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Abstract

In this paper we discuss necessary and sufficient conditions for dif-
ferent minimax results to hold using only linear programming duality
and the finite intersection property of compact sets. It turns out that these
necessary and sufficient conditions have a clear interpretation within
zero-sum game theory. In the last section we apply these results to de-
rive necessary and sufficient conditions for strong duality for a general
class of optimization problems.

keywords: Minimax theory, finite dimensional separation, game
theory, Lagrangian and linear programming duality.

1 Introduction.

Let A and B be nonempty sets anfl: A x B — R a given function.
Since in this paper we consider Borel probability measured and B
we assume without much loss of generality tHadnd B are topolog-
ical spaces with Borek-algebrasl and3. A minimax result for the
function f defined ond x B is a theorem which asserts that

infhep sup,c4 f(a,b) = sup,c 4 infoen f(a,b).
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It is well known that the above equality has important implications in
game theory and optimization. In general it is only possible to show that

infpep sup,ec4 f(a,b) > sup,c 4 infren f(a,b)

and due to the importance of this equality a lot of papers have appeared
in the literature (for an extensive survey see [19] and for a more restric-
tive one see [7]) introducing sufficient conditions on the functfosnd

the setsA and B for the reverse inequality to hold. To verify this a lot

of different proof techniques have been used. Among the most impor-
tant proof techniques are fixed point theorems, techniques from topology
(connectedness) and versions of the Hahn-Banach theorem in finite and
infinite dimensional topological vector spaces. The purpose of this pa-
per is to derive for the above and some other related minimax results
necessary and sufficient conditions on the funcfiand the setsl and

B. At the same time we have tried to use elementary mathematics and
keep the proofs as simple as possible. It turns out for the proof of these
necessary and sufficient conditions that we only need either the sepa-
ration result for finite dimensional disjoint convex sets (Hahn-Banach
theorem in finite dimensional vector spaces) or the duality theorem of
linear programming and some standard result on compact sets and lower
semicontinuous functions. To introduce the other minimax results and
their necessary and sufficient condition we first define the notion of a
mixed strategy. For any set let Pr(A) denote the convex set of all
probability measures oA with finite support. Ife, represents the one-
point probability measure concentrated on the paimt A, this means

by definition that\ belongs toPr(A) if and only if there exists some
finite set{aj,...,an} C A and a vectos(\) := (s1(A), ..., sm(N))
satisfying

A= Zi:l Si(A)anZizl si(A) =1lands;(\) >0,1<i< m.(l)
Within game theory (cf.[11]) the s@(A) is known as the set of mixed
strategies available to a player having deas its set of pure strategies.
To clarify this name we observe that a player selecting the probability
measure\ given by relation (1) will use the pure strategywith proba-
bility s;(A),1 <1i < m. A larger set of strategies is given by the convex
setP(A) of Borel probability measures ofi. To extend the minimax re-
sult involving the pure strategy sefisand B to a minimax result involv-
ing the strategy sef8(A) andP(B) we first extend the functioffi to the
larger domairPr(A) x Pr(B). Therefore introduce for any real valued
functionh defined onA x B the functionh, : Pr(A) x Pr(B) — R
given by

hehw) =327 D7 siN)s;(whai.by) )



with A € Pr(A) given by relation (1) ang € Pr(B) given by
p p .
p= Zjd Sj(u)%j,zjzl sj(n) = 1ands;(p) > 0,1 <j <p.

To extend the functiorh to the larger domairPr(A) x P(B) we al-
ways assume that the functidi{a,.) : B — R belongs for every
p € P(B) anda € A to the setl, (B) of Borel measurable func-
tions on B (measurable with respect to the Boeeklgebra®B), which
are Lebesgue absolutely integrable with respegt. tbhe functionh,, :
Pr(A) x P(B) — R is now defined by

b =27 ) [ hiacb)du(h) ®)

with A\ represented by relation (1). Finally, if we extend the function
h to the largest domaiP(A) x P(B), we assume that the function
h belongs for every: € P(B) and\ € P(A) to the setl (A x

B) of Borel measurable functions oft x B (measurable with respect
to the Borel product-algebra®9), which are Lebesgue absolutely
integrable with respect to the Borel product measuge 1. In this case

it is well known for anyh belonging toﬁiw(A x B) that the Fubini
theorem holds (cf.[1],[15]) and so it follows that

/AXBhd(A@w)=/A/BhdudA:/B/AhdAdu. 4)

The functionh, : P(A) x P(B) — R is now defined by

nev= [ nae (5)

and by relation (4) it follows that the function. is convex and concave
in both arguments. Also for every € P(B) and\ € Pr(A) the
definition in relation (5) reduces to the definition in relation (3). The
same holds for relation (5) and relation (2) in cases Pr(B) and

A € Pr(A). Since the sed and B can be identified with the set of
one point probability measur€s,)ac4 and (ep)bep it is obvious by
relation (2) that the functioh, is indeed an extension of the functibn
Consider now the following different minimax results given by

inf, cp(B) SUPAep(a) fe(A, 1) = suprep(a) inf ep(B) fe(A, 1). (6)

inf,cp(B) SUPAepy (4) fe(As 1) = SUDyep, () Infuep(B) fe(A, 1)

)



infiepp (B) SUP epp(a) fe(As 1) = supyep,(a) i0fuepp () fe(As 1)

8)

infpep SUP\ep, (4) fe(A, €b) = SUPxep, (a) Infben fe(A eb).  (9)

infhep sup,c4 f(a,b) = sup,c 4 infoer f(a, b). (20)

In the next section it will be verified that the minimax results considered
in the above relations satisfy the following chain of strict inclusions

(10)= (9) = (8) = (7) = (6).

In this paper we derive in Sectidhfor the minimax results mentioned

in relations (7) up to (10) a necessary and sufficient condition on the
function f and the setsA and B. In section3 we apply the minimax
results of Sectior2 to derive results for the special case of Lagrangian
duality in optimization.

2 On minimax results, inf-compactness and
linear programming duality.

To derive a necessary and sufficient condition for the different minimax
results we need the following well-known minimax theorem. For com-
pleteness an elementary proof of this result based on the separation the-
orem for finite dimensional convex sets is included. Before mentioning
this minimax theorem we introduce the vectdr := (1, ..., 1) belong-

ing to R™ and the(n — 1) dimensional unit simplex\,, C R”" given

by
A,:={aeR":a'e=1,a>0}.

