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Chapter 1 

Introduction 
 
Hypertension is a complex disease with a high prevalence. It is defined as a systolic 

blood pressure (SBP) ≥ 140 mmHg and a diastolic blood pressure (DBP) ≥ 90 mmHg 

for persons up to 60 years of age and for subjects with diabetes mellitus or familiar 

hypercholesterolemia and as a SBP ≥ 160 mmHg and a DBP ≥ 90 mmHg for persons 

of 60 years and older without diabetes mellitus or familiar hypercholesterolemia.1 

Hypertension is a risk factor for myocardial infarction, stroke, congestive heart failure, 

end-stage renal disease, and peripheral vascular disease.2-5 The World Health 

Organization reported that suboptimal blood pressure (SBP > 115 mmHg) is 

responsible for 62% of all cerebrovascular diseases and 49% of all ischemic heart 

diseases. In addition, suboptimal blood pressure is the number one cause of death 

throughout the Western world.6

 Many physiological, biochemical, and anatomical traits contribute to an individual’s 

blood pressure level, which is homeostatically maintained through complex 

interactions of interrelated systems that exert redundant and counterbalancing 

pressor and depressor effects.7 In normotensive and hypertensive individuals, cardiac 

output (heart rate x stroke volume) and peripheral resistance are controlled by 

overlapping control mechanisms i.e. the baroreflexes mediated by the sympathetic 

nervous system, the parasympatic nervous system, and the renin-angiotensin 

system. Antihypertensive drugs lower blood pressure by acting on specific targets 

within these systems.  

Antihypertensive treatment can be divided into four main classes: diuretics, β-

blockers, calcium channel blockers, and renin-angiotensin system inhibitors 

(angiotensin converting enzyme (ACE)-inhibitors and angiotensin II type 1 receptor 

antagonists). Diuretics are currently recommended as the first-line treatment for 

hypertension.1, 8 Diuretics lower blood pressure, initially by increasing sodium and 

water excretion and with long-term treatment by decreasing peripheral resistance 

(see figure 1). The impairment in sodium excretion may be one of the first changes in 

the development of hypertension.9 Beta-blockers decrease the cardiac output by 

acting on β1-receptors and by inhibiting the release of renin. Calcium channel 

blockers block the inward movement of calcium by binding to L-type calcium channels 

in the heart and in smooth muscle of the coronary and peripheral vasculature. This 

causes a relaxation of smooth muscle cells, although, there are differences between 

calcium channel blockers in their affinity. ACE-inhibitors inhibit the conversion of 

angiotensin I to angiotensin II resulting in a reduction of the peripheral vascular 

resistance. In addition, ACE-inhibitors decrease the secretion of aldosteron, which 

results in a decreased sodium and water retention. It also reduces the breakdown of 

the vasodilator bradykinin. Angiotensin II type 1 receptor antagonists block the action 

of angiotensin II at the angiotensin (AT)1 receptors. In clinical trials, antihypertensive 

therapy has been associated with a 35% to 40% risk reduction in stroke incidence, a 

20% to 25% reduction in myocardial infarction incidence, and a more than 50% 
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reduction in heart failure incidence.10

 
Figure 1. Diagram showing the main mechanisms involved in arterial blood pressure regulation 
and the sites of action of antihypertensive drugs.11

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Finding the most appropriate pharmacological treatment for an individual patient 

is difficult as the response can not be predicted with patient characteristics such as 

age, gender, or body mass index.12, 13 Pharmacogenetics aims to understand how 

genetic variations contribute to variation in response to medication. Polymorphisms in 

genes that code for drug-metabolizing enzymes, drug transporters, drug receptors, 

and ion channels can alter the response of drug treatment in an individual. Targeting 

treatment to the genetic components may enhance treatment efficacy and improve 

overall benefit, resulting in more effective blood pressure control and a lower 

incidence of hypertension-related morbidity. 
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Chapter 1 

Aim and outline of this thesis 

 
This thesis consists of a number of studies, which are aimed at gaining more insight 

into the variation in response to antihypertensive drugs by investigating the 

interaction between antihypertensive drugs and genetic polymorphisms on short and 

long-term cardiovascular outcomes. 

 In Chapter 2, population-based estimates of the prevalence of 

undertreatment of hypertension were determined. Furthermore, this chapter presents 

determinants associated with non-use and uncontrolled blood pressure levels. 

Chapter 3 gives an overview of studies that investigated the influence of genetic 

variants on the response to antihypertensive drugs. Chapter 4 contains 

pharmacogenetic studies and short-term outcomes. The first study (Chapter 4.1) 

describes the influence of the ACE insertion/deletion (I/D) polymorphism on the 

adherence to ACE-inhibitors in the Rotterdam Study.14 The second (Chapter 4.2) and 

third study (Chapter 4.3) examine the influence of the ACE I/D, α-adducin G460W, 

and angiotensinogen M235T polymorphism on blood pressure response in the 

Rotterdam Study. In Chapter 4.4 the interaction between antihypertensive drugs and 

the ACE I/D, α-adducin G460W, angiotensinogen M235T, the β3-subunit of the G-

protein 825C/T polymorphism, and angiotensin II type 1 receptor 1166A/C 

polymorphism on blood pressure were evaluated in the Doetinchem Cohort Study.15 

The long-term outcomes are described in Chapter 5. In the first study the ACE I/D, 

angiotensinogen M235T, and angiotensin II type 1 receptor 573C/T polymorphism 

modify the risk of atherosclerosis associated with ACE-inhibitors or β-blockers therapy 

(Chapter 5.1). Chapter 5.2 describes pharmacogenetic studies with the long-term 

outcomes myocardial infarction and stroke. For both outcomes the interaction 

between the angiotensinogen M235T polymorphism and the use of ACE-inhibitors on 

the risk of myocardial infarction and stroke was investigated in the Rotterdam Study. 

In chapter 6 the main findings and possible clinical implications are discussed and 

suggestions for further research are given. 
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Abstract 
 

The objective of this study was to determine the prevalence, treatment, and control of 

hypertension and the determinants of undertreatment in the Dutch population. The 

study-design was cross-sectional. A population-based survey on cardiovascular 

disease risk factors in the Netherlands from 1996 to 2002 was the setting of the 

study. A total of 10,820 man and women, aged 30-59 years, were included in the 

study. The mean outcome measures of the study were: prevalence of hypertension, 

treatment, and control of hypertension and determinants of undertreatment of 

hypertension. Hypertension was defined as: systolic blood pressure (SBP) ≥ 140 

mmHg and/or diastolic blood pressure (DBP) ≥ 90 mmHg, and/or the use of 

antihypertensive medication. Treated and controlled hypertension was defined as SBP 

< 140 mmHg and DBP < 90 mmHg. Multivariate logistic regression was used to 

assess the determinants of undertreatment. The prevalence of hypertension in men 

was 21.4% and in women 14.9%. About 18% of the hypertensive men and 39% of 

the hypertensive women were receiving antihypertensive medication. Of the 

untreated hypertensives, 21.9% of the men and 13.6% of the women were eligible 

for treatment with antihypertensive medication according to Dutch guidelines. Female 

gender and use of cholesterol-lowering medication were associated with an increased 

chance of being treated. Subjects who were physically active, on a low salt diet, and 

current smokers had an increased chance of being untreated. Using cholesterol-

lowering medication and no asthma or allergy were factors associated with better 

control of blood pressure. In conclusion, a considerable proportion of hypertensives 

were untreated and uncontrolled. Therefore, the detection and control of hypertension 

in the Netherlands needs to improve. Several groups of hypertensives were identified 

that need additional care and attention.  
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Introduction 
 

Hypertension is a major public health hazard because of its high prevalence1 and its 

strong positive association with cardiovascular diseases.2-6 The overall beneficial effect 

of treatment of hypertension has been demonstrated.7-9 Therefore, the detection and 

adequate treatment of hypertension is important to reduce the incidence of 

cardiovascular diseases. Knowledge of factors that are associated with 

undertreatment of hypertension may help to identify subgroups that need additional 

care and attention. Previously, it was reported that the prevalence of hypertension 

(systolic blood pressure (SBP) ≥ 140 mmHg and/or diastolic blood pressure (DBP) ≥ 

90 mmHg and/or use of antihypertensive medication) in the Netherlands in the period 

1993 to 1997 was approximately 20.2% of the population in the age-group from 40 to 

59 years.10 Studies from other countries suggest that the proportion of hypertensives 

treated and/or controlled has been stable in recent years or has even decreased.11, 12

Therefore, we performed the present study to assess the prevalence and 

determinants of undertreatment of hypertension in the Netherlands during 1996-

2002.  

 
 
Methods 
 

Data 

Data were obtained from population-based surveys on cardiovascular disease risk 

factors conducted in The Netherlands. The Monitoring Project on Cardiovascular 

Disease Risk Factors (MPCDRF) was carried out from 1987 to 1992 in men and women 

aged 20-59 years.  Each year, a new random sample was collected in basic health 

services in Amsterdam, the capital in the west with about 700,000 inhabitants, 

Doetinchem a small town with circa 40,000 inhabitants in a rural area in the east, and 

Maastricht in the south with roughly 100,000 inhabitants at that time.   

The overall response rate in Amsterdam, Maastricht, and Doetinchem was 45%, 

58%, and 62%, respectively. The average response rate for men was 50% and for 

women 57%. This project was continued from 1993 to 1997 as the “Monitoring risk 

factors and health in The Netherlands” (MORGEN) project. In Amsterdam and 

Maastricht, new random subjects were collected for those aged 20-59 years, whereas 

in Doetinchem the study population consisted of individuals who had participated in 

the previous study. So, patients in Doetinchem were re-examined after 5 years. The 

response rate in Amsterdam was 30% for men and 37% for women, in Maastricht it 

was 42% and 49%, and in Doetinchem it was 57% and 60%, respectively. From 1998 

to 2002, data were only collected from the Doetinchem cohort, which was the second 

re-examination of the participants of the PCDRF (aged 30-69 years). The overall 

response rate was 68% for men and 63% for women. 
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All respondents completed a questionnaire that contained questions on 

demographic variables, cardiovascular risk factors, and current use of medication. 

After this, blood pressure, weight, and height were measured and blood was drawn 

for total and high-density lipoprotein cholesterol determination. The design of this 

study has been described in detail elsewhere.10, 12 A nonresponse survey was 

conducted in order to assess possible selection bias. Of all nonrespondents (n=1,620) 

61% agreed to participate, 23% could not be reached, and 16% refused to 

participate. The results suggested that no selection bias with respect to educational 

level has occurred. Educational level is a main determinant of nonresponse and is 

associated with blood pressure.13, 14 Therefore, no substantial differences are expected 

in blood pressure between respondents and nonrespondents.10

A random zero sphygmomanometer was used to measure blood pressure with the 

subject in a sitting position using a cuff of proper size for arm circumference. After the 

first measurement, the heart rate was measured for 30 s and after 5 min by a second 

blood pressure measurement.  

We selected patients group aged 30-59, because persons aged 20-29 were not 

included in the re-examination of the Doetinchem cohort (1998-2002) and in 

Amsterdam and Maastricht (1996-1997) persons aged 60-69 were not included. 

 

Definitions 

Hypertension was defined according to the WHO-ISH criteria as SBP ≥ 140 mmHg 

and/or DBP ≥ 90 mmHg and/or the use of antihypertensive medication (irrespective 

of the level of blood pressure). Participants with hypertension were further classified 

as: treated and adequately controlled, treated but uncontrolled, and untreated. 

Uncontrolled persons were treated but had their SBP ≥ 140 mmHg and/or DBP ≥ 90 

mmHg. For the analysis of undertreatment, we used Dutch guidelines of 2000 for the 

treatment of hypertension.15 If SBP ≥ 180 mmHg and/or DBP ≥ 100 mmHg treatment 

is always necessary. In addition, when the 10-year cardiovascular risk (estimated 

with the multifactorial Framingham risk equation) exceeds 20%, hypertension should 

also be pharmacologically treated. Persons aged 40-59 years with a cardiovascular 

disease, subjects with diabetes aged 50-59 years, persons with diabetes and smoking 

aged 40-49 years, and smoking males aged 50-59 years with SBP between 140 and 

180 mmHg and/or DBP between 90 and 100 mmHg should be treated because their 

10-year cardiovascular risk exceeds 20%. Among treated hypertensives, blood 

pressure is considered controlled if SBP < 140 mmHg and DBP < 90 mmHg.  

For the analysis of the determinants or treatment and control, besides a cut-off 

value of 140/90 mmHg, also a higher SBP cut-off (≥ 160 mmHg) and/or DBP cut-off 

(≥ 95 mmHg) was chosen, in order to minimize misclassification of subjects as 

untreated or uncontrolled hypertensives on the basis of two blood pressure 

measurements on the same day. 
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Correction for within-person variability 

Repeated measurements of blood pressure and total cholesterol were available from a 

sample of the population screened from 1987 to 1992.9 Among 924 subjects who were 

examined in 1989 and 1990, in each year two blood pressure measurements (in 

duplicate) and a total cholesterol determination were performed. These 

measurements were used to calculate blood pressure, serum total cholesterol, and 

HDL-cholesterol levels adjusted for within-person variability.  

The adjustment for SBP and DBP was performed separately for persons untreated 

for hypertension with no other risk factor present, respondents who were untreated 

for hypertension with one or more risk factors, and drug-treated persons after 

stratification by gender and 10-year age category.16 This adjustment was performed 

within these strata because each stratum can be considered a separate subpopulation 

with a specific distribution of blood pressure values. By this approach, each blood 

pressure value was corrected towards the mean of the stratum to which that 

individual belonged. This will correct for the possibility to classify a person with 

normal blood pressure as hypertensive. For total cholesterol values, this correction 

was performed after stratification for gender and 10-year age category.16  

 

Statistical analysis 

The prevalence of treatment and undertreatment of hypertension was estimated and 

standardized to the age and gender distribution of the general population in 1999. 

Multivariate logistic regression analysis was used to assess the association between 

demographic variables, cardiovascular disease risk factors, medication use as 

independent variables and treatment and control of hypertension as dependent 

variables. The Chi-square statistics for trend was used for the time trends. 

 

 

Results  
 

Prevalence of hypertension, treatment and control of hypertension 

After exclusion of pregnant women (n=125) and subjects with missing blood pressure 

data (n=12), 10,820 subjects remained available for analysis. Using the WHO-ISH 

guidelines,19 20.1% (2,176/10,820) of the study population was classified as 

hypertensive (see table 1). Of the hypertensives, 70% (1,530/2,176) were not 

receive any antihypertensive medication, while among those treated 54% (347/646) 

had blood pressure levels ≥ 140/90 mmHg. Table 2 lists the prevalence of 

hypertension by age and gender. Among men, 21.4% had hypertension, 17.9% was 

treated, and in 67.6% of those treated blood pressure was not controlled. According 

to the current Dutch guidelines, 21.9% of the untreated hypertensive men were 

eligible for treatment. 

  



Chapter 2.1 

22   

Table 1. Prevalence of hypertension according to the WHO-ISH classification, adjusted for 
within-person variability.  
 
WHO-ISH grade SBP 

(mmHg) 
DBP 
(mmHg) 

Total study 
population  
(n (%)) 

Treated  
(n (%)) 

Untreated  
(n (%)) 

Normotensive      
Optimal < 120 < 80  4,247 (39.3)   32 (0.3) 4,215 (40.0) 
Normal 120-129 80-84  2,713 (25.1)   93 (0.9) 2,620 (24.2) 
High normal 130-139 85-89  1,983 (18.3) 174 (1.6) 1,809 (16.7) 
Hypertensive      
Grade 1 140-159 90-99  1,509 (13.9) 257 (2.4) 1,252 (11.6) 
Grade 2 160-179 100-109     311 (  2.9)   77 (0.7)    234 (  2.2) 
Grade 3 ≥ 180 ≥ 110       57 (  0.5)   13 (0.1)      44 (  0.4) 
All   10,820 (100) 646 (6.0) 1,530 (14.2)1

 

1 Only the sum of the percentages of grade 1,2, and 3 
All percentages refer to the total population 

 
Table 2. Prevalence of hypertension (≥ 140/90 mmHg), treated and undertreated 
hypertension in men and women by 10-year category and adjusted for within-person 
variability. 
 
 Respondents Hypertension  

(n (%))1
Patients 
treated  
(n (%))2

Patients 
treated but 
uncontrolled5 
(n (%))3

Patients 
untreated  
(n (%))2

Patients 
untreated but 
should be 
treated6  
(n (%))4

Men       
30-597 5,004 1,201 (21.4) 285 (17.9) 181 (67.6) 916 (82.1) 271 (21.9) 
30-39 1,237    130 (10.5)   11 (  8.5)     8 (72.7) 119 (91.5)   14 (11.8) 
40-49 1,958    419 (21.4)   75 (17.9)   50 (67.7) 344 (82.1)   65 (16.3) 
50-59 1,809    652 (36.0) 199 (30.5) 123 (61.8) 453 (69.5) 192 (42.4) 
Women       
30-597 5,816    975 (14.9) 361 (38.5) 166 (51.9) 614 (61.5)   94 (13.6) 
30-39 1,593      59 (  3.7)    24 (40.7)   16 (66.7)   35 (59.3)     4 (11.4) 
40-49 2,306    312 (13.5) 119 (38.1)   46 (38.7) 193 (61.9)   26 (13.5) 
50-59 1,917    604 (31.5) 218 (36.1) 104 (47.7) 386 (63.9)   64 (16.6) 
 
1 All percentages refer to the total population 
2 All percentages refer to those hypertensive 
3 All percentages refer to those treated 
4 All percentages refer to those untreated 
5 DBP ≥ 140 mmHg and/or SBP ≥ 90 mmHg 
6 Untreated should be treated refers to the subject not treated for hypertension, who should be 
treated according to the CBO consensus Hypertension because their risk for developing a 
cardiovascular disease is more then 20% based on their age, gender, blood pressure, smoking 
status, and presence of diabetes, or cardiovascular diseases 
7 Weighed by age and gender distribution of the general Dutch population in 1999 
 

Among women, 14.9% had hypertension, 38.5% was treated, of whom 51.9% had 

their blood pressure uncontrolled. About 14% of the untreated hypertensive women 

were eligible for treatment. The prevalence of hypertension increased with age for 

both men and women. In each age category, the treatment with antihypertensive 

medication was more prevalent in women compared to men. Among the 2,176 

subjects with hypertension, a total of 365 untreated subjects were eligible for 
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treatment and of those treated (n=646) 347 persons had their blood pressure 

uncontrolled. 

 

Time trends in the treatment and control of hypertension  

The prevalence of hypertension decreased significantly from 1996 to 2002 in 

Doetinchem (trend test p=0.04). An increasing trend was observed for the percentage 

of treated hypertensives (trend test p=0.02).  

The percentage of controlled persons fluctuated, with the worst situation between 

1998 and 1999 (see table 3). During this period, the percentage of untreated 

hypertensives who were eligible for treatment was highest. The proportion of treated 

hypertensives with uncontrolled blood pressure and the proportion of untreated 

hypertensives who were eligible for treatment was lowest from 2000 to 2002. 

However, none of these differences were statistically significant. 

 
Table 3. Prevalence of hypertension (≥ 140/90 mmHg), treated and undertreated 
hypertension for different time periods, weighted by age and gender distribution of the general 
Dutch population in 1999 and adjusted for within-person variability. 
 
 Respondents Hypertension  

(n (%))1
Patients 
treated  
(n (%))2

Patients 
treated but 
uncontrolled5 
(n (%))3

Patients 
untreated  
(n (%))2

Patients 
untreated but 
should be 
treated6  
(n (%))4

1996-1997       
Amsterdam 2,421 389 (15.8) 133 (32.3) 58 (54.2) 256 (67.6) 62 (14.5) 
Maastricht 2,089 440 (16.7) 157 (38.0) 82 (62.8) 283 (62.0) 68 (25.3) 
Doetinchem 2,518 427 (21.4)   91 (20.7) 63 (65.2) 336 (79.3) 77 (23.0) 
1998-1999       
Doetinchem 1,446 349 (21.3)   94 (27.2) 55 (67.6) 255 (72.8) 78 (23.0) 
2000-2002       
Doetinchem 2,346 571 (20.6) 171 (28.5) 89 (56.3) 400 (71.5) 80 (14.9) 
 

1 All percentages refer to the total population 
2 All percentages refer to those hypertensive 
3 All percentages refer to those treated 
4 All percentages refer to those untreated 
5 DBP ≥ 140 mmHg and/or SBP ≥ 90 mmHg 
6 Untreated should be treated refers to the subject not treated for hypertension, who should be 
treated according to the CBO consensus Hypertension because their risk for developing a 
cardiovascular disease is more then 20% based on their age, gender, BP, smoking status, and 
presence of diabetes, or cardiovascular diseases 

 

Determinants of untreated and treated but uncontrolled hypertension 

Determinants of undertreatment, defined as eligible for treatment but not receiving 

antihypertensive medication, are reported in figure 1a. Subjects who used 

cholesterol-lowering medication and subjects screened during the years 1998 and 

1999 were less likely to be untreated (Odds ratio (OR) < 1). Males, current smokers, 

subjects on a low salt diet, and physically active hypertensives were more likely to be 

untreated (OR > 1).   
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Figure 1. Determinants of untreated and uncontrolled hypertension according to the CBO 
consensus Hypertension. All odds ratio are adjusted for demographic variables, cardiovascular 
risk factors, and medication use. 
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Determinants of treated but uncontrolled hypertension are reported in figure 1b. 

The use of cholesterol-lowering medication was significantly associated with a lower 

probability of uncontrolled hypertension (OR <1) and having asthma or allergy with a 

higher probability of uncontrolled hypertension.  

We also performed an analysis with a higher SBP cut-off (≥ 160 mmHg) and/or 

DBP cut-off (≥ 95 mmHg). The association between determinants and treatment 

status was similar compared to the analysis with lower blood pressure cut-offs. 

Although the following factors showed the same trend, they were no longer 

significant: year of screening (1998-1999 vs. 1996-1997; OR=0.43; 95% CI: 0.16-

1.16) and being physically active (OR=1.96; 95%CI: 0.96-3.99). The place of 

residence became significant (Maastricht vs. Doetinchem; OR=0.28; 95%CI: 0.08-

0.78, Amsterdam vs. Doetinchem; OR=0.25; 95%CI: 0.09-0.84). The association 

between determinants and uncontrolled blood pressure was also similar compared to 

the analysis with a lower blood pressure cut-off level. However, year of screening 

(2000-2002 vs. 1996-1997; OR=0.20; 95%CI: 0.05-0.82) and older age were 

significantly associated (OR=0.93; 95%CI: 0.86-0.99). Asthma or allergy was no 

longer significant (OR=1.69; 95%CI: 0.62-4.57).  

 

 

Discussion   
 

Approximately 21% of the men and 15% of the women aged 30-59 years were 

hypertensive. Approximately 18% of the hypertensive men and 39% of the 

hypertensive women were receiving antihypertensive medication. According to the 

Dutch guidelines, only 21.9% of the untreated hypertensive men and 13.6% of the 

untreated hypertensive women were eligible for pharmacological treatment. Of the 

treated persons, 67.6% of the men and 51.9% of the women had uncontrolled blood 

pressure levels despite pharmacological treatment. A possible explanation for the 

differences found in men and women could be the higher rate of patient-physician 

contact of women and the higher compliance of women in our study population. 

Unfortunately, we did not have information on these variables and were therefore 

unable to investigate these factors. The prevalence of hypertension decreased and the 

prevalence of treatment increased between 1996 and 2002 in Doetinchem. 

The prevalence of hypertension in the Netherlands is similar compared to other 

Western-European studies. In England, the prevalence is approximately 24% for men 

and 22% for women (aged 30-59 years);17 in France, it is 16% for men and 9% for 

women (aged 18-50 years);18 and in Germany 39% for men and 25% for women 

(aged 25-64 years).19 The percentage of treated hypertensives in West-Europe is 

around 60% and the percentage of uncontrolled hypertensives around 20%. Wolf-

Maier et al.20 published that the prevalence of hypertension was 44% in six European 

countries and that only 8% of the hypertensive persons had their blood pressure 

controlled (aged 35-64 years). However, because of differences in study design, such
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as age range, years of screening, and method for blood pressure measurement, it is 

difficult to compare the results. In most studies, treatment and control of 

hypertension is better in women than in men.19 

The results from the multivariate analysis show that females, not being physically 

active, not having been screened at the beginning of the follow-up, low intake of salt, 

and use of cholesterol-lowering medication are positively associated with treatment of 

hypertension. Also, in other European studies, females and non-smoking are 

positively associated with treatment of hypertension, while results for age and 

evidence for cardiovascular diseases are not the same.21-23 This is probably caused by 

the difference in age range. In our study, subjects who are physically active or having 

a low salt diet are less likely to receive treatment. This might have occurred because 

these subjects were borderline hypertensive and were advised by their doctors to be 

more active in order to reduce their blood pressure or eat a low salt diet. The use of 

cholesterol-lowering medication and having asthma or allergy are factors associated 

with a better control of blood pressure. A possible explanation is that patients who 

already use medication besides blood pressure-lowering drugs have a higher 

compliance. In other European studies, female gender and evidence for cardiovascular 

disease are associated with a better control of blood pressure.21-23 The results of our 

study are similar, although, the differences in study designs make it difficult to 

compare the results.  

 

Treatment considerations 

At the moment, two different treatment guidelines are used in the Netherlands.22, 31 

The CBO consensus is the most recent guideline and is the result of a consensus 

between various health-care professionals, whereas the NHG guideline is less recent 

and is an advice from the Dutch General Practitioners Association. The NHG guideline 

still uses blood pressure ≥ 160/95 mmHg as a definition for hypertension, and 

recommends treatment goals < 160/90 mmHg. This may explain the poor control of 

blood pressure since 1996 and improvement during the most recent years. 

Nonetheless, even in the most recent years treatment and control rates of 

hypertension were far from optimal. Recently, the Joint National Committee on 

Prevention, Detection, Evaluation, and Treatment of High Blood pressure even 

recommended starting antihypertensive drug treatment in patients with blood 

pressure ≥ 140/90 mmHg, irrespective of their cardiovascular risk factor profile.25

One possible explanation for lack of control of blood pressure among treated 

hypertensives might be the lack of aggressiveness in treating persons. Another reason 

for not achieving the target blood pressure is poor patient compliance with the 

antihypertensive medication. According to several studies, about 50% to 60% of 

hypertensives adhere well to antihypertensive medication.26, 27 Lack of treatment 

among those eligible for drug treatment may be caused by a lack of detection of 

hypertension, physician noncompliance with treatment guidelines,28-32 or reluctance of 

persons to receive drug treatment.33, 34  
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Unfortunately, despite various intervention strategies of different aspects in the 

management of hypertension, only a few of these interventions have been effective in 

achieving improved control of blood pressure.35 Multiple interventions at the level of 

patients, health-care providers are probably more effective than a single interaction 

by a health-care provider alone.36   

The WHO reported in 1999 that there are worrying signs that the control rates 

had stabilized or even declined in some cases.11 This study demonstrates that the 

prevalence of hypertension has decreased and that the number of hypertensives 

treated has increased between 1996 and 2002 in Doetinchem. It is, however, difficult 

to compare the results from Doetinchem with the general Dutch population. The 

results from the multivariate analysis show that hypertensives living in Doetinchem 

were less likely to be treated and have their blood pressure controlled compared to 

hypertensives living in Amsterdam or Maastricht between 1996 and 1997. So, even in 

a small country as the Netherlands there are regional differences in treatment 

probability, which may be related to differences in lifestyle.   

 

Strengths and limitations 

A potential bias is that patients are classified as hypertensives based on 

measurements, which were obtained on a single occasion, although, averaged over 

two readings. However, we adjusted for within-person variability in blood pressure 

and total cholesterol. Ignoring this variability would have lead to incorrect 

classification of persons with normal blood pressure as hypertensives and therefore 

influence prevalence estimates. Also, a higher blood pressure (≥ 95/160 mmHg) cut-

off was used for the analysis of determinants of hypertension, since this could 

minimize the number of falsely assignment hypertensives. The results are, however, 

similar. 

Another limitation is that we used self-reported data and did not include an 

examination of subjects’ medical records. The influence of misclassification is difficult 

to assess because over and under-reporting of cardiovascular risk factors and 

diseases occur.37 The use of information from self-reported medication has most likely 

not influenced our prevalence estimates, because agreement between 

self-reported antihypertensive drug use in this survey and the pharmacy records of 

antihypertensive drug dispensing is excellent.38

The Doetinchem cohort was a re-examination. It is possible that persons who 

participate in the re-examination are more conscious of their health (e.g. better 

compliance with drugs, better lifestyle, and/or more visits to a physician). If this is 

the case we underestimated the number treated and controlled hypertensives in the 

general population.  

We decided to consider only subjects whose risk of developing a cardiovascular 

disease within the next 10 years exceeding 20% as “untreated but should be treated”. 

However, according to the CBO guidelines13 when the cardiovascular risk is between 

10% and 20%, drug treatment is cost-effective and may therefore be considered. So,
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the eligible group for treatment is most likely larger than considered in this study. We 

did not include this group in our analysis because the guidelines leave this to the 

individual choice of the physician and patient.  

 

 

Conclusions 
 

Overall, the results suggest that approximately 14% of the Dutch population aged 30-

59 years has hypertension (blood pressure ≥ 140/90 mmHg). The situation is better 

for women than for men. There remains a considerable proportion of hypertensives 

who are eligible for treatment but are untreated (18%) and treated patients whose 

blood pressure is not controlled (46%). Although treatment improved slightly during 

the study period in Doetinchem, control of hypertension in our study is far from 

optimal. Owing to the strong association between blood pressure and cardiovascular 

disease, it is necessary to improve treatment and control rates of hypertension in the 

Netherlands. To improve the management of hypertension, physicians may focus on 

the subgroups, which are identified in this study.   
 

