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Abstract

In this paper we discuss necessary and sufficient conditions for dif-
ferent minimax results to hold using only linear programming duality
and the finite intersection property of compact sets. It turns out that these
necessary and sufficient conditions have a clear interpretation within
zero-sum game theory. In the last section we apply these results to de-
rive necessary and sufficient conditions for strong duality for a general
class of optimization problems.
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1 Introduction.

Let A andB be nonempty sets andf : A × B → R a given function.
Since in this paper we consider Borel probability measures onA andB
we assume without much loss of generality thatA andB are topolog-
ical spaces with Borelσ-algebrasA andB. A minimax result for the
functionf defined onA×B is a theorem which asserts that

infb∈B supa∈A f(a,b) = supa∈A infb∈B f(a,b).
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It is well known that the above equality has important implications in
game theory and optimization. In general it is only possible to show that

infb∈B supa∈A f(a,b) ≥ supa∈A infb∈B f(a,b)

and due to the importance of this equality a lot of papers have appeared
in the literature (for an extensive survey see [19] and for a more restric-
tive one see [7]) introducing sufficient conditions on the functionf and
the setsA andB for the reverse inequality to hold. To verify this a lot
of different proof techniques have been used. Among the most impor-
tant proof techniques are fixed point theorems, techniques from topology
(connectedness) and versions of the Hahn-Banach theorem in finite and
infinite dimensional topological vector spaces. The purpose of this pa-
per is to derive for the above and some other related minimax results
necessary and sufficient conditions on the functionf and the setsA and
B. At the same time we have tried to use elementary mathematics and
keep the proofs as simple as possible. It turns out for the proof of these
necessary and sufficient conditions that we only need either the sepa-
ration result for finite dimensional disjoint convex sets (Hahn-Banach
theorem in finite dimensional vector spaces) or the duality theorem of
linear programming and some standard result on compact sets and lower
semicontinuous functions. To introduce the other minimax results and
their necessary and sufficient condition we first define the notion of a
mixed strategy. For any setA let PF (A) denote the convex set of all
probability measures onA with finite support. Ifεa represents the one-
point probability measure concentrated on the pointa ∈ A, this means
by definition thatλ belongs toPF (A) if and only if there exists some
finite set{a1, ...,am} ⊆ A and a vectors(λ) := (s1(λ), ..., sm(λ))
satisfying

λ =
∑m

i=1
si(λ)εai ,

∑m

i=1
si(λ) = 1 andsi(λ) > 0, 1 ≤ i ≤ m.

(1)
Within game theory (cf.[11]) the setPF (A) is known as the set of mixed
strategies available to a player having setA as its set of pure strategies.
To clarify this name we observe that a player selecting the probability
measureλ given by relation (1) will use the pure strategyai with proba-
bility si(λ), 1 ≤ i ≤ m. A larger set of strategies is given by the convex
setP(A) of Borel probability measures onA. To extend the minimax re-
sult involving the pure strategy setsA andB to a minimax result involv-
ing the strategy setsP(A) andP(B) we first extend the functionf to the
larger domainPF (A)×PF (B). Therefore introduce for any real valued
functionh defined onA × B the functionhe : PF (A) × PF (B) → R
given by

he(λ, µ) :=
∑m

i=1

∑p

j=1
si(λ)sj(µ)h(ai,bj) (2)
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with λ ∈ PF (A) given by relation (1) andµ ∈ PF (B) given by

µ =
∑p

j=1
sj(µ)εbj ,

∑p

j=1
sj(µ) = 1 andsj(µ) > 0, 1 ≤ j ≤ p.

To extend the functionh to the larger domainPF (A) × P(B) we al-
ways assume that the functionh(a, .) : B → R belongs for every
µ ∈ P(B) anda ∈ A to the setL1

µ(B) of Borel measurable func-
tions onB (measurable with respect to the Borelσ-algebraB), which
are Lebesgue absolutely integrable with respect toµ. The functionhe :
PF (A)× P(B) → R is now defined by

he(λ, µ) :=
∑m

i=1
si(λ)

∫
B

h(ai,b)dµ(b) (3)

with λ represented by relation (1). Finally, if we extend the function
h to the largest domainP(A) × P(B), we assume that the function
h belongs for everyµ ∈ P(B) andλ ∈ P(A) to the setL1

λ⊗µ(A ×
B) of Borel measurable functions onA × B (measurable with respect
to the Borel productσ-algebraA⊗B), which are Lebesgue absolutely
integrable with respect to the Borel product measureλ⊗ µ. In this case
it is well known for anyh belonging toL1

λ⊗µ(A × B) that the Fubini
theorem holds (cf.[1],[15]) and so it follows that∫

A×B

hd(λ⊗ µ) =
∫

A

∫
B

hdµdλ =
∫

B

∫
A

hdλdµ. (4)

The functionhe : P(A)× P(B) → R is now defined by

he(λ, µ) :=
∫

A×B

hd(λ⊗ µ) (5)

and by relation (4) it follows that the functionhe is convex and concave
in both arguments. Also for everyµ ∈ P(B) and λ ∈ PF (A) the
definition in relation (5) reduces to the definition in relation (3). The
same holds for relation (5) and relation (2) in caseµ ∈ PF (B) and
λ ∈ PF (A). Since the setA andB can be identified with the set of
one point probability measures(εa)a∈A and (εb)b∈B it is obvious by
relation (2) that the functionhe is indeed an extension of the functionh.
Consider now the following different minimax results given by

infµ∈P(B) supλ∈P(A) fe(λ, µ) = supλ∈P(A) infµ∈P(B) fe(λ, µ). (6)

infµ∈P(B) supλ∈PF (A) fe(λ, µ) = supλ∈PF (A) infµ∈P(B) fe(λ, µ).
(7)
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infµ∈PF (B) supλ∈PF (A) fe(λ, µ) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ).
(8)

infb∈B supλ∈PF (A) fe(λ, εb) = supλ∈PF (A) infb∈B fe(λ, εb). (9)

infb∈B supa∈A f(a,b) = supa∈A infb∈B f(a,b). (10)

In the next section it will be verified that the minimax results considered
in the above relations satisfy the following chain of strict inclusions

(10)⇒ (9)⇒ (8)⇒ (7)⇒ (6).

In this paper we derive in Section2 for the minimax results mentioned
in relations (7) up to (10) a necessary and sufficient condition on the
function f and the setsA andB. In section3 we apply the minimax
results of Section2 to derive results for the special case of Lagrangian
duality in optimization.

2 On minimax results, inf-compactness and
linear programming duality.

To derive a necessary and sufficient condition for the different minimax
results we need the following well-known minimax theorem. For com-
pleteness an elementary proof of this result based on the separation the-
orem for finite dimensional convex sets is included. Before mentioning
this minimax theorem we introduce the vectore> := (1, ...., 1) belong-
ing to Rn and the(n − 1) dimensional unit simplex∆n ⊆ Rn given
by

∆n := {α ∈ Rn : α>e = 1, α ≥ 0}.

