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Introduction and Summary 

 

In recent years there has been a growing interest to understand the drivers and the limits 

of road freight demand in many countries. Behind this interest lies a strong desire to 

improve operational performance in road freight transport, which has remained stable for 

many years. A recent report for 13 European countries reveals that on about 30 per cent of 

all trips made the trucks are empty, while the percentage of a truck’s carrying capacity 

filled with a cargo (that is, the load factor) remained stable at an average of 50 percent 

over the period 1990-2008 (European Environmental Agency, 2010). The overall objective 

of this PhD thesis is to provide economic analyses of some of the drivers and limits of road 

freight transport, and their implication on the trucking industry’s performance. It is 

composed of four self-contained chapters which can be read independently. Each chapter 

addresses this objective from various angles to provide economic perspectives and policy 

recommendations.  

Chapter 1 sets the stage by reviewing studies on capacity utilization in road freight 

transport from the economics and engineering literature. It draws important lessons and 

sheds light on potential gains that can be achieved by combining the two strands of 

studies. Chapter 2 looks at two aspects of capacity utilization, namely the extent of empty 

running and the load factor. It shows that they are explained as a function of truck, haul 

and carrier characteristics. Chapter 3 analyzes how firms choose the optimal truck size and 

shipment size. Chapter 4 looks at the effect of fuel price on the operating characteristics of 

the trucking industry.   

Data background 

The main source of data for the thesis is the Danish heavy trucks trip diary. It is a unique 

dataset, and as such it is worth giving a short introduction to it from the outset. The 

diaries have been collected as part of a wider European Union (EU) initiative, in 

accordance with Council Regulation (EC) 1172/98 on statistical returns in respect of the 

carriage of goods by road. Access to this data is limited to aggregate statistics in many 

member countries. In the Danish case, it has been possible to get access to the data at the 

most detailed level. The Danish data is also the first, to the author’s knowledge, to be used 

for a detailed microeconometric analysis. With the cancelation of the Vehicle Inventory 
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and Use Survey (VIUS) in the US back in 2006, and the difficulty of getting data from 

freight carriers due to confidentiality issues in many countries, the Danish data give a rare 

opportunity to study the performance of the trucking industry rigorously. Furthermore, 

trucking is the major mode of freight transport in Denmark, and as such studying its 

performance provides interesting lessons that can be of use for countries where trucking is 

also the dominant mode of freight transport.  

The travel diaries contain information on the movements of approximately 1000 trucks 

every year for one week’s operation. All the trips undertaken by the trucks are recorded 

and the diaries report the trip length, the load carried, the type of good carried, and 

special information if the good is considered a voluminous good. Moreover, background 

information about the type of vehicle, age, owner, size is provided. Although there have 

been some difficulties with the collection and the representativeness of the recorded 

transports, it is still believed to be a very strong data set in relation to understanding the 

variation in Danish trucking. The data is also used for producing aggregate statistics in 

accordance with the above EU directive, but there are some concerns about the precision 

in this regard.  

Based on the identification number of truck owners, it is possible to link the trip diary 

data to other register data in Denmark to get further information on firm characteristics. 

The thesis exploited this possibility to enrich its data source to investigate a number of 

interesting issues concerning the use of heavy vehicles. The following paragraphs give a 

more detailed summary of each chapter.  

Chapter 1 (a joint work with Ole Kveiborg) gives an overview of the literature on capacity 

utilization in road freight transport. It groups previous contributions into two segments 

according to their analytical approach and origin of research. The first approach looks at 

capacity utilization based on economic theories such as a firm’s objective to maximize 

profitability and considers how firm and haul characteristics influence utilization. The 

second approach stems from the transport modeling literature and mainly focuses on the 

modeling of trip-chain and its implication on the level of capacity utilization. A key lesson 

from the reviewed studies is that it is important to take into account the commercial 

activity that initiates vehicle movements to evaluate performance. Various suggestions are 

also made on how to calculate capacity utilization measures in this chapter. (A version of 
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this chapter is forthcoming in Freight Transport Modeling book edited by Eddy Van de 

Voorde, Moshe Ben-Akiva, and Hilde Meersman, which will be published by Emerald in 

the first half of 2013.) 

Chapter 2 looks at two aspects of capacity utilization, namely the extent of empty running 

and the load factor. It shows that they can be explained as a function of truck, haul and 

carrier characteristics. The study employs an econometric model that simultaneously 

estimates a market access decision (empty or loaded movement decision) and the load 

factor (the level of capacity utilization during a loaded trip). A unique dataset from the 

Danish heavy trucks trip diary for 2006 and 2007 is used for analysis.  

The results show that trip distance, truck size, fleet size and carrier type are the main 

determinants of capacity utilization. In particular, trucks on longer trips tend to have 

higher levels of load factor, and are more likely to be loaded. The analysis consistently 

shows that trucks owned by for-hire carriers are better utilized than those owned by own-

account shippers, which suggests that specialization in haulage service helps carriers to 

optimize resource use. But the effect of a trucks’ size on utilization is not straightforward; 

while an increase in truck size contributes to excess capacity to some extent; its overall 

effect appears to be positive. This result adds an interesting insight into the current policy 

debate in Europe regarding whether increasing the maximum legal carrying capacity of 

trucks is beneficial or not. (A version of this chapter is accepted for publication in Journal 

of Transport Economics and Policy)  

Chapter 3 takes an in-depth look at the truck size/type and shipment size choice process 

of firms. This is a timely topic as the demand for freight transport has been growing 

rapidly, and is predicted to grow in the future. There has also been a proliferation of just-

in-time inventory practices by shippers and receivers, resulting in increased overall freight 

transport activity. From the side of policy makers, this growth has brought attention to 

the issues of allowing higher capacity vehicles on the roads, and the impact these vehicles 

have on safety, the environment, and efficiency.  

The objective of this chapter is to investigate how variations in route/haul, carrier and 

vehicle characteristics affect the optimal vehicle size choice in trucking. Little is known 

about this choice process and its underlying determinants. Previous studies mainly focus 
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on mode choice as opposed to the vehicle choice process of firms. This chapter addresses 

two important issues in econometric freight demand analysis. First, it outlines a conceptual 

framework based on shipment size optimization theory to identify the main determinants 

of firms’ choice of vehicle and shipment size. Second, it provides a framework for modeling 

the simultaneity between quantity shipped and vehicle choice using a discrete continuous 

econometric model developed by Dubin and McFadden (1984).  

For model estimation, a unique dataset from the Danish heavy trucks trip diary was used. 

The dataset has detailed one-week operational information on a trip-by-trip basis for about 

2500 trucks in 2006 and 2007. Results show that the main determinants of vehicle size 

choice are vehicle operating cost, vehicle age and carrier type. It is also shown that as 

operating cost increases the probability of choosing heavier vehicles increases, while higher 

total cost leads to a gradual shift towards smaller vehicles. These seemingly contradicting 

effects of cost have important policy implications. For instance, in the face of policies or 

exogenous shocks which raise the variable cost of trucking operations (e.g. road pricing or 

fuel price rise) firms prefer to use heavier vehicles. On the other hand, policies or secular 

changes which increase fixed costs, and hence total cost, (e.g. registration tax, permits, 

licenses etc.), force firms to use smaller vehicles. (A paper based on this chapter was 

presented at the Kuhmo-Nectar 2012, LATSIS 2012, and ETC 2012 conferences)  

Chapter 4 is exploratory in nature and looks at how the fuel price hikes and financial crisis 

of the last decade (2000s) have affected the operating characteristic of fright movement. 

Both had a significant impact on the structure of the trucking industry and how freight is 

moved. In particular, the chapter analyzes the effect of fuel price on the average length of 

haul and the level of capacity utilization. It proposes an empirical model which is based on 

central arguments that during periods of high fuel prices firms lower the average length of 

hauls- the average distance a tonne of fright moves, and improve capacity utilization. For 

analysis, a unique quarterly dataset from the Danish heavy trucks trip diary that spans 8 

years is used. The data are disaggregated and allow for a simple and flexible empirical 

strategy that controls for vehicle, firm and haul characteristics.  

