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Abstract

For finding a shortest path in a network the bidirectional A* algorithm is a widely known
algorithm. An A* instance requires a heuristic estimate, a real-valued function on the set of
nodes. The version of bidirectional A* that is considered the most appropriate in literature
hitherto, uses so-called balanced heuristic estimates. This means that the two estimates of
the two directions are in balance, i.e., their sum is a constant value. In this paper, we do not
restrict ourselves any longer to balanced heuristics. A generalized version of bidirectional A*
is proposed, where the heuristic estimate does not need to be balanced. This new version
turns out to be faster than the one with the balanced heuristic.
Keywords: Shortest path, Road network search, Bidirectional search.

1 Introduction

In the last decade we have seen a revival in shortest path algorithms. Because of the availability
of large digital road maps, new sophisticated methods are needed. This paper deals with the
point-to-point instance of the shortest path problem. The best-known algorithms in Operations
Research literature are Bellman-Ford[1, 4] and Dijkstra[3]. In the literature on Artificial Intel-
ligence one usually encounters the A* algorithm[9]. This algorithm assumes that a heuristic
estimate is defined on the network. The point-to-point algorithms are nowadays applied in a
bidirectional setting. This idea was introduced in [14]. Two simultaneous search processes start-
ing from either endpoint meet somewhere in the middle between the endpoints.
For the A* algorithm one needs a heuristic function h estimating the remaining distance from
a node to the target. When there are two processes, two estimates h and h̃ are used, each
belonging to either process. The heuristic is called balanced if h(v) + h̃(v) equals a constant
value c for any node v.
The algorithm that is considered the most efficient of all previously known shortest path so-
lutions is bidirectional A* utilizing a balanced heuristic, cf. [6, 10, 11]. We discovered that
this algorithm can be generalized to arbitrary (not necessarily balanced) heuristics. So a new
bidirectional A* algorithm is proposed. It is an improved version with a shortened proof of the
one in [13].
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Algorithm 1 NBA*, New Bidirectional A*
1: S = ∅;
2: R = ∅; // S and R are sets
3: M = V ; // M is a shared set
4: L = ∞; // L is a shared real value
5: for all v ∈ V do
6: g(v) = ∞;
7: end for
8: g(s) = 0;
9: f = g(s) + h(s);

10: while any v ∈M has g(v) < ∞ do
11: u0 = arg min{g(v) + h(v) | v ∈M}; // u0 is selected
12: M = M−{u0};
13: if g(u0) + h(u0)− h(t) ≥ L or g(u0) + f̃ − h̃(u0) ≥ L then
14: R = R + {u0}; // u0 is rejected
15: else
16: S = S + {u0}; // u0 is stabilized
17: for all edges (u0, v) ∈ E with v ∈M do
18: g(v) = min(g(v), g(u0) + d(u0, v));
19: L = min(L, g(v) + g̃(v));
20: end for
21: end if
22: f = min{g(v) + h(v) | v ∈M};
23: end while

Preliminaries. Let a directed graph or network G be given by a pair (V, E) with V the set of
nodes and E the set of edges. A path is a sequence of nodes without duplicate elements, such
that two consecutive nodes are connected by an edge. We assume that two particular nodes
are given, an origin node and a destination node. The shortest path from the origin to the
destination is looked for. The weight or length of an edge (u, v) is denoted by d(u, v), whereas
d∗(u, v) denotes the length of a shortest path from u to v.
As aforementioned, A* assumes a heuristic estimate h, defined as function from V into R. An
estimate h is called consistent if h obeys the inequality h(u)−h(v) ≤ d∗(u, v) for any two nodes
u, v ∈ V . In some textbooks a different definition is found: h(u) − h(v) ≤ d(u, v) for any edge
(u, v) ∈ V . The two definitions are equivalent, as can readily be shown. In this paper h is always
assumed to be consistent.