Moreover, the setRn
− denotes the non positive orthant{x ∈ Rn : x ≤

0} of Rn.

Lemma 1 If C ⊆ Rn is a convex set, then it follows that

infx∈C maxα∈∆n
α>x = maxα∈∆n

infx∈C α>x.

Proof. It is obvious that

infx∈C maxα∈∆n α>x ≥ maxα∈∆n infx∈C α>x. (11)

To show that we actually have an equality in relation (11) we assume by
contradiction that

infx∈C maxα∈∆n
α>x > maxα∈∆n

infx∈C α>x := γ. (12)
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Introduce now the mappingH : C → Rn given byH(x) := x − βe
with β satisfying

infx∈C maxα∈∆n
α>x > β > γ. (13)

If we assume thatH(C) ∩ Rn
− is nonempty there exists somex0 ∈ C

satisfyingx0 − βe ≤ 0. This impliesmaxα∈∆n
α>x0 ≤ β and we

obtain a contradiction with relation (13). ThereforeH(C)∩Rn
− is empty

and since both sets are convex we may apply the separation result for
finite dimensional disjoint convex sets (cf.[16]). Hence one can find
someα0 ∈ ∆n satisfyingα>0 x− β ≥ 0 for everyx ∈ C and using also
the definition ofγ listed in relation (12) this implies that

γ ≥ infx∈C α>0 x ≥ β.

Hence we obtain a contradiction with relation (13) and the desired result
is proved. �

Since it holds thatmaxα∈∆n
α>x = max{x1, ..., xn} for everyx ∈

Rn with xi theith component of the vectorx an equivalent formulation
of Lemma 1 is given by

infx∈C max{x1, ..., xn} = maxα∈∆n infx∈C α>x (14)

for any convex setC ⊆ Rn. Using Lemma 1 it is possible to give a
short proof of Wald’s minimax result. However, before discussing this
result and its proof, letF(A0) be the set of all finite subsets of the set
A0 ⊆ A and denote by|J | the cardinality of the setJ ∈ F(A0). More-
over, introduce on the setP(J), J ∈ F(A) of all probability measures
concentrated onJ a topologyτJ with a neighborhood base ofµ ∈ P(J)
given by the collection

N(µ, ε) := {λ ∈ P(J) : |si(λ)− si(µ)| < ε for every1 ≤ i ≤ |J |},

ε > 0. Since the setP(J) is isomorphic with∆|J| and∆|J| ⊆ R|J| is
compact in the Euclidean topology we obtain thatP(J) is compact in
the topologyτJ . Moreover, by the definition ofP(J) we obtain that

P(J) = co({εa}a∈J) (15)

with co(C) denoting the convex hull of a setC and this shows thatP(J)
is a convex compact set. Also it is easy to verify by the definition of
PF (A0) with A0 ⊆ A thatPF (A0) is a convex set and

PF (A0) = co({εa}a∈A0) = ∪J∈F(A0)P(J). (16)

An immediate consequence of Lemma 1 is the well-known Wald’s min-
imax theorem. This result was already proved by Wald (cf.[23], [7]) by
means of a more complicated approach.
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Lemma 2 For every setJ belonging toF(A) it follows that

infµ∈PF (B) max λ∈P(J)fe(λ, µ) = infµ∈PF (B) maxa∈J fe(εa, µ)
= maxλ∈P(J) infb∈B fe(λ, εb)
= maxλ∈P(J) infµ∈PF (B) fe(λ, µ).

Proof. Let J belong toF(A) and introduce the mappingL : PF (B) →
R|J| given by

L(µ) := (fe(εa, µ))a∈J .

Clearly the functionsµ → fe(εa, µ),a ∈ J are both convex and concave
onPF (B) and by the convexity of the setPF (B) this implies that the
rangeL(PF (B)) ⊆ R|J| is a convex set. Applying now relation (15)
and Lemma 1 yields

infµ∈PF (B) maxλ∈P(J) fe(λ, µ) = infx∈L(PF (B)) maxα∈∆|J| α
>x

= maxα∈∆|J| infx∈L(PF (B)) α>x

= maxλ∈P(J) infµ∈PF (B) fe(λ, µ).

Moreover, since the functionλ → fe(λ, µ) is convex for everyµ ∈
PF (B), it follows that

max
λ∈P(J) fe(λ, µ) = maxa∈J fe(εa, µ) (17)

for every µ ∈ PF (B),while by the concavity of the functionµ →
fe(λ, µ) for everyλ ∈ P(J) we obtain that

infµ∈PF (B) fe(λ, µ) = infb∈B fe(λ,εb) (18)

for everyλ ∈ P(J). This completes the proof. �

For readers more familiar with the theory of linear programming an
alternative proof of Wald’s minimax theorem is also provided. Besides
the strong duality theorem of linear programming we also need in this
alternative proof a well known special case of a result on so-called inf-
compact functions. Before mentioning this result we first introduce the
following definition (cf.[2]).

Definition 3 The functionk : B → R is called inf-compact if all its
lower level sets{b ∈ B : k(b) ≤ r}, r ∈ R are compact and it is called
sup-compact if the function−k is inf-compact.

In caseB is a Hausdorff topological space it can be shown (cf.[17])
that any compact set is closed and so an inf-compact function on a Haus-
dorff topological space is lower semicontinuous. For inf-compact func-
tions the next result is well-known (cf.[2]).
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Lemma 4 If the functionsf(a, .) : B → R are lower semicontinuous
for everya ∈ A and there exists some setJ0 ∈ F(A) such that the
functionmaxa∈J0 f(a, .) is inf-compact, then it follows that

supJ∈F(A) infb∈B maxa∈J f(a,b) = infb∈B supa∈A f(a,b). (19)

Moreover, in both expressions the inf is attained and so we may replace
inf by min in relation (19).

In the next section the well-known Slater condition in optimization
theory is shown to be equivalent with the inf-compactness of the La-
grangian function and so Lemma 4 is useful in the next section. A sym-
metrical version of relation (19) is now given by

infI∈F(B) supa∈A minb∈I f(a,b) = supa∈A infb∈B f(a,b) (20)

and this holds if the functionsf(.,b),b ∈ B are upper semicontinu-
ous onA and there exists some setI0 ∈ F(B) such that the function
minb∈I0 f(.,b) is sup-compact. In this case it follows that the sup is
attained in both expressions and so we may replacesup by max in rela-
tion (20). Since in any compact space a closed subset of a compact set is
compact (cf.[17]) it follows that the conditions of Lemma 4 are satisfied
if the topological spaceB is compact and the functionsf(a, .), a ∈ A
are lower semicontinuous. This well known special case of Lemma 4
will be used in the next proof.

Alternative proof of Wald’s minimax result . By relation (16) it
follows that

infµ∈PF (B) max a∈Jfe(εa, µ) = infI∈F(B) minµ∈P(I) maxa∈J fe(εa, µ).

