparison is impossible as the calculations of R(HP ; �) and

R(PH; �) are based on di�erent values of the characteristics of the agents.
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41

1
3

1
2

3
4

1

O
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Figure 3: The robustness of PH, HP and O.

performance of HP, PH, and O is predicated on the optimal allocation. Figure 4

shows for every value of � and for the characteristics (pb; pg) reported in Table 1 how

well these structures|HP to the left, PH in the middle, O to the right|fare relative

to the hierarchy and the polyarchy, both for the correct allocation, ��(�) in the upper

part of the graph, and for ~�(�), the mis{allocationmaximising the drop in performance,

in the lower part. For example, for � = HP, if all agents have been correctly allocated

HP performs better than H for � < 1, whereas the opposite holds for � > 1. HP

performs as well as P for � = 0. If agents have been erroneously assigned, the lower

part shows that either P or H perform better than HP for all �.

The three graphs show that the adverse e�ect on performance can be dramatic indeed:

in the situations depicted the comparative advantage of HP , PH or O completely

vanishes due to allocating agents erroneously.
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3
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1
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2
3

P H

� � �0 0 0
��

1

HP H

P; HP

PH

P; PH

2

O H

P; O

� = HP � = PH � = O

Figure 4: Area of superior performance of HP , PH and O when compared with the

least complex structures H and P, when agents have been correctly assigned (��, or

top part) and when the relative error is maximized (~�, or lower part).

4 Trade{o�s in organizational design

Various ways are open to an organizational designer who wishes to improve the perfor-

mance of her organization, and who possesses only limited knowledge on the qualities

of her employees and of the environment in which she operates.

First of all, she could invest in training that enhances the screening capacity of

her employees. Training leads to an unambiguous rise in the expected value of imple-

mented projects, whether employees are correctly allocated or not. This is clear from

Equation 2. Of course, there are costs associated with training. The e�ectiveness of

money spent on training should be compared with that of other means of generat-

ing additional revenue. Replacing existing employees by more skilled ones is another

possibility. This assumes the possibility of comparing the quality of existing and new

employees.
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Secondly, she could invest in monitoring her present employees to get a better

view of their skills. She may then be able to re{position her employees thanks to the

additional information so obtained. How much she is maximally willing to spend on

monitoring is related to the robustness of a structure, since the notion of robustness is

based on a comparison of the expected pro�ts of an optimally organized structure with

the worst performance of the same structure when agents are incorrectly positioned.

Instead of monitoring, the organizational designer could decide to bridge the gap

between information she possesses and information which is required by simplifying the

present organizational structure in line with the information she currently has. The

cost of a re{organization should be compared with the increase in revenues. Absent

cardinal information, she could decide to content herself with hybrid or pure structures.

Similarly, ordinal information lacking, she could settle with a hierarchy or a polyarchy.

Although this prohibits mis{allocations from occurring, it does not necessarily guar-

antee an increase in pro�tability. The one situation in which it does, is when the

omniarchy is replaced by a hybrid structure and ordinal information is present. This

follows from Result 1. However, if any information about the qualities of the employees

is missing, a hybrid structure in which agents are potentially mis{allocated may still

perform better than a pure structure in which no information is required. Moreover, if

the designer is uncertain about the exact type of environment, the pure structures ex-

pose her to a much larger variation in possible pay{o�s, including to the lowest pay{o�s

possible, than do the hybrid structures. This is clear from Figure 2, and Result 2.

Yet another way of improving organizational performance is collecting information

on the state of the environment with a view to adjusting the internal structure or
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in
uencing the environment to the bene�t of the present organization. The costs of

in
uencing may well be lower than those associated with measures meant to improve

the adequacy of the organization for a given environment. It seems plausible to assume

that the larger the organization, the lower the costs of in
uencing the environment when

compared with the expenses incurred to improve the internal organization.

The means chosen to improve performance will depend on their relative cost e�ec-

tiveness and on the degree of risk aversion of the organizational designer.

5 Conclusion

This paper illustrates how one could approach the relationship between organizational

complexity, robustness, and performance. Complexity, de�ned as the level of detail

of information needed to correctly allocate agents within an organizational structure,

and robustness, de�ned as the degree to which organizations do not su�er from mis{

allocations, prove useful categories to distinguish organizational structures: one can

sensibly talk about di�erent degrees of complexity, and one can compare organizational

structures in terms of their robustness.

One of the results of this paper is that increasing the complexity of an organizational

amounts to reducing its robustness. This may annihilate the superior performance of

more complex organizations if the organizational designer does not possess the re-

quired detail of information. The superior performance of the hybrid structures HP

and PH was shown to rely in a crucial way on ordinal information about the agents

working in the organization. This information being absent, their superiority can van-
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ish completely. The designer faces a diÆcult choice: improve her knowledge of the

agents, improve the quality of the agents, simplify the structure of the organization,

or in
uence the environment?

The conclusion of this paper concerning the omniarchy is quite negative. Rem-

iniscent of commonly used delegation structures, it is more complex than the other

structures and less robust. In theory, these disadvantages could be o�set by superior

performance. However, it was also shown that the omniarchy always performs worse

than some other organization. This should not be taken as the �nal verdict on dele-

gation structures. As I observed in the introduction, the approach taken in this paper

should be considered a �rst step towards an understanding of the relationship between

organizational performance, complexity, and robustness. I therefore excluded aspects

of organizational design and behaviour, such as specialization, agency, and con
ict of

interests, the inclusion of which may have changed the evaluation of an omniarchy.
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Appendix for Referees

Proof of Result 1 As this result involves a general statement about a seven dimen-

sional parameter{space ((pb; pg) and �) involving �ve di�erent structures providing an

analytical proof is hard for the following reason. Fix values for (pb; pg) and calculate for

every pair of organizations the `pivotal' value of � at which this pair performs equally

well. In the statement of the result I mention three such values, �i, i = 1; 2; 3. The

`less strict' organization always performs better for values of � lower than the pivotal

value, and vice versa. These pivotal values are ordered along the positive line{segment.