2 A new algorithm

NBA* is a new search algorithm akin to A*. It is assumed that the code runs simultaneously on
two sides. Each side has a start node s and an end node t. On one side the origin is chosen as s
and the destination as t, on the other side s and t play inverse roles. In the process starting from
the origin we use the original graph and the original distance function d(u, v). In the alternate
process the so-called reverse graph is used, where every original edge (u, v) is replaced with edge
(v, u) of equal distance. Speaking on bidirectional search we refer to the two processes as the
primary and the opposite process. Either side, whether it has the origin or the destination as
start node, may be appointed as primary. In the opposite process every variable is denoted by
a tilde. The execution of NBA* stops when one side stops.
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The real value g(v) for any v ∈ V is called the label of a node v. As soon as this label has
a finite value, g(v) equals the length of path from s to v. (This is proved formally in [12]). The
variables S and R denote sets, whereas f is a real-valued variable. A node u0 which is inserted
into S is said to be stabilized, because its label is stable, i.e., it will not be changed any more. A
node u0 which is inserted into R is said to be rejected, since u0 will not be expanded. However,
u0 may lie in the desired shortest path.
The code utilizes multiple variables from the opposite search, see the denotations with a tilde.
These variables are read-only variables and can only be set by the opposite search process. The
algorithm has two shared variables. viz. L and M, which are read/write variables for both
sides. A meeting point of the two processes arises when a node v has a finite label on either
side, cf. line 19. When L has a finite value, this value is equal to the length of a path from the
origin to the destination. On termination this path is a shortest path. The set M is the set of
nodes in the medium. The algorithm stops when this set is empty or just infinite labels are left
(in which case the network is not connected).

NBA* running in an unidirectional setting is equivalent to the traditional A* algorithm. Then L
keeps value ∞ and g(t) provides the shortest path value. When moreover h ≡ 0, the algorithm
is equivalent to Dijkstra’s algorithm.

3 Correctness of the algorithm

The correctness of NBA* is proved by Theorem 1. Before, we need three lemmas. The NBA*
algorithm contains one main loop. The lemmas present invariants of this main loop. An invariant
is an assertion, which holds at the start as well as at the end of each iteration. Invariants are
proved by mathematical induction. First, one shows that the invariant holds at the start of the
first iteration. Second, under the assumption that the invariant holds at the start of an iteration,
one proves that it holds at the end. In our proofs, we restrict ourselves to the second induction
step, the first step being trivial.

Lemma 1 NBA* has the following invariant:

a) g(u) + h(u) ≤ f ≤ g(v) + h(v) for any u ∈ S and v ∈M.

b) for any (u, v) ∈ E with u ∈ S and v ∈ S ∪M, g(v) ≤ g(u) + d(u, v).

c) if v ∈ M and the nodes of a shortest path from s to v (apart from v) belong to S, then
g(v) = d∗(s, v).

Proof
a) We show that the relation

g(u) + h(u) ≤ g(v) + h(v) for any u ∈ S and v ∈M (1)

is preserved in each iteration of the main loop. Then the extended inequality (including f) holds
trivially, since f equals the minimal value of g(v) + h(v), v ∈M.
As g(u0) + h(u0) is minimal outside S, (1) is preserved, when u0 is inserted into S. Then
g(u0) + h(u0) becomes a maximal value inside S. For nodes v which do not take a new label in
line 18, (1) is preserved.
For nodes v which do take a new label, we obtain using the consistency of h: g(v) + h(v) =
g(u0) + d(u0, v) + h(v) ≥ g(u0) + h(u0). For those nodes v, relation (1) is preserved, since
g(u0) + h(u0) is maximal in S.
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b) When a node u0 is inserted into S, line 18 makes sure that the invariant holds for any (u0, v)
with v ∈ M . For an edge (u0, v) with v ∈ S the following holds: g(v) + h(v) ≤ g(u0) + h(u0)
and hence, by the consistency of h, g(v) ≤ g(u0) + h(u0)− h(v) ≤ g(u0) + d(u0, v).

c) This part is a result of part b). Let P be given by the series (s = p0, p1, p2, . . . , pn = v)
with pi ∈ S for 0 ≤ i < n. Part b) states: g(pi+1) ≤ g(pi) + d(pi, pi+1) for 0 ≤ i < n. Using the
relation g(s) = 0, we conclude that g(v) ≤ ∑i=n−1

i=0 d(pi, pi+1). This sum is equal to d∗(s, v).
Since g(v) equals the length of path from s to v and hence g(v) ≥ d∗(s, v) we conclude
g(v) = d∗(s, v). 2

For the next lemmas we need two definitions.

Definition 1 An edge (u, v) ∈ E is called a connection edge during execution of NBA*, if u ∈ S
and v ∈ S̃.

