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initiated clinical trials evaluating the efficacy of these novel 
SSA in patients with CD, with the aim to lower circulating 
ACTH and cortisol levels by targeting multiple ssts on the 
corticotropic adenoma cells. In this minireview, the effects of 
SS in the regulation of normal and tumoral ACTH secretion, 
the role of sst subtypes involved herein, as well as the poten-
tials of novel SSA in the treatment of patients with recurrent 
or persisting CD are discussed.  Copyright © 2010 S. Karger AG, Basel 

 Introduction 

 Somatostatin (SS) was originally characterized as a hy-
pothalamic peptide with a direct inhibitory activity on 
the secretion of growth hormone (GH) by the anterior 
pituitary gland  [1] . Since this original discovery, numer-
ous studies have established that SS exists in two molecu-
lar forms in the circulation, i.e. a 14- and a 28-amino acid 
cyclic peptide, named SS-14 and SS-28, respectively. Both 
peptides have a widespread biological activity due to the 
presence of SS receptors (sst) in many organ systems, in-
cluding the brain, the pituitary gland, the gastrointesti-
nal tract, pancreas and adrenals  [2, 3] . ssts are seven-
transmembrane receptors that are coupled to G-proteins 
and of which five subtypes, named sst 1 , sst 2 , sst 3 , sst 4  and 
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 Abstract 

 Normal and tumoral pituitary corticotropic cells express sst 2  
and sst 5 , of which sst 5  is the predominantly expressed recep-
tor subtype. Somatostatin (SS) inhibits pituitary adrenocor-
ticotropin hormone (ACTH) secretion in vitro, but the sensi-
tivity to SS is strongly regulated by glucocorticoids. In patho-
logical conditions of a low endogenous cortisol level, i.e. in 
patients with adrenal insufficiency and in patients with Nel-
son’s syndrome, SS and sst 2 -preferring SS analogs (SSA), such 
as octreotide, are able to lower circulating ACTH and cortisol 
levels. On the other hand, sst 2 -preferring SSA seem not ef-
fective in lowering ACTH and cortisol levels in patients with 
untreated Cushing’s disease (CD), in which circulating corti-
sol levels are high. This is likely due to the downregulation of 
sst 2  receptors by glucocorticoids. sst 5  receptor expression is 
more resistant to the inhibitory effect of glucocorticoids. In 
recent years, novel sst subtype-selective and universal SSA 
have been developed. In particular, SSA with a high sst 5 -
binding affinity are potent inhibitors of ACTH secretion by 
pituitary corticotropic adenoma cells. This knowledge has 
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sst 5 , have been identified. On the basis of structural and 
pharmacological characteristics, two subclasses have 
been identified. To one class of sst, consisting of sst 2 , sst 3  
and sst 5 , structural SS analogs (SSA), such as octreotide 
and lanreotide, bind with high affinity, whereas these 
SSA do not bind to the other class of sst, consisting of sst 1  
and sst 4  ( table 1 )  [4] . Among the multiple physiological 
effects of SS is its potent inhibitory effect on pituitary hor-
mone secretion  [2, 3] . SS is considered as a physiological 
regulator of GH secretion. In vitro, the peptide inhibits 
the secretion of GH, prolactin (PRL), thyroid stimulating 
hormone (TSH), as well as adrenocorticotropin hormone 
(ACTH) by rat anterior pituitary cells, although its effects 
are strongly influenced by the respective physiological 
feedback hormones  [5] . In human fetal pituitary cell cul-
tures, SS inhibits the secretion of GH, TSH and PRL, 
whereas the release of ACTH and luteinizing hormone 
(LH) is only modestly influenced  [6] . The effects of SS on 
normal and tumoral ACTH secretion are strongly regu-
lated by glucocorticoids, representing the physiological 
feedback system  [5] .

