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Introduction

Approximately half of tumors encountered in the brain represent metastases from 

neoplasms located elsewhere in the body. A large part of the other half represents 

meningiomas arising from the membranes covering the brain. The remaining group consists 

of so-called primary brain tumors, which are tumors arising from the cellular components 

of brain tissue itself. Most of these tumors are called gliomas because they putatively arise 

from glial cells. Gliomas are the most frequently encountered subtypes of primary brain 

tumors. Glial tumor cells still display signs of glial differentiation to some extent [1].  

Relative to the major cancers affecting humans like lung-, breast -, colonic - and prostate 

cancer, glial neoplasms are only a minority. The morbidity and mortality of this group is, 

however, highest of all. Hence, the impact of these tumors on the well-being of the patients 

and the economic consequences thereof warrants research efforts comparable to those 

undertaken in the major cancer groups. In several respects gliomas differ from other tumors. 

They hardly ever metastasize. Further, neoplastic glial cells infiltrate brain tissue diffusely by 

mechanisms of migration. Because of the diffuse infiltrative character there are no clear-cut 

tumor borders and therefore, radical surgery is never possible. Another peculiarity of 

gliomas is their continuous metamorphosis: over time the tumors change their histological 

appearance. This goes along with increasing genetic instability. The tumors become more 

cellular; the cells more pleomorphic and finally necrotic areas appear. The metamorphosis 

goes along with an increase in blood vessels and a change in the structure of the blood 

vessel walls. Although gliomas are among the most vascularized tumors, it is surprising that 

anti-angiogenesis therapies have been relatively unsuccessful so far. To improve this 

situation it is necessary to increase the specificity of the therapeutic targets in the glioma 

vascularization.

Glioma neovascularization

Neovascularization and tumor cell invasion are essential processes for glioma development 

and growth[2]. Neovascularization is particularly important to the growth and progression 

of malignant gliomas and proliferation and hyperplasia of the cellular components of blood 

vessels are used as indicators of the degree of malignancy of glial tumors [3]. The high level 

of neovascularization offers targets for anti-angiogenic therapy with a potential impact on 

the proliferation of these tumors. Neovascularization is a complex process regulated by 

multiple stimulatory and inhibitory factors modulating the migration and/or proliferation 

of microvascular cells with the objective of formation of neovasculature from pre-existing 

vessels. It involves well-coordinated steps including the production and release of 

angiogenic factors, proteolytic degradation of extracellular matrix (ECM) components to 
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allow the formation of capillary sprouts, proliferation and directional migration of 

microvascular cells, finally resulting in the composition of new vessels [4]. Generally, neo-

vascularization falls apart into angiogenesis and vasculogenesis. These respective  

processes are witnessed in development and also in tumor neovascularization.

Angiogenesis or sprouting angiogenesis is the process characterized by the formation of 

new blood vessels which sprout from pre-existing vessels. In a non-neoplastic context, this 

process occurs both during development and in postnatal life [5, 6]. This pattern of neo-

vascularization, localized at the abluminal site of the vessels, is initiated by proteolytic 

degradation of the basement membrane, after which endothelial cells migrate into the 

extracellular matrix (ECM) and proliferate. Non-sprouting angiogenesis (also called  

intussusceptive angiogenesis) is an alternative mode of sprouting angiogenesis 

characterized by the protrusion of opposing microvascular walls (luminal sites) into the 

capillary lumen creating a contact zone between endothelial cells [7, 8]. Vasculogenesis is 

the in situ differentiation of primitive endothelial progenitors known as angioblasts into 

endothelial cells that aggregate into a primary capillary plexus. Vasculogenesis is 

predominantly responsible for the development of the vascular system during 

embryogenesis, but may also occur in postnatal neovascularization [9-11]. The de novo 

vessel formation takes place by the action of single endothelial cells (ECs) or endothelial 

precursor/progenitor cells (EPCs) [12], or non-canalized endothelial cell chains (NCECCs) [13] 

either shed from vessel walls or mobilized from bone marrow. Yet another mechanism of 

neovascularization which is restricted to tumors is that in which tumor cells take over host 

vessels (cooption) [13], or form perivascular cuffs around host vessels [14]. After this initial 

phase additional vascular growth and development of complex vascular beds, including 

continuous remodeling and adaptation, occurs predominantly by intussusceptive vascular 

growth (IVG) [7]. An important characteristic of IVG is that it is achieved by an exceedingly 

low rate of EC proliferation. As compared to sprouting angiogenesis, in IVG blood vessels 

are generated more rapidly in an energetically and metabolically more advantageous 

manner, as extensive cell proliferation, basement membrane degradation, and invasion of 

the surrounding tissue are not required [7].

Structural characteristics of blood vessels in glioma

The development of blood vessels in tumors differs significantly from physiological 

angiogenesis. The differences include the appearance of aberrant vascular structures in 

tumors, delayed maturation of the vessels, abnormal blood flow, altered endothelial 

cell-pericyte interactions and increased permeability. Endothelial cells in tumor vessels  

are mitotically active, leaky and their many functions and capabilities are disrupted or 
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altered. It is generally believed that tumor angiogenesis implements normal blood vessels 

which are recruited and transformed into vascular structures of abnormal distribution and 

cellular composition. There are indications that despite there are no morphological 

differences, ECs in high-grade gliomas differ in antigen expression from ECs in low-grade 

gliomas [15]. Rapid changes in antigen expression by the ECs have been observed already 

in early passages of cultured ECs. In the early passages there were marked phenotypical 

and functional differences between the ECs derived from low-grade- high-grade gliomas 

and normal brain [15]. In order to retrieve most genuine information from ECs it is necessary 

to use primary tissue materials, that is, in situ models for these investigations. Numerous 

factors, such as angioproteins and their Tie receptors [16], PDGF-B [17], monocyte 

chemotactic protein 1 [18], ephrins and Eph-B receptors [19, 20] are likely candidates for the 

activation of angiogenesis and mediation of endothelial-endothelial and endothelial- 

pericyte interactions [8]. Tumoral angiogenesis also depends on differential expression of 

organ-specific cytokines [21-23]. The capillary index of anaplastic gliomas is highest among 

that of other human tumors [24]. The degree of microvascular proliferation is variably 

correlated with anaplasia of the tumor cells and indices of tumor cell proliferation.  

In glioblastoma multiforme, the most common and most malignant glioma, angiogenesis 

usually takes the form of glomeruloid-like and sarcomatous structures [25]. Increased 

angiogenesis in high-grade astrocytomas is paralleled by an increased number and density 

of vessels. There is elongation of vessels and glomeruloid structures are more frequently 

seen [26]. The level of Ang1 expression under tetracycline control is correlated with the 

formation of the glomeruloid bodies in xenografts. Ang1 inhibition by blocking of its 

cognate receptor Tie2 had the opposite effect [27].

The neoplastic vascular structures are often, but not invariably, associated with necrosis 

and likely originate in hypoxic tumor areas [28]. Not only the physiological response to 

hypoxia but also genetic alterations, contribute to angioneogenesis. The presence of 

hypoxic regions within an expanding tumor mass leads to upregulation of pro-angiogenic 

factors, such as vascular endothelial growth factor (VEGF), through increased activity of the 

transcriptional complex HIF-1 (hypoxia-inducible factor-1) [29, 30]. HIF-1 mediated gene 

expression may be directly or indirectly modulated by alterations in oncogenes/tumor 

suppressor genes that occur during astrocytoma development, including PTEN, TP53, 

p16(CDKN2A), p14ARF, EGFR, and PDGFR [31-34]. Genetic alterations are also believed to 

influence the HIF-independent expression of pro- and anti- angiogenic factors, such as 

basic fibroblast growth factor (bFGF) and thrombospondin-1 (TSP-1), respectively [35]. 

Genetic events that occur during the progression of infiltrating astrocytomas promote 

angiogenesis, both by modulating hypoxia induced gene expression and by regulating of 

pro- and anti- angiogenic factors. 
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Glioma neovascularization and the Blood Brain Barrier

Capillaries of the normal brain consist of a continuous endothelium in which cells are joined 

by well developed and complex tight junctions; there are no fenestrae, and there are very 

few plasmalemmal vesicles. It is generally accepted that the maintenance of the blood brain 

barrier (BBB) is the result of the presence of the endothelial tight junctions, the lack of 

transcytotic vesicles, the basement membrane, and the tight junctions present among the 

astrocytic foot processes [36]. In glioma, an exceptionally high degree of vascularization is 

seen, but the microvessels characteristically lose their normal BBB properties and leak fluid 

into the neuropilema. The vasculature in gliomas is highly disordered, with numerous 

vascular shunts, irregular vascular diameters, wide inter-endothelial junctions, large 

numbers of fenestrated and transendothelial channels, and discontinuous or absent 

basement membranes [37, 38]. Cerebral edema is the consequence of the disfunction of 

this vasculature. Ultrastructural investigations of glioma blood vessels have revealed the 

opening of intermicrovessel endothelial cell tight junctions [5, 39, 40]. The tight junctions 

are formed by a group of molecules that comprise the proteins occludin, claudin and 

junctional adhesion molecules. In gliomas it has been noticed that the proteins forming the 

tight junctions are down-regulated [41-43]. Basically, these proteins are the morphological 

correlates for the BBB. A loss of tight junction proteins appears to be a central event in the 

opening of the BBB in gliomas. 

Pro- and anti-angiogenic factors 

For the process of blood vessel formation in gliomas a complex interplay between tumor 

cells, endothelial cells, and their surrounding basement membranes is involved. Several 

growth factors are involved. Over the last decades progress in the understanding of tumor 

angiogenesis has been made by the revelation of the hypothesized growth factors and 

their receptors acting on tumor and endothelial cells by paracrine/autocrine loops [44-46]. 

The several growth factors are distinguished in three classes [47]. The first class consists of 

factors specifically acting on endothelial cells, e.g., the families of Vascular Endothelial 

Growth Factor (VEGF) and of the angiopoietins [48]. The second class are direct-acting 

factors which activate a broad range of target cells besides endothelial cells, e.g., various 

cytokines, chemokines and angiogenic enzymes [49]. The third class consists of indirectly 

acting factors with an effect on angiogenesis resulting from the release of substances from 

macrophages, endothelial or tumor cells, e.g., tumor necrosis factor-alpha (TNF-α) and 

transforming growth factor-beta (TGF-β). Several of these growth factors exhibit angiogenic 

activity in the adult central nervous system (CNS) under reactive as well as neoplastic 

conditions. Several angiogenic stimulating factors have been identified in gliomas and 
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other tumors, including VEGF [50], platelet-derived growth factor (PDGF) [34, 51-53], basic 

fibroblast growth factor (bFGF) [54-57], TGF-beta [58, 59], and epidermal growth factor 

(EGF) [60]. These growth factors may influence glioma neovascularization by directly 

stimulating endothelial cell proliferation, by mediating the expression of key proteases on 

endothelial cells necessary for neovascularization, or by regulating the expression of VEGF, 

and interactions among themselves. Tumor neovascularization is believed to be mediated 

by these soluble factors released from tumor cells and such angiogenic factors may become 

useful markers of monitoring glioma activity or targets of anti-angiogenic therapy.

Angiogenesis appears to be a balance between angiogenic and anti-angiogenic factors. 

Some endogenous inhibitors of angiogenesis are known, e.g., angiostatin [61], endostatin 

[62], antithrombin [63], prolactin [64], thrombospondin [65], Troponin [66], IFN-α [67], IFN-γ 

[68], pigment epithelium-derived factor (PEDF) [69], CXCL10 (IP-10) [70], Platelet factor 4 

[71], interleukin-12 [72], interleukin 4 [73], vascular endothelial growth inhibitor (VEGI) [74], 

tissue inhibitor of metalloproteinases (TIMP) [75], plasminogen activator inhibitor 1 (PAI1) 

[76], retinoic acid [77], Angiopoietin-2 (Ang-2) [78], 2-methoxyoestradiol [79]. Anti- 

angiogenic factors may act either directly or indirectly on endothelial cells [80]. 

Anti-angiogenic treatment

The promising results obtained with anti-angiogeneic treatment in animal studies have 

raised high hopes for applications to brain tumor patients. Theoretically, anti-angiogenic 

agents are powerful weapons against cancer. However, there are serious limitations in their 

successful application regarding the rather disappointing results obtained in clinical trials 

so far. Precise understanding of the process of angiogenesis, particularly identification of 

tumor vessels-specific targets, should lead to new regimens for more efficient anti- 

angiogenic therapy [81]. In the past decade, more than eighty molecules that displayed 

anti-angiogenic activity in preclinical studies were tested in clinical trials, but most of them 

failed to demonstrate any measurable anti-tumor activity and none have been approved 

for clinical use [24]. Continued advances in understanding the mechanism of the angiogenic 

process at the biochemical and molecular levels has lead to the discovery of many 

proangiogenic factors as well as their inhibitors, and anti-angiogenic factors. The off-spin of 

research in angiogenesis has reached the stage of clinical trials [82]. Current strategies of 

inhibition of tumor angiogenesis [49, 80] imply the inhibition of pro-angiogenic factors;  

the application of natural anti-angiogenic substances like angiostatin or endostatin; the 

inactivation of endothelial cells and the inhibition of molecules which support invasiveness 

of new blood vessels in surrounding tissue. Several anti-angiogenic drugs are already being 

used in clinical trials of gliomas [83]. Unfortunately, phase 1 and 2 trials on treatment of 
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glioblastoma with vatalanib, a small molecule TKI against VEGFR2 yielded disappointing 

results [84, 85]. Nevertheless, bevacizumab and a VEGFR blocker were effective when 

applied in combination with standard chemotherapeutic agents [86, 87]. The results were 

indicative of the antiangiogenic agents enhancing the efficacy of cytotoxic drugs, 

presumably by normalization of the blood vessels [88]. The permeability of the vessels is 

normalized because the action of VEGF and VEGFRs is reduced, leading to less edema and 

restoration of the normal intravascular flow [89-91]. There are also results in animal models 

suggesting that VEGFR2 blockade with monoclonal antibodies leads to better tissue 

oxygenation through vessel wall normalization and thus the radiotherapy sensitivity of 

tumor cells [6, 92, 93]. Identical results were obtained in a trial for the treatment of colonic 

cancer [94]. Indeed, reduction of interstitial cerebral edema in patients suffering from brain 

tumors was also obtained in a trial on treatment of glioblastoma [87]. The normalization, 

however, seems to be a temporary phenomenon and therefore, optimal timing of various 

treatment modalities is essential for success [95]. The effects of radiation therapy are rather 

complex and antagonistic: on the one hand, radiation causes apoptosis of endothelial cells 

[96], while on the other hand it induces VEGF expression which is essential for the survival 

of endothelial cells [97-99]. Therefore, treatment with radiation in combination with VEGF 

inhibitors is indicated.

Since neovascularization involves multiple processes mediated by a wide of range of 

angiogenic inducers, including growth factors, chemokines, angiogenic enzymes, 

endothelial specific receptors and adhesion molecules, there probably is no single strategy 

that will be successful all by itself in eradicating solid tumors like gliomas. Therefore, more 

efficient therapeutic methods, including specific antiangiogenic drugs, targeted drug 

delivery systems, and the combination of antiangiogenic agents with immunotherapy, 

chemotherapy or radiotherapy should be explored to render positive results in the future. 

In addition, as the understanding of the regulatory mechanisms underlying neo-

vascularization improves, we should be in a better position to elaborate novel treatment 

strategies taking into account the presence of different EC phenotypes such as individual 

ECs/EPCs, sprouting and non-sprouting patterns. With the development of better tumor 

model assessment system successful clinical application of antiangiogenic therapies may 

be achieved.  
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Introduction 

Over the last years significant progress in the analysis of the entire genome has triggered 

efforts to further analyze normal and abnormal protein expression patterns.  There is, for 

instance, an eagerness to discover more and better diagnostic markers for specific diseases 

so called biomarkers. High expectations of the use of better biomarkers for the purpose of 

improving diagnosis and enabling targeted or personalized treatment. Human tissues are 

usually composed of rather complex mixtures of different cell types each has its unique 

repertoire of proteins. Many techniques have been used for the isolation of pure cell 

populations and each technique has its advantages and limitations. Immunohistochemistry 

is an established and relatively easy applicable technique for localizing protein expression. 

A drawback of immunohistochemistry is the lack of quantitative assessments of proteins. 

Another method to obtain information about particular cell populations is growing cell 

cultures in order to amplify target cells. Despite the technical feasibility of this technique, 

the biological characteristics of the original cells may not reflect the in vitro environment 

[1]. Alternatively, by using xenografts a better mimicking of the normal situation is reached, 

but again this method only reflects the real situation of cells in vivo to some extent [2]. 

Another way of separating cell populations for further investigation is flow cytometry, 

which has successfully been applied in the study of many disease processes. Flow cytometric 

analysis is applied to cell suspensions and specific markers for selection of cell population 

are required. To the best of our knowledge, the combination of flow cytometry and 

subsequent mass spectrometry has not yet been described for the analysis of solid tissues.

In order to select for specific cell populations in heterogeneous tissues, several micro-

dissection techniques have been described. Most techniques involve the use of a needle to 

scrap off cells of interest under direct microscopic visualization [3, 4]. This method, however, 

tends to be slow, tedious and highly operator dependent [2]. In 1992, Shibata and coworkers 

described a new method of cell isolation. They used a specific pigment placed over small 

numbers of cells in a tissue section, which served as an umbrella preventing the covered 

cells of being destroyed by ultraviolet light. Ultraviolet light was used to destroy the DNA/

RNA of the uncovered cells [5]. Shortly later, laser capture microdissection under direct 

microscopic visualization was developed by Liotta and coworkers in the National Cancer 

Institute (NCI). This way of target cell isolation permits rapid, reliable laser microdissection 

to collect specific cell populations from a section of a complex, heterogeneous tissue [6]. 

For this approach a tissue section is placed in a holder of an inverted microscope.  

A transparent, thermoplastic polymer coating [e.g. ethylene vinyl acetate (EVA)] is placed in 

contact with the tissue. The EVA polymer is positioned over microscopically selected cell 

clusters and subsequently the polymer is precisely activated by a near-infrared laser pulse 

steered by the investigator. The laser activation of the polymer results in specific binding to 
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the targeted area. With the removal of the EVA and the tissue that was bound to it from the 

section the selected cell aggregates are isolated for molecular analysis [7]. LCM is compatible 

with a variety of cellular staining methods and tissue preservation protocols [8]. Dependent 

on the laser microdissection device, the collection caps used are positioned in different 

ways. For instance, the caps in the PixCell II (Arcturus Engineering, Mountain View, CA) 

technique make contact with the tissue sections and therefore, strict requirements for 

preparations are needed. The P.A.L.M laser microdissector (P.A.L.M. Microlaser Technologies 

AG, Bernried, Germany) provides a powerful separation, in which cutting UV- laser 

microbeam microdissection (LMM) is combined with laser pressure catapulting (LPC) [9].   

A specific glass slide covered with a polyethylene naphthalate (PEN) membrane will aid in 

stabilizing the morphological integrity of the captured area [10] (Figure 1). In this method, 

the collecting caps do not make any contact with the tissue sections anymore which 

increases the flexibility with respect to the section preparation [11]. Both LCM techniques 

are specific enough to dissect single cells. The P.A.L.M can dissect smaller sections of tissue 

as compared to the PixCell system. The two methods of microdissection yield RNA retrievals 

of comparable quality and quantity, but they have not been directly compared with regard 

to recent developments in protein retrieval by mass spectrometric applications [12].  

The collection of large quantities of cells by LCM is a time consuming procedure requiring 

the microscopical visualization of the cells of interest in a stained tissue sections before 

lasering. The software and the hardware of the different types of laser microdissection are 

still underdevelopment.
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LCM and two-dimensional gel electrophoresis (2-D PAGE) 

A new development is the application of LCM for protein retrieval of specific cell types for 

further analysis by proteomic techniques. So far, several approaches have been performed 

on cells obtained by laser microdissection. In 2000, Emmert-Buck and coworkers applied 

two-dimensional gel electrophoresis (2-D PAGE) to 50,000 microdissected epithelial cells 

[13]. They compared tumor cells and normal control tissue from two patients with 

oesophageal cancer [13]. Staining the gels with silver yielded the visualization of 675 distinct 

proteins and isoforms. Seventeen differentially expressed protein spots were further 

analyzed by mass spectrometry. This resulted in the identification of two specific proteins, 

cytokeratin 1 and annexin I. It was assumed that these proteins were present in an 

abundance range of 50,000 to 1,000,000 copies per cell [13]. Using colon cancer as a model, 

Lawrie and coworkers also showed the feasibility of investigating protein expression by 

combining the technologies of LCM and proteome analysis like 2-D PAGE and mass 

spectrometry [14].  

To overcome the limitation of LCM in producing relatively low numbers of cells, an extra 

step has been added to the separation method. In addition to the 2 D-PAGE from the micro-

dissected cells, an extra 2 D-PAGE from the whole section of the same set of samples can be 

useful. The comparison of silver stained 2-D gels created from microdissected epithelial 

cells of ovarian cancer and the 2-D gels created from the whole section of the same ovarian 

samples, facilitated the discovery of 23 differentially expressed proteins between low 

malignant potential and invasive ovarian cancers [15]. In-gel digestion of the specific gel 

spots followed by MS/MS analysis resulted in the identification of glyoxalase I, RhoGDI, and 

a 52 kDa FK506 binding protein [15]. In another study based on 2-D PAGE, 315 protein spots 

were identified by collecting 100,000 cells by laser capture microdissection of normal and 

cancer ductal units from breast tissue sections [16]. Subsequent measurement of the spots 

by mass spectrometry resulted in the identification of 57 differentially expressed proteins 

between the two groups of samples [16].  

The relative low number of microdissected cells to be analyzed requires the loading of 

equivalent amounts of protein on the gels. Shekouh and coworkers (18) followed a strategy 

to increase the accuracy of 2-D PAGE from LCM samples. The samples were first separated 

by one-dimensional sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis, 

stained with silver and subsequently subjected to densitometry. Evaluation of the staining 

intensity was used to normalize the samples. The 2-D PAGE silver stained images from 

50,000 microdissected adenocarcinoma cells were compared with the images from whole 

sections of pancreatic samples. Spots of interest were subjected to MALDI-TOF/TOF mass 

spectrometry, resulting in the identification of S100A6 as an over-expressed protein in the 
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pancreatic cancer cells [17]. The same methodology has been used to understand the 

mechanism of a specific molecule such as (HER-2/neu) in breast cancer [18]. Breast cancer 

tissue was used for the microdissection of about 50,000 – 70,000 cells from three HER-2/

neu-positive tumors and three HER-2/neu-negative tumors. This led to the detection of 

about 500 – 600 protein spots in each gel. The comparison of these two groups allowed the 

identification of cytokeratin 19 (CK19) as an over-expressed protein in HER-2/neu-positive 

breast cancer patients [18]. In another study the 2-D PAGE of 10,000 microdissected cells of 

hepatocellular carcinoma (HCC) samples was compared with that of normal surrounding 

tissue. The investigators visualized about 868 spots of which 20 were considered as 

 differentially expressed proteins. The digestion of these proteins into peptides was followed 

by the application of ESI-MS/MS, which allowed the identification of 11 proteins. Four out of 

these 11 proteins were considered as novel candidates of hepatitis B-related HCC markers 

[19]. This approach of separating the microdissected cells on 2-D PAGE followed by in-gel 

proteins digestion and mass spectrometry measurements for the identification of 

biomarkers has been applied to a wide range of cancers, using various numbers of micro-

dissected cell. There is a range of 10,000 to 100,000 cells harvested by LMD for the successful 

application of 2D electrophoresis (Table 1).

LCM and differential in-gel electrophoresis (DIGE)

In 2002, Zhou and coworkers described a new technique called differential in-gel electro-

phoresis (DIGE) [20]. Two pools of proteins are labelled with 1-(5- carboxypentyl)-1_-pro-

pylindocarbocyanine halide (Cy3) N-hydroxy-succinimidyl ester and 1-(5- carboxypentyl)-

1_-methylindodi-carbocyanine halide (Cy5) N- hydroxysuccinimidyl ester fluorescent dyes 

[20]. The labelled proteins are mixed and separated in the same 2-D gel. This strategy 

improves the sensitivity of detection and enlarges the range of candidate proteins for 

detection. Molecular weight- and charge- matched cyanine dyes enable multiplex labelling 

with different samples run on the same gel. The same investigators described a powerful 

tool for the molecular characterization of cancer progression and identification of cancer-

specific protein markers by combining 2-D DIGE with mass spectrometry. They compared 

the 2-D DIGE of about 250,000 microdissected cells from oesophageal carcinoma with 

normal epithelial cells from the oesophagus. The cancer cell lysate yielded 1,038 protein 

spots while the normal epithelial lysate yielded 1,088 protein spots. In-gel digestion of the 

differentially expressed protein spots was followed by capillary HPLC tandem mass analysis 

to achieve further identification. This way, tumor rejection antigen (gp96) was found to be 

up-regulated in oesophageal squamous cell cancer [20].  Applying the same procedure to 

smaller numbers of microdissected cells from biopsy samples with gastric metaplasia 

appeared to be successful as well [21]. Approximately 1,200 spots were identified from 
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30,000 microdissected cells. Twenty- eight of these spots were over expressed in the 

metaplasia samples as compared to the normal surface cells [21]. However, subsequent 

MALDI-TOF measurements of the spots did not result in the identification of proteins.  

The same procedure was applied to 50,000 microdissected cells resulting in the identification 

of 32 proteins in breast epithelial cancer cells [22], of which thirteen had not been associated 

previously with the tumors [22]. One technical aspect of the 2-D DIGE method needs special 

attention: the nature of the fluorescent dyes and their ability to bind to lysine residues only 

[20]. Proteins with high percentages of lysine residues can be labelled more efficiently as 

compared to proteins containing little or no lysine. By developing a new generation of dyes 

reacting with cysteine residues, the sensitivity of DIGE has been improved [23]. Although 

cysteine is less abundant than lysine in proteins in general, cysteine labelling can be carried 

to saturation. Lysine labelling must be limited to 1-3% of all the residues to prevent loss of 

solubility when bulky hydrophobic dyes are coupled to the polar lysine residues [23]. Green-

gauz-Roberts and coworkers applied the saturated labelling for cysteine residues to study 

about 5,000 cells obtained by LCM of metaplasia and cancer cells. A total of 1,471 distinct 

protein features were observed from the relatively small number of cells. Ninety-six of these 

spots were further identified. Using MALDI-MS and MS/MS measurements in addition to the 

specific position of the protein in the gel resulted in the identification of 42 proteins in cancer 

samples [24]. Sitek and co-workers described a novel approach to analyze glomerular 

proteins from mice and human samples using DIGE saturation labelling [25]. Only ten 

glomeruli (0.5 µg) picked by LCM from a slide of a human kidney biopsy appeared to be 

sufficient to visualize 900 spots using DIGE technique [25]. 2-D DIGE holds several advantages 

over the conventional 2-D gel. One of the most important advantages is the improvement of 

the reproducibility of 2-D DIGE method. The gel-to-gel differences are minimalized because 

the separation of the pooled samples takes place in the same gel. Therefore, the comparison 

of protein expression from two cell populations or samples can be more accurately assessed 

and easier to be identified. The quantitative differences of protein contents are also better 

measured by the application of fluorescent dyes. In addition, 2-D DIGE enables a higher 

throughput analysis of 2D gels by its feasibility to automatic gel imaging. Importantly, the 

labelling of proteins by fluorescent dyes did not affect the protein identification by mass 

spectrometry, because only small percentages of the molecules of each protein are labelled. 