 
 
 
 
 
 
 
 
 
 
 



Undertreatment of hypertension 

29   

 References 
 
1. Brown MJ, Haydock S. Pathoaetiology, epidemiology and diagnosis of hypertension. Drugs 2000;59 
Suppl 2:1-12; discussion 39-40. 
2. Svardsudd K, Tibblin G. Mortality and morbidity during 13.5 years' follow-up in relation to blood 
pressure. The study of men born in 1913. Acta Med Scand 1979;205(6):483-92. 
3. Fiebach NH, Hebert PR, Stampfer MJ, et al. A prospective study of high blood pressure and 
cardiovascular disease in women. Am J Epidemiol 1989;130(4):646-54. 
4. MacMahon S, Peto R, Cutler J, et al. Blood pressure, stroke, and coronary heart disease. Part 1, 
Prolonged differences in blood pressure: prospective observational studies corrected for the regression 
dilution bias. Lancet 1990;335(8692):765-74. 
5. van der Giezen AM, Schopman-Geurts van Kessel JG, Schouten EG, et al. Systolic blood pressure 
and cardiovascular mortality among 13,740 Dutch women. Prev Med 1990;19(4):456-65. 
6. Kannel WB. Blood pressure as a cardiovascular risk factor: prevention and treatment. Jama 
1996;275(20):1571-6. 
7. Collins R, MacMahon S. Blood pressure, antihypertensive drug treatment and the risks of stroke and 
of coronary heart disease. Br Med Bull 1994;50(2):272-98. 
8. Gueyffier F, Froment A, Gouton M. New meta-analysis of treatment trials of hypertension: improving 
the estimate of therapeutic benefit. J Hum Hypertens 1996;10(1):1-8. 
9. Neal B, MacMahon S, Chapman N. Effects of ACE-inhibitors, calcium channel blockers, and other 
blood-pressure-lowering drugs: results of prospectively designed overviews of randomized trials. Blood 
Pressure Lowering Treatment Trialists' Collaboration. Lancet 2000;356(9246):1955-64. 
10. Klungel OH, de Boer A, Paes AH, et al. Undertreatment of hypertension in a population-based study 
in The Netherlands. J Hypertens 1998;16(9):1371-8. 
11. 1999 World Health Organization-International Society of Hypertension Guidelines for the 
Management of Hypertension. Guidelines Subcommittee. J Hypertens 1999;17(2):151-83. 
12. Verschuren WMM, Leer van EM, Blokstra A, et al. Cardiovascular disease risk factors in The 
Netherlands. Neth J Cardiol 1993;4:205-10. 
13. Jacobsen BK, Thelle DS. Risk factors for coronary heart disease and level of education. The Tromso 
Heart Study. Am J Epidemiol 1988;127(5):923-32. 
14. Kraus JF, Borhani NO, Franti CE. Socioeconomic status, ethnicity, and risk of coronary heart disease. 
Am J Epidemiol 1980;111(4):407-14. 
15. CBO-consensus. Hoge bloeddruk. Herziening richtlijnen 2000 [in Dutch]. 
16. Klungel OH, de Boer A, Paes AH, et al. Estimating the prevalence of hypertension corrected for the 
effect of within-person variability in blood pressure. J Clin Epidemiol 2000;53(11):1158-63. 
17. Primatesta P, Brookes M, Poulter NR. Improved hypertension management and control: results from 
the health survey for England 1998. Hypertension 2001;38(4):827-32. 
18. de Gaudemaris R, Lang T, Chatellier G, et al. Socioeconomic inequalities in hypertension prevalence 
and care: the IHPAF Study. Hypertension 2002;39(6):1119-25. 
19. Gasse C, Hense HW, Stieber J, et al. Assessing hypertension management in the community: trends 
of prevalence, detection, treatment, and control of hypertension in the MONICA Project, Augsburg 1984-
1995. J Hum Hypertens 2001;15(1):27-36. 
20. Wolf-Maier K, Cooper RS, Banegas JR, et al. Hypertension prevalence and blood pressure levels in 6 
European countries, Canada, and the United States. Jama 2003;289(18):2363-9. 
21. De Henauw S, De Bacquer D, Fonteyne W, et al. Trends in the prevalence, detection, treatment and 
control of arterial hypertension in the Belgian adult population. J Hypertens 1998;16(3):277-84. 
22. Di Bari M, Salti F, Nardi M, et al. Undertreatment of hypertension in community-dwelling older 
adults: a drug-utilization study in Dicomano, Italy. J Hypertens 1999;17(11):1633-40. 
23. Shah S, Cook DG. Inequalities in the treatment and control of hypertension: age, social isolation and 
lifestyle are more important than economic circumstances. J Hypertens 2001;19(7):1333-40. 
24. NHG-Standaard Hypertensie. Huisarts Wet 1997; 40: 598-617 [in Dutch]. 
25. Chobanian AV, Bakris GL, Black HR, et al. The Seventh Report of the Joint National Committee on 
Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 Report. Jama 
2003;289(19):2560-71. 
26. Luscher TF, Vetter H, Siegenthaler W, et al. Compliance in hypertension: facts and concepts. J 
Hypertens Suppl 1985;3(1):S3-9. 
27. Balazovjech I, Hnilica P, Jr. Compliance with antihypertensive treatment in consultation rooms for 
hypertensive patients. J Hum Hypertens 1993;7(6):581-3. 



Chapter 2.1 

28. Haynes RB, Sackett DL, Gibson ES, et al. Improvement of medication compliance in uncontrolled 
hypertension. Lancet 1976;1(7972):1265-8. 
29. Peterson GM, McLean S, Millingen KS. Determinants of patient compliance with anticonvulsant 
therapy. Epilepsia 1982;23(6):607-13. 
30. Morisky DE, DeMuth NM, Field-Fass M, et al. Evaluation of family health education to build social 
support for long-term control of high blood pressure. Health Educ Q 1985;12(1):35-50. 
31. Eisen SA, Woodward RS, Miller D, et al. The effect of medication compliance on the control of 
hypertension. J Gen Intern Med 1987;2(5):298-305. 
32. Stockwell DH, Madhavan S, Cohen H, et al. The determinants of hypertension awareness, treatment, 
and control in an insured population. Am J Public Health 1994;84(11):1768-74. 
33. Wilber JA, Barrow JG. Hypertension--a community problem. Am J Med 1972;52(5):653-63. 
34. Klein LE. Compliance and blood pressure control. Hypertension 1988;11(3 Pt 2):II61-4. 
35. Trilling JS, Froom J. The urgent need to improve hypertension care. Arch Fam Med 2000;9(9):794-
801. 
36. Miller NH, Hill M, Kottke T, Ockene IS. The multilevel compliance challenge: recommendations for a 
call to action. A statement for healthcare professionals. Circulation 1997;95(4):1085-90. 
37. Klungel OH, de Boer A, Paes AH, et al. Cardiovascular diseases and risk factors in a population-
based study in The Netherlands: agreement between questionnaire information and medical records. 
Neth J Med 1999;55(4):177-83. 
38. Klungel OH, de Boer A, Paes AH, et al. Agreement between self-reported antihypertensive drug use 
and pharmacy records in a population-based study in The Netherlands. Pharm World Sci 
1999;21(5):217-20. 
 
 

 
 

30   



 

 

Chapter 3 
 

Pharmacogenetics and 

antihypertensive drugs 

 

   



 

   



 

 

Chapter 3.1 
 

Drug-gene interactions between 

genetic polymorphisms and 

antihypertensive therapy 

 
 

   



Chapter 3.1 

Abstract 
 

Genetic factors may influence the response to antihypertensive medication. A number 

of studies have investigated genetic polymorphisms as determinants of cardiovascular 

response to antihypertensive drug therapy. In most candidate gene studies, no such 

drug-gene interactions were found. However, there is observational evidence that 

hypertensive patients with the 460W-allele of the α-adducin gene have a lower risk of 

myocardial infarction and stroke when treated with diuretics compared with other 

antihypertensive therapies. With regard to blood pressure response, interactions were 

found between genetic polymorphisms in the endothelial nitric oxide synthase gene 

and diuretics, the α-adducin gene and diuretics, the α-subunit of G protein and β-

blockers, and the angiotensin converting enzyme (ACE) gene and angiotensin 

receptor II type 1 (AT1) receptor antagonists. Other studies found an interaction 

between ACE-inhibitors and the ACE insertion/deletion (I/D) polymorphism, which 

resulted in difference in AT1 receptor mRNA expression, left ventricular hypertrophy, 

and arterial stiffness between different genetic variants. Also, drug-gene interactions 

between calcium channel blockers and ACE I/D polymorphism regarding arterial 

stiffness have been reported. Unfortunately, the quality of these studies is quite 

variable. Given the methodological problems, the results from the candidate gene 

studies are still inconclusive and further research is necessary.  
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Introduction 
 

Hypertension is a major public health hazard because of its high prevalence, which is 

approximately 20% of the adult population in most developed countries1 and its high 

risk of cardiovascular diseases. Despite the availability of a variety of effective 

antihypertensive drugs, inadequate control of blood pressure is common in 

hypertensive patients, and is responsible for a large proportion of cardiovascular 

diseases in the population.2-4 The average response to antihypertensive drugs is 

similar across different classes of antihypertensives. For example, in the Veterans 

Affairs study,5 a randomized placebo-controlled clinical trail in which patients were 

randomly allocated to six different drugs or placebo, 31.7% of all hypertensive 

patients who were allocated to monotherapy with an antihypertensive drugs failed to 

achieve a normal diastolic blood pressure. When the initial treatment failed, 85.9% of 

these patients were randomized to another antihypertensive drugs which failed in 

37.8% of these patients.5 Although, the currently used ‘trial and error’ approach to 

antihypertensive drug therapy can be efficient in treating high blood pressure, it is not 

feasible with regards to long-term effects, such as myocardial infarction (MI) and 

stroke. Important factors in interpreting the variability in outcome of drug therapy 

include the patient's general health, prognosis, disease severity, quality of drug 

prescribing and dispensing, compliance with prescribed pharmacotherapy, and the 

genetic profile of the patient.6, 7

Multiple susceptibility genes and the environment explain the phenotype of 

essential hypertension. From family, twin, and adoption studies it has been estimated 

that 30% to 60% of the variation in blood pressure between individuals is caused by 

genetic factors.8 However, there is a small proportion of familial forms of hypertension 

that have a single gene (Mendelian) inheritance pattern. These include: apparent 

mineralocorticoid excess, glucocorticoid remediable aldosteronism, hypertensive 

forms of congenital adrenal hyperplasia, Liddle's syndrome, pseudohypoaldosteronism 

type II/Gordon’s syndrome, early-onset, autosomal dominant hypertension with 

severe exacerbation in pregnancy, and Bardet-Biedl syndrome types 2 and 4.9-11 

Pharmacogenetics focuses on the extent to which variability in genetic make-up is 

responsible for the observed differences in therapeutic response and adverse 

reactions between patients.6, 7 In other words, pharmacogenetics studies the 

interaction between drugs and genes, where interaction is defined as being present if 

the joint effect of a drug and genetic polymorphism is greater than the sum (additive 

scale) or product (multiplicative scale) of the individual effects of the drug and the 

genetic polymorphism. The purpose of pharmacogenetics is to understand the effects 

of genetic diversity on human response to drugs and other foreign substances and to 

use this information to avoid the occurrence of therapeutic failure and adverse drug 

reactions in susceptible persons.12 Drugs that are more specific for functional 

characteristics associated with an individual patient’s polymorphism may contribute to 

a better response and reduced toxicity of pharmacotherapy.  

35   



Chapter 3.1 

Genetic polymorphisms may influence drug response in three ways.13  

1. Through variation in pharmacokinetics that may pertain to absorption, but is mostly 

explained by altered metabolic clearance. Many pharmacokinetic drug-gene 

interactions are related to the cytochrome P450 (CYP) enzyme system.14 The majority 

of these enzymes are located in the endoplasmatic reticulum of the hepatocytes. This 

enzyme system can be modulated by genetic polymorphisms, causing some 

individuals to be poor (slow) metabolizers and others to be extensive (rapid) 

metabolizers. This is the case for many calcium channel blockers that are metabolized 

by CYP3A4, many lipophilic β-blockers by CYP2D6, and losartan and irbesartan by 

CYP2C9.15 However, it is unlikely that pharmacokinetic effects cause most of the 

antihypertensive drug-gene interactions.  

2.  Through altered pharmacodynamic drug-gene interactions. These involve, for 

example, gene products expressed as drug targets such as receptors and signal 

transduction molecules, which are relevant to the pharmacodynamics of drugs.  

3. Through genes that are in the causal pathway of the disease and are able to modify 

the effects of drugs.  

It is important to realize that most of the variation in blood pressure can be 

explained by a pharmacodynamic, rather than by pharmacokinetic, mechanism.16 This 

is most apparent in studies in which pharmacokinetic and pharmacodynamic 

assessments are available in the same subjects, and in which inter-subject variability 

can be expressed as a coefficient of variation.  

Six previous review articles presented pharmacogenetic concepts relevant to 

antihypertensive drug therapy. These articles included a brief overview of candidate 

genes studies with respect to blood pressure response and other cardiovascular 

responses to antihypertensive drug therapy.17-22 Our review extends the previous 

overviews and discusses some of the reasons for inconsistent results regarding drug-

gene interactions between genetic polymorphisms and antihypertensive drug therapy. 

Studies were identified in the Medline database from 1966 to October 2003 by 

combinations of the keywords: ‘antihypertensive drug’, ‘genetics’, and ‘polymorphism’ 

and by checking the references of all identified papers. All studies that reported data 

on genetic polymorphisms and response to antihypertensive drug therapy were 

included. Response to antihypertensive drugs was not pre-specified and could include 

blood pressure response, change in left ventricular mass, risk of MI and stroke, and 

other cardiovascular effects. 

 

  

Candidate gene studies and antihypertensive drugs 
 

Forty-one studies were found on the potential gene-drug interaction between genetic 

polymorphisms and antihypertensive drugs. Details of these studies are given in table 

1 and 2.  
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Table 1. The influence of genetic polymorphisms on the effect of antihypertensive medicine in patients 
with essential hypertension.  
 
Sample Duration  

of therapy 
Gene 
(location) 

Polymorphism Allelic association1 References 

Thiazide diuretic 
n=143 
Caucasian 

8wk ADD1 
(4p16.3) 

G460W 460W-allele associated 
with greater BP response 

23, 24

n=1038 
mixed 

4y  G460W 460W-allele associated 
with a lower risk of 
(combined) MI and stroke 
in comparison to other 
antihypertensive therapies 
(observational study) 

30

n=87 
Caucasian 

2mo  G460W 460W-allele associated 
with greater BP reduction 

29  

n=585 
mixed 

4wk  G460W No association (BP) 34

n=87 
Caucasian 

2mo ACE  
(17q23) 

I/D I-allele associated with a 
greater BP response 

29

n=376-585 
mixed 

4wk  I/D No association (BP) 34, 35

n=387-585 
mixed 

4wk GNB3  
(12p13) 

825C/T T-allele associated with 
greater BP response 

33

n=585 
mixed 

4wk ADRB1  
(10q24-q26) 

R389G No association (BP) 34

n=585  
mixed 

4wk ADRB2  
(5q31-q32) 

R16G No association (BP) 34

n=585  
mixed 

4wk LPL  
(8p22) 

S477Stop No association (BP) 34

n=585  
mixed 

4wk NOS2A  
(17p11-q12) 

E298D E-allele associated with 
greater DBP response 

34

      
β-blocker 
n=63-91 
Caucasian 

4wk AGT  
(1q42-q42) 

M235T No association (BP) 44

n=84-86 
Caucasian 

1-3mo  M235T No association (BP and 
LVM) 

45, 46

n=84-86 
Caucasian 

1-3mo  T174M No association (BP and 
LVM) 

45, 46

n=63-91 
Caucasian 

4wk ACE  
(17q23) 

I/D No association (BP) 44

n=50 
Caucasian 

15d  I/D No association (AT1R 
mRNA expression) 

47

n=84-86 
Caucasian 

1-3mo  I/D No association (BP and 
LVM) 

45, 46

n=84-86 
Caucasian 

1-3mo AGTR1  
(13q21-q25) 

1166A/C No association (BP and 
LVM) 

45, 46

n=147 
Caucasian 

4wk ADRB1  
(10q24-q26) 

G389R No association (BP and 
heart rate) 

48

n=40  
mixed 

>4wk  G389R R-allele associated with 
greater DBP reduction 

51

n=40  
mixed 

>4wk  S49G S-allele associated with a 
trend towards DBP 
reduction 

51

n=84-86 
Caucasian 

3mo CYP11B2 
(8q21-q22) 

-344C/T No association (BP and 
LVM) 

46, 49

n=97 
Caucasian 

3mo 74 SNPs2

ADRA2A 
 Association with: 

SBP (278G/T) and DBP 

59
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(10q24-q26) 
ADRB2  
(5q31-q32) 
AGT  
(1q42-q43) 
ADNRB3 
(13q22) 
NOS3  
(7q36) 
LIPC  
(15q21-q23) 

(1309G/A) 
SBP (1342G/C) and DBP 
(1817G/A) 
SBP (1015C/T) 
 
SBP and DBP (40G/A) 
 
SBP (498G/A) and DBP 
(2996A/G) 
DBP (110A/G) 

n=90 
Caucasian 

48wk BDKRB2 
(14q32) 

+9/-9 No association (LVM) 50

n=66 
Caucasian 

4wk GNAS  
(20q13) 

FokI (+/-) FokI +allele associated 
with greater BP reduction 

43

n=90 
Caucasian 

48wk TGFB1 
(19p13.2) 

915G/C No association (LVM) 103

      
ACE-inhibitor 
n=63-91 
Caucasian 

4wk AGT  
(1q42-q42) 

M235T No association (BP) 44

n=125 
Caucasian 

4wk  M235T 235T-allele associated with 
greater BP reduction 

61

n=1041 
mixed 

  M235T 235T-allele associated with 
a lower risk of stroke 
(observational study) 

62

n=63-91 
Caucasian 

4wk ACE  
(17q23) 

I/D No association (BP) 44

n=125 
Caucasian 

4wk  I/D No association (BP) 61

n=104 
Caucasian 

6mo  I/D D-allele associated with 
greater BP reduction 

64

n=50 
Japanese 

15d  I/D D-allele associated with 
greater AT1R mRNA 
expression 

47

n=54 
Japanese 

>2y  I/D I-allele associated with 
greater regression of LVH 

65

n=75 
Japanese 

6mo  I/D I-allele associated with 
greater regression of LVH 

67

n=60 
Japanese 

1y  I/D D-allele associated with 
positive effect on LVH and 
reduced diastolic filling 

63

n=57 
Japanese 

6wk  I/D I-allele associated with 
trend towards greater DBP 
reduction 

66

n=517 
Chinese 

6wk  I/D No association (BP) 75

n=82  
Japanese 

1h  I/D No association (BP and 
plasma renin activity)  

74

n=40 
Caucasian 

2mo AGTR1  
(13q21-q25) 

1166A/C 1166C-allele associated 
with greater BP reduction 
and arterial stiffness; no 
association heart rate 

68

n=125 
Caucasian 

4wk  1166A/C No association (BP) 61

      
AT1R antagonist 
n=84-86 
Caucasian 

1-3mo AGT  
(1q42-q42) 

M235T No association (BP and 
LVM) 

45, 46
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n=84-86 
Caucasian 

1-3mo  T174M 174M-allele associated 
with positive effect on 
LVM; no association BP 

45, 46

n=84-86 
Caucasian 

1-3mo ACE  
(17q23) 

I/D I-allele associated with 
greater DBP reduction; no 
association LVM 

45, 46

n=42 
Japanese 

12w  I/D I-allele associated with 
greater DBP reduction 

104

n=84-86 
Caucasian 

1-3mo AGTR1  
(13q21-q25) 

1166A/C 1166A-allele associated 
with a trend towards 
greater SBP reduction; no 
association LVM 

45, 46

n=84 
Caucasian 

3mo CYP11B2 
(8q21-q22) 

-344C/T -344T-allele associated 
with greater SBP 
reduction; no association 
LVM 

46, 49

n=84 
Caucasian 

12wk CYP2C9 
(10q24) 

*1 and *2 *1/*1 compared with 
*1/*2 associated with 
greater DBP reduction 

105

n=97 
Caucasian 

3mo 74 SNPs2

APOA1  
(11q23-q24) 
CYP11B2 
(8q21-q22) 
EDNRB  
(13q22) 
NOS3 (7q36) 
ACE (17q23) 
AGT  
(1q24-q43) 
LIPC  
(15q21-q23) 

 Association with: 
SBP and DBP (1449 A/G) 
 
SBP (267T/C) 
 
SBP (40G/A) 
 
SBP (498G/A) 
DBP (12257A/G) 
DBP (1198 C/T) 
 
DBP (110A/G) 

59

n=90 
Caucasian 

48wk BDKRB2 
(14q32) 

+9/-9 No association (LVM) 50

n=90 
Caucasian 

48wk TGFB1  
(19q13.1) 

915G/C C-allele associated with 
greater reduction LVM 

103

      
Calcium channel blocker 
n=63-91 
Caucasian 

4wk AGT  
(1q42-q42) 

M235T No association (BP) 44

n=50 
Caucasian 

15d ACE  
(17q23) 

I/D I-allele associated with 
reduced AT1R mRNA 
expression 

47

n=40 
Caucasian 

2mo AGTR1  
(13q21-q25) 

1166A/C 1166A-allele associated 
with greater reduction 
arterial stiffness; no 
association BP and heart 
rate 

77

 
1 Comparisons are versus untreated or placebo, unless otherwise specified. 
2 74 single nucleotide polymorphisms in 25 genes involved in BP regulation. 
d=days; h=hours; wk=weeks; y=years 
AT1=angiotensin II type 1; BP=blood pressure; DBP=diastolic blood pressure; I/D= 
insertion/deletion; LVH=left ventricular hypertrophy; LVM=left ventricular mass; MI=myocardial 
infarction; mRNA=messenger RNA; SBP=systolic blood pressure 
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Diuretics  

One of the first polymorphisms examined for blood pressure response in patients 

treated with diuretics was the G460W (a Gly to a Trp substitution at residue 460) α-

adducin polymorphism.23, 24 The human α-adducin 460W-allele can be considered as a 

candidate gene for hypertension, because it may affect blood pressure by increasing 

renal tubular reabsorption of sodium through the activation of Na+,K+-ATPase 

(adenosine triphosphatase). Linkage and association studies, performed with markers 

mapping in the region (loci) of the α-adducin locus and with the α-adducin G460W 

polymorphism, respectively, yielded positive associations.23 Compared with 

hypertensive patients who are homozygous for the 460G wild-type allele, 

hypertensive patients carrying at least one 460W-allele have a less steep pressure 

natriuresis slope. This means that they need a higher arterial pressure to excrete the 

same amount of sodium after saline infusion.25 Moreover, they have lower plasma 

renin activity,23 enhanced proximal tubular reabsorption,26 and a more pronounced 

blood pressure decrease after acute sodium depletion or long-term diuretic 

treatment.23 The 460W-allele of the α-adducin gene is associated with a higher affinity 

for the Na+,K+-ATPase pump than the 460G-allele.27 This last finding is particularly 

relevant because the same functional protein alteration has been demonstrated in 

both the rat and human ‘hypertensive’ α-adducin variant, suggesting that the protein 

plays a crucial role in Na+/K+ metabolism.27, 28 In two trials, the 460W-allele was 

associated with a greater blood pressure reduction in response to treatment with 

diuretics. In heterozygous (G/W) hypertensive patients a mean blood pressure 

decrease of 14.7 ± 2.2 mmHg was found versus 6.8 ± 1.4 mmHg in homozygous 

(G/G) hypertensive patients.23, 24  Recently, a second group of researchers also found 

an interaction between mean arterial pressure (diastolic blood pressure + (systolic 

blood pressure-diastolic blood pressure)/3) reduction and the G460W polymorphism. 

Homozygous (G/G) hypertensive patients had a reduction of 6 mmHg and patients 

with at least one 460W-allele had a reduction of 12 mmHg in mean blood pressure.29 

In another study the 460W-allele was associated with a lower risk (Odds ratio 

(OR)=0.49; 95%CI: 0.32-0.77) of MI and stroke in diuretic users compared with 

users of other antihypertensive drug therapies.30 

Recently, the ACE insertion/deletion (I/D) polymorphism was investigated for its 

role in blood pressure response to a diuretic (hydrochloorthiazide 25 mg). In this 

study a significant association was found between the ACE I/D polymorphism and 

response to hydrochlorothiazide. Hypertensive patients with the II genotype had a 

mean arterial pressure reduction of approximately 10 mmHg and those with the DD 

genotype a reduction of 3.8 mmHg.29

A third polymorphism that may influence the effect of a diuretic is the 825C/T 

(cytosine into a thymine) polymorphism (exon 10) of the gene encoding for the β3-

subunit of the G-protein. The G-protein mediate signal transduction across cell 

membranes.31 The 825T-allele of the β3-subunit of the G-protein polymorphism has 

been related to an RNA splice variant that results in the deletion of nucleotides 498-
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Table 2. The influence of genetic polymorphisms on the effect of antihypertensive medicine in 

non-hypertensive patients, but related diseases. 
 
Sample Duration  

of therapy 
Gene 
(location) 

Polymorphism Allelic association1 References 

β-blocker 
Nondiabetic 
nephropathy; 
n=81 Caucasian 

3-4y ACE  
(17q23) 

I/D D-allele associated 
with reduced 
glomerular filtration 

52

Chronic heart 
failure; n=328 
Caucasian 

2y  I/D D-allele associated 
with decreased 
chance of needing a 
heart transplantation 

53

      
ACE-inhibitor 
Proteinuric renal 
disease; n=36 
Caucasian 

12wk ACE  
(17q23) 

I/D No association 
(proteinuria) 

69

Diabetic 
nephropaty; 
n=35 Caucasian 

7y  I/D D associated with 
reduced glomerular 
filtration 

68

Chronic heart 
failure; n=34 
Caucasian 

6wk  I/D I-allele associated 
with greater BP 
reduction (captopril); 
no association 
(lisinopril) 

70

Post-PTCA; 
n=126 Japanese 

3-6mo  I/D I-allele associated 
with reduced chance 
of restenosis 

71

Nondiabetic 
nephropathy; 
n=81 Caucasian 

3-4y  I/D D-allele associated 
with reduced 
glomerular filtration 

52

Nondiabetic 
nephropathy; 
n=88 Caucasian 

4-12wk  I/D D-allele associated 
with reduced 
proteinuria (when 
there is a high salt 
excration) 

58

Post-coronary 
stents; n=345, 
Caucasian 

6mo  I/D I-allele associated 
with increased 
chance of restenosis 

72

Cerebrovascular 
disease 
(stroke/TIA); 
n=5688 mixed 

4wk  I/D No association 
(predicting 
cardiovascular risk of 
effect treatment) 

73

      
AT1R antagonist 
Diabetic 
nephropathy; 
n=45 Caucasian 

4mo ACE  
(17q23) 

I/D No association (BP 
and albuminuria) 

106

 
1 Comparisons are versus untreated or placebo, unless otherwise specified. 
d=days; wk=weeks; y=years 
AT1=angiotensin II type 1; BP=blood pressure; I/D=insertion/deletion; PTCA=percutaneous 
transluminal coronary angioplasty; TIA=transient ischaemic attack 

 

620 of exon 9 and structural changes in the β-subunit.32 Moreover, an enhanced 

signal was observed in lymphoblast lines from hypertensive individuals carrying the 

41  



Chapter 3.1 

825T-allele,31 which suggests that this genetic variation may indeed affect signal 

transduction. In one trial, a positive association was found between the 825T-allele 

and the effect of hydrochlorothiazide on blood pressure. Mean declines in systolic and 

diastolic blood pressures were 6 ± 2 and 5 ± 1 mmHg greater in TT than in CC 

homozygous patients, respectively.33  In the same study an association was found 

between thiazides and the 298E-allele of nitric oxide synthase gene on diastolic blood 

pressure with a larger sample size.34 Hypertensive patients homozygous for E-allele 

had a diastolic blood pressure reduction of 8.6 ± 0.4 mmHg compared to 7.1 ± 0.6 

mmHg for the other genotype groups. Their previously reported interaction with ACE 

gene35 could not be replicated with this larger sample size.34  

Recently, an alternatively spliced transcript of the β3-subunit of the G-protein 

referred to as Gβ3S2 was identified. Transcripts of the Gβ3S2 lack a 129 base pair of 

coding sequence of the β3-subunit of the G-protein. A close association between 

Gβ3S2 expression and T-allele status of the 825 C/T polymorphism of the β3-subunit 

of the G-protein was found. The data suggest that Gβ3S2 is a biologically active 

variant of the β-subunit of the G-protein, which may play a role in the manifestation 

of the complex phenotype associated with the 825C/T polymorphism.36

A polymorphism of the α-adducin gene may be used to identify patients with 

hypertension who are salt sensitive and respond relatively well to treatment with a 

diuretic. Nevertheless, two studies did not find an association between salt sensitive 

and this gene in young men37 or the general population.38 The β3-subunit of the G-

protein was also proposed as an candidate gene, but Ciechanowicz et al.39 could not 

find an association between polymorphism of the α-adducin gene and salt sensitivity 

of blood pressure. Furthermore, it has been suggested that polymorphisms of the 

angiotensin II type 1 receptor gene (AGTR1) and the γ-subunit of the epithelial Na+-

channel are also associated with salt sensitivity.40, 41 However, Giner et al. could not 

find an association.42 Whether genetic polymorphisms that are associated with salt-

sensitivity also modify the response to diuretics remains to be investigated. 

 

β-Blockers  

In only two of 11 studies was a drug-gene interaction found on blood pressure 

response to a β-blocker.43-51 This reduced response was attributed to a FokI +/- 

polymorphism encoding for the α-subunit of the G-protein. Good responders (62.5% 

had a FokI +allele) had a mean arterial blood pressure decrease of > 15 mmHg and 

poor responders (41.7% had a FokI +allele) had a decrease of < 11 mmHg.43 The α-

subunit of each heterotrimeric G-protein contains the guanine nucleotide-binding site, 

which has intrinsic guanosine triphosphatase activity and confers the functional 

specificity on each G-protein that allows it to discriminate among multiple receptors 

and effectors. In the cardiovascular system, the α-subunit of the G-protein couples 

β1- and β2-adrenoceptors in order to stimulate the cyclic adenosine monophosphate 

(cAMP) production. Johnson et al.51 found an interaction between β1-adrenergic 

receptor and metoprolol. Patients homozygygous for arginine at codon 389 had a 
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nearly 3-fold greater reduction in daytime diastolic blood pressure compared with 

those who carried the variant allele. 

In patients with nondiabetic nephropathy, the presence of the ACE D-allele was 

associated with a reduction of glomerular filtration.52 Another drug-gene interaction 

with the ACE D-allele was observed in patients with chronic heart failure. In this 

study,53 treatment with a β-blocker was associated with a decreased need for a heart 

transplantation.  

The A (adenine) into a C (cytosine) transversion at nucleotide position 1166 is 

located in the 3' untranslated region of the AGTR1 gene on chromosome 3q21-q25. 

Some studies have shown that it was associated with hypertension,54, 55 left 

ventricular hypertrophy (LVH),56 coronary heart disease, MI,57 and progression of 

diabetic nephropathy.58 The 1166A/C polymorphism of the AGTR1 gene was, however, 

not related to variation in blood pressure response or degree of LVH during β-blocker 

therapy in small groups of hypertensive patients.44, 45 

Recently, Liljedahl et al.59 tested a microarray-based minisequencing system on 

DNA samples of 97 hypertensive patients, of whom 49 were treated with atenolol. 

