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Genetics and population analysis
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ABSTRACT

Summary: The current fast growth of genome-wide association
studies (GWAS) combined with now common computationally
expensive imputation requires the online access of large user groups
to high-performance computing resources capable of analyzing
rapidly and efficiently millions of genetic markers for ten thousands
of individuals. Here, we present a web-based interface—called
GRIMP—to run publicly available genetic software for extremely large
GWAS on scalable super-computing grid infrastructures. This is of
major importance for the enlargement of GWAS with the availability
of whole-genome sequence data from the 1000 Genomes Project
and for future whole-population efforts.

Contact: ta.knoch@taknoch.org; f.rivadeneira@erasmusmc.nl

1 INTRODUCTION

By 2008 more than 150 associations between common genetic
variants and human complex traits and disease have been
successfully identified through the use of GWAS (Altshuler ef al.,
2008). It rapidly became evident that very large samples sizes
are required to detect variants with modest genetic effects (e.g.
a study requires ~8600 samples to have 90% of power to find
genetic variants with a frequency of 0.20, an odds ratio of 1.2
and a genome-wide significance of 10~8). Such study sizes are
achieved by meta-analysis of data shared collaboratively in consortia
analyzing 100s of traits in greater than ~40000 individuals (e.g.
Psaty et al., 2009). Since they use different genotyping platforms
(e.g Affymetrix, [llumina), imputation of millions of markers from a
reference (e.g. a HapMap population) is required (de Bakker et al.,
2008; International HapMap Consortium et al., 2007). Statistical
methods as linear or logistic regressions measure marker wise
the actual association of the genetic variants with quantitative
and binary diseases and traits. Freely available software like
MACH2QTL/DAT (Li et al., 2006), SNPTEST (Marchini et al.,
2007) or ProbABEL (Aulchenko et al., 2007) perform similarly well
for these analyses and allow trivial parallelization for distributed
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computing: the computation time on a regular computer for one
continuous trait (~2.5 million markers, ~6000 samples) is currently
~6h. Assuming linear scaling future studies with ~50 million
markers from genome sequencing in 109-10° samples and even low
(1%) allele frequencies can result in approximately >85-850 days
of analysis. Thus, secure, fast accessible web services and scalable
high-performance computing grid infrastructures as the Erasmus
Computing Grid (de Zeeuw et al., 2007) or the German MediGRID
(Krefting et al., 2008) are required to make this analysis feasible.
Here, we present a web-based interface and application to run
publicly available genetic software for extremely large GWAS
on such super-computing grid infrastructures. Consequently, we
provide a solution to analyze GWAS in very large populations.

2 IMPLEMENTATION

To achieve high-speed result delivery, the work is split and
distributed on different grid processors by trivial parallelization
depending on the total data amount. The complete system consists
of (i) the user remote access computer; (ii) a web server with user
webservices and a data/application database; (iii) a submit machine
with a job handler and a grid resource database; and (iv) grid
resources with head nodes and execution nodes. The implementation
consists of a hardened Linux system, which has a hardened apache2
web server and a PostgreSQL database. Php is used for the web
site and the job-handler is scripted in Perl. Concerning security,
data transmission is encrypted and complete user separation is
applied. Currently, the system administrator manages user accounts
and monitors user access, job status and statistics. He also uploads
the GWA imputed data to all available grid head nodes for each
genotyped cohort, since it is of large size and the same for all
cohort phenotypes. Thus, only the phenotype information has to
be uploaded by the GRIMP user to the system, which controls the
detailed workflow (Fig. 1).

2.1 User package submission

After logging into the system the users manually specify the
analysis details: they label the analysis and select a regression
model (currently, linear and logistic models), dataset and optionally
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Fig. 1. Structure of the work flow of GRIMP consisting of (i) remote user
access, (ii) a web server with web services and a data/application database,
(iii) a submit machine with job handler and grid resource database and (iv)
grid resources with head nodes and execution nodes.

a gender stratified or combined analysis. Additional individual-
phenotype links and phenotype specifying annotation files can now
be uploaded to the database as well. Further covariates (specified
in the phenotype file) can also be annotated. After choosing
the progress notification scheme, the user submits the process
package.

2.2 Package preprocessing

The phenotype file is transformed to fit the format required by
the analytical application implemented (currently, mach2qtl and
mach2dat for linear and logistic regression, are freely available
at http://www.sph.umich.edu/csg/abecasissMACH/download/). In
principle, any GWA analysis software can be used here and installed
in the application database.

2.3 Job submission to the grid infrastructure

An implemented job handler periodically checks the database for
newly submitted packages and also checks for the workload on the
grid head nodes for available capacity to split the packages properly
into jobs to be distributed to an individual grid part. To avoid queue
overflow, each head node has a predefined amount of jobs that can be
queued. Thereafter, the job handler creates a submit file and packages
to be uploaded to the individual grid head node. The local respective
grid middleware will handle the jobs of the package for these specific
grid infrastructures. Currently, we use here the Globus toolkit, but
in principle any grid driving middleware can be used here. For high-
speed delivery the individual jobs have highest priority compared
with other and filler jobs.

2.4 Job/package monitoring

The job handler checks every 5 min the database for sent jobs and
verifies the current status of the individual jobs distributed to a CPU
through the middleware on the specific grid head node. An individual
failed job is resubmitted up to three times. After all individual jobs
of a package are completed, the results are uploaded to the database
and the package on the head node is removed. In case of complete
failure, the job handler will remove all jobs of the package on the
head node including the uploaded package and a failure notification
is sent.

2.5 Package post-processing and notification

Once all jobs of a package were finished, all individual result files are
combined into one file together with additional marker annotations
such as chromosome, position, allele frequency, sample size and
quality of the imputed markers. The results are archived in the
database for later analysis and the result files are compressed to
save disk space. Depending on the choice of notification the user is
now informed—e.g. by email.

3 RESULTS AND CONCLUSIONS

Through a web-based interface the successful implementation of
GRIMP allows to use publicly available genetic software for very
large GWAS on scalable super-computing grid infrastructures such
as the Erasmus Computing Grid or the German MediGRID within
an hour. The analysis of ~2.5 million markers and ~6000 samples
now takes ~12min in contrast with ~6h. For ~107 markers and
~10° samples, we achieve ~10-20 min, in contrast with ~400h,
i.e. ~17 days for a single CPU. Thus, GRIMP will improve the
learning curve for new users and will reduce human errors involved
in the management of large databases. Consequently, researchers and
other users with little experience will largely benefit from the use of
high-performance grid computing infrastructures. Since each Grid
infrastructure has different middleware setups, adjustments might
be needed for each particular GRIMP implementation. Currently,
we have successfully setup GRIMP for the Rotterdam Study, a
prospective population-based cohort study of chronic disabling
conditions in >12000 Dutch elderly individuals (http:/www.
epib.nl/ergo.htm; Hofman et al., 2007). Thus, with its user-friendly
interface GRIMP gives access to distributed computing to primarily
biomedical researchers with or without experience, but with extreme
computational demands. This is of major importance for the
enlargement of GWAS with the availability of whole-genome
sequence data from the 1000 Genomes Project and for future
whole-population efforts.
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