Importantly, for 2-D DIGE the number of microdissected cells, which are required for protein 

identification is less as compared to the other 2 D electrophoresis techniques (Table 1).    

   

LCM and different labelling techniques 
 

The comparison of the proteome of two different samples (for instance, normal and tumor 

cells) is facilitated by labelling. In 2004, Li and coworkers described a method for qualitative 
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and quantitative protein analysis by combining LCM with isotope-coded affinity tag (ICAT) 

labelling technology and two-dimensional liquid chromatography coupled with tandem 

mass spectroscopy (2D-LC-MS/MS) [26]. Approximately 50,000 – 100,000 cells of hepato-

cellular carcinoma (HCC) and non-HCC hepatocytes were microdissected and a total of 644 

proteins in HCC hepatocytes were qualitatively determined, and 261 differential proteins 

between the two groups were quantified [27]. In 2004, 160/180 isotopic labelled peptides 

were generated from 10,000 microdissected cells of ductal carcinoma of the breast.  

The approach allowed the identification of 76 proteins [28]. By using reverse phase 

LC-ESI-MS/MS Zang and coworkers were able to identify proteins that were significantly 

up-regulated in the breast tumor cells [28]. Separating the radioactive labelled peptides on 

the high resolution 54 cm serial immobilized pH gradient isoelectric focusing (IPG-IEF) 

2D-PAGE gel provided a precise estimate of the abundance ratio for proteins from two 

samples [29]. The radio-iodination of 3.8 microgram renal carcinoma proteins and 3.8 

microgram normal kidney proteins with both 125I and 131I followed by mass spectrometric 

identification resulted in 29 differentially expressed proteins [29]. Applying the same 

methodology of radioactive labelling to a pool of microdissected breast cancer cells 

provided a sensitive method to identify some differentially expressed proteins in correlation 

with the presence of progesterone receptor (PR) in estrogens receptor (ER)-positive breast 

cancer [30].    

Combining LCM and different separation methods 

Previously it was shown that the number of detected and identified peptides and proteins 

increases significantly by coupling MALDI MS [31] and ESI MS [32] to a peptide or protein 

separation system. In 2003, Wu and co-workers described a method for discovering 

biomarkers from microdissected homogeneous cells from breast cancer cell lines [33]. 

Following capturing the cells, the peptide digest was fractionated by reversed phase HPLC 

and analysed by ion trap mass spectrometry [33]. HPLC Fractionation of about 10,000 

endothelial cells from a breast cancer cell line (SKBR-3) followed by ESI mass spectrometry 

resulted in the identification of low -expressed proteins in the cell line. Capillary isoelectric 

focusing combined with the reverse phase nano-LC in an automated and integrated 

platform provides systematic resolution of complex peptide mixtures generated from 

limited protein quantities [34]. This method separated the mixture of peptides based on 

differences in isoelectric points and hydrophobicity and it eliminates peptide loss and 

analyte dilution [34]. This separation method coupled to ESI-tandem MS assisted in the 

detection of 6,866 peptides, leading to the identification of 1,820 proteins from 20,000 

microdissected cells of glioblastoma [34]. In order to increase the number of identified 

proteins from LCM of brain samples, Gozal and co-workers added an extra separation step 
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[35]. After collecting cells by LCM, the total protein content was extracted and resolved on 

an SDS gel. Gels were cut out into multiple pieces followed by trypsin digestion. Peptides 

were subjected to highly sensitive liquid chromatography-tandem mass spectrometry 

(LC-MS/MS). This methodology resulted in identifying hundreds to thousands of proteins 

[35].  

LCM and gel-free mass spectrometry

There are possibilities of measuring the peptide digest of cells harvested by LCM directly by 

mass spectrometry, without an initial separation step on 2-D PAGE (known as “gel-free mass 

spectrometry”). Guo and co-workers directly analysed endometrial epithelium cells 

obtained by LCM using MALDI-TOF/MS [36]. A total of 16 physiologic and malignant 

endometrial samples including four proliferative and four secretory endometria, and eight 

endometrioid adenocarcinomas were used for this study. Approximately 2,000 cells 

appeared to be sufficient to confirm over-expression of two proteins, calgranulin A and 

chaperonin 10 in the epithelial cells of endometrial adenocarcinoma samples [36].  

In another study, the direct analysis of 125 trophoblast and stroma cells of placental tissue 

resulted in the detection of significant expressed protein differences between these two 

cell types [37]. Also, differentially expressed proteins between breast cancer and normal 

samples can be detected by direct MALDI-TOF/MS measurements of 2,000-2,400 LCM cells 

[38]. In a recent study the possibility of identifying over 1,000 proteins from 3,000 micro-

dissected cells by the combination of advanced nanoLC and high resolution FTMS was 

demonstrated [39].

LCM and Protein chip technology

Currently, there are two approaches to produce arrays capable of generating protein 

network information. The first method is the forward phase array, in which each spot on the 

slide represents a specific antibody. The array is incubated with only one test sample [40]. 

The second method is the reverse phase array in which each spot represents an individual 

test sample, and the array is composed of multiple, different samples, which then can be 

tested under the same experimental conditions. In addition, when the arrays are probed 

separately with two different classes of antibodies, it is possible to specifically detect the 

total and phosphorylated forms of the protein of interest [40]. By combining LMD technique 

to protein chip technology, Melle and coworkers identified annexin V as a specific protein 

in head and neck tumors, and heat shock protein 10 as a biomarker for patients with 

colorectal cancer [41, 42]. The protein lysates from 3,000 – 5,000 microdissected cells were 
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analyzed on strong anion exchange arrays and weak cation exchange arrays, followed by 

separation steps (e.g. 2D-gel or reverse phase chromatography and SDS-PAGE), mass 

spectrometry measurements and MS/MS analysis [41, 42]. Validation by immunohisto-

chemistry confirmed the findings. In other studies Surface-Enhanced Laser Desorption/

Ionization Time-of-Flight Analysis (SELDI-TOF) was applied to microdissected cells because 

of its sensitivity to smaller amounts of material than other techniques such as 2D gel [43]. 

Using 30,000-50,000 cells of prostate carcinoma specimens the unique expression of 

prostate carcinoma–associated protein, called PCa-24 in the epithelial cells, was reached 

[43]. Protein microarrays hold several technical challenges [44]. Their application offers the 

advantage of scalability, flexibility and automatic processing [44]. Arrays may also enable 

the control of key parameters such as temperature, pH and cofactor concentration, which 

are not easily afforded by cell-based systems.

 

Perspectives of LCM and mass spectrometry analysis

The application use of laser capture microdissection of (relatively) pure populations of cells 

to be used for further analysis of their proteome is an important addition to the arsenal  

of techniques in bioscience. However, this technique is still time consuming and yield 

relatively small numbers of cells. To overcome this problem alternative steps of processing 

tissues are needed. Sample collection and reproducible preparation is crucial. During the 

microdissection procedure, special attention should be taken to prevent waist and 

contamination of target material. For instance, material may not drop from, or stick to, the 

cap of the tubes used. Another consideration is to minimize the steps of transferring the 

collected material from one tube into the other. Therefore, the use of low protein binding 

tubes is recommended. 

2-D PAGE is a well-established technique which has been used in combination with LCM in 

many studies so far. The need of relative large numbers of cells blocks the possibility to 

measure large numbers of samples as indicated in Table 1. In addition, the relative low 

 reproducibility is proven by sound statistical analysis. 2-D DIGE improves this  reproducibility 

and also lowers the amount of microdissected tissue.  

Recently, the improvement of resolution and detection limits of modern mass spectrometers, 

particularly FTMS, opened a new research field to analyze small numbers of microdissected 

cells (in the range of 200 to 5,000). FTMS has specific characteristics, unrivalled high mass 

resolution (in the order of 100,000 to 1,000,000), high mass accuracy (below 1 ppm), 

dynamics (three to four orders of magnitude) and good signal to noise ratio [45].  

These features facilitate combining this technique with LCM.  For instance, by MALDI-  

Introduction II  I  Combining laser microdissection and proteomics techniques

Ch
ap

te
r 

2



34

FTMS, peptide digests of no more than 150 cells taken from biological samples (e.g. glioma 

vessel tissue) resulted in informative mass spectra (Figure 2). It is expected that techniques 

like FTMS soon will be implicated in the practice of routine laboratories for the detection of 

disease-related proteins in clinical specimens.  

Chapter 2

Figure 2
MALDI FTMS spectrum obtained from 150 microdissected cells from a frozen glioma tissue sample. 
The spectrum contains approximately thousand monoisotopic peaks between 700-3,000 m/z at 
relative high peak intensities. The small box represents a magnification of a small part of the spectra, 
between 1,700-2,000 m/z. It shows the very high numbers of peaks obtained from measuring a very 
small number of cells. The peaks can be identified by different sequencing MS techniques; some 
examples of identified peptides are indicated in the spectrum.  
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Abstract

The identification of angiogenesis-related proteins is important for the development of 

new anti-angiogenetic therapies, and such proteins are potential new biomarkers for 

gliomas. The aim of this study was to identify proteins which are exclusively present in 

glioma neovasculature and not in the vasculature of normal brain. We combined advanced 

proteomic techniques to compare the expression profiles of microdissected blood vessels 

from glioma with blood vessels of normal control brain samples. We measured the 

enzymatic generated peptide profiles from these microdissected samples by matrix- 

assisted laser desorption\ionization Fourier transform mass spectrometry (MALDI-FTMS). 

Subsequently, the samples were fractionated by nano-LC prior to matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF). This combined 

approach enabled us to identify four proteins which appeared to be exclusively expressed 

in the glioma blood vessels. Two of these proteins, fibronectin and colligin 2, were validated 

on tissue sections using specific antibodies. We found that both proteins are present in 

active angiogenesis in glioma, other neoplasms and reactive conditions in which neo- 

angiogenesis takes place. This work proves that gel-free mass spectrometric techniques 

can be used on relatively small numbers of cells generated by microdissection procedures 

to successfully identify differentially expressed proteins.
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Introduction 

Gliomas are the most common primary brain tumors, the incidence in the USA is about ~25,000 

new cases per year [1]. The diagnosis of these tumors and the decisions regarding therapy are  

based almost exclusively on histopathology [2, 3]. Diffuse gliomas are highly infiltrative and 

heterogeneous. Gliomas are among neoplasms with highest degree of  vascularisation [4].  

The growth of gliomas largely depends on their blood supply, the elimination of which would 

result in the destruction of these tumors [4]. Despite the elucidation of many genetic aberrations 

of gliomas over the last decades [5, 6], only few useful biomarkers or therapeutic targets have 

been found so far [7]. In a previous study, we identified  glioma-related proteins by using two-

dimensional polyacrylamide gel  electrophoresis (2D PAGE) followed by matrix-assisted laser 

absorption/ionization-time of flight-mass spectrometry (MALDI-TOFMS) analysis. By using 

specific antibodies raised to l-CaD on tissue sections of glioma it was shown that this protein is 

exclusively expressed in the neovasculature [8] and that it is a potential serum marker for glioma 

[7]. Rapid and major developments in proteomic technology and methodology over the last 

decade has opened a new stage in the  identification of proteins [9]. Matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) recently became 

available as a flexible tool in the search for disease markers [10]. Moreover, the recently introduced 

technique of matrix-assisted laser desorption\ionization Fourier transform mass spectrometry 

(MALDI-FTMS) provides a powerful technique for accurate peptides mass measurements [11]. 

This technique has successfully been used for studies in protein interactions and post- 

translational modifications of proteins [12]. The addition of a technique for pre-fractionation of 

test samples, such as nano-liquid chromatography prior to mass spectrometry, increases the 

number of identified proteins significantly [13]. 

The use of laser microdissection has become an important tool in biological research to 

isolate relatively pure cell populations from heterogeneous frozen tissue samples [14].  

This technique became widely used for tracing genotypical aberrations including aberrant 

RNA and protein expression of subsets of cells and tissues [15]. Although primary brain tumors 

have been subjected to direct-tissue profiling and imaging mass spectrometry techniques  

[1, 16], to the best of our knowledge, laser microdissection of brain blood vessels has never 

been used before in proteomic analysis. 

The aim of this study was to identify proteins which are specifically expressed in glioma 

vasculature, but not in the normal blood vessels of the brain. To this end, microdissected 

hypertrophied glioma vessels and normal blood vessels of the brain were used. The peptides 

of the enzymatically digested proteins derived from the small numbers of cells obtained by 

 microdissection, were measured by MALDI-FT mass spectrometry. The identification of 

 differentially expresses peptides was achieved by combining nano-LC fractionation of 
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samples with offline MALDI-TOF/TOF and MALDI-FTMS measurements. For validation of our 

findings specific antibodies were used.

Material and methods

Sampling

Ten fresh-frozen samples of glioblastoma located in the cerebral hemispheres and 10 

samples of normal control hemispheric brain were taken form the files of the Department 

of Pathology, Erasmus MC, Rotterdam (Table 1). Sections of 5 µm from each sample were 

made, counterstained and examined by the neuropathologist (JMK) to verify the presence 

of proliferated tumor vessels (Figure 1). The control samples of normal brains were subjected 

to the same procedure for the identification of the blood vessels.

Chapter 3

Figure 1
Hypertrophied vessels in high-grade glioma 
Hypertrophied blood vessels in a glioma tissue sample (arrows; H&E stain, x 250).  
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Laser Capture Microdissection

Cryosections of 8 µm were made from each sample and mounted on polyethylene 

naphthalate (PEN) covered glass slides (P.A.L.M. Microlaser Technologies AG, Bernried, 

Germany) as described previously [17]. The slides were fixed in 70% ethanol and stored at 

-20°C for not more than 2 days. After fixation and immediately before microdissection, the 

slides were washed twice with Milli-Q water, stained for 10 seconds in haematoxylin, washed 

again twice with Milli-Q water and subsequently dehydrated in a series of 50, 70, 95 and 

100% ethanol solution and air dried. The P.A.L.M. laser microdissection and pressure 

catapulting (LMPC) device, type P-MB was used with PalmRobo v2.2 software at 40x 
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Table 1
Clinical data 

Glioma samples Gender Age (yrs)  Tumor location

G1  m 57 Ri F
G2  m 57 Le T
G3  m 55 Ri F
G4  m 51 Ri F
G5  m 51 Le T
G6  m 48 Le F
G7  m 47 Ri O
G8  m 36 Le P
G9  m 32 Bi F
G10  f 30 Ri F

Normal brain samples Gender Age (yrs) Cause of death  

N1  f 76 pneumonia
N2  f 62 Cirrhosis + hepatocellular carcinoma
N3  m 62 Ischemic cardiac disease
N4  f 60 nasopharyngeal carcinoma
N5  m 48 SAB / aneurysm
N6  f 48 SAB / aneurysm
N7  f 39 SAB / aneurysm
N8  m 34 Brain stem abscess
N9  m 28 hypertensive stroke
N10  m 24 (weeks) intra-uterine infection

F = frontal; P = parietal; T = temporal; O = occipital 
Ri = right; Le = left
f = female; m = male
SAB = subarachnoidal hemorrhage
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magnification. Estimating that a cell has a volume of 10x10x10µm, we microdissected an 

area of about 190,000 µm2 of blood vessels and another area of the same size of the 

surrounding tumor tissue from each sample, resulting in approximately 1,500 cells per 

sample. A total of 40 samples were collected, viz., 10 glioma vessels, 10 fields of glioma 

tissue surrounding the glioma vessels, 10 normal vessels and 10 fields of normal tissue 

surrounding the normal vessels. As a negative control, a corresponding area of the PEN 

membrane only was microdissected and analysed in the same way as the other samples. 

This negative control experiment was performed in 3-fold.

The microdissected cells were collected in the caps of P.A.L.M. tubes in 5 µl of 0.1% RapiGest 

buffer (Waters, Milford, MA, USA). The caps were cut and placed onto 0.5 ml Eppendorf 

protein LoBind tubes (Eppendorf, Hamburg, Germany). Subsequently, these tubes were 

centrifuged at 12,000 g for 5 minutes. To make sure that all the cells were covered with 

buffer, another 5 µl of RapiGest was added to the cells. After microdissection, all samples 

were stored at -80°C. 

 
Sample Preparation 

After thawing the samples, the cells were disrupted by external sonification for 1 minute at 

70% amplitude at a maximum temperature of 25°C (Bransons Ultrasonics, Danbury, USA).  

The samples were incubated at 37°C and 100°C for 5 and 15 minutes respectively, for protein 

solubilisation and denaturation. To each sample, 1.5 µl of 100 ng/ µl gold grade trypsin 

(Promega, Madison, WI, USA) in 3 mM Tris-HCL diluted 1:10 in 50 mM NH4HCO3 was added 

and incubated overnight at 37°C for protein digestion. To inactivate trypsin and to degrade 

the RapiGest, 2 µl of 500 mM HCL was added and incubated for 30 minutes at 37°C. Samples 

were dried in a speedvac (Thermo Savant, Holbrook, NY, USA) and reconstituted in 5 µl of 50% 

acetonitrile (ACN) / 0.5% trifluoroacetic acid (TFA) / water prior to measurement. Samples 

were used for immediate measurements, or stored for a maximum of 10 days at 4°C.

  

MALDI-FTMS Measurements and Data Analysis

MALDI-FTMS measurements

Samples were spotted onto a 600/384 anchorchip target plate (Bruker Daltonics, Leipzig, 

Germany) in duplicate. Half a microliter of each sample was mixed on the spot with 1 µl of a 

2,5-dihydroxybenzoic acid (DHB) matrix solution (10 mg/mL in 0.1% TFA) / water and the 

mixture was allowed to dry at ambient temperature. The MALDI-FTMS measurements were 

performed on a Bruker Apex Q instrument with a 9.4 T magnet (Bruker Daltonics, Bremen, 

Germany). For each measurement, 450 scans of 10 shots each were accumulated with 60% 

laser power. Mass spectra were acquired in the mass range of 800 to 4,000 Da. FTMS spectra 

were processed with a Gaussian filter and 2 zero fillings.
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MALDI-FTMS external and internal calibration

A standard peptide calibration mix (Bruker Daltonics, Leipzig, Germany) which contains 

angiotensin I and II, substance P, Bombesin, Renin Substrate, ACTH clip 1-17, ACTH clip 18-39 

and Somatostatin 28 was used for external calibration. To obtain better mass accuracies, an 

additional post-acquisition internal calibration step in DataAnalysis v3.4, built 169 software 

(Bruker Daltonics, USA) was performed. Ubiquitous actin peptide masses (m/z 1198.70545, 

1515.74913, 1790.89186, 2215.06990 and 3183.61423) were used for internal calibration. To 

assess the accuracy of the measured masses, the peptides derived from keratin [Q8N175] 

present in the samples were compared to the calculated masses (1165.58475, 1234.67896, 

1365.63930, 1381.64814, 1390.68085, 1707.77211, 1797.01161 and 2096.04673).

  
Data Analysis

Mono-isotopic peaks with S/N > 3 were annotated with the SNAP algorithm using the 

pre-release version of DataAnalysis software package (v3.4, built169). The peak lists were 

saved in a general text format, which was used as an input for a home made script in the 

R-program, (www.r-project.org). With this script a matrix file was generated, indicating the 

presence or absence of each peptide mass in the different mass spectra [18, 19]. If a specific 

peptide appeared at least in 5 samples for each group and never appeared in the other 

groups, (Fisher’s exact p-value < 0.01) it was considered as a group specific peptide. In this 

way, a list of differentially expressed peptides was generated. These masses of the differen-

tially expressed peptides were submitted to the MASCOT search engine (Matrix Science, 

London, UK) using the SWISS-PROT (40.21) database, allowing 1 ppm peptide mass tolerance 

and one missed trypsin cleavage site. In addition, we performed Hierarchical Clustering 

based on masses and the group of samples using the matrix file in the Spotfire software 

(Spotfire, Somerville, MA, USA).

Sample Preparation for Nano-LC

Sample G8 was selected for fractionation (Table 1). One, 4 and 8 frozen sections were made, 

respectively. These sections from the entire tumor sample including the vessels were 

prepared as described above. Each section contained about 2,000,000 cells of which an 

estimated 10% were blood vessel derived cells. Twenty µl RapiGest buffer was added 

(Waters, Milford, MA, USA) to the frozen sections followed by 1 minute sonification, 5 

minutes at 37°C and finally 15 minutes at 100°C. For each section 1 µl of 100 ng/ µl gold 

grade trypsin (Promega, Madison, WI, USA) in 3 mM Tris-HCL was added and samples were 

incubated overnight at 37°C. Finally, 50 mM HCL was added. For comparison, 8 sections 

from normal brain sample N5 were prepared in exactly the same way. 

In addition, an area of about 900,000 µm2 of blood vessels from each of the glioma samples 

and the normal control samples were microdissected and pooled, resulting in one sample 

of glioma blood vessels and one sample consisting of control blood vessels. Pooling of the 
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samples was necessary because the nano-LC procedure requires far more tissue than 

obtained by microdissection. Twenty µl RapiGest buffer was added and the samples were 

stored at -80°C. All the samples were subjected to the nano-LC fractionation immediately 

after preparation. 

Fractionation by Nano-LC

Fractionation was performed using a C18 Pep Map column (75 µm i.d. x 150 mm, 3µm, 

Dionex, Sunnyvale, CA, USA). Five µl of the sample was loaded onto the trap column (300 

µm i.d. x 5mm, 5µm, Dionex, Sunnyvale, CA, USA). Fractionation was performed for 130 

minutes with a gradient of buffer A (100% H2O, 0.05% TFA) and buffer B (80% ACN, 20% H2O 

and 0.04% TFA); 0 to 15 min, 0% buffer B, 15.1 min 15%, 75 min 40%, 90 min 70%, 90.1-100 

min 95%, 100.1 min 0% and 130 min 0%. Fifteen second fractions of the sample were spotted 

automatically onto 384 prespotted anchorchip plates (Bruker Daltonics, USA) containing 

α- cyano-4-hydroxycinnamic acid (HCCA) matrix, using a robotic system (Probot Micro 

Fraction Collector, Dionex, Sunnyvale, CA, USA). To each fraction, 1 µl water was added. 

Finally, we used a 10mM (NH)4H2PO4  in 0.1% TFA/water solution to wash the pre-spotted 

plate for 5 seconds to remove salts. The plates were subsequently measured by automated 

MALDI-TOF/TOF (Ultraflex, Bruker Daltonics, Germany) using WARLP-LC software. This 

software obtains MS spectra of each individual spot and subsequently performs MS/MS on 

each peptide. The best spots for performing the MS/MS measurements were determined 

automatically by the WARLP-LC software. A file containing the MS and the MS/MS peak lists 

was submitted to the MASCOT search engine (Matrix Science, London, UK) using the 

SWISS-PROT (40.21) database allowing 150 ppm parent mass tolerance, 0.5 Dalton fragments 

tolerance and one missed trypsin cleavage site. In addition, identification was confirmed by 

exact mass measurements on the MALDI-FTMS, adding 1 µL DHB solution to the fractionated 

spot and allowed to dry.

Backward database searching

By in silico digestion of the identified proteins, theoretical peptides were generated which 

were sought in the mono-isotopic peaks of the MALDI-FTMS. The accession number for all 

of the identified proteins was entered into the peptide cutter program (www.expasy.org/

tools/peptidecutter), choosing trypsin as enzyme for digestion and allowing one trypsin 

missed cleavage site. All the possible tryptic fragments from each protein were compared 

with the peptide masses obtained by MALDI-FTMS within 0.5 ppm (the internal calibration). 

The distribution of the matched peptides over the four groups was checked manually.  

 
Immunohistochemical staining

The expression of fibronectin and colligin 2 in glioma blood vessels was confirmed by 

 immunohistochemistry using specific antibodies against these proteins on parafin sections 

Chapter 3



53

of the samples. We first confirmed our results using the ten glioma samples and the ten 

normal brain samples which were used in our proteomics approach. To investigate the 

expression variation between the two groups, an additional six samples of glioma and four 

samples of normal brain were examined. In addition, a series of other gliomas, carcinomas, 

vascular malformations, other reactive conditions in which neo-angiogenesis takes place and 

tissues with notorious neo-angiogenesis were also tested for the presence of these proteins.

Immunohistochemical staining was performed following the manufacture procedure 

(alkaline phosphatase technique), using rabbit polyclonal antibody for fibronectin at a 

1:1,000 dilution (DakoCytomation, Glostrup, Denmark) and mouse monoclonal antibody for 

colligin 2 at a 1:500 dilution (Stressgene, Victoria, B.C., Canada). Five µm paraffin sections 

were mounted onto poly-L-lysin coated microslides, deparaffinized in xylene for 15 minutes 

and rehydrated through graded alcohol, then washed with water. The sections were washed 

with phosphate-buffer saline (PBS) and incubated with the antibody for 30 minutes. After 

washing the sections with PBS, the corresponding antigen was added and incubated 30 

minutes at room temperature. New Fuchsin Alkaline Phosphatase Substrate Solution was 

freshly prepared and the sections were incubated for about 30 minutes. Afterwards, the 

sections were washed with tap water, counterstained and cover-slipped with permanent 

mounting medium.

Results

FTMS measurements 

The MALDI-FTMS measurements of the microdissected samples yielded approximately 700 

– 1,100 mono-isotopic peaks for almost all spectra. Only one glioma vessel and one normal 

tissue sample contained less than 100 peaks. However, these spectra were not excluded 

from our analysis. An accuracy of 3 ppm was obtained by external calibration using a 

standard peptide calibration mix. After internal calibration the accuracy increased below 

0.5 ppm (method described above).

From a comparison of the three control samples and the rest of the samples, it appeared 

that all spectra contained background signals originating from the PEN membrane of the 

slides, the buffer and keratin contamination. No peptides resulting from auto-digestion of 

trypsin were found in the spectra. None of the background signals were found among the 

list of differentially expressed peptides. 

FTMS data analysis 

Following our strict criteria, a list of 16 differentially expressed peptides was obtained  

(Table 2).  All 16 peptides were expressed in the glioma vessel group only. The MASCOT data 
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base search resulted in matching of four out of the 16 peptides to fibronectin precursor 

protein [P02751]. In order to exclude that matching of the four peptides to fibronectin was 

just by chance, the following database searches were performed. We added the integers 10, 

11, 12, until 30 Daltons to the masses of the 16 peptides which were found for 20 additional 

searches. By this procedure no proteins were found to match by chance with four peptides. 

At maximum, only one peptide matched to one protein in the MASCOT database.  

This virtually ruled out the possibility of randomly finding fibronectin. 

Figure 2 shows the result of the unsupervised cluster analysis in two directions; peptide 

masses and groups of samples in the Spotfire program (Figure 2). A cluster of eight glioma 

vessel samples is observed. From the two samples which did not cluster, one had a poor 

spectrum (<100 peaks); this sample clustered with the sample from normal tissue at the top 

of the heat map which also displayed a poor spectrum. The other one did not cluster with 

any group. Within the peptide masses, a specific pattern of glioma blood vessels is 

recognized. 

