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Abstract.  A monopolist in public transport may oversupply frequency relative to the social 

optimum, as van Reeven (2008) demonstrates with homogeneous consumers.  This result 

generalizes for heterogeneous consumers who know the timetable.  Whether a monopolist 

oversupplies or undersupplies frequency depends on the degree of consumers’ heterogeneity 

as reflected in the distribution of consumers’ reservation prices.  Oversupply is likely to occur 

when this distribution is peaked, and undersupply is likely to occur when this distribution is 

rather flat.  In particular, monopoly production results in the oversupply of frequency when 

consumers’ reservation prices are concentrated around the entry costs of the private car, being 

the main alternative to public transport. 
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1. Introduction 

Current levels of subsidization in public transport make it difficult to accept that no generally 

valid economic justification exists for these subsidies.  Traditional economic arguments for 

subsidizing public transport, such as economies in production, second-best, and distributional 

equity, have proven to be weak (see, e.g., De Borger et al., 2002, Hencher, 1998, Paulley et 

al., 2006, Small, 1992).  The final remaining argument is due to Mohring (1972), who argues 

that public transport exhibits user economies that result in underproduction.  However, van 

Reeven (2008) shows that the modeling assumptions in Mohring (1972) do not result in 

underproduction and, therefore, subsidization of public transport is not an imperative. 

In this journal, Savage and Small (2009) and Basso and Jara-Díaz (2009) argue that the 

consumer homogeneity assumption is critical in van Reeven (2008), and that a monopolist 

will undersupply frequency when consumers are heterogeneous and have downward-sloping 

demand.  Basso and Jara-Díaz (2009) demonstrate this for the uniform distribution of 

consumers’ reservation prices, which results in a linearly decreasing demand function.  

Savage and Small (2009) show that the shape of the distribution is irrelevant in this respect.  

As long as consumers do not know the timetable, any distribution that leads to a downward-

sloping demand schedule results in the under-provision of frequency.  Savage and Small 

argue that this result becomes ambiguous if consumers know the timetable, as both 

undersupply and oversupply can occur. 

Van Reeven (2008) shows that consumers have an incentive to get to know the timetable.  

Learning the times of departure reduces their waiting costs.  This unambiguously increases 

the demand for transportation so that operators have an incentive to publish the timetable.  

Hence, in a general equilibrium framework, consumers must be informed.  In this paper, we 

generalize van Reeven (2008) to heterogeneous consumers who know the timetable.  The 

results of this generalization are as follows. 
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Whether monopoly oversupplies or undersupplies frequency depends on a trade-off 

between two effects.  The first effect is the traditional result that a monopolist prices above 

marginal cost, which results in the production of a lower quantity than is socially desirable.  

In an equilibrium context, this creates an incentive to undersupply frequency relative to the 

social optimum. 

The second effect is pointed out by Spence (1975).  A social planner looks at the effect of 

an increase in quality (read: frequency) on all consumers in average, whereas the monopolist 

considers this effect on the marginal consumer.  In public transport, for optimally chosen 

departure times (see van Reeven, 2008, for the uniform distribution, and Janssen et al., 2005, 

for non-uniform distributions), the marginal consumer, i.e., the consumer who is indifferent 

between two consecutive departures times, has a waiting time that is twice as large as the 

waiting time of an average consumer.  This creates an incentive to oversupply frequency 

relative to the social optimum. 

The balance of these two forces is determined by the distribution of consumers’ 

reservation prices.  In van Reeven (2008), consumers are homogeneous, and the distribution is 

degenerate and concentrated at the utility level of an outside option, e.g., private car, in the 

spirit of Salop (1979).  This eliminates the incentive to undersupply frequency, and the 

monopolist oversupplies with informed consumers, and is socially optimal with uninformed 

consumers.  In Basso and Jara-Díaz (2009), to the contrary, consumers’ reservation prices are 

distributed evenly, which is the opposite case.  This eliminates the incentive to oversupply 

frequency, so that the monopolist strictly undersupplies. 

Using the family of the power distribution functions, which has the homogeneous 

consumer case of van Reeven (2008) on one hand, and the uniform distribution of Basso and 

Jara-Díaz (2009) on the other, as two opposite limiting cases, we show that there is a critical 

degree of heterogeneity with the following property.  If the heterogeneity in consumer 

reservation price is stronger than the critical level, the undersupply result occurs.  If, to the 
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contrary the heterogeneity is weaker, the monopolist oversupplies.  This illustrates the 

argument of Savage and Small (2009) that undersupply and, therefore, subsidization of public 

transport is not an imperative. 