The results show that average length of haul is sensitive to changes in fuel price: a DKK 1 

increase in fuel prices leads to a 3 percent decrease in average length of haul in the 2004-

2007 period. This implies that firms improve transport efficiency by reducing the number 
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of kilometers needed to transport a tonne of cargo as a short run response to fuel price 

increases. This result, however, is not confirmed for the years following the 2008 financial crisis. It 

also depends on where in the distribution of the average length of haul one looks. A similar 

pattern is observed for the effect of diesel price on the share of loaded trips vehicles make: 

with a significant effect in the pre-2008 period and no significant effect afterwards. The   

findings of this study -exploratory as they may be- represent important stepping stones for 

future research. They also reveal interesting short run freight demand responses, which 

have not previously been studied. 
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Capacity Utilisation of Vehicles for Road Freight Transport-

a review ∗

Megersa Abera Abate

DTU Transport, Technical University of Denmark

Ole Kveiborg

COWI A/S Denmark

December 2012

Abstract

This paper discusses a central aspect of freight transportation —capacity utilization

with a link to empty running of commercial freight vehicles. It provides an overview of

the literature on these topics and groups the contributions into two segments according

to their analytical approach and origin of research. The first approach looks at utiliza-

tion based on economic theories such as the firms’objective to maximize profitability

and considers how various firm and haul (market) characteristics influence utilization.

The second approach stems from the transport modelling literature and its main aim

is analyzing vehicle movement and usage in transport demand modelling context. A

strand of this second group of contributions is the modelling of trip-chain and its im-

plication on the level of capacity utilization. A key lesson from the reviewed studies is

that it is important to take into account the commercial activity that initiates vehicle

movements to evaluate performance. It appears that there is room for further enrich-

ment of the modelling exercise by incorporating information regarding the operator to

give a stronger behavioural basis for the vehicle movements and utilization analysis.

∗A version of this chapter is forthcoming in Freight Transport Modeling book edited by Eddy Van de
Voorde, Moshe Ben-Akiva, and Hilde Meersman, which will be published by Emerald in the first half of
2013. We thank two anonymous referees for suggestions. All errors are ours.
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1 Introduction

Road freight transport is vital for most industries to ensure smooth movement of goods.

Moreover, the transport sector employs a large number of the labour force and contributes

with a rather large share to GDP in most developed countries (Transport Canada, 2003;

American Trucking Trends, 2011). Thus the level of capacity utilisation of vehicles used

for freight transport is an important indicator of how well economic resources are used

both from the perspective of vehicle operators and other sectors of the economy, which

rely on their service. Despite its positive contributions, freight transport leads to negative

externalities that need to be reduced, ideally, not at the expense of economic prosperity.

If capacity utilisation can be improved then it will be possible to reduce the amount of

vehicle kilometres required to satisfy the demand for goods movements and the related

detrimental effects. It is, therefore, interesting to investigate the factors behind capacity

utilisation and how it influences overall travel demand.

The observed level of capacity utilisation is naturally the consequence of some opti-

misation by the transport operators due to e.g. cost minimisation, optimal resource use

etc. This optimisation is taken as given for the analysis of capacity utilisation. So the

choices influencing capacity utilisation as is described here is implicitly the result of the

underlying economic optimisation of the firm.

In this paper we study capacity utilisation and present literature contributions on the

subject from different approaches that has followed independent paths. We will shed some

light on its measurement and its determinants. In particular, we focus on how the different

approaches improve current methodologies within freight transport modelling as well as

within economic modelling of the vehicle operators’decisions. There are several studies

ranging from the economics to the transport literature that analyse the issue of vehicle

capacity utilisation. These studies usually define capacity utilisation as a function of the

physical dimensions of a load such as weight and volume. Each study emphasises different

and yet key aspects of utilisation from which interesting insights can be gained.

Studies from the economics literature analyse the underlying determinants of capacity

utilisation giving particular weight to cost minimisation and other economic incentives

as the main behavioural issues behind resource allocation decisions (Wilson and Beilock,
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1994; Wilson and Dooly, 1993; Beilock and Kilmer, 1986; Winston, 1985). They show how

various haul (trip), vehicle and carrier (operator) characteristics affect the level of utili-

sation. According to the economics literature there is a persistent challenge of matching

capacity with demand as a result of two factors: freight movement imbalance between re-

gions and market access cost differential between operators. Studies from this strand of the

literature show how information technology capabilities improve utilisation by facilitating

the matching process (e.g. Hubbard, 2003; Barla et al, 2010).

Studies from the transport literature mainly focus on modelling vehicle movements as

part of freight demand modelling and a vehicle routing problem with the aim of predicting

directional traffi c. One frontier interest of these studies is the issue of ‘trip chain’or ‘tour’

undertaken by freight vehicles in urban areas and its implication on effi ciency (Holguin-

Veras and Thorson, 2003; Raothanachonkun et al, 2008). Empty runs or the number of

kilometres driven without a load is often taken as the main indicator of capacity utilisation

in this literature. However, some studies (Figliozzi, 2007; Figliozzi et al, 2007) show that

the extent of empty running is a poor proxy for effi ciency of vehicle movements, unless the

purpose of commercial activity which initiated the movement is taken into considerations.

The key lesson from both strands of the literature is that capacity utilisation varies

depending on the specific setting in which vehicles are used. The extraordinary hetero-

geneity in terms of weight and volume of loads, direction and distance of movement as

well as time window constraints results in varying degree of utilisation even for rather

identical vehicles. Future studies should focus on micro level vehicle utilisation rather

than a general level analysis. Empirical analysis showing the scope of potential gains from

improved utilisation can also be an interesting addition to this important topic.

The rest of the paper is organized as follows. Section 2 gives an overview of the concept

of capacity utilisation, output measure and production technology in trucking. Section 3

discusses determinants of capacity utilisation and ‘Trip chain’ as it is discussed in the

economics and transport modelling literature followed by concluding remarks in Section

4.

3



2 Production Technology and Output Measures in Truck-

ing

2.1 Production Technology

Measuring the capacity utilisation of a truck mainly involves consideration of two dimen-

sions: spatial attributes of a truck movement and the physical attributes of a shipment

(i.e. for a given capital and labour input of the firm). Both dimensions can be considered

independently or they can be considered simultaneously. The location of origin-destination

pairs (ODs) and the distance between them constitute the main component of the spa-

tial dimension. As for the physical attributes, the weight and the volume (density) of

a shipment essentially determine how well a truck can be used relative to its maximum

carrying capacity. To characterize capacity utilisation of a truck we note that different

pictures emerge depending on how the output of a freight transport service is defined. The

following discussion illustrates this point.

Hubbard (2003) discusses two concepts of capacity utilisation. The first concept relates

to the share of “loaded kilometres”, defined as the numbers of kilometres trucks are driven

with a load during the periods trucks are in operation away from their base. Seen this way,

the performance of a truck can be evaluated by the share of “loaded kilometres”relative

to the total kilometres the truck is driven. The second concept considers the number of

times trucks are in use in a given period. For instance, trucks that are driven more weeks

in a year are considered to have a higher level of capacity utilisation than those used for

a fewer number of weeks due to frequent maintenance or lack of demand. It is assumed

here that being away from base of operation more often implies higher level of utilisation.

Such temporal consideration of truck usage is not common in the literature, but it adds

an interesting perspective

Using these two concepts on Danish data from 1999 to 2009 shows developments de-

picted in Figure 1. As mentioned above, in many freight transport models the average

load on vehicles is used as a measure of utilisation in order to calculate number of vehicles.

This measure is also shown in Figure 1.

An important dimension overlooked in Hubbard’s discussion is the attributes of the

load carried by trucks. Failing to consider weight and/or volume of the load can be

misleading since utilisation does depend also on trucks’ carrying capacity that is filled

with cargo or the level of the load factor. According to Hubbard’s first definition, two
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identical trucks carrying different size of otherwise identical loads are reported to have

equal level of utilisation in terms of ‘loaded kilometres’performance if they travel over

the same distance. Their performance in terms of the level of the load factor, however,

is clearly different, which can be seen form the comparison of these different performance

measures outlined in Figure 1.

An informative comparison of utilisation can be made using ton-kilometres (TKM)

as an output measure. TKM is defined as the product of cargo weight carried and the

distance over which it is shipped. Boyer and Burks (2009) use TKM to define capacity

utilisation (productivity) at a vehicle level as the annual ton-kilometres per truck-and-

driver combination. As pointed out earlier, to have higher utilisation a vehicle has to

be driven over long distance and loaded to its maximum capacity. However, unless both

dimensions - distance and weight - are taken into account it is diffi cult to fully capture

utilisation. Moreover, TKM does not consider the type of transport service undertaken

since the more kilometres a vehicle is running the better the capacity utilisation is. For

instance, if a truck is used for a specific type of delivery service, where loading and un-

loading takes extended time then the truck will run only few kilometres and will not be

able to have large TKM. But it may be fully loaded when it is operating. To overcome

this problem, capacity utilisation can also be defined as the extent of the actual versus the

maximum laden capacity of the vehicles on the trips that they have actually performed.

Such a definition using TKM is also shown in Figure 1.