This group of researchers genotyped 74 Single Nucleotide Polymorphisms (SNPs) in 

25 genes that were involved in blood pressure regulation using stepwise multiple 

regression. Their results indicated drug-gene interactions between atenolol and 

several genes which resulted in a change in blood pressure, including: the 40G/A 

polymorphism of the endothelin receptor type B gene, the 278G/T and 1817G/A 

polymorphism of the adrenergic α1a-receptor gene, the 1342G/C and 1309G/A 

polymorphism of the adrenergic β2-receptor gene, the 498G/A and 2996A/G 

polymorphism of the endothelial nitric oxide synthase gene, and the 110A/G 

polymorphism of the lipase hepatic gene.59 However, this study included only a small 

number of patients and was focused on the applicability of the minisequencing system 

rather than on finding drug-gene interactions. Because of the large number of SNPs 

tested without adjustment for multiple testing and the small number of patients, this 

study could have resulted in a large number of false-positives and false-negative 

associations. The minisequencing method and study population was also used for the 

analysis of 30 SNPs in seven candidate genes of the renin-angiotensin system. In this 

study the researchers found that the -6A/G and M235T polymorphism of the 

angiotensinogen gene were associated with systolic blood pressure response.60   

 

ACE-inhibitors  

Most studies on interactions between ACE-inhibitors and genetic polymorphisms have 

concentrated on the renin-angiotensin system (RAS). One of the steps of the RAS 

system is the expression of angiotensinogen precursor in the liver. In response to 

lowered blood pressure it is cleaved by the enzyme renin. The resulting product, 

angiotensin I, is then cleaved by ACE to generate the physiologically active enzyme 

angiotensin II. This protein is involved in maintaining long-term blood pressure and in 

the pathogenesis of essential hypertension. 
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In one study, no drug-gene interaction was found between ACE-inhibitors and the 

M235T (methionine into a threonine) polymorphism of the angiotensinogen gene.44 

However, in a larger study an interaction was found.61 In this study, the reduction in 

systolic blood pressure was 20 ± 3 mmHg in patients with the TT genotype compared 

with 22 ± 2 mmHg in patients with MT genotype and 13 ± 4 mmHg in patients with 

the MM genotype. The reduction in diastolic blood pressure in patients carrying the TT 

genotype was 11 ± 3 mmHg compared with 14 ± 2 mmHg in patients with the MT

genotype, and 8 ± 2.5 mmHg in patients with the MM genotype.61 Another group of 

researchers found that ACE-inhibitor use compared with other antihypertensive drugs 

was associated with a lower risk of stroke among the TT genotype (OR=0.37; 95%CI: 

0.14-0.99) than among MT or MM genotype (OR=1.2; 95%CI: 0.88-2.40). No drug-

gene interaction on the risk of MI was found.62

Most studies have concentrated on investigating the association between the I/D 

polymorphism (intron 16) of the ACE gene and the response to an ACE-inhibitor. In 

12 out of 18 studies, an association could be found.47, 63-75 In one study, a greater 

blood pressure reduction with ACE-inhibitor therapy was observed in subjects with at 

least one copy of the D-allele. In this study, the reduction in systolic blood pressure in 

patients with the DD genotype was 5.6 ± 3.1 mmHg compared with 3.1 ± 1.1 mmHg 

with the II genotype and 3.6 ± 2.2 mmHg with the ID genotype. The reduction in 

diastolic blood pressure in patients with the DD genotype was 8.9 ± 6.0 mmHg 

compared with 5.5 ± 3.4 mmHg with the II genotype and 5.8 ± 4.0 mmHg with the ID 

genotype.64 In the other studies, the I-allele was associated with a reduced regression 

of LVH in patients with hypertension65, 66 and increased chance on restenosis in 

patients with coronair stents.72 The D-allele was associated with reduced AT1 receptor 

mRNA expression,47 left ventricular hypertrophy, reduced diastolic filling,63 greater 

reduction of glomerular filtration in diabetic and non-diabetic patients,52, 68 and less 

reduction of proteinuria in patients with nondiabetic nephropathy (primarily combined 

with a high excretion of salt).76

In two studies, the interaction between the 1166A/C polymorphism of the AGTR1 

gene and the response to ACE-inhibitors was investigated. In a small study, no 

interaction was found.61 In a larger study, the C-allele was associated with greater 

reduction of arterial stiffness and blood pressure by ACE inhibition. Patients with the 

AA genotype had a blood pressure reduction of approximately 6 mmHg and those with 

AC/CC genotype had a reduction of approximately 14 mmHg.77

 

Angiotensin II type 1 receptor antagonists  

Only one group has investigated the role of genetic polymorphisms and the response 

to an angiotensin II type 1 (AT1) receptor antagonist (irbesartan).44, 45, 48, 49, 58 The 

174M-allele of the angiotensinogen gene was associated with a positive effect of 

irbesartan on LVH. No interactions were found between the M235T polymorphism of 

the angiotensinogen gene or the –344C/T (cytosine to a thymine) polymorphism of 

the aldosterone synthase gene (CYP11B2) and irbesartan on reduction of LVH.45, 46, 49 
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However, the -344T-allele of the aldosterone synthase gene was associated with an 

increased reduction of systolic blood pressure after treatment with the AT1 receptor 

antagonist. Patients with TT genotype had a mean reduction in blood pressure of 21 ± 

19 mmHg compared with 14 ± 18 mmHg in patients with TC genotype and 0 ± 17 

mmHg in patients with CC genotype.49 Also the I-allele of the ACE gene was 

associated with a reduction of diastolic blood pressure. Patients with the II genotype 

had a reduction of 18 ± 12 mmHg compared with 8 ± 11 mmHg in patients with ID

genotype and 6 ± 9 mmHg in patients with DD genotype.45 Aldosterone synthase is a 

key rate-limiting enzyme for the biosynthesis of aldosterone. The –344C/T 

polymorphism is associated with elevated plasma aldosterone concentration through 

increased aldosterone synthesis.78 These results suggest that the –344T-allele is 

functionally associated with increased sodium reabsorption and thereby maintains 

blood pressure at a higher level due to volume expansion. 

Liljedahl et al. 59 tested a microarray-based minisequencing system on DNA 

samples of 97 hypertensive patients of whom 48 were treated with irbesartan. They 

found that lowering of blood pressure by irbesartan was modified by several 

polymorphisms, including: the 1449A/G polymorphism of the apolipoprotein A, the 

267C/T polymorphism of the cytochrome P450, family 11, subfamily B, polypeptide 2 

gene (CYP11B2), the 40G/A polymorphism of the endothelin receptor type B gene, 

the 498G/A polymorphism of the endothelial nitric oxide synthase gene, the 1015C/T 

polymorphism of the angiotensinogen gene, the 12257G/A polymorphism of the ACE 

gene, and the 110A/G polymorphism of the lipase hepatic gene.59  

 

Calcium channel blocker 

The influence of genetic polymorphisms on calcium channel blockers had been 

examined in three studies. In one study, an interaction was observed between 

calcium channel blockers and the ACE gene: patients with the I-allele had a reduced 

expression of AT1 receptor mRNA.47 Another study found a drug-gene interaction with 

the A-allele of the 1166A/C polymorphism of the AGTR1 gene, which lead to greater 

reduction of arterial stiffness.77 A drug-gene interaction between the M235T-allele of 

the angiotensinogen gene and calcium channel blockers could not be demonstrated 

regarding blood pressure response.44, 77   

 

 

Potential reasons for inconsistent findings 
 

Most of the studies exhibited inconsistent findings and did not yield conclusive results. 

In one out of four studies, for example, an interaction was found between the ACE 

gene and ACE-inhibitors regarding blood pressure response. The most promising 

result was the interaction between the α-adducin G460W polymorphism and blood 

pressure response and risk of MI and stroke in response to diuretics. However, these 

results need to be replicated before definitive conclusions can be made.  
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It is known that it may be problematic to demonstrate linkage or association 

consistently. For example, some groups were able to confirm an association between 

hypertension and the M235T polymorphism, while others could not.79-81 A meta-

analysis of 5,500 subjects reported a significant but weak association (OR=1.2; p < 

0.0001) between this polymorphism and hypertension.82 This is most likely the same 

for studies investigating the role of genetic polymorphisms and the response to 

antihypertensive treatment. For this reason, pharmacogenetic studies require a large

group of patients in order to have sufficient power to detect small genetic effects. This 

will reduce the likelihood of getting false-positive or false-negative results. For 

instance, Turner et al.34 found no interaction between the ACE gene and the effect of 

hydrochlorothiazide on blood pressure response, in contrast to their previous reported 

association with a smaller sample size.33, 35 The sample size in the studies 

investigating antihypertensive drug-gene interactions in hypertensive patients ranged 

from 40 to 1,048 persons. However, > 60% of the studies had less than 100 patients 

which is not sufficient for conclusive results when, besides a genetic factor, also an 

interaction is investigated. The number of patients needed to detect drug-gene 

interactions depends on the outcome studied (e.g. continuous vs. categorical), the 

contrast between responders and nonresponders in different genotype groups (the 

amount of interaction), and the precision of the measurements.83, 84  

 

Genetic diversity between populations 

Genetic diversity between populations can hinder replication of results. Gene variants 

that were selected during evolution to conserve salt, for example, may play a larger 

role in hypertensive patients with ancestors from Africa.18 In a study where the 

disease-causing allele is more prevalent, it might be easier to find an interaction. One 

examples which was investigated for antihypertensive drug-gene interaction is the 

frequency of the I-allele of the ACE gene which is different between Asian and 

Caucasian population, i.e. 62% versus 50%, respectively.61, 64, 66

 

Different study design 

There are often different inclusion criteria for different study population. If, for 

example, one study only includes patients with severe hypertension, it is possible that 

these patients have a genetic profile which differs from moderate hypertensive 

patients examined in another study. This might be the case when the study of 

Stavroulakis et al. (SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg)52 is compared with 

Hingorani et al. (SBP > 160 mmHg or DBP > 90 mmHg).61 Furthermore, differences in 

treatment regime were found between these studies. Both studies had a 4-week 

washout period, but in one study patients were given 20 mg fosinopril one daily64 

(defined daily dose [DDD] equivalent=1.33) while in the other study, patients were 

given 50 mg/day captopril or 10 mg/day enalapril or 10 mg/day lisinopril or 4 mg/day 

perindopril (all DDD equivalent=1).61 Another influence may be the variation in 

duration of therapy in different studies. The duration of therapy ranged from 15 days 
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to 7 years in studies which focused on antihypertensive drug-gene interactions in 

hypertensive patients.  

Different results may be explained by the use of different study designs, such as 

experimental (e.g. randomized clinical trail) and observational (e.g. cohort and case-

control) studies. In observational study designs for example confounding maybe a 

problem (e.g. confounding by indication). 

Another potential explanation for different results relates to the definition of 

outcome. For instance, Scarrione et al.29 used the reduction in mean blood pressure, 

while Turner et al.34 used systolic and diastolic blood pressure separately.  

 

Genetic polymorphism and disease-causing factors 

Most of the examined polymorphisms are probably not the disease-causing factors.69 

An example is the M235T polymorphism of the angiotensinogen gene. There is now 

evidence that an A for G nucleotide substitution in the promoter region of the 

angiotensinogen gene 6 nucleotide upstream from the start site of transcription is the 

functional mutation.85, 86 The A substitution alters the binding of a nuclear protein, 

resulting in increased gene transcription compatible with increased angiotensinogen 

levels. Fortunately, it has been suggested that the –6G/A polymorphism is nearly in 

complete linkage disequilibrium (LD) with the M235T polymorphism.82, 87 The same 

holds for the I/D polymorphism in the ACE gene. The I/D polymorphism predicts 

approximately half of the interindividual variability in serum88, 89 and tissue.90 Thus, 

the probability that the ACE gene is not in linkage equilibrium with the functional 

polymorphism is considered small.89, 91, 92  

 

 

Considerations for the design of a pharmacogenetic study 
 

There are several ways to design studies to investigate interactions between 

antihypertensive drugs and genetic polymorphisms. All studies performed to date 

investigated (allelic) polymorphisms. This sort of study provides the most powerful 

approach to identify genes of small effect in complex traits93 because the markers that 

are used are either very close to the susceptibility locus or lie in the gene of interest 

itself. It is difficult to perform a linkage study, because a high number of patients 

would be needed and only relatives who use the same antihypertensive drugs can be 

included. In the future, genome-wide association studies using SNPs will become 

possible, which will make it available to use unrelated cases and controls to map 

regions of the genome, and eventually the whole genome.  

It is possible to consider different endpoints when investigating hypertension. For 

example, studies could consider long-term outcomes such as MI and/or stroke, 

intermediate-term outcomes such as atherosclerosis and/or LVH, or short-term 

outcomes such as blood pressure. Another option is to investigate adverse effects of 

antihypertensive drugs or adherence to antihypertensive medication. Moreover, there 
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are several potential inclusion criteria and there is no clear indication whether it is, for 

instance, best to choose mild or severe hypertension. It is important to consider the 

appropriate group of controls because a strong difference in response can results in 

spurious drug-gene interactions. 

The number of markers and the question which markers an investigator wants to 

test also need to be considered. There are biallelic (SNPs and I/D polymorphisms) and

microsatellite markers (tandem repeats). Biallelic markers are relatively less 

polymorphic, but they are more abundant and accessible. The number of markers 

depends on the amount of LD in the candidate gene in the study population. LD 

occurs when two particular alleles at loci on the chromosome go together more often 

then may be expected from independent segregation in a population. LD can be 

determined with a small pilot sample. This can help to optimize marker selection and 

provide information for haplotype analysis.94 Genotyping more markers gives more 

information and thus more power. It is, nonetheless, more expensive and time 

consuming and the sample size has to be increased because more genotypes groups 

are identified. When more markers are tested, adjustment should be made for 

multiple testing. It is best to investigate only candidate genes, which can be linked to 

a biological system. For antihypertensive response, for instance, genes in the renin-

angiotensin system are prominent, and other regulatory mechanisms of pressure-

natriuresis are important because of their role in blood pressure homeostasis.  

A more crucial issue is whether checking for population stratification is needed. 

Population stratification refers to a form of confounding. The bias from population 

stratification is the distortion in the association between the genetic variant and the 

outcome that can occur when the variant is associated with an unknown risk factor 

which varies by ethnicity. Population stratification may also be important in drug 

response. For instance, African Americans may react differently to a specific 

antihypertensive drugs class compared with Caucasians.95-98 The impact of population 

stratification is, however, not yet clear. Some conditions must be met before a 

substantial bias occurs: (I) there must be substantial variation across ethnicities in 

the allele frequency of the relevant gene; (II) there must be substantial variation in 

disease rates; (III) allele frequencies must correlate with adjusted disease rates 

between ethnic groups; and (IV) adjustment for ethnicity must reduce the relevant 

effect.99 At present it is still unclear whether population stratification biases results in 

a substantial way.94, 100 To minimize the effect of population stratification, a solution 

could be the typing of additional markers unrelated to the outcome101 or match for 

ethnicity.100, 102  

 

 

Future prospects 
 

Although there are many difficulties to overcome, pharmacogenetics may yield 

successful strategies to optimize drug therapy. Several potential candidate genes are 
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currently under investigation for their potential to modify response to 

antihypertensive drugs. Findings from previous studies require conformation in other 

studies to be able to make definitive conclusions about current positive drug-gene 

interactions. It is also important that research groups collaborate more it order to 

facilitate the conduct of a meta-analysis for conclusive results. With the development 

of efficient methods for analyzing massive amounts of data, pharmacogenetic studies

may eventually lead to the optimization of antihypertensive drug therapy based on 

genetic profiles of patients. 
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Abstract 
 

Aim: To investigated whether the insertion/deletion (I/D) polymorphism of the 

angiotensin converting enzyme (ACE) gene modified the adherence to ACE-inhibitors 

as measured by the discontinuation of an ACE-inhibitor, or the addition of another 

antihypertensive drug.  

Methods: This was a cohort study among 239 subjects who started ACE-inhibitor 

therapy. A Cox proportional hazard model was used to calculate relative risk (RR).  

Results: During follow-up there was no significant difference between subjects with the 

DD, ID, or II genotype (DD vs. II; RR=1.17; 95%CI: 0.78-1.77 and ID vs. II; 

RR=1.06; 95%CI: 0.73-1.55) in adherence.  

Conclusion: The I/D polymorphism of the ACE gene does not influence the adherence 

to ACE-inhibitors. 
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Introduction 
 

Hypertension is a major public health hazard and despite the availability of a variety of 

effective antihypertensive drugs inadequate control of blood pressure is common in 

hypertensive patients. One of the factors in interpreting the variability in outcome of 

drug therapy includes the genetic profile of a patient.1

A candidate gene for the control of blood pressure is the angiotensin converting 

enzyme (ACE) gene. Individuals with the DD genotype display twice as high serum 

ACE concentrations as individuals with the II genotype,2 but without clear correlation 

to blood pressure.2 The I/D polymorphism of the ACE gene has been associated with 

differential blood pressure responses to ACE-inhibitors. However, the results have been 

controversial.3-6

Given the controversial results, we investigated whether the I/D polymorphism of 

the ACE gene was associated with the response to ACE-inhibitor therapy as measured 

by the discontinuation of an ACE-inhibitor, or addition of another antihypertensive drug 

class.  

 

 

Methods 
 

Setting 

The Rotterdam Study started in 1990 as a population-based prospective follow-up 

study. In total, 7,983 residents of the suburb Ommoord in Rotterdam aged 55 years or 

over participated. The baseline measurements took place until 1993. The design of this 

population-based study has been described elsewhere.7 Pharmacy records were 

available for approximately 99% of the cohort as of January 1st, 1991.  

 

Cohort and outcome definition 

For the analysis, we included patients who had at least 6 months of medication history 

at the pharmacy before starting with an ACE-inhibitor and who did not use 

antihypertensive drugs during that period. We excluded persons with only one ACE-

inhibitor prescription. 

To study the potential interaction between the I/D polymorphism and response to 

ACE-inhibitors, we used two proxy outcomes. The first outcome was defined as the 

discontinuation of ACE-inhibitors for ≥ 180 days. The second outcome was addition of 

another antihypertensive drug to the ACE-inhibitor therapy. Subjects were followed 

until the outcome of interest, death, moving outside of the study area, or the end of 

the study period, whichever came first.  

 

Genotype  

The I and D-allele of the ACE genotype were identified on the basis of polymerase 

chain reaction (PCR) amplification of the respective fragments from intron 16 of the

59 



Chapter 4.1 

ACE gene and size fractionation and visualization by electrophoresis as described 

before.8

 

Analysis 

We used ANOVA (continuous variables) and Chi-square testing (categorical variables) 

to compare baseline characteristics of people with different genotypes. For the 

outcome of interest, a Cox proportional hazard model was used to calculate the 

relative risk (RR) and 95% confidence interval (95%CI) of discontinuation of an ACE-

inhibitor or addition of another antihypertensive drug.  

 

 

Results     
 

Between January 1st, 1991 and December 31st, 1999, 1,488 subjects were identified as 

ACE-inhibitor users and 239 subjects had not used antihypertensive medication 

between January 1st and July 1st, 1991 prior to the start of ACE-inhibitor medication. 

 

Cohort study among starters of ACE-inhibitors 

In total, 65, 117, and 57 had the DD, ID, and II genotypes, respectively. Different 

ACE-inhibitors were used as a first prescription including: enalapril (48.3%), lisinopril 

(16.8%), captopril (9.7%), quinapril (8.8%), perindopril (6.7%), fosinopril (6.3%), 

ramipril (3.0%), and cilazapril (0.4%). The distribution of age, gender, systolic blood 

pressure, diastolic blood pressure, smoking, and body mass index (BMI) were similar 

between the three genotype groups (see table 1).  

 

Table 1. Baseline characteristics. Values are presented as means (± SD), or number (%). 

 
Variable DD (n=65) ID (n=117) II (n=57) P 
Gender, F 36 (55.4%) 67 (57.3%) 32 (56.1%) 0.97 
Age, y 68.7± 9.7 69.2 ± 7.4 69.3 ± 8.2 0.90 
SBP1, mmHg 148.6 ± 20.9 154.7± 22.4 150.4 ± 22.0 0.21 
DBP1, mmHg 78.7 ± 10.6 80.3 ± 12.9 79.1 ± 9.8 0.66 
Smoking     
current 12 (18.5%) 33 (29.2%) 13 (22.8%) 0.53 
past 31 (47.7%) 46 (40.7%) 23 (40.4%)  
never 22 (33.8%) 34 (30.1%) 21 (36.8%)  
BMI, kg/m2 26.5 ± 3.2 26.4 ± 3.7 26.8 ± 4.0 0.96 
Diabetes mellitus, yes 11 (16.9%) 21 (17.9%)   7 (12.3%) 0.76 
MI, yes   6 (9.2%) 16 (13.7%)   2 (3.5%) 0.11 
 
1 Only persons with a blood pressure measurement before they started an ACE-
inhibitor therapy were included (n=211)  

 

The Kaplan-Meier function showed that there were no significant differences in the 

rate of discontinuation of ACE-inhibitors or addition of other antihypertensive 

medication (DD vs. II; RR=1.17; 95%CI: 0.78-1.77 and ID vs. II; RR=1.06; 95%CI: 
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0.73-1.55) (see figure 1). During the entire follow-up there was no significant 

difference between the three genotypes. The results were similar when the outcomes 

of discontinuation and addition of other antihypertensive drugs were analyzed 

separately (data not shown). Excluding of stoppers (n=38) did not effect our findings. 

The effect was not caused by a difference in the average last prescribed daily dose 

before a censoring event (0.76 ± 0.38, 0.83 ± 0.64, and 0.78 ± 0.37 for the DD, ID, 

and II genotype; p=0.63).  

 
Figure 1. Kaplan-Meier function of addition of other antihypertensive medication and/or 
stopping of an ACE-inhibitor stratified by ACE genotype (adjusted for gender, body mass index, 
systolic blood pressure diastolic blood pressure, myocardial infarction, diabetes mellitus, 
smoking, and death). 
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Discussion 

 

Our findings suggest that the ACE I/D polymorphism in starters of ACE-inhibitors does 

not influence the response when evaluated by discontinuation of ACE-inhibitors and/or 

addition of other antihypertensive drugs.  

Previously, four other studies investigated the role of the ACE gene in the response 

of blood pressure to ACE-inhibitors, but the results were inconclusive.3-6 Our study 

corroborates the results of two of four studies.5, 6 However, we used a proxy for blood 

pressure response instead of actual blood pressure measurements. Although, 

insufficient blood pressure control and side-effects account for most of the treatment 

switching,9 our proxy might not be good for measuring the nonsatisfactory response of 

blood pressure to ACE-inhibitors. For example, our results could be influenced by 

adverse reactions to ACE-inhibitors, like dry cough. The role of the ACE gene in the

occurrence of cough is, however, still unclear.10, 11 It is also possible, that due to 

satisfactory blood pressure response a physician advices a patient to stop using 
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antihypertensive medication. However, this is a rare occurrence and we saw no 

difference between switchers and stoppers.  

This study suggests that the ACE I/D polymorphism of the ACE gene does not 

influence the adherence to ACE-inhibitors.  
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Abstract 
 

Background: Despite the availability of a variety of effective drugs, inadequate control 

of blood pressure is common. There have been some indications that the angiotensin 

converting enzyme (ACE) gene modifies the response to antihypertensive drugs, 

although, the results were inconclusive. 

Aim: To investigate whether the insertion/deletion polymorphism of the ACE gene 

modifies blood pressure difference among subjects using diuretics, β-blockers, calcium 

channel blockers, or ACE-inhibitors. 

Methods: Data were used from the Rotterdam Study, a population-based prospective 

cohort study in the Netherlands, which started in 1990 and included 7,983 subjects 

aged 55 years or older. Data from three subsequent cross-sectional investigations was 

used. Subjects were included if they had a high blood pressure during ≥ 1 

examinations and/or used monotherapy with a diuretic, β-blocker, calcium channel 

blocker, or ACE-inhibitor. A marginal generalised linear model was used to assess the 

association between the mean difference in systolic/diastolic blood pressure and 

antihypertensive classes stratified by the three genotypes.  

Results: In total, 3,025 hypertensive individuals were included, totalling 6,500 

measurements of blood pressure. Of these, 28.3%, 51.4%, and 20.3% had the DD, 

ID, and II genotypes, respectively. The mean difference in systolic blood pressure 

between the II and DD genotype was 0.23 mmHg (95%CI: -5.48-5.94) for diuretic,    

–2.41 mmHg (95%CI: -6.72-1.90) for β-blocker, 2.12 mmHg (95%CI: -4.64-8.89) for 

calcium channel blocker, and –2.01 mmHg (95%CI: -9.82-5.79) for ACE-inhibitor 

users.   

Conclusion: The adjusted mean difference in diastolic and systolic blood pressure 

among diuretic, β-blocker, calcium channel blocker, or ACE-inhibitor users was not 

modified by the ACE insertion/deletion polymorphism.  
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Introduction 
 

The renin-angiotensin system (RAS) regulates blood pressure and fluid homeostasis. 

Angiotensin converting enzyme (ACE), which is one of the enzymes of the RAS, 

converts angiotensin I to the vasoactive angiotensin II and inactivates bradykinin. An 

insertion/deletion (I/D) polymorphism of the 187-bp Alu element in intron 16 of the 

ACE gene predicts approximately half of the inter-individual variability in serum ACE 

levels.1 In general, individuals with the DD genotype have serum ACE levels which are 

twice as high as individuals with the II genotype,1 although, there is no clear 

correlation to blood pressure.2  

Predicting the effect of a particular antihypertensive agent in an individual patient 

is difficult. To overcome this problem researchers are currently investigating which 

genes influence the response to various antihypertensive drugs.  

Some studies have investigated the effect of the ACE I/D polymorphism on blood 

pressure response in patients treated with ACE-inhibitors3-11 and, less so, in patients 

treated with β-blockers.4,12 The latter reduces angiotensin II levels by inhibiting the β-

adrenergic mediated renin release from the kidneys.13 With regard to ACE-inhibitor 

users, three studies indicated that the D-allele had a stronger blood pressure lowering 

effect,8-10 while two studies indicated the I-allele,6,7 and four studies found no drug-

gene effect.3-5,11 No drug-gene interaction was found in studies with β-blocker users.4,12 

Due to conflicting results, it is still unclear whether the I/D polymorphism of the ACE 

gene influences the response to ACE-inhibitors or β-blockers.  

Diuretics and calcium channel blocker are also influenced by the RAS i.e. by a 

counter regulatory system. For example, diuretic therapy leads to salt loss, which in 

turn, results in volume depletion, causing an increase in the plasma renin activity.14 

Calcium channel blockers block the inward movement of calcium by binding to L-type 

calcium channels in the heart and in smooth-muscle of the coronary and peripheral 

vasculature. This could result in an activation of the RAS.15 

The purpose of this study was to evaluate the relationship between the I/D 

polymorphism of the ACE gene on the mean difference in systolic blood pressure (SBP) 

and diastolic blood pressure (DBP) among diuretics, β-blockers, calcium channel 

blockers, or ACE-inhibitors users.  

 

 

Methods 
 

Setting 

The Rotterdam Study started in 1990 as a population-based prospective follow-up 

study. All 10,275 residents of the suburb Ommoord in Rotterdam aged 55 years or 

older were invited to participate. The aim of the Rotterdam Study is to investigate 

determinants of disease occurrence and progression in the elderly. Our study was 
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approved by the Medical Ethics Committee of Erasmus University and conducted in 

compliance with their requirements. In total, 7,983 (78%) subjects gave written 

informed consent and of 6,869 (86%) the ACE genotype was assessed. The baseline 

measurements took place until 1993. The design of this population-based study has 

been described elsewhere.16  

The baseline examination included several details, such as an interview on 

demographics, current health status, medical history, family history of diseases, 

smoking habits, and current use of medication. During a physical examination, blood 

pressure, weight, and height were measured and blood was drawn for DNA extraction. 

Blood pressure was measured in sitting position at the right upper arm with a random-

zero sphygmomanometer. The average of the two measurements, separated by a 

count of pulse rate, was used in the analysis. All participants were subsequently 

examined in follow-up examination rounds every 2-3 years (1993-1995, 1997-1999). 

Blood pressure data from all three examinations were used in this study. 

Pharmacy records were available for approximately 99% of the cohort as of 

January 1st, 1991. These records include the name of the drug, the day of dispensing, 

the dosage form, the number of units dispensed, the prescribed daily dose, and the 

Anatomical Therapeutic Chemical code of the drug.17

 

Cohort and outcome definition 

The study population included all individuals with hypertension in the Rotterdam Study 

for whom the ACE genotype was assessed and where 1 or more blood pressure 

measurements were available. We defined hypertension as ≥ 1 blood pressure 

measurement during follow-up, which met one of the following criteria: SBP ≥ 160 

mmHg, and/or DBP ≥ 95 mmHg. Subjects who used, antihypertensive drugs during 

follow-up were also defined as hypertensive. When a blood pressure measurement 

occurred, we assessed whether a prescription was filled by the pharmacy on this date. 

Hereto, the length of each prescription was calculated by dividing the number of 

dispensed tablets or capsules by the prescribed daily number. When the blood 

pressure measurement date fell within the usage period, the patient was considered as 

currently exposed. When > 1 antihypertensive drug class was used at the time of the 

blood pressure measurement the measurement was excluded. Antihypertensive drug 

treatment was classified in four groups i.e. diuretics, β-blockers, calcium channel 

blockers, or ACE-inhibitors. Subjects could switch between no treatment and different 

antihypertensive drug classes and between different antihypertensive drug classes. 

Due to the small numbers for the other antihypertensive drug classes, only subjects 

using diuretics, β-blockers, calcium channel blockers and ACE-inhibitors were included 

in the analysis. Pharmacy records were available as of January 1st, 1991. Nevertheless, 

blood pressure measurements from 1990 were included if an individual did not use an 

antihypertensive drug according to self-reported questionnaire information and did not 

start antihypertensive therapy before July 1st, 1991 according to the pharmacy 

dispensing records. The end of the study period was set at December 31st, 1999.  
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Potential confounders and effect modifiers 

The potential confounders considered were age, sex, body mass index (BMI), defined 

daily dose (DDD), which (re-)examination (1st, 2nd, or 3rd), smoking at baseline, history 

of myocardial infarction, diabetes mellitus at baseline, use of nitrates, use of statins, 

use of NSAID’s, use of another antihypertensive drug class two weeks prior to the 

blood pressure measurement, use of an antihypertensive drug for six of the eight 

weeks prior to the blood pressure measurement, and the cumulative number of days 

an antihypertensive drug was used. History of myocardial infarction was self-reported 

and confirmed by a physician or demonstrated on the baseline ECG. To compare 

dosages of different antihypertensive drugs in our analysis, we used the prescribed 

daily dose (PDD), expressed as the number of DDDs per day. The DDD is defined as 

the average daily dose for the main indication in an adult of 70 kg.18 DDDs provide a 

fixed unit of measurement independent of price and formulation, enabling the 

researcher to assess trends in drug consumption and to perform comparisons between 

population groups.  