The problem is that this ordering may change with certain changes in (pb; pg). This

makes it diÆcult to establish analytically whether �1 < �2 < �3 holds for all (p
b; pg),

and whether the omniarchy is better than any other structure for some values of the

parameters. I have therefore taken recourse to numerical methods. There was no

instance among the 27 million randomly chosen vectors such that the omniarchy per-

formed better than all other structures. 2

Proof of Result 2 This Result is based on the same 27 million randomly chosen

vectors. 2

Proof of Result 3 I discuss the three structures � 2 fHP;PH;Og in turn.

When � = HP , a suÆcient condition for optimality is to have agent 1 at node �;

the allocation of agents 2 and 3 to �a and �ar is immaterial (see Proposition 1). Any

mis{allocation involves either agent 2 or 3 at �. If, say, agent 2 is at the root, the precise

allocation of agents 1 and 3 is immaterial. Similarly if agent 3 is at the root. There are

therefore two generic mis{allocations: (i) agent 2 at node 1, or (ii) agent 3 at node 1.
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In case (i) the probability of acceptance of a project of type q equals p
q

2(p
q

1+(1�p
q

1)p
q

3),

whereas in (ii) the probability of acceptance equals p
q

3(p
q

1+(1� p
q

1)p
q

2). The di�erence

in probability of acceptance between (i) and (ii) therefore amounts to p
q

1(p
q

2 � p
q

3),

which is larger than zero for q = g, and smaller than zero for q = b for all (pb; pg).

That is, allocation (i) accepts more good and less bad projects than allocation (ii).

Expected pro�ts are lowest in case (ii), or when the best and the worst agents have

switched position.

An analogous proof can be provided for � = PH.

Finally � = O. Consider the case where � �
(2p

g
3
�1)(p

g
2
�p

g
1
)

(2pb
3
�1)(pb

2
�pb

1
)
, or agent 1 should

be located at �r and agent 2 at �a (see Proposition 1). Here, one has to compare

the �ve possible mis{allocations: �1 = (�r; �; �a), �
2 = (�a; �r; �), �

3 = (�a; �; �r),

�4 = (�; �a; �r) and �5 = (�; �r; �a). Just as in case of � = HP, the analysis is based

on comparing probabilities of acceptance. For convenience sake, let me denote the

di�erence in probability of acceptance of a project of type q between allocation �i and

�j by �(�i; �j; q). Thus, �(�3; �4; q) = p
q

3(p
q

1 � p
q

2). This expression is positive for

good projects, but negative for bad projects. That is, �4 generates uniformly smaller

pro�ts. Similarly, �(�1; �5; q) = (p
q

1 � p
q

2)(1� p
q

3), which is positive for good projects,

and negative for bad ones: �5 generates uniformly smaller pro�ts. A comparison of �2

with �5 shows that �(�2; �5; q) = p
q

2(p
q

1 � p
q

3). This expression is positive for q = g,

and smaller than zero if q = b, meaning that �5 gives rise to larger reductions in pro�ts

than �2. That is, either �5 or �4 leads to the largest drop in pro�ts. In either case,

agent 1 is located at node �. Whether �5 or �4 leads to a larger drop depends on
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(pb; pg) and �. A similar proof shows that also in case of � <
(2p

g
3
�1)(p

g
2
�p

g
1
)

(2pb
3
�1)(pb

2
�p

b
1
)
the largest

drop in pro�ts results from assigning agent 1 to �. 2

Proof of Result 4 The correct allocations �� follow from Proposition 1. The incorrect

allocations ~� for � = HP and � = PH follow from Result 3. The latter result also

established that in the omniarchy the best agent should be located at � if the drop

in performance is to be maximal. In this proof, I determine the vector (pb; pg) that

maximizes the drop in performance when (i) � = HP , (ii) � = PH, and (iii) � = O.

In any event, this vector (pb; pg) can be found by maximizing the Lagrangian:

L((pb; pg); �; �; �) = �

V ((pb; pg); �; ~�; �)

V ((pb; pg); �; ��; �)
�

8X
i=1

�ihi(p
b; pg) (A.1)

with respect to the probabilities (pb; pg) under the restrictions 0 � pb1 � pb2 � pb3 �

1
2
� p

g

3 � p
g

2 � p
g

1 � 1 rewritten as hi(p
b; pg) � ci for i = 1; : : : ; 8, where h1 = �pb1 � 0,

h2 = pb1 � pb2 � 0, h3 = pb2 � pb3 � 0, h4 = pb3 �
1
2
, h5 = �p

g

3 � �
1
2
, h6 = p

g

3 � p
g

2 � 0,

h7 = p
g

2 � p
g

1 � 0, and h8 = p
g

1 � 1. Note that I have written V ((pb; pg); �; �; �)

instead of V (�; �(pb; pg); �) to highlight that the optimization leaves the structure, the

allocations, and the value of � unchanged. In what follows it will be convenient to write

the short{hand form V (�) instead of V ((pb; pg); �; �; �). Moreover, the derivative of

pq(�; �) with respect to p
q

i
will be written as p

q0

i
(�; �) The necessary conditions for

optimality are

p
g0

1 (�; �
�)V (~�)� p

g0

1 (�;
~�)V (��)