Another important dimension, volume of a load, is missing when one looks only at

TKM performance. Light and voluminous items fill up physical space of a vehicle before

its maximum laden capacity is reached. Vehicles carrying such items will appear less

productive compared to those moving less voluminous and heavy item over the same

distance. In relation to this, it may also be important to consider the specific type of good

being carried. Some goods such as dangerous goods, and oil products require particular

types of trucks and should therefore be considered specifically. The same may of course

be the case for other goods although these may be carried in normal articulated trucks

(e.g. food and general cargo). Ideally, one needs to consider the distance travelled by

the vehicle, the specific type of good, weight and volume of the load carried to make a

complete comparison of capacity utilisation of vehicles.

As indicated by Femie and McKinnon (2003), quality of service with regard to ‘time

utilisation’and deviation from schedule as well as fuel effi ciency should also be quantified
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to know how a truck’s hauling capacity is effectively utilised.

Finally, note that the above definitions of capacity utilisation take into account only

the physical (engineering) aspect of freight transport service since their focus is on vehicles

rather than firms. In general no single capacity measure can accommodate all of these

’requirements’. It is thus important to be specific about what is the objective of the

measure is (for example to be usable for political decisions).

2.2 Empty Running and Capacity Utilisation

Empty running is another important indicator of the extent of capacity utilisation. It

arises when carriers provide capacity to several locations (markets segments) and choose

to access only some of them due to unavailability of load or vehicle routing decision. A

vehicle moving in a round trip between two locations may choose to carry a load on the

front-direction and run empty during backhaul or vice-versa.

For a vehicle moving in a more complex pattern, empty runs occur at several stages

of its journey. An illustration of this is included in Figure 2. To make it simple, we

assume that all goods going from a production (P) to a consumption (C) pass through

two distribution centres (DC), where the goods are consolidated and only truck is used. In

the figure we consider three ‘supply chains’one going from P1 to C1, another going from

P2 to P3 and a third going from P3 to C3. The chain P1C1 passes through distribution

centres DC1 and DC2, the chain P2C2 passes through DC3 and DC4, while the chain

P3C3 passes through DC4 and DC1.

Each leg of the supply chains is performed by a distinct vehicle. However in the figure

we follow a single truck in a trip chain starting in DC1 going to DC2 (loaded), from DC2 to

DC3 (un loaded), from DC3 to DC4 (loaded), from DC4 to DC5 without load, and finally

from DC5 to DC1 with load. The trip chain consists of 5 individual trips determined by

separate supply chains and a trip back to the origin for the trip chain.

We may also observe simpler cases where there are one to one relations between supply

and trip chain. For example when a consignment is conveyed directly from P to C and

where the vehicle return to its origin loaded or (more likely) empty.

The figure reveals that although vehicle trips are derived as part of the supply chain(s)

they cannot describe all observed trips by trucks and they cannot always determine the

actual use of vehicles. Empty trips are more likely related to the trip chain rather than the

supply chains. Moreover, utilisation of vehicles is also related to the trip chain and to a
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large extent also to loaded and un-loaded trips. For example if a truck owner must decided

between undertaking an empty trip to go to a place, where a full load can be picked up

of whether he chooses to take a smaller consignment from where the truck has made its

delivery. The two choices influence the probability of either a higher load/utilisation and

the probability of an empty trip.

Barla et al (2010) identify three stages being part of the chains: first, at the initial stage

of a journey empty runs occurs if the vehicles’base is not close to the shipment origin;

Second, empty runs arise during a backhaul trip, since demand from a client is rarely

bidirectional (typical feature of freight movement); and finally, empty runs occur during

a return trip if a truck is diverted in order to pick up a backload. It is important to note

that in some of these situations empty running is inevitable. For example, geographical

imbalances in freight movement forces trucks to run empty during backhaul from a net

freight importing region. It is also impractical to find a back load for specialized vehicles

such as oil tankers in to which loading edible oil is impossible (McKinnon and Ge, 2006).

They also indicate lack of transparency in the road freight market, short haul lengths,

scheduling constraints and the incompatibility of vehicles and loads as possible causes

of empty running. Seeing vehicle utilisation solely based the extent of empty runs may

portray an incomplete picture since utilisation also depends on vehicle routing problem

faced by the operators and the activity which initiates the movement in the first place.

Generally, empty running can be considered as a reflection of sub-optimal capacity

utilisation when it arises due to a matching problem between demand and supply. From

an individual operator’s point of view there might be cases where running empty in specific

direction is optimal and hence load is not searched (for example, to pick a load in another

location). For an operator choosing to operate in this fashion, the price received for a

movement of load in the accessed market reflects the cost of operating a vehicle to locations

for which capacity is supplied but not utilized. From societal point of view, however, where

the objective is sometimes to minimise vehicle movements due to environmental concerns,

empty runs that could have been loaded are considered as underutilized capacity. In the

next section, studies which analyse the underlying determinants of capacity utilisation are

discussed. Finally, we note that when we compare the various truck output and utilisation

measures it is evident that they each tell us something different about the level of usage,

and that they cannot be interchanged for each other. This shows the importance of

choosing the right capacity measure that suits the specific purpose for the analysis and
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that comparing capacity utilisation across different studies etc. should be done with care.

3 Determinants of Productivity in Trucking

3.1 Lessons from the Economics Literature

Studies from the economics literature aim at finding determinants of empty running and

capacity utilisation of trucks giving particular emphasis to underlying behavioural issues.

They give theoretical and empirical analysis for questions such as: why does a truck or

a carrier to be precise, choose to access some market segments (origin-destination pairs)

and not others? Why do we see empty trucks alongside fully loaded trucks starting from

the same origin and going to the same destination? Answers to the first question explain

the determinants of individual carrier’s vehicle utilisation while answers for the second

question explain carriers’market behaviour. The two common factors that determine how

well trucking carriers use their capacity are distance and the respective freight movement

imbalance between market segments. The effect of these two factors and regulatory en-

vironment on rate of capacity utilisation is thoroughly analysed by Wilson and Beilock

(1994), Wilson and Dooly (1993) and Beilock and Kilmer (1986) for the US trucking in-

dustry. Recent studies focus more on the structure and the relative effi ciency within the

trucking sector arising from information technology capabilities of trucks (Barla et al, 2010

and Hubbard, 2003).

Early empirical studies mainly focus on the cost structure of carriers to explain differ-

ences in utilisation performance (see Beilock and Kilmer, 1986; Wilson and Dooly, 1993;

and Wilson and Beilock, 1994). Their basic explanation is that if there is a systematic cost

differential between carriers, then we see difference in capacity utilisation level between

similar trucks even if they are used for the same haul and between the same origins and

destinations. There are two implied assumptions in these studies, carriers incur more or

less equal cost of operating empty trucks and they face equal freight rates. With regard

to costs associated with accessing a particular freight market, however, some carriers may

have cost advantages. Two main sources of cost advantages and their implication to truck-

ing effi ciency are discussed in the literature, namely market regulation and information

technology (see Abate, 2012 for a detailed discussion).

The first source of cost advantages arises from government intervention in the trucking

industry. The effect of market regulation on carriers’decision to access different freight
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markets is discussed by Wilson and Beilock (1994), Wilson and Dooly (1993) and Beilock

and Kilmer (1986). Even if trucking activities are now free from government intervention

in most countries, these studies identify an important source of variation in access cost. All

argue, from different angles, that having a special license to haul a regulated commodity

improves capacity utilisation (less empty runs) by lowering access cost; whereas not having

such a license forces carriers to forego loading opportunities and increase their ’search cost’

for finding new loads. There are also later examples where firms choose not to undertake

costs to be allowed to carry special types of loads (e.g. permission to carry dangerous

goods, which in addition can only happen at certain times during a day or week and thus

leading to additional time where a vehicle and driver is not in operation

One important limitation of these studies is that capacity utilisation is measured solely

based on whether a truck is loaded or not without considering how much of the truck’s

capacity is utilized during a loaded trip (i.e. the load factor).

Another source that leads to different cost structure between carriers is information

technology (IT) capability of trucks. Controlling for firm, truck and haul characteristics,

Barla et al. (2010) and Hubbard (2003) show that on-board IT capabilities results in

higher capacity utilisation by lowering search cost and by improving the matching of

vehicle capacity with the available load. The IT systems considered are not clearly defined,

but they provide a better communication between operator and driver. Hence, other ITS

systems involved in the operation of trucks, such as the logistic operators’software used to

optimise the use of vehicles and the general positioning of the vehicles are not included in

these studies, although they play important roles in the trucking industry. Chakraborty

and Kazarosian (2001) also find positive impact of IT capabilities on productivity by

controlling for marketing objectives such as on-time-performance vs. lower rate carrier.