  Role of Somatostatin Receptors in Normal 

Corticotropic Cells 

 In normal rat corticotropes, all five sst colocalize with 
ACTH-expressing cells  [7] . In another study, it was dem-
onstrated that sst 5  mRNA is expressed in 38% of cortico-
tropes, whereas the expression of sst 2  mRNA is found in 
only 3% of the corticotropic cell population  [8] . By im-
munohistochemistry,  ! 60% and 10–20% of rat cortico-
tropic cells express detectable sst 2A  and sst 5  at the protein 
level, respectively  [9] . In vitro, SS does not inhibit basal 
and CRH-induced ACTH release by normal rat anterior 
pituitary cells  [10, 11] , whereas CRH- and vasopressin-
induced ACTH release is inhibited in cultured pituitary 

cells from long-term adrenalectomized rats  [12] . In se-
rum-deprived or in rat pituitary cells pretreated with the 
glucocorticoid receptor-blocking compound RU-38486 
in vitro, SS inhibits CRH-stimulated ACTH secretion, 
but not in serum cultured cells. Moreover, pretreatment 
with dexamethasone abolished the inhibitory effect of SS 
on ACTH release  [5] . Therefore, it can be concluded that 
SS is able to inhibit CRH-induced ACTH secretion by rat 
pituitary cells in vitro, but primarily in the absence of 
glucocorticoids. 

  In humans, systemic SS infusion does not inhibit bas-
al or stimulated ACTH secretion  [13–15] . On the other 
hand, in patients with adrenal insufficiency, SS infusion 
lowers circulating ACTH and cortisol levels  [16] . These 
latter data again suggest the importance of the endoge-
nous cortisol level in the regulation of the inhibitory ef-
fects of SS on ACTH secretion by the anterior pituitary 
gland. In vivo evidence in rats shows the importance of 
both sst 2  and sst 5  receptors in the regulation of ACTH 
secretion. A 1-hour pretreatment of rats with 10  � g/kg 
pasireotide (targeting sst 2 , sst 3  and sst 5  receptors) inhib-
ited circulating ACTH and corticosterone levels by 51 
and 27%, respectively, whereas octreotide (sst 2 -preferring 
SSA) was significantly less potent (34% and no inhibition, 
respectively) at this dosage  [17] . These data suggest that 
the combined activation of both sst 2  and sst 5  receptors in 
corticotropic cells results in a more potent suppression of 
ACTH secretion compared with the selective targeting of 
sst 2  alone.

  In conclusion, endogenous glucocorticoid levels mod-
ulate the effects of SS on ACTH secretion by normal pi-
tuitary corticotropes. SS has an inhibitory effect on pitu-
itary ACTH secretion, particularly when cortisol levels 
are low.

Table 1.  Binding affinities (IC50 in nM) of the current clinically used SS analogs, octreotide and lanreotide, and 
of the universal SS ligand pasireotide to the human sst subtypes

Compound sst1 sst2 sst3 sst4 sst5

SS-14 0.9–2.3a–d 0.2–0.3a–d 0.6–1.4a–d 1.5–1.8a–d 0.3–1.4a–d

Octreotide 280–1,140a–e 0.4–0.6a–e 7.1–34.5a–e >1,000a–e 6.3–7.0a–d

Lanreotide 180–2,330a–e 0.5–0.8a–e 14–107a–e 230–2,100a–e 5.2–17a–e

Pasireotide 9.3c 1.0c 1.5c >100c 0.2c

D ata are derived from references a [36], b [6], c [37], d [38], e [39].
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  Role of Somatostatin Receptors in Corticotropic 

Adenoma Cells 

 Already in 1981, Richardson and Schonbrunn  [18]  
showed the presence of SS-binding sites in the ACTH-
secreting AtT20/D16V mouse corticotropic tumor cell 
line and demonstrated inhibition of ACTH secretion by 
SS in vitro  [18] . Since the cloning and characterization of 
the five sst, also the expression of these sst subtypes in 
human corticotropic adenomas has been evaluated. Hu-
man corticotropic adenomas show a predominant ex-
pression of sst 5  mRNA, whereas the majority of adeno-
mas express sst 2  mRNA as well. Compared with sst 2  
mRNA, sst 5  mRNA expression has been reported to be 
approximately 5- to 10-fold higher  [19–23] . Limited stud-
ies have evaluated the expression of sst 2  and sst 5  receptors 
at the protein level. Batista et al.  [19]  showed that sst 5  had 
the highest immunohistochemistry score, compared 
with sst 1 , sst 2 , sst 3  and sst 4  protein expression, in 83% of 
a series of 13 corticotropic adenomas, while in another 
small series of three corticotropic adenomas, Hassaneen 
et al.  [24]  showed an absence of sst 5  immunostaining. The 
reason for these discordant results is unclear, but may be 
the result of the use of different antibodies. Coexpression 

of sst 1  receptors has been reported in only a proportion 
of corticotropic adenomas  [20–23] . Interestingly, in silent 
corticotropic adenomas a considerable higher sst 1  and 
sst 2 , but lower sst 5  mRNA expression was found, com-
pared with corticotropic adenomas causing Cushing’s 
disease (CD)  [20] .