Without an empirical investigation of the shape of the distribution function of 

consumers’ reservation prices, theoretical modeling will hardly shed a new light on the 

likelihood of undersupply/oversupply outcomes.  Considering private car as the main 

alternative to public transport, it is reasonable to assume that consumers’ reservation prices 

are concentrated around the entry costs of the car.  This concentration makes oversupply just 

as likely as undersupply. 

The rest of the paper is organized as follows.  Section 2 sets up the model which is then 

analyzed in Section 3.  Section 4 concludes. 

2. The model 

We build the model of a monopolist that provides a public transport service on van Reeven 

(2008).  The monopolist schedules f equidistant departures in a unit time circle [ )1,01 ≡∈ Sy  

so that the time gap between two consecutive departures is f/1 .  A unit measure of 

consumers decides whether to use a public transport service on a fixed route.  Each consumer 

i  is characterized by his most preferred departure time 1Syi ∈ , and by his reservation price 

[ ]vvi ,0∈ , where 0>v .  When this consumer uses the public transport service and departs at 

time y , he gets the following utility (surplus): 

iii pvu τ−−= , 

where p is the price charged by the monopolist, ii tw=τ  is the disutility of waiting, 

ii yyw −=  is the consumer’s waiting time, and 0>t  is the consumers’ waiting cost per unit 
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of time.1  When consumers decide not to use the service, their surplus is zero.  Thus, we 

interpret the reservation price iv  as a gross utility level from using the monopoly public 

transport service net of the opportunity cost. 

Consumers’ most preferred departure time iy  is evenly distributed in time, so that the 

waiting disutility iτ  is uniformly distributed over the interval [ x,0 ], where ( )ftx 2/=  is the 

maximum waiting disutility that consumers can experience.  Consumers’ reservation price iv  

follows a distribution ( ) ( )kvvvF /= , where [ )∞∈ ,1k .  This family of the power distribution 

functions has the following property.  For 1=k , iv  is uniformly distributed over the interval 

[ ]v,0 , as in Basso and Jara-Díaz (2009).  In the limit when k unboundedly increases, all iv  

become equal to the highest level v  with probability one.  This is the uniform reservation 

price as in van Reeven (2008).  Without loss of generality we assume 1=v .2 

In order to abstract from the effect of returns to scale in the transportation industry, we 

assume that monopoly operates at zero marginal cost and pays constant fixed cost 0>c  per 

unit of frequency.  For the sake of convenience, we assume that the choice variable is not the 

frequency but the maximum waiting disutility x , from which the frequency can be obtained 

by ( )xtf 2/= .  When 1=> vx , no consumers travel, so that the feasible range of x is 

[ ]1,0∈x .  Thus, the monopoly profit is given by 

( ) ( ) ( )
x

ct
xppDcfxppDxp

2
,,, −=−=π , 

where ( ) ( )0Pr, ≥−−= ptwvxpD ii  is the demand for public transport, i.e., the measure of 

consumers who get non-negative surplus from using the service at price p.  When 1>p , no 

                                                                          

1  When 
iyy < , 

iτ  can be interpreted as a schedule delay cost. 

2 This only has the effect on measurement units of all the costs, prices, and utility levels. 
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consumer uses the service from the monopolist, so that the feasible range of p is [ ]1,0∈p .  

Profit maximizing values of x, p, and f are denoted by πx , πp , and πf . 

In order to compare πf  with the first best frequency, we compute the social welfare 

function, which is: 

( ) ( ) ( )xpxpSxpSW ,,, π+= , 

where ( ) ( ) ( )0,, ≥−−−−⋅= ptwvptwvExpDxpS iiii  is the aggregate consumer surplus.  

Social welfare maximizing, i.e., the first best, values of x, p, and f are denoted by FBx , FBp , 

and FBf .  The purpose of the analysis is to compare FBf  and πf  for different values of the 

parameter k. 

3. The analysis 

We begin with computing aggregate demand and consumer surplus.  Let us fix values of 

[ ]1,0∈x , price [ ]1,0∈p , and a single departure time y, and only consider consumers with 

most preferred departure times from the interval [ ]txytxyyi /,/ +−∈ .  All such consumers, 

if they opt for using the service, will depart at time y  because it is their closest departure 

time. 