For in depth review on IT capabilities and transport we refer to Banister and Stead

(2004). The specific aspects of capacity utilisation considered in these studies are the level

of the load factor and the number of loaded kilometres respectively. Both studies use data

from the late nineties when IT adoption was relatively small in North America. Thus IT

capability may not explain capacity utilisation differences in today’s activities since the

technology might have diffused well by now. It is likely that other attributes of trucks

(size, fuel effi ciency etc) or structural changes in the industry are playing important roles

in determining how well a particular truck is used. For instance Boyer and Burks (2009)

argue that trucking in the US has increased its proportion of traffi c that is relatively cheap
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to handle. As a result changes in traffi c composition have inflated productivity level in the

transport industry. Their finding to some degree plays down the claim that real productiv-

ity gains result from systematic difference in cost structure between carriers. However, it

may also be that continuously improved matching and routing software continue to induce

differences across the trucking industry, but this is very diffi cult to verify.

Finally, note that optimal decision in a net revenue maximisation framework assumed

in the studies summarized above may not be similar to other alternative objectives of

firms such as fleet optimisation and/or driver optimisation. For example, drivers may

have to call at their home base at a pre-specified time to pick up another load, for vehicle

maintenance or to change drivers. This is forcing them to skip a loading opportunity

during a backhaul. Note that the reviewed studies focus on trucks travelling in round

trips between two locations (Wilson and Beilock, 1994) or only on one leg of a truck’s

journey (Barla et al ,2010). This is a rather simplistic depiction of a complex freight

vehicle movement which involves a journey with several segments or trips. The reasons

often cited for such an approach is limited data availability and analytical tractability. A

realistic analysis, however, needs to consider all segments of a truck’s movement.

3.2 Lessons from the Transport Modelling Literature

In the transport literature the issue of vehicle capacity utilisation and the empty running

problem is discussed under freight demand modelling and a vehicle routing problem (VRP).

The literature on VRP is rich. An overview of recent developments can be found in Golden

et al (2008). However, most of this literature does not take the capacity utilisation of

vehicles or the empty running explicitly into account. An exception is Jordan and Burns

(1984 and 1987), which give interesting discussions of truck backhauling as part of a VRP.

Here, we give a short review from the freight demand modelling studies with particular

emphasis on trip chain or tours in freight movements and the inclusion of empty trips. We

think this is the area where there is a potential for the transport and economics literature

to complement each other. Little is known about the behavioural underpinnings resulting

commercial vehicle tours. What we know already is from studies based on either simulation

or limited data. Starting with general discussions on freight demand modelling and how

empty trips can be included, we present a short overview of some of some of these studies

in this section.
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3.2.1 Capacity Utilisation in Freight Demand Modelling

The literature of freight demand modelling is very rich. Some of the recent developments

can be found in this volume on freight modelling, but also the earlier book on freight

modelling (Ben-Akiva et al, 2008) as well as in a very early study by Winston (1983).

Moreover, recent model developments focus on the logistic choices that can be used to

determine the load of vehicles and further the number of vehicles needed to move the

quantities determined by the OD matrices (see e.g. de Jong and Ben-Akiva, 2007). We

refer to these volumes for more insights. Here we focus on the specific parts, where capacity

utilisation and empty trips can be included.

There are two major freight demand modelling platforms, where capacity and empty

trips can be included: commodity-based modelling and vehicle-based modelling (Holguın-

Veras and Thorson, 2000; Federal Highway Administration, 2007).1 The difference be-

tween them lies in the level of emphasis put on various dimensions such as weight, volume,

number of vehicle trips, and economic value of the commodities being transported. In the

case of commodity-based modelling, the weight and volume of the freight are the main

units of analysis. The assumption is that by focusing on the characteristics of the com-

modity being transported, it is possible to capture the underlying economic activity which

gives rise to vehicle movements. The limitation of commodity-based models is their inabil-

ity to predict empty trips and the level of vehicle capacity utilisation. This limitation is

ameliorated by vehicle-based models, which use vehicle trips to estimate freight demand.

As pointed out by Holguin-Veras and Thorson (2000), vehicle-based models in turn over-

look the characteristics of cargoes that play an important role in the vehicle selection,

mode choice and routing process. Furthermore, these models have limited applicability to

multimodal freight transport systems because of their focus on the vehicle trip which is

an outcome of prior choice process (Holguin-Veras and Jara-Diaz, 1999, McFadden et al.,

1986 and Abdelwahab, 1998).

There have been two different approaches to overcome the problems that arise from

focusing either on commodity or vehicle movements in the context of urban freight move-

ment. Wang and Holguin-Veras (2008) refer to them as: ‘hybrid models’(which estimate

commodity flows between origin-destination pairs and delivery routes) and ‘tour models’

(which directly estimate tours based on logistic considerations, tour-based behavioural

1Here, the concept of demand refers to the flow of freight or the level of freight transport demanded.
See Boyer (1998) for an interesting comparison of this concept to when demand is defined as a relationship
between the amount of freight transport and the price paid for it.
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models, activity models or profit maximization behaviour). The common feature of these

approaches is consideration of vehicle tours directly or indirectly. But they differ on the

extent of treatment of underlying behavioural support for the way individual tours are

generated. What is lacking in both approaches is a deeper analysis of the determinants of

capacity utilisation of vehicles used for goods-transport. Improvements may be obtained

by explicit inclusion of operators’objective function disparities as a result of the charac-

teristics of the owner of the vehicle and its impact on a type of tour undertaken can make

the analyses more complete.

As indicated in the second section, the level of capacity utilisation of freight vehicles

depends on the distance range they are used. Interurban freight movements usually tend

to be more effi cient since high emphasis is put on consolidation to avoid empty running

and less-than-truckload movements. In short range or urban settings, vehicles are usually

used in a less effi cient manner since several stops are involved. Recent studies on freight

demand modelling try to characterise ‘trip-chain’or ‘tour’based vehicle movements in-

volving several stops. Their main theme is incorporating empty trips and ‘trip-chain’

behaviour in freight demand modelling (e.g. the modelling approach used by Holguin-

Veras and Thorsen, 2002). These studies are analysed from a traffi c modelling point of

view in which the aim is estimation of directional traffi c. Other than depicting directional

traffi c, they do not deeply analyse underlying causes of why some vehicles run empty and

others do not. However, there are interesting behavioural analyses of capacity utilisation

of vehicles with regard to ‘trip chain’movements. In what follows, a brief review of some

of these studies is given.

3.2.2 Trip chain and capacity utilisation

‘Trip chain’or ‘tour’is used interchangeably in the literature to describe vehicle movement

involving several stops. According to Wang and Holguin-Veras (2008) a trip is defined as

an individual vehicle movement connecting an origin to a destination for a specific purpose,

and an entire journey comprising two or more trips is a ‘trip chain’or ‘tour’. Trip-chain

is a typical feature of urban freight vehicle movement. Vehicles usually serve several

destinations in succession before finally returning back to their base which usually lies in

peripheries of cities or near major traffi c generators such as distribution centres or ports.

Previous studies from Denver (Holguin-Veras and Patil, 2005), Calgary (Hunt and Stefan,

2005), and Amsterdam (Vleugel and Janic, 2004) report an average number of stops per
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tour of 5.6, 6 and 6.2, respectively.

Figliozzi (2007) gives a theoretical analysis of effi ciency of urban commercial vehi-

cle tours with regard to their generation of vehicle kilometres travelled (VKT) assuming

a simple scenario where several destinations in an urban area are served from a single

distribution centre. He argues that the effi ciency of tours depends on the requirements

of commercial activity, which initiates the tours and vehicle routing constraints imposed

by truck capacity, frequency of service, tour length and time window length. Similarly,

Holguin-Veras and Thorson (2003) depict the number of empty trips as a function of the

routing choices that the commercial vehicle operators make, which in turn are based on

the commodity flows in the study area. Figliozzi’s (2007) findings indicate that multi-stop

tours generate more VKT than direct deliveries even for equal payloads. Another interest-

ing finding is that the percentage of empty trips has no correlation with the effi ciency of

the tour regarding VKT generation. According to Figliozzi (2007) looking at the share of

empty trips as a measure of effi ciency can be misleading. Direct delivery tours, the most

effi cient tours in terms of VKT since deviations are minimised, always have a 50% share of

empty trips while for the less effi cient multi-stop tours the share declines with the number

of stops. Using data from a single truck engaged in less-than-truckload delivery tours in

the city of Sydney, Figliozzi et al (2007) also shows that there is no clear relationship be-

tween tour distance, percentage of empty trips, and percentage of empty distance. It has

to be noted that the context of these studies is urban transport where distance travelled

is already short and as such the gain from lower VKT and effi ciency is limited.