Smoking was also considered as an effect-modifier, since smoking and the D-allele 

have been associated with increased generation of angiotensin II.19

 

Genotype  

The I and D-allele of the ACE gene were identified on the basis of polymerase-chain-

reaction (PCR) technique in accordance with the method described by Lindpainter et 

al.,17 with some modifications. Because the D-allele in heterozygous samples is 

preferentially amplified, there is a tendency of misclassification for about 4-5% of the 

ID to DD genotypes. For this reason, a second PCR was performed with a primer pair 

that recognises an insertion specific sequence (5’ TGG GAC CAC AGC GCC CAC TAC 3’ 

and 5’ TCG CCA GCC CTC CCA TGC CCA TAA 3’). The reaction yielded a 335-bp 

amplicon only if the I-allele was present. Two independent investigators read pictures 

from each gel and all ambiguous samples were analysed a second time. 

 

Analysis 

We used ANOVA (continuous variables) and Chi-square testing (categorical variables) 

to compare baseline characteristics of people with different genotypes. To compare the 

difference in DDDs for each examination, an ANOVA was used, stratified by genotype. 

A marginal generalised linear model (GEE) was used to investigate any association 

between I/D polymorphism of the ACE gene and antihypertensive treatment for two 

outcomes: mean difference in systolic blood pressure (SBP) and diastolic blood 

pressure (DBP). A p-value of ≤ 0.05 was considered statistically significant. Since 

subjects could have one, two, or three measurements, the GEE model was used to 

account for intraperson correlations among repeated measurements. The covariance 

matrix of the repeated dependent measurements was unstructured and data were 

analysed using SAS statistical software and corrected for potential confounders.  
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We performed two separate analyses. In the first analysis we compared the mean 

systolic and diastolic blood pressure levels between the different genotype groups (DD, 

ID, and II) for untreated and treated patients. In this analysis the reference group 

comprised of untreated subjects with the DD genotype. In the second analysis we 

focused on the drug-gene interaction. In this analysis we compared the mean systolic 

and diastolic blood pressure levels between the different genotype groups for subjects 

using the same antihypertensive drug class. The reference group comprised of subjects 

with the DD genotype who had a prescription of the antihypertensive drug class in 

question. The mean SBP and DBP of treated subjects was defined as the mean SBP or 

DBP of subjects who used the antihypertensive drug class in question minus the mean 

SBP or DBP in untreated subjects with the same genotype. 

 
 
Results 
 

Of the 6,869 subjects, who participated in the Rotterdam Study between January 1st, 

1990 and December 31st, 1999 3,025 were classified as hypertensive. These 3,025 

subjects had a total of 6,500 blood pressure measurements. In total, 28.3%, 51.4%, 

and 20.3% had the DD, ID, and II genotypes, respectively. Of these 3,025 persons, 

431 subjects used diuretics (603 measurements), 745 used β-blockers (1,078 

measurements), 306 used calcium channel blockers (400 measurements), and 317 

used ACE-inhibitors (420 measurements). A person may switch from one 

antihypertensive drug class to another. Baseline characteristics at the first examination 

are presented in table 1. The mean DDD at baseline for diuretics was 0.81 ± 0.44, for 

β-blockers 0.67 ± 0.17, for calcium channel blockers 0.79 ± 0.43, and for ACE-

inhibitors 1.01 ± 0.63, respectively. During the first examination round, 855 subjects 

were treated with an antihypertensive drug. During the three examination rounds 

there was no statistically significant difference in the DDDs between the different 

genotype groups for any of the different antihypertensive drug classes.  

In the univariate analysis without correction for potential confounders, none of the 

antihypertensive drug classes were associated with a significant decrease in the mean 

difference in SBP or DBP for the three genotype groups (data not shown). After 

adjustment for potential confounders, the ACE gene did not significantly influence the 

mean difference in SBP (ID vs. DD=0.42 mmHg; 95%CI: -5.18-6.01 and II vs. DD=-

1.67 mmHg; 95%CI: -9.60-6.27) or the mean difference in DBP (ID vs. DD=-0.21 

mmHg; 95%CI: -3.24-2.82 and II vs. DD=-0.84 mmHg; 95%CI: -5.19-3.51) when all 

antihypertensive drugs were combined. The adjusted mean difference in SBP and DBP 

is shown in figures 1 and 2 with the mean SBP or DBP levels in untreated subjects with 

the DD genotype as a reference. Diuretics users with the DD genotype had a 5.19 

mmHg (95%CI: -10.16-0.78) lower mean SBP and a 0.44 mmHg (95%CI: -3.76-2.88) 

lower mean DBP compared to untreated subjects with the DD genotype. 
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Table 1. Baseline characteristics of all patients at the first examination. Values are presented as 
means (± SD), or number (%). 

 
 Untreated  Treated  
Variable DD ID II  DD ID II  
 (n=452) (n=896) (n=357)  (n=265) (n=415) (n=175)  
Gender, male 172 

(38.1%) 
370 

(41.3%) 
139 

(38.9%) 
 93 

(35.1%) 
168 

(40.5%) 
61 

(34.9%) 
 

Age, years 70.1 ± 
8.9 

69.8 ± 
8.4 

69.2 ± 
8.5 

 71.4 ± 
9.1 

71.3 ± 
8.9 

70.3 ± 
9.35 

 

SBP, mmHg 154.6 ± 
21.8 

153.4 ± 
21.3 

152.2 ± 
22.8 

 145.1 ± 
22.1 

145.3 ± 
23.3 

142.5 ± 
23.3 

 

DBP, mmHg 79.0 ± 
11.9 

78.7 ± 
12.2 

79.8 ± 
12.4 

 75.2 ± 
10.9 

76.1 ± 
11.9 

74.7 ± 
13.2 

 

BMI, kg/m2 26.5 ± 
3.5 

26.3 ± 
3.5 

26.3 ± 
3.4 

 27.0 ± 
3.9 

27.2 ± 
3.7 

27.3 ± 
4.1 

 

Diabetes mellitus 51 
(11.6%) 

104 
(12.0%) 

42 
(12.1%) 

 27 
(10,3%) 

72 
(17.4%) 

24    
(14.0 %) 

* 

Smoking         
Current 74 

(16.7%) 
195 

(22.1%) 
73 

(20.7%) 
 39 

(15.0%) 
113 

(43.5%) 
108 

(41.5%) 
 

Past 196 
(44.2%) 

358 
(40.5%) 

157 
(44.6%) 

 70  
(17.0 %) 

184 
(44.7%) 

158 
(38.3%) 

 

Never 173 
(39.1%) 

330 
(37.4%) 

122 
(34.7%) 

 31 
(17.9%) 

77 
(44.5%) 

65 
(37.6%) 

 

Diuretics     77 
(33.6%) 

104 
(45.4%) 

48 
(21.0%) 

 

β-blockers     116 
(30.3%) 

179 
(46.9%) 

87 
(22.8%) 

 

Calcium channel 
blocker 

    34 
(27.4%) 

69 
(55.6%) 

21 
(16.9%) 

 

ACE-inhibitor     38 
(31.7%) 

63 
(52.5%) 

19 
(15.8%) 

 

 
* = Significantly different in treated or untreated group (p < 0.05) 

 
In addition, we investigated whether there was an interaction between the ACE I/D 

polymorphism and diuretics, β-blockers, calcium channel blockers, or ACE-inhibitors 

users (figure 3). The reference group in this analysis was the mean SBP or DBP of 

subjects with the DD genotype of the investigated antihypertensive drug class. Diuretic 

users with the II genotype had a 0.23 mmHg (95%CI: -5.48-5.94) higher mean SBP 

and a 0.81 mmHg (95%CI: -4.14-2.52) lower mean DBP compared to diuretic users 

with the DD genotype. After adjustment for the covariates, there was only a trend 

towards an association with the II genotype versus the DD genotype when treated with 

a β-blocker (p=0.096). However, there was no dose response relationship with regard 

to blood pressure with the I-allele.   

In addition, because a previous study in the Rotterdam Study found a smoking-

dependent effect of the ACE gene on blood pressure in current smokers,20 we assessed 

the drug-gene interactions in smokers. No drug-gene interaction was found with any of 

the antihypertensive drug classes in current smokers (data not shown).   
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Figure 1. Adjusted mean systolic blood pressure among antihypertensive drug users and 
subjects who were not treated for the 3 ACE genotypes with as reference untreated subjects 
with the DD genotype.  
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Figure 2. Adjusted mean diastolic blood pressure among antihypertensive drug users and 
subjects who were not treated for the 3 ACE genotypes with as reference untreated subjects 
with the DD genotype.  
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Figure 3. Adjusted mean systolic and diastolic blood pressure among antihypertensive drug 
users with as reference the DD genotype of the antihypertensive drug classes. 
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Discussion 

 

Our findings in a Caucasian population suggest that the ACE I/D polymorphism does 

not influence the mean SBP or DBP difference in users of diuretics, β-blockers, calcium 

channel blockers, or ACE-inhibitors, even after adjusting for DDDs and other potential 

confounders.  

Previous studies investigating the interaction between the I/D polymorphism and 

antihypertensives on blood pressure response have been inconclusive.3-12 Of the eight 

studies that investigated the interaction between the ACE gene and ACE-inhibitors on 

SBP and DBP in hypertensive patients, three suggested that the D-allele had a 

stronger drug effect,8-10 while two studies indicated the I-allele,6,7 and four studies 

found no difference between the two alleles.3-5,11 Regarding β-blockers, two studies 

found no drug-gene interaction on blood pressure4,12 and one study found an 

interaction with thiazide diuretics.21 In this study diuretics users with one or two copies 

of the I-allele of the ACE gene and one copy of the 460Trp-allele of the α-adducin gene 

showed the largest blood pressure decrease.  

The main difference between these studies and the current study was that the 

latter was an observational study and previous studies were non-randomized trials. In 

trials, treatment groups can be standardized with respect to dose, medication, duration 

of therapy, time between blood pressure measurement, and medication intake. In 

addition, it is possible that, in the current study, the medication taken at the time of 

the blood pressure measurement was not the initial drug chosen, but rather represents 
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an alternative drug which, through a process of trial and error, was found to be the 

most effective. The potential overrepresentation of “good responders” increased the 

chance of finding a drug-gene interaction.  

A strength of an observational study is that it resembles more closely daily clinical 

practice and the analysis can be adjusted to account for potential confounders like 

dose and duration of therapy. Another strength of the current study was the large 

sample size. 

A limitation of the current study is that no (pretreatment) baseline measurement 

immediately preceding the commencement of an antihypertensive drug was available 

and measurements were only taken every 2-3 years. This made it impossible to 

calculate the immediate drug effect after administration of an antihypertensive drug. 

Therefore, short-lived and temporary interactions would be missed in this study. Other 

limitations were the absence of a clinically confirmed diagnosis of hypertension and the 

overrepresentation of subjects with isolated systolic hypertension (approximately 50% 

of the untreated patients). As the mean of the treated patients is above 70 years of 

age, it is reasonable to assume that also in this group there is an overrepresentation of 

patients with isolated systolic hypertension. Thus, the results can not be generalized to 

all patients with hypertension.  

Another potential limitation of our study is that we studied only one genetic 

polymorphism, which is linked to the serum ACE activity, but it is controversial in 

hypertension. Zhu et al.22 found two other ACE gene mutations, which were linked with 

blood pressure and ACE serum levels. Therefore, it might be necessary to type 

additional markers. Finally, observational studies may be vulnerable to selection, 

information, and confounding bias. Confounding is very unlikely given that the data 

were adjusted for potential confounders, but it is impossible to adjust for other 

unmeasured confounders. Race could have been an additional confounder, however, 

given that less than 1% of the subjects had a different ethnic background, it is unlikely 

that this biased our results. Since our study population consisted of > 99% of 

Caucasians, our results can only be generalized to Caucasians. There are other 

additional variables, e.g. exercise, which have an impact on blood pressure. Therefore, 

it is possible that we over or underestimated the blood pressure lowering effect of the 

antihypertensive drug classes. However, since this is likely the same for the different 

genotypes this has not influenced the results of the drug-gene interaction. In addition, 

difference in blood pressure between treated patients and untreated patients could be 

the result of confounding by indication. As a physician is free to choose a specific 

antihypertensive drug or no treatment, specific patient characteristics may have 

influenced this decision. Therefore, we also investigated the mean difference in blood 

pressure between users of the same antihypertensive drug therapy, as they were most 

likely to have the same patient characteristics. Information bias is also unlikely, as 

data on drug exposure were prospectively gathered via computerised pharmacies in a 

similar and unbiased fashion for all subjects. It is, however, possible that we under- or 

overestimated baseline characteristics for which we used self-reported data. In 
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addition, we assumed that all prescribed pills were taken and thereby may have 

overestimated compliance. As this is likely the same for all three genotypes, this 

unlikely to have biased our result. Additionally, selection bias is unlikely, because this 

study was population-based and loss to follow-up was negligible.  

 
 
Conclusion 
 

Notwithstanding the caveats, the study suggests that the ACE I/D polymorphism of the 

ACE gene does not influence the mean blood pressure difference among users of low-

ceiling diuretics, β-blockers, calcium channel blockers, or ACE-inhibitors. Although, it 

seems that the ACE I/D polymorphism does not have a clinical relevance in the 

response to antihypertensive drugs, further investigations with this polymorphism on 

short and long-term outcomes will be needed to make definitive conclusions.  

 

 
 
 
 
 
 
 
 
 
 
 

75 



Chapter 4.2 

Reference 
 
1. Rigat B, Hubert C, Alhenc-Gelas F, et al.  An insertion/deletion polymorphism in the angiotensin I-
converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 
1990;86(4):1343-6. 
2. Schunkert H. Polymorphism of the angiotensin-converting enzyme gene and cardiovascular disease. J 
Mol Med 1997;75(11-12):867-75. 
3. Hingorani AD, Jia H, Stevens PA, et al. Renin-angiotensin system gene polymorphisms influence blood 
pressure and the response to angiotensin converting enzyme inhibition. J Hypertens 1995;13(12 Pt 
2):1602-9. 
4. Dudley C, Keavney B, Casadei B, et al. Prediction of patient responses to antihypertensive drugs 
using genetic polymorphisms: investigation of renin-angiotensin system genes. J Hypertens 
1996;14(2):259-62. 
5. Nakano Y, Oshima T, Watanabe M, et al. Angiotensin I-converting enzyme gene polymorphism and 
acute response to captopril in essential hypertension. Am J Hypertens 1997;10(9 Pt 1):1064-8. 
6. Ohmichi N, Iwai N, Uchida Y, et al. Relationship between the response to the angiotensin converting 
enzyme inhibitor imidapril and the angiotensin converting enzyme genotype. Am J Hypertens 
1997;10(8):951-5. 
7. O'Toole L, Stewart M, Padfield P, et al. Effect of the insertion/deletion polymorphism of the 
angiotensin-converting enzyme gene on response to angiotensin-converting enzyme inhibitors in patients 
with heart failure. J Cardiovasc Pharmacol 1998;32(6):988-94. 
8. Mondorf UF, Russ A, Wiesemann A, et al. Contribution of angiotensin I converting enzyme gene 
polymorphism and angiotensinogen gene polymorphism to blood pressure regulation in essential 
hypertension. Am J Hypertens 1998;11(2):174-83. 
9. Stavroulakis GA, Makris TK, Hatzizacharias AN, et al. Predicting response to chronic antihypertensive 
treatment with fisinopril: the role of the angiotensin-converting enzyme gene polymorphism. 
Cardiovascular Drugs and Therapy 2000;14:427-432. 
10. Li X, Du Y, Huang X. Correlation of Angiotensin-converting enzyme gene polymorphism with effect of 
antihypertensive therapy by Angiotensin-converting enzyme inhibitor. J Cardiovasc Pharmacol Ther 
2003;8(1):25-30. 
11. Arnett DK, Davis BR, Ford CE, et al. Pharmacogenetic Association of the Angiotensin-Converting 
Enzyme Insertion/Deletion Polymorphism on Blood Pressure and Cardiovascular Risk in Relation to 
Antihypertensive Treatment. The Genetics of Hypertension-Associated Treatment (GenHAT) Study. 
Circulation 2005. 
12. Kurland L, Melhus H, Karlsson J, et al. Angiotensin converting enzyme gene polymorphism predicts 
blood pressure response to angiotensin II receptor type 1 antagonist treatment in hypertensive patients. J 
Hypertens 2001;19(10):1783-7. 
13. Blumenfeld JD, Sealey JE, Mann SJ, et al. Beta-adrenergic receptor blockade as a therapeutic 
approach for suppressing the renin-angiotensin-aldosterone system in normotensive and hypertensive 
subjects. Am J Hypertens 1999;12(5):451-9. 
14. Weisser B, Ripka O. Long-term diuretic therapy: effects of dose reduction on antihypertensive efficacy 
and counterregulatory systems. J Cardiovasc Pharmacol 1992;19(3):361-6. 
15. Muller FB, Bolli P, Erne P, et al. Use of calcium channel blockers as monotherapy in the management 
of hypertension. Am J Med 1984;77(2B):11-5. 
16. Hofman A, Grobbee DE, de Jong PT, et al. Determinants of disease and disability in the elderly: the 
Rotterdam Elderly Study. Eur J Epidemiol 1991;7(4):403-22. 
17. Lindpaintner K, Pfeffer MA, Kreutz R, et al. A prospective evaluation of an angiotensin-converting-
enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 1995;332(11):706-11. 
18. Yu XL, Jin XR, Wang DX. Effects of cigarette smoking on the function of metabolizing arachidonic acid 
and angiotensin I in the isolated perfused rat lungs. J Tongji Med Univ 1992;12(4):201-4. 
19. Anonymous. Guidelines for ATC classification and DDD assignment, 3rd edn. Oslo. WHO collaberating 
Centre for drug statistics Methodology, 2000. 2000. 
20. Schut AF, Sayed-Tabatabaei FA, Witteman JC, et al. Smoking-dependent effects of the angiotensin-
converting enzyme gene insertion/deletion polymorphism on blood pressure. J Hypertens 
2004;22(2):313-9. 
21. Sciarrone MT, Stella P, Barlassina C, et al. ACE and alpha-adducin polymorphism as markers of 
individual response to diuretic therapy. Hypertension 2003;41(3):398-403. 

76 



ACE I/D polymorphism, antihypertensive therapy and blood pressure 

22. Zhu X, Bouzekri N, Southam L, et al. Linkage and association analysis of angiotensin I-converting 
enzyme (ACE)-gene polymorphisms with ACE concentration and blood pressure. Am J Hum Genet 
2001;68(5):1139-48. 
 
 

77 



 

 



 

 

Chapter 4.3 
 

The influence of the alpha-adducin 

G460W polymorphism and 

angiotensinogen M235T 

polymorphism on the association 

between antihypertensive 

medication and blood pressure 

 
 
 
 

 



Chapter 4.3 

Abstract 
 

Introduction: Despite the availability of a variety of effective antihypertensive drugs, 

inadequate control of blood pressure is common in hypertensive patients.  

Aim: To investigate whether the α-adducin G460W or angiotensinogen M235T 

polymorphism modifies the mean difference in blood pressure in subjects using 

antihypertensive drugs. 

Methods: Data were used from the Rotterdam Study, a population-based prospective 

cohort study in the Netherlands. This study started in 1990 and included 7,983 

subjects of 55 years or older. Data from three examination rounds were used. Subjects 

were included if their blood pressure was elevated at one or more examinations and/or 

a diuretic, β-blocker, calcium channel blocker, or ACE-inhibitor was used. A marginal 

generalised linear model (GEE) was used to assess the drug-gene interaction.  

Results: In total, 3,025 hypertensives were included. No drug-gene interaction on 

blood pressure levels was found. The mean difference in systolic blood pressure 

between subjects with the W-allele and GG genotype of the α-adducin gene was for 

diuretic users 1.25 mmHg (95%CI: -2.86-5.35), for β-blocker users 0.02 mmHg 

(95%CI: -3.39-3.42), for calcium channel blocker users –0.70 mmHg (95%CI: -5.61-

4.21), and for ACE-inhibitors user –3.50 mmHg (95%CI: -9.02-2.02). The mean 

difference in systolic blood pressure between subjects with the TT and MM genotype 

was for diuretic users –2.33 mmHg (95%CI: -8.32-3.66), for β-blocker users –0.06 

mmHg (95%CI: -4.91-4.79), for calcium channel blocker users 0.59 mmHg (95%CI:   

-5.95-7.13), and for ACE-inhibitor users -2.33 mmHg (95%CI: -9.66-5.01). 

Conclusion: The G460W and the M235T polymorphism did not modify differences in 

blood pressure levels among subjects who used diuretics, β-blockers, calcium channel 

blockers, or ACE-inhibitors. 
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Introduction 
 

Hypertension is the most prevalent cardiovascular risk factor in the industrialized 

world. Despite the availability of a variety of effective antihypertensive drugs, 

inadequate control of blood pressure is common in hypertensive patients. This is 

caused by environmental and genetic factors. 

A number of studies have investigated genetic polymorphisms as determinants of 

cardiovascular response to antihypertensive drug therapy, e.g. the G460W 

polymorphism of the α-adducin (ADD1) gene and the M235T polymorphism of the 

angiotensinogen (AGT) gene. In four studies, the interaction between the ADD1 

G460W polymorphism and antihypertensive drugs on blood pressure response was 

evaluated.1-4 Three studies, with partly the same study population, found a greater 

blood pressure reduction with the 460W-allele than with the 460G-allele,1-3 while 

another study could not replicate this finding4. All these studies were non-randomized 

trials. Three research groups studied the influence of the M235T polymorphism of the 

AGT on the blood pressure response to antihypertensive medication.5-7 Two of these 

studies where non-randomized trials5, 7 and the other study was a placebo-controlled 

crossover.6 Hypertensive subjects with the 235T-allele when treated with ACE-

inhibitors had a greater blood pressure reduction in one study,5 but this could not be 

reproduced in another study.6 No drug-gene interactions were found with β-blockers or 

calcium channel blockers.6, 7

The purpose of this study was to evaluate the relationship between the G460W 

polymorphism of the α-adducin gene and the M235T polymorphism of the 

angiotensinogen gene on mean systolic and diastolic blood pressure difference in 

hypertensive patients treated with diuretics, β-blockers, calcium channel blockers, or 

ACE-inhibitors.  

 

 

Methods 
 

Setting 

The Rotterdam Study started in 1990 as a population-based prospective follow-up 

study. All 10,275 residents of the suburb Ommoord in Rotterdam aged 55 years or 

older were invited to participate. In total, 7,983 (78%) subjects gave written informed 

consent and of 86% of them blood samples were available for genotyping. The 

baseline measurements took place until 1993 and the design has been described 

elsewhere.8 The baseline examination included several details, such as an interview on 

demographics, current health status, medical history, family history of diseases, 

smoking habits, and current use of medication. During a physical examination, blood 

pressure, weight, and height were measured and blood was drawn for DNA extraction. 

Blood pressure was measured in sitting position at the right upper arm with a random-

zero sphygmomanometer. The average of the two measurements, separated by a 
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count of pulse rate, was used in the analysis. All participants were subsequently 

examined in follow-up examination rounds every two to three years (1993-1995, 

1997-1999).  

Pharmacy records were available for approximately 99% of the cohort as of 

January 1st, 1991. These records include the name of the drug, the day of dispensing, 

the dosage form, the number of units dispensed, the prescribed daily dose, and the 

Anatomical Therapeutic Chemical code of the drug.9

 

Cohort and outcome definition 

The study population included all hypertensive individuals in the Rotterdam Study for 

whom the AGT M235T or ADD1 G460W genotype was assessed. Hypertension was 

defined as one or more blood pressure measurements with a systolic blood pressure 

(SBP) above 160 mmHg and/or diastolic blood pressure (DBP) above 95 mmHg, and/or 

use of one antihypertensive drug at the time of a blood pressure measurement 

(monotherapy). When a blood pressure measurement occurred, we assessed whether 

a prescription was filled by the pharmacy on this date. When the blood pressure 

measurement date fell within the usage period, the patient was considered currently 

exposed. Due to the small numbers for the other antihypertensive drug classes, only 

subjects using diuretics, β-blockers, calcium channel blockers, and ACE-inhibitors were 

included in the analysis. In addition, blood pressure measurements were excluded 

when combinations of different antihypertensive drugs classes were used on the date 

of the blood pressure measurement. Pharmacy records were available as of January 

1st, 1991, nevertheless, blood pressure measurements from 1990 were included if an 

individual did not use an antihypertensive drug according to self-reported 

questionnaire information and did not start antihypertensive therapy before July 1st, 

1991. The end of the study period was set at December 31st, 1999.  

In addition, we distinguished between starters and continuous users. Starters were 

defined as hypertensives who did not have a prescription before July 1st, 1991 and 

used their antihypertensive medication, less then six of the eight weeks prior to their 

blood pressure measurement. In addition, starters had to have at least a 30 days gap 

between the start date of prescription, which was used at the date of the blood 

pressure measurement, and the end date of the previous prescription.  

 

Potential confounders  

The potential confounders considered were age, sex, body mass index (BMI), defined 

daily dose (DDD), (re-)examination round, smoking at baseline, salt intake at baseline 

(g/day), history of myocardial infarction, diabetes mellitus at baseline, use of nitrates, 

use of statins, use of NSAID’s, use of another antihypertensive drug class two weeks 

prior to the blood pressure measurement, use of an antihypertensive drug for six of 

the eight weeks prior to the blood pressure measurement, and the cumulative number 

of days an antihypertensive drug was used.   
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History of myocardial infarction was self-reported confirmed by a physician or 

demonstrated on the baseline ECG. To compare dosages of different antihypertensive 

drugs in our analysis, we used the prescribed daily dose (PDD), expressed as the 

number of DDDs per day. The DDD is defined as the recommended dose for the main 

indication in an adult of 70 kg.9

 

Genotype  

Genomic DNA was extracted from whole blood samples using standard methods, 

described previously.10 Samples were genotyped with TaqMan allelic discrimination 

Assays-By-Design (Applied Biosystems, Foster City, CA). Forward and reverse primer 

sequences were 5’ GAG AAG ACA AGA TGG CTG AAC TCT 3’ and 5’ GTC TTC GAC TTG 

GGA CTG CTT 3’ and the minor groove binding probes were 5’ ATT CTG CCA TTC CTC 

3’ (VIC) and 5’ ATT CTG CCA TTC CTC 3’ (FAM) for the ADD1 gene. Forward and 

reverse primer (anti sense strand) sequences were 5’ AGG TTT GCC TTA CCT TGG AAG 

TG 3’ and 5’ GCT GTG ACA GGA TGG AAG ACT 3’ and the minor groove binding probes 

were 5’ CTG GCT CCC ATC AGG 3’ (VIC) and 5’ CTG GCT CCC GTC AGG 3’ (FAM) for 

the AGT gene. The assays utilized 5 nanograms of genomic DNA and 2 microliter 

reaction volumes. The amplification and extension protocol was as follows: an initial 

activation step of 10 min at 95 deg preceded 40 cycles of denaturation at 95 deg for 

15 s and annealing and extension at 50 deg for 60 s. allele-specific fluorescence was 

then analyzed on an ABI Prism 7900HT Sequence Detection System with SDS v 2.1 

(Applied Biosystems, Foster City, CA). 

 

Analysis 

We used ANOVA (continuous variables) and Chi-square testing (categorical variables) 

to compare baseline characteristics of people with different genotypes. ANOVA was 

used to compare, for each examination, the difference in DDD between the genotype 

groups, stratified by genotype groups. A marginal generalised linear model (GEE) was 

used to investigate the potential interaction between the α-adducin G460W and 

angiotensinogen M235T polymorphism and response to antihypertensive treatment for 

two outcomes: mean difference in SBP and DBP.  

We compared the mean SBP and DBP levels between the different genotype groups for 

subjects using the same antihypertensive drug class. The mean SBP and DBP of 

treated subjects was defined as the mean SBP and DBP of subjects who used the 

antihypertensive drug class in question minus the mean SBP or DBP in untreated 

subjects with the same genotype. The GEE model was used to account for intraperson 

correlations between repeated measurements. The covariance matrix of the repeated 

dependent measurements was unstructured and data were analysed using SAS 

statistical software and adjusted for potential confounders (SAS version 8.2). 
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Results 
 

Alpha-Adducin gene (ADD1) G460W polymorphism 

Between January 1st, 1990 and December 31st, 1999, 6,500 blood pressure 

measurements of 3,025 hypertensive individuals were included. In 91% of the 

hypertensive individuals the ADD1 genotype could be assessed. In total, 396 

individuals used diuretics (559 measurements), 685 β-blockers (997 measurements), 

281 calcium channel blockers (366 measurements), and 294 ACE-inhibitors (389 

measurements). Baseline characteristics of all subjects stratified by the ADD1 

genotype are presented in table 1. There was a significant difference in SBP levels 

between the genotype groups in treated subjects during the first examination. 

 
Table 1. Baseline characteristics of all patients at the first examination stratified by α-adducin 
genotype. Values are presented as means (± SD), or number (%) 
 
 Untreated Treated 
Variable GG W-allele   GG W-allele   
  (n=950) (n=602)   (n=469) (n=316)   
Gender, M 389 (40.9%) 246 (40.9%)   178 (38.0%) 132 (41.8%)   
Age, years 69.9 ± 8.6 69.2 ± 8.3   70.7 ± 9.1 71.6 ± 8.8   
SBP, mmHg 153.0 ± 21.9 152.9 ± 21.3   146.0 ± 22.7 142.5 ± 23.4 ** 
DBP, mmHg 78.9 ± 12.0 78.6 ± 11.9   76.0 ± 11.8 74.9 ± 11.8   
BMI, kg/m2 26.4 ± 3.5 26.2 ± 3.4   27.1 ± 3.8 27.3 ± 3.9   
Diabetes mellitus 109 (11.7%) 72 (12.8%)   67 (14.4%) 44 (14.1%)   
Smoking           
Current 187 (20.0%) 129 (21.8%)   70 (15.0%) 59 (19.0%)   
Past  393 (42.1%) 259 (43.7%)   213 (45.7 %) 134 (43.2%)   
Never 354 (37.9%) 205 (34.6%)   183 (39.3%) 117 (37.7%)   
Diuretic      125 (36.7%) 87 (27.5%)   
β-blocker      203 (43.3%) 147 (46.5%)   
Calcium channel 
blocker      72 (15.4%) 43 (13.6%)   
ACE-inhibitor       69 (14.7%) 39 (12.3%)   
 
* = Significantly different in treated or untreated group (p < 0.10) 
** = Significantly different in treated or untreated group (p < 0.05) 
 

The mean DDD at baseline for users of diuretics was 0.81 ± 0.46, for β-blockers 

0.68 ± 0.35, for calcium channel blockers 0.77 ± 0.34, and for ACE-inhibitors 1.11 ± 

0.65. There was no statistically significant difference in DDDs during follow-up between 

the different genotypes (data not shown). 

Due to the small number of subjects with the WW genotype (7.5% of the 

individuals) this group was combined with the GW genotype group in the analysis. 