Observe now for everyI ∈ F(B) andJ ∈ F(A) that the optimization
problem

minµ∈P(I) maxa∈J fe(εa, µ)

is a linear programming problem and applying the strong duality theo-
rem for linear programming (cf.[4]) we obtain von Neumann’s minimax
result (cf.[21], [22]) given by

minµ∈P(I) maxa∈J fe(εa, µ) = maxλ∈P(J) minb∈I fe(λ, εb).

Applying now the first equality in this proof yields

infµ∈PF (B) max a∈Jfe(εa, µ) = infI∈F(B) maxλ∈P(J) minb∈I fe(λ, εb).

Moreover, by the compactness of the convex setP(J) (with respect to
the topologyτJ ) for anyJ ∈ F(A) andλ → fe(λ, εb) is continuous on
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P(J) for everyb ∈ B, it follows by relation (20) replacing the setA by
P(J) and the functionf(a,b) by fe(λ, εb) that

infI∈F(B) maxλ∈P(J) minb∈I fe(λ, εb) = maxλ∈P(J) infb∈B fe(λ, εb)

and so we obtain

infµ∈PF (B) max a∈Jfe(εa, µ) = maxλ∈P(J) infb∈B fe(λ, εb).

Finally by relations (17) and (18) Wald’s minimax result is verified.

In Wald’s minimax result we do not assume anything except that the
functionf is finite valued. If we additionally assume that the functions
f(a, .), a ∈ A belong toL1

µ(B) for everyµ ∈ P(B), then the following
result holds.

Lemma 5 If the functionsf(a, .),a ∈ A belong toL1
µ(B) for every

µ ∈ P(B), then one may replace in Lemma 2 everywhere the setPF (B)
byP(B) without changing any values.

Proof. Since the functionf(a, .),a ∈ A belong to∩µ∈P(B)L1
µ(B) we

obtain for everyλ ∈ PF (A) andµ ∈ P(B) that

fe(λ, µ) =
∫

B

fe(λ, εb)dµ(b) ≥ infb∈B fe(λ, εb)

and so using(εb)b∈B ⊆ PF (B) ⊆ P(B) it follows that

infµ∈P(B) fe(λ, µ) = infµ∈PF (B) fe(λ, µ) = infb∈B fe(λ,εb) (21)

for everyλ ∈ PF (A). Moreover, by relation (21) we obtain

infµ∈PF (B) max λ∈P(J)fe(λ, µ) ≥ infµ∈P(B) max λ∈P(J)fe(λ, µ)
≥ maxλ∈P(J) infµ∈P(B) fe(λ, µ)
= maxλ∈P(J) infb∈B fe(λ,εb)
= maxλ∈P(J) infµ∈PF (B) fe(λ, µ).

By Lemma 2 andmax λ∈P(J)fe(λ, µ) = maxa∈J fe(εa, µ) for every
µ ∈ P(B) the desired result follows. �

Although mentioned in Lemma 5 we list for further reference the
useful observation that for anyf satisfying the conditions of Lemma 5
it holds that

infµ∈PF (B) maxa∈J fe(εa, µ) = infµ∈P(B) maxa∈J fe(εa, µ) (22)

for anyJ ∈ F(A). Applying relation (16) we obtain the following useful
implication of Wald’s minimax result and its related version given by
Lemma 5.
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Lemma 6 For any functionf : A×B → R it follows that

supJ∈F(A) infµ∈PF (B) maxa∈J fe(εa, µ) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ).

Moreover, if the functionsf(a, .),a ∈ A belong toL1
µ(B) for every

µ ∈ P(B), then we may replace in the above equality without changing
any values the setPF (B) byP(B).

Proof. The first, respectively second part of this lemma is an immediate
consequence of Lemma 2, respectively Lemma 5 and relation (16).�

To derive a natural necessary and sufficient condition for the equality
in relation (7) we introduce the following class of functions.

Definition 7 The functionf : A×B → R belongs to the setA if

supJ∈F(A) infµ∈P(B) maxa∈J fe(εa, µ) = infµ∈P(B) supa∈A fe(εa, µ)

and the above expressions are well defined.

If the functionf satisfies the conditions of Lemma 5 it follows by
relation (22) thatf belongs toA if and only if

supJ∈F(A) infµ∈PF (B) maxa∈J fe(εa, µ) = infµ∈P(B) supa∈A fe(εa, µ).

A game theoretic interpretation of the payoff functionf belonging to
the setA is given by the observation that for player1 using strategy
setP(B) and the minimax approach it does not make any difference
whether his opponent given by player2 selects a pure strategy from the
setA or first considers all finite subsets ofA and then selects from one of
these finite subsets his pure strategy. It is now easy to show the following
result.

Theorem 8 If the functionsf(a, .),a ∈ A belong toL1
µ(B) for every

µ ∈ P(B), then it follows that relation (7), given by

infµ∈P(B) supλ∈PF (A) fe(λ, µ) = supλ∈PF (A) infµ∈P(B) fe(λ, µ)

holds if and only if the functionf belongs to the setA.

Proof. Since the equality in relation (7) is the same as

infµ∈P(B) supa∈A fe(εa, µ) = supλ∈PF (A) infµ∈P(B) fe(λ, µ).

the result follows immediately by the second part of Lemma 6. �

In the next lemma we list for the minimax result in relation (7) some
sufficient topological conditions onf and the setB. To verify this result
we need some standard results from the theory of Radon measures.

9



Lemma 9 If the functionsf(a, .),a ∈ A are lower semicontinuous and
belong toL1

µ(B) for everyµ ∈ P(B) and the setB is a compact Haus-
dorff space, then it follows that the minimax result in relation (7) holds.

Proof. By Theorem 8 we need to check that the functionf belongs to
the setA. To verify this we first observe using the Riesz representation
theorem (cf.[17]) that the normed linear space of all finite signed Borel
measures(M(B), ‖.‖tv) with ‖.‖tv denoting the total variation norm
is isomorf with the dual space (equipped with the operator norm) of
the set of all continuous real valued functions on the compact Hausdorf
spaceB. This implies by the Banach Alaoglu theorem that the unit ball
S := {µ ∈ M(B) : ‖µ‖tv ≤ 1} is compact in the weak∗ topology
and since the convex setP(B) ⊆ S is a closed subset ofS (in the
weak∗ topology) we obtain thatP(B) is compact in the weak∗topology.
Moreover, since the functionsf(a, .),a ∈ A, are lower semicontinuous
it can be shown (cf.[6], [3]) that the function

µ → fe(εa, µ) =
∫

B

f(a,b)dµ(b)

is lower semicontinuous (in the weak∗topology) for everya ∈ A. Hence
the conditions of Lemma 4 withB replaced byP(B) andf by fe(εa, µ)
are satisfied and so it follows that

supJ∈F(A) infµ∈P(B) maxa∈J fe(εa, µ) = infµ∈P(B) supa∈A fe(εa, µ)

or the functionf belongs toA. �

To derive a natural necessary and sufficient condition for the equality
in relation (8) we introduce the following class of functions.