An empirical analysis using a synthetic dataset of trip chaining behaviour is given by

Wang and Holguin-Veras (2008). Even though their study is entirely based on simulation,

it gives interesting insights into determinants of destination choice and decision to end

a tour using discrete choice models. Destination choice is modelled using a multinomial

logit model where the choice set is updated at every node of the trip chain. At each node,

a vehicle is faced with four alternative destinations randomly selected based on criteria

set by the median distance between all nodes in the network (this is similar to a ‘stratified

importance sampling technique’suggested by Ben-Akiva and Lerman, 2000). Wang and

Holguin-Veras (2008) report that the choice of next destination is negatively affected by

the distance from the current location to the potential destination, and it is positively

affected by the amount of cargo available for pickup and delivery. As for tour termination

decision, the benefit derived from tour termination declines with the increase of return
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distance and increases with the accumulation of cargo delivered.

A detailed analysis of urban tour-based vehicle movements for the city of Calgary

in Canada is given by Hunt and Stefan (2007). The analysis uses a tour-based micro-

simulation to model movements made by light vehicles and heavier vehicles with single

unit and multi-unit configurations operating in all sectors of the economy. The overall

simulation is based on models of tour generation and subsequent sub-models, which deter-

mine vehicle and tour purpose, next stop purpose and next stop location. To determine

the probability of the next stop’s purpose in a tour (which includes carriage of goods, ser-

vice stops, return-to-establishment and other stop categories), a logit model is used. The

total number of previous stops is shown to decrease the propensity to return to vehicle

terminal, indicating that tours with a large number of stops are less likely to end at a

given next stop. In addition, the time elapsed in travel is shown to impact the propensity

to end tours more than the total time elapsed (including both travel time and stop time).

Once the purpose of the next stop is known, they use another logit model to determine

the location of the next stop. Accordingly, they show that the tendency for the next

stop on a tour to be near the current stop is greater than the tendency for the next stop

to be near the vehicle terminal. Both models are estimated for 13 different segments of

commercial movements based on combination of industry category, vehicle type and tour

(stop) primary purpose. The reviewed literature in this section highlights the importance

of explicit consideration of trip chaining behaviour to gain insights into commercial vehicle

movements. The amount of VKT generated can be an interesting aspect to look into to

evaluate effi ciency. As shown, however, the share of empty trips of a tour is a poor indica-

tor of effi ciency with regard to VKT. It appears that there is a big challenge with regard

to finding data as some of the studies are based on simulation and information gathered

from operation of a single vehicle. To test some of the theoretical findings, future studies

should be based on dataset that contain both the full movement of vehicles over several

weeks or months and information on the owners of the vehicles. One such approach is

outlined in Abate (2012) for interurban trips. Using detailed trip-by-trip information for

about 2000 vehicles for an entire week of operation, this study econometrically estimates

determinants of capacity utilisation.
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4 Concluding Remarks

In this paper we looked at studies on capacity utilisation of freight vehicles. We classified

the studies to general categories of either transport or economics literature, which address

the issue from different perspectives. In Table 1 some of the reviewed examples of the

different strands of literature are summarised. The main characteristics regarding type of

utilisation measure as well as the main topic of the studies are highlighted. The list is not

comprehensive, but provides an overview..

Our review shows that the strands of the literature have not fully benefited from each

other. According to studies based on economic theory, vehicle capacity is underutilised as

a result of constant challenge of matching capacity with demand arising from freight move-

ment imbalances between regions and market access cost differential between operators.

The problem caused by freight imbalances is considered as an external (exogenous) prob-

lem that operators can only minimise through appropriate location of their principal base

of operation near major traffi c generators, at least in the long run. However, operators

have to make continual market access decision as part of the challenge to match specific

demand with specific capacity based on net revenue considerations. Accordingly, to the

extent to which there are differences in access costs which are not distance related, we

see some vehicles running with a load while others running empty across similar market

segments and carriers. Recent studies from this strand of literature show the effect of

information technology capabilities to match capacity with demand by enabling carriers

to keep their trucks on the road and loaded more often by lowering market access costs.

Our review also found that despite simple production process involved in the physical

part of the transport process, measuring capacity utilisation is complex due to the extra-

ordinary heterogeneity in terms of weight and volume of a load, direction and distance of

vehicle movement. Therefore, a realistic effi ciency analysis should account for such het-

erogeneity that may lead to productivity differences arising from the various settings in

which vehicles are used.

In the transport literature, the recent focus is on the relationship between ‘trip-chain’

and the vehicle routing problem faced by operators in urban freight transport context

where utilisation is lower compared to long haul operation. It is shown that unless the

commercial activity, which initiates vehicle movements is taken into consideration, mea-

sures such as the share of empty trips (or distance) can be a poor proxy as effi ciency
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measure when utilisation is compared with regard to generation of vehicle kilometres

travelled (VKT). The trip-chain approach to analyse freight movement can improve the

modelling of freight transport demand greatly. An even more interesting analysis is the

potential of using the information contained in data about trip chaining in relation to

the firm optimisation behaviour investigated in the economics literature. The trip chain

approach also adds a spatial element to the firms’desire to match capacity with demand.

The analysis of the operators’choice of optimal location of their principal base may very

well be affected by the specific inclusion of trip chain information. Moreover, including

trip chains and/or the relationship between loaded trips and empty trips in the analysis

of the matching behaviour will increase the predictive power of such analysis.

Finally, empirical analyses of the scope of possible gains from improved capacity util-

isation are limited. More studies are needed along the McKinnon and Ge (2006) study to

put into perspective how much can be gained by improving empty runs. It is also inter-

esting to know how the desire for sustainable transport can be accommodated within the

objective of transport operators which is usually based on economic effi ciency. The recent

freight transport modelling approach, where the logistic decisions are involved to better

predict vehicle movements is an obvious link between the operators’pursuit of effi ciency

analysed in the economics literature and the freight transport models. The determinants

in the operators’decision making influence capacity utilisation and thus also the vehicles

that are loaded onto the network in the assignment models. A joint estimation of firm

optimising behaviour and the logistics of freight transport models will thus be a natural

research objective to investigate further.
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Figure 1: Different measures of capacity utilisation on Danish freight transport each 

quarter from 1999 to 2009 

 

 

 

Figure 2: Complex trip chains and the related supply chains. 
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Table 1: Main studies on capacity utilisation. 

 

Economics 

Literature 

Source 

 

Utilisation 

measure 

Missing dimension Remark 

Boyer and Burks 

(2009) 

Ton-Miles per 

truck  

density  and value 

cargo;   

quality of service   

main theme- the effect of 

traffic composition on 

trucking  productivity  

Barla et al (2010) load factor 

density  and value of 

cargo;   

quality of service   

main theme- the impact of 

IT technology on capacity 

utilisation   

Hubbard (2003) 

number of loaded 

miles and number 

of periods trucks 

are in use per 

period  

weight, density  and 

value of  cargo;   

quality of service   

main theme- the impact of 

IT technology on capacity 

utilisation   

Abate 

(forthcoming)  

load factor and 

Empty running 

quality of service and 

value of cargo; 

quality of service   

this study uses a joint 

econometric model that 

considers both load factor 

and empty running   

Wilson and 

Beilock (1994); 

Wilson and 

Dooley (1993); 

Beilock and 

Kilmer (1986) 

empty trips 

weight, density  and 

value of  cargo; 

 quality of service   

Main theme- the effect of 

market deregulation on 

trucking performance  

Transport 

Modelling 

Literature 

Figliozzi (2007) 
vehicle miles 

travelled (VMT) 

weight, density  and 

value of  cargo; 

 quality of service   

The study analyzes urban 

commercial vehicles  

Holguín-Veras 

and Thorson, 

2000 

empty trips 

weight, density  and 

value of  cargo; 

 quality of service   
 

Holguín-Veras et 

al (2011) 

total travel time, 

Vehicle miles 

traveled (VMT), 

and pollution 

levels  

density  and value of 

a cargo;  quality of 

service   

The study analyzes urban 

delivery vehicle classes 
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Abstract

Recent performance indicators in the European road freight transport sector show

that there is an excess capacity. To shed light on this phenomenon, this paper studies

two aspects of capacity utilization in trucking: the extent of empty running and

the load factor. Using a joint econometric modeling framework, this paper shows

that they can be explained as a function of haul, carrier and truck characteristics.

For estimation, a unique dataset from the Danish heavy vehicle trip diary was used.