Moreover, the seR™ denotes the non positive orthajt € R™ : x <
0} of R".

Lemmal If C C R"is a convex set, then it follows that
. To . T
infxec maxaen, @ X = maxgen, infxec o’ x.
Proof. It is obvious that
. T . T
infxec maxagen, @' X > maxgea, infxec o' x. (12)

To show that we actually have an equality in relation (11) we assume by
contradiction that

infyec maxaen, alx > maxaea, infxec a'x:=r. (12)



Introduce now the mapping : C — R" given by H(x) := x — e
with  satisfying

infyec maxaen, a'x> 3> 7. (13)

If we assume that/ (C') N R™ is nonempty there exists somg € C
satisfyingxy, — fe < 0. This impliesmax,ea, a'xo < 3 and we
obtain a contradiction with relation (13). Therefdi¢C)NR" is empty

and since both sets are convex we may apply the separation result for
finite dimensional disjoint convex sets (cf.[16]). Hence one can find
someq € A, satisfyinga] x — 3 > 0 for everyx € C and using also

the definition ofy listed in relation (12) this implies that

v > infycc O‘(—)FX > [

Hence we obtain a contradiction with relation (13) and the desired result
is proved. a

Since it holds thathax,eca, o' x = max{zy, ..., z,,} for everyx €
R™ with z; theith component of the vector an equivalent formulation
of Lemma 1 is given by

infxec max{xy,...,x,} = maxyea, infxeo alx (14)

for any convex seC C R™. Using Lemma 1 it is possible to give a
short proof of Wald’s minimax result. However, before discussing this
result and its proof, leF(Ap) be the set of all finite subsets of the set
Ap C A and denote by.J| the cardinality of the sef € F(A,). More-
over, introduce on the s@&(.J), J € F(A) of all probability measures
concentrated od a topologyr; with a neighborhood base pfe P(J)
given by the collection

N(pye) i= DA € P(J) : [si(A) = sip)| < e for everyl < < ||},

e > 0. Since the seP(J) is isomorphic withA|;; andA; € RVl is
compact in the Euclidean topology we obtain t#4t/) is compact in
the topologyr,;. Moreover, by the definition oP(.J) we obtain that

P(J) = co({€a}acs) (15)

with co(C') denoting the convex hull of a sétand this shows th&®(.J)
is a convex compact set. Also it is easy to verify by the definition of
Pr(Ap) with Ay C A thatPr(Ay) is a convex set and

Pr(Ao) = co({eataca,) = Useran)P(J). (16)

An immediate consequence of Lemma 1 is the well-known Wald’s min-
imax theorem. This result was already proved by Wald (cf.[23], [7]) by
means of a more complicated approach.
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Lemma 2 For every set/ belonging taF (A) it follows that

inf,epp(p) max xep(s) fe(A, p) = infep,(p) Maxac s fe(€a, 1)
= maxep(s) infren fe(A, €,)

= maxep() infuepp(m) fe(\ 1)

Proof. Let J belong toF(A) and introduce the mapping : Pr(B) —
RI’I given by
L(H) = (fe(€a7 ﬂ))ae.]-

Clearly the functiong. — f.(ea, 1), a € J are both convex and concave
on Pr(B) and by the convexity of the s@(B) this implies that the
rangeL(Pr(B)) C R/ is a convex set. Applying now relation (15)
and Lemma 1 yields

ianGPF(B) maxyep(J) fe()H /u) = ianGL(pF(B)) MaXaeA ) OéTX
= mMaXaeea, iﬂfxeL(PF(B)) a'x

= maxyep(J) inf epn(n) fe(A 1)

Moreover, since the function — f.(\, u) is convex for everyu €
Pr(B), it follows that

max, c»s fe()‘7 /”‘) = INaXacj fe(eaa :U/) (17)

for every u € Pr(B),while by the concavity of the functiop —
fe(A, ) for everyl € P(J) we obtain that

infuepF(B) fe()\, ,u) = infbeB fe(/\aeb) (18)
for every\ € P(J). This completes the proof. O

For readers more familiar with the theory of linear programming an
alternative proof of Wald’s minimax theorem is also provided. Besides
the strong duality theorem of linear programming we also need in this
alternative proof a well known special case of a result on so-called inf-
compact functions. Before mentioning this result we first introduce the
following definition (cf.[2]).

Definition 3 The functionk : B — R is called inf-compact if all its
lower level set§b € B : k(b) < r},r € R are compactand itis called
sup-compact if the functiork is inf-compact.

In caseB is a Hausdorff topological space it can be shown (cf.[17])
that any compact set is closed and so an inf-compact function on a Haus-
dorff topological space is lower semicontinuous. For inf-compact func-
tions the next result is well-known (cf.[2]).



Lemma 4 If the functionsf(a,.) : B — R are lower semicontinuous
for everya € A and there exists some sé§ € F(A) such that the
functionmaxae s, f(a,.) is inf-compact, then it follows that

SUp e 7 (a) infoe s Maxacy f(a,b) = infoep supaca f(a,b). (19)

Moreover, in both expressions the inf is attained and so we may replace
inf by min in relation (19).

In the next section the well-known Slater condition in optimization
theory is shown to be equivalent with the inf-compactness of the La-
grangian function and so Lemma 4 is useful in the next section. A sym-
metrical version of relation (19) is now given by

inf;cr(B) SUPae 4 Minper f(a,b) = sup,¢ 4 infpep f(a,b)  (20)

and this holds if the functiong(.,b),b € B are upper semicontinu-

ous onA and there exists some skt € F(B) such that the function
minpey, f(., b) is sup-compact. In this case it follows that the sup is
attained in both expressions and so we may replapéy max in rela-

tion (20). Since in any compact space a closed subset of a compact set is
compact (cf.[17]) it follows that the conditions of Lemma 4 are satisfied

if the topological spacé is compact and the functionga,.),a € A

are lower semicontinuous. This well known special case of Lemma 4
will be used in the next proof.