Chapter 3

Table 2
List of differentially expressed peptides  

Peptides p-value Number of samples in which these peptides were found:
measured  

Glioma Glioma Normal Normal brainmasses  
vessels surrounding brain surrounding

    tissue vessels tissue 

1926.04620 * 0.0004 8 0 0 0
2470.32072 * 0.0050 6 0 0 0
1116.54323 0.0050 6 0 0 0
2157.10653 0.0050 6 0 0 0
2642.21770 0.0050 6 0 0 0
2257.07971 * 0.0136 5 0 0 0
1659.80041 * 0.0136 5 0 0 0
1275.55961 * 0.0136 5 0 0 0
1593.81172 *  0.0136 5 0 0 0
1807.90584 * 0.0136 5 0 0 0
1535.72354 * 0.0136 5 0 0 0
2089.00769 0.0136 5 0 0 0
1731.89535  0.0136 5 0 0 0
2164.00992 0.0136 5 0 0 0
2530.25829 0.0136 5 0 0 0
1849.85488 0.0136 5 0 0 0

* Peptides resulted in protein identification
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Nano-LC Fractionation / MALDI-TOF-MS/MS

Pooling the small number of cells collected by microdissection before nano-LC fractionation 

resulted in the identification of some highly abundant proteins, among which fibronectin. 

To identify more proteins, we increased the number of cells by using whole sections of 

glioma and normal samples. The number of identified peptides was increased and the 

maximum was reached with the injection of eight sections (Table 3). The capacity of the 

nanoLC column did not allow further expansion of the number of sections. Fractionation of 

eight sections led to the significant identification of 189 proteins, with a minimum mowse 

score of 24 for MS/MS.
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Figure 2
Heat map of unsupervised clustering of the four groups by Spotfire
Result of unsupervised cluster analysis. The peptide masses are displayed on the x-axis and the samples 
ordered by groups are displayed on the y-axis. Group 1 = glioma blood vessels; group 2 = normal brain 
blood vessels; group 3 = glial tumor tissue; group 4 = normal brain tissue. Blocks in red indicate the 
presence of a specific peptide in the spectrum of the sample. Unsupervised analysis of the data 
resulted in clustering of eight out of the ten glioma blood vessel samples (group 1). One of the two 
samples which did not cluster in this group (arrow) appeared to have a spectrum of relatively poor 
quality and clustered with a sample taken from normal brain tissue, which also was of poor quality, at 
the top of the heat map. The other glioma sample (arrow) did not cluster. Within the group of glioma 
blood vessels an exclusive peptide pattern is observed. 
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The data obtained from MALDI-TOF/TOF after the fractionation procedure were compared 

to the MALDI-FTMS data, searching specifically for the 16 differentially expressed peptides. 

Nine out of 16 peptides matched within 200 ppm. To obtain a higher mass accuracy for the 

peptides, the corresponding spots of these nine peptides were measuregin in the 

MALDI-FTMS. The exact mass of five out of nine peptides matched within 3 ppm (external 

calibration) with the masses originally obtained by FTMS. In order to relate these peptides 

to proteins, the MS/MS data of these peptides were scanned against the database, resulting 

in a significant matching of four of them (sequence score > 24). Two peptides matched to 

fibrinogen beta chain precursor [p02675], one peptide to colligin 2 [P50454] and one 

peptide to acidic calponin 3 [Q15417]. In the MALDI-TOF data set more peptides belonging 

to these proteins were sought and an additional three peptides belonging to fibrinogen 

beta chain precursor, and two belonging to colligin 2 protein, were found. We also found an 

additional 17 peptides from fibronectin, of which nine had a significant MS/MS score. 

Backward database searching

The search of the peak list obtained from the In silico digestion of fibronectin sequence in 

the FTMS data resulted in the finding of six extra peptides. Five peptides were found in the 

glioma vessels group only, and one was also seen in one sample of the normal brain blood 

vessels (Table 4). The same search for the In silico digestion of fibrinogen yielded nine 

additional peptides of which three were exclusively found in the glioma vessels group and 

the others in one sample of the normal vessels (Table 5). Searching for the theoretical 

peptides of colligin 2 and acidic calponin3 did not result in the finding of any extra 

peptide.
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Table 3
Results for the various numbers of sections used for fractionation in the nano-LC  

Section No. 1 section 4 sections  8 sections 8 sections 15,000 15,000
      microdissected  microdissected  
      cells cells

Sample type Glioma  Glioma  Glioma  Normal  Glioma  Normal brain
     brain

No. of MS 2307 3328 3383 2985 552 779 
measurements  

No. of MS/MS 734 1194 2160 1752 368 416 
measurements 

No. of  32 131 189 140 27 13 
identified proteins
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Table 4
Differentially expressed Fibronectin precursor [P02751] peptides  

Table 5
Peptides derived from in silico digestion of fibrinogen  

Fibronectin p-Value ∆ ppm Number of samples in which these peptides were found:
peptides   

Glioma Glioma Normal Normal brainfound in    
vessels surrounding brain surroundingFTMS spectra

    tissue vessels tissue
 
1926.04620 (a) 1926.04833 1.11 8 0 0 0
2470.32072 (a) 2470.31874 0.80 6 0 0 0
1593.81172 (a) 1593.81188 0.05 5 0 0 0
1807.90584 (a) 1807.90471 0.63 5 0 0 0
1629.87232 (b) 1629.87070 0.99 4 1 0 0
2692.37550 (b) 2692.37292 0.97 4 0 0 0
1349.68509 (b) 1349.68481 0.21 3 0 0 0
1401.66582 (b) 1401.66582 0.01 3 0 0 0
2524.36562 (b) 2524.36567 0.03 3 0 0 0
3042.59234 (b) 3042.58942 0.96 3 0 0 0

(a)  i.e., Peptides matching the criteria used in this study
(b)  i.e., Peptides derived from in silico digestion 

Fibrinogen Exact  ∆ ppm Number of samples in which these peptides were   
peptides fibrinogen  present in:
found in the derived from  

Glioma Glioma Normal Normal brainFTMS spectra   in silico  
vessels surrounding brain surrounding 

 
digestion

   tissue vessels tissue   

1032.56252 1032.5625 0.02 5 0 0 0
1239.51764 1239.5177 0.05 5 0 0 0
2385.17568 2385.1754 0.12 4 0 0 0
1275.55961 1275.5600 0.3 4 1 0 0
1544.69498 1544.6950 0.01 3 1 0 0
1668.71478 1668.7151 0.2 3 1 0 0
886.38736 886.3876 0.3 2 1 0 0
1951.00371 1951.0031 0.3 2 1 0 0
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Immunohistochemistry: 

The expression of fibronectin and colligin 2 proteins in glioma blood vessels were confirmed 

by immunohistochemistry. The proliferated blood vessels present in glioblastoma samples 

were invariably immunopositive for fibronectin and colligin 2, while the blood vessels in the 

control brain samples remained negative (Figures 3 and 4). In few capillaries of normal brain 

some fibronectin was expressed, but to a far lesser extent as compared to the expression 

observed in the proliferated glioma vessels. The blood vessels in the arachnoidal space 

were immunopositive for fibronectin, not for colligin 2. 
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Figure 3
Immunohistochemistry for fibronectin in glioma and normal brain samples
A: Strong immunopositivity for fibronectin protein in the hypertrophied vessels of a glioma sample. B: 
No immunopositivity for fibronectin protein in blood vessels of normal brain. C: some of the blood 
vessels of normal brain showed a very faint staining for fibronectin in endothelial cells.

Figure 4
Immunohistochemistry for colligin 2 protein in glioma and normal brain samples 
A: Strong positive staining of colligin 2 protein in the hypertrophied vessels of a glioma sample. 
B: Absence of immunopositivity for colligin 2 protein in the blood vessels of normal brain. 
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The results of the immunostaining of various gliomas, carcinomas, vascular malformations 

and tissues and reactive conditions in which neo-angiogenesis takes place are shown 

(Figure 5 & Table 6). It appears that both colligin 2 and fibronectin are present in active 

angiogenesis in tumors, normal tissues and reactive processes. For instance, the vascular 

malformations (AVM and cavernous hemangioma) remained immunonegative for colligin 

2, but in the arteriovenous malformation a spot of active angiogenesis, namely the 

 recanalization of a vessel, was immunopositive (Figure 5D).
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Discussion

The aim of this study was to identify angiogenesis-related proteins in glioma. To achieve 

this goal, the vasculature of surgically removed tissue samples of gliomas was compared 

with normal brain vessels. Tumors consist of complex 3-dimensional structures of 

heterogeneous mixture of cell types.  Laser microdissection provides an efficient and 

accurate method for obtaining specific cell populations such as the glioma blood vessels in 

the present study. The hypertrophied vessel walls of glioma vasculature consist of 

endothelial cells, pericytes and cells expressing smooth muscle actin. These vessels may 

also contain glial tumor cells (mosaic vessels) [20].  In order to eliminate proteins derived 

from these tumor cells, we also microdissected glial tumor tissue for comparison.  

Comparison of the various microdissected tissues is essential for targeting structure- specific 

proteins. Any peptide present in the blood vessels that was also found in the glioma tissue 

was eliminated from the list of differentially expressed peptides.

Recent studies showed that the application of MALDI-FTMS holds significant advantages 

over other types of mass spectrometry [21, 22]. FTMS provides very high mass accuracy, 

which is considerably increased by its ability to perform an internal calibration [23]. In the 

present study we achieved an accuracy of ± 3 ppm by external calibration and up to ± 0.5 

ppm by internal calibration. One of the advantages of MALDI-FTMS is the very high mass 
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Figure 5
Results of immunostaining of various tissue samples for colligin 2 and fibronectin
A: anaplastic oligodendroglioma; B: ependymoma; C: renal cell carcinoma; D: arteriovenous 
malformation in brain; E: cavernous angioma; F: contusio cerebri; G: inflammation of skin; H: placenta; 
I:endometrium.
Staining patterns for both colligin 2 and fibronectin are confined to blood vessels. In case of active 
blood vessel formation in tumors, in reactive and normal tissues, staining is present. The AVM (D) and 
the cavernous hemangioma (E) remained largely immunonegative for colligin 2. However, at a single 
site of recanalization of a thrombosed vessel in the AVM (arrow), positive staining is present. 
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resolution, which in the present study generated relatively complex spectra consisting of 

700-1,100 mono-isotopic peaks per spectrum. Yet another advantage is the very high 

sensitivity and reproducibility of the FTMS [11], which is higher than that of any other mass 

spectrometric technique currently available. In addition, FTMS provides an excellent signal-

to-noise ratio, since the source of noise in MALDI-FTMS  is of physical origin and is not a 

chemical based noise as that generated in the MALDI-TOF [24]. These advantages allow the 

study of very small numbers of targeted cells. 

Although the MALDI-FTMS measurements of microdissected samples enabled us to detect 

specific peptide patterns for the distinct targeted cell populations, the results were not 

adequate to directly identify all of the related proteins. The chance of identifying a protein 

on the basis of accurate peptide masses rises by increasing the number of peptides 
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Table 6
Samples used for immunohistochemistry 

Sample type # of samples IR for c olligin 2   IR for fibronectin
    in blood vessels in blood vessels

Glioma    
 Glioblastoma  16 (a) Positive Positive
 Normal brain samples  14 (b) Negative Negative/ faint 
 Pilocytic astrocytoma 3 Positive Positive
 Ependymoma 3 Positive  Positive
 Myxopapillary ependymoma 2 Positive Positive
 Anaplastic oligodendroglioma  6 Positive Positive
Renal cell carcinoma 5 Positive Positive
Vascular malformation    
 Arteriovenous malformation (AVM) 5 Negative Positive
 Cavernous hemangioma 2 Negative Positive
Reactive condition    
 Subdural membrane 2 Positive Positive
 Contusio cerebri 2 Positive Positive
 Ischemic infarction of brain 2 Positive Positive
 Inflammation (outside brain) 5 Positive Positive
Tissues with notorious 
Neo-angiogenesis   
 Placenta 6 Positive Positive
 Endometrium 6 Positive Positive

IR: Immuno Reactivity
(a)  i.e., 10 samples used for MALDI-FTMS plus an additional 6 samples
(b)  i.e., 10 samples used for MALDI-FTMS plus an additional 4 samples
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generated and detected from that protein. The number of detectable peptides per protein 

depends on several factors: the size of the protein and its concentration, the chemical 

properties of both the protein and the derived peptides and the enzyme used in digestion. 

Last but not least, protein identification by detection of peptides is highly dependent on 

the accuracy and completeness of the available databases. In the present study we 

succeeded in identifying the protein fibronectin on the basis of the accurate masses of four 

peptides generated by MALDI-FTMS. The in silico digestion approach appeared to be a 

valuable tool for confirming the presence of peptides derived from specific proteins in the 

spectra obtained by MALDI-FTMS. This is because the high peptide mass accuracy of 

MALDI-FTMS facilitated the match with the calculated masses generated by in silico 

digestion. Nevertheless, a major role in the detection of protein is still played by the nature 

of a protein, its concentration and its ionization ability. 

The identification of peptides based on direct MS/MS measurements is hampered by the 

complexity of the sample in combination with the relatively low sensitivity for MS/MS in 

FTMS on ions generated by MALDI. To reduce those effects, we applied nano-LC fractionation 

prior to MALDI-TOF/TOF. Because the number of cells required for nano-LC fractionation is 

much higher than that obtained from sample microdissection, we pooled the micro-

dissected cells from all samples in one sample of 15,000 cells. There was still a considerable 

loss of cells during the preparation steps and in the nano LC column. In addition, the overall 

sensitivity of MALDI-TOF measurements was significantly lower than that of MALDI-FTMS. 

These factors together led to the identification of the highly abundant proteins of the 

pooled microdissected cells. The identification of lower abundant proteins is achieved by 

using high numbers of cells more than harvested by microdissection. The tryptic digest of 

whole sections allowed the identification of many more proteins both in glioma and normal 

brain samples, particularly when we used peptide concentrations close to the maximum 

capacity of the column. Within the spectra that were generated by MALDI-TOF following 

nano-LC, we specifically sought the peaks that had previously been identified by FTMS, i.e. 

the 16 differentially expressed peptides. The low percentage of vessels in a section 

(maximum 10% of the cells) is responsible for producing only few numbers of peptides from 

their proteins. The detection of blood vessel-specific peptides was probably masked by the 

high percentage of peptides derived from the surrounding tissue. For that reason, not all of 

the 16 differentially expressed peptides found in the MALDI-FTMS experiments were 

detected after fractionation followed by MALDI-TOF/TOF. Yet, MS/MS data were obtained 

for four peptides, of which the identification was based both on very accurate peptide 

masses and on their significant MS/MS measurements. Importantly, fractionation also 

increased the number of peptides generated from an individual protein, thus significantly 

increased the confidence in the identified proteins (Table 7). However, the number of 

sequenced peptides was still insufficient to specifically identify splice variants of some 
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proteins. For instance, none of the fibronectin sequenced peptides were specific for extra 

domain B fibronectin, which is a splice variant known to be present in angiogenesis [25]  

The extra-domain B splice variant was not specifically identified, but neither was its  

presence excluded.

Two of the four proteins identified by the proteomic approach were successfully validated 

by immunohistochemistry.  The faint staining for fibronectin of some of the normal brain 

blood vessels is in line with the detection of one fibronectin peptide by mass spectrometry 

in the normal brain vessels. The colligin 2 antibody appeared to be specific for the glioma 

vessels. The immunohistochemical validation of the findings by mass spectrometry 

highlights the sensitivity and accuracy of these techniques and illustrates its potential of 

identifying specific proteins. The additional immunostaining of various lesions and tissues 

demonstrate that colligin 2 and fibronectin both are expressed in the context of neo- 

angiogenesis. The expression was not specific for glioma neovascularization, but also found 

in the proliferating blood vessels in other tumors. Moreover, it is also seen in non-  

neo plastic tissues in which angiogenesis takes place. Therefore, colligin 2 and fibronectin 

should be considered as participants in the process of neovascularization in general, 

without specificity for tissue type.  

So far, various growth factors taking part in the process of neo-angiogenesis have been 

identified in gliomas, such as Vascular Endothelial Growth Factor (VEGF) [26] and Platelet-

Derived Growth Factor (PDGF) [27]. Relations have been discovered between some 

cytokines such as Transforming Growth Factor-beta and tumor blood vessels [28]. Further, 

endogenous expression of angiogenesis inhibitor factors e.g., angiostatin, endostatin and 

thrombospondin (TSP)-1 and -2 by glioma tumor vessels have been reported also [29]. Some 

of these proteins have been used to monitor therapy effects [7]. Despite the gradual 

unravelling of the roles of these regulatory proteins in the process of tumor neo-

vascularisation, no major steps forward in antiangiogenic therapies for gliomas have been 

recorded. The identification of more tumor vasculature-related proteins may increase the 

chance of finding targets for anti-angiogenic therapies. Such discoveries may well increase 

our understanding of the formation of neovasculature in glioma.

In the present study, we identified fibronectin, fibrinogen, colligin 2 and acidic calponin 3 as 

proteins which are expressed in the glioma vasculature. Fibronectin is a high molecular 

weight, multifunctional matrix protein which binds to other extracellular matrix proteins 

such as collagen, fibrin and heparin. Several studies addressed the relation between 

fibronectin and tumors, among which breast cancer, melanoma [30, 31], and also gliomas. 

Overexpression of fibronectin in glioblastoma as detected by immunohistochemistry was 

reported previously [32]. The expression of fibronectin by glioma blood vessels suggests 
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that this protein plays a role in the 

development of glioma vasculature [33].  

In a study using suppression subtractive 

hybridization in which pilocytic astro-  

cytoma were compared to glioblastoma, 

fibronectin was found to be differentially 

expressed; the glioblastomas expressed 

fibronectin while the pilocytic astrocytomas 

did not [34]. However, we did not find 

difference in the expression of fibronectin 

between these two tumor types. Since 

hypertrophied microvasculature is a hall- 

mark of both, despite their different WHO 

grades, this finding did not surprise us.

Colligin-2, also called Heat shock protein-47, 

is a collagen-binding protein that is 

associated with an increase in the 

production of procollagen in human 

vascular smooth muscle cells [35]. Colligin 2 

has been related to neo-angiogenesis in 

oral squamous cell carcinomas [36]. Acidic 

Calponin, also identified in this study, is a 

thin filament-associated protein detected 

in a number of different cells and tissues. It 

was mentioned among the differentially 

expressed proteins in human glioblastoma 

cell lines and tumors [37]. Acidic calponin 

modulates the contraction of smooth 

muscle cells. Interestingly, the proteins 

found in the present study share their 

prominent role in cell motility. It may very 

well be that the  identification of these 

proteins is a reflection of their up-regulation 

in glioma vasculature. During neoplastic 

angiogenesis, sprouting of pre-existent 

blood vessels stimulate motility of the 

activated endothelial cells involved in this 

process. Further, the putative influx of 
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angiogenic precursor cells from the bone marrow into glioma may require the activation of 

motility even more. Further studies may detail the function and interaction of the proteins 

found in this study. 
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Abstract

The process of neoangiogenesis plays an essential role in tumorgenesis of gliomas. In a 

previous study using state-of-the-art proteomic techniques, we identified colligin 2 (HSP47) 

as a glioma blood vessel-specific protein. The aim of the present study was to precisely 

localize the expression of colligin 2 in the blood vessels present in diffusely infiltrating 

gliomas and relate the expression pattern to the distinct cellular components of the vessels 

by using multiple immunolabeling and confocal microscopy. We grouped the glioma blood 

vessels into morphological categories ranging from normal looking capillaries to vessels 

with hypertrophic and sclerotic changes. The expression patterns of various markers of 

endothelial, pericytic and smooth muscle differentiation were correlated with the position 

of the cells in the vessels and the expression of colligin 2. We found that colligin 2 is 

expressed in all categories of glioma blood vessels in cells with endothelial and pericytic 

lineage. In addition, expression of colligin 2 was also found in cells scattered around blood 

vessels and in few GFAP-positive cells within the blood vessels.  There is overlap in the 

expression of colligin 2 and the collagens type I and IV for which colligin 2 is a chaperon. We 

conclude that colligin 2 is expressed in all cellular components of glioma blood vessels and 

may serve as a general marker for active angiogenesis.
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Introduction 

Gliomas are among neoplasms with the highest degree of vascularization [1]. These 

neoplasms contain increased numbers of blood vessels relative to normal brain tissue and 

the vessel walls are variably thickened because of  proliferation of their cellular constituents 

[2]. Along with glial tumor progression, normal looking blood vessels gradually hypertrophy 

into glomeruloid structures with multiple lumina ultimately degenerating into end-stage 

vessels with sclerotic walls and obliterated lumina [3]. Many vessels become prone to 

thrombosis and recanalization of organized thrombi is a frequently observed phenomenon. 

The newly formed blood vessels are leaky because of defective and aberrant basal 

membrane formation [4]. While it has long been appreciated that tumor growth and 

progression are dependent on angiogenesis, the elucidation of the molecular mechanisms 

that trigger the formation of new blood vessels is still in its early stage [5]. Although many 

aspects of the angiogenic switch, i.e., the transition of dormant pre-existing blood vessels 

into an actively sprouting vasculature, are not unravelled yet, a variety of angiogenic 

regulators have been detected [6] and some have already been tested for the development 

of anti-angiogenic therapies [7]. Besides the therapeutic approach aiming at destroying 

glioma vasculature, attempts to normalize the structure and function of the newly formed 

and dysfunctional blood vessels are also undertaken for reaching better penetration of 

chemotherapeutics and optimize conditions for effective radiation therapy [8, 9]. In order 

to manipulate the cerebral microcirculation, knowledge of the interplay of the cells involved 

and underlying molecular mechanisms is required [10].

The cells in blood vessel walls are characterized either by their position relative to the 

vascular lumina and/or by their immunohistochemical profiles. In normal blood vessels, 

endothelial cells are considered to line the lumina and express CD31 [11], CD34  [12], Von 

Willebrand factor [13] and more. Pericytes (also indicated as smooth muscle cells or mural 

cells) form an incomplete layer around the endothelial cells [14]. CD105 is a marker for 

activated endothelial cells taking part in neoangiogenesis not only in gliomas but also in 

various tumors [15-17]. Most available data on the cells involved in neoangiogenesis concern 

endothelial cells and factors regulating their proliferation [18, 19]. In recent studies the 

importance of pericytes and their interaction with endothelial cells for blood vessel 

formation, stabilization and function was highlighted [20, 21]. There are indications of the 

existence of various subtypes of pericytes in various organs with different functions and 

locations in the vessels [22, 23]. Immunohistochemical marker profiles for pericytes are 

diverse and vary between organs and developmental stages [22]. Because of this diversity, 

no general pan-pericytic marker is known [5]. A well-known marker for pericytes in cerebral 

vasculature is α-smooth muscle actin (αSMA) [14]. The marker NG2 is also used for staining 

of brain pericytes [24] and has been instrumental in proving that pericytic precursor cells 
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are recruited to sites where vessel growth and repair are occurring [25]. Recently, endosialin 

was found to be strongly up-regulated in pericytic cells in the developing human brain [21] 

and glioma [20]. Its expression is closely associated with other perivascular cells [20]. Other 

markers used to identify pericytes include platelet-derived growth factor receptor beta 

(PDGFR-β) [21], CD13 and desmin [26], but none is specific for these cells.

In a previous study using state-of-the-art proteomics techniques, colligin 2 was identified 

as a protein which is expressed in glioma neovasculature but not in normal brain vasculature 

[27]. In addition, we found that expression of colligin 2 is not limited to glioma vasculature, 

but is also seen in vasculature of non-glial tumors. It is also seen in non-neoplastic tissues, 

but only under circumstances of active angiogenesis like wound healing and recanalization 

of thrombi. Colligin 2 protein (also known as collagen binding stress protein; HSP 47) is 

localized in the endoplasmic reticulum and specifically binds to collagen type I, collagen 

type IV and gelatin [28]. It assists in the formation of the rigid triple-helical structures of 

collagen type I [29] and contributes to the maturation of collagen type IV [30]. Collagen is 

the major component of the basement membrane and a crucial element of the BBB [31-33]. 

The aim of the present study was to precisely localize the expression of colligin 2 in the 

blood vessel walls of gliomas; link the expression to the specific cellular components of  

the vessel walls in order to obtain indications as to the role of this protein in glioma 

angiogenesis. To this end, in addition to conventional microscopy of adjacent slides, 

confocal microscopy was used because of the superior levels of resolution and creating 

3-dimensional  representations. 

Materials and Methods

Patients and tumor samples

Twenty glioblastoma (GBM) samples were taken from the files of the Department of 

Pathology, Erasmus MC, Rotterdam.  In addition, seven samples of autopsy brains of patients 

without brain tumors were used as controls. Post-mortem times of the control cases were 

eight hours or less. For immunohistochemical staining paraffin embedded and fresh-frozen 

samples were used depending on the specifications of the antibodies and type of staining. 

For application of confocal microscopy, fresh-frozen samples were used. The number of 

samples, clinical data and tumor types are summarized in Table 1.
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Table 1
Clinical data for the patient which had been used in this study 

high-grade diffusely infiltrating glioma

Glioma Samples   Sex Age   Tumor site Diagnosis

T1  female 30 Ri F GBM
T2  female 30 Ri F GBM
T3  female 54 Le F-P GBM
T4  female 58 Le F-P GBM
T5  female 63 Le F GBM
T6  male 36 Le F GBM
T7  male 44 multifocal GBM
T8  male 46 Le T GBM
T9  male 47 Le T GBM
T10 male 47 Ri T-P GBM
T11 male 48 Le F GBM
T12 male 51 Ri F GBM
T13 male 55 Ri F GBM
T14 male 56 Le T-P GBM
T15 male 57 Le T GBM
T16 male 57 Ri F GBM
T17 male 57 Le T GBM
T18 male 62 Le T GBM
T19 male 62 Le T GBM
T20 male 68 Le F GBM

Controls

Normal Samples    Sex Age   Location Diagnosis

S1  female 39 Ri F SAB
S2  female 48 Ri F SAB
S3  female 60 Ri F Pneumonia
S4  female 76 Ri F Pneumonia
S5  male 31 Ri F AVM
S6  male 34 Ri F Haemorrhage brain stem
S7  male 70 Ri F ARDS

Le = left; ri = right; F = frontal; T = temporal; P = parietal;  GBM = glioblastoma;  
AVM = arteriovenous malformation; SAB = subarachnoidal hemorrhage; ARDS = adult respiratory 
distress syndrome
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Immunohistochemistry

Single staining procedures

Twelve biopsy samples of GBMs and five autopsy control samples were used. The samples 

were collected in a consecutive way. From each paraffin embedded sample, adjacent slides 

of five μm sections were stained with various antibodies. Because NG2 and CD105 antibodies 

do not work on paraffin embedded tissues, adjacent frozen sections were used. Immuno-

histochemical staining was performed following the manufacturer’s instructions (alkaline 

phosphatase technique). The antibodies and their specifications are summarized in Table 2. 

Briefly, the paraffin sections were mounted onto poly-L-lysin coated slides, deparaffinized 

in xylene for 15 minutes and rehydrated through graded alcohol and washed with water. 

Frozen sections were fixed in acetone for 15 minutes and air dried. The sections were 

washed with phosphate-buffer saline (PBS) and incubated with the antibody for 30 minutes. 

After washing the sections with PBS, the corresponding antigen was added and incubated 

30 minutes at room temperature. New Fuchsin Alkaline Phosphatase Substrate Solution 

was freshly prepared and the sections were incubated for about 30 minutes. Afterwards, 

the sections were washed with tap water, counterstained and cover-slipped with permanent 

mounting medium.  