After adjustment for potential confounders, the mean difference in SBP and DBP was 

compared between the two genotype groups for the different antihypertensive drug 

classes during the three examination rounds (see figure 1). Among starters of diuretic 

therapy (n=57) there was no drug-gene interaction on the mean difference in SBP 

(p=0.81) and DBP (p=0.88). There was also no drug-interaction among starters of β-

blocker therapy (n=63) (SBP p=0.95 and DBP p=0.75). However, we could only 
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include a small number of measurements. The number starters of calcium channel 

blockers therapy (n=23) and ACE-inhibitors therapy (n=15) were too small to 

examine. 

 
Figure 1. Adjusted mean difference in systolic and diastolic blood pressure among 
antihypertensive drug users with the GG genotype of the α-adducin gene compared to subjects 
with the W-allele of α-adducin gene. 
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Angiotensinogen gene (AGT) M235T polymorphism 

For the AGT gene 91% of the genotypes could be ascertained. In total, 395 individuals 

used diuretics (559 measurements), 689 β-blockers (1,002 measurements), 282 

calcium channel blockers (367 measurements), and 293 ACE-inhibitors (388 

measurements), respectively. Baseline characteristics for all subjects stratified by AGT 

genotypes are presented in table 2. There was no significant difference in baseline 

characteristics between the different genotype groups during the first examination. 

Although, there was some indication that untreated subjects with the MT genotype had 

a higher SBP level compared to the other genotypes. There was no statistically 

significant difference in DDDs for the different genotypes.  

The adjusted difference in blood pressure when treated with diuretics, β-blockers, 

calcium channel blockers, or ACE-inhibitors is presented in figure 2. Also, with this 

polymorphism no statistically significant drug-gene interaction was found. There was 

no drug-gene interaction for starters of diuretic (SBP p=0.88 and DBP p=0.65) or β-

blocker therapy (SBP p=0.72 and DBP p=0.41).  
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Table 2. Baseline characteristics of all patients at the first examination stratified by 
angiotensinogen genotype. Values are presented as means (± SD), or number (%). 
 
 Untreated  Treated  
Variable MM MT TT   MM MT TT   
  (n=541) (n=755) (n=252)   (n=280) (n=397) (n=113)   
Gender, M 
 

207 
(38.3%) 

325 
(43.0%) 

102 
(40.5%)   

111 
(39.6%) 

152 
(38.3%) 

49 
(43.4%)   

Age, years 
 

69.4 ± 
8.3 

70.0 ± 
8.6 

68.8 ± 
8.4   

71.0 ± 
8.9 

70.9 ± 
8.8 

70.5 ± 
9.4   

SBP, mmHg 
 

151.3 ± 
21.9 

154.0 ± 
21.7 

152.8 ± 
21.0 * 

142.8 ± 
22.6 

145.7 ± 
23.0 

144.6 ± 
23.3   

DBP, mmHg 
 

78.4 ± 
12.0 

79.0 ± 
12.1 

78.7 ± 
11.8   

75.3 ± 
11.6 

75.3 ± 
11.7 

77.6 ± 
12.7   

BMI, kg/m2 
 

26.4 ± 
3.6 

26.3 ± 
3.4 

26.4 ± 
3.2   

27.4 ± 
4.1 

27.0 ± 
3.6 

27.0 ± 
3.9   

Diabetes mellitus 
 

61 
(11.5%) 

90 
(12.3%) 24 (9.7%)   

39 
(13.9%) 

56 
(14.3%) 

16  
(14.4 %)   

Smoking               
Current 
 

100 
(18.9%) 

152 
(28.8%) 

61 
(24.5%)   

39 
(14.1%) 

73 
(18.6%) 

20 
(17.9%)   

Past  
 

223 
(42.2%) 

327 
(43.8%) 

101 
(40.6%)   

131 (47.5 
%) 

171 
(43.5%) 

47 
(42.0%)   

Never 
 

205 
(37.5%) 

267 
(35.8%) 

87 
(34.9%)   

106 
(38.4%) 

149 
(37.9%) 

45 
(40.2%)   

Diuretic 
        

84 
(30.0%) 

106 
(26.7%) 

23 
(20.4%)   

β-blocker 
        

118 
(42.1%) 

185 
(46.6%) 

49 
(43.4%)   

Calcium channel 
blocker        

39 
(13.9%) 

57 
(14.4%) 

19 
(16.8%)   

ACE-inhibitor 
         

39 
(13.9%) 

49 
(12.3%) 

22 
(19.5%)   

 
* = Significantly different in treated or untreated group (p < 0.10) 
** = Significantly different in treated or untreated group (p < 0.05) 

 

In addition, we assessed the effect of drug-gene-gene interactions between the ACE 

I/D polymorphism, AGT M235T polymorphism, and ADD1 G460W polymorphism and 

antihypertensive drugs on blood pressure. None of the drug-gene-gene combinations 

(AGT-ADD1 or AGT-ACE or ADD1-ACE) modified the mean difference in SBP or DBP 

level.  

 

 
Discussion 
 

This study suggests that there is no interaction between the G460W polymorphism of 

the α-adducin gene or the M235T polymorphism of the angiotensinogen gene and the 

use of monotherapy with a diuretic, β-blocker, calcium channel blocker, or ACE-

inhibitor on SBP and DBP levels. Furthermore, combinations of these two 

polymorphisms and the I/D polymorphism of the ACE gene did not result in significant 

drug-gene-gene interactions. 

86 



ADD1 G460W and AGT M235T polymorphism, antihypertensive therapy, and blood pressure 

Figure 2. Adjusted mean difference in systolic and diastolic blood pressure among 
antihypertensive drug users with the TT and MT genotype of the angiotensinogen gene 
compared to the MM genotype of the angiotensinogen gene. 
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The G460W and M235T polymorphisms were logical candidates to investigate as 

polymorphisms that might influence antihypertensive drug response. Studies with the 

Milan hypertensive rat and humans with essential hypertension suggest that genetic 

alterations in α-adducin may contribute to hypertension.11-13 The α-adducin gene may 

affect blood pressure by increasing renal tubular reabsorption of sodium through the 

activation of Na+,K+-ATPase (adenosine triphosphatase) and the 460W-allele of the α-

adducin gene is associated with a higher affinity for the Na+,K+-ATPase pump than the 

460G-allele.14 Angiotensinogen is the inactive precursor of the potent vasoactive and 

salt-retaining hormone angiotensin II and thus a major component of the renin-

angiotensin system. The M235T polymorphism of the angiotensinogen gene has an 

effect on plasma angiotensinogen concentration. Subjects with two copies of the 235T-

allele have 15% to 40% higher levels compared with subjects with two copies of the 

235M-allele.15 In a meta-analysis the M235T polymorphism was significantly associated 

with hypertension.16 Persons with a copy of the T-allele had a higher risk of 

hypertension. In our study, subjects with the T-allele had a higher SBP level compared 

to the subjects with MM genotype at baseline. 

Previous studies investigating the interaction between the G460W polymorphism of 

the α-adducin gene or M235T polymorphism of the angiotensinogen gene and 

antihypertensive drugs on blood pressure response have been inconclusive. In a study 

of Italian families, there was evidence that the G460W polymorphism predicted a 

twofold mean difference in blood pressure response to hydrochlorothiazide among 

hypertensive subjects when treated for 4 weeks,1-3 although, this could not be
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replicated in another and larger study.4 We did observe a significant difference 

between the genotype groups in SBP in treated groups during the first examination, 

but this disappeared when we analyzed the complete data.  

In our study, we had only measurements every three years and could not 

investigate the immediate effect on blood pressure response after administration of an 

antihypertensive drug and therefore calculated the difference in blood pressure 

between genotype groups. It is possible that previously reported drug-gene interaction 

were the results of a temporary difference between the genotype groups, which 

occurred shortly after administration of an antihypertensive drug and therefore missed 

in our study. However, no drug-gene interaction was found in our group of “starters”.  

The main difference between the previous studies and ours, is that we conducted 

an observational study and the other studies were trials. The advantage of an 

observational study is that it resembles daily clinical practice. A limitation of 

observational studies is that they are vulnerable to confounding. For example, 

confounding by indication might have biased our results. As a physician was free to 

choose whether a patient receives a antihypertensive drug and which, specific patients 

characteristics might have influenced this decision. However, the drug-gene interaction 

between subjects using the same antihypertensive class is most likely not influenced 

by this bias, since users of the same antihypertensive drug class have most likely the 

same characteristics and the physician is unaware of a subjects’ genotype. In addition, 

we adjusted for potential confounders, such as dose, BMI, and salt-intake. Another 

limitation is the overrepresentation of patients with isolated systolic hypertension. In 

addition, it is possible that the medication taken during the blood pressure 

measurement was not the initial drug chosen, but rather represents an alternative 

drug, which through a process of trail and error was found to be the most effective. 

However, the potential overrepresentation of “good responders” increased our chance 

of finding a drug-gene interaction.  

Notwithstanding these caveats, this study suggests that in daily practice the 

G460W polymorphism of the ADD1 gene and M235T polymorphism of the AGT gene do 

not influence differences in blood pressure levels among users of low-ceiling diuretics, 

β-blockers, calcium channel blocker, or ACE-inhibitors.  
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Abstract 
 

Despite the availability of effective antihypertensive drugs, there is a large variation in 

response to these drugs. This study investigates whether polymorphisms in the 

angiotensin converting enzyme (I/D), angiotensinogen (M235T), α-adducin (G460W), 

angiotensin II type 1 receptor (1166A/C), or G protein β3-subunit (825C/T) gene 

modify the mean difference in blood pressure levels among diuretic, β-blocker, or ACE-

inhibitor users. Data were used from the Doetinchem Cohort Study, and blood pressure 

data was collected from GPs (1987-1997). A marginal generalised linear model (GEE) 

was used to assess the gene-drug interaction on the mean difference in 

systolic/diastolic blood pressure. In total, 625 hypertensive individuals were included 

with a total of 5,262 measurements of blood pressure. Only the interaction between 

diuretic use and the GNB3 825C/T polymorphism was significant (C-allele versus TT; 

difference in systolic blood pressure=4.33 mmHg; 95%CI: 0.14-8.54). Thus, the mean 

systolic blood pressure level among diuretic users may be modified by the GNB3 

825C/T polymorphism. 
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Introduction 
 

Hypertension is an important public health problem. Evidence from randomized trials 

has shown that drug treatment reduces the risk of cardiovascular morbidity and 

mortality.1, 2 Despite the availability of a variety of effective drugs, inadequate control 

of blood pressure is still common in hypertensive patients.3 Among the possible causes 

are, besides environmental, certain genetic characteristics that could have modified 

the response to antihypertensive drugs. 

Blood pressure levels are homeostatically maintained through complex interactions 

between environmental and genetic factors. Antihypertensive drugs lower blood 

pressure by acting on specific targets within this system. Obvious candidate genes for 

antihypertensive drug-gene interactions are those that code for components of a 

system, which is pharmacology influenced by an antihypertensive drug. Other 

candidates genes are those that code for components of counter-regulatory systems.  

Examples of candidate genes for blood pressure lowering drugs are those in the 

renin-angiotensin system, for example: angiotensinogen (AGT), angiotensin converting 

enzyme (ACE), and angiotensin II receptor type 1 (AGTR1). Plasma AGT is significantly 

elevated in patients with the AGT 235T-allele4, and serum ACE is significantly higher in 

subjects with the ACE D-allele.5 Candidate genes related to other blood pressure 

regulating systems are α-adducin (ADD1) and β3-subunit of G-protein (GNB3). ADD1 

may affect blood pressure by modulating renal tubular reabsorption of sodium through 

the activation of Na+,K+-ATPase (adenosine triphosphatase) with the 460W-allele 

exhibiting higher affinity for the Na+,K+-ATPase pump.6 The 825T-allele of GNB3 gene 

is associated with a shortened splice variant of the GNB3 protein that gives rise to 

enhanced signal transduction via pertussis toxin-sensitive G-proteins.7

Several non randomized trials have studied the influence of these genes on the 

response to antihypertensive medication,8 but with conflicting results and as far as we 

known, the effect of these genes in daily practice has never been evaluated. Therefore, 

the purpose of the present study was to evaluate the relationship between the I/D 

(ACE), M235T (AGT), G460W (ADD1), 1166A/C (AGTR1), and 825C/T (GNB3) 

polymorphism on the mean difference in blood pressure levels among subjects using 

diuretics, β-blockers, or ACE-inhibitors in daily practice. 

 

 

Materials and Methods 
 

Setting 

Data from the Doetinchem Cohort Study was used; a population-based prospective 

study on cardiovascular disease risk factor conducted in the Netherlands.9 The baseline 

examination was carried out from 1987 to 1992 in men and women aged 20-59 years, 

living in Doetinchem, a Dutch town with circa 40,000 inhabitants.  
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Data collection  

At the start of the Doetinchem Cohort Study, the respondents completed a 

questionnaire that contained questions on demographic variables, cardiovascular 

diseases, and risk factors. In addition, weight, and height were measured and blood 

was drawn for total and high-density lipoprotein (HDL) cholesterol determination and 

DNA extraction. The design of this study has been described elsewhere.9 In addition, 

blood pressure data was collected from general practitioners from 1987 to 1997.    

Pharmacy records were available for approximately 76% of the Doetinchem cohort 

as of January 1st, 1987. These records include the name of the drug, the day of 

dispensing, the dosage form, the number of units dispensed, the prescribed daily dose 

and the Anatomical Therapeutic Chemical code of the drug.10

 

Cohort and outcome definition 

Hypertensive patients were only included if their genotypes could be assessed, 

additional blood pressure measurements from the GPs were available, and pharmacy 

data were available. In addition, during follow-up individuals had to have one or more 

blood pressure measurements which met one of the following criteria: systolic blood 

pressure (SBP) ≥ 160 mmHg, and/or diastolic blood pressure (DBP) ≥ 95 mmHg, 

and/or the use of 1 antihypertensive drug class at the time of a blood pressure 

measurement (monotherapy). Only subjects using low-ceiling diuretics, β-blockers, or 

ACE-inhibitors were included in the analysis, because of the small numbers for the 

other antihypertensive drug classes. Measurements were excluded when a combination 

of antihypertensive drugs was used. The end of the study period was set at December 

31st, 1997. 

 

Potential confounders and effect modifiers 

As potential confounders we considered age, gender, body mass index, defined daily 

dose (DDDs), smoking at baseline, history of myocardial infarction, diabetes mellitus at 

baseline, use of nitrates, use of statins, use of NSAIDs, total/hdl cholesterol level, low-

salt diet, low-cholesterol diet, the use of another antihypertensive drug class two 

weeks prior to the blood pressure measurement, the use of an antihypertensive drug 

six of the eight weeks prior to the blood pressure measurement, and the date of the 

measurement. To compare dosages of different antihypertensive drugs in our analysis, 

we used the prescribed daily dose (PDD), expressed as the number of DDDs per day. 

The DDD is defined as the recommended dose for the main indication in an adult of 70 

kg.11

 

Genotype  

Genomic DNA was isolated from peripheral blood according to standard procedures. 

The genotyping procedure of the ADD1 G460W,12 ACE I/D,5 AGT M235T,13 GNB3 

825C/T,14 and AGTR1 1166A/C,15 polymorphism were previously described.  
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Analysis 

We used ANOVA (continuous variables) and Chi-square testing (categorical variables) 

to compare baseline characteristics of people with different genotypes. A marginal 

generalized linear model (GEE) was used to study the potential interaction between the 

genetic polymorphisms of interest and response to antihypertensive treatment for two 

outcomes: mean difference in SBP and DBP. We compared the mean SBP and DBP 

levels between the different genotype groups for subjects using the same 

antihypertensive drug class. To test for the interaction between the polymorphism in 

question (e.g. ACE I/D polymorphism) and the use of an antihypertensive drug class in 

question (e.g. ACE-inhibitors) two dummy variables were added to the model: ACE 

genotype (ID and II) x the use of ACE-inhibitors during the blood pressure 

measurement (0/1). The reference group consisted of subjects with the DD genotype, 

who had a prescription of the antihypertensive drug class in question. The mean blood 

pressure of treated subjects was defined as the mean blood pressure of subjects who 

used the antihypertensive drug class in question minus the mean blood pressure in 

untreated subjects with the same genotype. For the drug-gene-gene interaction, we 

combined the genotypes of two of the five polymorphisms. For this analysis, we added 

three dummy variables to the model i.e. the drug-gene combinations (e.g. ACE+ADD1: 

I-allele+T-allele, I-allele+MM, and D-allele+T-allele) x the use of the antihypertensive 

drug class in question (0/1). The GEE was used to account for intraperson correlations 

among repeated measurements. To compare the difference in DDD, the model was 

used stratified for the different genotypes. The covariance matrix of the repeated 

dependent measurements was exchangeable and data were analysed using SAS 

statistical software and adjusted for potential confounders. 

 
 
Results 
 

Between 1987 and 1997, 5,262 blood pressure measurements of 625 individuals were 

included. During follow-up, 106 subjects used diuretics (743 measurements), 229 used 

β-blockers (1,480 measurements), and 77 used ACE-inhibitors (495 measurements). 

In 99.4% of the hypertensive individuals, genotypes were assessed for the ACE gene, 

99.9% for the ADD1 gene, 99.9% for the AGTR1 gene, 99.3% for the GNB3 gene, and 

99.9% for the AGT gene. Characteristics for the 625 subjects stratified by treatment or 

no treatment during the first examination are presented in table 1. Subjects in the 

treated group were older and the percentage of diabetics, female subjects, subjects 

receiving a low-salt diet or a low-cholesterol diet was higher compared to the 

untreated group.  
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Table 1. Baseline characteristics of all subjects at the first examination stratified by treatment. 
 
Variable Untreated Treated   
  (n=490) (n=135)   
Gender, M 279 (56.9%) 57 (42.2%) ** 
Age, years 47.7 ± 9.1 52.1 ± 7.6 ** 
SBP, mmHg 151.4 ± 18.3 144.2 ± 20.4 ** 
DBP, mmHg 96.2 ± 10.0 90.5 ± 10.1 ** 
BMI kg/m2 28.0 ± 4.5  27.5 ± 3.9   
Totaal/HDL cholesterol 
ratio  5.5 ± 1.9  5.8 ± 2.2   
Diabetes mellitus 15 (3.1%) 14 (10.4%) ** 
Myocardial infarction 7 (1.4%) 1 (0.7%)   
Diet for high BP 56 (11.5%) 33 (24.4%) ** 
Diet for high cholesterol 35 (7.1%) 24 (17.8%) ** 
Smoking       
current 167 (34.1%) 48 (35.6%)   
past 151 (30.8%) 33 (24.4%)   
never 172 (35.1%) 54 (40.0%)   
Ethnicity, caucasian 477 (97.3%) 131 (97.8%)   
        
ACE: DD/ID/II 160/212/114 36/72/27   
ADD1: W-allele/GG 1 312/92 92/43   
AGTR1: C-allele/AA 2 237/66 66/69   
GNB3: C-allele/TT 3 220/63 63/71   
AGT: T-allele/MM 4 164/325 51/84   
        
Diuretic   39 (33.9%)   
Beta-blocker   86 (63.7%)   
ACE-inhibitor   10 (7.4%)   
 
** P < 0.001 
1 W-allele: WW+GW genotype  
2 C-allele: CC+CA genotype  
3 C-allele: CC+CT genotype  
4 T-allele: TT+MT genotype 

 

 Owing to the small sample size, two genotype groups were combined in the 

analysis for most genes, namely the TT (6.0% of the individuals) and GT genotype of 

ADD1 gene, the CC (10.2% of the individuals) and AC genotype of AGTR1 gene, the 

CC (4.6% of the individuals) and CT genotype of GNB3 gene, and the TT (1.0% of the 

individuals) and GT genotype of AGT gene. The unadjusted difference in SBP and DBP 

was for diuretics users -3.15 mmHg (95%CI: -4.70--1.60) and -3.92 mmHg (95%CI:  

-4.75--3.10), for β-blockers users -2.53 mmHg (95%CI: -3.78--1.27) and -2.13 

mmHg (95%CI: -2.80--1.46), for ACE-inhibitors users 0.35 mmHg (95%CI: -1.62-

2.32) and 0.48 mmHg (95%CI: -0.55-1.52).  

The mean difference in DDDs between genotypes for users of diuretics, β-blockers, 

and ACE-inhibitors adjusted for potential confounders is presented in table 2. There 

was no statistically significant difference in DDDs between the different genotype 

groups.  
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Table 2. Adjusted DDDs for antihypertensive drug users. 
 
  Diuretic Beta-blocker ACE-inhibitor 
ACE: ID versus DD -0.04 (-0.32-0.24)  0.06 (-0.04-0.15)  0.00 (-0.38-0.37) 
ACE: II versus DD  0.09 (-0.26-0.44)  0.08 (-0.02-0.19)  0.01 (-0.42-0.44) 
ADD1: W-allele versus GG -0.10 (-0.33-0.13)  0.00 (-0.08-0.09)  0.05 (-0.23-0.33) 
AGTR1: C-allele versus AA  0.12 (-0.13-0.37)  0.01 (-0.07-0.08)  0.05 (-0.24-0.37) 
GNB3: C-allele versus TT  0.01 (-0.21-0.24) -0.08 (-0.15-0.00)  0.17 (-0.12-0.44) 
AGT: T-allele versus MM -0.08 (-0.34-0.18) -0.01 (-0.08-0.07)  0.20 (-0.13-0.53) 

 

After adjustment for potential confounders, the mean difference in SBP and DBP 

for users of diuretics, β-blockers, and ACE-inhibitors was compared between the 

genotype groups (see figure 1a-c). The only statistically significant drug-gene 

interaction was between diuretic users and GNB3 on SBP level (4.33 mmHg; 95%CI: 

0.14-8.54). This interaction was not found for the mean difference in DBP (0.51 

mmHg; 95%CI: -1.13-2.15). In addition we also adjusted for persons who used 

another antihypertensive drug prior to the use of a diuretic (n=243 switchers). The 

reduction for SBP after this adjustment was 4.74 mmHg (95%CI: 0.69-8.78) and for 

DBP 0.51 mmHg (95%CI: -1.69-2.70). 

 

Drug-gene-gene-interactions 

To assess drug-gene-gene interactions, the mean difference in blood pressure was 

compared between combinations of two of the five genes. Owing to the small sample 

size, the genotype of the ID and II of the ACE gene were combined and it was 

impossible to combine more then two genes together.  

 
Figure 1a.  Adjusted mean difference in systolic or diastolic blood pressure among diuretic 
users. The diamonds with bars depict the mean difference in blood pressure ± 95%CI. 
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Figure 1b. Adjusted mean difference in systolic or diastolic blood pressure among β-blocker 
users. The diamonds with bars depict the mean difference in blood pressure ± 95%CI. 
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Figure 1c. Adjusted mean difference in systolic or diastolic blood pressure among ACE-inhibitor 
users. The diamonds with bars depict the mean difference in blood pressure ± 95%CI. 
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In total, 36 drug-gene-gene interactions were possible for SBP and DBP. Of these 

interactions, four were associated with a significant difference in blood pressure (see 

figure 2). These were the interaction between diuretic use and ADD1 W-allele+ AGT T-

allele vs. GG+ MM on DBP (3.09 mmHg; 95%CI:0.16-2.93; 169 versus 149 

measurements), β-blocker use and AGTR1 C-allele+ AGT T-allele vs. AA+ MM on
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DBP (2.63 mmHg; 95%CI: 0.30-2.33; 436 versus 223 measurements), ACE-inhibitor 

use and ACE I-allele+ GNB3 TT vs. DD+ C-allele on DBP (6.22 mmHg; 95%CI: 0.93-

5.29; 180 versus 18 measurements), and ACE-inhibitor use and ACE I-allele+ AGT T-

allele vs. DD+ MM on SBP (-10.21 mmHg; 95%CI: -19.47--0.95; 239 versus 29 

measurements).  

 
Figure 2. Adjusted interactions between the five candidate genes resulting in a significant 
difference in systolic and/or diastolic blood pressure among antihypertensive drug users. The 
diamonds with bars depict the mean difference in blood pressure ± 95%CI. 
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Discussion 
 

The data presented here provide evidence that diuretic users with the GNB3 TT 

polymorphism have lower SBP levels. None of the other examined genes had a 

significant influence on blood pressure. Of the 36 possible drug-gene-gene interactions 

on blood pressure, four results were significant, namely diuretic use and ADD1 W-

allele+ AGT T-allele vs. GG+ MM (DBP), β-blocker use and AGTR1 C-allele+ AGT T-

allele vs. AA+ MM (DBP), ACE-inhibitor use and ACE I-allele+ GNB3 TT vs. DD+ C-

allele (DBP), and ACE-inhibitor use and ACE I-allele+ AGT T-allele vs. DD+ MM (SBP).  

Our results concur with that of a non-randomized trial that investigated the role of 

GNB3 in diuretic users.16 In this study a significantly greater decline for both SBP and 

DBP was found in subjects with the TT genotype.16 To confirm these data, additional 

studies (trials and observational studies) are warranted to confirm this potential drug-

gene interaction. Especially, because no interactive effect was found in this study on 

DBP and the effect found on DBP was smaller than for example with the AGT M235T 
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polymorphism. In addition, none of the drug-gene-gene interactions were significant 

with GNB3 in diuretic users.  

There are some explanations why our results might be false-positive. First, we 

have tested multiple genes on multiple outcomes and if we had adjusted for multiple 

testing the interaction between GNB3 and diuretic use would not have been significant. 

A popular correction method for multiple testing is the Bonferroni correction (1-(1-

0.05)^the number of markers), however, this correction would overcorrect the false-

positive rate and thereby might disregard valid information. Second, the medication 

taken during the blood pressure measurement may not have been the first 

antihypertensive drug, but one that through a process of trail and error was found to 

be the most effective. With an overrepresentation of “good responders” the chance to 

find a drug-gene interaction is higher. However, after adjustment for switchers, the 

result remained significant and therefore channeling of diuretics does not seem to be 

the explanation. Third, observational studies compared to trials may be vulnerable for 

confounding. Confounding is also unlikely since we adjusted for potential confounders, 

like dose, duration of therapy, age, gender, and co-morbidities. Race could be an 

additional confounder, but less than 1% of the subjects had a different ethnic 

background. In addition, confounding by indication might have occurred in our study. 

As a physician was free to choose whether a patient receives an antihypertensive drug 

and which, specific patients’ characteristics might have influenced this decision. 

However, the drug-gene interaction between subjects using the same antihypertensive 

class is most likely not influenced by this bias, since users of the same 

antihypertensive drug class have most likely the same characteristics and the 

physician is unaware of a subjects’ genotype. There are other variables e.g. exercise 

and alcohol, which have an impact on blood pressure. Therefore, it is possible that we 

overestimated or underestimated the blood pressure lowering effect of the 

antihypertensive drug classes. However, since this is most likely the same for the 

different genotype groups it would not have influenced our drug-gene interaction 

results. Fourth, an advantage of a trial is the possibility to assess the response to an 

antihypertensive drug, by measuring the blood pressure before and during treatment. 

Owing to the small number of persons with a baseline measurement just preceding the 

start of an antihypertensive drug therapy, the mean difference in blood pressure was 

calculated. If the result is not false-positice, the observed difference of 4.33 mmHg 

systolic could result in a relative risk reduction of about 10% of cardiovascular disease 

in 10 year, according to the Framingham Risk function. 

Regarding the significant drug-gene-gene interactions the chance of a false-

positive result is even higher due to the smaller sample size. However, of the 36 

possible combinations four were found to be significant. The observed interactions 

were only found either with SBP or DBP. Thus further investigations are needed before 

definitive conclusions can be made. It is, however, apparent that the effects of the 

investigated single nucleotide polymorphisms are probably small and that this is the 

same for the drug-gene-gene interactions.  
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Notwithstanding these caveats, the study suggests that some of the drug-gene-

gene interactions had an influence on blood pressure levels in daily practice. In 

addition, the GNB3 polymorphism may influence the mean difference in SBP among 

users of low-ceiling diuretics.  
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Abstract 
 

Introduction: Knowledge of pharmacogenetics might optimise drug therapy in patients 

treated with antihypertensive drugs.  

Aim: To investigate whether the angiotensin converting enzyme (ACE) 

insertion/deletion (I/D), angiotensinogen M235T, or angiotensin II receptor type 1 

573C/T polymorphism modify the risk of atherosclerosis associated with β-blocker or 

ACE-inhibitor therapy.  

Methods: Data were used from the Rotterdam Study, a population based prospective 

cohort study in the Netherlands, which started in 1990 and included 7,983 subjects of 

55 years and older. Three sub-clinical measurements were used for atherosclerosis, 

i.e. peripheral arterial disease, carotid atherosclerosis, and aortic atherosclerosis. This 

study included 2,216 subjects with hypertension. Pharmacy records were available as 

of January 1st, 1991. The interaction between antihypertensive drugs and genetic 

polymorphisms on the risk of atherosclerosis was determined with binary logistic 

regression analysis.  

Results: Of the 2,216 subjects, 1,267 were treated with β-blockers and 727 with ACE-

inhibitors. The risk of peripheral arterial disease associated with short-term (0-4 years) 

use of ACE-inhibitors compared to no use of ACE-inhibitors, was higher among subjects 

with the II genotype than among subjects with the DD genotype of the ACE gene 

(interaction Odds ratio (OR)=2.21; 95%CI: 1.01-4.85). The risk of aortic 

atherosclerosis associated with short-term use of ACE-inhibitors compared to no use of 

ACE-inhibitors, was lower among subjects with the TT genotype than among subjects 

with the MM genotype of the AGT gene (interaction OR=0.39; 95%CI: 0.15-0.99). In 

contrast, the risk of aortic atherosclerosis associated with long-term (≥ 4 years) β-

blockers treatment compared to no use of β-blockers, was higher among subjects with 

the TT genotype compared to subjects with the MM genotype of the AGT gene 

(interaction OR=3.36; 95%CI: 1.14-9.97). The risk of carotid atherosclerosis 

associated with long-term ACE-inhibitors treatment compared to no use of ACE-

inhibitors, was lower among subjects with the TT genotype than among subjects with 

the MM genotype of the AGT gene (interaction OR=0.20; 95%CI: 0.04-0.95). The risk 

of carotid atherosclerosis associated with short-term use of ACE-inhibitors compared to 

no use of ACE-inhibitors, was higher among subjects with the CT genotype than among 

subjects with the CC genotype of the AGTR1 gene (interaction OR=2.63; 95%CI: 1.11-

6.24).   

Conclusion: Overall, we could not consistently demonstrate that the risk of 

atherosclerosis associated with the use of β-blockers or ACE-inhibitors was strongly 

modified by any of the three candidate gene polymorphisms. 
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Introduction 
 

The renin-angiotensin system plays an important role in vascular homeostasis. 