Definition 10 The functionf : A×B → R belongs to the setB if

supJ∈F(A) infµ∈PF (B) maxa∈J fe(εa, µ) = infµ∈PF (B) supa∈A fe(εa, µ).

A game theoretic interpretation of the payoff functionf belonging
to the setB is given by the observation that for player1 using the mixed
strategy setPF (B) and the minimax approach it does not make any
difference whether his opponent given by player2 selects a pure strategy
from the setA or first considers all finite subsets ofA and then selects
from one of these finite subsets his pure strategy. If we know additionally
that the setB is a compact Hausdorff space and the functionsf(a, .),a ∈
A are lower semicontinuous and belong toL1

µ(B) for everyµ ∈ P(B),
then the definition of the setB can be simplified. If this holds we know
by relation (22) and Lemma 9 that

supJ∈F(A) infµ∈PF (B) maxa∈J fe(εa, µ) = infµ∈P(B) supa∈A fe(εa, µ)
(23)
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and so under the above conditions we obtain that

f ∈ B ⇐⇒ infµ∈P(B) maxa∈A fe(εa, µ) = infµ∈PF (B) supa∈A fe(εa, µ).

Observe in this case the game theoretic interpretation of the setB be-
comes easier and is given by the observation that player1 using the
strategy setP(B) can restrict himself to the strategy setPF (B). One
can now show the following result.

Theorem 11 It follows that relation (8), given by

infµ∈PF (B) supλ∈PF (A) fe(λ, µ) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ)

holds if and only if the functionf belongs toB.

Proof. Apply a similar proof as in Theorem 8 and use the first part of
Lemma 6. �

The minimax result listed in relation (8) is of importance in the the-
ory of zero-sum games. It states that both players should use the set of
mixed strategies to achieve the (maybe not attainable) value of a zero-
sum game. If the functionf is continuous onA × B and the setsA
andB are compact sets in a metric space Ville (cf.[20], [7]) showed that
relation (8) holds. Applying the result that any continuous function on a
compact set in a metric space is uniformly continuous (cf.[13]) it is easy
to verify that the functionf belongs to the setB and so Ville’s minimax
result follows from Theorem 11. To derive a necessary and sufficient
condition for the equality in relation (9) we introduce the following class
of functions.

Definition 12 The functionf : A×B → R belongs to the setC if

supJ∈F(A) infµ∈PF (B) maxa∈J fe(εa, µ) = infb∈B supa∈A f(a,b).

A game theoretic interpretation of the payoff functionf belonging
to the setC is given by the observation that for player1 using the mixed
strategy setPF (B) and the minimax approach it does not make any dif-
ference whether his opponent given by player2 selects a pure strategy
from the setA or first considers all finite subsets ofA and then selects
from one of these finite subsets his pure strategy. Moreover, the pay-
off function for player1 is such that his mixed strategy set is always
dominated by his pure strategy set. This means that player1 can restrict
himself to the set of pure strategies instead of using the set of mixed
strategies. By relation (23) we obtain forB a compact Hausdorff space
and the functionsf(a, .),a ∈ A are lower semicontinuous and belong to
L1

µ(B) for everyµ ∈ P(B) that

f ∈ C ⇐⇒ infµ∈P(B) supa∈A fe(εa, µ) = infb∈B supa∈A f(a,b).
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Again in this case the game theoretic interpretation of the setC becomes
easier and is given by the observation that player1 using the strategy
setP(B) can restrict himself to the pure strategy setB. One can now
show the following result. Observe a sufficient condition for the listed
minimax result was discussed in [12].

Theorem 13 It follows that relation (9), given by

infb∈B supλ∈PF (A) fe(λ, εb) = supλ∈PF (A) infb∈B fe(λ, εb).

holds if and only if the functionf belongs toC.

Proof. The equality in relation (9) is the same as

infb∈B supa∈A f(a,b) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ)

Applying now the first part of Lemma 6 yields the desired result. �

Finally we derive a necessary and sufficient condition for a minimax
result involving the pure strategy setsA andB.

Definition 14 The functionf : A×B → R belongs to the setD if

supλ∈PF (A) infb∈B fe(λ, εb) = supa∈A infb∈B f(a,b).

A game theoretic interpretation of the payoff functionf belonging
to the setC is given by the observation that for player2 using the mixed
strategy setPF (A) and the minimax approach his mixed strategy set is
always dominated by his pure strategy set. This means that player2 can
restrict himself to the set of pure strategies instead of using the set of
mixed strategies. One can now show the most useful minimax result.

Theorem 15 It follows that relation (10), given by

infb∈B supa∈A f(a,b) = supa∈A infb∈B f(a,b).

holds if and only if the functionf belongs to the setC ∩ D.

Proof. If the functionf belongs to the setC ∩D then by Theorem 13 we
obtain that

infb∈B supa∈A fe(a,b) = infb∈B supλ∈PF (A) fe(λ, εb)

= supλ∈PF (A) infb∈B fe(λ, εb)

= supa∈A infb∈B f(a,b).

To show the reverse implication consider an arbitraryλ belonging to
PF (A). By relation (16) there exists someJ0 ∈ F(A) such thatλ ∈
P(J0) and this implies

infb∈B fe(λ, εb) ≤ infb∈B supa∈J0
f(a,b)

≤ supJ∈F(A) infb∈B supa∈J f(a,b).
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Applying the minimax equality yields

supλ∈PF (A) infb∈B fe(λ, εb) ≤ supJ∈F(A) infb∈B supa∈J f(a,b)

≤ infb∈B supa∈A f(a,b)
= supa∈A infb∈B f(a,b).

Since the reverse inequality trivially holds we obtain

supλ∈PF (A) infb∈B fe(λ, εb) = supa∈A infb∈B f(a,b) (24)

or the functionf belongs toD. Again by the minimax equality and (24)
we obtain

supλ∈PF (A) infb∈B fe(λ, εb) = infb∈B supa∈A f(a,b)

and this shows by Theorem 13 that the functionf belongs toC. �

This concludes our discussion of the necessary and sufficient condi-
tions for the different minimax results. We will now investigate in the
next subsection in more detail these different function classes and show
how they are related.

2.1 On the relations between the different minimax re-
sults.

In this subsection we investigate in more detail the relations between the
different minimax results given by relations (6) up to (10). Introducing
the notationLi andRi for the left and right-hand side of relation(i) we
obviously obtain that

L10 = L9 ≥ L8 ≥ L7 = L6 ≥ R6 ≥ R7 = R8 = R9 ≥ R10. (25)

This implies that

(10) ⇒ (9) ⇒ (8) ⇒ (7) ⇒ (6).

Below we show by means of some counterexamples that none of the
arrows in relation (25) can be reversed. In the first counterexample we
show an instance for which (9) holds and (10) does not hold.

Example 16 LetA = [0, 1] ⊂ R, B = {b1,b2,b3} ⊂ R and introduce
the functionf : A×B → R given by

f(a,b) =

 a2 if b = b1

(a− 1)2 if b = b2

2−1 if b = b3

.