V (��)2
= �8 � �7 (A.2)

p
g0

2 (�; �
�)V (~�)� p

g0

2 (�;
~�)V (��)

V (��)2
= �7 � �6 (A.3)
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p
g0

3 (�; �
�)V (~�)� p

g0

3 (�;
~�)V (��)

V (��)2
= �6 � �5 (A.4)

pb01 (�;
~�)V (��)� pb01 (�; �

�)V (~�)

V (��)2
= �2 � �1 (A.5)

pb02 (�;
~�)V (��)� pb02 (�; �

�)V (~�)

V (��)2
= �3 � �2 (A.6)

pb03 (�;
~�)V (��)� pb03 (�; �

�)V (~�)

V (��)2
= �4 � �3 (A.7)

and �i � 0, hi(p
b; pg) � ci, and �i

�
hi(p

b; pg)� ci
�
= 0, for i = 1; : : : ; 8. Note that I

have divided the conditions A.5{A.7 by �. The case � = 0 implies that bad projects

are irrelevant. In that case, the relevant �rst order conditions become the �rst three

with V (~�) and V (��) replaced by pg(�; ~�) and pg(�; ��), respectively. I come back to

this case once I have discussed � > 0. In what follows, I limit attention to situations

where V (~�) > 0.

These conditions are necessary for a solution. If I were to �nd various values of

the characteristics of the agents consistent with these conditions, I can easily identify

the correct solution as I explicitly calculate the value of the optimization function as a

function of �.

In case (i), � = HP, pq(HP ; ��) = p
q

1(p
q

2 + (1 � p
q

2)p
q

3) and pq(HP; ~�) = p
q

3(p
q

2 +

(1� p
q

2)p
q

1). The array of equations A.2{A.7 becomes

(p
g

2 + (1� p
g

3))V (
~�)� p

g

3(1� p
g

2)V (�
�)

V (��)2
= �8 � �7 (A.8)

p
g

1(1� p
g

3)V (
~�)� p

g

3(1� p
g

1)V (�
�)

V (��)2
= �7 � �6 (A.9)

p
g

1(1� p
g

2)V (
~�)� (p

g

2 + (1� p
g

2)p
g

1)V (�
�)

V (��)2
= �6 � �5 (A.10)

pb3(1� pb2)V (�
�)� (pb2 + (1� pb2)p

b

3)V (
~�)

V (��)2
= �2 � �1 (A.11)
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pb3(1� pb1)V (�
�)� pb1(1� pb3)V (

~�)

V (��)2
= �3 � �2 (A.12)

(pb2 + (1� pb2)p
b

1)V (�
�)� pb1(1� pb3)V (

~�)

V (��)2
= �4 � �3 (A.13)

As p
g

1(1� p
g

2) < p
g

2 + (1� p
g

2)p
g

1 and V (~�) < V (��), it follows from Equation A.10 that

�6 � �5 < 0, or �5 > 0. That is, p
g

3 =
1
2
.

Similarly, if pb1 < pb3, then �3 > 0 or pb3 = pb2 from Equation A.12. In Equation A.13,

if pb2 > 0, then pb2 + (1� pb2)p
b

1 > pb1(1� pb3), and therefore �4 > 0 or pb3 =
1
2
. That is,

pb2 = pb3 = p
g

3 =
1
2
.

The Lagrangian for this case can now be rewritten as

L(pb1; p
g

1; p
g

2; �
0) = �

1
2
(p

g

2 + (1� p
g

2)p
g

1)�
�

4
(1 + pb1)

p
g

1
2
(p

g

2 + 1)� � 3
4
pb1

+

5X
1=i

�0
i
(h0

i
� c0

i
) (A.14)

with h01 = �pb1 � 0, h02 = pb1 �
1
2
, h03 = �p

g

2 � �
1
2
, h04 = p

g

2 � p
g

1 � 0, and h05 = p
g

1 � 1.

If, however, in Equation A.12 pb1 = pb3, in place of pb1 < pb3 (and hence pb2 = pb2 =

pb1 = pb, because pb1 � pb2 � pb3 by assumption), then �3 = �2 � 0. One needs to

distinguish between pb = 0 and pb > 0. The case pb = 0 is mathematically identical

to the case � = 0. If pb > 0, then �4 > 0, or pb = pb3 =
1
2
. That is, pb1 = pb2 = pb3 =

1
2

and �4 > �3 = �2 � 0. The associated maximization problem is a special case of

Equation A.14 (substituting pb1 =
1
2
).

If, in Equation A.13, pb2 = 0 and pb3 = 0 then pb1 = pb2 = pb3 = 0, and the maximiza-

tion problem is identical to problem when � = 0. If pb2 = 0 but pb3 > 0, then pb1 = 0,

and �4 = �3 = 0 (note that �4 = �3 > 0 is impossible as this would imply pb3 = pb2 =
1
2
,

contradicting pb2 = 0). Substituting pb1 = 0 into Equation A.12 and using the condition
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�3 = 0, this equation becomes pb3
V (��)

V (��)2
= ��2. As both p

b

3; V (�
�) > 0 and �2 � 0 this

implies a contradiction.

The necessary conditions for Equation A.14 are

1

2

(1 + p
g

2)V (
~�)� (1� p

g

2)V (�
�)

V (��)2
= �05 � �04 (A.15)

1

2

p
g

1V (
~�)� (1� p

g

1)V (�
�)

V (��)2
= �04 � �03 (A.16)

�

4

V (��)� 3V (~�)

V (��)2
= �02 � �01 (A.17)

It is useful to regard these expressions as functions of V (~�)=V (��), p
g

1 and p
g

2.

p
g
1; p

g
2

V (~�)

V (��)

1
2

3
4 1

1
3

1

0

1�p
g

1

p
g

1

1�p
g

2

1+p
g

2

A

BC

D

E

Figure 5: Di�erent areas imply di�erent signs for Equations A.15{A.17 (case of HP).