The results indicate that distance and being a for-hire carrier have positive effect on

capacity utilization, whereas the effect of truck size is non-linear.
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1 Introduction

The capacity utilization of trucks shows how well economic resources are being used from

the perspective of transport operators and the sectors reliant on road freight transport

services. It is also central to the debate on sustainable transport since trucking operations

are significant sources of emissions harmful to the environment. A recent report for 13

European countries reveals that on about 30 per cent of all trips made the trucks are

empty, while the percentage of a truck’s carrying capacity filled with a cargo (that is,

the load factor) remained stable at an average of 50 per cent over the period 1990-2008

(European Environmental Agency, 2010). Although some level of empty runs and load

factors below 100 per cent are inevitable due to the complexity of optimization in trucking,

these performance figures suggest that there is excess capacity that could be minimized.

This would ultimately reduce the total kilometers driven, and thereby ease congestion and

provide economic and environmental benefits.

Various aspects of capacity utilization have been analyzed in the literature. The uti-

lization differential between freight carriers is usually explained by differences in carrier,

haul and truck characteristics. Hubbard (2003) and Barla et al. (2010) show that the infor-

mation technology capability of trucks improves the number of loaded kilometers driven

and the load factor. Boyer and Burks (2010) find that the relaxing of weight, length,

and speed limits is the most likely explanation for the growth in productivity in the US

trucking industry. Other studies (Beilock and Kilmer, 1986; Wilson and Dooley, 1993;

Wilson and Beilock, 1994) give restrictive government polices as the main explanation

for the prevalence of empty running.1 Although insightful explanations for the determi-

nants of capacity utilization are given in these studies, they analyze utilization indicators

separately, and therefore may not fully explain the resource allocation process in trucking.

This paper aims to give a detailed analysis of the determinants of capacity utilization.

The paper’s contribution to the literature is in showing that a joint consideration of

capacity utilization indicators leads to a sound empirical analysis, and provides a more

appropriate picture of freight movements. In particular, this paper argues that to study

determinants of the load factor, the extent of empty running also needs to be considered,

1Capacity utilization has also been shown to be related to the level of competition in the trucking
industry. For instance, just-in-time inventory strategies on the part of shippers may prompt carriers to
engage in frequency competition that results in the over-supply of capacity. Theoretical analyses by Shah
and Brueckner (2011) and De Vany and Saving (1977) suggest that excess capacity can be used by carriers
as a strategic tool in service quality competition.
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because a carrier’s decision to move a truck empty or loaded is interrelated with how much

a truck carries when loaded. Accordingly, the paper employs an econometric framework

based on Heckman (1979) that simultaneously estimates a market access decision (empty

or loaded movement decision) and the load factor. For model estimation, a nationally

representative dataset that comes from the Danish heavy trucks trip diary was used. The

dataset has a one-week operational information on a trip by trip basis for 1921 trucks in

2006 and 2007. It is a unique dataset that allows for both a trip and truck level analysis.

Furthermore, it is the most disaggregated data on road freight transport and allows for a

detailed analysis of capacity utilization unparalleled in other studies.

The results show that trip distance, truck size, fleet size and carrier type are the main

determinants of capacity utilization. In particular, trucks on longer trips tend to have

higher levels of load factor, and are more likely to be loaded. But the effect of a truck’s

size on utilization is not straightforward; while an increase in truck size contributes to

excess capacity to some extent; its overall effect appears to be positive. The analysis

consistently shows that trucks owned by for-hire carriers are better utilized than those

owned by own-account shippers, which suggests that specialization in haulage service

helps to optimize resource use.

The findings of this study uncover important policy intervention areas by showing how

capacity utilization responds to changes in trip length, carrier type, or vehicle size. It may

not always be possible to affect these variables directly and change capacity utilization in

such a complex activity as trucking. However, as shown by previous studies (Holguin-Veras

et al, 2006), carriers do respond to policy interventions by improving productivity. Policy

makers can, therefore, formulate policies that directly or indirectly affect these variables

and so improve performance in trucking. The rest of the paper is organized as follows:

Section 2 gives a brief background to the paper and Section 3 presents the econometric

framework. Data descriptions, results, and conclusions are given in Sections 4, 5 and 6,

respectively.
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2 Background

The physical aspect of production in trucking involves a simple process of moving a load

from one point to another by a truck and a driver.2 Trucking production technology

is a simple Leontief type technology where a single labor (driver) and capital (truck)

combination is always required to produce an output (a movement of a load). As pointed

out by Boyer and Burks (2009), the scope for getting more output (e.g. tonne-kilometers)

per truck per period using the classic manufacturing method —that is substituting capital

for labor through automation —appears to be limited. To fully optimize resources, carriers

should therefore maximize capacity utilization.

Previous studies have mainly focused on the cost structure of carriers to explain differ-

ences in utilization (see Beilock and Kilmer 1986; Wilson and Dooley 1993; Wilson 1994).

Their basic explanation is that if there is a systematic market access cost differential be-

tween carriers, we will see a difference in utilization level between similar trucks even if

they are used for the same haul and between the same origins and destinations. There are

two implied assumptions in these studies: carriers incur more or less equal costs in oper-

ating empty trucks and they face equal freight rates. With regard to costs associated with

accessing a particular freight market, however, some carriers may have cost advantages.

These cost advantages could come from government regulation (Wilson and Dooley, 1993;

Beilock and Kilmer, 1986) and/or the information technology (IT) capabilities of trucks

(Barla et al., 2010; Hubbard, 2003).3

In another strand of the literature, which deals with shipment size and mode choice,

the issue of capacity utilization is raised indirectly and the reason why it varies between

carriers is given little attention. For instance, the interaction between shippers and carriers

and its implications for mode choice have been extensively studied (see McFadden et al.,

1985; Abdelwahab and Sargious, 1992; Holguin-Veras et al., 2009). The main finding in

these studies is that this interaction leads to simultaneous choice of mode and shipment

size to ensure that freight is carried by an effi cient mode of transportation. In each chosen

mode, however, carriers are simply assumed to allocate their fleet effi ciently across hauls.

This paper is an interesting extension to the joint empirical framework of these studies to

understand capacity utilization at the operational level.

2The overall freight moving activity, however, involves a complex interaction between carriers, shippers
and logistic service providers (see Holguin-Veras et al. (2009) for an interesting discussion).

3See Abate and Kveiborg (forthcoming) for more discussion on the implication of cost advantages on
trucking effi ciency .
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3 Econometric framework

This paper proposes an econometric framework in which the decision to run empty or

loaded during a given trip (hereafter referred to as the market access decision) and the

load factor are jointly estimated. Carriers are assumed to make continual market access

decisions with an underlying objective of minimizing empty running, whereas in accessed

markets ( or during a loaded trip), they aim at maximizing the load factor.4 We hypoth-

esizes that in a competitive environment, the market access decision depends on variables

pertaining to the characteristics of carrier, haul and truck. By and large the same vari-

ables determine the load factor, but there are a few that we use as exclusion restrictions

which affect the probability of market access but not the load factor. The joint estimation

proceeds with a Heckman (1979) type model with a structural model for the load factor

and a reduced-form probit model for the market access decision.

The load factor (LFi) is given by the following equation:

LFi = B1X1 + u1 (1)

where X1 is a vector of explanatory variables and u1 is a residual term. Observability

of LFi is conditional on the following market access equation:

Li =

 1 if δ2X2 + v2 = 0

0 otherwise
(2)

where Li = 1 if a truck is loaded; X2 contains all variables in X1 and additional variables

for identification (exclusion restrictions); and v2 is a residual term. X2 is always observed,

regardless of Li. The following assumptions are made for estimation (Wooldridge, 2001 p.

562):

• a. (X2, Li) are always observed, but LFi is only observed when Li =1;

b. (u1, v2) is independent of X2 with zero mean (X2 is exogenous in the population);

c. u1 ∼ normal (0, 1);
4Note that in some situations, empty runs and sub-optimal capacity utilization are inevitable. Previous

studies have shown lack of perfect information, fluctuations in shippers demand, and drivers working hour
regulation may prevent full utilization of trucking resources (Powell et al, 2002). Lo and Hall (2008) also
show that congestion can affect how well trucking companies perform in urban areas. Finally, incompat-
ibility of vehicles and loads also usually result in empty backhauls for trucks which transport milk, fuel,
chemical, logs etc. (McKinnon and Ge, 2006).
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d. E(u1 | v2) = γ2v2 (residuals may be correlated; e.g. bivariate normality).

Assumptions ‘c’and ‘d’imply that the covariance between the two error terms is γ2.