For this bifunction we have

L10 := minb∈B supa∈A f(a,b) = 1/2,
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while
R10 := supa∈A minb∈B f(a,b) = 1/4

and so (10) does not hold. SinceL10 = L9 = 2−1 and it is obvious to
check thatR9 = 2−1, we obtain that (9) holds.

In the next counterexample we show an instance for which (8) holds
and (9) does not hold.

Example 17 TakeA = [0, 1], B = {b1,b2} ⊂ R and introduce the
functionf : A×B → R given by

f(a,b) =
{

a2 if b = b1

(a− 1)2 if b = b2
.

Consider now the probability measureλ∗ ∈ PF (A) given byλ∗ =
2−1εa1 + 2−1εa2 with a1 = 0 anda2 = 1. It is easy to check that

minb∈B fe(λ∗, εb) = 2−1

and so it follows thatR9 ≥ 2−1. Moreover, we observe by the definition
of the setsA andB that

L8 = infµ∈PF (B) supa∈A fe(εa, µ)
= inf0≤s1(µ)≤1 supa∈A{s1(µ)f(a,b1) + (1− s1(µ))f(a,b2)}
= inf0≤s1(µ)≤1 max{s1(µ), 1− s1(µ)} = 2−1.

Since we already know thatL8 ≥ R9 = R8 andR9 ≥ 2−1 we obtain

L8 = R9 = R8 = 2−1.

It is now easy to check thatL9 = 1 and hence we have found an instance
for which(8) holds and(9) does not hold.

In order to construct an instance for which (7) holds and (8) does not
hold we first need to introduce the setC0 of all (real valued) sequences
converging to0. It is well-known that the spaceC0 endowed with the
norm

‖a||C0
= supk∈N |ak|

is a Banach space. LetA = {a = (ak) ∈ C0 : a1 = 0}, B = [0, 1] ⊂ R
and introduce the functionf : A×B → R given by

f(a,b) = f((ak),b) =
{

1 if there exist somek ∈ N such thatb = ak

0 otherwise.
(26)

One can now show the following lemma.

Lemma 18 The functionf listed in relation (26) belongs toL1
λ⊗µ for

everyλ ∈ P(A) andµ ∈ P(B).
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Proof. Since the functionf is bounded it is sufficient to verify thatf is
Borel measurable. Clearly the setA×B is closed inC0×R and so it is
Borel-measurable. To show that the functionf is Borel-measurable on
A×B it is sufficient to check that the set

S = {(a,b) ∈ A×B : f(a,b) = 1}
= {(a,b) ∈ A×B : there exist somek ∈ N such thatb = ak}

is measurable. Its complementary set will then be measurable by the
definition of aσ-algebra. To verify thatS is Borel measurable we show
that it is closed. Let(an,bn) be an arbitrary sequence inS converging to
(a,b). We have to prove that there exists somek ∈ N such thatb = ak.
By our assumptionan → a in C0 andbn → b in R and so

limn↑∞ ||an − a|| = limn↑∞ supk∈N |an
k − ak| = 0.

Since for eachn ∈ N there exists somek such thatbn = an
k consider for

each fixedn ∈ N the smallest indexk(n) satisfyingbn = an
k(n). Due to

|bn − ak(n)| = |an
k(n) − ak(n)| ≤ ||an − a|| → 0 if n →∞

it follows that

|b− ak(n)| ≤ |b− bn|+ |bn − ak(n)| → 0 if n →∞. (27)

We now distinguish the following two cases: If the sequence(k(n))n∈N

is bounded and so it takes only a finite number of distinct values there
exists a constant subsequence(k(ni))i∈N with n1 < n2 < n3 < ... of
the sequence(k(n))n∈N. This means thatk(ni) = k0 for everyi ∈ N
and soak(ni) = ak0 for everyi ∈ N. Hence by relation (27) we obtain
thatak0 = b and so the vector(a,b) belongs toS. If, on the other hand,
the sequence(k(n))n∈N is unbounded, i.e.limn→∞ k(n) = ∞, there
exists a strictly increasing subsequence(k(ni))i∈N of (k(n))n∈N, i.e.

k(n1) < k(n2) < k(n3) < ...

Again by relation (27) anda belongs to the Banach spaceC0 we obtain
that limi→∞ ak(ni) = b = 0. Since by the definition of setA we know
that an

1 = 0 for everyn ∈ N , it follows that a1 = 0 and so(a,b)
belongs toS. This completes the proof of the lemma. �

We will now list the counterexample for which (7) holds and (8) does
not hold

Example 19 Let f : A × B → R be the function defined in relation
(26) and consider someλ ∈ PF (A). Hence there exists a finite number
of sequencesai = (ai

k)k∈N, 1 ≤ i ≤ m, belonging toA and some vector
s(λ) = (s1(λ), ..., sm(λ)), si(λ) > 0 and

∑m
i=1 si(λ) = 1 such that

λ =
∑m

i=1
si(λ)εai .
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Since the set[0, 1] contains more than a countable number of elements
one can now choose a numberb ∈ [0, 1] such thatnone of the above
sequencesai, 1 ≤ i ≤ m, contain this number. Using this number and
the definition off it can be easily seen that

infb∈[0,1] fe(λ, εb) = infb∈[0,1]

∑m

i=1
si(λ)f(ai,b) = 0

and soR8 = 0. On the other hand, consider someµ ∈ PF (B). By
definition one can find some finite set{b1, ...bp} ⊆ [0, 1] and a vector
s(µ) = (s1(µ), ..., sp(µ)), sj(µ) > 0 and

∑p
j=1 sj(µ) = 1 such that

µ =
∑p

j=1
sj(µ)εbj

.

Introducing the elementa0 := (0,b1, ...,bp, 0, 0, ...) ∈ C0 it is obvious
by the definition off that

supa∈A fe(εa, µ) = supa∈A

∑p

j=1
sj(µ)f(a,bj)

≥
∑n

j=1
sj(µ)f(a0,bj) = 1.

Sincef is bounded by1 this shows that

L8 := infµ∈PF (B) supa∈A fe(εa, µ) = 1

and so we have verified that (8) does not hold. To see that (7) holds,
observe thatR7 = R8 = 0 and letµ0 be the Lebesgue measure on
[0, 1]. Obviouslyµ0 ∈ P(B) and since for everya ∈ A the function
f(a, .) takes the value1 on a countable set and zero elsewhere and by
Lemma 18f belongs toL1

λ⊗µ for everyλ ∈ P(A) andµ ∈ P(B), we
obtain ∫ 1

0

f(a,b)dµ0(b) = 0

for everya ∈ A. Hence it follows thatL8 = 0 and so (8) holds.

We now list an instance for which (6) holds and (7) does not hold.

Example 20 Let A := [0, 1] andB := {(bk)k∈N ∈ C0 : b1 = 0} and
introduce the functionf : A×B → R given by

f(a,b) =
{

0 if there exist somek ∈ N such thata = bk

1 otherwise.
.