Figure 5 depicts �ve areas, �ve line{segments and three points, each implying di�erent

signs for Equations A.15{A.17, as reported in Table 3:

Areas like A{B stand for the line{segments between areas A and B. E{C{D refers

to the point of intersection of E, C and D. Note that if � = 0, Equation A.17 and

therefore the line
V (~�)

V (��)
= 1

3
in Figure 5 are irrelevant.

The analysis that follows is based on the following steps. First, the table indicates

per area the signs of the Equations A.15{A.17. These signs determine which restrictions
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Area Eqn A.15 Eqn A.16 Eqn A.17 Area Eqn A.15 Eqn A.16 Eqn A.17

A + + { B{C + 0 +

B + + + C{D 0 { +

C + { + C{E + { 0

D { { + E{C{D 0 { 0

E + { { B{C{D 0 0 +

A{B + + 0 A{B{C{E + 0 0

A{E + 0 {

Table 3: Sign of Equations A.15{A.17 for di�erent areas, line{segments and points in

Figure 5.

bind and which do not. This �xes some (or all) values of pb1, p
b

2 and p
g

1. These values

are then plugged into the LHS of Equations A.15{A.17 to check whether they can still

satisfy the sign requirements and have values that are mutually consistent.

In A, the complementary slackness variables should satisfy �05 > 0, �04 > 0 and

�01 > 0. That is, p
g

1 = 1, p
g

2 = p
g

1, and pb1 = 0 must hold. Substituting these values

into the Equations A.15{A.17 on the LHS, one obtains V (~�) > 0, V (~�) > 0, and

V (~�)=V (��) > 1
3
, respectively. The latter inequality is suÆcient for the former two to

hold. It amounts to 3V (~�) > V (��) or 3[1
2
(1) � �

4
(1)] > 1

2
(1 + 1) � � 3

4
(0), or � < 2

3
.

That is, pb1 = 0, pb2 = pb3 = p
g

3 =
1
2
, and p

g

2 = p
g

1 = 1 is a solution for � < 2
3
. That is,

R(HP ; �) = 1
2
�

1
4
�.

In B, the implication is that p
g

1 = 1, p
g

2 = p
g

1, and pb1 =
1
2
must hold. Substituting
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these values into the LHS of Equations A.15{A.17, these conditions amount to V (~�) >

0, V (~�) > 0, and V (~�)=V (��) < 1
3
, respectively. Similar to the derivations in A, this

reduces to � 2 (2
3
; 4
3
). That is, pb1 =

1
2
, pb2 = pb3 = p

g

3 =
1
2
, and p

g

2 = p
g

1 = 1 is a solution

for � 2 (2
3
; 4
3
). Hence, R(HP; �) =

1

2
�

3

8
�

1� 3

8
�
.

In C, the signs of the equations imply p
g

1 = 1, p
g

2 = 1
2
, and pb1 = 1

2
. This gives

rise to inconsistent conditions: Equation A.15 requires 3
2
V (~�)� 1

2
V (��) > 0, whereas

Equation A.16 reduces to V (~�) < 0. As V (��) > 0 by assumption, these conditions

are inconsistent. Therefore, there is no solution in C.

In D, the signs require p
g

1 = p
g

2, p
g

2 =
1
2
, and pb1 =

1
2
. These values, together with the

ones obtained from Equations A.8{A.13, imply V (~�) = V (��), whereas Equation A.17

requires 3 V (~�) > V (��). These conditions are inconsistent.

In E, the signs require p
g

1 = 1, p
g

2 = 1
2
, and pb1 = 0. This gives rise to inconsis-

tent conditions: Equation A.16 requires V (~�) < 0, whereas Equation A.17 reduces to

V (��)�3V (~�) < 0, which implies V (~�) > 0 (as V (��) > 0), a contradiction. Therefore,

there is no solution in E.

On the line{segment A{B, p
g

1 = 1, p
g

2 = p
g

1, and pb1 2 [0; 1
2
], must hold. For these

values, V (��) = 1�� 3
4
pb1 and V (

~�) = 1
2
��(1

4
+ 1

4
pb1), and, from Equation A.17, V (��) =

3 V (~�). This amounts to � = 2
3
. Therefore a solution is pb1 2 [0; 1

2
], pb2 = pb3 = p

g

3 =
1
2
,

and p
g

2 = p
g

1 = 1 for � = 2
3
. Robustness equals R(HP ; 2

3
) = 1

3
.

On the line{segment A{E, p
g

1 = 1, p
g

2 2 [1
2
; 1] and pb1 = 0 must hold. Substituting

p
g

1 = 1 into Equation A.16 shows that V (~�) = 0 should hold. This, however, is in

con
ict with Equation A.17, which requires V (~�) > 0.

On the line{segments B{C, C{D and C{E con
icting conditions are imposed by
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Equations A.15 and A.16, A.15 and A.17, and A.16 and A.17, respectively.

In the point E{C{D, p
g

1 =
1
2
, p

g

2 =
1
2
, and pb1 2 [0; 1

2
], must hold (that p

g

1 =
1
2
holds

can be seen from Figure 5). For the values of (pb; pg) derived here V (��) = 3
8
� � 3

4
pb1

and V (~�) = 3
8
� � 1

4
(1+ pb1). Equation A.16 amounts to V (��) = 3 V (~�). This requires

� = 1. However, at � = 1, 1
3
is not the minimum value of V (~�)=V (��): this is attained

in region B, where R(HP ; 1) = 1
5
.