Suppose that x  is chosen optimally so that monopoly profit or social welfare is strictly 

positive.3  Then, when ( ]1,1 xp −∈  all consumers with 






 +−+∪





 −−−∈

t

x
y

t

p
y

t

p
y

t

x
yyi ,

11
,  

                                                                          

3  The case when exogenous parameter c, t, and k lead to zero maximum values of the profit function 

and social welfare function is non-generic. 
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do not travel irrespective of iv  as ( ) 01 ≤−−−<−−= ppvpvu iiii τ .  In this case, there are 

gaps in demand in the time space, and profit or social welfare values can be increased by 

decreasing x , i.e., by having more departures at smaller intervals from each other.  Thus, the 

case when ( ]1,1 xp −∈  cannot happen with optimal value of x , and we restrict the domains 

of the profit function ( )xp,π  and social welfare function ( )xpSW ,  so that they still contain 

the corresponding optimal values ( )ππ xp ,  and ( )FBFB xp ,  by [ ]1,0∈x  and [ ]xp −∈ 1,0 . 

For fixed values of [ ]1,0∈x  and [ ]xp −∈ 1,0 , we divide all consumers with 

[ ]txytxyyi /,/ +−∈  into the following three categories. 

a) Consumers with reservation price [ )pvi ,0∈  get negative surplus from the service: 

0<−−= iii twpvu . 

These consumers do not use the public transport service and get zero consumer surplus: 

( ) 0=ivs . 

b) Consumers with reservation price ( ]1,xpvi +∈  get positive surplus from the service 

irrespective of their most preferred departure time iy : 

0>−−≥−−= xpvtwpvu iiii . 

These consumers use the public transport service and get consumer surplus: 

( ) ( ) ( )( )xpv
t

x
dytypvdyuvs i

tx

iii

txy

txy

iii −−=−−== 
+

−

22
/

0

/

/

. 

c) Consumers with reservation price [ ]xppvi +∈ ,  get positive surplus from the service 

only when 0≥−−= iii twpvu , that is, when their most preferred departure time iy  

belongs to the following interval: 





 −+−−∈

t

pv
y

t

pv
yy ii

i , . 
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Such consumers use the public transport service and get consumer surplus: 

( )
( )

( )
( )

( ) ( )
t

pv
dytypvdyuvs i

tpv

iii

tpvy

tpvy

iii

ii

i

2/

0

/

/

2
−=−−== 

−−+

−−

. 

Aggregate consumer surplus ( )xpS ,  can be found by integrating ( )vs  over [ ]1,0∈v  with 

respect to the distribution function ( )vF , and then by multiplying by the number of 

departures ( )xtf 2/= : 

( ) ( ) ( ) ( ) ( )( ) 









−−+−== 

+

−
+

−
1

11
21

0

2
2

,
xp

k
xp

p

k dvkvxpv
t

x
dvkv

t

pv

x

t
vdFvsfxpS  

In order to find aggregate consumer demand, we differentiate (the negative of) the aggregate 

consumer surplus with respect to price: 

( ) ( ) ( )
( )1

1
1

,
111

11

+
−+−=+−=

∂
∂−≡

++

+

−
+

−  kx

pxp
dvkvdvkvpv

xp

S
xpD

kk

xp

k
xp

p

k  

It is worth to note at this stage that when consumers are uninformed, they all experience 

waiting disutility 2/x , and the aggregate consumer surplus ( )xpSUN ,  will be written as 

( ) ( )( ) 









−−= 

+

−
1

2/

12
2

,
xp

kUN dvkvxpv
t

x

x

t
xpS , 

which will lead to the following aggregate demand from uninformed consumers 

( )
k

UN x
p

p

S
xpD 






 +−=

∂
∂−≡

2
1,  

For 1=k , ( )xpDUN ,  coincides with ( )xpD ,  as argued by Basso and Jara-Díaz (2009).  

However, this is just a coincidence and demands ( )xpDUN ,  and ( )xpD ,  are different for 

1≠k . 