Alternative proof of Wald’'s minimax result . By relation (16) it
follows that

infuePF(B) max aGer(Eaa ,U') = ianE]—‘(B) min;LEP(I) maXae.j fe(eaa ,LL).

Observe now for every € F(B) andJ € F(A) that the optimization
problem

ming,ep () Maxac s fe(€as 1)

is a linear programming problem and applying the strong duality theo-
rem for linear programming (cf.[4]) we obtain von Neumann’s minimax
result (cf.[21], [22]) given by

min,ep ) Maxae s fe(€a, i) = Maxyep() Minper fe(A, €p).
Applying now the first equality in this proof yields
inf ep, By MaX ac fe(€a, ) = infrcr(py maxyep () minper fe(A, €b).

Moreover, by the compactness of the convex/3ef) (with respect to
the topologyr;) forany J € F(A) and\ — f.(\, ep) is continuous on



P(J) for everyb € B, it follows by relation (20) replacing the sétby
P(J) and the functiorf (a, b) by f.(), ep) that

inf;c 7By maxycp(y) Minpers fe(A, €p) = maxyep(s) infoep fe(N, eb)

and so we obtain

inf,cp, () Max acyfe(€a, ) = maxyep(s) infpep fe(A, €p).
Finally by relations (17) and (18) Wald’s minimax result is verified.

In Wald’s minimax result we do not assume anything except that the
function f is finite valued. If we additionally assume that the functions

f(a,.),a € AbelongtoL] (B) for everyu € P(B), then the following
result holds.

Lemma 5 If the functionsf(a,.),a € A belong toL},(B) for every
w € P(B),then one may replace in Lemma 2 everywhere th®s¢B)
by P(B) without changing any values.

Proof. Since the functiory(a, .),a € A belong ton,cp(5)L,,(B) we
obtain for every\ € Prp(A) andu € P(B) that

£ = [ 1N eu)du(b) = infc s 1.0\ en)
B
and so usindep ) bes € Pr(B) C P(B) it follows that

inf,cp(p) fe(A ) = infiepp () fe(A, 1) = infoen fe(Men)  (21)

for every\ € Pr(A). Moreover, by relation (21) we obtain

inf,epp(p) max xep(s) fe(A, p) = infep(p) max zxep(s) fe(A, 1)
= maxep(s) infuepn) fe(A, 1)
= maxyep(y) infoen fe(Aeb)
= maxycp(s) infuep, () fe(A 1)

By Lemma 2 andmax yep(s) fe(A, ) = maxacs fe(ea, p) for every
w € P(B) the desired result follows. O

Although mentioned in Lemma 5 we list for further reference the
useful observation that for anf satisfying the conditions of Lemma 5
it holds that

inf,cp.(p) Maxacs fe(€a, ) = inf cp(p)y Maxacy fe(ea, n) (22)

foranyJ € F(A). Applying relation (16) we obtain the following useful
implication of Wald's minimax result and its related version given by
Lemma 5.



Lemma 6 For any functionf : A x B — R it follows that

SUP e £ () Ifuep, (B) MaXae s fe(€as ) = SUPxep, (a) INfuepp(B) fe(A 1)

Moreover, if the functiong'(a,.),a € A belong toL}L(B) for every
u € P(B), then we may replace in the above equality without changing
any values the sé¥r(B) by P(B).

Proof. The first, respectively second part of this lemma is an immediate
consequence of Lemma 2, respectively Lemma 5 and relation (18).

To derive a natural necessary and sufficient condition for the equality
in relation (7) we introduce the following class of functions.

Definition 7 The functionf : A x B — R belongs to the sed if

SUpP e £ (a) infep(B) MaXae fe(€a, 1) = Inf cp(B) SUPaca fe(€a, 1)
and the above expressions are well defined.

If the function f satisfies the conditions of Lemma 5 it follows by
relation (22) thatf belongs taA if and only if

SUp jeF(A) infﬂGPF(B) maxXacs fe (6a7 M) = inf;tGP(B) SUPac A fe(6a7 M)-

A game theoretic interpretation of the payoff functigrbelonging to

the setA is given by the observation that for playéerusing strategy
set’P(B) and the minimax approach it does not make any difference
whether his opponent given by play®selects a pure strategy from the
setA or first considers all finite subsets dfand then selects from one of
these finite subsets his pure strategy. It is now easy to show the following
result.

Theorem 8 If the functionsf(a,.),a € A belong toL},(B) for every
u € P(B), then it follows that relation (7), given by

inf,ep(B) SUPAep, (a) fe(A 1) = SUPxep, (4) Infuep(m) fe(A 1)
holds if and only if the functiorf belongs to the seA.
Proof. Since the equality in relation (7) is the same as
inf,ep(B) SUPaca fe(€as 1) = SUP\cp,. () Infep(B) fe(A, 1)
the result follows immediately by the second part of Lemma 6. O

In the next lemma we list for the minimax result in relation (7) some
sufficient topological conditions ofiand the seB3. To verify this result
we need some standard results from the theory of Radon measures.
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Lemma 9 If the functionsf(a, .), a € A are lower semicontinuous and
belong toL},(B) for every, € P(B) and the se3 is a compact Haus-
dorff space, then it follows that the minimax result in relation (7) holds.

Proof. By Theorem 8 we need to check that the functjobelongs to

the setA. To verify this we first observe using the Riesz representation
theorem (cf.[17]) that the normed linear space of all finite signed Borel
measureg M (B), ||.||+) with ||.||z, denoting the total variation norm

is isomorf with the dual space (equipped with the operator norm) of
the set of all continuous real valued functions on the compact Hausdorf
spaceB. This implies by the Banach Alaoglu theorem that the unit ball
S = {p € M(B) : ||pllww < 1} is compact in the wedktopology
and since the convex s@(B) C S is a closed subset of (in the
weak' topology) we obtain thaP (B) is compact in the wedkopology.
Moreover, since the functionf(a, .),a € A, are lower semicontinuous

it can be shown (cf.[6], [3]) that the function

1 fuleart) = /B f(a, b)du(b)

is lower semicontinuous (in the wedkpology) for everya € A. Hence
the conditions of Lemma 4 witB replaced byP(B) and f by f.(eq, 1)
are satisfied and so it follows that

Sup jer(a) infﬂEP(B) maXac s fe(€a, 1) = infﬂEP(B) SUPaec A fe(€a, 1)
or the functionf belongs ta4. O

To derive a natural necessary and sufficient condition for the equality
in relation (8) we introduce the following class of functions.