In the point B{C{D, p
g

1 = 1 and p
g

2 = 1 (both from Figure 5), and pb1 =
1
2
(from

Equation A.17) must hold. With these values of (pb; pg), V (~�) = 1
2
� � 3

8
. As V (~�) = 0

from Equations A.15 and A.16, this amounts to � = 4
3
. That is, a solution is pb1 =

1
2
,

pb2 = pb3 = p
g

3 =
1
2
, and p

g

2 = p
g

1 = 1 for � = 4
3
. Of course, R(HP ; 4

3
) = 0.

Finally, in the point A{B{C{E, p
g

1 = 3
4
from Figure 5, whereas Equation A.15

requires p
g

1 = 1. These requirements are inconsistent.

What remains to be discussed is the case of � = 0. Now the di�erences between A

and B, and between C and E respectively, are irrelevant. From the discussion of A, it

is clear that p
g

3 =
1
2
and p

g

2 = p
g

1 = 1 is also the optimum for � = 0. Robustness equals

R = 1
2
. In C and E, R = 2

3
, which is larger. In D, as p

g

3 = p
g

2 = p
g

1, V (
~�) = V (��).

Hence, R = 1. In other words, for � = 0, R(HP ; 0) = 1
2
.

In case (ii), or � = PH, pq(PH; ��) = p
q

1+(1� p
q

1)p
q

2p
q

3 and p
q(PH; ~�) = p

q

3+(1�

p
q

3)p
q

1p
q

2:

The array of equations A.2{A.7 becomes

(1� p
g

2p
g

3)V (
~�)� (1� p

g

3)p
g

2V (�
�)

V (��)2
= �8 � �7 (A.18)

(1� p
g

1)p
g

3V (
~�)� (1� p

g

3)p
g

1V (�
�)

V (��)2
= �7 � �6 (A.19)

44



(1� p
g

1)p
g

2V (
~�)� (1� p

g

1p
g

2)V (�
�)

V (��)2
= �6 � �5 (A.20)

(1� pb3)p
b

2V (�
�)� (1� pb2p

b

3)V (
~�)

V (��)2
= �2 � �1 (A.21)

(1� pb3)p
b

1V (�
�)� (1� pb1)p

b

3V (
~�)

V (��)2
= �3 � �2 (A.22)

(1� pb1p
b

2)V (�
�)� (1� pb1)p

b

2V (
~�)

V (��)2
= �4 � �3 (A.23)

From Equations A.23 one obtains pb3 = 1
2
. When p

g

2 < 1, Equation A.20 shows that

p
g

3 =
1
2
, and substituting this value into Equation A.19 we obtain p

g

3 = p
g

2. With this

information, the Lagrangian equals

L(pb1; p
b

2; p
g

1; �
0) = �

(1
2
+ 1

4
p
g

1)�
�

2
(1 + pb1p

b

2)
1
4
(3p

g

1 + 1)� �(pb1 +
1
2
(1� pb1)p

b

2)
+

5X
1=i

�0
i
(h0

i
� c0

i
) (A.24)

with h01 = �pb1 � 0, h02 = pb1 � pb2 � 0, h03 = pb2 �
1
2
, h04 = �p

g

1 � �
1
2
, and h05 = p

g

1 � 1.

If p
g

2 = 1 but p
g

3 < 1, then, from Equation A.20 �6 = �5 = 0 (�6 = �5 > 0 is

impossible as this would imply p
g

2 = p
g

3 =
1
2
). Substituting p

g

1 = 1, the implication of

1 � p
g

1 � p
g

2 = 1, and �6 = 0 into Equation A.19 leads to �(1 � p
g

3)
V (��)

V (��)2
= �7. This

cannot hold as (1� p
g

3) > 0, V (��) > 0 and �7 � 0.

The �rst order conditions of Equation A.24 are

1

4

3V (~�)� V (��)

V (��)2
= �05 � �04 (A.25)

1
2
pb2V (�

�)� (1� 1
2
pb2)V (

~�)

V (��)2
= �02 � �01 (A.26)

1

2

pb1V (�
�)� (1� pb1)V (

~�)

V (��)2
= �03 � �02 (A.27)

As in case of � = HP above, one can usefully regard these expressions as functions of

V (~�)=V (��), pb1 and p
b

2. Figure 6 depicts �ve areas, �ve line{segments and three points

each implying di�erent signs for Equations A.25{A.27, as reported in Table 4:
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pb1; p
b
2

V (~�)

V (��)

0
1
4

1
2

1
3

1

0

pb
1

(1�pb
1
)

1

2
pb
2

1� 1

2
pb
2

A

B

C

D
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Figure 6: Di�erent areas imply di�erent signs for Equations A.25{A.27 (case of PH).

In A, the complementary slackness variables of Equations A.25{A.27 are such that

p
g

1 = 1, pb1 = 0 and pb2 = pb1 must hold, respectively. With these values V (��) = 1 and

V (~�) = 3
4
�

1
2
�. In A, V (~�)=V (��) > 1

3
should hold, or � < 5

6
. That is, pb1 = pb2 = 0,

pb3 = p
g

3 = p
g

2 = 1
2
, p

g

1 = 1 solves the optimization problem for � < 5
6
. Therefore,

R(PH; �) = 3
4
�

1
2
�.

In B, p
g

1 = 1, pb1 = 0 and pb2 = 1
2
leads to inconsistent requirements. As pb1 =

0, Equation A.27 reduces to V (~�) < 0. However, this cannot be reconciled with

V (~�)=V (��) > 1
3
(from Equation A.25) since V (��) > 0.