Double staining procedures

Double immunolabelings were performed combining colligin 2 antibody with the various 

markers for endothelial cells and pericytes. Ten frozen biopsy samples of GBMs were used 

for confocal laser microscopy. Adjacent slides of five μm sections were mounted onto 

non-coated microscope slides, fixed in acetone for 15 minutes and air dried. Sections were 

incubated with colligin 2 polyclonal antibody for 30 minutes, washed and incubated again 

with Cy3- conjugated goat-anti-rabbit for 30 minutes. After washing, sections were 

incubated with the second monoclonal antibody for 30 minutes followed by 30 minutes of 

labelling with biotin-horse-anti-mouse antibody. Detection was performed by FITC- 

conjugated-avidin antibody. Nuclei were counterstained with DAPI in a vector sheet (1:1000) 

and slides were covered and examined with the confocal laser microscope. For all   

antibodies the staining was always performed single on each sample also, to control for the 

accuracy of the staining and specificity of the antibodies used. For each antibody, negative 

controls including the secondary antibodies only were obtained for both single and  

double stained slides. The specifications of the antibodies are summarized in Table 2.

Confocal laser scanning microscopy 

Using the confocal microscope allowed staining of the samples with two different 

antibodies. In addition, the resolution of the confocal microscope and its ability to produce 

3D optical images enabled specific targeting the cellular components of glioma blood 
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vessels in a more accurate and reliable way. Confocal images were obtained using a confocal 

laser-scanning microscope (LSM510; Carl Zeiss MicroImaging, Inc.) equipped with a 

Plan-Neofluar 40x/1.3 NA oil objective (Carl Zeiss MicroImaging, Inc.). A diode laser was 

used for excitation of DAPI at 405nm, an argon laser for FITC at 488nm and a HeNe-laser for 

Cy3 at 543nm. For DAPI an emission bandpassfilter of 420-480nm was used, for FITC a band-

passfilter of 500-530nm and for CY3 a longpassfilter of 560nm. The signals were recorded 

sequentially (multi-track option) to avoid interference and stored in separate channels. 

Results

Immunohistochemistry

Normal brain

The endothelial cells of small and medium-sized vessels in the samples of normal brain 

showed immunopositivity for CD31 and CD34 but not for αSMA (Table 3). The mural cells 

were variably positive for αSMA. None of the cells of the blood vessels in normal brain were 

positive for CD105, NG2, endosialin or colligin 2 (Figure 1 and Table 3).
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Table 2
Antibodies used in this study 

Name   Dilution Commercial source

monoclonal colligin 2 1:500 Stressgen, Michigan, USA
polyclonal colligin 2  1:100 MBL international, Woburn, Canada
CD31 1:40 Dako, Glostrup, Denmark
CD34 1:30 Dako, Glostrup, Denmark
CD105 1:2000 Dako, Glostrup, Denmark
NG2 1:100 ZYMED laboratories, California, USA
endosialin 1:500 Prof. Isacke, Institute of Cancer Research, London, UK 
αSMA 1:40 Biogenex, California, USA
collagen I 1:100 Abcam, Cambridge, UK 
collagen IV 1:25 Dako, Glostrup, Denmark
Mib-1 (Ki-67) 1:10 Dako, Glostrup, Denmark
GFAP 1:100 Dako, Glostrup, Denmark
goat-anti-mouse-CY3 1:100 BioLegend, California, USA 
biotin-horse-anti-mouse  1:200 Vector, Peterborough, UK
Avidin-FITC 1:50 Jackson Immunoreasearch, Pennsylvania, USA
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Figure 1
Expression of the various markers in normal brain 
(A-D): CD31, CD34 and collagen IV are all expressed in capillaries. αSMA is variably expressed  
(Panels A, B, D: x 40; panel C: x 20).
(E-J): CD31, CD34, αSMA, collagen IV are expressed in small vessels in normal brain; endosialin  
and colligin 2 are not expressed (E, F-H, J: x 40; I: x 20).
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Glioma  

The vessels encountered in the glioma samples were divided in small vessels including 

capillaries, which did not show morphological changes; vessels with hypertrophied walls 

(either with organized layering as in normal larger blood vessels or with disorganized, 

haphazardly arranged cellular components); vessels with glomeruloid appearance and 

vessels with signs of recanalization. The lumina-lining cells of capillaries in glioma were 

invariably positive for CD31, CD34 and CD105 (Figure 2; Table 4). In addition, there was 

 immunopositivity for αSMA, endosialin and NG2. Expression of colligin 2 was found in all 
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Table 3
Immunostaining of blood vessels in normal brain 

Table 4
Immunostatining of blood vessels in glioma 

Layers in normal    CD31 CD34 CD105 NG2 endosialin αSMA colligin 2

Endothelial cells + + - - - - - 
(lumena-lining)

Pericytes  - - - - - +/- -
(abluminal lining)

Glioma    Layers CD31 CD34 CD105 NG2 endosialin αSMA colligin 2
blood vessel
subtype

small, normal- single + + + + + + +
looking vessels

Layered/organized inner + + + – + – +
wall hypertrophied middle – – – + – + +
vessels outer  – – + + + + +

Un-layered/  inner + + + – – – + 
disorganized middle  – – + + + + +
hypertrophied outer – – + + + + +
vessels

Glomeruloid inner + + + + + + +
vessels other  – – + + + + +
  layers 

Recanalized inner + + ND ND +/- +/- +/-
vessels other – –   +/- +/- +/- 
other layer layers

ND = not determined
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small blood vessels (Table 4). In the vessels with hypertrophied walls with organized 

layering, the endothelium expressed CD31 and CD34 while the intermediate and the 

external layers expressed αSMA and NG2 (Table 4). The inner (endothelial) and outer layer 

of these vessels expressed endosialin and CD105 while cells in between these two layers 

remained negative for these two markers. Colligin 2 was expressed in all cell layers of the 

hypertrophied blood vessels (Figure 3). In the disorganized hypertrophied vessels, the 

internal diameter of the lumen appeared irregular while the external diameter of the vessel 

Chapter 4

Figure 2
(A-H): Expression of the various markers in capillaries and small vessels in glioma
All capillaries and small vessels are invariably positive for the markers indicated.
(Panels A, C, E: x 40; B, D, F-H: x 20).
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Figure 3
(A-F): Expression of the various markers in layered hypertrophic blood vessels in glioma
CD31 and CD34 are expressed in the endothelial layer. CD105 and endosialin are expressed in the 
endothelium and the external layer. αSMA, NG2 and collagen IV are expressed in the intermediate and 
external layers, not in the endothelium. Colligin 2 is expressed in all layers of the vessels. (Panels A-F: x 
40). (G-K): Confocal images of layered hypertrophic blood vessels in glioma for the expression 
of CD105. Double immunolabeling for CD105/colligin 2. The endothelail cells as well as the external 
cells express both CD105 and colligin 2, while the intermediate cells express colligin 2 only (arrows). 
(Panel H: green = CD105; panel I: red = colligin 2; panel J: blue = DAPI; panel K: merged picture). 
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Figure 4
(A-F): Expression of the various markers in hypertrophic vessels without layered structure
CD31 is exclusively expressed in the endothelial layer; CD105 and colligin 2 are expressed in all layers. 
SM-A, NG2 and endosialin are present in all layers except the endothelial layer. (All panels x 40).

Figure 5
(A-F): Expression of the various markers in recanalized vessels in glioma
CD31 and CD34 are expressed in the endothelial layer. SM-A, endosialin, colligin 2 are expressed by the 
surrounding cells. Collagen IV is expressed throughout the vessel wall (All panels x 20).
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wall varied per segment of the vessel. The endothelium stained positive for CD31, CD34 and 

CD105 but not for αSMA, NG2 or endosialin (Table 4). The abluminal cells of these vessels 

stained positive for CD105, αSMA, NG2 and endosialin. Colligin 2 was expressed in all layers 

of the vessel walls (Figure 4). The lumina-lining cells of the larger recanalized vessels were 

positive for CD31, CD34 and CD105 (Table 4). The other cells stained positive for αSMA, 

endosialin and colligin 2. Remarkably, a minority of cells in the recanalized thrombi remained 

negative for all markers used (Figure 5). In the glomeruloid blood vessels the cells are 

haphazardly arranged around multiple small lumina. The lumina-lining cells of the 

glomeruloid blood vessels stained positive for CD31, CD34 and CD105. The cells in abluminal 

position stained for endosialin, NG2 and αSMA (Table 4). The expression of colligin 2 was 

positive in all cellular components of these blood vessels (Figure 6). 
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Confocal laser microscopy

The high resolution of the confocal microscope enables to detail the expression of the 

various markers at the level of individual cells. In all distinguished types of glioma blood 

vessels the lumina-lining endothelial cells were positive for CD31 and CD34 while none of 

the other cellular components were positive for these markers (Figure 7). CD105, a marker 

for activated endothelial cells, was expressed by the endothelial cells in all different types 

of blood vessels in the glioma samples (Figure 8). The percentage of endothelial cells that 

expressed colligin 2 varied between the blood vessels in the same sample and ranged 

between highly expressed and hardly showed any expression. In some endothelial cells 

expression level of colligin 2 was the same as that of CD31 or CD34, while other cells showed 

a very low level of expression. 
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Figure 7
Confocal images of glioma blood vessels visualizing the expression of colligin 2 in  
the endothelial cells
 (A-E): Double immunolabeling for CD31/colligin 2 in a small blood vessel. Some CD31 expressing  
cells are positive for colligin 2 [35]. Some cells around the blood vessels exclusively express colligin 2 
(asterix). (Panel B: green = CD31; panel C: red = colligin 2; panel D: blue = DAPI; panel E: merged picture). 
(F-J): Double immunolabeling for CD34/colligin 2 in a hypertrophied blood vessel.  
A complete overlap in expression of CD34 and colligin 2 in endothelial cells [35]. 
Colligin 2 is also expressed by CD34-negative pericytes (Panel G: green = CD34; panel H:  
red = colligin 2; panel I: blue = DAPI; panel J: merged image). 
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The pericytic markers NG2, endosialin and αSMA were combined with colligin 2. In all types 

of blood vessels, NG2 and αSMA were exclusively found in the layers around the endothelium 

and these cells also expressed colligin 2. Endosialin was expressed around the endothelium 

as well, but a low percentage of the endothelial cells of the various blood vessel subtypes 

also expressed this protein (Figure 9). Interestingly, scattered individual colligin 2-positive 

cells were present around all blood vessel subtypes. These colligin 2 expressing cells lacked 

expression of any of the endothelial or pericytic cell markers.

Because colligin 2 is the chaperon for the collagen types I and IV, we included these proteins 

in our investigations. There appeared to be an overlap in expression of colligin 2 and 

collagen type I and IV. However, not all colligin 2 positive cells showed expression of 

collagen; for instance, some cells in the glomeruloid blood vessels exclusively expressed 

colligin 2 and other cells in small blood vessels also expressed colligin 2 exclusively  

(Figure 10). The endothelial cells remained negative for collagens I and IV. Noticeably, the 

individual colligin 2-expressing cells found around the blood vessels never expressed either 

of the two collagens (Figure 10). The proliferation-related marker Mib-1 was combined with 

colligin 2 and co-expression was seen in some endothelial cells of small and hypertrophied 

vessels. In the glomeruloid vessels Mib-1 expression was seen in both colligin 2 positive and 

negative cells (Figure 11). The GFAP-positive astrocytes residing outside the blood vessels 

remained negative for colligin 2, but a very low percentage of these cells participating in 

the glioma blood vessel formation were found to co-express colligin 2 (Figure 12).
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Figure 8
Confocal images of glioma blood vessels for the expression of colligin 2 by activated  
(CD105-positive) endothelial cells.
 (A-E):  Double immunolabeling for CD105/colligin 2 in hypertrophied blood vessel. CD105 and 
colligin 2 are expressed by endothelial cells while the cells around the endothelium express only 
colligin 2 (arrows). (Panel B: green = CD105; panel C: red = colligin 2; panel D: blue = DAPI; panel E: 
merged picture).



84

Chapter 4

Figure 9
Confocal images of glioma blood vessels for the expression of colligin 2 by the surrounding 
cells / pericytes
 (A-E):  Double immunolabeling for NG2/colligin 2 in hypertrophied blood vessel. Cells expressing 
NG2 show expression of colligin 2. NG2 is not expressed by the endothelial cells. Some cells around 
the blood vessels exclusively express colligin 2 (asterix). (Panel B: green = NG2; panel C: red = colligin 
2; panel D: blue = DAPI; panel E: merged picture).
(F-J): Double immunolabeling for endosialin/colligin 2 in hypertrophied blood vessel. Cells 
expressing endosialin are positive for colligin 2 as well. Some cells around the blood vessels show 
exclusive expression of colligin 2 (asterix). (Panel G: green = endosialin; panel H: red = colligin 2; 
panel I: blue = DAPI; panel J: merged picture).
(K-O): Double immunolabeling for SM-A/colligin 2 in small blood vessel. Expression of endosialin 
and colligin 2 in the same cells of the vessel wall. Exclusive expression of colligin 2 in cells around the 
blood vessels (asterix). (Panel L: green = endosialin; panel M: red = colligin 2; panel N: blue = DAPI; 
panel O: merged picture).
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Figure 10
Confocal images of glioma blood vessels for the expression of colligin 2 and collagen type I 
and IV
(A-E): Double immunolabeling for collagen type I colligin 2 in hypertrophied blood vessel.  
The endothelial cells express colligin 2 only (stars), while the surrounding cells express both colligin 2 
and collagen I. (Panel B: green = collagen I; panel C: red = colligin 2; panel D: blue = DAPI; panel E: 
merged picture).
(F-J) Double immunolabeling for collagen type IV colligin 2 in a small blood vessel. Double 
expression of Collagen IV and colligin 2 in the cells around the endothelium, while endothelial cells 
only express colligin 2. Exclusive expression of colligin 2 in cells around the blood vessels (stars). 
(Panel G: green = collagen IV; panel H: red = colligin 2; panel I: blue = DAPI; panel J: merged picture).
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Figure 11
Confocal images of glioma blood vessels for the expression of colligin 2 in Mib-1 positive cells
(A-E): Double immunolabeling for Mib-1/colligin 2 in a small blood vessel. A fraction of colligin 2 
positive endothelial cells are Mib-1 positive (arrows). (Panel B: green = collagen I; panel C:  
red = colligin 2; panel D: blue = DAPI; panel E: merged picture).
(F-J) Double immunolabeling for Mib-1/colligin 2 in glomeruloid vessels in glioma. Some Mib-1 
positive endothelium-surrounding cells express colligin 2 (arrows) while others do not (stars).  
(Panel G: green = Mib-1; panel H: red = colligin 2; panel I: blue = DAPI; panel J: merged picture).

Figure 12
Confocal images of glioma blood vessels for the expression of colligin 2 and GFAP
(A-E): Few GFAP positive cells are present in the blood vessels and express colligin 2 in 
hypertrophied blood vessel (arrows). (Panel B: green = GFAP; panel C: red = colligin 2; panel D:  
blue = DAPI; panel E: merged picture).
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Discussion

In our previous work we discovered that colligin 2 is expressed in glioma vasculature but 

not in the blood vessels of normal brain [27]. The aim of the present study was to investigate 

which subset of vessels and which cellular components of the glioma neovasculature 

express colligin 2. The results show that colligin 2 was expressed at various stages of glioma 

blood vessels: in new vascular sprouts, in hypertrophied vessels, in glomeruloid vessels and 

also in end-stage and thrombosed vessels in which recanalization is taking place. Moreover, 

the expression of colligin 2 was discovered in capillaries and some larger vessels which had 

not yet undergone any morphological change. Because colligin 2 was expressed in active 

angiogenesis but was not seen in blood vessels of normal brains it may be considered as an 

early marker for angiogenesis in glioma vasculature which remains present throughout the 

life cycle of the vessels.

At the level of single cells, colligin 2 is present in the lumina-lining endothelial cells showing 

co-expression of the endothelial markers CD31, CD34 and CD105 (Table 5). Since CD105 is a 

marker for activated endothelial cells, colligin 2 should be linked with endothelial activation 

and active angiogenesis. Colligin 2 is also expressed by pericytic or mural cells characterized 

by immunopositivity for αSMA, NG2 and endosialin (Table 5). In normal human development 

it has been shown that endothelial cells are driven and guided by migrating pericytes 

during organization of the growing vessel walls [21]. The immunohistochemical profiles 

which are the basis for the distinction of the various cells in the glioma blood vessels like 

endothelial cells or pericytes are less consistent than suggested in the literature so far.  

The lumina-lining cells of normal brain vasculature invariably express CD31 and CD34 while 

the expression of the pericytic marker αSMA varies between vessels of comparable sizes 

(Table 4). Alpha SMA is expressed in all types and sizes of blood vessels of glioma while its 
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Table 5
Confocal laser microscopy of glioma blood vessels  

Endothelial cells    Pericytes

Positive Negative Positive Negative 

CD31 NG2 NG2 CD31 
CD34 αSMA endosialin CD34  
CD105  αSMA CD105 +/- 
colligin 2  colligin 2
endosialin +/- 
  
+/-: Shows varies results depending on the type of blood vessel.
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expression was limited to only few blood vessels in the normal brain samples. The markers 

NG2, endosialin and colligin 2 were all exclusively found in glioma blood vessels while never 

in the blood vessels in the normal brain samples. As reported in the literature, endosialin is 

expressed in pericytes of glioma tissue [20]. The present results confirm the specificity of 

endosialin for glioma vasculature but also show that endosialin is present in some 

endothelial cells (Figure 9). NG2 showed to a lesser extent overlap in expression with 

endothelial markers and appeared, therefore, to be more specific for pericytic cells.  

The exclusive expression of colligin 2 and endosialin in morphologically normal blood 

vessels in glioma is illustrative of a shift in protein expression patterns prior to morphological 

changes. Interestingly, using confocal microscopy we found a subset of cells in brain tissue 

close to, but not in contact with, glioma blood vessels to express colligin 2. These cells did 

not express any of the endothelial / pericytic markers used in this study. It may well be that 

these cells are migrating vascular precursor cells on their way to merge into the vessel walls, 

or, alternatively, become a blood vessel de novo, compatible with the expression of colligin 

2 as reflecting an early stage of vascular development. Further exploration as to the lineage 

and origin of these cells is indicated. 

Colligin 2 (also known as CBP2 or heat shock protein 47) is a collagen-binding stress protein 

localized in the endoplasmic reticulum [28]. In the normal situation the expression of HSP47 

precedes that of collagen and in various cell types and tissues co-expression of the proteins 

is present [36]. The expression of HSP47 and several types of collagen is induced under 

pathological conditions [37]. Colligin 2 is essential for the maturation of collagen by assisting 

in the correct folding and supporting the transportation of collagen to the basal membrane. 

The absence of colligin 2 causes defective maturation of the microfibrills of collagen type I 

and IV and impaired formation of the basal membrane [30]. Colligin 2 knockout mice did 

not survive beyond 11.5 days post fertilization and displayed abnormally orientated 

epithelial tissues and ruptured blood vessels [29]. Inactivation of the expression of colligin 

2 seriously affects the function of the basal membrane of blood vessels [38]. Our results 

confirm the anticipated overlap in expression of colligin 2 with collagen types I and IV in the 

glioma blood vessels, corroborating the significance of colligin 2 for the formation of the 

basal membrane. The fact that expression of colligin 2 precedes the expression of collagen 

may well explain absent co-expression in some of the vascular cells examined in this 

study.

Resistance of brain tumors to therapy may in part be due to the abnormal functioning of 

tumor vasculature caused by pathological changes of the BBB. Normally, astrocytic endfeet 

and basal membrane substance of the cerebral blood vessels both contribute to the BBB.  

The majority of blood vessels in glioma loses contact with astrocytic endfeet and loses 

normal anatomy and function. Disruption of the BBB was noticed in our investigations.  

Chapter 4



89

In glioma vasculature, glial cells may participate in glioma angiogenesis (so-called “mosaic 

vessels”) [39], but normal formation of endfeet for a normal BBB function is absent. In this 

study, by double labeling of colligin2 and GFAP, we excluded the expression of colligin 2 by 

astrocytes in glioma tissue, but we encountered scattered astrocytes in the glioma blood 

vessels which expressed colligin 2. This finding indicates that some astrocytes or astrocytic 

tumor cells that contribute to glioma blood vessels switch their protein expression  

repertoire to take part in angiogenesis. This finding is important when considering  

vascular cell populations for therapeutic intervention. The properties and functions of  

the glial cells in the mosaic vessels need further investigation. 

In conclusion, we confirmed that colligin 2 is expressed in glioma vasculature and we found 

that its expression is by the distinct cell compartments of the tumor vasculature, whether 

they are activated endothelial cells or cells with immunoprofiles of pericytes. In addition, 

scattered cells without the immunophenotype of endothelial or pericytic cells were also 

immunopositive for colligin 2, as were some GFAP-positive cells in some of the vessel walls. 

Because colligin 2 is detected in a spectrum from morphologically normal to severely 

disfigured glioma blood vessels it potentially may become in use as a marker for active 

angiogenesis or serve as a link to targeted anti-angiogenic strategies.
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Abstract

In previous studies we found expression of the protein colligin 2 (heat shock factor 47 

(HSP47), SERPINH1) in glioma neovasculature while not in normal brain tissue. Generally, the 

regulation of heat shock gene expression in eukaryotes is mediated by heat shock factors 

(HSF). In mammals, three heat shock transcription factors, HSF-1, -2, and -4, have been 

isolated. Here we investigated the relation between the expression of colligin 2 and these 

heat shock factors at the mRNA level using real-time reverse transcriptase PCR (qRT-PCR) in 

different grades of astrocytic tumorigenesis, viz., low-grade glioma and glioblastoma. 

Endometrium samples, representing physiological angiogenesis, were included as controls. 

Since colligin 2 is a chaperon for collagens, the gene expression of collagen I (COL1A1) was 

also investigated. The blood vessel density of the samples was monitored by expression of 

the endothelial marker CD31 (PECAM1). Because NG2-immunopositive pericytic cells are 

involved in glioma neovascularization, the expression of NG2 (CSPG4) was also measured. 

We demonstrate overexpression of HSF2 in both stages of glial tumorigenesis (reaching 

significance only in low-grade glioma) and also minor elevated levels of HSF1 as compared 

to normal brain. There were no differences in expression of HSF4 between low-grade glioma 

and normal brain while HSF4 was downregulated in glioblastoma. In the endometrium 

samples, none of the HSFs were upregulated. In the low-grade gliomas SERPINH appeared to 

be slightly overexpressed with a parallel 4-fold upregulation of COL1A1, while in glioblastoma 

there was over 5-fold overexpression of SERPINH1 and more than 150-fold overexpression of 

COL1A1. In both the low-grade gliomas and the glioblastomas overexpression of CSPG4 was 

found and overexpression of PECAM1 was only found in the latter. Our data suggest that the 

upregulated expression of colligin 2 in glioma is accompanied by upregulation of COL1A1, 

CSPG4, HSF2 and to a lesser extent, HSF1. Further studies will unravel the association of these 

factors with colligin 2 expression, possibly leading to keys for therapeutic intervention.
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A wide range of physiological and pathological stresses trigger the heat shock gene 

transcription. Cells respond to elevated temperatures and to chemical and physiological 

stresses by an increase in the synthesis of heat shock proteins (HSP). HSP are a highly 

conserved family of proteins which function as molecular chaperones or proteases [1, 2]. 

Molecular chaperones form a class of proteins that control the proper folding of nascent 

polypeptides into the correct 3D structure. During stress responses the role of HSPs is critical 

in preventing the appearance of intermediates that lead to misfolding or otherwise 

damaging molecules [3]. HSPs assist in the recovery from stress either by repairing damaged 

proteins (protein refolding), or protein degrading, thus restoring protein homeostasis and 

promoting cell survival. The regulation of heat shock proteins is mediated by heat shock 

transcription factors (HSF). Under normal conditions, HSFs reside in the cytoplasm, but are 

activated upon stress and relocalize to the cell nuclei [4]. Activated HSFs form a trimmer with 

high-affinity binding to DNA; it binds to heat shock elements (HSE) in the promoters of the 

heat shock genes [4]. The activation results in the expression of heat shock proteins (HSPs). 

In vertebrates and plants, there are at least four members of the HSF gene family (HSF1-4), 

[1], while in human cells, three HSFs (HSF-1, -2, and -4) have been characterized [2, 5]. The 

expression of HSF1 and HSF2 is ubiquitous. However, the factors that induce their activation 

differ. While HSF1 is activated by heat shock and other forms of stress, HSF2 activity has 

been associated with development and differentiation. The expression of HSF4 appears to 

be tissue-specific and is restricted to heart, skeletal muscle or brain [5]. The simultaneous 

expression of the different HSFs in particular tissues would enable differential responses to 

various forms of stress. In the context of tumors, expression patterns of HSPs may be tumor-

specific and therefore, they may well become therapeutic targets [6-8].

In previous studies, we found specific overexpression of colligin 2 in glioma neovasculature 

as compared to the normal vasculature of the brain [9, 10]. Here we investigate whether 

there is a correlation between the expression of colligin 2 and any of the HSF genes (HSF1, 

HSF2 and HSF4) at the mRNA level in low- and high-grade glioma. We measured the relative 

transcription levels of colligin 2 (SERPINH1), HSF1, 2 and 4 by real time RT-PCR in four 

glioblastoma (GBM) samples, four samples of low-grade glioma (LGG), four samples of 

proliferating endometrium and four samples of normal brain tissue (Figure 1). Prior to 

isolation all tissues were assessed by a pathologist to ensure their origin and quality.  

The blood vessel density of the samples was monitored by expression of the endothelial 

marker CD31 (PECAM1). Because NG2-immunopositive pericytic cells are involved in glioma 

neovascularization, the expression of NG2 (CSPG4) was also measured. The expression sites 

of the HSFs were visualized by confocal microscopy. A set of four reference genes were  

used for data normalization (GUSB, HMBS, HPRT1 and NOXA1). For statistical testing the  

mean values were used. Comparisons between groups were made by using the Kruskal 

Wallis test. 
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qRT-PCR revealed a significant 5.6-fold increase in mRNA levels for colligin 2 in glioblastoma 

and mildly elevated levels in low-grade glioma (Figure 1). In parallel, significant increases in 

mRNA levels of collagen type I were found in the gliomas. Of the heat shock factors, HSF2 

was overexpressed in glioma which reached significance in low-grade glioma. There was 

only minor overexpression of HSF1 while HSF4 was underexpressed in GBM (Figure 1).  

The cells with nuclear expression of HSF1 were also immunopositive for colligin 2 (Figure 2). 

In GBM both PECAM1 (1.8-fold) and CSPG4 (2.3-fold) were overexpressed while only CSPG4 

was overexpressed (3.4-fold) in LGG. We also observed 2.2-fold upregulation of the 

expression of colligin 2 mRNA in endometrium samples as compared to normal controls 

(not significant; p=0.0833) with significant 55-fold upregulation of the expression of collagen 

I mRNA (p=0.0209). Remarkably, none of the HSFs was upregulated in endometrium as 

compared to normal brain controls (HSF1: p=0.1489; HSF2: p=0.2482; HSF4: p=0.2482).