Definition 10 The functionf : A x B — R belongs to the sd# if

SUP jeF(A) infﬂEPF(B) maxXae. fe(€a, pt) = inquPF(B) SUPac A fe(€a, ).

A game theoretic interpretation of the payoff functigrbelonging
to the setB is given by the observation that for playeusing the mixed
strategy setPr(B) and the minimax approach it does not make any
difference whether his opponent given by playselects a pure strategy
from the setA or first considers all finite subsets dfand then selects
from one of these finite subsets his pure strategy. If we know additionally
that the seB is a compact Hausdorff space and the functiffis .), a €
A are lower semicontinuous and belongp(B) for every. € P(B),
then the definition of the sé& can be simplified. If this holds we know
by relation (22) and Lemma 9 that

Sup jeF(A) inquPF(B) maXac.j fe(eav M) = inquP(B) SUPac A f€(6a7 M)
(23)

10



and so under the above conditions we obtain that

[ € B<= inf,cppymaxaca fe(€a, it) = inf,cp,.(B) SUPac 4 fe(€a, ).

Observe in this case the game theoretic interpretation of th8 et
comes easier and is given by the observation that playesing the
strategy sefP(B) can restrict himself to the strategy set(B). One
can now show the following result.

Theorem 11 It follows that relation (8), given by

infepp(B) SUPAep . (a) fe(As 1) = SuPrep,(a) Infuep, () fe(A 1)
holds if and only if the functiorf belongs ta5.

Proof. Apply a similar proof as in Theorem 8 and use the first part of
Lemma 6. ]

The minimax result listed in relation (8) is of importance in the the-
ory of zero-sum games. It states that both players should use the set of
mixed strategies to achieve the (maybe not attainable) value of a zero-
sum game. If the functiorf is continuous oA x B and the setsd
and B are compact sets in a metric space Ville (cf.[20], [7]) showed that
relation (8) holds. Applying the result that any continuous function on a
compact set in a metric space is uniformly continuous (cf.[13]) it is easy
to verify that the functiory belongs to the sdf and so Ville’s minimax
result follows from Theorem 11. To derive a necessary and sufficient
condition for the equality in relation (9) we introduce the following class
of functions.

Definition 12 The functionf : A x B — R belongs to the set if

Sup jer(A) inf,ep, (B) MaXacs fe(€a, ) = infpep supaeca f(a,b).

A game theoretic interpretation of the payoff functigrbelonging
to the seC is given by the observation that for playkeusing the mixed
strategy sePr(B) and the minimax approach it does not make any dif-
ference whether his opponent given by plageselects a pure strategy
from the setA or first considers all finite subsets dfand then selects
from one of these finite subsets his pure strategy. Moreover, the pay-
off function for player1 is such that his mixed strategy set is always
dominated by his pure strategy set. This means that plagan restrict
himself to the set of pure strategies instead of using the set of mixed
strategies. By relation (23) we obtain fBra compact Hausdorff space
and the functiong(a, .),a € A are lower semicontinuous and belong to
L} (B) for everyu € P(B) that

f €C < inquP(B) SUPac A fE(Eaa :u) = inbeB SUPac 4 f(a7 b)

11



Again in this case the game theoretic interpretation of th€ setcomes
easier and is given by the observation that play@sing the strategy
setP(B) can restrict himself to the pure strategy #tOne can now
show the following result. Observe a sufficient condition for the listed
minimax result was discussed in [12].

Theorem 13 It follows that relation (9), given by
infpep SUP\ep,. (4) fe(N, €b) = SUPxep, (4) Infben fe(A, €b).
holds if and only if the functiorf belongs taC.
Proof. The equality in relation (9) is the same as
infpep Supaea f(a,b) = supyep,. (a) infuep, (B) fe(As 1)

Applying now the first part of Lemma 6 yields the desired result. O

Finally we derive a necessary and sufficient condition for a minimax
result involving the pure strategy setsand B.

Definition 14 The functionf : A x B — R belongs to the se if

SUPAePr(A) infoep fe(A €b) = SUp,e 4 infoep f(a, b).

A game theoretic interpretation of the payoff functigrbelonging
to the seC is given by the observation that for playzusing the mixed
strategy sePr(A) and the minimax approach his mixed strategy set is
always dominated by his pure strategy set. This means that Hayar
restrict himself to the set of pure strategies instead of using the set of
mixed strategies. One can now show the most useful minimax result.

Theorem 15 It follows that relation (10), given by
infpep Sup,e 4 f(@, b) = sup,c 4 infoep f(a, b).
holds if and only if the functiorf belongs to the se&t N D.

Proof. If the function f belongs to the s&tN D then by Theorem 13 we
obtain that
infbe SUPac 4 fe(a, b) = infoep supyep,.(a) fe(A eb)
= SUP)cp,(a) ifben fe(A, €b)
= sup,c 4 infpep f(a,b).

To show the reverse implication consider an arbitrarpelonging to
Pr(A). By relation (16) there exists somk € F(A) such that\ €
P(Jo) and this implies

infpep fe(A, ) < infpepsup,e s, f(a,b)
< sup jer(a) infoe s SUPae s f(a,b).

12



Applying the minimax equality yields

SUP\ep,(4) itfben fe(Aep) < SUP je 7 (4) Ifbe B SUPae s f(a,b)
< infhep Supacq f(a,b)
= sup,c 4 infpen f(a,b).

Since the reverse inequality trivially holds we obtain

SUP P, (a) ifben fe(A, €b) = Supae 4 infhes f(a, b) (24)

or the functionf belongs taD. Again by the minimax equality and (24)
we obtain

Sup)\epF (A) infbeB f€(>\7 Cb) = infbeB SupaeA f(a, b)

and this shows by Theorem 13 that the functjobelongs taC. (]

This concludes our discussion of the necessary and sufficient condi-
tions for the different minimax results. We will now investigate in the
next subsection in more detail these different function classes and show
how they are related.