In C, p
g

1 =
1
2
, pb1 = 0 and pb2 =

1
2
. This amounts to requiring both V (~�)=V (��) < 1

3

(because of Equation A.25) and V (~�)=V (��) > 1
3
(Equation A.26). These conditions

are inconsistent.

In D, because p
g

1 = pb1 = pb2 =
1
2
, all agents are equal. Hence, V (~�) = V (��), which

cannot be reconciled with the requirement 3V (~�) < V (��) of Equation A.25.

In E, p
g

1 =
1
2
, pb1 = 0 and pb2 = pb1. Hence, V (~�) = 5

8
�

1
2
� and V (��) = 5

8
. In E,
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Area Eqn A.25 Eqn A.26 Eqn A.27 Area Eqn A.25 Eqn A.26 Eqn A.27

A + { { B{C 0 { +

B + { + C{D { 0 +

C { { + C{E { { 0

D { + + E{C{D { 0 0

E { { { B{C{D 0 0 +

A{B + { 0 A{B{C{E 0 { 0

A{E 0 { {

Table 4: Sign of Equations A.25{A.27 for di�erent areas, line{segments and points in

Figure 6.

V (~�)=V (��) 2 (0; 1
3
). Therefore, if � 2 (5

6
; 5
4
), pb1 = pb2 = 0, pb3 = p

g

3 = p
g

2 = p
g

1 = 1
2

solves the optimization problem. Robustness equals R(PH; �) = 1� 4
5
�.

On the line{segment A{B, p
g

1 = 1, pb1 = 0, and pb2 2 [0; 1
2
] must hold. This leads

to inconsistent conditions: Equation A.25 requires 3 V (~�) > V (��), whereas Equa-

tion A.25 amounts to V (~�) = 0. As V (��) > 0, these conditions cannot be reconciled.

Similar inconsistent conditions for V (��) and V (~�) are obtained on the line{segments

B{C, C{D and C{E.

On the line{segment A{E, p
g

1 2 [1
2
; 1], pb1 = 0 and pb1 = pb2 must hold. This amounts

to V (~�) = 1
4
p
g

1+
1
2
�

1
2
� and V (��) = 3

4
p
g

1+
1
4
. From Equation A.25, or V (~�)=V (��) = 1

3
,

one derives that � = 5
6
. In other words, a consistent solution is pb1 = pb2 = 0, pb3 = p

g

3 =

p
g

2 =
1
2
and p

g

1 2 [1
2
; 1] for � = 5

6
. Obviously, R(PH; 5

6
) = 1

3
.
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In the point E{C{D, p
g

1 =
1
2
, pb1 = pb2 = 0 (from Figure 6). Equation A.25 amounts

to V (~�)=V (��) < 1
3
, whereas both Equations A.26 and A.27 require V (~�) = 0, where

V (~�) = 5
8
� � 1

2
and V (��) = 5

8
. That is, pb1 = pb2 = 0, pb3 = p

g

3 = p
g

2 = p
g

1 =
1
2
solves the

optimization problem for � = 5
4
. Hence, R(PH; 5

4
) = 0.

In the point B{C{D, pb1 = pb2 = 1
2
(from Figure 6) and p

g

1 2 [1
2
; 1]. Both Equa-

tion A.25 and A.26 amount to V (~�)=V (��) = 1
3
, whereas Equation A.27 requires

V (~�) < V (��). For these values of (pb; pg), V (~�) = 1
2
+ 1

4
p
g

1��(
5
8
) and V (��) = 1

4
+ 3

4
p
g

1�

�(5
8
). These expressions can be made consistent with the condition V (~�)=V (��) = 1

3

if and only if � = 1. However, for � = 1, 1
3
is not the minimum value of V (~�)=V (��).

The minimum value is attained in region E : R(PH; 1) = 1
5
.

Finally the point A{B{C{E. Here pb1 = 1=4 from Figure 6, but pb1 = 0 from Equa-

tion A.26. These requirements are inconsistent.

The case of � = 0 becomes particularly easy when � = PH, as the �rst order

conditions of Equation A.24 reduce to Equation A.25. When V (~�)=V (��) < 1
3
, p

g

1 =
1
2
,

and so p
g

1 = p
g

2 = p
g

3. That is, V (~�) = V (��). This violates V (~�)=V (��) < 1
3
. If

V (~�)=V (��) = 1
3
, then 3

�
1
2
+ 1

4
p
g

1

�
= 1

2
+ 3

4
p
g

1 must hold. This is impossible for all

p
g

1. Finally, if V (~�)=V (��) > 1
3
, then p

g

1 = 1, and V (~�)=V (��) equals 3
4
. That is,

R(PH; 0) = 3
4
.

In case (iii), or � = O, the optimal allocation depends on the values of � and

(pb; pg) as speci�ed in Equations 8 and 7. The case, (iiiA), of ��(O) = (�a; �r; �) will

be discussed �rst, followed by (iiiB), ��(O) = (�r; �a; �). In any event, from Result 3,

we know that either ~�1 = (�; �r; �a) and ~�2 = (�; �a; �r) maximizes the drop in relative

performance.
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In (iiiA), with ��(O2) = (�a; �r; �) and ~� = ~�1, the �rst{order conditions Equa-

tions A.2{A.7 become

p
g

3V (
~�)� (p

g

3 � p
g

2)V (�
�)

V (��)2
= �8 � �7 (A.28)

(1� p
g

3)V (
~�)� (1� p

g

1)V (�
�)

V (��)2
= �7 � �6 (A.29)

(p
g

1 � p
g

2)V (
~�)� p

g

1V (�
�)

V (��)2
= �6 � �5 (A.30)

(pb3 � pb2)V (�
�)� pb3V (

~�)

V (��)2
= �2 � �1 (A.31)

(1� pb1)V (�
�)� (1� pb3)V (

~�)

V (��)2
= �3 � �2 (A.32)

pb1V (�
�)� (pb1 � pb2)V (

~�)

V (��)2
= �4 � �3 (A.33)

In Equation A.28, p
g

3 � p
g

2 � 0, and so �8 � �7 > 0 or �8 > 0, implying p
g

1 = 1.