The monopoly profit function ( )xp,π  is: 
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( ) ( ) ( )
( ) x

ct

kx

pxp
p

x

ct
xppDxp

kk

21
1

2
,,

11

−








+
−+−=−=

++

π  

First, we look at the social welfare function ( )xpSW , .  Using pSD ∂−∂= / , it is easy to 

check that ( )xpSW ,  strictly decreases in p for all 0>p : 

( ) ( )
0, <−+−=

∂
∂=

∂
∂++

∂
∂=

∂
∂+

∂
∂=

∂
∂

x

pxp
p

p

D
p

p

D
pxpD

p

S

pp

S

p

SW kkπ
. 

Hence, the first-best price is zero, 0=FBp , so that the social planner chooses [ ]1,0∈x  in 

order to maximize the following (reduced-form) social welfare function: 

( ) ( ) ( ) ( ) ( )

( )( ) x

ct

k

k
xx

kk

x

ct
dvkvxv

t

x
dvkv

t

v

x

t
xxSxpSWxSW

k

x

k
x

kFB

212

1

12

1

2
2

2
,0,0,

1

1
1

0

1
2

*

−
+

+−
++

=

−







−+=+=≡

+

−− π
 

The resulting socially optimal values of the maximum waiting cost FBx  and the corresponding 

frequency FBf  are: 

[ ]
( )xSWx

x

FB *

1,0
maxarg

∈
≡  and 

FB
FB

x

t
f

2
≡ .4 

The monopolist chooses [ ]1,0∈x  and [ ]xp −∈ 1,0  in order to maximize ( )xp,π .  Profit 

maximizing values of price πp , the maximum waiting cost πx , and the corresponding 

frequency πf  are: 

( )
[ ]
[ ]

( )xpxp
xp

x
,maxarg,

1,0
1,0

πππ

−∈
∈

≡  and π
π

x

t
f

2
≡ . 

As the first best and profit maximizing values depend on the distribution of reservation prices 

through the parameter k, we often write them as functions of k explicitly. 

                                                                          

4  Generically, for the chosen class of distribution functions, the problems of maximization of social 

welfare and monopoly profit always have a unique solution, which explains the chosen definitions. 
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Whether monopoly profit and social welfare are positive or negative depends on the 

exogenous value of ct .  Apart from k, this product of fixed cost c  and unit waiting cost t  is 

the only exogenous entry in the objective functions ( )xp,π  and ( )xSW * .5  When the 

monopolist gets non-negative profits, social welfare is non-negative as well.  In what follows, 

we assume that the value of the product ct  is sufficiently low so that a monopoly is 

operational for any 1≥k .  In particular, we assume that 27/4=< Cct .  Next, we will relax 

this assumption and discuss the case Cct > , for which the monopoly profit might become 

negative for some values of k. 

In the following proposition, we generalize the result of van Reeven (2008), which is 

obtained for the limiting case when k unboundedly increases, and which we formally (with 

slight abuse of the notation) denote by ∞=k .  We show that the monopolist always 

oversupplies frequency when the distribution density function of consumers’ reservation 

prices sufficiently increases, which is measured by parameter k. 

Proposition 1.  For all large values of k, the monopolist over-produces frequency, i.e., there 

exists 1* ≥k  such that for all *kk > : ( ) ( ) ( )kxxkx FBFB <∞<π  and ( ) ( ) ( )kffkf FBFB >∞>π . 

Proof.  Van Reeven (2008) shows that in the limit when ∞→k : 

( ) ( ) ctx
ct

x FB =∞<=∞
2

π , so that ( ) ( )
c

t
f

c

t
f FB

42
=∞>=∞π . 

We first show that there exists a 0>δ  such that ( ) δπ >kx  for all 1≥k , and we can restrict 

the domains of the functions ( )xp,π  and ( )xSW *  by [ ]1,δ∈x .  Next, we show that there 

exists 1* >k  such that ( ) ( )∞< FBxkxπ  for all *kk > .  Finally, we show that ( ) ( )∞> FBFB xkx  

for all 1≥k , and the statement of the proposition follows. 

                                                                          

5  For a fixed level of ct , the value of t  has its own and independent of ct  effect on the frequency 

choice through ( )xtf 2/= . 
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Both functions ( )xp,π  and ( )xSW *  have the following property: 

+∞==
∂
∂

→→ 200 2
limlim

x

ct

x xx

π
 and +∞=






 −=

→→ 2

1

2
limlim

20

*

0 x

ct

dx

dSW
xx

, 

where the convergence is uniform with respect to k.  Thus, there exists a 0>δ  such that for 

any k, p, and ( )δ,0∈x : 

0>
∂
∂

x

π
 and 0

*

>
dx

dSW
. 