A specification problem arises if γ2 is statistically different from zero suggesting that the

residual in the load factor equation is correlated with the residual in the market access

equation. The parameters of equations 1 and 2 will be estimated by full information

maximum likelihood (FIML).

The joint estimation was selected because we are interested in the determinants of both

the load factor and market access decision.5 Modeling the load factor exclusively based on

loaded trips by dropping empty trips, would introduce a sample selection problem because

an empty trip does not necessarily imply that carriers were not offered a loading opportu-

nity. They may have been offered the opportunity, but decided to run an empty truck due

to higher costs than revenue (Beilock and Kilmer, 1986). Therefore, a joint estimation is

needed to model the load factor to understand its determinants at a population level.

Barla et al (2010) estimate a variant of Equation 1 using a multinomial ordered probit

model to find the effect of the IT capability of a truck on the load factor. In their

specification, the load factor is classified into five discrete groups, and both loaded and

empty trips are included in LFi. Doing this implies that a single mechanism determines

the load factor and the probability of being loaded. But, it is possible that trucks with a

high probability of being loaded also tend to have a high load factor, and vice versa. The

econometric specification should therefore account for and explain why some trucks have

a higher load factor than others jointly with why some trucks tend to move loaded more

frequently than others. The present study aims to give such an explanation by estimating

a reduced-form probit model for the market access decision jointly with the load factor.

Section 5.2 compares this modeling approach to other econometric techniques, namely the

standard Tobit model ( Amemiya, 1985) and the two-part model (Cragg, 1971), that could

be used for this study. The following subsections present an outline of the relationship

between the explanatory variables (X1 and X2) and the two dependent variables (LFi and

Li).

5The methodology is usually referred to as discrete-continuous modeling in transport economics liter-
ature. It has been widely applied in many transportation problems (see Mannering and Hensher, 1987
for an excellent early review; see Heres-Del-Valle and Niemeier, 2011; Andersson et al. 2012 for recent
applications).
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3.1 Determinants of the load factor

The load factor can be measured in various ways. Here, it is defined as the percentage

share of a truck’s loading capacity that is filled with a cargo. Its level is constrained both

by the weight and volume (density) of cargo. Ideally, both constraints should be taken

into account when using the load factor as a capacity utilization measure. Unfortunately,

our data does not contain an exact measure of volume, thus the following formula is used

to calculate a weight based load factor measure:

LFi(%) =
CW

MC
× 100 (3)

where LFi, CW and MC stand for the load factor, cargo weight (based on the estima-

tion of the respondent) and the maximum legal carrying capacity of a truck, respectively.

Carriers generally want to maximize the load factor for their trucks for two main reasons.

First, it is conceivable that profit margins depend on how often carriers can have their

truck filled to its potential. Second, the load factor is one of the key determinants of energy

effi ciency since a high load factor implies a higher level of tonne-kilometer (output) for

a given vehicle-kilometer (input). The energy consumption, however, increases less than

proportionally with the load factor over a distance. As indicated by Barla et al. (2010),

a fully loaded truck consumes only about 20 % more fuel compared to an empty truck.

Given the above discussion, it is assumed that carriers generally want to maximize

the load factor and its level depends on explanatory variables pertaining to characteristics

of haul, truck and carrier. We control for two haul characteristics, namely the type of

commodity carried and trip distance. Using dummy variables that indicate the commodity

type of cargo carried, we capture the effect of density on the load factor. This reduces

heterogeneity biases that may result from comparing high-density cargo with light and

low-density cargo that fills up the vehicle space before the maximum carrying capacity (in

terms of weight) is reached.

In addition to showing the effect of density, the commodity dummies reveal, to a

reasonable degree, shipper characteristics and their effect on the load factor. To see the

pure effect of density on the load factor, we include a dummy variable which indicates

whether a cargo is voluminous or not based on the evaluation of drivers, and it is expected

to have a negative effect on the load factor. As for the effect of trip distance, the load

factor tends to be higher for trucks hauling cargo over a long distance because of the high
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opportunity cost of running partially filled trucks (Barla et al, 2010). Trip distance is,

therefore, expected to have a positive effect on the load factor.

Truck size may affect the load factor in two opposite directions. On the one hand, car-

riers may find filling a smaller truck easier because it is easily maneuverable to aggregate

loads from different shippers (Holguin-Veras, 2002). Carriers may also follow an optimiza-

tion strategy of filling the smallest available truck with the largest available load. Smaller

trucks, therefore, may tend to have a higher load factor than larger trucks (Fowkes, 2007).

On the other hand, it is also possible that larger trucks are filled to their capacity more

often than smaller trucks as carriers try to avoid the relatively high opportunity cost of

running partially filled large trucks. This would reverse the effect of truck size on the load

factor.

The likely explanation for the contradictory effects of truck size on the load factor is

the non-linearity of truck size. While the range of a cargo size for shipment is more-or-

less continuous, a truck’s size is rather discontinuous, and trucks are classified in various

vehicle classes. To uncover the two opposing effects of a truck’s size on the load factor,

we include two variables: size (measured by the number of axles) and the square of size.

We expect a negative sign for the former reflecting that smaller trucks can easily be filled

fully, and a positive sign for the latter reflecting the claim that carriers dislike operating

larger trucks that are only partially filled. Finally, we expect that for-hire carriers will

tend to have a higher load factor for their trucks compared to own-account shippers since

they usually have more incentive and flexibility to find complementary demands than

own-account shippers (Hubbard, 2003; Barla et al., 2010).

3.2 Determinants of market access

The market access decision, defined as the probability of being loaded, is captured by

Equation 2. The vector X2 include observable carrier, haul and truck characteristics such

as carrier type, trip distance, and freight movement balance between regions, truck size,

and age. Looking further at the effect of these variables, for-hire carriers are expected

to have a better market access than own-account shippers because they have specialized

staff engaged to find complementary demand (Hubbard, 2003). In contrast, own-account

shippers may have a higher opportunity cost of market access because they often have

prior commitments to proceed to other destinations to haul their firms’good (Wilson and

Beilock, 1994). Therefore, we expect a positive sign for a dummy variable that takes a
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value equal to one if a truck is owned by a for-hire carrier or zero otherwise.

To capture the effect of haul characteristics on the market access decision, two variables

are included: trip distance and a dummy variable that indicates the freight movement

balance between regions. It is usually the case that the longer the trip distance, the

higher will be the probability of market access since operating an empty truck over a long

distance is costly. Between nearby locations, however, trucks may be seen running empty

for repositioning or refueling purposes. It is also possible that finding complementary

demand for short distance trips can be diffi cult, which would increase the chances of

empty runs (Barla et al., 2010; Wilson and Dooley, 1993). Thus, trip distance is expected

to affect the probability of being loaded positively.

The freight movement balance between regions is also an important determinant of the

probability of getting a load since it affects the market access expectations of carriers. For

instance, it is likely that carriers will more often get a return load from a net exporting

region than from a net importing region. Conversely, the probability of empty running

to a net importing region is lower since carriers usually make a loaded trip to the region

because of slimmer chances of getting a return load (Beilock and Kilmer, 1986). To capture

the effect of freight balance, we include a dummy variable which equals one if a trip is

made toward a net importing region and zero otherwise.6 And its effect on market access

is expected to be positive.

Both the load factor and the market access decisions may also depend on fleet size.

A small carrier (in terms of fleet size) may appear less effi cient if it is forced to use a

rather big truck for a small load compared with a larger carrier that can match its truck

capacity with available load. As noted by Barla et al (2010) larger fleet size can also

improve carriers’ ability to find complementary demands. To test this hypothesis we

include dummy variables which classify trucks according to the size of the fleet of which

they are part.

The proposed joint estimation requires one or more variables that affect the market

access decision but not the load factor. We use the freight balance dummy variables and

the age of a truck as exclusion restrictions in the market access model (Eq. 2).We assume

that a difference in freight flow between regions is more likely to affect how often a truck is

6The regions in our dataset are classified as net exporting and net importing regions based on the
freight movement in our dataset (a physical measure) rather than a trade flow expressed in monetary unit.
Since freight transport is a derived demand such a classification gives more sense to capture the underlying
physical movement.
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loaded, but not how intensively it is used during a loaded trip. With regard to the validity

of age as an exclusion restriction, most likely a correlation between a truck’s age and the

load factor reflects variations in the probability of market access, but not variations in

the level of capacity utilization during a loaded trip. This is a plausible assertion given

the general trend that carriers tend to use their newer trucks more often to rest older

trucks, especially when faced with excess capacity (Hubbard, 2003). There are two pieces

of evidence in the data that support this assertion.