Substituting p
g

1 = 1 into Equation A.29, one observes that if p
g

3 < 1, then �7 � �6 > 0

or �7 > 0, which amounts to p
g

2 = p
g

1. If, on the other hand, p
g

3 = 1, then p
g

1 = p
g

2 = 1

by assumption. That is, Equation A.29 always requires p
g

1 = p
g

2 = 1. Equation A.30

implies �6 � �5 < 0 or �5 > 0. That is, p
g

3 = 1
2
. Hence, if � = 0, in which case one

is only interested in the solution for p
g

1, p
g

2, and p
g

3, R(O2; 0) =
1
2
. In Equation A.32,

1 � pb1 � 1 � pb3, and therefore �3 � �2 > 0 or �3 > 0, implying pb2 = pb3. Using this

equality, and assuming pb3 > 0, one derives from Equation A.31 �2 � �1 < 0 or �1 > 0.

That is pb1 = 0. If, on the other hand, pb3 = 0, then pb1 = 0 by assumption. That is,

Equation A.31 always requires pb1 = 0. Substituting this value into Equation A.33,

one obtains �4 � �3 > 0 if pb2 > 0, i.e., �4 > 0 or pb3 = 1
2
. If, on the other hand,

pb2 = 0, then �4 � �3 = 0. In other words, there are two possible vectors. The

�rst is pb1 = 0, pb2 = pb3 = p
g

3 = 1
2
, and p

g

2 = p
g

1 = 1. With these values of (pb; pg),
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V (~�) = 1
2
�

1
2
� and V (��) = 1 � 1

4
�, and therefore R(O2; �) =

1

2
�

1

2
�

1� 1

4
�
. The second

vector is pb1 = pb2 = pb3 = 0, p
g

3 =
1
2
, and p

g

2 = p
g

1 = 1. Then V (~�) = 1
2
and V (��) = 1,

and so R(O2; �) =
1
2
. Clearly, in the former case the drop in performance is larger than

in the latter case. In other words, the vector that maximizes the drop in pro�tability

equals pb1 = 0, pb2 = pb3 = p
g

3 =
1
2
, and p

g

2 = p
g

1 = 1. Hence, for ~� = ~�1 R(O2; �) =
1

2
�

1

2
�

1� 1

4
�
.

If ��(O) = (�a; �r; �), but ~� = ~�2, the �rst{order conditions of Equations A.2{A.7

become

p
g

3V (
~�)� (p

g

2 � p
g

3)V (�
�)

V (��)2
= �8 � �7 (A.34)

(1� p
g

3)V (
~�)� p

g

1V (�
�)

V (��)2
= �7 � �6 (A.35)

(p
g

1 � p
g

2)V (
~�)� (1� p

g

1)V (�
�)

V (��)2
= �6 � �5 (A.36)

(pb2 � pb3)V (�
�)� pb3V (

~�)

V (��)2
= �2 � �1 (A.37)

pb1V (�
�)� (1� pb3)V (

~�)

V (��)2
= �3 � �2 (A.38)

(1� pb1)V (�
�)� (pb1 � pb2)V (

~�)

V (��)2
= �4 � �3 (A.39)

From Equation A.35, 1 � p
g

3 < p
g

1, and therefore �7 � �6 < 0. That is, �6 > 0 or

p
g

2 = p
g

3. Substituting this equality into Equation A.34, one notes that �8 > 0 or

p
g

1 = 1. Equation A.36 does not provide any additional information at this stage.

From Equation A.39, 1� pb1 > pb1 � pb2, and therefore �4 � �3 > 0. That is, �4 > 0 or

pb3 =
1
2
.

Substituting this value into Equation A.38 and observing that pb2 � pb3 � 0 one

obtains �1 > 0 or pb1 = 0. Substituting pb1 = 0 into Equation A.39, one notes that

�2 > 0 or pb1 = pb2. That is, p
b

1 = pb2 = 0, pb3 =
1
2
, p

g

3 = p
g

2 and p
g

1 = 1. The value of p
g

3
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remains to be determined. The function to be maximized reduces to

1
2
� � p

g

3

p
g

3(2� p
g

3)
(A.40)

subject to 1
2
� p

g

3 � 1. For an interior solution p
g

3 should solve
�p

g

3

2

+�p
g

3��

[p
g

3(2�p
g

3)]
2

= 0. For

the solution to this problem to be a real number � > 4 must hold. However, for such

values V (~�) < 0. Therefore, one has to look for a boundary solution. If p
g

3 = 1
2
,

R(O2; �) =
2
3
�

2
3
�, whereas for p

g

3 = 1, R(O2; �) = 1� 1
2
�. Since 1� 1

2
� > 2

3
�

2
3
�, the

drop in relative performance is maximized when p
g

3 =
1
2
. Hence, R(O2; �) =

2
3
�

2
3
�.

One observes that R(O2; �) is smaller if ~�1 than in case of ~�2. In other words, ~�1

maximizes the drop in relative performance.