Consequently, δ>FBx  and δπ >x , and we restrict domains of the functions ( )xp,π  and 

( )xSW *  by [ ]1,δ∈x . 

Maximizing ( )xp,π  w.r.t. ( )xp,  yields the following first-order conditions: 

( ) ( ) ( ) ( )
( )

( )

( ) ( )
( ) ( ) ( )

( ) ( )











+
−+++−=

∂
∂=

+
+
−+−+−=

∂
∂=

++

+++

12
,0

1
1,0

2

11

2

111

kx

pxp
p

x

xpp

x

ct
xp

x

x

p

kx

pxp

x

xpp
xp

p
kkk

kkkk

π

πππ
π

π

πππ

π
ππ

π

π

π

πππ

π

πππ
ππ

π

π

 

By subtracting the first equation from the second one and rearranging, we get: 

( ) ( )kG

ct
kx

12 −
=π , 

where 

( ) ( ) ( ) ( )( )
( ) ( )

( )










−

+
−++=

+++

π

π

π

πππππ

x

p

kx

pxpxp
kG

kkk 1

2

11

1
1

2 . 

It is easy to see that ( ) 0lim 1 =
∞→

kG
k

 uniformly for [ ]1,δπ ∈x  and ππ xp −≤ 1 .  Hence, there 

exists 1* >k  such that ( ) 11 <kG  for all *kk > .  Therefore, for all such *kk > : 

( ) ( ) ( )∞==
−

<
−

= FBxct
ct

kG

ct
kx

122 1

π . 

Maximizing ( )xSW *  w.r.t. [ ]1,δ∈x  yields the following first-order condition: 
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( ) ( ) ( ) ( )kFB

FB

FB x
kx

ct
x

dx

dSW

2

1

2

1

2
0 2

*

+
+−== , 

which leads to the following expression: 

( ) ( ) ( )∞=>
−

= FBFB xct
kG

ct
kx

21
, 

where 

( ) ( ) ( ) 0
2

2
2 >

+
= k

x
k

kG π . 

Thus, ( ) ( ) ( )kxxkx FBFB <∞<π  for all *kk > .  This ends the proof. ■ 

Proposition 1 demonstrates that the monopolist oversupplies frequency not only when 

consumers are homogeneous and have unit demand but also when consumers are 

heterogeneous and demand is downward-sloping.  Two effects determine whether monopoly 

oversupplies or undersupplies frequency.  The first effect follows from the traditional result 

that a monopoly under-produces due to pricing above marginal cost.  This creates a strict 

incentive to decrease the frequency.  The second effect is that the monopolist has a strict 

incentive to oversupply frequency relative to the social optimum because the waiting time of a 

marginal consumer is twice as large as the waiting time of an average consumer. 

When the reservation price distribution density function sufficiently increases so that its 

variance 

( ) ( ) ( )( ) ( ) ( )21
var 2

22

++
=−=

kk

k
vEvEv iii , 

which reflects consumer heterogeneity, is relatively small, the first effect is weak and the 

desire of the monopolist to increase consumer demand by choosing higher level of frequency 

drives the oversupply result.  When, to the contrary, the reservation price distribution is more 

even, the first effect is strong, monopoly output is low, and, consequently, frequency will be 

undersupplied. 
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The latter is the case for the uniform distribution, when 1=k , as Basso and Jara-Díaz 

(2009) show.  Also for 2=k  the monopolist undersupplies frequency, as the following 

proposition demonstrates. 

Proposition 2.  For { }2,1∈k , the monopolist undersupplies frequency, i.e., FBxx >π  and 

FBff <π . 

Proof.  For 1=k , the proof is given in Basso and Jara-Díaz (2009).  When Cct < , the 

monopoly is profitable.  Indeed, by choosing, e.g., 3/1=p  and 3/2=x , monopoly gets: 

0
27

4

4

3

3

2
,

3

1 >





 −=






 ctπ . 

Thus, monopoly is operational for Cct < . 

For 2=k , functions ( )xSW *  and ( )xp,π  are given by: 

( )
x

ct
xxxSW

23

2

2

1

12

1 3* −+−= , and ( )
x

ct
xpxppxp

23

1
1, 22 −






 −−−=π . 