Definition 2 A path P given by (s = p0, p1, p2, . . . , pn = v) is called closed during execution
of NBA*, if pi ∈ R ∪ R̃ for at least one i, 0 ≤ i ≤ n, or an edge (pi, pi+1), 0 ≤ i < n, is a
connection edge.
If a path is not closed, it is called open.

Note that, if a path is closed in the primary process, it also obeys the definition of closed in the
opposite process.
If a path is open, it contains nodes from S, S̃ or M, but no two consecutive nodes out of S
and S̃ respectively.

Lemma 2 NBA* has the following invariant: for any v ∈ S ∪R, g(v) = d∗(s, v) if at least one
shortest path from s through v is open.

Proof
Suppose a value for u0 is established (cf. line 11) with an open shortest path P from s to u0.
Let p be the first node beyond S on P (maybe p = u0). As P is open, p ∈ M. The following
schema holds::

g(u0) + h(u0) ≥ d∗(s, u0) + h(u0)
= d∗(s, p) + d∗(p, u0) + h(u0)
= g(p) + d∗(p, u0) + h(u0) (by Lemma 1c) (2)
≥ g(p) + h(p) (h is consistent) (3)

As g(u0)+h(u0) is minimal in M, the above inequalities are strict equalities and hence g(u0) =
d∗(s, u0). 2

Lemma 3 NBA* has the following invariant: the length of any closed path P from s to t is
greater than or equal to L.

Proof
Suppose that u0, included in P , is added to R (cf. line 14). Then g(u0) + h(u0) − h(t) ≥ L or
g(u0) + f̃ − h̃(u0) ≥ L. Let path P ′ denote a path from s to t through u0 with minimal length.
To prove the invariant we prove that L′ ≥ L where L′ equals the length of P ′. This length L′ has
L′ = d∗(s, u0) + d∗(u0, t) and L′ = d∗(s, u0) + d̃(t, u0). We assume that P ′ is open. Otherwise,
by the invariant itself, L′ ≥ L. For this open P ′, Lemma 2 states that g(u0) = d∗(s, u0).
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Now, the relation L′ ≥ L is a result of two general inequalities: d∗(u0, t) ≥ h(u0) − h(t) and
d̃(t, u0) ≥ f̃ − h̃(u0). The former inequality holds by the definition of consistency. The latter
inequality is derived as follows. The first node on P ′ beyond S̃ is called q. Since P ′ is open,
q ∈M. The following schema holds:

d̃∗(t, u0) = d̃∗(t, q) + d̃∗(q, u0)
= g̃(q) + d̃∗(q, u0) (by Lemma 1c)
≥ g̃(q) + h̃(q)− h̃(u0) (h̃ is consistent)
≥ f̃ − h̃(u0) (by Lemma 1a)

Our conclusion is that the invariant is preserved when a node is added to R in line 14. When a
node is added to R̃, the foregoing reasoning is applied in the opposite process.

Suppose u0 included in P is added to S and a node v with (u0, v) ∈ E is already in S̃.
When u0 is selected, g̃(u0) ≤ g̃(v) + d̃(v, u0) by Lemma 1b. Let path P ′ with length L′ de-
note the shortest path from s to t through edge (u0, v). Again we may assume that P ′ is open.
Lemma 2 says that g(u0) = d∗(s, u0) and in the opposite process g̃(v) = d̃∗(t, v). A trivial
invariant of the algorithm is: L ≤ g(u0) + g̃(u0). We have the following series of inequalities:
L ≤ g(u0) + g̃(u0) ≤ g(u0) + g̃(v) + d̃(v, u0) = d∗(s, u0) + d̃(v, u0) + d̃∗(t, v) = L′.
This reasoning is applied to the opposite process, if u0 is already in S when v is inserted into
S̃. 2

Theorem 1 On termination L is equal to the length of the shortest path from the source to the
destination.