In case (iiiB), ��(O) = (�r; �a; �). If ~�1 = (�; �r; �a), the �rst{order conditions of

Equations A.2{A.7 become

(1� p
g

3)V (
~�)� (p

g

3 � p
g

2)V (�
�)

V (��)2
= �8 � �7 (A.41)

p
g

3V (
~�)� (1� p

g

1)V (�
�)

V (��)2
= �7 � �6 (A.42)

(p
g

2 � p
g

1)V (
~�)� p

g

1V (�
�)

V (��)2
= �6 � �5 (A.43)

(pb3 � pb2)V (�
�)� (1� pb3)V (

~�)

V (��)2
= �2 � �1 (A.44)

(1� pb1)V (�
�)� pb3V (

~�)

V (��)2
= �3 � �2 (A.45)

pb1V (�
�)� (pb2 � pb1)V (

~�)

V (��)2
= �4 � �3 (A.46)

Analysis similar to that conducted in case (iiiA) for ~� = ~�2 shows that p
b

1 = 0, pb2 = pb3,

p
g

3 =
1
2
, p

g

2 = p
g

1 = 1. With this information, the function to be maximized reduces to

�pb3 �
1
2

1� �[p
g

3]
2

(A.47)
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subject to 0 � pb3 �
1
2
. For an interior solution pb3 should solve

�pb3
2

�p
g

3+1

[1��[p
g

3]
2]2

= 0. For the

solution to this problem to be a real number � < 1
4
must hold. For these admissible

values of �, the solution pb3 62 [0; 1
2
]. Therefore, one has to look for a boundary solution.

If pb3 = 1
2
, R(O1; �) =

1
2

1��

1� 1

4
�
, whereas for pb3 = 0, R(O1; �) =

1
2
. As 1��

1� 1

4
�
< 1, the

solution to the optimization problem is pb3 = 1
2
, and therefore R(O1; �) =

1
2

1��

1� 1

4
�
if

~� = ~�1.

If ~� = ~�2, however, the �rst{order conditions of Equations A.2{A.7 become

(1� p
g

3)V (
~�)� (p

g

2 � p
g

3)V (�
�)

V (��)2
= �8 � �7 (A.48)

p
g

3V (
~�)� p

g

1V (�
�)

V (��)2
= �7 � �6 (A.49)

(p
g

2 � p
g

1)V (
~�)� (1� p

g

1)V (�
�)

V (��)2
= �6 � �5 (A.50)

(pb2 � pb3)V (�
�)� (1� pb3)V (

~�)

V (��)2
= �2 � �1 (A.51)

pb1V (�
�)� pb3V (

~�)

V (��)2
= �3 � �2 (A.52)

(1� pb1)V (�
�)� (pb2 � pb1)V (

~�)

V (��)2
= �4 � �3 (A.53)

Analysis similar to that conducted in case (iiiA) for ~� = ~�1 shows that p
b

1 = pb2 = 0,

pb3 = p
g

3 = p
g

2 =
1
2
and p

g

1 = 1. Therefore, R(O1; �) =
2
3
�

2
3
�. Note that R(O1; �) is

smaller for ~�1 than for ~�2. Hence, ~�1 maximizes the drop in relative performance.

Summing up, in (iiiA), ��(O) = (�a; �r; �) and in (iiiB), ��(O) = (�r; �a; �). In

either case, ~�1 = (�; �r; �a) and (pb; pg) = (0; 1=2; 1=2; 1=2; 1; 1) maximize the drop in

relative performance. We now have to check for these values of (pb; pg) whether ��(O) =

(�a; �r; �) or �
�(O) = (�r; �a; �) maximizes expected pro�ts. Using Equation 8, with

�1 = (�a; �r; �) and �
2 = (�r; �a; �), one can easily see that V (�

1; �;O)�V (�3; �;O) =
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0 for the vector (pb; pg) under consideration. 2

Proof of Lemma 1 Di�erentiating H with respect to p
g

1 yields

@H

@p
g

1

=
4

3
p
g

1 �
2

3
[p

g

2 + p
g

3]
�

�

4

3
p
g

1 �
4

3
p
g

2 (A.54)

where (*) uses p
g

2 � p
g

3. That is, if p
g

1 > p
g

2, then
@H

@p
g

1

> 0, and so p
g

1 = 1. If p
g

1 = p
g

2,

obviously p
g

3 < p
g

2 (otherwise agents would be identical as far as good projects are con-

cerned, implying Hg = 0), and di�erentiating H with respect to p
g

2, and substituting

p
g

1 = p
g

2 yields
@H

@p
g

2

= 4
3
(p

g

2 � p
g

3) > 0. That is, if p
g

1 = p
g

2, then p
g

2 as large as possible,

or p
g

1 = p
g

2 = 1. In any event, p
g

1 = 1. Similar analysis shows that in any event p
g

3 =
1
2
.

With this information @H

@p
g

2

= 4
3
p
g

2 �
2
3
. That is, p

g

2 2

�
1
2
; 1
	
. In any event H = 1

6
.

Clearly, heterogeneity is maximized when either (p
g

3; p
g

2; p
g

1) equals (
1
2
; 1
2
; 1) or (1; 1

2
; 1).

By the same token, when projects are bad, the spread is maximized when (pb3; p
b

2; p
b

1)

equals (0; 1
2
; 1
2
) or (0; 0; 1

2
). 2

Proof of Result 5 This follows directly from a comparison of the vectors (pb; pg)

reported in Table 1 and Lemma 1. 2

Proof of Proposition 2 This can be seen by applying De�nition 6 to the fourth

column of Table 2. 2
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