2.1 Onthe relations between the different minimax re-
sults.

In this subsection we investigate in more detail the relations between the
different minimax results given by relations (6) up to (10). Introducing
the notationZ; and R; for the left and right-hand side of relatigi) we
obviously obtain that

Lig=Lg>Lg>Ly=Ls>Rs >Ry =Rg =Rg > Ryp. (25)
This implies that
(10) = (9) = (8) = (7) = (6).

Below we show by means of some counterexamples that none of the
arrows in relation (25) can be reversed. In the first counterexample we
show an instance for which (9) holds and (10) does not hold.

Example 16 LetA = [0,1] C R, B = {by, b2, b3} C Rand introduce
the functionf : A x B — R given by

a2 if b= b1
f(a,b)=< (a—1)? if b=Dby
271 if b= b3
For this bifunction we have

Lo := minpep sup,c4 f(a,b) =1/2,
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while
Ry := sup,e o minpep f(a,b) = 1/4

and so (10) does not hold. Sinégy = Ly = 2~ ! and it is obvious to
check thatRy = 21, we obtain that (9) holds.

In the next counterexample we show an instance for which (8) holds
and (9) does not hold.

Example 17 TakeA = [0,1], B = {b;,bs} C R and introduce the
functionf : A x B — R given by

a? if b=b
f(a’b):{ (@a— 1) if b= by

Consider now the probability measure € Pr(A) given by \* =
27 len, +27te,, Witha; = 0 anday = 1. Itis easy to check that

minpep fe(A*, ep) =27

and so it follows thaky > 2~!. Moreover, we observe by the definition
of the setsd and B that

Lg = inquPF(B) SUPac 4 fe(eaa M)
= infOSsl(p)Sl SupaeA{sl(M)f(a7b1) + (1 — 51 (M))f(a7 b2)}
= info<y, (<1 max{s (1), 1 —s1(p)} = 27"

Since we already know thd > Ry = Rg and Ry > 2! we obtain
Ls=Rg=Rg =21

Itis now easy to check thdly = 1 and hence we have found an instance
for which (8) holds and(9) does not hold.

In order to construct an instance for which (7) holds and (8) does not
hold we first need to introduce the s&j of all (real valued) sequences
converging to0. It is well-known that the spac€, endowed with the
norm

lalle, = supgen lax|
is a Banach space. Let = {a = (ax) € Cp : a1 =0}, B=[0,1] CR
and introduce the functiofi : A x B — R given by

B | Tifthere exist somé& < N such thab = ay,
f(a,b) = fl(ar),b) = { 0 otherwise.

(26)
One can now show the following lemma.

Lemma 18 The functionf listed in relation (26) belongs tﬂ&@# for
every\ € P(A) andu € P(B).
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Proof. Since the functiory is bounded it is sufficient to verify that is
Borel measurable. Clearly the sétx B is closed inCy x Rand soitis
Borel-measurable. To show that the functipiis Borel-measurable on
A x B itis sufficient to check that the set

S={(a,b)e Ax B: f(a,b) =1}
= {(a,b) € A x B : there exist somé € N such thab = a;}

is measurable. Its complementary set will then be measurable by the
definition of ac-algebra. To verify thab is Borel measurable we show
thatitis closed. Leta™, b™) be an arbitrary sequence$hconverging to
(a,b). We have to prove that there exists sokne N such thab = ay,.

By our assumptioa™ — a in Cy andb™ — b in R and so

limpjoo [|2" — af| = limy, o0 SUPRe N |a — ak| = 0.

Since for eacln € N there exists somesuch thab™ = a} consider for
each fixedn € N the smallest indek(n) satisfyingb™ = ay.,, . Due to

[b" — apm)| = lagny — axm)l < [l@" —al[ = 0if n — oo
it follows that
b — a] < [b—b"| + b7 — | = 0if n— 00 (27)

We now distinguish the following two cases: If the sequefig®)),.c v

is bounded and so it takes only a finite number of distinct values there
exists a constant subsequeriéén;));cny With ny < ny < ng < ... of

the sequencék(n)),en. This means thak(n;) = ko for everyi € N

and soay(,,,) = ax, for everyi € N. Hence by relation (27) we obtain
thatay, = b and so the vectda, b) belongs taS. If, on the other hand,

the sequencék(n)),cn is unbounded, i.elim,, ., k(n) = oo, there
exists a strictly increasing subsequelikén;));cn of (k(n))nen, i.€.

k(n1> < k(ng) < k(ng) < ...

Again by relation (27) and belongs to the Banach spa€g we obtain
thatlim; . ay(,,) = b = 0. Since by the definition of set we know
thatay = 0 for everyn € N, it follows thata; = 0 and so(a, b)
belongs taS. This completes the proof of the lemma. |

We will now list the counterexample for which (7) holds and (8) does
not hold

Example 19 Let f : A x B — R be the function defined in relation
(26) and consider somg € Pr(A). Hence there exists a finite number
of sequences’ = (ai)keN, 1 < ¢ < m, belonging to4 and some vector

S(A) = (s1(N), ey Sm(N)), 8i(A) > 0andd>_1" | s;(A\) = 1 such that

A= Z:il Si()\)ﬁai.
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Since the se, 1] contains more than a countable number of elements
one can now choose a numbere [0, 1] such thatnone of the above
sequences’, 1 < i < m, contain this number. Using this number and
the definition off it can be easily seen that

infpejo,] fe(A, ep) = infpeio 1) Zi:l si(A) f(a’,b) =0

and soRg = 0. On the other hand, consider somec Pr(B). By
definition one can find some finite 4é4;,...b,} C [0, 1] and a vector

s(u) = (s1(p), -, Sp(p)), s5(pe) >0 andZ?Zl sj(u1) = 1 such that

p
H= ijl Sj(//,)ﬁbj :

Introducing the element, := (0, by, ..., b,,0,0,...) € Cj it is obvious
by the definition off that

p
SUPac A e (667 H’) = SUPaca Zj:l Sy (M)f(av b])
>3 s (a0 by) = 1
Sincef is bounded byt this shows that

LS = inf,uGPF(B) SUPac A fe(eaa /J’) =1

and so we have verified that (8) does not hold. To see that (7) holds,
observe thatR; = Rg = 0 and letuy be the Lebesgue measure on
[0,1]. Obviouslyug € P(B) and since for everyn € A the function
f(a,.) takes the valué on a countable set and zero elsewhere and by
Lemma 18f belongs tol}, , for every\ € P(A) andu € P(B), we
obtain

1
| @ bidutb) =0
0
for everya € A. Hence it follows thaf.s = 0 and so (8) holds.
We now list an instance for which (6) holds and (7) does not hold.