 

This is the first report on the parallel upregulation of colligin 2 and heat shock factors in 

human glioma. Heat shock responses appear to be implicated in a broad range of pathological 

conditions including heat shock, oxidative stress, ischemia and reperfusion, inflammation, 

tissue damage, exposure to heavy metals and infection [1]. In addition, tumor neovasculari-

zation is associated with the heat shock response. Mammals have three different HSFs which 

are considered to be functionally distinct: HSF1 is essential for the heat shock response and 

is also required for developmental processes; HSF2 and HSF4 are important for  differentiation 

and development [11]. Although deletion of HSF1 in mammalian cells still allows a basal 

expression of HSPs, it leads to the abrogation of induction of the response to a variety of 

stresses [12, 13]. The genes encoding HSF1 and HSF2 are constitutively expressed in most 

cell lines and tissues under normal growth conditions and both factors are kept in a latent, 

non-DNA-binding state, indicating that the DNA-binding activity of both HSF1 and HSF2 is 

negatively regulated [14]. Despite differences in expression, HSF1 and HSF2 both act as 

positive activators of transcription for all their functions. In contrast, HSF4 lacks activity of a 

transcriptional activator [15]. HSF4 is highly expressed in the lens and in brain. It may well be 

a HSE binding trimmer because it lacks an inhibitory domain of trimerization. HSF4 

 constitutively binds to DNA and regulates the expression of HSP in the absence of stress 

[16]. HSF4 contains two alternative splice variants: HSF4a and HSF4b [17]. HSF4a isoform 

acts as a repressor of HSF1 [17] by competitively binding to the heat shock element (HSE). 

This is the first observation of downregulation of HSF4 in glioblastoma and is suggestive of 

a role of HSF4 in the regulation of the expression of HSPs including colligin 2. High-resolu-

tion chromatin immunoprecipitation on microarray (ChIP-chip) screens have successfully 

been used for identifying direct target genes for many transcription factors [18]. This 

approach has also been used for searching target genes for HSF2 [11] and may be used for 

further unravelling the relation between HSF2, HSF1, HSF4 and colligin 2. In the proliferating 

endometrium samples we found overexpression of colligin 2 and collagen type I. In contrast 
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to the glioma samples, no associated upregulation of any of the three HSFs was observed  

in endometrium. This may well be an important difference between physiological and 

neoplastic angiogenesis. Obviously, if there is a causal relation between the upregulated 

HSFs found and the expression of colligin 2, the HSFs may become important for the design 

of anti-angiogenic therapy. 
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Figure 1
mRNA expression of colligin 2, HSF1, 2 and 3, collagen 1, CD31 and NG2 in low- and high-grade 
glioma and normal control brain
Data in this figure are the average ± SD of one representative experiment with 4 tissues in each group. 
Expression data are presented relative to the average mRNA expression levels measured in total RNA 
isolated from normal brain tissues (n=4). Prior to isolation, all tissues were assessed by a qualified 
pathologist to ensure the origin and quality of the tissues. Total RNA was isolated with the RNeasy Micro 
kit (Qiagen BV, Venlo, the Netherlands). cDNA was prepared by use of the RevertAid H Minus First Strand 
cDNA synthesis kit (Fermentas, St Leon-Rot, Germany). The resulting cDNA preparations were analyzed 
by real-time PCR with TaqMan gene expression assays and TaqMan Universal PCR Master Mix (Applied 
Biosystems, Nieuwerkerk a/d IJssel, the Netherlands). PCRs were performed in a 20 μL reaction volume in 
an Applied BioSystems 7900HT Fast Real-Time PCR system. Negative controls included minus RT and 
H2O-only samples, which showed to be negative in all cases. Expression of GUSB, HMBS, HPRT1 and 
NOXA1 was used as a reference to control sample loading and RNA quality, as described previously [19]. 
LGG = low grade glioma; GBM = glioblastoma; SERPINH1 = mRNA coding for colligin 2; COL1A1 = 
mRNA coding for collagen 1; HSF = mRNA coding for heat shock factor; PECAM1 = mRNA coding for 
CD31; CSPG4 = mRNA coding for NG2; RT-PCR = reverse transcriptase – polymerase chain reaction; 
cDNA = complementary DNA.
Differences in mRNA concentrations were determined by the non parametric Kruskal-Wallis test with  
P < 0.05 being considered statistically significant. All statistical tests were two-sided.
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Figure 2
Expression of HSF1 and colligin 2 in blood vessels of glioblastoma
A: Expression of HSF1 and colligin 2 in small blood vessel of glioblastoma. There is immunopositivity in 
the blood vessels for HSF1 and colligin 2. Around the blood vessels are cells expressing only HSF1.
B: Expression of HSF1 and colligin 2 in proliferated blood vessel of glioblastoma. While not all endothelial 
cells and pericytes of the proliferated blood vessels express HSF1, all express colligin.
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Abstract

Glioblastoma is the most common primary brain tumor with a dismal prognosis. These 

tumors grow highly infiltrative and show very strong neo-angiogenesis. So far, results of 

anti-angiogenic therapy have been disappointing. A search for blood-vessel related targets 

is essential for the development of effective anti-angiogenic strategies. Further, since the 

degree of angiogenesis correlates with tumor progression, blood vessel-related proteins 

may also be useful biomarkers for glial tumor progression. In order to discover targets 

related to glioma blood vessels we compared the protein profiles of the proliferating vessels 

of glioblastoma to vessels taking part in physiological angiogenesis. Blood vessels of 

glioblastoma and endometrium in proliferation were laser microdissected, and LTQ Orbitrap 

mass spectrometry was used to measure the corresponding peptide profiles. Data analysis 

was carried out at two different levels; a) the level of differentially expressed proteins and b) 

the level differentially expressed peptides. In total, we were able to identify 35 and 19 

 differentially expressed proteins for glioma and endometrium blood vessels, respectively. 

The differentially expressed proteins were used as a starting point to perform an analysis of 

the molecular pathways involved. In addition, we classified the differentially expressed 

proteins according to their functions. We also successfully validated the expression of 

tenascin-C and calponin-1 by immunohistochemistry. The 35 proteins found in the 

glioblastoma vessels could be related to three networks, among which one was associated 

with vascular development and angiogenesis. The 19 proteins found specifically in 

endometrium blood vessels were mapped to four networks among which one involved in 

cardiovascular development and another associated with the proliferation of endothelial 

cells. 

 

We conclude that there are essential differences in protein expression profiles between 

glioblastoma angiogenesis and normal physiological angiogenesis. Additional studies will 

reveal whether the identified proteins are candidates to be developed as biomarkers or as 

targets for anti-angiogenic therapies.
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Introduction 

Most glial tumors develop from low-grade, relatively benign neoplasms into high-grade 

tumors. The highest grade gliomas are designated the term “glioblastoma”, which basically 

represents a common denominator of all high-grade gliomas irrespective of their lineage. 

Glioblastoma, or glioblastoma multiforme (GBM), is the most frequently occurring of all 

primary brain tumors in humans. GBMs are highly infiltrative tumors which show rapid 

clinical progression. Most patients succumb in less than a year after the diagnosis is made. 

While the low-grade precursors still have low cell densities, low proliferation parameters 

and no newly formed blood vessels are visible by routine microscopy, GBMs show regions of 

high proliferation, high cell density, necrosis and notorious microvascular proliferation [1]. 

The formation of new blood vessels from pre-existing vasculature is considered to be the 

most important factor in the development of tumor neoangiogenesis and is a prominent 

phenomenon in GBM [2, 3]. In spite of the sound rationale for most of the anti-angiogenic, 

molecularly targeted treatment strategies, all of these therapies have remained with  limited 

success and they should be applied in combination with cytostatic agents [4-7]. Hence, 

there is a need to develop more effective angiogenesis inhibitors. Another important reason 

to identify glioma angiogenesis-related proteins is to obtain useful parameters for 

monitoring glial tumor progression [8, 9]. So far, only few tumor progression markers were 

introduced and none has sustained as reliably monitoring disease activity and therefore, no 

putative marker found its way to clinical practice [10-14] 

Previously, using various proteomics techniques, we identified several proteins which were 

specifically upregulated in glioma vasculature while not in normal brain blood vessels [15, 16]. 

Among these proteins, we found caldesmon, fibronectin, colligin 2 and others. These proteins 

appeared to be overexpressed in active angiogenesis in carcinomas as well, and were also 

overexpressed in vascular malformations and tissues in which reactive angiogenesis is taking 

place [16]. Normal blood vessels are morphologically different from tumor vasculature; they are 

not activated and they show different protein expression profiles. In order to identify proteins 

which are specifically expressed in tumor angiogenesis, not only comparisons with expression 

profiles of blood vessels in normal tissues, but also a comparison with those in tissues in which 

active angiogenesis takes place, are necessary. Normally, angiogenesis occurs during 

embryogenesis and development. In addition, it takes place in adults during the menstrual 

cycle and in the framework of repair or regeneration of tissue during wound healing [17].  

The identification of specific tumor-angiogenesis related proteins could ultimately lead to the 

development of tumor-specific, anti-angiogenic therapies and tumor progression markers.

The rapid development of proteomics techniques during the past years has enabled the 

identification of novel cancer biomarkers [18]. The discovery and improvement of mass 
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spectrometers allowed large scale analyses of protein expression profiles which were directly 

obtained from patients’ tissues [19]. In 2005 Hu et al. introduced a commercial Orbitrap 

mass spectrometer as a tool for proteomics research [20]. The Orbitrap has high resolving 

power (>150,000), excellent mass accuracy (specified as ~2–5 ppm and operating in the LC/

MS mode providing 1 spectrum each second) [21, 22], high sensitivity and a wide dynamic 

range enhancing the number of protein identifications. In addition, the Orbitrap facilitates 

the accumulation of a greater number of charges and it is sufficiently fast to enable two 

consecutive stages of mass spectrometric fragmentation resulting in accurate sequencing 

and MS/MS in short time scale [23]. The complexity of human biopsy samples is still a 

considerable obstacle for proteomics analysis [24]. Reducing the complexity can be reached 

at various levels. Firstly, at the level of the tissue, methods of sample purification applied 

prior to analysis can improve the accuracy of detection [25]. In order to target specific 

structures like blood vessels for comparisons of protein expression profiles, laser capture 

microdissection (LCM) of the tissues should be applied to purify the samples. Secondly, at 

the level of the applied technology there are methods of enhancing the presentation of the 

proteins. In several studies it was proven that the use of a fractionation method prior to 

measuring the peptide digest in any of the mass spectrometers is useful to reduce the 

complexity of the samples and increases the number of identified proteins [16, 26-28]. For 

measuring samples originating from small number of cells such as laser microdissected 

human tissues the combination of a fractionation method with a very accurate mass 

spectrometer will yield optimal results [16, 26]. 

The aim of this study was to identify proteins which are differentially expressed between 

glioma-related, and normal physiological angiogenesis. To this end, we isolated blood 

vessels from glioblastoma and proliferating endometrium by using laser capture microdis-

section and measured their protein contents by the LTQ Orbitrap. We identified a number of 

proteins which were exclusively expressed in each group of blood vessels. Further, the 

proteins were characterized and the pathways in which they take part were sought. Some of 

the differentially expressed proteins could be validated by immunohistochemistry.

 

Materials and Methods

Samples 

Ten fresh-frozen samples of glioblastoma located in the cerebral hemispheres were taken 

from the files of the Department of Pathology, Erasmus Medical Center, Rotterdam,  

The Netherlands. We used surgical samples taken from five males and five females. The ages 

ranged between 41 and 86 years (median 67.5 years). In addition, 10 fresh-frozen 

endometrium samples were collected at the Department of Gynecology, Erasmus Medical 
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Center, Rotterdam, The Netherlands. The samples were collected from premenopausal 

women who had undergone hysterectomies for diseases not involving the endometrium. 

Their ages ranged between 39 and 46 years (median of 43 years). Sections of 5 µm from each 

sample were counterstained and examined by the pathologist (JMK) to verify the presence 

of blood vessels (Figure 1). This study was approved by the Medical Ethical Committee of the 

Erasmus Medical Center Rotterdam, The Netherlands.

Laser capture microdissection

The previously described procedure was followed [16]. Briefly, cryosections of ten µm were 

made from each sample and mounted on polyethylene naphthalate (PEN) covered glass 

slides (P.A.L.M. Microlaser Technologies AG, Bernried, Germany). The slides were fixed in 

70% ice-cold ethanol for a maximum of 2 hours. Before laser microdissection, the slides were 

stained with hematoxylin and dehydrated in series of ethanol solutions and left to air-dry for 

5 minutes. The P.A.L.M. laser microdissector and pressure catapulting device, type P-MB, 

was used with PalmRobo version 2.2 software at 40x magnification. An area of 200,000 µm2 

was microdissected from each sample, resulting in ~2,000 cells/sample (estimated cell 

volume: 10x10x10 µm). Altogether, four groups of samples were laser microdissected: 

glioma blood vessels; glioma tissue surrounding the blood vessels; endometrium blood 

vessels and endometrium tissue surrounding the blood vessels. In addition, a corresponding 

area of the PEN membrane was laser microdissected and used as negative control. As an 

internal control, three full sections of a glioma sample were collected. The preparation and 

analysis of the internal controls was similar to that of the test samples.

Sample preparation

The procedure for samples preparation was as previously published [16]. For laser micro-

dissection, 7µl of 0.1% RapiGest buffer (Waters, Milford, MA) was used to collect the laser 
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microdissected areas. Protein LoBind, 0.5-ml Eppendorf tubes (Eppendorf, Hamburg, 

Germany) containing the samples were stored at -80 ˚C until the time of preparation. After 

thawing the samples, 15 µl of RapiGest buffer were added to each tube to bring the final 

volume of each sample to 20 µl. The cells were disrupted by external sonification for 1 min 

at 70% amplitude at a maximum temperature of 25 °C (Branson Ultrasonics, Danbury, CT). 

For protein solubilization and denaturation, the samples were incubated at 37 °C and 100 °C  

for 5 and 15 min, respectively. To each sample, 1.5 µl of 100 ng/ µl gold grade trypsin 

(Promega, Madison, WI) in 3 mM Tris-HCl diluted 1:10 in 50 mM NH4HCO3 was added and 

incubated overnight at 37 °C for protein digestion. To inactivate trypsin and to degrade the 

RapiGest, 3 µl of 25% TFA were added and samples were incubated for 30 min at 37°C. 

Samples were centrifuged at maximum speed for 15 minutes at 4 °C and the supernatant 

was transferred to special glass vials to be measured in the Orbitrap. Samples were used for 

immediate measurements or stored for a maximum of 7 days at 4 °C. The internal control 

sample was diluted at 1:400 using distilled water in order to obtain a concentration 

comparable to that of the laser microdissected blood vessel samples. The internal control 

sample was prepared together with the other samples and stored at 4 °C for about 30 days 

until the end of all the measurements.    

LTQ Orbitrap measurements

LC-MS measurements were carried out on a Ultimate 3000 nano LC system (Dionex, 

Germering, Germany) online coupled to a hybrid linear ion trap / Orbitrap MS (LTQ Orbitrap 

XL; Thermo Fisher Scientific, Bremen, Germany). The whole volumes of the digested  samples 

(~20 µl) were loaded onto a C18 trap column (C18 PepMap, 300µm ID x 5mm, 5µm particle 

size, 100 Å pore size; Dionex, Amsterdam, The Netherlands) and desalted for 10 minutes 

using a flow rate of 25 µl/min of 0.1% TFA. The trap column was switched online with the 

analytical column (PepMap C18, 75 μm ID x 5mm, 3 μm particle and 100 Å pore size; Dionex, 

Amsterdam, The Netherlands) and peptides were eluted with the following binary gradient: 

0% - 25% solvent B in 120 min; 25% - 50% solvent B in 60 min; solvent A consists of 2% 

acetonitrile and 0.1% formic in water and solvent B consists of 80% acetonitrile and 0.08% 

formic acid in water. Column flow rate was set to 300 nl/min. For MS detection a data 

dependent acquisition method was used: high resolution survey scan from 400 – 1800 Th. 

was detected in the Orbitrap (value of target of automatic gain control AGC 106, resolution 

30,000 at 400 m/z; locks mass was set to 445.120025 u (protonated (Si(CH3)2O))6)1). Based on 

this survey scan the five most intensive ions were consecutively isolated (AGC target set to 

104 ions) and fragmented by collision activated dissociation (CAD) applying 35% normalized 

collision energy in the linear ion trap. After precursors were selected for MS/MS, they were 

excluded for further MS/MS spectra for 3 minutes. Samples were prepared and measured in 

a randomized way. For an internal control, we measured the same internal control sample 

once in every five measurements.
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Mascot searching

From the raw data files of the Orbitrap mass spectrometer, MS/MS spectra were extracted by 

Mascot Deamon version 2.2.2 using the Xcalibur extract msn tool (version 2.07) into mgf 

files. All mgf files were analyzed using Mascot (Matrix Science, London, UK; 2.2). Mascot was 

set up to search the IPI.CHECK.v.3.12 database (version 3.12, 28229 entries) assuming trypsin 

digestion. The Mascot search engine was used with fragment ion mass tolerance of 0.50 Da 

and a parent ion tolerance of 10 ppm. Oxidation of methionine was specified in Mascot as a 

variable modification. The Mascot server was set-up to display only peptide identifications 

with Mascot ion scores greater than 25. 

Analysis of the LTQ Orbitrap measurements 

The analysis of the Orbitrap measurements was done at two different levels. Firstly, at the 

level of the identified proteins, by using Scaffold software to compare the protein profiles of 

all four groups of samples. Secondly, at the level of the identified peptides, using Progenesis 

software to compare the peptide profiles of the two blood vessels groups.

Differentially expressed proteins using Scaffold

Scaffold software (Version, 2_05_01, Portland, OR, USA), [www.proteomesoftware.com], was 

used to summarize and filter MS/MS based peptides and protein identifications. Peptide 

identifications were accepted if they could be established at greater than 95.0% probability.  

Protein identifications were accepted if they could be established at greater than 99.0% 

probability and contained at least two identified peptides. Proteins that contained similar 

peptides and could not be differentiated based on MS/MS analysis alone were grouped. 

Using these criteria, Scaffold generated a list of identified proteins including the number of 

sequenced peptides that were found in each sample. To analyze the data, we uploaded the 

list of identified proteins into Significance Analysis of Microarrays (SAM, Stanford University) 

version, 3.1 and performed a multi-class comparison with false rate discovery (FRD) of 5% to 

generate the differentially expressed proteins between the groups. SAM analysis calculated 

the relative frequency of occurrence of each protein for in the four groups of samples. Thus, 

we searched for those proteins which are significantly expressed in either one of the blood 

vessel groups as compared to the other three groups. 

Differentially expressed peptides using Progenesis

Progenesis LC-MS Software package (Version, 2.5, Nonlinear Dynamics, UK) was used to 

align the measurements. According to the company’s suggestions, a reference run was 

selected based on two criteria: 1. The position of the run in the middle of the measurement 

sequence. 2. A large file size: i.e. large number of data points. One of the glioma vessel 

samples was used as reference sample. After calculation of the number of vectors used to 

correlate the samples to the reference sample, the potential alignment is checked by a 
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quality control step consisting of two parts; the number of vectors and the length of the 

vectors. Firstly, the number of vectors found correlating with the reference run should be 

above 200. If the number is below 200, the length of the vectors is compared to that of the 

vectors in samples with high numbers of vectors. If the vectors in the alignment are more 

than twice as long as those in the other samples, exclusion from further analysis follows.

We aligned all blood vessel samples of glioma and endometrium. Because the control 

measurements were obtained from whole (not laser microdissected) tissue sections, we 

aligned all control samples in a separate run. Again, one sample was chosen as reference 

because of its adequate number of vectors and intermediate position in the order of 

processing. Following the alignment of the samples, the peptides were submitted to the 

Mascot search engine (Matrix Science, London, UK) using the UniProt (release 15.6)  

data base, allowing 3 ppm peptide mass tolerance and one missed trypsin cleavage site.

To analyze the data, we used the data matrix generated after the first alignment for the two 

groups of vessels and log transformed the normalized abundance values. The list of peptides 

with identified proteins was uploaded into Partek® Genomics Suite™ version 6.09.0129 

[http://www.partek.com/] and a principle component analysis (PCA) was performed. 

Subsequently, we performed an ANOVA analysis and found peptides which were   

differentially expressed between endometrium and GBM with a false discovery rate (FDR) 

lower than 0.05.

 
Pathway analysis

The resulting lists of differentially expressed proteins in glioma and endometrium blood 

vessels were uploaded into the Ingenuity Pathway Analysis system (IPA) version, 7.5 

[www.ingenuity.com] as the starting point for the generation of biological networks. We 

used the final list of differentially expressed proteins generated by Progenesis and filtered 

by the Scaffold approach as a starting point to build networks. Subsequently, we used the 

differentially expressed proteins generated after analysis of the Scaffold data to build the 

networks.   

Immunohistochemical validation  

The proteomics results were confirmed by immunohistochemistry for some identified 

proteins (tenascin-C and calponin-1) using specific antibodies on paraffin-embedded 

sections of all the samples used for the proteomics analysis. To further investigate 

expressional variation between the two groups, five more samples of glioma, endometrium 

and normal brain were immunostained. Immunohistochemical staining was performed 

following the manufacturer's procedure (alkaline phosphatase technique) using mouse 

monoclonal antibody for tenascin-C at a 1:100 dilution (Abcam, Cambridge, UK) and mouse 

monoclonal antibody for calponin-1 antibody at a 1:200 dilution (Abcam, Cambridge, UK).
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Results

LTQ Orbitrap measurements

The number of spectra for MS/MS generated from measuring the samples varied between 

6,841 and 10,788 spectra, with a median of 8,403 spectra per sample. Based on the settings 

of the Orbitrap, a maximum of only five high abundant, non redundant peptides were 

sequenced in each spectra. The percentage of identifications in each spectrum varied 

between 0.03% and 0.3% with a median of 0.22 %. The controls yielded between 6,505 and 

8,276 spectra with a median of 7,721 spectra per control sample. The percentage of identifi-

cations was between 0.18% and 0.26% with a median of 0.24%.

Differentially expressed proteins using Scaffold

Comparing the four groups of samples using Scaffold software generated a list of 694 

identified proteins. After performing the SAM analysis with FDR of 5% a list of 152  

differentially expressed proteins was generated. We categorized those 152 differentially 

expressed proteins based on their relative frequency of occurrence in the sample groups. 

We considered a protein to be differentially expressed in a particular sample group if its 

occurrence was at least twice the occurrence encountered in any of the other groups. There 

were 30 overexpressed proteins in the glioblastoma blood vessels (Table 1) and 12 

overexpressed proteins in the endometrium blood vessels (Table 2).

Differentially expressed peptides using Progenesis

The alignment of both groups of endometrium and glioblastoma vessels by Progenesis was 

adequate to normalize the measured samples. Each sample shared more than 200 vectors in 

good position with the reference sample. The control samples shared also more than 200 

vectors in good position to the reference sample. The data matrix obtained from Progenesis 

showed that overall 46,463 different masses (peptides) in all vessel samples were measured. 

In total, 31,614 peptides were sequenced and for 7,618 peptides the corresponding proteins 

could automatically be identified. The other peptides were linked with their accurate masses 

and sequences but there were no automatic protein identifications. The 7,618 peptides 

were linked to their corresponding protein identifications which resulted in 800 

non-redundant identified proteins. The data matrix obtained by Progenesis contained on 

average 400 zero values in each sample, which had a significant influence on the distribution 

of the normalized abundance values. The distribution of the normalized abundance values 

without the zero values was log2-transformed (Figure 2). Progenesis considers the zero 

values as outliers and therefore, they were omitted from the analysis. Because of the random 

distribution of the zeros the analysis was not biased. After the transformations, the data 

showed a normal distribution allowing ANOVA testing in Partek to calculate the p-Values for 

further statistical comparisons between the two groups. The principle component analysis 

Angiogenesis proteome

Ch
ap

te
r 

6



112

Chapter 6

Ta
bl

e 
1

D
if

fe
re

nt
ia

lly
 e

xp
re

ss
ed

 p
ro

te
in

s 
in

 g
lio

m
a 

an
gi

og
en

es
is

 u
si

ng
 S

ca
ff

ol
d 

so
ft

w
ar

e 

Pr
ot

ei
n 

 
A

cc
es

si
on

 #
 

G
V

 c
on

tr
as

t 
EV

 c
on

tr
as

t 
G

T 
co

nt
ra

st
 

ET
 c

on
tr

as
t

40
S 

ri
b

os
om

al
 p

ro
te

in
 S

16
, G

N
=

RP
S1

6 
 

P6
22

49
 

1.
58

26
23

44
7 

-0
.8

33
40

27
73

 
0.

07
65

29
18

 
-0

.8
33

40
27

73
A

de
ny

ly
l c

yc
la

se
-a

ss
oc

ia
te

d 
pr

ot
ei

n 
1,

 G
N

=
C

A
P1

  
Q

01
51

8 
1.

52
36

73
83

2 
-0

.9
51

85
21

84
 

-0
.0

51
66

09
06

 
-0

.5
14

99
46

52
A

gr
in

, G
N

=
A

G
RN

**
* 

O
00

46
8 

2.
01

63
37

03
6 

-0
.5

13
01

32
88

 
-0

.6
58

23
91

44
 

-0
.7

79
26

06
9

Ba
nd

 3
 a

ni
on

 tr
an

sp
or

t p
ro

te
in

, G
N

=
SL

C4
A1

  
P0

27
30

 
1.

56
07

01
40

3 
-0

.4
44

16
82

84
 

-0
.4

59
35

66
91

 
-0

.6
11

24
07

58
Ba

se
m

en
t m

em
br

an
e-

sp
ec

if
ic

 h
ep

ar
an

 s
ul

fa
te

 p
ro

te
og

ly
ca

n 
 

P9
81

60
 

2.
26

83
74

17
1 

-0
.3

57
69

75
78

 
-1

.1
54

70
11

71
 

-0
.6

40
50

53
04

co
re

 p
ro

te
in

, G
N

=
H

SP
G

2*
**

  
CD

99
 a

nt
ig

en
, G

N
=

CD
99

  
P1

42
09

 
1.

07
38

64
50

5 
-0

.4
89

27
55

44
 

-0
.3

23
48

79
63

 
-0

.2
28

75
22

02
Ch

lo
ri

de
 in

tr
ac

el
lu

la
r c

ha
nn

el
 p

ro
te

in
 1

, G
N

=
CL

IC
1 

 
O

00
29

9 
1.

40
55

22
46

7 
-0

.4
41

47
82

11
 

-0
.1

39
24

17
36

 
-0

.8
10

87
83

46
Cl

at
hr

in
 h

ea
vy

 c
ha

in
 1

, G
N

=
CL

TC
  

Q
00

61
0 

0.
67

18
37

81
6 

-1
.3

78
68

45
51

 
1.

83
38

00
49

1 
-1

.3
10

33
38

06
Co

ac
to

si
n-

lik
e 

pr
ot

ei
n,

 G
N

=
CO

TL
1 

 
Q

14
01

9 
1.

09
32

86
68

1 
-0

.5
66

88
93

9 
0.

03
68

10
99

9 
-0

.5
66

88
93

9
Co

lla
ge

n 
al

p
ha

-1
(X

VI
II)

 c
ha

in
, G

N
=

CO
L1

8A
1*

**
 

P3
90

60
 

1.
76

76
77

07
2 

-0
.3

81
99

80
11

 
-0

.6
33

25
87

35
 

-0
.6

89
09

44
52

El
on

ga
ti

on
 fa

ct
or

 2
, G

N
=

EE
F2

  
P1

36
39

 
1.

15
16

35
93

6 
-0

.6
21

77
52

71
 

-0
.2

18
72

72
69

 
-0

.2
89

26
06

69
Fe

rm
it

in
 fa

m
ily

 h
om

ol
og

 3
, G

N
=

FE
RM

T3
  

Q
86

U
X7

 
1.