As in Example 19 one can verify for everyλ ∈ PF (A) that

infb∈B fe(λ,εb) = 0
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and soR7 = 0. On the other hand, by Lemma 18 the functionf is Borel
measurable and ifλ0 is the Lebesgue measure on[0, 1] we obtain as
before that ∫ 1

0

f(a,b)dλ0(a) = 1. (28)

for everyb ∈ B. Also it is easy to verify by a similar argument as used
in Example 19 that

supa∈A fe(εa, µ) = supa∈[0,1]

∑p

j=1
sj(µ)f(a,bj) = 1 (29)

for everyµ ∈ PF (B). Using now relations (28) and (29) we obtain that

1 = L6 ≥ R6 ≥ 1

and so (6) holds. Moreover, sinceR7 = 0 andL7 = L6 = 1 it follows
that (7) does not hold.

The above examples showed that none of the implications in relation
(25) can be reversed. To conclude this section we give an example which
shows that (6) can also fail.

Example 21 Let A = B := [0,∞) ⊂ R and consider the function
f : A×B → R given by

f(a,b) =
{

1 if a ≥ b
0 otherwise.

For anyλ ∈ P(A) it follows that∫ ∞

0

f(a,b)dλ(a) = λ([b,∞)) = 1− λ([0,b))

for everyb ≥ 0 and so we obtain thatR6 = 0. On the other hand, for
anyµ ∈ P(B) we observe that∫ ∞

0

f(a,b)dµ(b) = µ([0,a))

for everya ≥ 0 and so it follows thatL6 = 1. Hence (6) does not hold.

In the next section we apply the minimax results derived in the pre-
vious sections to Lagrangian duality.

3 Application to Lagrangian duality.

Before applying the results of the first section to the Lagrangian dual
problem we first need to introduce some well-known notions. LetY be
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a normed linear space andK ⊆ Y some closed convex cone. Introduce
now onY the partial ordering≤K defined by

y1 ≤K y2 ⇐⇒ y2 − y1 ∈ K.

If Y ∗ denotes the topological dual space ofY, let K∗ ⊆ Y ∗ be the so-
called dual cone given by

K∗ := {y∗ ∈ Y ∗ :< y∗,y >≥ 0 for everyy ∈ K}

with < y∗,y >:= y∗(y). This means that

K∗ = {y∗ ∈ Y ∗ :< y∗,y >≥ 0 for everyy ≥K0}

and so the dual coneK∗ denotes the space of all continuous positive
linear functionals onY. If X is some topological space andh : X →
R and g : X → Y are some given mappings, consider then for the
nonempty feasible region

D := {x ∈ X : g(x) ≥K 0}

the general primal optimization problem

v(P) := sup{h(x) : x ∈ D}. (P)

To derive the Lagrangian dual of the optimization problem(P ) we first
introduce the so-called Lagrangian functionθ : K∗ → (−∞,∞] given
by

θ(y∗) := supx∈X{h(x)+ < y∗, g(x) >}

Since it is easy to verify that

θ(y∗) ≥ v(P ) (30)

for everyy∗ ∈ K∗ and we like to approximatev(P ) by means of the
Lagrangian function, it is natural to consider the so-called Lagrangian
dual given by

v(D) := infy∗∈K∗ θ(y∗). (D)

By relation (30) it is clear thatv(D) ≥ v(P) and in the remainder of
this section we are interested under which necessary and sufficient con-
ditions we actually have an equality. Whether or not one has an equality
(no duality gap) plays a cental role in the theory of optimization and so a
lot of papers and books have discussed this topic. In this section we will
also pursue this question and although most of the sufficient conditions
are already known we like to stress that there are virtually no papers in
the literature trying to derive necessary and sufficient conditions. Us-
ing now the minimax approach and imposing for noncompact setsX
the well-known Slater type regularity condition, it is possible to give a
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necessary and sufficient condition for equality of the optimal objective
value of the primal and dual problem. The same holds for compact sets
X without this regularity condition. Moreover, we show that the Slater
type condition is actually equivalent to the inf-compactness of the La-
grangian bifunction and hence this regularity condition is nothing else
than a compactness type condition. To start with the analysis of the La-
grangian dual and its relation to the primal problem, we first give an
alternative expression forv(P ).

Lemma 22 If the functionf : X ×K∗ → R is given by

f(x,y∗) := h(x)+ < y∗, g(x) >, (31)

then it follows that

v(P ) = supx∈X infy∗∈K∗ f(x,y∗).

Proof. If the vectorx belongs to the setD, then clearly< y∗, g(x) >≥ 0
for everyy∗ belonging toK∗ and so we obtain

infy∗∈K∗ f(x,y∗) = h(x). (32)

Moreover, sinceK is a closed convex cone, we may apply the bipolar
theorem given byK∗∗ = K (cf.[9]) and so forx belonging toX\D the
bipolar theorem impliesg(x) /∈ K∗∗. Hence there exists somey∗0 ∈ K∗

satisfying< y∗0, g(x) >< 0 and sinceαy∗0 ∈ K∗ for everyα > 0 this
implies that

infy∗∈K∗ f(x,y∗) = −∞. (33)

Since the setD is nonempty we knowv(P ) > −∞ and this implies by
relations (32) and (33) that

v(P ) = supx∈D infy∗∈K∗ f(x,y∗) = supx∈X infy∗∈K∗ f(x,y∗)

showing the desired result. �

By Lemma 22 and the definition of the Lagrangian dual problem
(D) it follows that there exists no duality gap if and only if the minimax
result in relation (10) holds withA replaced byX andB by K∗. For the
bifunctionf : X ×K∗ → R, listed in relation (31), one can now show
the following result.

Lemma 23 It follows for everyJ ∈ F(X) and the bifunctionf : X ×
K∗ → R given by relation (31) that

infµ∈PF (K∗) maxx∈J fe(εx, µ) = infy∗∈K∗ maxx∈J f(x,y∗).
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Proof. For everyµ belonging toPF (K∗) there exists by definition some
finite set{y∗1, ...,y∗p} ⊆ K∗ and a vectors(µ) = (s1(µ), ....., sp(µ))
such that

µ =
∑p

j=1
sj(µ)εy∗j , sj(µ) > 0,

∑p

j=1
sj(µ) = 1.

This yields for everyJ belonging toF(X) andf given by relation (31)
that

maxx∈J fe(εx, µ) = maxx∈J fe(εx,
∑p

j=1
sj(µ)y∗j ). (34)

Since the dual coneK∗ ⊆ Y ∗ is convex this implies that∑p
j=1 sj(µ)y∗j ∈ K∗ and hence we obtain by relation (34) that

maxx∈J fe(εx, µ) ≥ infy∗∈K∗ maxx∈J f(x,y∗).