Example 20 Let A := [0,1] and B := {(bx)ken € Cp : by = 0} and
introduce the functiorf : A x B — R given by

fla,b) = 0 if there exist someé € N such thata = by,
"7/ 7 1 otherwise

As in Example 19 one can verify for evere Pr(A) that

infpep fe(Xep) =0
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and soR; = 0. On the other hand, by Lemma 18 the functfois Borel
measurable and if\, is the Lebesgue measure {in1] we obtain as
before that

/O f(a,b)dAo(a) = 1. (28)

for everyb € B. Also it is easy to verify by a similar argument as used
in Example 19 that

P
Jj=1

SWpac 4 fel€as 1) = sWPacioyy ), _ si(w)fab) =1 (29)

for everyu € Pr(B). Using now relations (28) and (29) we obtain that
1=L¢>Rg>1

and so (6) holds. Moreover, sinde; = 0 and L; = Lg = 1 it follows
that (7) does not hold.

The above examples showed that none of the implications in relation
(25) can be reversed. To conclude this section we give an example which
shows that (6) can also fail.

Example 21 Let A = B := [0,00) C R and consider the function
f:Ax B — Rgiven by

lifa>b
f(a,b) = { 0 otherwise

For any A € P(A) it follows that
Awfwmmxw=xmmm»=1—mmm»

for everyb > 0 and so we obtain thaks = 0. On the other hand, for
anyu € P(B) we observe that

AmﬂmMWMﬂZMD@D

for everya > 0 and so it follows thaf.s = 1. Hence (6) does not hold.

In the next section we apply the minimax results derived in the pre-
vious sections to Lagrangian duality.

3 Application to Lagrangian duality.

Before applying the results of the first section to the Lagrangian dual
problem we first need to introduce some well-known notions. Y é&e
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a normed linear space aild C Y some closed convex cone. Introduce
now onY the partial ordering< i defined by

Vi <k y2&==y2—y1 € K.

If Y* denotes the topological dual spaceYofilet K* C Y* be the so-
called dual cone given by

K :={y" €Y :<y*,y>>0foreveryy € K}
with < y*,y >:= y*(y). This means that
K ={y"eY":<y",y >>0foreveryy >0}

and so the dual con&™* denotes the space of all continuous positive
linear functionals ort. If X is some topological space and: X —

R andg : X — Y are some given mappings, consider then for the
nonempty feasible region

D:={xeX:g(x) >k 0}
the general primal optimization problem
v(P) :=sup{h(x) : x € D}. (P)

To derive the Lagrangian dual of the optimization problgh) we first
introduce the so-called Lagrangian functibn K* — (—oo, o] given
by

0(y") := supyex {h(x)+ <y*, g(x) >}

Since it is easy to verify that
0(y*) = v(P) (30)

for everyy* € K* and we like to approximate(P) by means of the
Lagrangian function, it is natural to consider the so-called Lagrangian
dual given by

v(D) := infy-cx- O(y"). (D)

By relation (30) it is clear that(D) > v»(P) and in the remainder of

this section we are interested under which necessary and sufficient con-
ditions we actually have an equality. Whether or not one has an equality
(no duality gap) plays a cental role in the theory of optimization and so a
lot of papers and books have discussed this topic. In this section we will
also pursue this question and although most of the sufficient conditions
are already known we like to stress that there are virtually no papers in
the literature trying to derive necessary and sufficient conditions. Us-
ing now the minimax approach and imposing for noncompact &ets
the well-known Slater type regularity condition, it is possible to give a
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necessary and sufficient condition for equality of the optimal objective
value of the primal and dual problem. The same holds for compact sets
X without this regularity condition. Moreover, we show that the Slater
type condition is actually equivalent to the inf-compactness of the La-
grangian bifunction and hence this regularity condition is nothing else
than a compactness type condition. To start with the analysis of the La-
grangian dual and its relation to the primal problem, we first give an
alternative expression for( P).

Lemma 22 If the functionf : X x K* — R is given by

f(x,¥7) = h(x)+ <y", g(x) >, (31)

then it follows that

v(P) = SUPyex infy-ers f(xy%).

Proof. If the vectorx belongs to the séb, then clearly< y*, g(x) >> 0
for everyy™* belonging toK™* and so we obtain

infy-ex- f(x,¥7) = h(x). 32

Moreover, sinces is a closed convex cone, we may apply the bipolar
theorem given byK** = K (cf.[9]) and so forx belonging toX'\ D the
bipolar theorem implieg(x) ¢ K**. Hence there exists sony§ € K*
satisfying< yg, g(x) >< 0 and sincexyj € K* for everya > 0 this
implies that

infy* cK* f(X,y*) = —0OQ. (33)
Since the seD is nonempty we know(P) > —oco and this implies by
relations (32) and (33) that

V(P) = supycp infyrcx- f(X,¥") = sup e x infy-cx- f(x,5")
showing the desired result. |

By Lemma 22 and the definition of the Lagrangian dual problem
(D) it follows that there exists no duality gap if and only if the minimax
result in relation (10) holds with replaced byX andB by K*. For the
bifunction f : X x K* — R, listed in relation (31), one can now show
the following result.

Lemma 23 It follows for everyJ € F(X) and the bifunctionf : X x
K* — R given by relation (31) that

inf,cp, (k) maxzes fe(ex, u) = infy-e - maxyes f(X,¥7).
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Proof. For everyu belonging taPz (K *) there exists by definition some
finite set{y7,...,y,} € K* and a vectos(u) = (si(i), ..., 8p(1))
such that

p p
p= 0 simeyssi(n) > 0.3 s =1.