  In primary cultures of corticotropic adenomas the 
universal SSA pasireotide (high sst 2 -, sst 3 - and sst 5 -bind-
ing affinity) was significantly more potent in inhibiting 
ACTH secretion, compared with the sst 2 -preferring SSA 
octreotide  [22] . Following a 72-h incubation, octreotide 
(10 n M ) inhibited ACTH secretion by 28% in only 1 of 5 
cultures, whereas pasireotide (10 n M ) induced significant 
suppression of ACTH secretion in 3 of 5 cultures (30–
40% suppression)  [22] . Moreover, Batista et al.  [19]  dem-
onstrated significant suppression of ACTH secretion in 5 
of 6 cultures (23–56% suppression). In AtT20 cortico-
tropic adenoma cells, both pasireotide, as well as sst 5 -se-
lective SSA were more potent inhibitors of basal and 
CRH-induced ACTH secretion, compared with sst 2 -pre-
ferring SSA ( fig. 1 )  [22, 25] .  Figure 1 a shows that AtT20/
D16V cells selectively express sst 2  and sst 5  mRNA. More-
over, pasireotide inhibits ACTH secretion with an IC 50  of 
0.2 n M , whereas octreotide induced a significant suppres-
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  Fig. 1.   a  Expression of sst 2  and sst 5  subtypes in mouse AtT20 pi-
tuitary tumor cells. Poly A +  mRNA was reverse transcribed and 
cDNA was amplified by PCR. PCR products of the sst 1–5  were 
separated on 1% agarose gel and stained with ethidium bromide. 
Upper panel: cDNA synthesis in the presence of reverse transcrip-
tase (+RT); lower panel: negative control of cDNA synthesis in the 
absence of RT (–RT) to exclude the presence of genomic DNA con-
tamination. Only bands of sst 2 , sst 3  and sst 5  PCR products with 
the expected molecular weight (MW) were detected. HPRT: 

house-hold keeping gene hypoxantine-phosphoribosyl-transfer-
ase.  b  Dose-dependent effect of SOM230 (pasireotide) and octreo-
tide (OCT) on basal ACTH release by mouse AtT20 pituitary tu-
mor cells. AtT20 cells were incubated during 72 h without or with 
increasing concentrations of OCT (open circles) or SOM230 
(closed circles) after which the medium was collected for ACTH 
determination. Values are expressed as the % of control (untreat-
ed) cells.  *  p  !  0.05 and  *  *  p  !  0.01 vs. control. Adapted with per-
mission from Hofland et al. [22]. 
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sion of ACTH release only at 100 n M . These effects clear-
ly indicate that ACTH secretion is inhibited in a ‘sst 5 -like’ 
fashion, in agreement with the binding affinities of pa-
sireotide and octreotide to sst 2  and sst 5  ( table 1 ). Recently, 
it was shown that sst 5  determines both the short- and 
long-term enhanced action of pasireotide in corticotropic 
tumor cells, whereas the ligand action on sst 2  is negligi-
ble. Short-term exposure to pasireotide caused prolonged 

signaling in terms of forskolin- or CRH-induced cAMP 
accumulation, in contrast to SS-14 and sst 2 -selective ago-
nists that induced a postwithdrawal cAMP rebound  [26] . 

  In conclusion, sst 5  receptors are expressed at a signifi-
cant level in corticotropic adenomas and seem a target to 
lower tumoral ACTH secretion with sst 5 -preferring SSA. 