This shows

infµ∈PF (K∗) maxx∈J fe(εx, µ) ≥ infy∗∈K∗ maxx∈J f(x,y∗).

and since the reverse inequality trivially holds the desired equality fol-
lows. �

To show that under some additional assumption the functionf, listed
in relation (31), actually belongs to the setC it is by Lemma 23 sufficient
and necessary to show that

supJ∈F(X) infy∗∈K∗ maxx∈J f(x,y∗) = infy∗∈K∗ supx∈X f(x,y∗).
(35)

To verify this, we need to check the conditions of Lemma 4 and so we
have to introduce a convenient topology on the setY ∗. As we shall see
later the strong topology onY ∗ generated by the operator norm

‖.‖d := sup‖y‖=1 | < y∗,y > |

is not suitable. The proper topology to define onY ∗ is now given by the
weak∗topology. Remember in the weak∗topology onY ∗ the neighbor-
hood base of zero is given by sets of the form

N (y1, ...,yk, ε) := {y∗ ∈ Y ∗ : | < y∗,yi > | < ε, 1 ≤ i ≤ k} (36)

with ε > 0 and{y1, ...,yk} some finite subset ofY. It is also well-known
that the net{y∗i }i∈I ⊆ Y ∗ converges in the weak∗topology toy∗ ∈ Y ∗

(notationy∗i →∗ y∗) if and only if

limi∈I < y∗i ,y >=< y∗,y > (37)

for everyy ∈ Y. Using the weak∗topology it is obvious by relation (37)
that the functionf(x, .) : K∗ → R , given by

f(x,y∗) := h(x)+ < y∗, g(x) > (38)
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is continuous (in the weak∗topology) for everyx ∈ X. Hence to apply
Lemma 4 and show thatf belongs toC we still need to verify the inf-
compactness property. To check this property we introduce the following
well-known regularity condition.

Definition 24 A pointx0 is called a Slater point of the feasible region
D := {x ∈ X : g(x) ≥K 0} if x0 ∈ X andg(x0) ∈ int(K).

As shown by the following result the existence of a Slater pointx0

of the setD is the same as the inf-compactness (in the weak∗topology)
of the functionfx0 .

Lemma 25 The pointx0 is a Slater point of the setD if and only if the
functionf(x0, .) : K∗ → R, given by

f(x0,y∗) = h(x0)+ < y∗, g(x0) >,

is inf-compact (in the weak∗topology).

Proof. We need to show for everyr ∈ R that the setL(r) := {y∗ ∈ K∗ :
fx0(y

∗) ≤ r} is compact in the weak∗topology. Sinceg(x0) belongs to
int(K) one can find someε > 0 such that

g(x0) +N1(ε) ⊆ K (39)

with N1(ε) := {y ∈ Y : ‖y‖ ≤ ε}. Consider now somey∗ ∈ K∗.
Since‖y∗‖d := sup‖y‖=1 | < y∗,y > | there exists somey0 ∈ Y
satisfying

‖y0‖ = 1 and< y∗,y0 >≥ 1
2
‖y∗‖d. (40)

This implies by relation (39) and (40) that

< y∗, g(x0) >=< y∗, g(x0)− εy0 > +ε < y∗,y0 >≥ ε‖y∗‖d (41)

and so we obtain for everyy∗ belonging toL(r) that

ε‖y∗‖d ≤< y∗, g(x0) >≤ r − h(x0).

Hence we have shown that

L(r) ⊆ {y∗ ∈ K∗ : ‖y∗‖d ≤ ε−1(r − h(x0))} (42)

and since by Alaoglu’s theorem (cf.[8]) the last set in relation (42) is
weak∗compact andL(r) is weak∗closed we obtain that the setL(r) is
weak∗compact. To show the reverse implication, letf(x0, .) be inf-
compact (with respect to the weak∗topology) and taker := h(x0) +
‖g(x0)‖. Observe now for everyy∗ belonging toK∗ and satisfying
‖y∗‖d ≤ 1 that

f(x0,y∗) ≤ h(x0) + ‖y∗‖d‖g(x0)‖ ≤ r
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and so it follows that

{y∗ ∈ K∗ : ‖y∗‖d ≤ 1} ⊆ L(r). (43)

Assume now by contradiction that there exists some nonzeroy∗0 ∈ L(r)
satisfying< y∗0, g(x0) >≤ 0 and so by the definition ofL(r) we obtain
that αy∗0 ∈ L(r) for everyα > 1. Sincey∗0 6= 0 there exists some
y0 ∈ Y such that< y∗0,y0 >6= 0 and consider now for thisy0 the open
setN (y0, 1) ⊆ Y ∗ containing0∗.. Since the vector spaceY ∗ equipped
with the weak∗topology is a topological vector space and by assumption
the setL(r) is weak∗compact it follows by partb of Theorem1.15 of
[18] that the lower level setL(r) is bounded. Sinceαy∗0 ∈ L(r) for
everyα > 1 we obtain usingy∗0 6= 0 that‖αy∗0‖d = α‖y∗0‖d ↑ ∞ if
α ↑ ∞ and this contradicts the boundedness ofL(r). Hence for every
nonzeroy∗ ∈ L(r) it follows that< y∗, g(x0) >> 0 and by relation
(43) we obtain that< y∗, g(x0) >> 0 for everyy∗ ∈ K∗\{0∗}. This
shows (cf.[10]) thatg(x0) belongs to int(K) and sox0 is a Slater point
of the setD. �

Using now Lemma 25 and Theorem 15 one can verify the following
important result.

Theorem 26 If the setD contains a Slater point, then it follows that
v(D) = v(P) if and only if the functionf, given by relation (31), belongs
toD, i.e

supλ∈PF (X) infy∗∈K∗ fe(λ, εy∗) = supx∈X infy∗∈K∗ f(x,y∗).

Moreover, the dual problem(D) has an optimal solution.

Proof. By Lemma 25 and usingfx(y∗) := h(x)+ < y∗, g(x) > is con-
tinuous in the weak∗topology we obtain that the conditions of Lemma
4 are satisfied and so relation (35) holds. Hence the functionf, listed
in relation (31), belongs to the setC. Applying now Theorem 15 yields
v(D) = v(P) if and only if f ∈ D. Actually, by the inf-compactness of
fxo with x0 the Slater point, it also holds by Lemma 4 that

infy∗∈K∗ supx∈X f(x,y∗) = miny∗∈K supx∈X f(x,y∗)

and this shows that the dual problem has an optimal solution. �

In the next example we will consider an important class of optimiza-
tion problems for which the Lagrangian dual can be simplified.

Example 27 LetX be a normed linear space withL ⊆ X some closed
linear subspace,b ∈ X and K ⊆ X some closed convex cone and
consider the conic convex programming problem given by

v(CP) := sup{< x∗0,x >: x ∈ K ∩ (L + b)} (CP)
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with x∗0 some element of the topological dual spaceX∗ of X andK ∩
(L + b) nonempty (for the finite dimensional version of a conic convex
programming problem, see [14]). SinceL is a closed linear subspace
and hence a closed convex cone, it follows that a conic convex optimiza-
tion problem can be written as

v(CP) = sup{< x∗0,x >: x ∈ D} andD := {x ∈ K : x− b ≥L0}.