This yields for every/ belonging taF (X ) and f given by relation (31)
that

p

maxye s fe(€x; ) = maxxe fe(ex, Zj si(Wyj).  (34)

Since the dual coneK* C Y* is convex this implies that
E§:1 s;j(n)y; € K* and hence we obtain by relation (34) that

=1

maxyej fe(€x, i) > infy«c g+ maxxes f(x,¥%).

This shows

infp,e’Pp(K"‘) maXxe.J fe(Gx» /1,) > infy*GK* maXxeJg f(Xv y*)~

and since the reverse inequality trivially holds the desired equality fol-
lows. O

To show that under some additional assumption the fungtitiated
in relation (31), actually belongs to the g&it is by Lemma 23 sufficient
and necessary to show that

SUp e F(x) infy«c k- maxxe s f(x,¥") = infy-ex= supgex f(x,¥7).

(35)
To verify this, we need to check the conditions of Lemma 4 and so we
have to introduce a convenient topology on thesét As we shall see
later the strong topology ori* generated by the operator norm

[lla == supjyj=1 | <¥* ¥y > |

is not suitable. The proper topology to define¥ohis now given by the
weaktopology. Remember in the wedkpology onY* the neighbor-
hood base of zero is given by sets of the form

N(y17"'7yka€> = {y* ey ‘ <y*7yi > | <6)1§Z§k} (36)

with e > 0 and{yx, ..., yx } some finite subset d&f. It is also well-known
that the nefy;},c; C Y™ converges in the weé&topology toy* € Y*
(notationy; —* y*) if and only if

limer <y;,y >=<y*,y > (37)

for everyy € Y. Using the weaktopology it is obvious by relation (37)
that the functionf(x,.) : K* — R, given by

fy") = h(x)+ <y, g(x) > (38)

20



is continuous (in the wedkopology) for everyx € X. Hence to apply
Lemma 4 and show that belongs toC we still need to verify the inf-
compactness property. To check this property we introduce the following
well-known regularity condition.

Definition 24 A pointx, is called a Slater point of the feasible region
D:={xe X :g(x) >k 0}if xg € X andg(xg) € int(K).

As shown by the following result the existence of a Slater pgint
of the setD is the same as the inf-compactness (in the igdology)
of the functionfx, .

Lemma 25 The pointxy is a Slater point of the sdb if and only if the
function f(xg, .) : K* — R, given by

f(X()ay*) = h(XO)+ < y*7g(X0) >,
is inf-compact (in the wedkopology).

Proof. We need to show for everye R thatthe sef.(r) := {y* € K*:
fxo (y*) < r}is compact in the wedkopology. Sincegj(xo) belongs to
int(K) one can find some > 0 such that

g(xo) + Ni(e) C K (39)

with MVi(e) := {y € Y : |ly|| < €}. Consider now somg* € K*.
Since|y*|la := supjy =1 | < y*,y > | there exists somg, € V
satisfying

Iyoll = 1and< y*.y0 >> Syl (40
This implies by relation (39) and (40) that
<y",9(x0) >=<y",g9(x0) — €yo > +e <y",yo >>¢elly"[la (41)
and so we obtain for every* belonging toL(r) that
ely*lla <<y* g(x0) >< r — h(x0).
Hence we have shown that
L(r) C{y* € K" : |ly*[la < €' (r — h(x0))} (42)

and since by Alaoglu’s theorem (cf.[8]) the last set in relation (42) is
weak compact and.(r) is weakKclosed we obtain that the sé{r) is
weak'compact. To show the reverse implication, J&tx,,.) be inf-
compact (with respect to the wed@pology) and take: := h(xq) +
llg(x0)||. Observe now for every* belonging toK* and satisfying
ly*[la < 1 that

f(x0,57) < h(x0) + lly"[lallg(x0)l| <7
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and so it follows that
{y" € K"t |ly"lla <1} C L(n). (43)

Assume now by contradiction that there exists some nonggre L(r)
satisfying< y§, g(xo) >< 0 and so by the definition af(r) we obtain
thatay € L(r) for everya > 1. Sincey( # 0 there exists some
yo € Y such thak y{, yo > 0 and consider now for thig, the open
setN(yo, 1) C Y* containing0*-. Since the vector spadé* equipped
with the weaktopology is a topological vector space and by assumption
the setL(r) is weak compact it follows by parb of Theorem1.15 of
[18] that the lower level sef(r) is bounded. Sinceyyf € L(r) for
everya > 1 we obtain usingy{ # 0 that|lay§lla = allyslla T oo if
a 1 oo and this contradicts the boundednesd.¢f). Hence for every
nonzeroy* € L(r) it follows that < y*, g(x0) >> 0 and by relation
(43) we obtain thak y*, g(xq) >> 0 for everyy* € K*\{0*}. This
shows (cf.[10]) thay(x) belongs to intK') and saxg is a Slater point
of the setD. |

Using now Lemma 25 and Theorem 15 one can verify the following
important result.

Theorem 26 If the setD contains a Slater point, then it follows that
v(D) = v(P) if and only if the functiory, given by relation (31), belongs
toD,i.e

SUP\epy (x) fy-ck+ fe(As €y+) = supyex infyex- f(x,¥7).
Moreover, the dual problerfD) has an optimal solution.

Proof. By Lemma 25 and using (y*) := h(x)+ < y", g(x) > is con-
tinuous in the weakopology we obtain that the conditions of Lemma
4 are satisfied and so relation (35) holds. Hence the fungtidisted

in relation (31), belongs to the sét Applying now Theorem 15 yields
v(D) = v(P) if and only if f € D. Actually, by the inf-compactness of
fx, with x( the Slater point, it also holds by Lemma 4 that

infy*EK* SUPxe x f(X, y*) = miny*EK SUPxc x f(X, y*)
and this shows that the dual problem has an optimal solution. [

In the next example we will consider an important class of optimiza-
tion problems for which the Lagrangian dual can be simplified.