Proof
Let P be an arbitrary path from s to t with length L. Since M does not contain any finitely
labeled node on termination, P must be a closed path (or otherwise the unidirectional version
applies). Lemma 3 says L ≥ L. There is at least one path with length equal to L. 2

4 Implementing and comparing NBA*

In an implementation of NBA* the sets R and S need not to be maintained, provided that the
property v ∈M can checked quickly for any node v. It is recommended to maintain two heaps,
one with g + h and one with g̃ + h̃ values.
For the function h and h̃, one can choose h(v) = δ(v, t) and h̃(v) = δ̃(v, t̃) = δ(s, v) where δ is
an underestimate of the distance function d.
We have conducted experiments with NBA* on the road network of the Netherlands, Belgium,
Luxembourg and Germany. This network is part of the Multinet version 2008 provided by
TeleAtlas. The directed graph consists of 8,184,650 nodes and 17,474,810 directed edges. Our
above function δ(v, w) is equal to the Euclidean distance between v and w. In our implemen-
tation, the two processes alternate during execution of the bidirectional algorithm. Each turn
corresponds to one iteration of the main loop. Figure 1 displays the final configuration of one
run. The bright (yellow) area is the set S ∪ S̃ on termination, whereas the dark (blue) area is
the final set R ∪ R̃. The shortest path found is also shown. In line 13 of the code the criterion
g(u0)+h(u0)−h(t) ≥ L is checked first; if this check fails, the second check g(u0)+ f̃−h̃(u0) ≥ L
is performed. It turns out that, when a node u0 is rejected, in almost any case the criterion
g(u0) + f̃ − h̃(u0) ≥ L applies.
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Figure 1: NBA* running on a real-world network.

The bidirectional versions of A* that were published previously[6, 10], utilized a balanced heuris-
tic. As aforementioned, a balanced heuristic satisfies h(v) + h̃(v)− c = 0 for any v with c a con-
stant value. A balanced heuristic is obtained for instance by making: h(v) = (δ(v, t)− δ(s, v))/2
and h(v) = −h̃(v). In the algorithms in [14, 6, 10], a value L = g(u) + g̃(u) is established
only when u is included in both S-sets. Then the algorithm enters the postprocessing stage.
Lemma 1 is still valid. If any node v between the two S-sets is selected in the new stage, the
following (in)equalities hold:

L = g(u) + g̃(u)
= g(u) + h(u) + g̃(u) + h̃(u)− c (h, h̃ is balanced)
≤ g(u) + h(u) + f̃ − c (by Lemma 1a in the opposite process)
≤ g(v) + h(v) + f̃ − c (by Lemma 1a)
= g(v) + f̃ − h̃(v) (h, h̃ is balanced)

Consequently any node v 6∈ S ∪ S̃, when selected, would be inserted into R. Therefore in the
postprocessing stage, the primary process selects only nodes that are stabilized in the opposite
process, or equivalently, it inspects edges connecting S to S̃.

As mentioned earlier, NBA* is an improved version of a previous algorithm presented in [13].
The performance is similar. In [13] we compared our previous algorithm with the bidirectional
algorithm described in [6] and [10], where a balanced heuristic is applied. It turned out that our
algorithm clearly beats the other one in running time. This is due to the fact that our algorithm
needs the computation of only one δ-value at each node v, whereas balanced heuristics compute
two δ-values. NBA* shows that balanced heuristics are no longer needed. So we get rid of the
somewhat awkward estimate including two functions δ. See [13] for detailed results and figures.
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5 Concluding remarks

Another advantage of NBA* is that it quickly establishes a finite L. We noticed that the first
value L is updated only a few times. So the first value turns out to be close to the final value for
most instances. Achieving soon a finite L is convenient when a quick computation of a (nearly)
shortest path is wanted. This is of interest e.g. for taxi-drivers. Again we refer to [13] for figures.

The results in [13] are based upon the Euclidean heuristic. There are other heuristics, e.g.
the heuristics in [5, 8, 7]. A promising instance is the so-called landmark heuristic[6]. Experi-
menting with NBA* using different heuristic estimates will be a subject in future research.

Appendix

The properties in this appendix are not relevant to the correctness of NBA*, but are important
for getting a deeper insight into the working of the algorithm.
Lemma 2 suggests that the relation g(v) 6= d∗(s, v) may occur for a selected node v. The network
in Figure 2 will show us that this situation really happens. All edges in the primary process are
directed from left to right. Two values for h(b) are taken into account: h(b) = 0 and h(b) = 4.
For any other node v (v 6= b) we assume h(v) = 0. The algorithm may run according to the
following steps:

1) First of all, s and s̃ = t are inserted in S and S̃ respectively. Then g(a) = 5, g̃(a) = 6 and
L = 5 + 6 = 11.

2) The process on the right selects node a (cf. line 11).
If h(b) = 0, then f = 3 and g̃(a) + f − h(a) = 6 + 3− 0 = 9 < L.
If h(b) = 4, then f = 7 and g̃(a) + f − h(a) = 6 + 7− 0 = 13 > L.
In the former case a is added to S̃ and (s, a) becomes a connection edge, in the latter case
it is added to R̃.