Sequential cleavage occurs of angiotensinogen (AGT) by renin to angiotensin I, and 

subsequently by angiotensin converting enzyme (ACE) to the vasoactive peptide 

angiotensin II. Besides regulating blood pressure, angiotensin II has also various 

actions that can damage blood vessels. For example, angiotensin II stimulates NADH 

and NADPH activity and raises thereby the oxidative potential of vascular tissue.1,2 In 

addition, it plays a role in the vascular-injury response since it stimulates leukocyte 

adhesion to the site of the injury. In addition, it favors superoxide and peroxynitrite 

formation and proliferation and migration of various cell types towards the luminal site 

of injury.3 The cascade of events that follows can result in atherosclerotic plaques. 

Angiotensin II and some of its constituent peptides also stimulate the synthesis of the 

plasminogen activator inhibitor 1 (PAI1). Therefore, it is thought that activation of the 

renin-angiotensin system predisposes to atherosclerosis and thromboembolic events, 

including myocardial infarction (MI) and stroke.4,5  

Of the four mainly prescribed antihypertensive drug classes (i.e. diuretics, β-

blockers, calcium channel blockers, and ACE-inhibitors), only ACE-inhibitors and β-

blockers have a direct effect on the renin-angiotensin system, i.e. ACE-inhibitors inhibit 

the conversion from angiotensin I into angiotensin II and β-blockers inhibit the β-

adrenoceptor mediated release of renin from the kidneys. The objective of this study 

was to determine whether the risk of atherosclerosis varies between ACE-inhibitor or 

β-blocker users with different genotypes of genes that are involved in the renin-

angiotensin system, i.e. ACE, AGT, and angiotensin receptor II type 1 (AGTR1) gene.   

 

 

Methods 
 

Setting and design 

The Rotterdam Study is a prospective, population-based cohort study, which started in 

1990 as a population-based prospective follow-up study. All 10,275 residents of the 

suburb Ommoord in Rotterdam, aged 55 years or older were invited to participate in 

an extensive home interview and two visits to the research center. In total, 7,983 

(78%) subjects gave written informed consent and baseline measurements took place 

until 1993. Information was collected on age, gender, present health status, and 

medical history, including previous MI and stroke. All reported MIs or stroke at 

baseline were verified with medical records. During a physical examination, blood 

pressure, weight, and height were measured and blood was drawn for DNA extraction. 

In total, blood samples were available for genotyping of 86% of the cohort. The design 

of this population-based study has been described elsewhere.6 A second (1993-1995) 

and third (1997-1999) cross-sectional assessment were conducted in a similar way. 

Only atherosclerosis measurements from the third cross-sectional assessment were 
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included, since a limited number of atherosclerosis measurements were performed in 

the second assessment and pharmacy records were only available as of January 1st, 

1991 which is later than most of the baseline atherosclerosis assessments. Of 3,506 

participants’ information on at least one measure of atherosclerosis, assessed during 

the third cross-sectional assessment, was available. Only individuals with hypertension 

were included in this study. Hypertension was defined as systolic blood pressure ≥ 160 

mmHg, and/or diastolic blood pressure ≥ 95 mmHg, and/or the use of a 

antihypertensive drug during follow-up. 

 

Outcome definition 

Atherosclerosis of the lower extremities 

Systolic blood pressure at the ankles (posterior tibial artery) was measured in the 

supine position with a random-zero sphygmomanometer and an 8-MHz continuous 

wave Doppler probe (Huntleigh 500D, Huntleigh Technology). The ratio of the systolic 

blood pressure at the ankle to the systolic blood pressure at the arm was calculated to 

obtain the ankle-arm index (AAI). Peripheral arterial disease was considered present 

when the ankle-brachial blood pressure index was lower than 0.90 in at least one leg.7 

The sensitivity and the specificity of this cut-off are 90% and 98%, respectively, for an 

angiographically defined stenosis of 50% or more in a major leg artery.8 

Aortic atherosclerosis 

Aortic atherosclerosis was diagnosed by radiographic detection of calcified deposits in 

the abdominal aorta on a lateral abdominal film.9 Calcified deposits were graduated on 

a graded scale (with scores of zero to five corresponding to 0, ≤1, 1 to 2.5, 2.5 to 4.9, 

5.0 to 9.9 and ≥10 cm, respectively). Aortic atherosclerosis was considered present if 

the score was one or higher. In addition, aortic atherosclerosis was divided in degrees 

of severity, i.e. score of zero, one to two, and three or higher. 

Carotid atherosclerosis 

Ultrasonography of both carotid arteries was performed with a 7.5-MHz linear-array 

transducer and a duplex scanner (ATL Ultra-Mark IV, Advanced Technology 

Laboratories). The common carotid artery, carotid bifurcation, and internal carotid 

artery were examined on both the left and right sides for the presence of plaques as 

described before.10 A weighted plaque score ranging from zero to six was computed 

by adding the number of sites at which a plaque was detected, divided by the number 

of sites for which an ultrasonographic image was available, and multiplied by six (the 

maximum number of sites). Carotid atherosclerosis was considered present if the 

plaque score was one or higher, respectively. Carotid atherosclerosis was also divided 

in degrees of severity, i.e. plaque score of zero, one to two, three, and four or higher. 

 

Exposure definition 

Pharmacy records were available for approximately 99% of the cohort as of January 

1st, 1991. These records include the name of the drug, the day of dispensing, the 

dosage form, the number of units dispensed, the prescribed daily dose and the 
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Anatomical Therapeutic Chemical (ATC) code of the drug.11 The exposure of interest 

included ACE-inhibitors and β-blockers, because of their direct effect on the renin-

angiotensin system. The use of these antihypertensive drug classes was divided into 

three categories, i.e. no use, short-term (0-4 years), and long-term (≥ 4 years). 

These categories were chosen, because of the expected lag-time between drug 

exposure and the effect on atherosclerosis. 

On the date of the atherosclerosis measurement, the cumulative duration of use 

was calculated for all antihypertensive drug classes for each participant. Hereto, we 

first calculated each prescription length by dividing the number of dispensed tablets or 

capsules by the prescribed daily number. Each refill at the pharmacy which occurred 

within seven days after last intake from the previous prescription was considered as a 

continuous drug episode. For dose-effect associations, we used the defined daily dose 

(DDDs) which consists of the recommended daily dose for the indication hypertension 

in an adult.  

 

Genotyping 

Genomic DNA was extracted from whole blood samples using standard methods, 

described previously.12 The I and D-allele of the ACE gene were identified on the basis 

of polymerase-chain-reaction (PCR) technique according to the method of Lindpainter 

et al.13 with some modifications. Because the D-allele in heterozygous samples is 

preferentially amplified, there is a tendency of misclassification for about 4-5% of the 

ID to DD genotypes. For this reason, a second PCR was performed with a primer pair 

that recognises an insertion specific sequence (5’ TGG GAC CAC AGC GCC CAC TAC 3’ 

and 5’ TCG CCA GCC CTC CCA TGC CCA TAA 3’). The reaction yielded a 335-bp 

amplicon only if the I-allele was present. Two independent investigators read pictures 

from each gel and all ambiguous samples were analysed a second time.  

The AGT M235T and AGTR1 573C/T (exon 5) polymorphism were genotyped with 

TaqMan allelic discrimination Assays-By-Design (Applied Biosystems, Foster City, CA). 

Forward and reverse primer (anti sense strand) sequences were 5’ AGG TTT GCC TTA 

CCT TGG AAG TG 3’ and 5’ GCT GTG ACA GGA TGG AAG ACT 3’ and the minor groove 

binding probes were 5’ CTG GCT CCC ATC AGG 3’ (VIC) and 5’ CTG GCT CCC GTC 

AGG 3’ (FAM) for the AGT M235T polymorphism. Forward and reverse primer 

sequences were 5’ TGT GCT TTC CAT TAT GAG TCC CAA A 3’ and 5’ CAG AAA AGG 

AAA CAG GAA ACC CAG TAT A 3’ and the minor groove binding probes were 5’ CTA 

TCG GGA GGG TTG 3’ (VIC) and 5’ CTA TCG GAA GGG TTG 3’ (FAM) for the AGTR1 

573C/T polymorphism. The assays utilized 5 nanograms of genomic DNA and 2 

microliter reaction volumes. The amplification and extension protocol was as follows: 

an initial activation step of 10 min at 95 deg preceded 40 cycles of denaturation at 95 

deg for 15 s and annealing and extension at 50 deg for 60 s. allele-specific 

fluorescence was then analyzed on an ABI Prism 7900HT Sequence Detection System 

with SDS v 2.1 (Applied Biosystems, Foster City, CA). 
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Potential confounders 

As potential confounders we consider age, gender, diabetes mellitus, systolic blood 

pressure, diastolic blood pressure, body mass index (BMI), use of coumarins, angina 

pectoris, history of stroke, history of coronary heart disease, smoking, cholesterol level 

(total cholesterol/high density cholesterol), use of statins, follow-up time, cumulative 

use of other antihypertensive drugs, and DDDs. We adjusted for the combined use of 

other antihypertensive drugs classes by adding each antihypertensive drug class 

separately in the model for no use, short-term, and long-term treatment. The same 

duration of use categories were used for statin therapy. History of angina pectoris was 

defined as the use of two or more prescriptions of nitrate. History of coronary heart 

disease was defined as a history of MI, history of percutaneous transluminal coronary 

angioplasty, and history of coronary artery bypass grafting.  

 

Statistical analysis 

Binary logistic regression was used for the endpoints: presence of peripheral arterial 

disease, presence of aortic atherosclerosis, and presence of carotid atherosclerosis. 

Cumulative use of antihypertensive drugs was divided into three mutually exclusive 

groups, i.e. no, short-term (0-4 years), and long-term treatment (≥ 4 years). In a 

sensitivity analysis also cut-off point of two and three years were used. Multinomial 

logistic regression was used for the degrees of severity analysis for the outcomes: 

aortic and carotid atherosclerosis. To study the effect modification by the ACE gene 

and the use of ACE-inhibitors (or β-blockers) subjects with the DD genotype and those 

who did not use ACE-inhibitors (or β-blockers) were used as the reference group. For 

the drug-gene interactions four dummy variables were added to the model, e.g. ACE 

genotype (ID or II) x ACE-inhibitor (short-term or long-term treatment).  

 

 

Results 
 
In total, there were 2,305 subjects with hypertension during follow-up. Of 2,216 

subjects (96.1%) data on atherosclerosis and blood samples were available. Of these 

2,216 subjects, 727 were treated with ACE-inhibitors, 1,267 were treated with β-

blockers, and 1,556 were treated with antihypertensive drugs from other classes. A 

subject could contribute to one or more categories of antihypertensive drug classes 

during follow-up. Table 1 shows the characteristics of the subjects included in this 

study at the moment of the third cross-sectional assessment.  

The ACE genotype could be assessed in 2,164 subjects. Of these, 26.3%, 52.2%, 

and 21.4% had the DD, ID, and II genotype, respectively. The AGT genotype could be 

assessed in 2,056 subjects, of whom 37% had the MM, 46.8% the MT, and 16.2% the 

TT genotype. With regard to the AGTR1 genotype, 2,032 could be genotyped, of 

whom 27.5% had the CC, 49% had the CT, and 23.5% had the TT genotype, 

respectively.  
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Table 1. Baseline characteristics of the study population 
 
Characteristics n=2,216 
Age, years  
Gender, male 
SBP, mmHg 
DBP, mmHg 
BMI, kg/m2 

Total cholesterol/HDL, mmol/l 
Cardiovascular disease, yes 
Stroke, yes 
Smoking, current/past/never 
ACE gene, DD/ID/II 
AGT gene, MM/MT/TT 
AGTR1 gene, CC/CT/TT 
Use of ACE-inhibitors, 0/0-4/ ≥ 4 years 
Use of β-blockers, 0/0-4/ ≥ 4 years 
Use of other antihypertensive drugs 
Use of statins 
Use of coumarins 

73.74 ± 23.26  
915 (41.3%) 
153.08 ± 71.13 
82.41 ± 74.13 
73.74 ± 7.02  
10.59 ± 23.26 
437 (19.7%) 
128 (5.8%) 
329/1,110/758  
570/1,130/464 
760/963/333 
559/995/478 
1,489/495/232 
949/773/494 
1,556 (70.2%) 
489 (32.1%) 
162 (7.3%) 

 

ACE I/D polymorphism 

In figure 1 the association between the use of β-blockers or ACE-inhibitors and ACE 

I/D polymorphism and the risk of peripheral arterial disease, aortic atherosclerosis, 

and carotid atherosclerosis is presented. Hypertensive subjects not treated with ACE-

inhibitors with the ACE II genotype had a similar risk of peripheral arterial disease 

compared with untreated hypertensive subjects with the DD genotype (Odds ratio 

(OR)=0.89; 95%CI: 0.58-1.35) (see figure 1a). Individuals treated short-term (0-4 

years) with ACE-inhibitors with the DD genotype the risk of peripheral arterial disease 

was similar compared with untreated subjects with the DD genotype (OR=0.95; 

95%CI: 0.45-1.46). Individuals with the II genotype and treated short-term with 

ACE-inhibitors had an increased risk of peripheral arterial disease (OR=1.87; 95%CI: 

1.01-3.46) compared with untreated subjects with the DD genotype. The risk of 

peripheral arterial disease associated with short-term (0-4 years) use of ACE-

inhibitors compared to no use of ACE-inhibitors, was higher among subjects with the 

II genotype than among subjects with the DD genotype of the ACE gene (interaction 

(OR)=2.21; 95%CI: 1.01-4.85). In individuals with the DD genotype and those 

treated long-term (≥ 4 years) with ACE-inhibitors the risk of peripheral arterial disease 

was increased to 2.75 (95%CI: 1.30-5.81) compared with untreated subjects with the 

DD genotype. However, there was no significant drug-gene interaction with the ACE 

I/D polymorphisms in those treated long-term with ACE-inhibitors. In addition, in 

those treated with β-blockers there was no significant drug-gene interaction with this 

polymorphism. 

Regarding the risk of aortic atherosclerosis, individuals treated short-term with β-

blockers with the DD genotype the risk was reduced compared with untreated 

subjects with the DD genotype (OR=0.51; 95%CI: 0.29-0.91) (see figure 1b). In 

individuals with the II genotype and those treated short-term with ACE-inhibitors the 
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risk of aortic atherosclerosis was increased to 2.13 (95%CI: 1.01-4.50) compared 

with untreated subjects with the DD genotype. In those treated long-term the risk 

was even higher (OR=4.37; 95%CI: 1.11-17.31). No significant interaction was found 

between the use of β-blockers or ACE-inhibitors and the ACE I/D polymorphism on the 

risk of aortic atherosclerosis. 

 
Figure 1. Associations between use of β-blockers or ACE-inhibitors and ACE I/D polymorphisms 
on the risk of peripheral arterial disease (1st histogram), aortic atherosclerosis (2nd histogram), 
and carotid atherosclerosis (3rd histogram) (adjusted for all potential confounders). 
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Subjects with the ID genotype and treated short-term with β-blockers, had a 

lower risk of carotid atherosclerosis was lower compared to subjects with the DD 

genotype who were not treated with β-blockers (OR=0.55; 95%CI: 0.30-1.00) (see 

figure 1c) The risk of carotid atherosclerosis was reducted to 0.40 (95%CI: 0.18-0.89) 

in long-term β-blocker users with the II genotype compared to those untreated with 

the DD genotype. Again no significant drug-gene interaction was found in those 

treated with β-blockers or ACE-inhibitors with the ACE I/D polymorphism. 

 

AGT M235T polymorphism 

With regard to the AGT M235T polymorphism, the risk of peripheral arterial disease 

was increased (OR=1.76; 95%CI: 1.03-3.01) in individuals treated short-term with 

ACE-inhibitors with the MM genotype compared with untreated subjects with the MM 

genotype (see figure 2a). In addition, the risk was increased to 2.19 (95%CI: 1.11-

4.29) for individuals treated long-term with ACE-inhibitors with the MT genotype and 

to 2.55 (95%CI: 1.09-5.98) for those with the TT genotype compared with untreated 

subjects with the MM genotype. However, there was no significant interaction between 

the use of ACE-inhibitors or β-blockers and the AGT M235T polymorphism on the risk 

of peripheral arterial disease. 

Hypertensive subjects with the AGT TT genotype who were not treated with ACE-

inhibitors had a non-significant lower risk of aortic atherosclerosis than untreated 

hypertensive subjects with the MM genotype (OR=0.67; 95%CI: 0.40-1.14). In 

individuals treated long-term with β-blockers with the MM genotype the risk of aortic 

atherosclerosis was non-significantly reduced to 0.57 (95%CI: 0.30-1.06) compared 

with untreated subjects with the MM genotype. In contrast, individuals treated long-

term with β-blockers with the TT genotype the risk of aortic atherosclerosis was 

higher i.e. 1.28 (95%CI: 0.48-3.46) compared with untreated subjects with the MM 

genotype. The drug-gene interaction was significant (interaction OR=3.36; 95%CI: 

1.14-9.97). For those treated short-term with β-blockers there was no significant 

drug-gene interaction with the AGT M235T polymorphism. The opposite effect was 

found in those treated with ACE-inhibitors. The risk on aortic atherosclerosis was i.e. 

reduced, instead of increased, in carriers of the 235T-allele, who were treated short-

term with ACE-inhibitors, compared to no use of ACE-inhibitors (MT versus MM; 

interaction OR=0.42; 95%CI: 0.21-0.86 and TT versus MM; interaction OR=0.39; 

95%CI: 0.15-0.99). Compared with the risk of aortic atherosclerosis in subjects with 

the MM genotype of the AGT polymorphism who were not treated with ACE-inhibitors, 

the risk was increased in subjects with the MT genotype who were untreated 

(OR=1.51; 95%CI: 1.10-2.08) and in subjects with the MM genotype who were 

treated short-term with ACE-inhibitors (OR=2.23; 95%CI: 1.17-4.23). None of the 

drug-gene interactions showed a trend towards an association when we classified 

aortic atherosclerosis in more categories of severity. In addition, none of the drug-

gene interactions were significant when severe aortic atherosclerosis (score ≥ three) 
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was compared with no presence of aortic atherosclerosis (score=zero) (data not 

shown). 

 
Figure 2. Associations between use of β-blockers or ACE-inhibitors and AGT M235T 
polymorphisms on the risk of peripheral arterial disease (1st histogram), aortic atherosclerosis 
(2nd histogram), and carotid atherosclerosis (3rd histogram) (adjusted for all potential 
confounders) 
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Hypertensive subjects not treated with ACE-inhibitors with the angiotensinogen TT 

genotype had a similar risk of carotid atherosclerosis compared to subjects with the 
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MM genotype (OR=1.29; 95%CI: 0.78-2.09). In individuals treated long-term with 

ACE-inhibitors with the MM genotype, the risk of carotid atherosclerosis was non-

significantly increased to 2.89 (95%CI: 0.84-9.09) compared with the reference group. 

In contrast, individuals treated long-term with the TT genotype had a non-significant 

lower risk (OR=0.75; 95%CI: 0.21-2.72) compared to the reference group. The 

interaction between long-term treatment with ACE-inhibitors and the angiotensinogen 

M235T polymorphism was significant (interaction OR=0.20; 95%CI: 0.04-0.95) (see 

figure 2c). There was, however, no trend towards a drug-gene interaction when carotid 

atherosclerosis was classified in more categories of severity. Also, none of the drug-

gene interactions were significant when severe carotid atherosclerosis (score ≥ four) 

was compared with no presence of carotid atherosclerosis (score=zero) (data not 

shown). 

 

AGTR1 573C/T (exon 5) polymorphism 

With regard to AGTR1, no significant drug-gene interaction was found in those treated 

on the risk of peripheral arterial disease (see figure 3a). Although, there was an 

increased risk for individuals with the CC genotype who were treated long-term with 

ACE-inhibitors compared with untreated subjects with the CC genotype (OR=2.93; 

95%CI: 1.39-6.17). 

Also, no significant drug-gene interaction was found on the risk of aortic 

atherosclerosis (see figure 3b). Individuals with the CC genotype and treated short-

term with β-blockers the risk of aortic atherosclerosis was significantly reduced to 

0.51 (95%CI: 0.28-0.93) compared with untreated subjects with the CC genotype. 

Long-term β-blockers users with the CC genotype had a reduced risk of carotid 

atherosclerosis compared to those untreated with the CC genotype (OR=0.32; 95%CI: 

0.14-0.71), but no drug-gene interaction in β-blockers users was found. Subjects 

treated short-term with ACE-inhibitors had a higher risk of carotid atherosclerosis with 

the CT genotype compared to those treated short-term with the CC genotype 

(interaction OR=2.63; 95%CI: 1.11-6.24). There was no trend towards a interactive 

effect between ACE-inhibitors and the AGTR1 573C/T polymorphism when carotid 

atherosclerosis was classified in more categories of severity. 

 
 
Discussion 
 
Although some of the individual measurements of atherosclerosis showed a significant 

drug-gene interaction, there was no consistency between the different atherosclerosis 

measurements, the different antihypertensive drug classes, or different genotype 

classes. In addition, there was no trend towards a drug-gene interaction when we 

classified aortic and carotid atherosclerosis in more categories of degree of severity. It 

is therefore possible that the drug-gene interactions found were false-positive. In 

conclusion, the data suggested that there was no strong drug-gene interaction 
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between ACE I/D, AGT M235T, or AGTR1 573C/T polymorphism and the use of ACE-

inhibitors or β-blockers on the risk of atherosclerosis found in daily practice.  

Figure 3. Associations between use of β-blockers or ACE-inhibitors and AGTR1 573C/T 
polymorphisms on the risk of peripheral arterial disease (1st histogram), aortic atherosclerosis 
(2nd histogram), and carotid atherosclerosis (3rd histogram) (adjusted for all potential 
confounders). 
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In this study, we have used three different sub-clinical measurements for 

atherosclerosis. All three measurements have been validated before. Carotid 

atherosclerosis as shown on ultrasound, aortic atherosclerosis on abdominal x-ray, 
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and lower-extremity atherosclerosis reflected by the AAI are validated measures of 

atherosclerosis and strongly associated e.g. with the presence of coronary 

calcification,14 coronary heart disease,15,16 and stroke.17 Although, carotid plaques and 

ankle-arm index are predictors of stroke they are less strong predictors than aortic 

calcification.18 

To our knowledge, there are no prior studies which investigated whether there is a 

drug-gene interaction between the three candidate gene polymorphisms and ACE-

inhibitor therapy or β-blocker therapy with these sub-clinical measurements of 

atherosclerosis. Two of the three polymorphisms we have investigated have earlier 

been investigated on other outcomes. For example, the ACE II genotype is associated 

with lower tissue and plasma levels of ACE compared to the DD genotype.19,20 In a 

large trial no drug-gene interaction was found on the risk of cardiovascular disease 

between the I/D polymorphism and ACE-inhibitor therapy.21 With regard to the AGT 

M235T polymorphism, subjects with the TT genotype have in general 10-20% higher 

plasma AGT levels than individuals with the MM genotype.22,23 However, Hopkins et 

al.24 reported no difference in angiotensin II levels between the genotype groups. Bis 

et al.25 reported that subjects carrying one copy of the T-allele who used ACE-

inhibitors might have a reduced risk of (non-fatal) stroke compared to users of other 

antihypertensive drugs, but this interaction was not found on myocardial infarction. 

Only with regard to the AGTR1 573C/T polymorphism no information is available on 

plasma levels or on the risk of myocardial infarction or stroke. Benetos et al.26 found a 

significantly greater reduction in carotid-femoral pulse wave velocity with the AGTR1 

1166A/C (exon 5) polymorphism in 40 patients treated with ACE-inhibitors. The 

distance between the AGTR1 1166 A/C polymorphism and the 573C/T polymorphism 

is about 500 base pairs and is most likely in linkage equilibrium with the 1166A/C 

polymorphism. 

A limitation of this study is that we only had a limited number of pre-treatment 

atherosclerosis measurements. Therefore, we were unable to measure the 

progression/reduction of atherosclerosis. In addition, subjects included in the 

Rotterdam Study were 55 years or older when the study started. Younger subject 

respond better to antihypertensive drug treatment and this might have resulted in 

greater differences in atherosclerosis levels. Therefore, the results can not be 

generalized to the general population. Another limitation is that it is unknown how 

long a patient should be treated with antihypertensive drugs before a change in 

peripheral, carotid, or aortic atherosclerosis can be achieved. In our analysis, we used 

four years as a cut-off value. The data was also analyzed with other cut-off values, 

i.e. two and three years. The results slightly changed, but there was no consistent 

drug-gene interaction with any of the three candidate gene polymorphisms. Due to 

the limited number of subjects treated for five years or more, we could not extend our 

drug treatment window. Another limitation is that only one single nucleotide 

polymorphism per gene was examined, which may not explain the full variation in 

plasma or tissue levels. Therefore, we are only able to exclude a candidate gene
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polymorphism and not a complete gene as candidate for a drug-gene interaction.  

Despite the caveats, the results did not indicate the presence of a strong drug-

gene interaction between the use of ACE-inhibitors or β-blockers and the ACE I/D, AGT 

M235T, or AGTR1 573C/T polymorphism on the overall risk of atherosclerosis. 

However, these results need to be replicated before definitive conclusions can be 

made.  
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Abstract 
 

Introduction: Angiotensinogen is an essential component of the renin-angiotensin 

system. ACE-inhibitors and β-blockers both have a direct influence on this system.  

Aim: To investigate whether the association between use of ACE-inhibitors or β-

blockers and the risk of stroke or myocardial infarction (MI) is modified by the T-allele 

of the angiotensinogen M235T polymorphism. 

Methods: Data were used from the Rotterdam Study, a population-based prospective 

cohort study in the Netherlands, which started in 1990 and included 7,983 subjects of 

55 years or older. In this study, 4,097 subjects with hypertension were included from 

July 1st, 1991 onwards. Follow-up ended at the diagnosis of MI or stroke, death, or the 

end of the study period (January 1st, 2002). The association between the drug-gene 

interaction and the risk of MI or stroke was determined with a Cox proportional hazard 

model with adjustment for each drug class as time-dependent covariates. 

Results: The interaction between current use of ACE-inhibitors and the 

angiotensinogen M235T polymorphism was multiplicative on the risk of MI (interaction 

HR=4.00; 95%CI: 1.32-12.11). Similarly, there was a non-significantly increased risk 

of stroke (interaction HR: 1.83; 95%CI: 0.95-3.54) in subjects with the MT or TT 

genotype compared to the MM genotype. No interaction was found between current 

use of β-blockers and the AGT M235T polymorphism on the risk of MI (interaction HR: 

1.30; 95%CI: 0.60-2.83) or stroke (interaction HR: 1.39; 95%CI: 0.81-2.39). 

Conclusion: Subjects with at least one copy of the 235T-allele of the AGT gene might 

have less benefit from ACE-inhibitor therapy. 
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Introduction 
 

Hypertension is a common disorder affecting approximately 20% of the adult 

populations of most developed countries1, and is a major risk factor for cardiovascular 

disease. In clinical trials, antihypertensive therapy has been associated with a 35% to 

40% risk reduction in stroke incidence and a 20% to 25% reduction in the risk of 

myocardial infarction (MI).2 Although many effective antihypertensive drugs are 

available, it remains difficult to predict the effect of a particular antihypertensive 

agent in an individual patient. Genetic variation in genes may explain differences 

between individuals in their response to antihypertensive drugs. 

One of the genes that might have an influence on the response is the 

angiotensinogen (AGT) gene. AGT is one of the components of the renin-angiotensin 

system, which has a central role in the regulation of blood pressure and fluid 

homeostasis. AGT is cleaved by renin to form angiotensin I, which is converted to the 

vasoactive angiotensin II by angiotensin converting enzyme (ACE). In 1992, 

Jeunemaitre et al.3 reported linkage of the angiotensinogen locus to hypertension in 

hypertensive sibling pairs. Subsequent screening of the angiotensinogen gene for 

molecular variants led to the identification of a missense mutation, resulting in the 

substitution of a threonine (T) for a methionine (M) at codon 235. Further 

investigations showed that the AGT 235T-allele is in linkage equilibrium with a 

guanine (G) to adenosine (A) transition 6 base pairs upstream of the initiation site of 

transcription (-6G/A), which may result in a higher basal transcription rate of this 

gene.4 In general, individuals with the TT genotype have plasma AGT levels, which are 

10-20% higher than individuals with the MM genotype.3,5 Two meta-analyses reported 

a significant association between the M235T polymorphism and hypertension with a 

combined risk of 1.2 for the 235T-allele in Caucasians.6,7 However, such an 

association was not found for MI or stroke.6,8

Of the four mainly prescribed antihypertensive drug classes (diuretics, β-blockers, 

calcium channel blockers, and ACE-inhibitors), only ACE-inhibitors and β-blockers have 

a direct effect on the renin-angiotensin system. ACE-inhibitors inhibit the conversion 

from angiotensin I to angiotensin II and β-blockers inhibit the release of renin. 

Therefore, it is plausible that the response to these antihypertensive drug classes may 

be modified by the M235T polymorphism of the AGT gene. Bis et al.9 reported that the 

235T-allele was associated with a stronger reduction of the risk of non-fatal stroke in 

users of ACE-inhibitors than in users of other antihypertensive drugs, whereas there 

was no difference in the risk of non-fatal MI. 

The objective of our study was to determine whether the risk of MI or stroke in 

hypertensive patients on ACE-inhibitors or β-blockers is modified by the AGT M235T 

polymorphism.
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Methods 
 

Setting 

The Rotterdam Study started in 1990 as a population-based prospective follow-up 

study. All 10,275 residents of the suburb Ommoord in Rotterdam, aged 55 years or 

older were invited to participate. In total, 7,983 (78%) subjects gave written informed 

consent. The baseline measurements took place until 1993. The design of this 

population-based study has been described elsewhere.10 Information was collected on 

age, gender, present health status and medical history, including previous MI and 

stroke. All reported MIs or strokes at baseline were verified with medical records. 

During a physical examination, blood pressure, weight, and height were measured 

and blood was drawn for DNA extraction.  

Hypertension was defined as use of antihypertensive medication, and/or a systolic 

blood pressure ≥ 160 mmHg, and/or diastolic blood pressure ≥ 95 mmHg. Since the 

start of the Rotterdam Study, follow-up examinations have been carried out 

periodically.  

  

Cohort and outcome definition 

Only subjects with hypertension were included in this study. Therefore, follow-up 

started on the day that an elevated blood pressure was measured and/or the day that 

a first antihypertensive drug was prescribed, whichever came first. The beginning of 

the study period was set at July 1st, 1991 because pharmacy records were not 

available before January 1st, 1991 and this resulted in a drug history of at least six 

months. The end of the study was set at January 1st, 2002. Follow-up ended on the 

date of the first MI (or first stroke for the analysis with stroke as primary outcome), or 

a censoring event (end of study period, moving out of the area, or death), whichever 

was earlier. All collected events were verified by review of hospital discharge reports 

and letters from medical specialists, and classified as definitive and possible MI. Two 

research physicians independently coded events according to the International 

Classification of Diseases, 10th Revision (ICD-10).11 MI was defined as ICD codes: I21. 