Maximizing ( )xSW *  yields the bi-quadratic equation 022 24 =+− ctxx .  A unique suitable 

solution is ctxFB 211 −−= .  Maximizing ( )xp,π  w.r.t. p yields ( ) 3/3 ππ xp −= , and 

the bi-quadratic equation 0962 24 =+− ctxx  (this equation is only valid for 

( ) 63.02/33 ≈−≤πx  so that 1≤+ ππ xp ; if this is not the case, then the corner solution 

ππ xp −= 1  must be taken). 

The unique suitable solution is ( ) FBxctx 2/32/2113 =−−=π , so that 

FBFB fff <= 3/2π .  This ends the proof. ■ 

Propositions 1 and 2 provide a partial characterization of the frequency chosen by the 

monopolist relative to the first best.  In accordance with Proposition 2, at least 2* >k .  In 
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order to find out the lowest value of *k , which ensures oversupply ( ) ( )kfkf FB>π  for all 

*kk > , we have performed numerical simulations.6  It turns out that the maximization (of the 

profit and social welfare functions) problems have nice analytical properties (monotonicity 

and quasi-concavity), so that ( )kxπ  and ( )kxFB  are monotone and the numerical algorithms 

used in the simulations rapidly converge. 

Figure 1 shows functions ( )kf π  and ( )kf FB  for Cct <= 1.0  and 1=t .  The value of *k  

is defined by ( ) ( )** kfkf FB=π .  It turns out that ( ) ( )** kfkf FB>π  for all *kk <  and 

( ) ( )** kxkx FB<π  for all *kk > . 

 

Figure 2 shows how the critical value *k  continuously and monotonically depends on ct  for 

Cct < .  When ct  converges to zero, the value of *k  unboundedly increases.  It can be seen 

that the frequency oversupply result holds only for 7.4≈> kk . 

                                                                          

6 The simulations are performed within MS Excel on VBA, and this tool is available from the 

corresponding author upon request. 
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Figure 1. Profit maximizing frequency ( )kf π  and socially optimal frequency ( )kf FB  as 
functions of k  for 1.0=ct  and 1=t . 
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It is important to note that ( )ctk *  decreases with cost parameter ct , so that an increase in ct  

makes oversupply more likely.  The intuition is that for larger cost values, the monopoly 

frequency πf  decreases at a much lower pace than socially optimal frequency FBf .  This is so 

because the condition 1≤+ ππ px  becomes binding, and the monopoly price is a corner 

solution ππ xp −= 1 .  As a result, the monopolist has a much lower incentive to reduce 

frequency as the required decrease in price has a strong adverse effect on monopoly profit. 

In the analysis, we have assumed Cct <  so that monopoly is operational for any k.  For a 

given value of k, there is a range of ct  values where monopoly does not produce even though 

it would have been socially optimal.  Savage and Small (2009) point out that subsidizing the 

monopolist in this case is a solution to this market failure.  We now turn to this market failure 

and have a closer look at the impact of subsidization. 

Figure 3 presents an example of the reduced-form social welfare function ( )xSW *  and 

the reduced-form profit function ( ) ( )xpx
p

,max* ππ ≡  for 4=k  and Cct >= 5.0 .  The 

maximizing values of x for ( )xSW *  and ( )x*π  are 75.0≈FBx  and 67.0≈πx  respectively.  

For the chosen parameter values, the monopoly is inactive because its maximum profit level is 

negative: ( ) 0141.0* <−≈ππ x . 

0

10

20

30

0 0.05 0.1 0.15

 
 
 
 

ct

( )ctk*

C

k

 

Figure 2. Critical value function ( )ctk * . 
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Subsidizing the monopolist with the amount of 141.0=Δ  guarantees him just a non-negative 

profit, and the production starts (we assume the moral hazard problem away).  The main point 

of this example is that such subsidy results in oversupply as FBxx <π .  In order to sustain the 

socially optimal frequency ( )FBFB xtf 2/= , the subsidy has to be at least 

( ) 149.0* ≈−=Δ FBxπ , i.e., the monopoly must receive additional subsidy in order to able to 

produce this lower frequency profitably.  However, such additional subsidy does not give any 

incentive to do so unless the first best level of frequency is explicitly imposed on the 

monopolist. 