3) The process on the left inserts b into S. Next c is selected The g-label of c equals 7. The
following holds: g(c) = 7 > d∗(s, c) = 5 + 1.

Apart from g(c) > d∗(s, c), we notice another phenomenon. Since f̃ is equal to or larger than 6,
we have g(c) + f̃ + h̃(c) ≥ 7 + 6 + 0 = 13 ≥ L and hence c is rejected. In general, every node u0

with a closed path between s and u0 is rejected after being selected in line 11. This is proved in
Lemma 4.

Lemma 4 When u0 is selected, it is added to R, if at least one shortest path P from s to u0 is
closed.

Proof
In this proof, almost all inequalities exploit the consistency of h. If not, an additional explanation
will be given.
a) Assume P contains a node w ∈ R between s and u0. We can choose w such that the part
between s and w is open (otherwise part b) applies). Then g(w) = d∗(s, w) by Lemma 2 and
consequently g(u0) ≥ d∗(s, u0) = g(w) + d∗(w, u0).
If w satisfies g(w)+h(w)−h(t) ≥ L, then the following inequalities are relevant: g(u0)+h(u0)−
h(t) ≥ g(w) + d(w, u0) + h(u0)− h(t) ≥ g(w) + h(w)− h(t).
If w was inserted into R due to the relation g(w) − h̃(w) + f̃ ≥ L, then: g(u0) − h̃(u0) ≥
g(w)+d(w, u0)−h̃(u0) ≥ g(w)−h̃(w). Since f̃ is a non-decreasing quantity, g(u0)+f̃−h̃(u0) ≥ L
and u0 is inserted into R.
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Figure 2: Node c is selected with g(c) > d∗(s, c).

In both situations, u0 is rejected.
b) Assume P contains a node w ∈ R̃ or a connection edge (w′, w) with w′ ∈ S and w ∈ S̃. If
w ∈ S̃, then f̃ ≥ g̃(w) + h̃(w) by Lemma 1a. This lemma can be extended. The inequality in
Lemma 1a also holds for any u ∈ R. This implies for w ∈ R̃ that f̃ ≥ g̃(w) + h̃(w).

g(u0) + f̃ − h̃(u0) ≥ g(u0) + g̃(w) + h̃(w)− h̃(u0)
≥ g(u0) + g̃(w)− d∗(w, u0)
≥ d∗(s, u0) + d∗(w, t)− d∗(w, u0)
= d∗(s, w) + d∗(w, t)
≥ L

The latest inequality holds by Lemma 3. It follows that u0 is added to R.2

Corollary 1 NBA* has the following invariant: for any v ∈ S, g(v) = d∗(s, v).

Proof
Lemma 4 implies that, when u0 is added to S, every path from s to u0 is open. Lemma 2 says
g(u0) = d∗(s, u0). 2

Corollary 1 shows the optimality of NBA*. When a node v is stabilized, g(v) = d∗(s, v) holds
and g(v) + f̃ − h̃(v) < L holds. Hence, such a node is a candidate for being a member of the
shortest path. This result is the bidirectional counterpart of the results in [2].

Suppose a node u0 is inserted into S and a shortest path from s to u0 is called P . Although P
cannot contain a connection edge (w′, w) due to Lemma 4, it still may contain a node w ∈ S̃.
This illustrated in Figure 3. Again, in the primary network, edges are directed from left to right.
Further we have h(ai) = i and h̃(bi) = i, i = 1, 2, 3. The other h- and h̃-values are equal to 0.
The following steps may be executed:

1) s and s̃ = t are inserted in S and S̃ respectively.

2) g̃(a1) + h̃(a1) = 4 + 0 and g̃(b3) + h̃(b3) = 1 + 3. Assume that a1 is selected in the right
process and inserted into S̃.

3) Similarly, assume that the left process selects b1. Although one shortest path to b1 includes
a node from S̃, b1 is still stabilized.

Finally we discuss the following situation. Suppose a node u0 is selected and every path between
u0 and t is closed. Then it is still possible that u0 is not rejected, since it is not necessary that
the rejection condition in line 13 is fulfilled.
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Figure 3: Stabilizing b1 with a closed shortest path.
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