  Regulation of Somatostatin Receptor Expression by 

Glucocorticoids 

 The observation that SS and the sst 2 -preferring SSA 
octreotide do not inhibit circulating ACTH levels in pa-
tients with untreated CD  [27, 28] , in combination with
the inhibitory effects of SS on ACTH levels in patients 
with adrenal insufficiency (Addison’s disease)  [16]  and 
Nelson’s syndrome  [27, 29] , suggests that glucocorticoids 
have a negative regulatory role on the expression of sst 
receptors, particularly sst 2 , and indicates that SS is a po-
tent inhibitor of ACTH secretion in patients with elevated 
ACTH levels due to a lack in steroid feedback. Downreg-
ulation of SS-binding sites on AtT20 corticotropic tumor 
cells was previously shown by Schonbrunn  [30] . More re-
cently, we found that dexamethasone treatment of AtT20 
cells induced a significant suppression of sst 2  mRNA ex-
pression, whereas sst 5  mRNA expression was not signifi-
cantly affected  [25] . Moreover, the number of binding 
sites for the sst 2 -preferring SSA octreotide was lowered by 
72% by dexamethasone treatment, whereas the total 
number of binding sites for SS-14 was lowered only by 
17%. These data suggest that the sst 5  protein expression, 
compared with sst 2 , is more resistant to downregulation 
by glucocorticoids. The functional consequence of this 
effect was further underlined by the observation that the 
effects of octreotide on CRH-induced ACTH secretion by 
AtT20 cells were abolished by dexamethasone treatment, 
whereas pasireotide potently suppressed CRH-induced 
ACTH secretion, even in the presence of 10 n M  dexa-
methasone ( fig. 2 )  [25] .

  In conclusion, sst 2  receptor expression on cortico-
tropic adenoma cells is downregulated by glucocorti-
coids, whereas sst 5  receptor expression is less sensitive to 
this downregulation. These data may form an explana-
tion for the low sst 2  and relatively high sst 5  expression 
levels in corticotropic adenomas of patients with CD. 
Moreover, these observations may explain the lack of ef-
ficacy of sst 2 -preferring SSA in patients with CD and sug-
gest an enhanced potency of sst 2 –sst 5  targeting SSA on 
ACTH secretion by corticotropic adenomas.
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  Fig. 2.  Effect of glucocorticoids on octreotide (OCT) and SOM230 
(pasireotide) mediated inhibition of CRH-stimulated ACTH re-
lease by mouse AtT20 pituitary adenoma cells. AtT20 cells were 
preincubated during 48 h without or with 10 n M  dexamethasone 
(Dex). After 48 h, the medium was refreshed and the cells were 
incubated for 3 h in the absence or presence of Dex, CRH (10 n M ) 
and OCT (1 n M ) or SOM230 (1 n M ) after which the medium was 
collected for ACTH determination.  *  p  !  0.01 vs. control,  #  p  !  
0.01 vs. CRH alone. Adapted with permission from Hofland et al. 
[22]. 
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  Outlook 

 The observation that sst 5  receptors are expressed at 
significant levels in human corticotropic adenomas, to-
gether with the more important role of sst 5 , compared 
with sst 2 , in the regulation of tumoral ACTH secretion, 
has initiated clinical trials testing the efficacy of the uni-
versal SSA pasireotide in patients with CD. Promising re-
sults of a first phase II clinical study with pasireotide in 
CD have been recently reported  [31] . On the basis of the 
potent inhibitory effect of glucocorticoids on sst 2  expres-
sion in corticotropic adenoma cells, it can be hypothe-
sized that lowering of circulating cortisol levels in pa-
tients with CD results in an upregulation of sst 2  expres-
sion on the corticotropic adenoma, thereby further con-
tributing to an ACTH-lowering effect of sst 2 –sst 5  tar-
geting SSA. This lowering of circulating cortisol in 
patients with recurrent or persisting CD may be achieved 
with sst 2 –sst 5  targeting SSA, but also with dopamine D2 
agonists, such as cabergoline, or with drugs inhibiting 
cortisol production at the adrenal level, such as ketoco-
nazole. Corticotropic adenomas express D2 in about 70% 

of the cases  [32]  and cabergoline induces long-term nor-
malization in approximately 40% of patients with CD un-
successfully treated by surgery  [33] . D2 mRNA receptor 
expression in corticotropic adenomas is significantly 
higher compared to sst 5  and sst 2  mRNA expression  [21, 
23] . Interestingly, unlike sst 2 , but comparable to sst 5 , D2 
receptor expression seems not under the negative regula-
tory control by glucocorticoids  [34] . We recently found 
that biochemical remission can be achieved in 90% of pa-
tients with CD (n = 17) with pasireotide monotherapy 
(29%), with combined pasireotide-cabergoline treatment 
(in an additional 24%) and in another 35% with triple 
therapy with pasireotide, cabergoline and ketoco nazole 
[ 35 , and this issue]. Therefore, a future approach for med-
ical treatment of recurrent or persistent CD may involve 
combination therapy with drugs that have additive or po-
tentiating effects. 
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