27
53

50
32

1 
-0

.6
61

29
27

59
 

-0
.3

09
17

58
35

 
-0

.2
73

96
41

43
Fi

br
on

ec
ti

n,
 G

N
=

FN
1 

 
P0

27
51

 
1.

45
91

46
41

4 
-0

.4
30

06
42

06
 

-0
.4

73
00

08
11

 
-0

.5
08

78
13

15
G

lu
ta

m
at

e 
de

hy
dr

og
en

as
e 

1,
 m

it
oc

ho
nd

ri
al

, G
N

=
G

LU
D

1 
 

P0
03

67
 

1.
43

19
31

85
9 

-0
.7

42
48

31
86

 
-0

.1
16

51
52

19
 

-0
.5

61
28

19
32

In
te

gr
in

 a
lp

ha
-V

, G
N

=
IT

G
AV

  
P0

67
56

 
1.

95
17

62
67

9 
-0

.8
91

66
82

29
 

-0
.1

53
11

47
46

 
-0

.8
91

66
82

29
In

te
gr

in
-l

in
ke

d 
pr

ot
ei

n 
ki

na
se

, G
N

=
IL

K 
 

Q
13

41
8 

1.
54

06
45

91
3 

-0
.3

73
48

99
18

 
-1

.0
11

53
51

95
 

-0
.0

54
46

72
8

La
m

in
in

 s
ub

un
it

 a
lp

ha
-5

, G
N

=
LA

M
A

5 
O

15
23

0 
1.

89
76

28
69

6 
-0

.0
82

80
56

16
 

-0
.9

31
56

31
78

 
-0

.7
90

10
35

84
La

m
in

in
 s

ub
un

it
 b

et
a-

1,
 G

N
=

LA
M

B1
  

P0
79

42
 

1.
43

44
94

22
8 

-0
.3

14
62

88
45

 
-0

.5
33

26
92

3 
-0

.5
33

26
92

3
La

m
in

in
 s

ub
un

it
 b

et
a-

2,
 G

N
=

LA
M

B2
**

* 
P5

52
68

 
1.

77
50

16
50

4 
-0

.7
58

31
40

13
 

-0
.4

44
26

47
75

 
-0

.5
28

01
12

39
La

m
in

in
 s

ub
un

it
 g

am
m

a-
1,

 G
N

=
LA

M
C1

  
P1

10
47

 
2.

32
84

93
26

9 
-0

.0
69

55
44

49
 

-1
.4

60
06

86
05

 
-0

.6
52

86
33

54
N

es
ti

n,
 G

N
=

N
ES

  
P4

86
81

 
1.

46
40

48
59

4 
-1

.0
56

23
00

92
 

0.
63

87
37

39
2 

-1
.1

10
42

96
33

N
id

og
en

-1
, G

N
=

N
ID

1 
 

P1
45

43
 

1.
29

95
67

86
8 

-0
.1

53
58

52
93

 
-0

.6
82

00
46

25
 

-0
.3

95
77

74
87

N
id

og
en

-2
, G

N
=

N
ID

2 
 

Q
14

11
2 

1.
28

15
18

53
2 

-0
.4

80
90

52
77

 
-0

.4
90

91
90

49
 

-0
.2

60
60

23
01

Pe
ri

os
ti

n,
 G

N
=

PO
ST

N
**

* 
Q

15
06

3 
1.

06
15

14
93

8 
-0

.4
76

03
62

59
 

-0
.0

99
49

31
09

 
-0

.4
76

03
62

59
Pl

as
ti

n-
3,

 G
N

=
PL

S3
  

P1
37

97
 

1.
98

20
08

53
2 

-0
.4

55
86

19
62

 
-0

.7
26

73
64

62
 

-0
.7

26
73

64
62

T-
co

m
p

le
x 

pr
ot

ei
n 

1 
su

bu
ni

t b
et

a,
 G

N
=

CC
T2

  
P7

83
71

 
1.

43
94

33
43

4 
-0

.4
42

26
07

07
 

-0
.0

37
92

97
35

 
-0

.9
55

45
00

18



113

Angiogenesis proteome

Ch
ap

te
r 

6

Ta
bl

e 
2

D
if

fe
re

nt
ia

lly
 e

xp
re

ss
ed

 p
ro

te
in

s 
in

 e
nd

om
et

ri
um

 a
ng

io
ge

ne
si

s 
us

in
g 

Sc
af

fo
ld

 s
of

tw
ar

e

Pr
ot

ei
n 

 
A

cc
es

si
on

 #
 

G
V

 c
on

tr
as

t 
EV

 c
on

tr
as

t 
G

T 
co

nt
ra

st
 

ET
 c

on
tr

as
t

A
ct

in
, a

or
ti

c 
sm

oo
th

 m
us

cl
e,

 G
N

=
A

C
TA

2 
 

P6
27

36
 

-0
.2

41
34

02
52

 
1.

24
19

97
82

6 
-1

.5
61

87
29

32
 

0.
71

74
02

65
2

C
ad

he
ri

n-
13

, G
N

=
CD

H
13

**
* 

 
P5

52
90

 
-1

.0
46

11
13

27
 

1.
45

58
38

26
3 

-0
.7

21
18

28
08

 
0.

38
35

74
15

3
C

av
eo

lin
-1

, G
N

=
C

AV
1 

 
Q

03
13

5 
-0

.3
61

83
88

34
 

1.
53

20
41

02
1 

-1
.3

08
77

87
62

 
0.

26
94

54
45

1
Co

m
p

le
m

en
t f

ac
to

r B
, G

N
=

CF
B 

 
P0

07
51

 
-0

.7
15

49
22

5 
1.

24
01

86
56

8 
-0

.4
19

17
72

78
 

-0
.0

63
59

93
11

Ke
ra

ti
n,

 t
yp

e 
II 

cy
to

sk
el

et
al

 1
b,

 G
N

=
KR

T7
7 

 
Q

7Z
79

4 
-0

.5
90

10
41

11
 

1.
27

09
93

47
 

-0
.1

12
21

46
21

 
-0

.5
57

45
32

76
M

yo
fe

rl
in

, G
N

=
FE

R1
L3

  
Q

9N
ZM

1 
-0

.2
96

69
63

51
 

0.
98

37
82

63
8 

-0
.3

54
89

99
42

 
-0

.2
96

69
63

51
M

yo
si

n-
Ic

, G
N

=
M

YO
1C

  
O

00
15

9 
-1

.1
56

31
22

07
 

2.
39

41
26

59
6 

-1
.7

82
86

02
31

 
0.

72
33

31
86

5
Po

ly
(r

C
)-

bi
nd

in
g 

pr
ot

ei
n 

1,
 G

N
=

PC
BP

1 
 

Q
15

36
5 

-0
.7

05
31

21
15

 
1.

50
77

84
57

2 
-0

.8
93

09
00

16
 

0.
17

99
26

56
Po

ly
m

er
as

e 
I a

nd
 tr

an
sc

ri
pt

 re
le

as
e 

fa
ct

or
, G

N
=

PT
RF

  
Q

6N
ZI

2 
-0

.7
17

89
26

68
 

1.
75

11
50

99
 

-1
.1

72
71

65
 

0.
25

67
29

82
8

Pr
ol

ar
gi

n,
 G

N
=

PR
EL

P 
 

P5
18

88
 

-0
.1

95
67

42
04

 
1.

92
79

66
42

5 
-1

.6
11

43
46

24
 

0.
04

02
85

86
6

Pr
ol

ife
ra

ti
on

-a
ss

oc
ia

te
d 

pr
ot

ei
n 

2G
4,

 G
N

=
PA

2G
4 

 
Q

9U
Q

80
 

-0
.3

51
56

72
78

 
1.

08
98

58
56

2 
-0

.3
51

56
72

78
 

-0
.3

51
56

72
78

Pr
ot

ei
n 

ki
na

se
 C

 d
el

ta
-b

in
di

ng
 p

ro
te

in
, G

N
=

PR
KC

D
BP

  
Q

96
9G

5 
-0

.6
71

15
69

84
 

1.
39

26
50

74
1 

-0
.6

71
15

69
84

 
0.

01
67

78
92

5

G
V=

 g
lio

m
a 

b
lo

od
 v

es
se

ls
, G

T=
 g

lio
m

a 
su

rr
ou

nd
in

g 
ti

ss
ue

, E
V=

 e
nd

om
et

ri
um

 b
lo

od
 v

es
se

ls
, E

T=
 e

nd
om

et
ri

um
 s

ur
ro

un
di

ng
 ti

ss
ue

.
**

* 
re

pr
es

en
t t

he
 o

ve
rl

ap
 p

ro
te

in
s 

b
et

w
ee

n 
Sc

af
fo

ld
 a

nd
 P

ro
ge

ne
si

s 
an

al
ys

es
.  

 

T-
co

m
p

le
x 

pr
ot

ei
n 

1 
su

bu
ni

t e
ps

ilo
n,

 G
N

=
CC

T5
  

P4
86

43
 

1.
43

09
16

61
2 

-0
.5

10
29

01
15

 
-0

.3
73

03
30

74
 

-0
.5

10
29

01
15

Te
na

sc
in

, G
N

=T
N

C*
**

 
P2

48
21

 
1.

42
84

21
47

2 
-0

.6
79

92
86

21
 

-0
.0

97
82

52
28

 
-0

.6
40

88
51

Tr
an

sf
or

m
in

g 
gr

ow
th

 fa
ct

or
-b

et
a-

in
du

ce
d 

pr
ot

ei
n 

ig
-h

3,
  

Q
15

58
2 

1.
20

01
52

00
3 

-0
.4

00
61

65
1 

-0
.6

79
01

10
34

 
-0

.0
52

62
33

55
G

N
=T

G
FB

I*
**

  
vo

n 
W

ill
eb

ra
nd

 fa
ct

or
 A

 d
om

ai
n-

co
nt

ai
ni

ng
 p

ro
te

in
 1

, G
N

=
V

W
A1

  
Q

6P
CB

0 
1.

81
25

15
40

7 
-0

.7
20

88
68

1 
-0

.3
37

03
79

89
 

-0
.7

20
88

68
1

G
V=

 g
lio

m
a 

b
lo

od
 v

es
se

ls
, G

T=
 g

lio
m

a 
su

rr
ou

nd
in

g 
ti

ss
ue

, E
V=

 e
nd

om
et

ri
um

 b
lo

od
 v

es
se

ls
, E

T=
 e

nd
om

et
ri

um
 s

ur
ro

un
di

ng
 ti

ss
ue

.
**

* 
re

pr
es

en
t t

he
 o

ve
rl

ap
 p

ro
te

in
s 

b
et

w
ee

n 
Sc

af
fo

ld
 a

nd
 P

ro
ge

ne
si

s 
an

al
ys

es
.  

 



114

Chapter 6

Figure 2
Histogram of the measured samples after log2 normalization 

Figure 3
PCA of the protein expression patterns of the blood vessels in glioblastoma and endometrium 
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(PCA) yielded a rough separation of the glioma and endometrium samples (Figure 3). We 

concentrated our analysis on the 7,618 peptides with corresponding protein identifications. 

ANOVA analysis with an FDR of 0.05 resulted in 350 differentially expressed peptides. After 

removing the redundant protein identifications, a list of 134 differentially expressed peptides 

was obtained: 83 peptides with their corresponding proteins were overexpressed in glioma 

blood vessels while 51 were overexpressed in endometrium blood vessels. 

Because the 134 differentially expressed peptides resulted from the comparison of the two 

blood vessels groups, we verified the expression of the corresponding proteins in all four 

groups included in this study. Therefore, we used Scaffold software (Version, 2_05_01, 

Portland, OR, USA). We used the same settings as before. We considered a protein to be 

exclusively expressed in one particular group if one sample of that group expressed at least 

two or more of its peptides, while none of the peptides of the protein was expressed by any 

sample of the other groups. Alternatively, a protein was considered to be exclusively 

expressed in one particular group if the total number of MS/MS peptides found in one group 

was more than three times the total number of these MS/MS peptides found in any of the 

other groups. This way, we confirmed the differentially expression of 12 proteins (out of 83 

peptides) in the glioma blood vessels (Table 3) and 9 proteins (out of 51 peptides) in the 

endometrium blood vessels. (Table 4 and figure 4).     

The data matrix obtained from the internal control samples showed an overall number of 

27,426 measured peptides. In total, 10,826 peptides were sequenced and the corresponding 

proteins for 4,035 peptides could automatically be identified. The 4,035 peptides were linked 

to their corresponding protein identifications and resulted in 739 non-redundant identified 

proteins. The negative control sample did not yield any significant measurements.    

Pathway Analysis 

The list of 35 differentially expressed proteins from the glioma blood vessels (which were 

identified by Scaffold and Progenesis softwares) was uploaded into IPA and mapped against 

the database. The IPA could map all proteins in three different networks. The first matched 

network designated as “tissue development and cell-to-cell signaling” had a score of 50 and 

contained 20 of the identified proteins. Ten of the 20 proteins were associated with a 

function designated as “Cardiovascular System Development and function” and five 

proteins, namely: Collagen alpha-1(XVIII) chain, Laminin subunit alpha-5, Laminin subunit 

gamma-1, Fibronectin and Integrin alpha-V appeared to be related with angiogenesis. In 

addition, all 19 differentially expressed proteins identified in the endometrium blood vessels 

were uploaded into IPA and mapped against the database. They were mapped to four 

different networks. The first matched network called “Tissue development, embryonic 

development” contained 11 proteins. Nine proteins showed a direct relation with the 
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function called “Cardiovascular System Development and function” and eight proteins 

(Caveolin-1, Myosin-Ic, Protein kinase C delta-binding protein, Calponin-1 and Emilin-1) 

appeared to be related with proliferation of endothelial cells. At the level of molecular and 

cellular functions, the differentially expressed proteins that were identified in the glioma 

blood vessels had direct relation with cell-to-cell signaling, cellular movements and cell 

Chapter 6
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Figure 4
Heat map of the peptides belonging to the identified proteins by Progenesis in the respective 
tissue groups
Each row represents a different protein that corresponded to the differentially expressed peptides as 
calculated by the progenesis analysis. Each column represents one sample from the four respective 
groups. The intensity of the blue color represents the number of peptides that were measured in each 
sample. Light blue color = zero, and the darkest blue =100
A: the distribution of peptides for the proteins which were overexpressed in glioma angiogenesis.
B: the distribution of peptides for the proteins which were overexpressed in endometrium 
angiogenesis.
ET: endometrium Tissue, EV: endometrium blood vessels, GT: glioblastomatissue, GV: glioblastoma 
blood vessels
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morphology. In contrast, the differentially expressed proteins in the endometrium blood 

vessels had a relation with molecular transport and excretion of proteins. 

   

Immunohistochemistry 

The exclusive expression of tenascin-C in the glioma blood vessels, and the exclusive 

expression of calponin-1 in the endometrium blood vessels, was confirmed by immuno-

histochemistry (Figures 5 and 6).

Discussion 

The analysis of complex protein mixtures is currently one of the most challenging subjects 

in the area of proteomics. The first step undertaken in the present study to reduce the 

complexity of the samples was by using laser microdissection to tissue structures of interest. 

The normal biological variation in protein expression between cells of identical lineage is 
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Figure 5
Expression of tenascin-C in blood vessels in glioma and endometrium

Figure 6
Expression of calponin-1 in glioma and endometrium blood vessels
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around 15% to 30% [29]. We expect an even higher variation in protein expression in 

situations of stress, or in tumors. The method of sample preparation is crucial to avoid false 

variations. Yet, a major source of variation lays in the structure and function of different 

tissue samples. The complexity of the samples was also reduced at the level of the measuring 

techniques. In several studies it has been shown that fractionation of biomaterials prior to 

measuring the peptide digest by mass spectrometers reduces the complexity of the test 

samples and increases the number of identified proteins [16, 26-28]. In the present study we 

used the LTQ Orbitrap to measure the protein profiles from 2,000 cells (~270 ng total protein, 

estimating that one cell has 137 ± 4 pg total proteins). The LTQ Orbitrap XL is an LC-MS 

combining three different and complementary fragmentation techniques with proven 

benefits of Orbitrap technology. These features allowed us to perform rapid, high resolution, 

automated separation and very sensitive, fast MS/MS sequencing. Because the measurements 

of the internal controls showed no significant differences, the LTQ Orbitrap is satisfactory as 

to stability and reproducibility of its measurements. In addition, these internal controls 

proved that the samples are stable after preparation and they can be stored at 4 ˚C up to 30 

days until time of measurement. 

We used Progenesis software to align the MS measurements obtained from the two vessel 

sample groups. The software was only recently made available and to the best of our 

knowledge, was used for the first time to align LC-MS measurements obtained from micro-

dissected human tissue. In our hands, comparing glioma blood vessels with endometrium 

blood vessels resulted in a good alignment as determined by quality criteria such as the 

number of vectors, their lengths and their positions. We tried to align the four groups of 

samples, namely: glioma blood vessels, glioma surrounding tissue, endometrium blood 

vessels and endometrium surrounding tissue using Progenesis (data not shown). It was 

difficult to choose a reference sample with a good number of vectors in good positions as 

compared to tissue that originate from different organs, i.e. brains and endometriums. 

Because significant better results were obtained when two groups (instead of four) were 

aligned, we preferred to focus our analysis of the two sample groups of interest, viz., the 

blood vessels in glioma and endometrium. Aligning of the measurement using Progenesis 

yielded on average 400 zero values in each sample which significantly influenced the data 

analysis. The zeros may represent measurements below the threshold of detection, or 

alternatively, may be indicative of absence of a particular peptide. In any case, we considered 

the zero values as missing data. Because of the random distribution of the zero values, the 

data analysis was not biased by their omission. The comparison of the peptide spectra of the 

glioma blood vessels with the endometrium blood vessels yielded 46,463 different masses 

of which 70% (31,614 peptides) MS/MS were measured and their sequences were determined. 

Only 17% (7,618 peptides) were automatically identified. Direct searching of the database 

did not result in the identification of approximately 3% (23,996 peptides) of the peptides 

Chapter 6



121

with known sequences and accurate mass measurements. Improvement in identifications 

could be reached by generating specific databases for different tissue types. In order to 

generate such databases, large amounts of relevant tissues are needed for creating 

comprehensive databases. For 30% of the peptides measured (14,849 peptides) no 

sequences were obtained. Underlying these peptides, differentially expressed proteins may 

be present. Therefore, serious efforts should be made to include and sequence the maximum 

number of peptides measured.

The data obtained in this study was analyzed at the level of peptides and proteins. If Orbitrap 

measurements are analyzed at the level of proteins, only about 20% of the data are used. 

However, when comparisons are made at the level of peptides, far more differences between 

samples will be detected. Actually, 694 proteins were identified by introducing proteins to 

Scaffold, while 800 non-redundant proteins were identified if peptides were inserted to 

Progenesis. Using Progenesis allowed having access to the remaining data (about 80 % of 

the measured peptides). The number of sequenced peptides relating to proteins varied 

between the samples. The characteristics and abundances of the different proteins influence 

this number. High abundant proteins generate more measurable peptides, which may 

hamper the identification of peptides present in lower quantities. The setting used for the 

LTQ Orbitrap overcame this problem to some extent. Yet, very low abundant proteins are 

beyond the threshold of identification. In addition, high molecular weight proteins may 

generate more measurable peptides than proteins of lower mass weight. In Progenesis, the 

identification of a particular protein was based on the accurate mass measurement and the 

sequence of at least one peptide. Several hundreds of peptides from high abundant proteins 

as actin, collagen, glial fibrillary acidic protein (GFAP), vimentin were measured and 

sequenced. We noticed that some peptides belonging to the same protein may show 

differential expression in the opposite direction. In the present analysis we found that 15 out 

of 350 differentially expressed peptides were matched with proteins which were expressed 

in both groups. In order to generate a non-redundant list of peptides we decided to take the 

direction of the peptide with the lowest p-value, but confirmation at the protein level was 

necessary. To that aim Scaffold software was applied to filter out the misinterpreted 

proteins.

The differentially expressed proteins in glioma and endometrium angiogenesis were 

classified according to their function. The majority (59%) of the 39 proteins found in the 

glioma blood vessels were structural proteins which form the largest group of proteins in 

nature (Figure 7). Eight percent of the differentially expressed proteins appeared to be 

enzymes and another eight percent were integrins which have specific functions in 

angiogenesis. In addition, 6% were peptidases. The transporter proteins, receptors, proteases 

and peptidases are of specific interest because these molecules may become objects for the 
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design of anti-angiogenic therapies [30]. Classification of the 19 differentially expressed 

proteins of endometrium blood vessels showed that 44% were structural proteins and 11% 

were peptidases (Figure 8).

Chapter 6

Figure 7
Classification of the 35 differentially expressed proteins in glioma angiogenesis

Figure 8
Classification of the 18 differentially expressed proteins in endometrium angiogenesis
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Part of the differentially expressed proteins appeared to be associated with angiogenesis. 

For example, Tenascin-C which was found to be overexpressed in glioma blood vessels is an 

extracellular matrix protein which participates in various processes like normal fetal 

development and wound healing [31]. Its presence reportedly is strongly correlated with 

microvascular density (MVD) [31]. Additionally, tenascin-C regulates angiogenesis in tumor 

through the regulation of vascular endothelial growth factor expression (VEGF), particularly 

in glioblastoma [32]. VEGF is upregulated in glioblastoma under hypoxic conditions and 

mediated by hypoxia inducible factor (HIF-1) [33]. We validated the expression of tenascin-C 

by immunohistochemistry and confirmed its exclusiveness for glioma vasculature (Figure 5). 

Basement membrane-specific heparan sulfate proteoglycan core protein, also known as 

perlecan is another interesting protein which was upregulated in glioma blood vessels. It is 

an integral component of basement membranes that interacts with other basement 

membrane components such as laminin, prolargin and collagen type IV [34, 35]. In 2006 Kaji 

et al. showed that VEGF165 (a member of the VEGF family) increased the accumulation of 

basement membrane-specific heparan sulfate proteoglycan core protein in cultured 

endothelial cells human brain [36]. Yet another interesting finding is that of emilin1 which 

appeared to be overexpressed in endometrium. Emilin1 is a glycoprotein associated with 

the extracellular matrix of blood vessels [37]. Emilin1 binds to immature proTGF-β and 

prevents its maturation by protein convertases. TGF- β is a well known inducible factor for 

angiogenesis. Emilin regulates the extracellular TGF-β availability [38]. The relevance of its 

relative overexpression in endometrium as compared to glioma vasculature is not explained 

and whether this differential expression may assist in the development of anti-angiogenic 

therapy remains to be seen.
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Abstract

The formation of neovasculature in diffusely infiltrating gliomas is driven by various 

signaling pathways of which most prominently that of the hypoxia-induced VEGF/VEGFR. 

The identification of all pathways operative in glioma neoangiogenesis is important for the 

design of effective anti-angiogenic therapy. During progression of diffusely infiltrating 

glioma the tumor cellularity increases which causes hypoxia. In turn, hypoxia leads to 

apoptosis, hyperplasia of the microvasculature and necrosis. Paradoxically, in pilocytic 

astrocytoma there is notorious microvascular proliferation while proliferation parameters 

and cell density are low and apoptosis and necrosis are absent. So far, no data on the 

structural and immunophenotypical differences between the vasculature of both glioma 

subtypes have been published. We hypothesized that there may exist differences between 

the angiogenic triggers operative in high-grade diffuse astrocytomas (glioblastomas) and 

pilocytic astrocytomas. In the present study we compared the immunophenotypical 

 characteristics of the microvasculature of pilocytic astrocytoma and glioblastoma using 

multiple markers for endothelial cells and pericytes (mural cells) using confocal microscopy. 

The intactness of the BBB was monitored by visualization of the expression of tight junction 

proteins. In addition, RNA expression profiles of both glioma subtypes were compared for 

expressional differences in angiogenesis-related pathways. We found that the newly 

formed blood vessels in pilocytic astrocytoma, including the glomeruloid vessels, have 

maintained a layered structure as compared to the haphazardly structured vessels in 

glioblastoma. In spite of this finding, the expression of tight junction proteins was diminished 

or absent in the pilocytic vasculature, just like the situation in the malignant gliomas.  

The RNA expression profiles showed, besides major differences in cell-cycle related gene 

expression, differences in the transcription of genes active in the VEGF/VEGFR pathway. 

Specifically, in the pilocytic astrocytomas upregulation of genes involved in capillary 

sprouting and development was present. 

We conclude that there are essential structural and immunophenotypical differences 

between the blood vessels in pilocytic astrocytoma and diffuse glioma. Transcriptional 

differences point to differences in angiogenic triggers. Further detailing of these differences 

is necessary to understand the various mechanisms of neovascularization in gliomas and  

to define appropriate targets for anti-angiogenic therapy.
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Introduction

Gliomas are among neoplasms with the highest degree of neovascularization. In diffusely 

infiltrating gliomas the vascular density increases over time and tumors with higher 

microvascular densities are more malignant [1-3]. Progressive proliferation of the vessel 

walls (called microvascular proliferation; MVP) will eventually result in the formation of 

glomeruloid vascular structures and ultimately develop into pseudo-sarcomatous prolifer-

ations. Angiogenesis is triggered and / or inhibited by molecules secreted by endothelial 

cells, tumor cells, connective tissue around tumor cells and blood cells [4]. In malignant 

(diffuse) glioma, tumor cells will co-opt brain blood vessels while increase in tumor cellularity 

causes local hypoxia. As a result, Ang-2 expression is upregulated by endothelial cells and 

in the absence of VEGF this leads to apoptosis, vascular collapse and more hypoxia. Part of 

the tumor cells will migrate from the hypoxic area and start to produce proangiogenic 

factors as VEGF, mediated by the transcriptional complex hypoxia inducible factor 1 (HIF-1) 

and Il-8 [5]. This will promote angiogenesis around necrotic foci which is the morphological 

hallmark of glioblastoma. It is speculated that particular genetic changes occurring in glial 

tumor cells like EGFR amplification and PTEN mutations may also have their influence on 

transformation of blood vessels by induction of VEGF [6].

In pilocytic astrocytomas MVP is also encountered and is responsible for contrast 

enhancement at radiological imaging [7]. In some cases the newly formed blood vessels 

may become so prominent that in obsolete literature the term “angioglioma” was used [8]. 

Remarkably, in pilocytic astrocytoma the presence of MVP is not associated with anaplasia or 

signs of increased malignancy. MVP is also encountered in pilomyxoid astrocytomas (to be 

regarded as a more aggressive pilocytic astrocytoma variant) but neither in this tumor the 

presence of MVP carries a prognostic dismal connotation [9]. The cell density in pilocytic 

astrocytoma is usually low and comparable to low-grade diffuse glioma in which MVP has not 

yet developed [10]. Other histological features associated with advanced tumor development 

like pseudopalisades and necrosis as encountered in glioblastomas are not present in pilocytic 

astrocytomas. Furthermore, there are no genetic aberrations like PTEN mutations or EGFR 

amplifications. Therefore, we wondered whether the angiogenic triggers and pathways 

involved in pilocytic astrocytoma overlap with those acting in malignant gliomas.