SinceL is a linear subspace it is easy to verify that

L∗ = {x∗ ∈ X∗ :< x∗,x > = 0 for everyx ∈ L}

and the spaceL∗ is mostly denoted in the literature byL⊥. The La-
grangian functionθ : L⊥ → (−∞,∞] is now given by

θ(x∗) = supx∈K{< x∗0,x > + < x∗,x− b >}
= − < x∗,b > +supx∈K < x∗0 + x∗,x > .

To analysesupx∈K < x∗0 + x∗,x > we observe the following. Ifx∗0 +
x∗ /∈ −K∗ there exists somex0 ∈ K such that< x∗0 + x∗,x0 >> 0
and usingαx0 ∈ K for everyα > 0 this implies that

supx∈K < x∗0 + x∗,x >= ∞.

Moreover, ifx∗0+x∗ /∈ −K∗ it is obvious thatsupx∈K < x∗0+x∗,x >=
0 and so we obtain

supx∈K < x∗0 + x∗,x >=
{

0 if x∗0 + x∗ ∈ −K∗

∞ otherwise
.

This shows

θ(x∗) =
{
− < x∗,b > if x∗0 + x∗ ∈ −K∗

∞ otherwise

and we have shown that for the conic convex programming problem
(CP) the Lagrangian dual problem(D) has the form

v(D) = inf{− < x∗,b >: x∗0 + x∗ ∈ −K∗,x∗ ∈ L⊥}.

SinceL⊥ = −L⊥ this reduces to

v(D) = inf{< x∗,b >: x∗ ∈ L⊥ ∩ (K∗ + x∗0)}.

Clearly the dual decision variablesx∗ in the dual problem belong to
the topological dualX∗ of X. To simplify this dual problem we assume
that the setX is a real Hilbert space. Since it is well-known that any
continuous linear functionalx∗ on a real Hilbert spaceX can be written
as

< x∗,x > = (c,x)
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for somec ∈ X with (., .) denoting the inner product on the real Hilbert
space (cf.[13]) it follows that a conic convex programming problem on
X has the form

sup{(c,x) : x ∈ K ∩ (L + b)} (HCP)

with c ∈ X. The associated Lagrangian dual is then given by

inf{(b,x) : x ∈ L⊥ ∩ (K∗ + c)}.

For a Hilbert spaceX the setsL⊥ andK∗ are given by

L⊥ = {x ∈ X : (x, c) = 0 for everyc ∈ L}

and
K∗ = {x ∈ X : (x, c) ≥ 0 for everyc ∈ K}.

Hence in this case the dual is defined on the original space and a special
instance of optimization problem(HCP) is now given by a so-called
positive semidefinite programming problem defined on the Hilbert space
of all n×n symmetric real valued matrices equipped with the Frobenius
norm

‖A‖F := 2

√
tr(AA>)

with tr(AB) :=
∑n

i=1

∑n
j=1 aijbij (cf.[5]). In this case the setK is

given by the set all symmetric positive semidefinite matrices and the dual
coneK∗ of this set is again the set of all symmetric positive semidefinite
matrices (cf.[5]).

In case we do not assume that there exists a Slater point one can still
come up with a necessary and sufficient condition for the absense of a
duality gap. As before (reverse the roles ofX andK∗) we introduce the
bifunctionf : K∗ ×X → R given by

f(y∗,x) := h(x)+ < y∗, g(x) > . (44)

It is now easy to show the following result.

Lemma 28 The function−f : K∗ × X → R with f listed in relation
(44), belongs to the setD.

Proof. By the definition of the setD we need to show that

infλ∈PF (K∗) supx∈X fe(λ, εx) = infy∗∈K∗ supx∈X f(y∗,x).

Observe, ifλ belongs toPF (K∗), there exists by definition some finite
set{y∗1, ...,y∗m} ⊆ K∗ and a vectors(µ) = (s1(µ), ..., sm(µ)) such that

λ =
∑m

i=1
si(λ)εy∗i , si(λ) > 0,

∑m

i=1
si(λ) = 1.
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SinceK∗ is a convex cone we obtain that
∑m

i=1 si(λ)y∗i belongs toK∗

and this implies withf given by relation (44) that

supx∈X fe(λ, εx) = supx∈X f(
∑m

i=1
si(λ)y∗i ,x). (45)

Hence by relation (45) we obtain

supx∈X fe(λ, εx) ≥ infy∗∈K∗ supx∈X f(y∗,x)

and so

infλ∈PF (K∗) supx∈X fe(λ, εx) ≥ infy∗∈K∗ supx∈X f(y∗,x).

This shows the desired result. �

An immediate consequence of Theorem 15 and Lemma 28 is given
by the following result. Observe in this result we do not assume the
existence of a Slater point or the compactness of the setX.

Theorem 29 It follows thatv(D) = v(P) if and only if the functionf
given by relation (44) satisfies

infJ∈F(K∗) supµ∈PF (X) infy∗∈J fe(εy∗ , µ) = supx∈X infy∗∈K∗ f(y∗,x).

Proof. The above equality means that−f belongs to the setC. By
Lemma 22 we know that

v(P ) = supx∈X infy∗∈K∗ f(y∗,x)

and so the above result is a consequence of Theorem 15 and Lemma 28.
�

Using Theorem 29 one can show the following important result.

Theorem 30 If the setX is a compact Hausdorff space and the func-
tionsf(y∗, .),y∗ ∈ K∗ with f listed in relation (44) are upper semicon-
tinuous and belong toL1

µ(X) for everyµ ∈ P(X), then it follows that
v(P) = v(D) if and only if

supµ∈P(X) infy∗∈K∗ fe(εy∗ , µ) = supx∈X infy∗∈K∗ f(y∗,x).

Proof. Sincef(y∗, .) belongs toL1
µ(X) for everyµ ∈ P(X) we obtain

by relation (22) that

supµ∈PF (X) infy∗∈J fe(εy∗ , µ) = supµ∈P(X) infy∗∈J fe(εy∗ , µ)
(46)

for everyJ ∈ F(X). SinceX is a compact Hausdorff space it follows
(cf.[3]) that P(X) is compact in the weak∗topology. Moreover, due
to the upper semicontinuity of the functionsf(y∗, .), it can be shown

25



(cf.[6], [3]) that the functionµ → fe(εy∗ , µ) is upper semicontinuous
in the weak∗topology for everyy ∈ K∗. Applying now relation (20)
with A replaced byP(X), B by K∗ and the functionf by fe(y∗, µ) it
follows using also relation (46) that

infJ∈F(K∗) supµ∈PF (X) infy∗∈J fe(εy∗ , µ) = supµ∈P(X) infy∗∈K∗ fe(εy∗ , µ).

This shows by Theorem 29 the desired result. �

This concludes the section on Lagrangian duality. Finally we like
to observe that all the above results can be more easily proved for finite
dimensional optimization problems, i.eX ⊆ Rn andY = Rm. In this
case the setY ∗ = Rm is finite dimensional and instead of the Banach
Alaoglu theorem and the weak∗topology onY ∗ we use the ordinary Eu-
clidean topology onRm and the result that a setC ⊆ Rm is compact if
and only if the setC is closed and bounded.
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