A medical expert in cardiovascular disease also reviewed all coded events for final 

classification.  

Stroke was defined as ICD codes: K90. A neurologist reviewed all suspected 

cerebrovascular cases and classified them into definite, probable, and possible stroke 

and stroke subtypes.12 For the analyses, definite and probable cases were included. 

Sub-classification into hemorrhagic and ischemic stroke was based on neuroimaging, 

which was available for 64% of all cases. 

 

Exposure definition 

Pharmacy records were available for approximately 99% of the cohort as of January 

1st, 1991. These records include the name of the drug, the day of dispensing, the 

dosage form, the number of units dispensed, the prescribed daily dose, and the 
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Anatomical Therapeutic Chemical code of the drug.13 The exposure of interest included 

ACE-inhibitors and β-blockers, because of their direct effect on the renin-angiotensin 

system.  

When an MI or stroke occurred, the date was defined as the event date and the 

cumulative duration of use for current and past exposure of all antihypertensive drug 

classes on that date was calculated for each participant. Hereto, we first calculated 

each prescription length by dividing the number of dispensed tablets or capsules by 

the prescribed daily number. Each refill at the pharmacy which occurred within 7 days 

after last intake from the previous prescription was considered as a continuous drug 

episode. Current, past, and non-exposure were defined as mutually exclusive 

categories. When the event fell within a usage period, the patient was considered as 

currently exposed, and the cumulative number of days of current use was calculated. 

Similarly for those who were not current user, but had used a representative of the 

drug group in the past the number of days since last intake was calculated. Those who 

had not used the drug during the study period were considered as non-user. For dose-

effect associations, we used the defined daily dosages (DDD) which consist of the 

recommended daily dose for the indication hypertension in an adult.   

 

Genotyping 

Genomic DNA was extracted from whole blood samples using standard methods, 

described previously.14 Samples were genotyped with TaqMan allelic discrimination 

Assays-By-Design (Applied Biosystems, Foster City, CA). Forward and reverse primer 

(anti sense strand) sequences were 5’ AGG TTT GCC TTA CCT TGG AAG TG 3’ and 5’ 

GCT GTG ACA GGA TGG AAG ACT 3’ and the minor groove binding probes were 5’ CTG 

GCT CCC ATC AGG 3’ (VIC) and 5’ CTG GCT CCC GTC AGG 3’ (FAM). The assays 

utilized 5 nanograms of genomic DNA and 2 microliter reaction volumes. The 

amplification and extension protocol was as follows: an initial activation step of 10 min 

at 95 deg preceded 40 cycles of denaturation at 95 deg for 15 s and annealing and 

extension at 50 deg for 60 s. allele-specific fluorescence was then analyzed on an ABI 

Prism 7900HT Sequence Detection System with SDS v 2.1 (Applied Biosystems, Foster 

City, CA). 

 

Potential confounders 

For the analysis with MI as an outcome, we adjusted for age, gender, systolic/diastolic 

blood pressure, body mass index (BMI), current and past smoking, cholesterol level 

(total cholesterol/ high density cholesterol) at baseline). In addition, adjustments 

were made for statin use, coumarin use, ASA use, NSAID use, nitrate use, history of 

stroke, history of MI, history of percutaneous transluminal coronary angioplasty, 

history of coronary artery bypass grafting, use of anti-diabetic medication, history of 

angina, past and current use of other antihypertensive drugs, and the defined daily 

dose as potential confounders (during follow-up). We adjusted for the combined use
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of other antihypertensive drug classes by adding each anti-hypertensive drug class 

separately in the model for past and current users. History of angina was defined as 

the use of two or more prescriptions of nitrate.  

For the analysis with stroke as an endpoint, we considered the same potential 

confounders, but combined history of MI, history of percutaneous transluminal 

coronary angioplasty, and history of coronary artery bypass grafting in one variable 

(coronary heart disease). 

 

Statistical analyses 

The outcomes for MI and stroke were analysed separately because of their different 

aetiology. Both events were evaluated using a Cox proportional hazard model with 

time-varying exposure for each antihypertensive drug class separately. We created 

non-cumulative time-dependent categorical variables (yes/no) for current and past use 

of antihypertensive drugs and follow-up time was the time-axis of the model. Non-use 

of ACE-inhibitors (in the analysis of the association between ACE-inhibitors and risk of 

MI or stroke) and non-use of β-blockers (in the analysis of the association between β-

blockers and risk of MI or stroke) served as a reference. The associations were 

expressed as hazard ratios (HR) with 95% confidence limits (CI). To investigate 

modification by the M235T polymorphism of the effect of ACE-inhibitors (or β-blockers) 

one dummy variable was added to the model: 235T-allele (0/1) x ACE-inhibitors (or β-

blocker) (0/1).  

 

 

Results 
 

There were 4,097 subjects with hypertension during follow-up. Of these 4,097 

persons, 1,642 persons were treated with ACE-inhibitors at any time, 2,387 with β-

blockers, and 2,561 with other antihypertensive drugs. A subject may have 

contributed to one of more categories of antihypertensive drug classes during follow-

up.  

In our cohort, 35.7% of the subjects had the MM genotype and 64.3% the MT or 

TT genotype, respectively. Table 1 shows the baseline characteristics of the 4,097 

subjects stratified by AGT genotypes.  

 

MI 

In total 197 subjects experienced an MI, of whom 30% had an MI before January 1st, 

1990. Forty-two subjects had a MI while they were treated with ACE-inhibitors, of 

whom six had the MM genotype and 36 had the MT or TT genotype. In total, 17 

subjects with the MM genotype and 58 subjects with at least one copy of the T-allele 

had an MI when they were treated with β-blockers (see table 2). 
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Table 1. Baseline characteristics stratified by AGT genotype. 
 

Characteristics MM 
n=1,461 

MT or TT 
n=2,636 

 

Gender, female 901 (61.7%) 1,575 (59.7%)  
Age, years 70.6 ± 8.9 70.6 ± 8.9  
Stroke at baseline, yes 50 (3.4%) 103 (3.9%)  
MI at baseline, yes 226 (15.5%) 406 (15.4%)  
Diabetes mellitus, yes 171 (12.5%) 314 (12.7%)  
SBP, mmHg 142.8 ± 22.0 144.0 ± 22.6  
DBP, mmHg 74.9 ± 11.9 75.3 ± 12.1  
BMI, m/kg2 27.0 ± 3.9 26.8 ± 3.7  
Total cholesterol/high density cholesterol, 
mmol/l 

5.3 ± 1.7 5.3 ± 1.6  

Smoking 
current, yes 
past, yes 

 
280 (19.7%) 
609 (42.8%) 

 
531 (20.7%) 
733 (42.3%) 

 

Use of ACE-inhibitors 126 (8.6%) 231 (8.7%)  
Use of β-blockers 319 (21.8%) 573 (21.7%)  
Use of α-blocker 49 (3.4%) 95 (3.6%)  
Use of low-ceiling diuretic 267 (18.3%) 440 (16.7%)  
Use of high-ceiling diuretic 89 (6.1%) 192 (7.3%)  
Use of calcium channel blocker 144 (9.8 %) 236 (9.0%)  
Use of statins 45 (3.1%) 69 (2.6%)  
Use of coumarins 65 (4.4%) 136 (5.2%)  
Use of NSAID 126 (8.6%) 243 (9.2%)  
Use of ASA/ salicylate 213 (14.6%) 374 (14.2%)  

 
* Significant difference between MM or MT/TT genotype (p < 0.05) 

 
Table 2. Association of ACE-inhibitor and β-blocker use and AGT M235T polymorphism with MI 
risk. 

 
AGT M235T 
genotype 

Type of use MI (N) HR (95% CI)1 HR (95% CI)2

ACE-inhibitors 
MM 
MM 
MT/TT 
MT/TT 

No 
Current 
No  
Current 

44 
6 
74 
36 

1 (reference) 
1.06 (0.39-2.85) 
0.95 (0.66-1.39) 
3.25 (1.70-6.19) 

1 (reference) 
0.71 (0.23-2.21) 
0.99 (0.67-1.45) 
2.73 (1.42-5.23) 

β-blockers 
MM 
MM 
MT/TT 
MT/TT 

No 
Current 
No  
Current 

20 
17 
49 
58 

1 (reference) 
1.69 (0.79-3.61) 
1.36 (0.81-2.30) 
3.16 (1.66-6.01) 

1 (reference) 
1.29 (0.59-2.86) 
1.44 (0.84-2.48) 
2.42 (1.23-4.76) 

 
1 Adjusted for age, gender, other antihypertensive drugs, past exposure to antihypertensive drugs, 
and DDDs 
2 Adjusted for age, gender, other antihypertensive drugs, past exposure to antihypertensive drugs, 
DDDs, BMI, cholesterol level, statin use, and history of PTCA, CABG, and MI 
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Table 3. Gene-drug interaction between ACE-inhibitor and β-blocker use and AGT M235T 
polymorphism on the risk of MI. 
 
AGT M235T genotype Type of use Interaction HR (MT/TT 

versus MM) (95% CI)1
Interaction HR (MT/TT 
versus MM) (95% CI)2

 
ACE-inhibitors 
MT/TT versus MM Current 3.28 (1.28-8.45) 4.00 (1.32-12.11) 

 
β-blockers 
MT/TT versus MM Current 1.37 (0.64-2.91) 1.30 (0.60-2.83) 
 
1 Adjusted for age, gender, other antihypertensive drugs, past exposure to antihypertensive drugs, 
and DDDs 
2 Adjusted for age, gender, other antihypertensive drugs, past exposure to antihypertensive drugs, 
DDDs, BMI, cholesterol level, statin use, and history of PTCA, CABG, and MI 

 

In order to investigate the possible gene-drug interaction between ACE-inhibitors 

or β-blockers users and the AGT M235T polymorphism on the risk of MI, cases were 

grouped by current use and genotype group (see table 2 and 3). Subjects with the MM

genotype who were currently treated with ACE-inhibitors had a non-significantly 

reduced risk of MI compared to subjects with the MM genotype who never used ACE-

inhibitors (HR=0.71; 95%CI: 0.23-2.21). In contrast, subjects with the MT or TT 

genotype who were currently treated with ACE-inhibitors had a significantly increased 

risk of MI compared to subjects with the MM genotype who never used ACE-inhibitors 

(HR=2.73; 95%CI: 1.42-5.23). Among subjects who never used ACE-inhibitors, the 

MT or TT genotype was not associated with the risk of MI (HR=0.99; 95%CI: 0.67-

1.45). The estimate for the risk of MI in subjects with at least one copy of the T-allele 

(HR=2.73) who were currently treated with ACE-inhibitors was higher than expected 

from the joint effect of the MT or TT genotype and ACE-inhibitors on a multiplicative 

scale (0.99x0.71=0.70). This interaction between current use of ACE-inhibitors and 

the AGT M235T polymorphism was statistically significant (HR=4.00; 95%CI: 1.32-

12.11]). There did not seem to be a doses-response effect (MT versus MM genotype 

HR=3.89; 95%CI: 1.27-11.90 and TT versus MM genotype HR=3.75; 95%CI: 1.04-

13.58). 

Beta-blocker users who had the MM genotype had a non-significantly increased 

risk of MI compared to subjects with the MM genotype who never used β-blockers 

(HR=1.29; 95%CI: 0.59-2.86). Compared to subjects with the MM genotype who had 

never used β-blockers, β-blocker users with the MT or TT genotype had a significantly 

increased risk of MI (HR=2.42; 95%CI: 1.23-4.76). The interaction between current 

use of β-blockers and the AGT M235T polymorphism was non-significant significant 

(HR=1.30; 95%CI: 0.60-2.83). Additional analyses in which adjustments were made 

for systolic blood pressure level, diastolic blood pressure level, history of angina, use 

of ASA, use of coumarins, use of NSAID’s, use of anti-diabetic medication, history of 

stroke, and smoking, yielded similar results and were therefore not shown. After 

exclusion of all subjects with a history of MI the (adjusted) interaction 
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between AGT M235T polymorphism and current use of ACE-inhibitors was similar but 

no longer significant (HR=4.62; 95%CI: 1.00-21.36). In addition, no drug-gene

interaction was found between the AGT M235T polymorphism and use of β-blockers 

after this exclusion (HR=1.19; 95%CI: 0.47-3.02).  

When the analysis was repeated with other antihypertensive drug classes (i.e. 

low-ceiling diuretics or calcium channel blockers) there was no significant drug-gene 

interaction with any of these antihypertensive drug classes.  

 

Stroke 

In total, 349 subjects experienced a stroke during follow-up, of whom 14% had a 

stroke before baseline. Of the 365 events, 189 (85%) were classified as ischemic and 

33 (15%) as hemorrhagic. Sixty-three subjects had a stroke when they were treated 

with an ACE-inhibitor, of whom 15 had the MM genotype and 48 had at least one copy 

of the T-allele. During treatment with a β-blocker, 32 subjects with the MM genotype 

and 71 subjects with had at least one copy of the T-allele had a stroke. 

To investigate the possible interaction between ACE-inhibitors or β-blockers users 

and the AGT M235T polymorphism on the risk of stroke, participants were grouped by 

current use and genotype group (see table 4 and 5). The drug-gene interaction 

between current use of ACE-inhibitors and the AGT M235T polymorphism on the risk 

of stroke was increased but this increase was not statistically significant (HR=1.83; 

95%CI: 0.95-3.54). The interaction between current use of β-blockers and the AGT 

M235T polymorphism on the risk of stroke was non-significant (HR=1.39; 95%CI: 

0.81-2.39). Additional analyses in which we adjusted for diastolic blood pressure level, 

serum cholesterol level, BMI, use of coumarins, use of NSAID’s, and smoking, yielded 

similar results and were therefore not shown. 

 
Table 4. Association of ACE-inhibitor and β-blocker use and AGT M235T polymorphism with 
stroke risk.  
 
AGT M235T 
genotype 

Type of use MI (N) HR (95% CI)1 HR (95% CI)2

ACE-inhibitors 
MM 
MM 
MT/TT 
MT/TT 

No 
Current 
No  
Current 

95 
15 
141 
48 

1 (reference) 
0.64 (0.33-1.23) 
0.84 (0.65-1.09) 
1.04 (0.63-1.71) 

1 (reference) 
0.58 (0.29-1.14) 
0.84 (0.64-1.10) 
0.89 (0.53-1.48) 

β-blockers 
MM 
MM 
MT/TT 
MT/TT 

No 
Current 
No  
Current 

66 
32 
104 
71 

1 (reference) 
0.68 (0.40-1.14) 
0.85 (0.63-1.16) 
0.82 (0.51-1.30) 

1 (reference) 
0.73 (0.43-1.23) 
0.85 (0.62-1.21) 
0.86 (0.54-1.39) 

 
1 Adjusted for age, gender, other antihypertensive drugs, past exposure to antihypertensive drugs, 
and DDDs 
2 Adjusted for age, gender, other antihypertensive drugs, past exposure to antihypertensive drugs, 
DDDs, BMI, cholesterol level, statin use, and history of PTCA, CABG, and MI 
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Table 5. Gene-drug interaction between ACE-inhibitor and β-blocker use and AGT M235T 
polymorphism on the risk of stroke. 
 
AGT M235T genotype Type of use Interaction HR (MT/TT 

versus MM) (95% CI)1
Interaction HR (MT/TT 
versus MM) (95% CI)2

 
ACE-inhibitors 
MT/TT versus MM Current 1.93 (1.02-3.65) 1.83 (0.95-3.54) 

 
β-blockers 
MT/TT versus MM Current 1.41 (0.84-2.38) 1.39 (0.81-2.39) 
 
1 Adjusted for age, gender, other antihypertensive drugs, past exposure to antihypertensive 
drugs, and DDDs 
2 Adjusted for age, gender, other antihypertensive drugs, past exposure to antihypertensive 
drugs, DDDs, systolic blood pressure level, diabetes mellitus, use of statins, use of ASA, and 
history of coronary heart disease, stroke, and angina 

 

After exclusion of all subjects with a history of stroke the (adjusted) interaction 

between AGT M235T polymorphism and current use of ACE-inhibitors was significant 

(HR=2.14; 95%CI: 1.06-4.33). No drug-gene interaction was found between β-

blocker use and the AGT M235T polymorphism after this exclusion (HR=1.59; 95%CI: 

0.90-2.78). When we included only ischemic strokes, the interaction was significant 

for ACE-inhibitors (HR=3.52; 95%CI: 1.27-9.80), but not for β-blockers (HR=1.30; 

95%CI: 0.47-3.02). There did not seem to be a doses-response effect in ACE-inhibitor 

users (MM versus MT genotype HR=1.88; 95%CI: 0.96-3.69 and MM versus TT 

genotype HR=1.93; 95%CI: 0.80-4.66). 

When the analysis was repeated with other antihypertensive drug classes (i.e. 

low-ceiling diuretics or calcium channel blockers) or all antihypertensive drug classes 

combined there was no significant drug-gene interaction with current use. 

 

 
Discussion 
 
In this study, a synergistic interaction between the AGT M235T polymorphism and 

current use of ACE-inhibitors on the risk of MI was found. Their joint effect was 

supramultiplicative and approximately four times larger than expected based on the 

product of their individual effects. On the risk of stroke no significant interaction was 

found, although the direction of the synergistic effect was similar to that on the risk of 

MI. No interaction was found between the use of β-blockers and the M235T 

polymorphism. 

Bis et al.9 reported that users of ACE-inhibitors carrying one copy of the T-allele 

might have a reduced risk of non-fatal stroke compared to users of other 

antihypertensive drugs, but there was non-significantly increased risk for non-fatal MI. 

In our study we found the opposite result, i.e. the MT and TT genotype were 

associated with an increased risk of MI in ACE-inhibitor users. In addition, the risk of 
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stroke in β-blockers was higher in subjects carrying a copy of the 235T-allele, albeit 

not significant. In a non-randomized trial, ACE-inhibitor users with the MT or TT 

genotype had a greater BP reduction than those with the MM genotype.15 However, 

this could not be replicated in a smaller study.16 With regard to β-blockers, no drug-

gene interaction on BP was found.16,17 The contribution of these findings on blood 

pressure to cardiovascular risk remains uncertain. For example, no studies have been 

published investigating whether there is an interaction between M235T polymorphism 

and antihypertensive drugs on atherosclerosis, which is an important risk factor for MI 

and stroke besides blood pressure. In addition it is difficult to predict with accuracy, 

which allele would be associated with an increased risk of stroke or MI during 

treatment with an ACE-inhibitor or β-blocker. Plasma AGT levels are 10-20% higher in 

TT homozygotes than in MM homozygotes3,5, but this did not result in higher 

angiotensin II levels due to compensation in renin levels18,19. There are some 

differences between our study and Bis et al.9 which might explain the differences in 

results. For instance, we included fatal and non-fatal cases of MI and stroke, adjusted 

for past use, and compared the use of ACE-inhibitor or β-blockers versus non-users 

instead of users of other antihypertensive drugs.  

The main limitation of our study is the relatively small number of events. 

Although, our analyses consistently showed that current use of ACE-inhibitors among 

subjects with the T-allele was associated with an increased risk of MI and stroke, the 

results should still be interpreted with caution. Therefore, these results need to be 

replicated in other studies before definitive conclusion can be made. In addition, due 

to limited sample size no subgroup analysis could be made and MT and TT genotype 

were combined. Also, the risk of MI or stroke was compared in antihypertensive drug 

users versus non-users and therefore confounding by indication could have biased our 

results. As a physician was free to choose whether a patient received antihypertensive 

drug treatment or not and the type of antihypertensive drug, specific patients 

characteristics my have influenced this decision. However, the interaction between β-

blockers or ACE-inhibitors and the AGT M235T polymorphism is probably not 

influenced by this bias, as the users of the same antihypertensive drug class will have 

most likely the same characteristics and the prescriber is unaware of a subject’s 

genotype. Furthermore, only one SNP in the AGT gene was investigated. Although the 

M235T polymorphism is linked with plasma AGT levels and hypertension, it remains 

controversial in relation to MI and stroke. Since more genes are involved in the renin-

angiotensin system and these might have compensated the increased risk of ACE-

inhibitors in subjects with the T-allele e.g. by lowering the production of renin. One  

explanation of our findings might be that the feedback mechanism that normally 

compensate a rise in the angiotensinogen (e.g. a decrease in renin) are dysfunctional 

in T-allele carriers. This might be of particular importance during treatment with  ACE-

inhibitors, since such a treatment is known to be accompanied by a compensatory rise 

in renin. Future studies, addressing plasma renin levels during ACE-inhibitor treatment 

in T-allele carriers and controls, should evaluate this possibility.   
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In conclusion, our results indicate that the T-allele might be associated with an 

increased risk of MI and stroke in users of ACE-inhibitors.  
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Chapter 6 

Introduction 
 
Despite advances in drug therapy during the past decades, few drugs are effective in 

all patients, whereas all drugs potentially have adverse effects. Important factors in 

interpreting the variability in outcomes of drug therapy include environmental factors, 

a patient’s health profile, disease severity, compliance, and the genetic profile of a 

patient.1, 2 Clinical observations of genetic differences in drug effects were first 

documented in the 1950s when researchers described the first genetic polymorphisms 

that influenced the disposition of succinylcholine, isoniazid, and antimalaria drugs 

such as primaquine.3-6 These observations gave rise to the field of pharmacogenetics. 

Initially pharmacogenetics focused largely on genetic polymorphisms in drug-

metabolizing enzymes that influenced drug pharmacokinetics. By the mid 1980s, 

about 100 of these polymorphisms were identified.7 Polymorphisms in drug 

metabolizing enzymes can lead to a variety of outcomes, such as therapeutic failure, 

adverse effects, and toxicity in selected sub-populations undergoing treatment. For 

example, CYP2D6 poor metabolizers have a severe impairment of the capacity to 

eliminate > 30 widely used drugs (e.g. β-blockers and anti-depressants). In contrast, 

CYP2D6 ultrarapid metabolizers, may fail to respond to drugs which are inactivated by 

CYP2D6 or may experience exaggerated response and toxicity from exposure to drugs 

activated by CYP2D6.7 In the last decade, the scope of pharmacogenetics expanded to 

transporters and targets that influence the pharmacodynamic response to drugs. For 

example, cell surface receptors (e.g. ion channels and ion channel transporters) are of 

interest because of their role in initiation and transmission of cellular responses to 

hormones, autocoids, neurotransmitters, and environmental chemicals such as drugs.  

Patients who are treated with drugs that show large inter-individual differences in 

response will most likely benefit from pharmacogenetic research. Such an example is 

the pharmacological treatment of hypertension. For instance, only 50% of the patients 

have an adequate blood pressure lowering response when treated with a single 

antihypertensive drug (monotherapy).8-11 Currently, the selection of the most 

appropriate drug treatment for an individual patient with hypertension is considered as 

a "trial and error" approach. Although, there are substantial differences in 

pharmacokinetic properties the magnitude of the blood pressure lowering effect is 

similar for most drugs within a class.10, 11 Therefore, it is unlikely that pharmacokinetic 

effects are responsible for most of the antihypertensive drug-gene interactions. This 

may be explained by the withdrawal of antihypertensive drugs from the market that 

were associated with large interpatient differences in therapeutic or toxic response in 

the past or the diminished use.11, 12  

The goal of pharmacogenetics is to identify subjects who are more likely to have an 

unfavourable response to treatment with a particular drug or drug class prior to drug 

treatment.13 Before this goal can be reached the causal genes need to be identified. 

There are two general approaches to identify these genes i.e. genome wide screens 

and candidate gene studies. A genome wide screen tests for linkage with anonymous

136 



General discussion 

polymorphic markers, whereas candidate gene studies test for association of specific 

polymorphic markers within or near the functional gene. This gene is selected based on 

a priori hypotheses about their aetiological role in drug response. Genome wide screen 

or candidate gene studies can both be performed as part of a clinical trial and in an 

observational setting. In chapter 3.1, all studies that investigated interacting effects 

between antihypertensive drugs and genetic polymorphisms were reviewed. In this 

thesis, we investigated whether five of these drug-gene interactions modified the effect 

of antihypertensive drugs on blood pressure, atherosclerosis, and the risk of 

myocardial infarction (MI) and stroke in daily practise. The five candidate gene 

polymorphisms were: the angiotensin converting enzyme (ACE) insertion/deletion 

(I/D), angiotensinogen (AGT) M235T, angiotensin II receptor type 1 (AGTR1) 1166A/C 

or 573C/T, α-adducin (ADD1) G460W, and β3-subunit of the G-protein (GNB3) 825C/T 

polymorphism. Since the shortcomings and merits of the individual studies have been 

discussed in the previous chapters, are the main findings in this chapter placed in a 

broader perspective. In addition, the clinical implication of these studies will be 

discussed and recommendations for future research will be given.  

 

 

Main findings 
 
Despite the awareness of the elevated cardiovascular risk associated with hypertension 

and the availability of generally effective and well-tolerated antihypertensive drugs, did 

only a minority of treated hypertensive subjects achieve an adequate blood pressure 

reduction.14 In the Netherlands about 60% of those treated (20-59 years) did not have 

their blood pressure controlled (< 140/90 mmHg) (chapter 2.1). Apart from non-

compliance, one of the factors that could have caused the poor response is of genetic 

origin.  

One of the candidate gene polymorphisms that might play a role in the poor 

response to antihypertensive drugs is the ACE I/D polymorphism. In literature, both 

the I-allele and the D-allele have been associated with a poor response to ACE-

inhibitors (reviewed in chapter 3.1). In the Rotterdam Study and Doetinchem Cohort 

Study, this polymorphism did not seem to influence the response in ACE-inhibitor 

users. For example, there was no significant difference in the adherence to ACE-

inhibitor therapy between subjects with the II, ID, or DD genotype (chapter 4.1). 

Neither was an interaction found between the use of ACE-inhibitors, low-ceiling 

diuretics, β-blockers, or calcium channel blockers and the ACE I/D polymorphism on 

blood pressure (chapter 4.2 + 4.4) or on atherosclerosis (chapter 5.1). These results 

corresponded with the largest trial performed.15 Arnett et al.15 found no significant 

difference between the ACE I/D genotype groups and the response to ACE-inhibitors, 

diuretics, or calcium channel blockers on blood pressure nor on the risk of cardiac 

heart disease or stroke. 
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The second polymorphism which was investigated was the AGT M235T 

polymorphism. Also this polymorphism had no drug-gene interactive effect on blood 

pressure (chapter 4.3 + 4.4) or on atherosclerosis (chapter 5.1). In a case-control 

study, Bis et al.16 found that carriers of the 235M-allele who used ACE-inhibitors had a 

significantly higher risk of non-fatal stroke but not of non-fatal MI than among ACE-

inhibitor users with the TT genotype. Remarkably in our study, we found the opposite. 

ACE-inhibitor users with at least one copy of the 235T-allele had a higher risk of MI 

than ACE-inhibitor users with the MM genotype (interaction HR=4.00; 95%CI: 1.32-

12.11) (chapter 5.2). In addition, a non-significant increased risk of stroke was found 

(interaction HR=1.83; 95%CI: 0.95-3.54). Currently it is still difficult to predict with 

accuracy which allele is the risk allele. It is known that form literature that subjects 

with the TT genotype have 10% to 20% higher plasma AGT levels (circulating renin-

angiotensin system), but the effect on tissue AGT levels is still unknown. The tissue 

renin-angiotensin system operates in two ways. The first pathway is similar to the 

circulating i.e. tissue renin generates angiotensin I, subsequently catalyzed by ACE 

into angiotensin II. The second pathway consists of two alternative enzyme pathways 

i.e. chymase catalyzes the conversion of angiotensin I to angiotensin II and cathepsin 

G and the chymostatin-sensitive angiotensin II pathway directly cleave 

angiotensinogen into angiotensin II.18 The relative importance of alternative pathways 

is still uncertain.19 Since the circulating renin-angiotensin system may be responsible 

for short-term regulation and the tissue levels serves a role in long-term changes17 it is 

impossible to predict with accuracy from plasma levels alone which allele is the risk 

allele. Since we were unable to detect a drug-gene interaction on atherosclerosis and 

blood pressure, our results are somewhat contradictory with regard to the long-term 

outcomes. On the other hand antihypertensive drugs have multiple effects, which may 

explain why we did find an interaction on the risk of MI and not on blood pressure and 

atherosclerosis. Furthermore, our studies on blood pressure and atherosclerosis were 

analyzed cross-sectionally, whereas the risk of MI and stroke were analyzed in a 

follow-up design. 

The third polymorphism which was examined in this thesis was the AGTR1 

1166A/C polymorphism. Literature about a possible drug-gene interactive effect on 

blood pressure is unclear due to small sample sizes and conflicting results.20, 21 In our 

study, no drug-gene interactive effect was found with this polymorphism on blood 

pressure levels (chapter 4.4). In addition, no association was found with the 573C/T 

polymorphism on atherosclerosis (chapter 5.1). The distance between the 1166A/C 

polymorphism and the 573C/T polymorphism is approximately 500 base pairs and is 

probably in linkage equilibrium with the 1166A/C polymorphism.  

The fourth polymorphism which was investigated was the ADD1 G460W 

polymorphism. In our studies, no drug-gene interactive effect was found on blood 

pressure (chapter 4.3 + 4.4). Trials which investigated this drug-gene interaction on 

blood pressure were inconclusive due to conflicting results and small sample sizes.23-26 
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Psaty et al.22 reported that in carriers of at least one copy of the 460W-allele diuretic 

therapy was associated with a lower risk of combined non-fatal MI or non-fatal stroke 

than with other antihypertensive therapies. The authors argued that blood pressure did 

not appear to be affected by the α-adducin gene-diuretic interaction.  

The last polymorphism which was examined was the β3-subunit of the G-protein 

(GNB3) 825C/T polymorphism. Only one trial investigated the role of the 825C/T 

polymorphism.27 In this study, subjects with the TT genotype had a greater systolic 

and diastolic blood pressure reduction when treated with a thiazide diuretic. When the 

same population was investigated in a nested case-control design (non-responder 

versus responder) this polymorphism did not significantly influence the chance to 

become a responder (based on diastolic blood pressure) when treated with 

hydrochlorothiazide.28 In our study a drug-gene interactive effect on blood pressure 

was found (chapter 4.4). Users of low-ceiling diuretics with one copy of the TT 

genotype had a lower systolic blood pressure than subjects with the CC genotype. 

Remarkably in the study of Turner et al.26 and in our study (chapter 4.4), no 

interaction was found between GNB3 825C/T polymorphism and other candidate 

polymorphism in diuretic users (drug-gene-gene-interactions). 