There are no specific data on angiogenic pathways or their relative contributions involved 

in the formation of the new and hypertrophied vessels in pilocytic astrocytoma. Moreover,  

no detailed description of the proliferated vessels in pilocytic astrocytoma is found in the 

literature. In a previous study we detailed the structure of high-grade glioma vessel walls in 

terms of cell types involved and found aberrant protein expression by these cells [11]. We 

also demonstrated diminished expression of the proteins occludin and the tight junction 
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protein 1 (ZO-1) as sign of the disruption of the BBB [12]. In the present study we compared 

the immunophenotypical characteristics of the microvasculature of pilocytic astrocytoma 

with that of glioblastoma using multiple markers for endothelial cells and pericytes (mural 

cells) using confocal microscopy. Since contrast enhancement on radiological scans of 

pilocytic astrocytoma is suggestive of leakiness due to disruption of the BBB in these 

tumors, we also included immunohistochemistry for occludin and cadherin. The state of 

hypoxia of the tissue was estimated by immunostaining for VEGF-A and HIF-1α. By using 

bio-informatics to gene expression profiles obtained from glioblastomas and pilocytic 

astrocytoma we investigated the involvement of hypoxia-related triggers in the 

development of MVP in these glioma subsets.

Material & Methods

Patients and tumor samples

Formalin-fixed paraffin-embedded samples of six pilocytic astrocytomas and five 

glioblastomas were taken from the files of the Department of Pathology, Erasmus MC, 

Rotterdam. For the application of confocal microscopy, the fresh-frozen samples of the 

same six pilocytic astrocytoma samples were used (Table 1). For comparison of RNA 

expression arrays, seven pilocytic astrocytomas were compared with six glioblastomas 

(Table 1). Glioma samples were collected from the Department of Pathology of the Erasmus 

MC tumor archive from patients as described before (Gravendeel et al., Cancer Res. 2009; 

accepted for publication). 

Immunohistochemistry

Single staining procedures 

From each paraffin embedded sample, adjacent slides of five μm sections were stained 

with the various antibodies. The antibodies and their specifications are summarized in 

Table 2. We followed the same procedure as published previously [11]. Immunohistochemi-

cal staining was performed following the manufacturer’s instructions (alkaline phosphatase 

technique). Briefly, after deparaffinizing the sections in xylene for 15 minutes and rehydrated 

through graded alcohol and washed with water and with phosphate-buffer saline (PBS). 

The sections were incubated with the antibody for 30 minutes. After washing the sections 

with PBS, the corresponding secondary antibody was added and incubated 30 minutes at 

room temperature (RT). New Fuchsin Alkaline Phosphatase Substrate Solution (Dako, 

Denmark) was freshly prepared and the sections were incubated for about 30 minutes. 

Afterwards, the sections were washed with tap water, counterstained and cover-slipped 

with permanent mounting medium.  

Chapter 7



133

Double staining procedures

Double immunolabelings for colligin 2 and various markers for endothelial cells and 

pericytes were carried out. We followed the same procedure as published previously [11]. 

Adjacent slides of five μm sections were made from six pilocytic astrocytoma samples and 

mounted onto non-coated microscope slides, fixed in acetone for 15 minutes and air dried. 

Sections were incubated with colligin 2 polyclonal antibody for 30 minutes, washed and 

incubated again with Cy3- conjugated goat-anti-rabbit for 30 minutes. After washing, 

sections were incubated with the second monoclonal antibody for 30 minutes followed by 

30 minutes of labeling with biotin-horse-anti-mouse antibody. Detection was performed 

by FITC-conjugated-avidin. Nuclei were counterstained with DAPI in a vector sheet (1:1000) 
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Table 1
Clinical data for the patient which had been used in this study 

Diagnosis Gender Age Localization IHC / Expr

Pilocytic astrocytoma f 1 Cerebellum IHC
Pilocytic astrocytoma m 5 Cerebellum IHC
Pilocytic astrocytoma f 5 Cerebellum IHC
Pilocytic astrocytoma m 51 Cerebellum IHC
Pilocytic astrocytoma f 36 Cerebellum / brain stem IHC
Pilocytic astrocytoma f 22 left Occipital IHC
Pilocytic astrocytoma f 12 Cerebellum Expr.
Pilocytic astrocytoma f 22 Cerebellum Expr.
Pilocytic astrocytoma f 24 Cerebellum Expr.
Pilocytic astrocytoma m 32 Cerebellum Expr.
Pilocytic astrocytoma m 34 Cerebellum Expr.
Pilocytic astrocytoma f 37 Cerebellum Expr.
Pilocytic astrocytoma m 16 Brain stem Expr.
Glioblastoma f 63 left frontal  IHC
Glioblastoma f 54 left Fronto-Parietal IHC
Glioblastoma m 55 right Frontal IHC
Glioblastoma  m 57 left Temporal  IHC
Glioblastoma m 47 right Temporal-Parietal IHC
Glioblastoma  m 46 right Fronto-Parietal Expr.
Glioblastoma f 61 right Frontal Expr.
Glioblastoma  f 64 left Temporal  Expr.
Glioblastoma m 67 right Temporal Expr.
Glioblastoma m 81 left Occipital Expr.
Glioblastoma m 61 left Temporal Expr.

IHC = used for immunohistochemistry; Expr. = used for RNA expression arrays
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and slides were covered. For all antibodies the staining were always performed single on 

each sample also, to control for the accuracy of the staining and specificity of the antibody. 

For each antibody, negative controls including the secondary antibodies only were obtained 

for both single and double stained slides.

Triple staining procedures

Triple immunolabelings were performed combining colligin 2 and CD31 antibodies with 

various markers either for activated endothelial cells using CD105 or for pericytes using 

SMA, NG2 and endosialin. The same six frozen biopsy samples of pilocytic astrocytoma 

were used for triple staining. Adjacent slides of 5 μm sections were mounted onto 

non-coated microscope slides, fixed in acetone for 15 minutes and then air-dried. Sections 

were incubated with colligin 2 polyclonal antibody for 30 minutes, washed and incubated 

again with Cy5- conjugated donkey anti-rabbit for 30 minutes. After washing, sections were 

incubated with the either one of CD105, SMA, NG2 or endosialin monoclonal antibody, 

washed and incubated with biotin- labeled-horse-anti-mouse antibody. Detection was 

performed by FITC-conjugated-avidin. After washing, sections were incubated with CD31 

monoclonal antibody for 30 minutes followed by 30 minutes of labeling with Cy3-  

conjugated goat-anti-mouse-antibody. After washing, nuclei were counterstained with 

4',6-diamidino-2-phenylindole (DAPI) in a vector sheet (1:1000) and slides were covered.  

For all antibodies the staining was always performed single on each sample also, to control 

for the accuracy of the staining and specificity of the antibodies used. For each antibody, 

negative controls including the secondary antibodies only were obtained for single-, 

double- and triple- stained slides. The specifications of the antibodies are summarized in 

Table 2.

Confocal laser scanning microscopy 

Confocal images of double and triple stained sections were obtained using a confocal  

laser-scanning microscope (LSM510; Carl Zeiss MicroImaging, Inc.) equipped with a 

Plan-Neofluar 40x/1.3 NA oil objective (Carl Zeiss MicroImaging, Inc.). A diode laser was 

used for excitation of DAPI at 405nm, an argon laser for FITC at 488nm, a HeNe-laser for Cy3 

at 543nm and a HeNe-laser for Cy5 at 633nm. For DAPI an emission bandpassfilter of 

420-480nm was used, for FITC a bandpassfilter of 500-530nm, for CY3 a bandpassfilter of 

560-615nm and for Cy5 a longpassfilter of 650 nm. The signals were recorded sequentially 

(multi-track option) to avoid bleed-through of the signals and stored in separate channels.

RNA Expression profiles and pathway analysis

Expression levels were extracted from Affymetrix HU133 Plus 2.0 arrays and normalized 

with RMA using Partek® Genomics Suite™ [http://www.partek.com/]. A principle component 

analysis (PCA) was performed in Partek® and the two tumor groups were analyzed using 
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Significance Analysis of Microarrays (SAM, Stanford University) as implemented in 

Biowisdom’s OmniViz [http://www.biowisdom.com/content/omniviz]. Two-fold difference 

in expression between the two groups and a false discovery rate below 1% were used as 

cut-offs. The resulting list of differentially expressed transcripts was uploaded into Ingenuity 

IPA [Ingenuity Systems, Redwood  City,  CA,  www.ingenuity.com] and BioBase ExPlain 

system [BIOBASE GmbH, Germany, www.biobase-international.com] as the starting points 

for the generation of biological networks. In both systems a p-Value is calculated 

determining the probability that each biological function and/or disease assigned to the 

data set of interest is due to chance alone. Selected genes were visualized in a molecular 

network using information contained in IPA and show the connectivity of the individual 

proteins. Additionally, differentially expressed transcripts and genes are classified either by 

proprietary Gene Ontology’s (GO) or by Medical Subject Heading (MeSH) terms according 

to the categories of canonical pathways, therapeutic target, biomarker, and molecular 

mechanism. The significance of the association between the dataset and the categories is 
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Table 2
Antibodies used in this study

Name Dilution Commercial source

monoclonal colligin 2 1:500 Stressgen, Michigan, USA
polyclonal colligin 2  1:100 MBL international, Woburn, Canada
CD31 1:40 Dako, Glostrup, Denmark
CD34 1:30 Dako, Glostrup, Denmark
CD105 1:2000 Dako, Glostrup, Denmark
NG2 1:100 ZYMED laboratories, California, USA
endosialin 1:500 Prof. Isacke, Institute of Cancer Research, 
   London, UK 
αSMA 1:40 Biogenex, California, USA
collagen I 1:100 Abcam, Cambridge, UK 
collagen IV 1:25 Dako, Glostrup, Denmark
VEGF-A 1:200 Santa Cruz biotechnology, California, 
   USA
HIF-1 1:100 BD bioscience, California, USA
Cy3-goat-anti-rabbit 1:100 BioLegend, California, USA 
biotin-horse-anti-mouse  1:200 Vector, Peterborough, UK
FITC-conjugated-avidin  1:50 Jackson Immunoreasearch, 
   Pennsylvania, USA
Cy5- conjugated donkey anti-rabbit 1:50 Jackson Immunoreasearch, 
   Pennsylvania, USA
Cy3-goat-anti-mouse-antibody 1:100 Biolegend, San Diago, USA
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measured by the ratio of the number of proteins from the dataset that map to the category 

divided by the total number of proteins that map to the canonical pathway. 

Results

Immunohistochemistry for VEGF-A

Immonopositivity for VEGF-A in the glioblastoma specimens was concentrated around the 

areas of palissading necrosis (Figure 1A). In the pilocytic astrocytomas, all specimens 

contained areas of immunopositivity also (Figure 1B), but less cells were positive and no 

association with a ny particular histological feature was present. Roughly the same results 

were obtained by staining for HIF-1α.; in both pilocytic astrocytoma and in malignant 

glioma immunopositive cells were present.

Confocal laser microscope scanning

The small, single-layered, normal looking vessels in both pilocytic astrocytoma and 

glioblastoma expressed the endothelial markers CD31 and CD34 and the extracellular 

Chapter 7

Figure 1
Expression of VEGF-A and HIF-1α in pilocytic astrocytoma and glioblastoma
A-: pilocytic astrocytoma (H&E; x250); B: pilocytic astrocytoma (VEGF-A; x250); C: pilocytic 
astrocytoma (HIF-1α; x400); D: glioblastoma (H&E; x250);  E: glioblastoma (VEGF-A; x250);  
F: glioblastoma (HIF-1α; x400). The percentages of immunopositive cells differ between pilocytic 
astrocytoma and glioblastoma.
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proteins collagen types I and IV. In addition, the cells showed abnormal expression of CD105, 

endosialin, NG2, colligin 2 and αSMA (Table 3; Figure 2). 
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Figure 2
Expression of the various markers in small vessels in pilocytic astrocytoma
A: Expression of NG2 and colligin 2 in the endothelium of small vessels in pilocytic astrocytoma. 
B: Expression of endosialin, CD31 and colligin 2 in the endothelium in small vessels of pilocytic 
astrocytoma.

A
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Similar results were obtained in hypertrophied vessels in both pilocytic astrocytoma and 

glioblastoma. However, the distribution of these markers within the inner, middle and outer 

layers of these vessels differs between the two glioma subtypes (Table 3). In the 

hypertrophied vessels in pilocytic astrocytoma, CD34 expression is not confined to the 

inner (endothelial) layer, but also present in the outer cell layers (Figure 3A). In pilocytic 

astrocytoma CD105 is expressed in all layers, while it is absent from the middle layer in 

glioblastoma (Figure 3B). In contrast to glioblastoma, the expression of αSMA in pilocytic 

astrocytoma is restricted to the middle layer (Figure 3C). In addition, endosialin is 

ubiquitously expressed in pilocytic astocytoma but missing from the middle layer in 
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glioblastoma. NG2 is only expressed in the middle layer of pilocytic vasculature while in 

glioblastoma, NG2 is found in all, except the inner, layer.

In contrast to the glomeruloid vessels in glioblastoma, in the pilocytic astrocytomas these 

vessels are luminized and keep a well-defined structure of an inner endothelial layer 

expressing CD31, CD34, CD105 and endosialin (Figure 4A). The outer layer also shows 

expression of endosialin. The expression of αSMA and NG2 is restricted to this layer in the 

pilocytic astrocytomas (Figure 4B) (Table 3). 

Another distinguishing feature between the vasculature of glioblastoma and pilocytic 

astrocytoma is the absence of thrombotic and re-canalized vessels in the latter. Remarkably, 

no differences in the expression patterns of colligin 2, collagen types I and IV were found 

between the pilocytic and glioblastoma vessels (Table 3). Colligin 2 is present in all vessel 

subtypes and in all layers of the blood vessels in pilocytic astrocytoma. In general, collagen 

I and IV are expressed in the extracellular matrix of all vessels subtypes (Figure 5).
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Figure 3
Expression of the various markers in hypertrophic blood vessels in pilocytic astrocytoma
A: The expression of CD34 is not restricted to the endothelial layer, its also present in the outer cell 
layer of the hypertrophied blood vessels (x 250). 
B: CD105 expression is noticed in all layers of the hypertrophied vessels. 
C: Expression of αSMA in pilocytic astrocytoma is restricted to the middle layer. 

C
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Figure 4
Expression of the various markers in glomeruloid blood vessels in pilocytic astrocytoma
A: Expression of CD105 is restricted to the endothelial layers of the glomeruloid vessels.
B: The expression of NG2 is seen in the outer layer only.
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Figure 5
Expression of collagen I in glomeruloid blood vessels in pilocytic astrocytoma

Table 3
Immunostaining of blood vessels in pilocytic astrocytoma

Blood vessel    Layers CD31 CD34 CD105 αSMA endosialin NG2 colligin collagen 
structure        2 IV

small, normal- single + + + + + + + + 
looking vessels

Hypertrophied  inner + + + - + - + -
vessels middle - - + (*) + + (*) + + +
  outer - + (*) + + + - (*) + +

Glomeruloid  inner + + + - (*) + - (*) + -
vessels middle - - - (*) + + + + +
  

 (*) different from staining results in similar vessel types in diffuse glioma [11].
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Figure 6
Expression of tight junction protein occludin in normal and pilocytic astrocytoma
A: Expression pattern of occludin in blood vessels in normal brain.
B: Intact expression of occludin in small blood vessels in pilocytic astrocytoma.
C: Reduced expression of occludin in hypertrophied blood in pilocytic astrocytoma. 
D: Reduced to absent expression of occludin in hypertrophied blood in pilocytic astrocytoma.

C
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Figure 7
Expression of tight junction protein cadherin in normal and pilocytic astrocytoma
A: Intact expression of cadherin in blood vessels of normal brain samples.
B: Intact expression of cadherin in small blood vessels of pilocytic astrocytoma.

A

B
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In normal brain samples, all blood vessels showed expression for the tight junction proteins 

occludin and cadherin (Fig 6A and 7A). While the expression of both proteins in small blood 

vessels of pilocytic astrocytoma is similar to that in normal brains (Fig 6B and 7B), the 

expression in the hypertrophied and glomeruloid vessels is strongly reduced or absent 

(Figures 6C and 7C). 

RNA profiles and pathway analysis

The PCA analysis in Partek® showed a clear separation of the pilocytic astrocytomas from 

the glioblastomas (Figure 8). To identify differentially expressed transcripts, we performed 

a SAM analysis on the two groups and obtained a list of 2,081 differentially expressed 

transcripts after applying selection criteria of a minimum of two-fold differences in 

expression and an FDR of <1%. 

This list of transcripts was uploaded into both IPA and ExPlain systems for functional analysis 

in order to identify biological functions and/or diseases that were most significant to the 
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Figure 8
Principle component analysis (PCA) plot
The samples of pilocytic astrocytoma (blue dots) and the glioblastoma (red dots) are separated.
The pilocytic astrocytomas show strong clustering while the glioblastomas are scattered.
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dataset. In IPA, 595 network eligible genes could be identified while 689 eligible genes were 

identified in Explain. Differentially expressed genes are classified according to the categories 

of canonical pathways, therapeutic target, biomarker, and molecular mechanism. 

Both systems indicated networks related to cell-to-cell signaling and cell-cycle regulation 

appeared to be highly significant within the data set. Subsequently, we investigated the 

presence of angiogenesis-related genes in the list of differential expressed genes based on 

gene ontology (GO) categories. Several networks were identified and the number of genes 

that were involved in each of the networks varied. It is important to note that a given gene 

can be associated with more than one category. For example, in ExPlain, 134 genes were 

related to “cell-cycle” (randomly expected: 60); 19 genes were related to “blood vessel 

formation” (randomly expected: 12) and 16 genes were related to “vascular endothelial 

growth factor receptor activity” (randomly expected: 6).

Chapter 7

Figure 9
Ingenuity IPA result  
Blood vessel development related genes were mapped to the network of “cardiovascular system 
development and function”. The subgroups “development of capillary vessels” contains three genes 
that were overexpressed in pilocytic astrocytoma. The green arrows represent the overexpression of 
the genes in pilocytic astrocytoma. 
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The two systems use different ontologies which may cause slight differences in   

identification and classification results. Therefore, we investigated the details of the sub-lists 

and networks in both systems. For example, the list of genes related to “blood vessel 

development” identified in ExPlain showed an association to “cardiovascular system 

development and function” in IPA (Figure 9). The results appeared to be coherent.  Among 

the subgroup of blood vessel development, three genes (GJC1, PGF, STAB) were upregulated 

in pilocytic astrocytoma, belonging to “development of capillary vessels”. Further, five 

genes (COL18A1, KLF5, MMP2, NRP1, PGF) were upregulated in pilocytic astrocytoma 

belonged to “vascularization”. For “sprouting of endothelial cells” two genes (COL18A1, 

EPHB4) were upregulated in pilocytic astrocytoma, while for “Sprouting of capillary vessels” 

one gene (NRP1) was upregulated in glioblastoma (Figure 10). 
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Figure 10
Ingenuity IPA networks
A: The subgroup “vascularization” contains five genes which are all overexpressed in pilocytic 
astrocytoma as compared to glioblastoma. B: The subgroup “sprouting of endothelial cells” contains 
3 genes found overexpressed in pilocytic astrocytoma. C: The subgroup “sprouting of capillary 
vessels” contains a gene that is overexpressed in glioblastoma.
The green arrows indicate overexpression in pilocytic astrocytoma; the red arrows overexpression in 
glioblastoma.
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Discussion

In the present study we investigated whether there are structural and immunophenotypi-

cal differences between the hypertrophied vessels of pilocytic astrocytomas and high-grade 

diffuse gliomas. In addition, based on transcriptional profiles we compared the involved 

angiogenic pathways. In the blood vessels of both glioma subtypes aberrant expression of 

proteins / cell markers was found. The aberrant expression was not restricted to morpho-

logically abnormal vessels, but was also found in normal-looking vasculature, indicative of 

changes in protein expression patterns preceding structural changes of the vessels. This 

finding corroborates the results of an in vitro study in which morphologically similar 

endothelial cells taken from the vasculature of low-and high-grade gliomas differed in 

protein expression patterns [13]. Much of the literature on tumor neovascularization suffers 

from lack of definition of the cells taking part in the newly formed blood vessels. In a 

previous study on the vascularization of glioblastoma, we delineated the cellular 

constituents of the blood vessels according to their position in the vessel wall and their im-

munophenotyping [11]. It appeared that all distinct cellular subtypes take part in the 

proliferated blood vessels of both glioma subtypes. Lumen-lining (CD31+, CD34+) 

endothelial cells express CD105 and colligin 2, which is not expressed by the endothelium 

of normal brain microvasculature. In addition, pericytes (abluminal situated cells) express 

NG2 and endosialin, proteins which are not found in the vessel walls of normal brain either. 

There are, however, subtle differences in the composition of the layers of the vessels in 

which CD34, CD105, SMA, endosialin and NG2 are expressed. In the glomeruloid vessels in 

pilocytic astrocytomas, αSMA is never expressed by endothelial cells. Further, the putative 

pericyte marker NG2 is expressed with more restriction in the pilocytic astrocytomas. In 

contrast, endosialin is found ubiquitously in the multilayered vessels [11]. Overall, the 

layering of the hypertrophied vessels in pilocytic astrocytoma is more regular. The layers of 

the hypertrophied vessels have not lost organization as is the case in the malignant gliomas 

[11]. In the few descriptions of the pilocytic vasculature it is mentioned that endothelial cells 

have not proliferated, but no specific lineage markers were used [14, 15] and the present 

results do not confirm this statement. The present results show that, unlike the situation in 

glioblastoma, the lumina of the glomeruloid vessels in pilocytic astrocytoma are patent and 

their walls are structured in an orderly fashion. In all vessel types depositions of collagen 

types I and IV were present (data not shown). The results corroborate textbook descriptions 

of the structure of MVP in pilocytic astrocytoma which mention that the vessels are loose, 

dilated and teleangiectatic, unlike the glomeruloid MVP in malignant gliomas. The formation 

of glomeruloid vessels could be a reflection of either an accelerated form of angiogenesis, 

or an abortive type of proliferation [16]. In xenografts the level of Ang1 expression is 

correlated with the formation of glomeruloid vascular structures, while Ang1 inhibition by 

blocking its cognate receptor Tie2 had the opposite effect [17]. We found that the RNA 
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expression levels of Ang1 showed a slight, though not significant, overexpression in the 

pilocytic astrocytomas as compared to the glioblastomas. The structural differences of the 

glomeruloid vessels in the glioma subsets may reflect the influence of the differentially 

expressed genes involved in vascular development. We found such differences, but are 

unable to pin-point which genes or pathways could be responsible for the structural 

differences. Despite the structural differences, we found signs of BBB breakdown in the 

proliferated vessels of both glioma subtypes.

The expression of  proteoglycans like endosialin and NG2 in the neovasculature of diffuse 

glioma has been described previously [18]. While in the experimental tumors endosialin 

was only seen in pericytes, we found the expression more ubiquitously in the vessels of the 

human gliomas [11]. Endosialin (initially called tumour endothelial marker 1 (TEM1)) was 

introduced as a marker for tumor-associated endothelial cells [19, 20] but appeared to be 

expressed by cells surrounding the endothelial cells. However, in the vasculature of 

experimental tumors the expression of endosialin is not restricted to pericytes [21-23]. In 

mouse development, the expression is restricted to endothelium and fibroblast-like cells 

[23, 24]. The expression in fibroblast-like cells is prominent around buds of developing 

endothelia as seen in developing kidney and lung [24]. In mouse knockouts of endosialin 

the development of tumor xenografts is hampered, mainly because of maldevelopment of 

vasculature [24]. These data point to a role of endosialin in the interplay between the tumor 

cells, endothelium and surrounding mesenchymal cells. Perhaps the more extensive 

expression of endosialin in the vessels of pilocytic astrocytoma corresponds to overexpres-

sion of other proteins involved in blood vessel development and the more organized 

structure of the vessel walls - but such an association is entirely speculative at this point. 

NG2 is a transmembrane proteoglycan serving as a promoter of angiogenesis and is 

reportedly expressed in pericytic cells or stromal cells around newly formed blood vessels 

[25]. In the vasculature of diffusely infiltrating glioma NG2 is expressed in all but the 

endothelial cell layer. Immunohistochemical studies of developing human brain 

demonstrated that NG2-positive migrating pericytes guide the earliest stages of vessel 

growth [26]. We found expression of NG2 in all types of glioblastoma blood vessels in our 

previous study and also - though more restricted - in the pilocytic vasculature shown in the 

present study. The differences in expression of SMA, endosialin and NG2 may well reflect 

differences in proliferation or recruiting the cellular constituents of the hypertrophied 

blood vessels. Again, the association with differences in involvement of certain angiogenic 

molecules needs further exploration.

As we anticipated, the strongest discriminating networks of genes between pilocytic 

astrocytoma and glioblastoma appeared to be those involved in cell cycle regulation [27].  

In addition, networks involved in cell-cell signaling were identified as prominent  
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discriminators. These results confirm the scarce data in the literature on gene expression in 

pilocytic astrocytoma. In a study in which pilocytic astrocytomas and diffusely infiltrating 

gliomas of low malignancy grade were compared for differentially expressed pathways, 

immune system-related genes; genes involved in cell adhesion, migration, and also angio-

genesis-related genes, were identified [27]. Unsupervised analyses of gene expression in 

glioma subsets revealed tumor lineage [27, 28] and tumor grade [29] as major classifiers. 

Within astrocytic gliomas of various malignancy grades, angiogenic activity of VEGF was 

correlated with that of IGFBP2 and both molecules appeared to be overexpressed around 

palisading necrosis, while their activity significantly differed between tumors of different 

malignancy grades [29]. Because it is hard to conceive that there is hypoxia in pilocytic 

astrocytomas we anticipated differences in activation of pathways of angiogenesis and 

structural differences of the blood vessels reflecting co-option versus hastily formed, 

chaotically structured vessels. However, our presumption that the hypoxia-induced activity 

of VEGF / VEGFR pathways would discriminate between the glioma subsets was not supported 

by the present data. The results of immunohistochemistry for VEGF-A and HIF-1α (considered 

as indicators of hypoxia) showed a considerable number of hypoxic cells in the pilocytic 

astrocytoma samples (Figure 1), corroborating the finding that the VEGF / VEGFR pathway is 

involved in diffuse - and pilocytic astrocytoma. The pathway analysis revealed eight genes 

specifically overexpressed in pilocytic astrocytoma, namely (GJC1, PGF, STAB, COL18A1, KLF5, 

MMP2, NRP1, EPHB4). Some of these proteins are components of the identified pathways 

indeed. The relation of specific expression of these genes in the pilocytic vasculature remains 

unsolved; we are unable to directly link these proteins to the structural differences between 

the vasculature of pilocytic astrocytoma and glioblastoma, respectively. 

In conclusion, cell types with similar immunophenotypical characteristics contribute to the 

formation of new vessels in pilocytic astrocytoma and glioblastoma, but there are 

differences in their positioning. In the hypertrophied vessels of pilocytic astrocytomas an 

organized, well-layered structure is conserved. Although differences in the activity of genes 

involved in the hypoxia-induced VEGF /VEGFR pathway were not revealed, differences in 

expression profiles of genes involved in development and sprouting of blood vessels were 

identified. Future studies are necessary to reveal whether these differences reflect the 

involvement of particular genes and how all this relates to the structural differences of the 

vasculature of the glioma subsets.
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Identification of glioma neovascularisation-related proteins by 
using MALDI-FTMS and nano-LC fractionation to microdissected 
tumor vessels

By using matrix-assisted laser desorption \ ionization Fourier transform mass spectrometry 

(MALDI-FTMS) to laser microdissected blood vessels taken from glial neoplasms and normal 

brain for comparison, specific glioma angiogenesis-related proteins were sought.  