We are now able to relax our assumption Cct <  and extend our computations by 

assuming that the monopolist gets a lump-sum subsidy if its profit is negative.  Figure 4 

represents the parameter space with [ ]1,0∈ct  on the horizontal axis and 1≥k  in the log scale 

on the vertical axis.  We have also drawn a line that represents ∞=k .  The bold line 

represents the generalization of the critical value function ( )ctk *  for [ ]1,0∈ct .  The shaded 

area to the left of ( )ctk *  reflects those parameter values for which the monopolist 

undersupplies.  For all other parameter constellations, the monopolist oversupplies.  In case 

381.0≈> Cct , monopoly operation always yields oversupply regardless the value of k.  In 

order to see whether this oversupply is generated under profitable conditions or under 
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Figure 3. Functions ( )xSW *  and ( )x*π  for 1=k  and 3.0=ct . 
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subsidization, the other two curves ( )ctkπ  (we do not have a closed form expression for it) 

and ( ) ( )ctctctk FB −= 1/2  represent those parameter values for which the maximum values of 

monopoly profit ( )ππ x*  and social welfare ( )FBxSW *  equal zero. 

 

In the region below ( )ctk FB , it is not socially optimal to produce a transportation service.  In 

the region between ( )ctk FB  and ( )ctkπ , production is socially optimal but requires a subsidy.  

Finally, in the region above ( )ctkπ , service provision is optimal and the monopoly gets 

positive profit.  Hence, figure 4 shows that under subsidization oversupply may occur for all 

1≥k , and therefore is even more likely to happen. 

Finally, we admit that the original model of van Reeven (2008), as well as this 

generalization, is very stylized.  Savage and Small (2009) argue that a richer model is required 

for the proper analysis of the monopoly frequency choice.  Nevertheless, even these simple 

models make it clear that theoretically oversupply is equally likely to happen as undersupply.  

Extending the model will certainly change the balance of the effects presented here.  

However, it is not obvious that such extensions will favor undersupply.  For example, 

increasing marginal production cost (e.g., due to increasing boarding and alighting costs when 

vehicles become fuller) strengthens the incentive to increase frequency.  Similarly, increasing 
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Figure 4. Parameter’s space ( )kct, , regions of undersupply (shaded) and oversupply. 
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marginal waiting cost increases the difference in utility between the average and the marginal 

consumers and, therefore, further increases the incentive to oversupply.  Hence, oversupply is 

even more likely to happen under these assumptions. 

4. Conclusion 

Van Reeven (2008) shows that monopoly does not undersupply frequency if consumers are 

homogeneous with respect to their reservation price.  This result generalizes to the case of 

heterogeneous consumers when the distribution density function of consumers’ reservation 

price peaks.  In contrast, when consumers are very heterogeneous, so that reservation prices 

are distributed evenly and the distribution function rather flat, the monopolist undersupplies 

frequency.  Hence, the question whether a monopolist oversupplies or undersupplies 

frequency critically depends on how heterogeneous the costs of alternative means of travel 

are. 

Since the private car is the main alternative to public transport, consumers’ reservation 

prices are likely to be concentrated around the entry costs of the private car.  The distribution 

density function may include some other peaks for other alternatives to public transport as 

well.  These concentrations in the distribution function make oversupply just as likely as 

undersupply.  It very much depends on the particular case at hand and requires empirical 

research on the exact shape of the distribution of consumers’ reservation prices, as well as 

other effects that are omitted in our analysis for simplicity. 

The main implication from the analysis is that the oversupply of frequency by a 

monopolist in public transport cannot be excluded, so that subsidization in public transport is 

not an imperative.  For many years, the transport economic literature has been preoccupied 

with aligning economic theory with increasing subsidization of public transport in practice.  It 

generalizes and improves Mohring’s original model with a better representation of user costs.  
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Every improvement has come with even higher levels of optimal production, as shown, e.g., 

by Jara-Díaz and Gschwender (2003), justifying ever-increasing subsidies to public transport 

operations.  In this respect, van Reeven (2008) may have put the cat among the pigeons, 

whereas this paper provides a more balanced view on the topic.  However, the main 

conclusion remains the same: just the fact that consumers’ waiting costs are external to the 

public transport monopolist does not constitute a generally valid economic justification for 

subsidization of public transport. 
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