Example 27 Let X be a normed linear space with C X some closed
linear subspaceb € X and K C X some closed convex cone and
consider the conic convex programming problem given by

v(CP) :=sup{< x3,x >:x € KN (L+b)} (CP)
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with x§; some element of the topological dual spacé of X and K’ N

(L + b) nonempty (for the finite dimensional version of a conic convex
programming problem, see [14]). Sindeis a closed linear subspace
and hence a closed convex cone, it follows that a conic convex optimiza-
tion problem can be written as

v(CP) =sup{< x5,x >:x € D}andD :={x € K : x—b >,0}.
SinceL is a linear subspace it is easy to verify that
L*={x"e X" :<x",x>=0foreveryx € L}

and the space.* is mostly denoted in the literature by-. The La-
grangian functiord : L+ — (—oo, co] is now given by
O(x") = supyex{< x5, x>+ <x",x —b >}
=— <X b>+sup,cp <x5+x,x>.
To analysesup, cx < X§ + x*,x > we observe the following. ¥ +

x* ¢ —K* there exists some, € K such that< x§ + x*,xg >> 0
and usingax, € K for everya > 0 this implies that

SUpyer < X+ X*,x >= 00.

Moreover, ifxj+x* ¢ —K* itis obvious thakup, - < x5+x*,x >=
0 and so we obtain
" " _J 0 ifxi+x*e—-K*
SUPxek < X X, X >= { oo otherwise
This shows

N —<x*b> ifxj+x*e-K*
0(x*) = :
00 otherwise

and we have shown that for the conic convex programming problem
(CP) the Lagrangian dual probleriD) has the form

v(D) =inf{— < x*,b>:x} +x* € —K* x* ¢ L*}.
SinceL+ = —L* this reduces to
v(D) = inf{< x*,b >:x* € Lt N (K* +x})}.

Clearly the dual decision variables* in the dual problem belong to
the topological dualX* of X. To simplify this dual problem we assume
that the setX is a real Hilbert space. Since it is well-known that any
continuous linear functionat* on a real Hilbert spaceX can be written
as

<x",x>=(c,x)
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for somec € X with (.,.) denoting the inner product on the real Hilbert
space (cf.[13]) it follows that a conic convex programming problem on
X has the form

sup{(c,x):x € KN(L+Db)} (HCP)
with ¢ € X. The associated Lagrangian dual is then given by
inf{(b,x):x € L* N (K* +c)}.
For a Hilbert spaceX the sets. - and K* are given by
Lt ={x¢€ X :(x,c)=0foreveryc € L}

and
K*={xe€ X :(x,c)>0foreveryc € K}.

Hence in this case the dual is defined on the original space and a special
instance of optimization problefHCP) is now given by a so-called
positive semidefinite programming problem defined on the Hilbert space
of all n x n symmetric real valued matrices equipped with the Frobenius
norm

|AllF = {/tr(AAT)

with t7(AB) := 71" 377 aiibij (cf.[5]). In this case the sek is
given by the set all symmetric positive semidefinite matrices and the dual
coneK™* of this set is again the set of all symmetric positive semidefinite
matrices (cf.[5]).

In case we do not assume that there exists a Slater point one can still
come up with a necessary and sufficient condition for the absense of a
duality gap. As before (reverse the rolesvfand K*) we introduce the
bifunction f : K* x X — R given by

Fy",x) = h(x)+ <y~ g(x) > . (44)
It is now easy to show the following result.

Lemma 28 The function—f : K* x X — R with f listed in relation
(44), belongs to the sa.

Proof. By the definition of the seD we need to show that

inf/\GPF(K*) SUPxc x fe(/\’ GX) = infy*EK* SUPxe x f(y*7 X)'

Observe, ifA belongs toPr(K™*), there exists by definition some finite
set{y7,....y5,} € K*andavectos(u) = (s1(i), ..., sm (1)) such that

A= siWeyrsi) > 0,30 s =1.
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SinceK* is a convex cone we obtain that" ; s;(\)y; belongs takK™*
and this implies withf given by relation (44) that

m

SUPyex fo(A ex) = supyex F(D

Hence by relation (45) we obtain

" syix). (@)

SUPx ¢ x fe()‘v GX) > infy*EK* SUPx e x f(y*,x)

and so

infyep, (i) SUPxex fe(N €x) > infy-ci- sup, e x f(¥™, %).
This shows the desired result. O

An immediate consequence of Theorem 15 and Lemma 28 is given
by the following result. Observe in this result we do not assume the
existence of a Slater point or the compactness of th&'set

Theorem 29 It follows thatv(D) = v(P) if and only if the functionf
given by relation (44) satisfies

infye 7 (r+) SUPLepy(x) Nfy-es feey=, 1) = supye x infy-cre f(y",%).

Proof. The above equality means thatf belongs to the sef. By
Lemma 22 we know that

v(P) = supyex infy-cx~ (¥, %)

and so the above result is a consequence of Theorem 15 and Lemma 28.
O

Using Theorem 29 one can show the following important result.

Theorem 30 If the setX is a compact Hausdorff space and the func-
tionsf(y*,.),y* € K* with f listed in relation (44) are upper semicon-
tinuous and belong tmit(X) for everyu € P(X), then it follows that
v(P) = v(D) if and only if

SUup,ep(Xx) infy-ers fe(ey~, u) = supyex infy-er~ f(y*,%).

Proof. Sincef(y*, .) belongs taZ,,(X) for everyy € P(X) we obtain
by relation (22) that

SUP,ep,(x) iy et fe(ey~, 1) = sup,ep(x) infy~cs feley-, 1)

(46)
for everyJ € F(X). SinceX is a compact Hausdorff space it follows
(cf.[3]) that P(X) is compact in the wedkopology. Moreover, due
to the upper semicontinuity of the functiorfgy*, .), it can be shown
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(cf.[6], [3]) that the functionu — fe(ey~, 1) iS Upper semicontinuous
in the weaktopology for everyy € K*. Applying now relation (20)
with A replaced byP(X), B by K* and the functionf by f.(y*, u) it
follows using also relation (46) that

inf ye (k=) SUP e, (x) Infy~ecr feleys, 1) = SUP,ep(x) infyrers feleys, ).
This shows by Theorem 29 the desired result. d

This concludes the section on Lagrangian duality. Finally we like
to observe that all the above results can be more easily proved for finite
dimensional optimization problems, ¢ C R™ andY = R™. In this
case the set’™* = R™ is finite dimensional and instead of the Banach
Alaoglu theorem and the wed&lopology onY* we use the ordinary Eu-
clidean topology ofR™ and the result that a sét C R™ is compact if
and only if the set is closed and bounded.
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