With regard to drug-gene-gene interactions, none of the possible combinations 

with three of the candidate gene polymorphisms (ACE, AGT and ADD1) were significant 

in the Rotterdam Study (chapter 4.2). In the Doetinchem Cohort Study four drug-

gene-gene interactions were significant when five of candidate gene polymorphisms 

(ACE, AGT, AGTR1, GNB3, and ADD1) were combined. There was an interaction 

between diuretic use and ADD1 W-allele+ AGT T-allele vs. GG+ MM on DBP (3.09 

mmHg; 95%CI:0.16-2.93), β-blocker use and AGTR1 C-allele+ AGT T-allele vs. AA+ 

MM on DBP (2.63 mmHg; 95%CI: 0.30-2.33), ACE-inhibitor use and ACE I-allele+ 

GNB3 TT vs. DD+ C-allele on DBP (6.22 mmHg; 95%CI: 0.93-5.29), and ACE-inhibitor 

use and ACE I-allele+ AGT T-allele vs. DD+ MM on SBP (-10.21 mmHg; 95%CI: -

19.47--0.95).  

  

Table 1 overview of the results found in this thesis. 
 
Outcome ACE 

I/D 
AGT M235T AGTR1 

1166A/C or 
573C/T 

ADD1 
G460W 

GNB3 
825C/T 

Blood pressure - - - - ?2 

Atherosclerosis - - -   
MI / stroke  ?1      

 
ACE I/D=angiotensin converting enzyme insertion/deletion polymorphism; ADD1
=α-adducin; AGT=angiotensinogen; AGTR1=angiotensin II receptor type 1;
GNB3=β3-subunit of the G-protein  
1 interaction only found in ACE-inhibitor users on the risk of stroke 
2 interaction only found in diuretic users on systolic blood pressure 

 



Chapter 6 

140 

Pharmacogenetic study designs 
 

As indicated in the introduction, two different settings can be used to evaluate the 

effect of polymorphisms/genes on the response to antihypertensive drugs i.e. trials 

and observational studies. Randomised controlled trials are considered the best 

method for providing evidence on efficacy. However, due to their highly selected 

populations and outcomes and expensive nature they have been criticised.29 

Observational studies can be thought of as natural experiments in which outcomes are 

measured in the “real world” rather than in experimental settings. In these studies it is 

possible to evaluate large groups of diverse individuals, which can be followed for long 

periods and provide evidence on a wide range of outcomes. An important advantage of 

randomised controlled trials is that the random allocation to an intervention enhances 

the internal validity of a study by minimising confounding.30 This allocation should 

results in groups that are comparable in baseline prognosis.31 In an observational 

study factors that determined whether a person received a specific drug or not could 

result in difference between groups in prognostic factors related to the outcome. For 

example, a physician might think that antihypertensive drugs from one class have 

fewer side effects than antihypertensive drug from another class, and might therefore 

prescribe this class to frailer patients. This form of selection bias is referred to as 

channelling bias or confounding by severity.32 In observational studies on drug-gene 

interactive effects, confounding by severity is less likely unless the doctor is aware of 

the genetic status. Especially in starters of new drugs, however, the doctor is mostly 

unaware of that which leads to some sort of 'randomization'. For instance, in the 

Netherlands persons with hypertension are first started on thiazide diuretics. This 

choice is made without knowledge of the genetic profile and unbiased. Consequently, 

this makes such observational studies on drug-gene interactions relative resistant to 

confounding by severity. 

 

 

Limitations and strengths  
 
All the data that were used for the pharmacogenetic studies described in this thesis 

were collected in two observational cohorts (Rotterdam Study and Doetinchem 

Cohort). Most of the pharmacogenetic studies on blood pressure (short-term outcome) 

were performed in a clinical trial settings and on long-term outcomes in observational 

studies. To be precise only one study, i.e. GENHAT,33 used trial data for long-term 

outcomes.  

The use of observational data is a potential limitation for the short-term outcomes 

presented in this thesis, since well designed trials remain the gold standard. For 

example, in all clinical trials pre-treatment blood pressure measurements were 

available, which made it possible to calculate the response after the start of the 

treatment. In the Rotterdam Study and Doetinchem Study, it was impossible to 
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perform this analysis. Therefore, we might have missed early responses, which might 

have diminished over time. Nevertheless, our results corroborated with the results 

found in most (larger) trials. Another limitation of the use of observational cohort 

studies is that confounding e.g. residual confounding could have biased our results due 

to unmeasured or inaccurately measured confounders. This possibility remains even 

after the adjustment for several potential confounders which were available in the 

Rotterdam Study and Doetinchem cohort. For example, no adjustments were made for 

physical activity and therefore we may have over- or underestimated the blood 

pressure lowering effect. However, even than the drug-gene interaction will remain 

valid as long as the bias due to the unadjusted variable is similar for the different 

genotype groups. An additional, difference between observational studies and 

randomized clinical trials is that all observational studies combined all antihypertensive 

drugs in classes. Antihypertensive drugs within the same class might have different 

pharmacokinetic or -dynamic properties, which could have led to differences in 

responses to antihypertensive drugs of the same antihypertensive drug class. For 

example, calcium channel blockers such as nifedipine and amlodipine have little effect 

on the atrioventricular node, but are potent vasodilators and have mild diuretic effects. 

In contrast, the calcium channel blocker verapamil is an antiarrythmic drug with some 

vasodilatory action and the related compound diltiazem has some effect on both 

cardiac conduction and vascular smooth muscle cells. Another example is carvedilol, 

which is a β1-, β2-, and α-adrenergic blocker which account for its vasodilatory effects 

in contrast to β1-selective agents.34 An additional advantage of a trial is that drug 

treatment can be standardized. This will minimise the number of subjects switching to 

another drug class or adding another antihypertensive drug class. 

A limitation which applies to all pharmacogenetic studies, including ours, is that 

most studies genotyped only one SNP per gene. Some studies genotyped different 

polymorphisms in the same gene, but they all failed to fully represent the large 

variation in genes. Therefore, our results did not rule out involvement of a specific 

gene but only of a candidate gene polymorphism. A disadvantage of taking only one 

SNP per gene is that the folding kinetics, stability, or many other physical properties of 

a protein may depend on the interaction between pairs or combinations of several 

amino acid sites. APOE is one of the examples of a protein which function is influenced 

by a pair of polymorphic amino acids. The major alleles ε2, ε3, ε4 differ at two amino 

acid residues. 

 One of the main limitations of almost all pharmacogenetic studies is the sample 

size. This is one of the strengths of our studies with blood pressure as outcome. Most 

pharmacogenetic trials on short-term outcomes consisted of approximately 100 

subjects. This lack of sample size might have increased the chance of missing genuine 

associations or of reporting spurious results. However, with regard to our study on 

stroke and MI the number of treated cases was in general small, although, similar as 

other observational studies. The small number of cases might have lead to biased 

results, for example, we had to reduce our drug exposure data into a dichotomous 
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variable (exposed versus non-exposed) and this may have increased the rate of 

exposure misclassification.35 An example which shows the merits of large sample size 

concerns the studies on the role of polymorphisms in the ACE gene and its contribution 

to the risk of cardiovascular disease. Early publications on this disease association in 

the ECTIM (Etude Cas-Temoin d’Infarctus du Myocarde) study which involved 610 men 

who survived an MI and 733 controls, suggested that the ACE gene had a role in the 

risk of particular subgroups to cardiovascular disease.36 Confidence intervals for this 

initial study were large. Subsequent studies often involved fewer patients, and those 

published produced variable results. When the hypothesis was tested in a very large 

case-control study (4,629 cases and 5,943 controls), the evidence of an association 

between ACE and an increased risk of cardiovascular risk was much diminished (RR 

1.1, 95%CI 1.00-1.21).37 This example suggests that for genetic effects of modest 

magnitude and subgroup analysis, 1,000 to 10,000 of individuals might be required to 

generate precise estimates. In comparison, to these numbers, many pharmacogenetic 

studies are too small. Besides false-negative results, also false-positive results could 

have been reported as most of the pharmacogenetic studies performed multiple tests 

on the same population. The expected frequency of false-positive results is given by 1-

(1-k)m (where m is the number of independent markers and k is the significance level 

for a single marker).38 Adjustments for multiple testing can be made, but a 

disadvantage of these approaches is that genuine associations might be missed. 

Therefore, some investigators argue that the likelihood of a chance association may be 

considered in the light of biological plausibility of any observed observation.39 

Therefore, we did not adjust for multiple testing in our analysis. 

A strength of our study compared to other pharmacogenetic studies with the 

outcome blood pressure, is that we evaluated the effect of the five polymorphisms in 

two study settings in the Netherlands. Replication of the same findings in the same 

population will give a better prediction of the (non) existence of a drug-gene 

interaction. The probability that a second association study is also positive in the same 

population may also vary with sample size, the measurement value, and 

environmental factors.40 It may be questioned whether the two cohorts were not too 

different. Although both cohorts consisted mainly of Caucasians, the mean age 

difference was approximately 20 years between the hypertensive subjects in both 

cohorts. The difference resulted in an overrepresentation of subjects with isolated-

systolic hypertension in the Rotterdam Study compared to Doetinchem Cohort Study. 

Furthermore, younger subjects are also more likely to respond to antihypertensive 

drug therapy then older subjects. In addition, there is also a difference in the 

standardisation of the blood pressure measurements between both cohorts. 

An additional strength of our study is that we were able to evaluate the effect of 

drug-gene-gene interactions. Namely, the behaviour of antihypertensive drugs are 

influenced by a range of gene products. Therefore, it might be important to consider 

groups of potentially interacting genes as a set, such as those that act in common 

pathways (e.g. renin-angiotensin system), to identify interactions between 
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polymorphisms in different genes (chapter 4.3 and 4.4). A small number of studies 

tested for interactions between polymorphisms in different genes. The results for the 

drug-gene-gene interactions between the Rotterdam Study and Doetinchem Cohort 

Study were not similar and this could have been the result of differences in study 

population as mentioned in the previous paragraph. Another possible explanation for 

the difference in results is the higher chance of reporting false-positive and false-

negative results in drug-gene-gene studies. Namely, when more then one variable is 

studied simultaneously larger patient groups are required to ensure that individual 

subgroups retain adequate power to detect significant associations with narrow 

confidence intervals. 

 

 

Non-replication 
 
Most of the drug-gene interactions in the literature were not replicated by other studies 

(observational studies and trials). Non-replication can be the result of differences in 

phenotype definition, lack of statistical power, population stratification, different 

environmental factors within a population, the effects of other genes, and the varying 

effects of several causal polymorphisms within the candidate gene.41, 42 Consistency of 

association across studies is a useful indicator of a causal association, when present. 

However, genuine biological differences between study populations could have resulted 

in non-replication. One of these biological factors is the differences in linkage 

disequilibrium (LD) between the studied polymorphism and the causal mutation. 

Difference in LD between populations is the result of a number of contributing factors, 

including regional variability in recombination patterns, genetic drift, mutation age, 

ethnic diversity, recent population admixture, local chromosomal composition, and the 

patterns of mating within a population.43-47 Due to the variation within populations, 

markers close to a functional DNA variant might show less or more LD than markers 

further away. As a result, associations with some markers might not be identified in a 

region containing a disease-mediating polymorphism, whereas associations at adjacent 

markers are convincingly detected. Since all of the polymorphisms studied are most 

likely not the causal mutation this may lead to differences in results. Another factor 

which could explain the real biological difference between populations is the difference 

in allele frequencies. For example, the 235T-allele of the AGT gene varies widely in 

frequency, occurring in 35-45% of whites, 75-80% of Asians, 75-80% of African 

Americans, and ≥ 90% of Africans.48, 49 This pattern led to the hypothesis that the 

235T-allele, which is associated with a higher angiotensinogen expression (-6G/A) and 

greater sodium reabsorption, was adaptive in the tropical and sodium-poor 

environment of Africa. When humans migrated out of Africa into other environments 

the 235T-allele became neutral or selected against.50  

Although genuine biological differences are a possible explanation for the 

discrepancies in results, it most likely explains only a small percentage of the 
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inconsistencies in results. A more likely explanation for the non-replication is the 

limited sample sizes as most of the drug-gene interactions were found in studies with 

small sample sizes. To reduce the number of (potentially) false-positive and false-

negative results pharmacogenetic study designs should be standardized, for example, 

with regard to criteria used for hypertension, the wash-out period, and the minimum 

duration of treatment. A meta-analysis might provide a quantitative approach for 

combining the results of various studies on the same topic51, 52 but due to the 

variability in inclusion criteria, duration of treatment, and the limited number of studies 

it is currently not yet possible to perform a meta-analysis. Another solution is to 

perform multi-centre studies to increase sample size (e.g. GENHAT33) or by replication 

of an interaction in the same population as we did by studying a research hypothesis in 

two different observational settings, i.e. the Doetinchem Cohort Study and Rotterdam 

Study.  

 

 

Clinical implications  
 
Knowledge of polymorphisms or genes that influence the pharmacodynamic response 

of blood pressure to antihypertensive medication has the potential to provide new 

insights into the molecular mechanisms that influence drug response. On the basis of 

previous results, clinical implications are unclear since most of the pharmacogenetic 

studies so far have fallen short of the ideal approach to study the genetics of drug 

responses and data most likely have been over interpreted. Also the studies in this 

thesis do not give conclusive results. However on the basis of our results, it does not 

seem likely that these five polymorphisms have a big influence on the blood pressure 

response or on long-term cardiovascular outcomes associated with antihypertensive 

drug use in daily clinical practise. Although, conclusive answers can not be drawn from 

the available data this does not mean that pharmacogenetics will never provide the 

answers to our questions. For example, for genes involved in drug metabolizing 

enzymes (e.g. CYP2D6 and CYP2C19) diagnostic tools have already been developed.53 

However, in complex causal pathways with multiple interacting risk-enhancing alleles 

associations tend to be of modest strength. For example, blood pressure levels 

arecontrolled by a complex combination of processes that influence cardiac output and 

peripheral resistance.54, 55 Thus there are many more candidate genes and 

polymorphisms that could be involved in the response to antihypertensive drugs than 

the five presented in this thesis for the short and long-term outcomes.  

Even after the discovery of the causal polymorphisms (or those in linkage with the 

causal mutation) there might still be some problems with the implication of genetic 

tests. For example, the choice which antihypertensive drug to prescribe can be difficult 

when a subject has risk-enhancing alleles for each class of antihypertensive drug.  
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Future research 
 
There are still a number of questions that are raised with this thesis that need to be 

answered. For example, the association between the M235T polymorphism and the risk 

of stroke and MI warrants further investigation. In addition, the interaction between 

the 825C/T polymorphism of the GNB3 gene and low-ceiling diuretics is still uncertain. 

For definitive conclusions larger sample sizes and/or meta-analysis are needed.  

In addition, which SNPs and how many to genotype is important to consider. There 

are approximately 10 million SNP’s (minor allele frequencies > 1%) in the human 

genome.56 It is not practical, at present, to genotype and test all SNPs in the genome 

for association with phenotypes. Therefore, it is important to select a limited number. 

In theory this would be those polymorphisms that affect the function of the protein or 

its expression, however, in most situations this information is not available. In 

addition, polymorphisms in non coding regions are still able to affect gene function by 

altering the stability and splicing of mRNA.57  Selecting a limited number of markers 

will result in a loss of power compared to genotyping all SNP’s. The loss of power 

depends on four factors: 1) the strength of the association between a true disease-

causing SNP and the disease, 2) linkage disequilibrium (LD) between markers and the 

causal SNP, 3) the marker allele frequency, 4) the disease allele frequency. In order to 

create considerable marker redundancy and still capture almost all information the 

map based strategy was developed. This strategy is greatly influenced by data showing 

that LD is composed in block like regions of low diversity of haplotypes, and stretches 

of more rapid breakdown of LD, which correspond to hotspots of meotic 

recombination.58, 59 This inspired the idea of haplotype tagging, in which a set of SNPs 

is identified that tag each of the common haplotypes with in a block of LD (so called 

tagging SNPs). By some estimates, an average of five to seven SNPs per gene would 

be required to represent all the common polymorphisms in candidate genes. Tagging 

SNP’s need to be carefully selected and validated, because not all five to seven SNP’s 

will do. A disadvantage of this approach is that it remains unclear whether tagging 

SNPs will be able to represent variants with lower minor allele frequencies. Although, 

this frequency bias is likely to be a minor problem, if the response to a drug is caused 

by common polymorphisms, it will limit the usefulness if it is caused by rare variants.60, 

61  

In the future, it might be possible to perform genome association screens to 

determine which genes influence the response to antihypertensive drugs. This is not 

yet feasible, since estimates of the number of SNPs required for a complete genome-

wide haplotype map suggest that this is likely to be in the region of 500,000 separate 

SNPs or fewer if only the genes are genotyped (100,000-200,000). At the moment, 

studies are using this approach on single chromosome, although, the statistical 

analysis remains a problem.  

To assess whether the intended effects on antihypertensive drug treatment are 

modified by genetic polymorphisms, randomized controlled trials are preferred. For 
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short-term outcomes of antihypertensive drug treatment such as blood pressure, it is 

feasible to design such a trial. However, for long-term outcomes such as MI and 

stroke, randomized controlled trials may not be feasible due to practical, financial, or 

ethical reasons. In situations where randomized controlled trials are not feasible, 

observational studies are an alternative to obtain information on drug-gene 

interactions in daily clinical practice.  

 

In conclusion, the results of this thesis suggests the presences of two drug-gene 

interactions i.e. the interaction between the use of ACE-inhibitors and AGT M235T 

polymorphism on the risk of MI and the interaction between the use of diuretics and 

the GNB3 825C/T polymorphism on systolic blood pressure.  
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Chapter 7 

Summary 
 

Hypertension is a major public health hazard, because of its high prevalence and 

strong positive association with cardiovascular diseases. Suboptimal blood pressure 

control is the number one attributable risk for death in the Western world, despite the 

possibilities to treat hypertension. Higher pre-treatment blood pressure levels are 

associated with a greater antihypertensive drug response, but this relation is not 

specific to a particular antihypertensive drug or drug class nor can it be predicted from 

patient’s characteristics. Therefore, the selection of the most appropriate 

pharmacological treatment for an individual patient is a matter of ‘trial and error’. 

Pharmacogenetics aims to understand how genetic variations contribute to the 

variation in response to medication. This thesis contains a number of epidemiological 

studies that are aimed at gaining more insight into the effect of five candidate gene 

polymorphisms on the response to antihypertensive medication.  

 After a general introduction in chapter 1, chapter 2 focuses on the current status 

of hypertension treatment in the Netherlands. In chapter 2.1, estimates are provided 

on the prevalence, treatment, and control of hypertension and determinants of 

undertreatment in the Netherlands. Data were obtained from a population-based 

survey on cardiovascular risk factors in the Netherlands from 1996 through 2002 

(MORGEN project). A total of 10,820 men and women were included in this study. The 

prevalence of hypertension in men was 21.4% and in women 14.9%. Of the 

hypertensive men 17.9% was treated, of whom 67.6% had a blood pressure level 

during treatment which was too high according to the guidelines. Of the hypertensive 

women, 38.5% were receiving antihypertensive medication, of whom 51.9% had a 

blood pressure level which was too high. One of the factors associated with a better 

control of blood pressure was the use of cholesterol-lowering medication. Of the 

untreated patients, 21.9% of the men and 13.6% of the women were eligible for 

treatment according to the Dutch guidelines for antihypertensive treatment. Subjects 

who were physically active, on a low salt diet, and current smokers had an increased 

chance of being untreated.  

 In chapter 3, a general introduction is given on the interaction between 

antihypertensive drugs and genes. Chapter 3.1 contains all studies until October 2003 

that reported data on genetic polymorphisms and response to antihypertensive drugs. 

In some candidate gene studies, drug-gene interactions were found. Unfortunately, the 

quality of these studies is quite variable and initial associations were often difficult to 

replicate. Therefore, further research is needed to be able to make definitive 

conclusions.  

 Chapter 4 consists of four studies that investigated the drug-gene interaction 

between five candidate gene polymorphisms and four antihypertensive drug classes on 

short-term outcomes. The first three studies were performed in the Rotterdam Study, 

a population-based prospective cohort study among 7,983 individuals aged 55 years or 

over. In chapter 4.1 we investigated whether the angiotensin converting enzyme 
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(ACE) insertion/deletion (I/D) polymorphism modified the adherence to ACE-inhibitors 

as measured by the discontinuation of an ACE-inhibitor or addition of another 

antihypertensive drug. There was no significant difference between subjects with the 

DD, ID, or II genotype in adherence (DD versus II; relative risk (RR)=1.17; 95%CI: 

0.78-1.77 and ID versus II; RR=1.06; 95%CI: 0.73-1.55). Also, no difference in blood 

pressure levels was found in ACE-inhibitor users, as demonstrated in chapter 4.2 

(systolic blood pressure II versus DD; -2.01 mmHg; 95%CI: -9.82-5.79 and diastolic 

blood pressure II versus DD; -1.04 mmHg; 95%CI: -5.45-3.37). nor did it modify 

blood pressure levels in users of low-ceiling diuretics, β-blockers, or calcium channel 

blockers. Also, the angiotensinogen (AGT) M235T and α-adducin (ADD1) G460W 

polymorphisms did not modify blood pressure levels in antihypertensive drug users as 

described in chapter 4.3. Chapter 4.4 contains data from the Doetinchem Cohort 

Study. This cohort is part of a population-based prospective study on cardiovascular 

risk factors conducted in the Netherlands (MORGEN project). In total, 625 hypertensive 

subjects had complete information on blood pressure, medication use and genotypes. 

No drug-gene interaction was found with the ACE I/D, AGT M235T, angiotensin 

receptor II type 1 (AGTR1) 1166A/C, or ADD1 G460W polymorphism. Only the β3-

subunit of G-protein (GNB3) 825C/T polymorphism modified the systolic blood 

pressure levels in diuretic users (C-allele versus TT 4.33 mmHg; 95%CI: 0.14-8.54). 

Thus subjects with one or two copies of the 825C-allele might have less benefit from 

the use of low-ceiling diuretics. In addition, four significant drug-gene-gene 

interactions were found which were associated with an increased systolic or diastolic 

blood pressure.  

 Chapter 5 provides the data of two studies investigating drug-gene interactions on 

long-term outcomes. These studies were performed in the Rotterdam Study. In 

chapter 5.1, we investigated whether the ACE I/D, AGT M235T, or AGTR1 573C/T 

polymorphism modifies atherosclerosis levels in patients treated with ACE-inhibitors or 

β-blockers. We used three different sub-clinical measurements of atherosclerosis, i.e. 

peripheral arterial disease, carotid atherosclerosis, and aortic atherosclerosis. No 

consistent drug-gene interaction was found in association with these three 

measurements. Chapter 5.2, presents the data on the risk of myocardial infarction 

(MI) and stroke and the interaction between the AGT M235T polymorphisms and the 

use of ACE-inhibitors and β-blockers. The interaction between current use of ACE-

inhibitor users was multiplicative on the risk of MI (hazard ratio (HR)=4.00; 95%CI: 

1.32-12.11) in subjects with the MT or TT genotype compared to subjects with the MM 

genotype. Similarly, there was a non-significantly increased risk of stroke (HR=1.83; 

95%CI: 0.95-3.54). No significant interaction was found between the current use of β-

blockers and the AGT M235T polymorphism on the risk of MI or stroke. Subjects with 

at least one copy of the 235T-allele of the AGT gene might have less benefit from ACE-

inhibitor therapy. 
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Chapter 6 contains the main findings of the studies in this thesis and the main 

limitations/strengths of these studies. In addition, the clinical relevance of the findings 

and recommendations for further research are given. 
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Samenvatting 
 
Hypertensie is een belangrijk probleem voor de volksgezondheid, vanwege de hoge 

prevalentie en sterke associatie met cardiovasculaire ziektes. Suboptimale bloeddruk 

controle is de belangrijkste doodsoorzaak in de Westerse wereld, ondanks de 

ontwikkelingen in de behandeling van hypertensie. Ofschoon een hogere bloeddruk 

voor behandeling geassocieerd is met een betere respons op antihypertensiva is de 

relatie niet specifiek voor een bepaald antihypertensivum of gerelateerd aan speciale 

patiëntkarakteristieken. De selectie van de beste farmacologische behandeling voor 

een individu is daarom moeilijk. Farmacogenetica heeft als doel om meer inzicht te 

geven in de bijdrage van genetische variatie in de response op geneesmiddelen. Dit 

proefschrift bevat een aantal epidemiologische studies, die als doel hadden de effecten 

van vijf polymorfimen in kandidaat-genen op de response van antihypertensiva te 

onderzoeken. 

 Na een algemene introductie in hoofdstuk 1 wordt in hoofdstuk 2 de actuele 

status van de behandeling van hypertensie in Nederland besproken. In hoofdstuk 2.1 

worden schattingen gegeven over de prevalentie, behandeling en controle van 

hypertensie. Daarbij worden de determinanten van onderbehandeling van hypertensie 

in Nederland onderzocht. Gegevens waren afkomstig van het bevolkingsonderzoek 

naar risicofactoren voor hart- en vaatziekten in Nederland van 1996 tot en met 2002 

(MORGEN project). In totaal werden 10.820 mannen en vrouwen in deze studie 

opgenomen. De prevalentie van hypertensie was 21,4% voor mannen en 14,9% voor 

vrouwen. Ongeveer 18% van de mannen met hypertensie werd behandeld. Hiervan 

had 67,6% een te hoge bloeddruk tijdens de behandeling volgens de richtlijnen. Van 

de vrouwen met hypertensie kreeg 38,5% antihypertensiva. Hiervan had 51,9% een te 

hoge bloeddruk tijdens behandeling. Een van de factoren die geassocieerd was met 

een betere controle van de bloeddruk is het gebruik van cholesterolverlagende 

geneesmiddelen. Van de onbehandelde patiënten zou 21,9% van de mannen en 13,6% 

van de vrouwen volgens de richtlijnen in aanmerking komen voor behandeling. Mensen 

die lichamelijk actief waren, een zoutarm dieet hadden of rookten hadden een 

verhoogde kans om niet behandeld te worden. 

 In hoofdstuk 3 wordt een algemene introductie gegeven over interacties tussen 

antihypertensiva en genen. Hoofdstuk 3.1 geeft een overzicht van alle studies (tot 

oktober 2003), die gegevens bevatten over genetische polymorfismen en de respons 

op antihypertensiva. In sommige studies met kandidaatgenen werden geneesmiddel-

gen interacties gevonden. Helaas was de kwaliteit van deze studies variabel and was 

het over het algemeen lastig om eerder beschreven associaties te reproduceren. 

Daarom is extra onderzoek nodig om definitieve conclusies te trekken. 

 Hoofdstuk 4 bestaat uit vier studies, waarin wij onderzochten of er een 

geneesmiddel-gen interactie aantoonbaar was tussen vijf polymorfismen in kandidaat-

genen en vier verschillende groepen antihypertensiva op korte termijn uitkomsten. De 

eerste drie studies werden uitgevoerd met gegevens van het Erasmus Rotterdam 
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Gezondheid en Ouderen (ERGO) onderzoek, een bevolkingsonderzoek van 7.983 

personen van 55 jaar en ouder. In hoofdstuk 4.1 hebben we onderzocht of het ACE 

I/D polymorfisme het gebruik van ACE-remmers verandert. Een verandering werd 

gedefinieerd als het stoppen van het gebruik van een ACE-remmer of de additie van 

een ander antihypertensivum. Er was geen significant verschil tussen mensen met het 

DD, ID en II genotype in het gebruik van ACE-remmers (DD versus II; relatieve risico 

(RR)=1.17; 95%BI: 0.78-1.77 en ID versus DD; RR=1.06; 95%BI: 0.73-1.55). 

Daarnaast werd er bij gebruikers van ACE-remmers geen verschil gevonden in de 

hoogte van de bloeddruk, zoals aangetoond in hoofdstuk 4.2 (systolische bloeddruk 

II versus DD; -2,01 mmHg; 95%BI: -9,82-5,79 en diastolische bloeddruk II versus DD 

-1,04 mmHg; 95%BI: -5,45-3,37). Ook veranderde het ACE I/D polymorfisme de 

bloeddruk niveau’s niet in mensen die diuretica (exclusief lisdiuretica), β-blokkers of 

calciumantagonisten gebruikten. Ook de AGT M235T en ADD1 G460W polymorfismen 

veranderde bloeddruk niveau’s niet, zoals beschreven in hoofdstuk 4.3. Hoofdstuk 

4.4 bevat gegevens uit de Doetinchem Cohort Studie. Dit cohort is een gedeelte van 

het bevolkingsonderzoek naar risicofactoren van hart- en vaatziekten in Nederland 

(MORGEN project). In totaal hadden 625 personen met hypertensie complete 

informatie over bloeddruk, geneesmiddelgebruik en genotypes. Er werd geen 

geneesmiddel-gen interactie gevonden met het ACE I/D, AGT M235T, AGTR1 1166A/C, 

of ADD1 G460W polymorfisme. Alleen het GNB3 825C/T polymorfisme veranderde de 

systolische bloeddruk niveau’s in diuretica gebruikers (C-allele versus TT; 4,33 mmHg; 

95%BI: 0,14-8,54). Mensen met één of twee kopieën van het 825C allel zouden 

misschien minder baat hebben bij het gebruik van diuretica. Bovendien werden er vier 

significante geneesmiddel-gen-gen interacties gevonden met consequenties voor de 

systolische of diastolische bloeddruk. 

 Hoofdstuk 5 bevat gegevens van twee studies naar de associatie tussen 

geneesmiddel-gen interacties en uitkomsten op de lange termijn. Deze studies zijn 

uitgevoerd met data uit het ERGO onderzoek. In hoofdstuk 5.1, werd onderzocht of 

het ACE I/D, AGT M235T of AGTR1 573C/T polymorfisme geassocieerd was met de 

mate van atherosclerose in patiënten, die behandeld werden met ACE-remmers of β-

blokkers. We gebruikten drie subklinische parameters voor atherosclerose, namelijk 

perifeer vaatlijden, atherosclerose van de arteria carotis en atherosclerose van de 

aorta. Er werd geen consistente geneesmiddel-gen interactie gevonden met deze drie 

uitkomstmaten. Hoofdstuk 5.2 geeft het risico op een hart- en herseninfarct en de 

interactie tussen het AGT M235T polymorfisme en het gebruik van ACE-remmers of β-

blokkers. De interactie tussen het AGT M235T polymorfisme en het gebruik van ACE-

remmers was multiplicatief op het risico van een hartinfarct (HR=4,00; 95%BI: 1,32-

12,11) in personen met het MT of TT genotype ten opzichte van mensen met het MM 

genotype. Ook was er een (niet significant) hoger risico op een herseninfarct 

(HR=1,83; 95%BI: 0,95-3,54). Er werd geen interactie gevonden tussen gebruik van 

β-blokkers en het AGT M235T polymorfisme op het risico van een hart- of 

herseninfarct. Mensen met tenminste één kopie van het 235T allel op het AGT gen
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lijken minder baat te hebben bij behandeling met ACE-remmers.  

 Hoofdstuk 6 bevat de belangrijkste resultaten van dit proefschrift en bespreekt de 

sterke punten, de klinische relevantie en beperkingen van studies uit dit proefschrift. 

Daarnaast worden aanbevelingen gegeven voor toekomstig onderzoek. 
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