The results of this investigation are reported in Chapter 3. In order to enrich the samples 

used for the analysis fractionation by nano-LC was applied. The analysis resulted in the 

identification of four proteins which were exclusively present in the glioma vasculature: 

fibronectin, colligin 2, fibrinogen β-chain precursor and acidic calponin 3. By using specific 

antibodies to tissue sections of the glioma samples, colligin 2 and fibronectin were validated. 

Immunohistochemistry to a set of additional sections including various types of  tumors 

and tissues in which reactive angiogenesis is present, revealed that the expression of colligin 

2 and fibronectin is indicative of active angiogenesis under both neoplastic and reactive 

conditions.

For this study the vasculature of glioma was compared with that of normal brain tissue. 

Since the normal brain vasculature is to be considered as resting vasculature without 

angiogenic activity, the proteins identified are representative of active angiogenesis, more 

than specific for angiogenesis under neoplastic conditions. Not surprisingly, positive im-

munostaining for colligin 2 and fibronectin was not restricted to the glioma vasculature 

(and vasculature of other tumors), but also present in situations of reactive angiogenesis 

within and outside of the brain (cerebral contusion, ischemic infarction; dural membrane; 

inflammation) and physiological angiogenesis (placenta and endometrium). Further 

proteomics comparisons of glioma blood vessels with physiological angiogenesis are 

reported in Chapter 7.

Specific expression sites of colligin 2 in glioma blood vessels

Elaborating on the finding of colligin 2 which was specifically expressed in glioma neo-

vasculature, in Chapter 4 we related the expression to the phenotypically different blood 

vessels in glioma. There are normal looking small vessels, vessels with hyperplasia of their 

walls and vessels with extensive glomeruloid-like changes in glioma. Because no univocal 

immunophenotypical description of the various types (stages) of glioma blood vessels exist 

in the literature we first characterized the cell types encountered in the vessels walls using 

markers for endothelial, pericytic and smooth muscle differentiation and described their 

position relative to each other. The expression of colligin 2 was plotted against this lineage 
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scaffold. We found expression of colligin 2 in all blood vessel subtypes in cells with 

endothelial -, and also pericytic lineage. Interestingly, some GFAP-positive cells within the 

blood vessels as well as scattered (GFAP-negative) cells around the blood vessels also 

expressed colligin 2. These cells point to a more ubiquitous involvement of cellular subsets 

in neoangiogenesis in glioma. It remains to be elucidated what the precise nature and 

origin of these cells are. We also found overlap of the expression of colligin 2 with that of 

collagens types 1 and 4, consistent with colligin 2 being a chaperon for these collagens.  

The results underline that without exception, all cellular components of the vessel walls are 

involved in the expression of colligin 2. Moreover, even the normal looking capillaries show 

expression, representing an early stage of neo-angiogenesis. This means that expression of 

glioma angiogenesis-related proteins precede morphological changes in the vessels.  

It remains to be explored how extensive these expressional changes are throughout brains 

with gliomas.

Overexpression of colligin 2 in glioma vasculature is associated 
with overexpression of heat shock factor 2 

So far, colligin 2 (heat shock factor 47 (HSP47; SERPINH1) appeared to be overexpressed in 

glioma vasculature while absent from normal brain vessels. In Chapter 5 we investigated 

the expression of candidate regulators of this HSP47 expression viz., HSF1, HSF2 and HSF4 in 

low- and high grade glioma and used endometrium samples as controls representing 

physiological angiogenesis. For simultaneous monitoring the blood vessel density and 

neovascularization, expression of CD31 (PECAM1) and NG2 (CSPG4) was measured. We found 

that together with overexpression of colligin 2, HSF2 is overexpressed in glioma; more 

precisely, the overexpression was significant in low-grade glioma, not in glioblastoma. 

There was only minor overexpression of HSF1 while HSF4 was underexpressed in GBM. 

While colligin 2 expression levels were elevated, none of the HSFs were overexpressed in 

endometrium as compared to the normal brain samples. The data suggest specific 

regulation of the expression of colligin 2 by HSF2 and HSF4 in glioma neovascularization. 

The data point to specificity in regulation, rather than specificity of the upregulated protein 

itself. The data show that in both during glioma angiogenesis and during the physiological 

angiogenesis in endometrium, the overexpression of colligin 2 is regulated at the level of 

mRNA rather than at the protein level. However, the expression of the heat shock factors 

differs for the angiogenesis in these contexts. The angiogenesis in the endometria is 

certainly triggered by hormonal influences while angiogenesis in glioma seems mostly 

 hypoxia-driven. It seems that both situations elicit different stress responses at the level of 

the expressional status of the heat shock factors. Future studies should include the heat 
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shock factor status in other tumors than gliomas, and also in other types of physiological 

neovascularization like angiogenesis in wound healing. Analysis of the involvement of the 

various heat shock factors in these different situations in which angiogenesis takes place 

will reveal the specificity in their up- or downregulation. If specificity for neoplastic 

angiogenesis at the level of the regulation of the heat shock response exists, intervention at 

this level should be considered for anti-angiogenic therapy.

Angiogenesis proteom: a comparison between physiological 
angiogenesis and angiogenesis in glioma 

In Chapter 6 the blood vessels of glioblastoma were compared with blood vessels involved 

in active angiogenesis under physiological, not neoplastic, circumstances. To this aim, we 

laser microdissected the blood vessels and surrounding tissue of samples of glioblastomas 

and endometrium in proliferation. The samples were introduced in the LTQ Orbitrap mass 

spectrometer. The resulting peptide spectra from the blood vessels from glioblastoma and 

endometrium were analyzed by alignment and comparison at peptide level. In addition, 

the resulting protein lists were compared to the proteins identified in both groups of blood 

vessels and those identified in the surrounding tissue. In the blood vessels in glioblastoma 

39, and in those of endometrium, 13 differentially expressed proteins were identified.  

 Part of the shortlist of proteins was validated by immunohistochemistry. The 39 proteins 

found in the glioblastoma vessels could be related to three pathways, among which two 

were associated with vascular development and angiogenesis. The 13 proteins found 

specifically in endometrium blood vessels were mapped to four networks among which 

one involved in cardiovascular development and another associated with the proliferation 

of endothelial cells. 

Structural and transcriptional differences between the 
vasculature of pilocytic astrocytomas and diffusely infiltrating 
gliomas

Because pilocytic astrocytomas are slowly progressing gliomas with low proliferation 

indices and low cell density without necrosis but nevertheless contain florid microvascular 

proliferation, we assumed that pathways involved in the neoangiogenesis in this glioma 

subtype may differ essentially from that in the diffusely infiltrating anaplastic gliomas.  

In Chapter 7 we compared the microvasculature of diffusely infiltrating gliomas with that of 

the pilocytic astrocytomas at the structural and cellular level and sought differences 

possibly reflecting different angiogenic triggers. Hypoxia was monitored by immuno-
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histochemistry for VEGF-A and HIF-1α. In addition, we compared both glioma subtypes for 

transcriptional differences reflecting differences in the pathways involved. We found that 

the newly formed blood vessels in pilocytic astrocytoma, in contrast to the vessels in high 

grade glioma, maintained an organized structure. Particularly, the glomeruloid blood 

vessels in the pilocytic astrocytomas had still open lumina. Nevertheless, disruption of the 

BBB was present in pilocytic astrocytoma just as well. The transcriptional profiles showed, 

besides major differences in cell-cycle related gene expression, differences in the expression 

of genes active in the VEGF/VEGFR pathway. Specifically, there was upregulation of genes 

involved in capillary sprouting and development in the pilocytic astrocytomas as compared 

to the glioblastomas. 

We hypothesized that angiogenesis in pilocytic astrocytoma could serve as a model for 

hypoxia-independent glioma angiogenesis. However, the data of RNA microarrays did not 

directly confirm this. Rather, the pathway analyses illustrate the prominent involvement of 

VEGF in the angiogenesis in the pilocytic astrocytomas. Nevertheless, the differences of 

transcriptions may well lead to the discovery of additional pathways involved in glioma 

angiogenesis. Such alternative pathways could gain importance when anti-agiogenic 

therapies would lame the VEGF pathway. Consequently, targeting all involved pathways for 

anti-angiogenic therapy would be necessary for effective and successful anti-angiogenic 

therapy. Comparisons of the activation of such alternative pathways in glioma biopsies 

taken after the administration of the anti-VEGF drugs are necessary to check for activation 

of alternative pathways.
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Gliale tumoren zijn rijk gevasculariseerd. De bloedvaten in gliomen ondergaan een continue 

verandering en breiden zich steeds verder uit. Het aantal vaten neemt toe en de wanden 

van de vaten tonen sterke verdikking. Daarbij stapelen endotheelcellen en cellen die wel als 

pericyten, murale cellen of gladde spiercellen worden aangeduid, zich op. Met het 

verstrijken van de tijd transformeren capillairen tot dikwandige vaten met onregelmatig 

opgebouwde wanden, die uiteindelijk glomeruloide vormsels worden die nauwelijks nog 

een lumen hebben. Voor het bestrijden van een glioom worden niet alleen middelen 

ingezet die zijn gericht tegen de tumorcellen zelf, maar ook middelen die vaatnieuw-

vorming tegengaan. De gedachte is dat het vernielen van de vaten, of afremmen van hun 

groei, schadelijk is voor de tumorcellen die dan immers verstoken blijven van bloed met 

zuurstof en nutrienten. De anti-angiogene middelen zijn vooral gericht tegen vascular 

endothelial growth factor (VEGF) en haar receptoren, een cascade van interacterende 

moleculen die wordt aangezwengeld door hypoxie. In de praktijk is echter gebleken, dat 

anti- angiogene therapie niet zo succesvol is als gehoopt werd. In het eerste deel van de  

Inleiding (Hoofdstuk 1) wordt een kort overzicht van de huidige kennis over angiogenese 

in gliomen gepresenteerd.

In dit proefschrift worden experimenten beschreven waarin werd gezocht naar eiwitten die 

specifiek in glioombloedvaten tot expressie komen. Deze eiwitten zouden als nieuwe 

targets kunnen gaan dienen voor anti-angiogene therapie in gliale tumoren.  

De methodieken waarmee de eiwitten werden gezocht worden als “proteomics”  

aangeduid. “Proteomics” betekent het inventariseren van alle eiwit expressie van een 

bepaalde cel, een bepaalde celpopulatie, een bepaald weefsel, of een heel organisme.  

Er werd massa spectrometrie op gemicrodisseceerde weefselfragmenten toegepast.  

De massaspectrometrie werd uitgevoerd met behulp van matrix-assisted laser desorption / 

ionization – time of flight (MALDI-tof) en Fourier transformer mass spectrometry (FTMS).  

De weefselmonsters werden door middel van microdissectie verrijkt. De analyses werden 

uitgevoerd met fragmentatietechnieken als liquid chromatography electrospray (LCE)  

en high performance liquid chromatography (HPLC) om maximale expositie van de  

te detecteren eiwitfragmenten te verkrijgen. In het tweede deel van de Inleiding  

(Hoofdstuk 2) wordt op deze technieken nader ingegaan.

In Hoofdstuk 3 wordt met behulp van MALDI-FTMS en nano-LC fractionering in  

gemicrodisseceerde bloedvaten van gliomen naar eiwitten gezocht die niet voorkomen  

in bloedvaten van normaal hersenweefsel. De eiwitten fibronectine, colligin 2 (heat shock 

eiwit 47), fibrinogen β-chain precursor en zure calponine type 3 bleken specifiek in de 

vaatwanden van de gliomen voor te komen. Met behulp van immunohistochemie kon de 

specifieke aanwezigheid van fibronectine en colligine 2 in de glioomvaatwanden worden 

gevalideerd. Het eiwit colligine 2 bleek ook in vaten van andere tumortypen voor te komen. 
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Tevens bleek colligine 2 niet alleen in tumorvaten, maar in alle vaten waarin actieve 

angiogenese voorkomt, aanwezig te zijn.

Gliale bloedvaten zien er onderling verschillend uit. Er bestaan capillaire vaten die 

morfologisch niet te onderscheiden zijn van die welke in normaal hersenweefsel  

voor komen, en er zijn vaten waarvan de wanden sterk verdikt zijn, soms zodanig dat er een 

soort weefsel kluwens zijn ontstaan die nauwelijks of geen lumen meer hebben.  

Een  gedetailleerde karakterisering van de gliale tumorvaten, ofwel het beschrijven in 

hoeverre de vaatwanden bestaan uit cellen met endotheliale- pericytaire – of gladde 

spiercel eigenschappen is nodig om precies te kunnen beschrijven in welke cellen de 

eiwitten die onderwerp van dit proefschrift zijn,  tot expressie komen. 

In Hoofdstuk 4 werden glioomvaten getypeerd naar de expressie van celtype merkers 

voor endotheel, pericyten en gladde spiercellen. De verdikte glioomvaatwanden bleken 

verschillen te kunnen tonen in hun wandopbouw. Vervolgens werd de expressie van 

colligine 2 bekeken in de verschillende celtypen in de vaatwanden. Alle celtypen bleken 

colligine 2 tot expressie te kunnen brengen. In sporadische cellen buiten de vaatwanden 

werd ook colligine 2 aangetoond. De expressie van colligine 2 in de vaatwanden ging 

steeds gepaard met die van de collageen types 1 en 4, hetgeen goed past bij het gegeven 

dat de expressie van colligine 2 geassocieerd is met de afzetting van deze collageentypes. 

Bemerkenswaardig was dat er ook sporadische cellen met een gliaal merkerprofiel in de 

vaatwanden aanwezig waren, en dat ook die cellen colligine 2 tot expressie konden 

brengen.

In Hoofdstuk 5 wordt de regulatie van de expressie van colligine 2 bestudeerd. Colligine 2 

(heat shock protein 47; SERPINH1) is een heat shock proteine. Heat shock proteinen hebben 

verschillende functies (assisteren bij vorming van 3-dimensionale structuur van eiwitten; 

afbreken van eiwitten) en komen tot expressie bij verschillende vormen van “stress”. Daarbij 

spelen heat shock transcriptiefactoren (HSF) een rol. In humane weefsels komen drie van de 

vier HSF voor, namelijk de subtypen 1, 2 en 4. Deze HSFs komen onder verschillende 

 omstandigheden in verschillende mate tot expressie. Met behulp van real-time PCR reacties 

werd de expressie van de drie HSFs in relatie tot die van colligine 2 nagegaan. In gliomen 

bleek met name HSF2 verhoogd tot expressie te komen, terwijl HSF1 nauwelijks verhoogd 

aanwezig is. Daarbij bleek ook dat deze overexpressie vooral aanwezig is in laaggradige 

gliomen, en afneemt met de maligniteitsgraad. Interessant is de gelijktijdige afname van 

transcriptie van HSF4. Zowel HSF2 als HSF1 waren niet verhoogd aanwezig in 

 endometriumweefsel dat als controle voor fysiologische angiogenese in de experimenten 

werd betrokken.

In Hoofdstuk 3 werd naar verschileiwitten gezocht tussen de bloedvaten in gliomen en die 

in normale hersenen. In Hoofdstuk 6 werden boedvaten van glioblastomen vergeleken 
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met bloedvaten die deelnemen aan actieve angiogenese. Daarvoor werden de vaten in 

endometrium in proliferatiefase gebruikt. De bloedvaten alsmede omliggend weefsel 

werden gemicrodisseceerd en gemeten met behulp van geavanceerde massa - 

spectrometrie, i.c., de LTQ Orbitrap massaspectrometer. De peptidenspectra uit de twee 

bloedvatgroepen werden vergeleken en er werden verschileiwitten geidentificeerd.  

Alle vier testgroepen (vaten en omliggend weefsel) werden onderling vergeleken en zo kon 

de lijst verschileiwitten tussen de vaten worden gereduceerd. Uiteindelijk werden 39 

eiwitten in de glioom bloedvaten, en 13 eiwitten in de endometriumvaten geidentificeerd. 

De specifieke aanwezigheid van een deel van deze eiwitten kon vervolgens met behulp 

van immunohistochemie worden bevestigd. De eiwitten in de glioblastoom bloedvaten 

bleken deel uit te maken van drie verschillende moleculaire netwerken, waarvan twee 

geassocieerd bleken met vasculaire ontwikkeling en angiogenese. De eiwitten uit de 

 endometriumvaten bleken deel uit te maken van vier verschillende netwerken, waarvan 

twee gerelateerd zijn met angiogenese.

De meeste gliomen behoren tot de categorie van “diffuus infiltrerende” gliomen.  

De individuele tumorcellen van deze gliomen migreren tussen de normale gliale en neurale 

cellen door. Daarbij treedt een transformatie van het tumorweefsel op: de cellen worden 

steeds meer anaplastich en genetisch instabieler, gepaard gaande met het ontstaan van 

steeds meer verdikte tumorvaten en necrotische gebieden. Een minder vaak vookomende 

gliale tumorcategorie is die van de circumscripte gliomen, waarvan het pilocytaire 

astrocytoom een voorname representant is. Dit glioomtype is veel minder infiltratief en 

ook treedt de progressie naar een genetisch instabiel, histologisch hooggradig glioom niet, 

of minder snel, op. Toch bevinden zich in de pilocytaire astrocytomen, ondanks de lage 

celrijkdom en afwezigheid van necrose, wel sterk geprolifereerde vaten met verdikte 

wanden. In Hoofdstuk 7 werden deze vaten immunophenotypisch vergeleken met die in 

de diffuus infiltrerende, hooggradige gliomen (glioblastomen). De vraag was in hoeverre 

de tumorvaten in de pilocytaire astrocytomen lijken op die van glioblastomen, aannemend 

dat er minder hypoxie in de pilocytaire tumoren aanwezig zou zijn. Afgezien van 

morfologische verschillen werden ook RNA expressie data vergeleken met behulp van 

 bio-informatica analyses, waarbij we ons concentreerden op de moleculaire cascades 

betrokken bij angiogenese. Het bleek dat er wel degelijk hypoxie in de pilocytaire 

astrocytomen aanwezig is, want immunohistochemisch kon pleksgewijze nucleaire 

expressie van VEGF A en HIF-1α worden aangetoond. Dit kwam overeen met de bevinding 

dat de hypoxie-gestuurde VEGF / VEGFR respons in beide tumortypen actief bleek te zijn. 

Er waren echter ook verschillen: de vaten in de pilocytaire astrocytomen toonden een 

geordende wandstruktuur, waarbij de celtypen steeds geordend bleven. Mogelijk hangt 

dit samen met de bevinding dat in dit glioomsubtype, en niet in de diffuus infiltrerende 

gliomen, een aantal genen tot expressie komen die vooral te maken hebben met vertakking 
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en ontwikkeling van vaten. Het belang van het opsporen van zulke genen en paden van 

genexpressie is dat deze ook betrokken zouden moeten worden in het ontwikkelen van 

anti-angiogene therapieën.

Samenvatting





Acknowledgments



168

Realizing that I finished the work for my thesis gives me an indescribable feeling of 

 accomplishment. Living in a different country was one of the richest experiences I ever had. 

Within the last four years I spent in The Netherlands, many people have crossed my path 

and I would like to acknowledge a few of them.  

Foremost, I would like to thank my promotor Prof. Dr. J.M. Kros who welcomed me since the 

very first second I arrived in The Netherlands. His support made the road smoother and the 

goal more achievable. Over the last four years, Max gave a lifetime worth of experiences 

and a limitless ambition that will guide me for the years to come.   

My sincere thank also goes to my copromoter Dr. T.M. Luider, who guided and supported 

me through the world of “Proteomics”. I highly appreciate his help to solve the many 

technical issues. 

I am mostly grateful to Prof. Dr. P.A.E. Sillevis Smitt and Prof. Dr. P. van der Spek who spend 

their valuable time during several meetings and for reviewing the articles in this thesis.  

I would also like to thank all the members of the Ph.D. committee: Prof. Dr. C.M.F. Dirven,  

Prof. Dr. M.J. van den Bent, Prof. Dr. P. Wesseling and Prof. A. Heck for their time and interest 

in evaluating the thesis.

My sincere thanks also go to Dr. G. Jenster and Dr. W. Dinjens who listened to me and 

advised me when I knocked on their doors. I also thank all my colleagues and friends who 

work in the Neuro-Oncology – and Proteomics Laboratories. Without their collaboration 

and help I doubt I would have managed to successfully finish my thesis. Furthermore,  

I thank all my colleagues in the Pathology Department and in the Josephine Nefkens 

Institute who helped me with so many issues.

Gratitude also goes to all my lovely friends in The Netherlands and in the Arabic world who 

supported me at several levels and gave the wonderful time I spent during those four years 

a special meaning. I would like to specially thank Dr. Anieta Sieuwerts and Dr. Andreas 

Kremer for their great help.

Last but not least, I have a wonderful family. They are outstanding, helpful and extremely 

supportive. I would like to express my deepest appreciation for my parents, my sister and 

her family and my brothers, for their unlimited support, encouragement and understanding 

of all aspects of my being.

Acknowledgments



169

Acknowledgments





List of Publications



172

Mustafa D, Kros JM, Luider T: Biomarker discovery in glioma by combined approach of 

laser microdissection and advanced mass spectrometry. Predictive Diagnostics and 

Personalized Treatment: Dream or Reality 2009, 471-476. 

Mustafa D, van der Weiden M, Zheng P, Nigg A, Luider TM, Kros JM: Expression Sites of 

Colligin 2 in Glioma Blood Vessels. Brain Pathol 2008.

Mustafa D, Kros JM, Luider T: Combining laser capture microdissection and proteomics 

techniques. Methods Mol Biol 2008, 428:159-178.

Titulaer MK, Mustafa DA, Siccama I, Konijnenburg M, Burgers PC, Andeweg AC, Smitt PA, 

Kros JM, Luider TM: A software application for comparing large numbers of high 

resolution MALDI-FTICR MS spectra demonstrated by searching candidate biomarkers 

for glioma blood vessel formation. BMC Bioinformatics 2008, 9:133.

Mustafa DA, Burgers PC, Dekker LJ, Charif H, Titulaer MK, Smitt PA, Luider TM, Kros JM: 

 Identification of glioma neovascularization-related proteins by using MALDI-FTMS 

and nano-LC fractionation to microdissected tumor vessels. Mol Cell Proteomics 2007, 

6(7):1147-1157.

Majeed HA, El-Khateeb M, El-Shanti H, Rabaiha ZA, Tayeh M, Mustafa D: The spectrum of 

familial Mediterranean fever gene mutations in Arabs: report of a large series. Semin 

Arthritis Rheum 2005, 34(6):813-818.

Al-Alami JR, Tayeh MK, Mustafa D, Abu-Rubaiha ZA, Majeed HA, Al-Khateeb MS, El-Shanti HI: 

Familial Mediterranean fever mutation frequencies and carrier rates among a mixed 

Arabic population. Saudi Med J 2003, 24(10):1055-1059.

List of Publications



173

List of Publications



174

PhD Portfolio Summary 
Summary of PhD training and teaching  

Name PhD student: Dana A.M. Mustafa 
Erasmus MC Department: Pathology  
Research School: Erasmus Postgraduate 
School Molecular Medicine (MolMed).  

PhD period: 15th June 2005 to 10th November 2009 
Promotor(s): Prof.dr. Johan M. Kros 
Supervisor: Prof.dr. Johan M. Kros 

1. PhD training 
Workload  Year 

Hours ECTs 

General courses  
- Biomedical English Writing and Communication 
- Introduction to clinical Research  
 

 
2006 
2009 

 
120h 
15h 
 

 
4 ECTs 
0.54 ECTs 
 

Specific courses  
- Biomedical Research Techniques Course   
- Molecular Medicine Course 
- Spotfire Course 
- Course Ensemble  
- Bioinformatics Analysis Course 

 
2005 
2006 
2006 
2007 
2008 

 
40h 
32h 
16h 
16h 
16h 

 
1.43 ECTs 
1.14 ECTs 
0.57 ECTs 
0.57 ECTs 
0.57 ECTs 

 
Seminars and workshops 
- Writing Grand Proposal workshop 
- Educational Days in the SNO 
- Witting Grand Proposal in the AACR course  

 
2008 
2008 
2009 
 

 
8h 
28h 
5h  

 
0.29 ECTs 
1 ECTs 
0.18 ECTs 

Presentations 
- Identification of Glioma neovasculature- Specific Proteins 

by Proteomics techniques, INC, San Francisco, USA 
- Identification of glioma neovascularisation-related 

proteins by using MALDI-FTMS and nano-LC 
fractionation to microdissected tumor vessels, ECP, 
Istanbul, Turkey  

- Colligin 2 in Glioma Angiogenesis, Landelijke 
Werkgroep Neuro-Oncologie, Groningen, The 
Netherlands

 

 
2006 
 
2007 
 
 
 
2008 

 
40h 
 
40h 
 
 
 
40h 

 
1.43 ECTs 
 
1.43 ECTs 
 
 
 
1.43 ECTs 

Poster Presentations 
-      Identification Of Glioma Neovascularisation-Related 

Proteins By Using MALDI-FTMS and Nano-LC 
Fractionation To Microdissected Tumor Vessels, NPC, 
Utrecht, The Netherlands  

- Differential Expression of Colligin 2 In Neovasculature Of 
Glioma Subtypes, ECN, Athens, Greece   

- New Targets In Anti -Angiogenesis: The Identification Of 
Colligin 2 In The Microvasculature Of Gliomas, SNO, Las 

 
2007 
 
 
2008 
 
 
2008 

 

 
40h 
 
 
40h 
 
 
40h 

 

 
1.43 ECTs 
 
 
1.43 ECTs 
 
 
1.43 ECTs 

 

- Course Molecular Diagnostics III 2008 16h 0.57 ECTs

PhD Portfolio



175

Vegas, USA 
- Identification Of Colligin 2 In The Microvasculature Of 

Gliomas; A study At The Proteomics Level, AACR, 
Denver, USA 

 
2009 
 

 

 
40h 
 

 
1.43 ECTs 

(Inter)national conferences 
- The European Association of Neuro-Oncology 
- 5th Asia Pacific International Academy Pathology 

Congress 
 

 
2006 
2007 

 
 

 

Winner of the travel award of the XVI International congress of Neuropathology 2006 
 

PhD Portfolio




	Contents
	Chapter 1 - Introduction I - Angiogenesis in Glioma
	Chapter 2 - Introduction II  Combining laser microdissectionand proteomics techniques. - IN: Methods Mol Biol. 2008;428:159-78. Review.PMID: 18287773 [PubMed - indexed for MEDLINE]
	Chapter 3 - Identification of glioma neovascularisation-related proteins by using MALDI-FTMS and nano-LC fractionation to microdissected tumor vessels. - IN: Mol Cell Proteomics. 2007 Jul;6(7):1147-57. Epub 2007 Mar 14.PMID: 17360931 [PubMed - indexed for MEDLINE]
	Chapter 4 - Specific expression sites of colligin 2 in glioma blood vessels. - Based on: Expression Sites of Colligin 2 in Glioma Blood Vessels. Brain Pathol. 2008 Dec 5. [Epub ahead of print]PMID: 19067716 [PubMed - as supplied by publisher]
	Chapter 5 - Overexpression of colligin 2 in glioma vasculature is associated with overexpression of heat shock factor 2
	Chapter 6 - Angiogenesis proteome: a comparison between physiological angiogenesis and angiogenesis in glioblastoma
	Chapter 7 - Structural and transcriptional differences between the vasculature of pilocytic astrocytomas and diffusely infiltrating gliomas
	Summary and concluding remarks
	Samenvatting
	Acknowledgments
	List of Publications
	PhD Portfolio