First, the age of a truck has a significant (at one per cent) and negative correlation

with both the number of days a truck is used and the number of kilometers it is driven

with a load, implying a preference for newer trucks. Second, we find a rather small but

significant (at one per cent) and positive correlation between the load factor and age. This

finding again implies that old trucks are loaded as full as new ones, if not more, during a

loaded trip.

Finally, it should be noted that to fully capture determinants of capacity utilization

more variables are required. The main focus in this study is on the variables discussed

above because they explain most of the variation in the market access decision, at least in

economic terms. There is also a data limitation: variables that capture market conditions

that lead to trip generation are missing in our analysis. Controlling for whether a truck

is tied up to serve a specific shipper (as in Beilock and Kilmer, 1986) during the survey

period may explain why a carrier forgoes loading opportunities. The IT capability of

trucks and additional carrier specific variables (such as membership of online load sharing

arrangements) should also have been controlled for. The neglect of these variables, how-

ever, matters only in so far as they are correlated with the variables we control for. At

this point we assume that there is no such a correlation and proceed with the proposed

joint estimation. In Section 5.2 discusses the potential problems of this assumption and

provide alternative models to address some of them.

4 Data

The main data source for the study is the Danish heavy trucks trip diary. The diary

has detailed one week operational information. Statistics Denmark (DST), the statistics

bureau in Denmark, has been collecting a sample of heavy trucks with a maximum legal
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carrying capacity of 6 tonnes and above since 1980.7 The dataset is complied based on

reports from truck owners, both for-hire and own-account shippers, across Denmark. DST

granted us access to the trip diary for 2006 and 2007.

The dataset is best described as repeated cross-section because the trip diary is filled

out for different trucks in every quarter. It has detailed one-week operational information

on a trip by trip basis for about 3000 trucks. Since analyzing intercity truck movement is

our main objective, we use a part of the data which comprises 18,176 trips made by 1921

trucks between 15 regions inside Denmark. The data contains information on vehicle type,

commodity type, and cargo size and trip origins and destinations zones. All the stops a

truck makes in a given day, for both loaded and empty runs, are recorded as separate

trips.

The dataset contains three vehicle types of which rigid trucks constitute 28 per cent,

semi-trailers 24 per cent and articulated trucks 48 per cent. The transported commodities

are grouped to 28 different classes based on the standard Danish freight transport com-

modity classification. Three groups: food (15 per cent), construction (21 per cent) and

general cargo (19 per cent) constitute the majority of the trips. Table 1 presents summary

statistics of the main variables of interest.8 One limitation of the data is that it does not

have suffi cient information to construct trip chains or truck tours (Section 5.2 discusses

the implications of this limitation and ways to address it). But it has two unique features.

Firstly, it is the most disaggregate data on road freight transport which allows a

detailed analysis of capacity utilization unparalleled in other studies. Unlike datasets

used by previous studies which are relatively aggregate, our dataset is suitable for studying

patterns of capacity utilization since it has a detailed (at a trip level) information for an

individual truck. Although such a dataset exits in many European countries, accessing

it is extremely diffi cult due to confidentiality reasons. Denmark is an exception on this

regard; the dataset provided by the DST enabled us to undertake in-depth analysis of

capacity utilization.

Secondly, similar to many small-sized countries, trucking is the dominant mode in

7The data covers truck operations within Denmark and contains most trucking activities with the
exception of municipal waste collection and those that involve special vehicles (such as crane, trolley,
snowplow, and sweeper etc) and private road. It is used for market monitoring, and as the main source
of information for the Danish transport ministry and the European Commission (see Denmark Statistics,
2011 for details). The source of the fleet size variable is the MOTV register data for vehicles owned by
Danish companies.

8The statistics are weighted only by their occurrence (i.e. trips). Applying the expansion factor given
by Statistics Denmark did not result in significant difference in statistics of the main variables either on
the intercity trips or the entire data.
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Denmark (with 75 percent market share), and there is a limited scope for modal sub-

stitution. Improvement of capacity utilization within trucking is, therefore, very crucial

for such countries (Bjørner 1999; Kamakaté and Schipper, 2009; Rich et al, 2011). The

dataset presents a unique opportunity to gain insights into the performance road freight

transport. Finally, the analyses and findings from this study can be a stepping stone to

future studies on how to exploit similar datasets.

5 Results

5.1 Main results

Table 2 presents results from four different models based on the full information maximum

likelihood (FIML) estimation.9 All the continuous variables are in levels. We used two

exclusion restrictions in the load factor equation (Eq. 1); that is in each model ‘age’and

the freight movement balance indicator, ’netimport’, variables are included only in the

market access equation (Eq. 2). In line with our expectation, these variables have signif-

icant (at one per cent) negative and positive effects on the probability of market access,

respectively. The appropriateness of the joint estimation is confirmed by the significance

of the correlation coeffi cient between the residual terms, rho, in the two equations. The

result implies that the subsample of only loaded trips is not random (see Section 5.2 for

more discussion).

Model 1 in Table 2, in addition to the main variables of interest, controls for the

commodity class of a load to capture how the load factor differs between the various

shippers served by carriers (the commodity dummies are not presented to save space but

most of them are significant).10 The commodity dummies partly reveal the effect of density

on the load factor because there are differences in size and packaging requirements between

commodities. To disentangle the dual effect of the commodity type, model 2 directly

controls for the effect of density by using a dummy variable which indicates whether the

carried cargo is voluminous or not. As expected, being a voluminous cargo has a significant

9A Heckit procedure, a two-step model similar to Heckman (1979), resulted in almost identical results
with a significant and negative sign for the inverse Mill’s ratio. But we opted for the FIML results which
are proven to give more effi cient estimates (Puhani, 2000).
10We cannot directly control for commodity type in the market access model because we are interested

in the probability of being loaded or carrying a commodity. Instead, we tried to include commodity
information (and thereby shipper characteristics) indirectly by using a dummy variable which indicates
the typical commodity carried by each truck. But the attempt gave counter -intuitive results, probably
due to an aggregation bias.
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and negative effect on the load factor.

Truck size appears to have a negative effect both on the load factor and the probability

of market access in Models 1 and 2. Inclusion of size-squared (size2) in Model 3 reveals

that the effect of size depends on the size of trucks, implying that size has an increasing

effect on the load factor. Thus while an increase in truck size contributes to excess capacity

for some range, its over-all effect appears to be positive. Figure 1 depicts the relationship

between predicted load factors (based on truncated regression) and truck size. For the

average truck (at the first vertical line) this relationship is negative; however, for truck

with more than 6 axles it is reversed. We also note that in the third model, size does

not seem to have any effect on the market access decision. Nonetheless, in line with our

hypothesis the overall effect of truck size on capacity utilization appears to be non-linear.

In Model 4, fleet size, as expected, appears to have a positive effect on capacity uti-

lization, implying that larger carriers are more effi cient in using their loading capacity.11

In all the models, distance (as expected) is shown to have a positive and significant ef-

fect (at one per cent) on both the load factor and the probability of market access. Its

point estimates, however, are rather small. The co-effi cient of ‘for-hire’shows that being

a for-hire carrier does not seem to have a significant effect on the market access decision,

but it has a positive and significant (at one percent) effect on the load factor. The result

confirms the hypothesis that for-hire carriers are more capable of aggregating loads for a

given trip compared to own-account shippers.

The negative sign for rho may appear anomalous since most studies based on sample

selection models get a positive sign for it. In our context, a positive sign might also sound

more ‘plausible’, because the unmeasured effects that increase the chances of market access

are also likely to increase the load factor. A negative correlation, however, implies that a

truck that carries a load, when it is predicted to be unlikely to be loaded on the basis of

the market access equation has a lower load factor than would be predicted from the load

factor equation on the basis of the measured characteristics. A negative correlation is not

uncommon in the literature, and we can give the following two explanations:

First, it is important to note that there is no prior reason to expect a positive rela-

tionship between the two error terms. A theoretical paper by Ermisch and Wright (1994)

shows that a negative correlation can arise if the variance of the error term in the struc-

11But we found this effect to be sensitive to various fleet size classifications (the reported classification
is based on quartiles). This is possibly due to multicollinearity. The fleet size variables may pick the effect
of the carrier type dummy, because usually for-hire carriers happen to have larger fleet size.
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tural equation (in our case the load factor equation) is less than the variance of the error

term for the latent variable in the reduced-form probit equation (in our case the market

access equation). That is, given the exogenous variables in the load factor and the market

access equations, the load factor exhibits less dispersion than the latent variable. As indi-

cated in Section 3, our estimates are based on the assumption that a higher level of load

factor leads to a larger profit. In fact, implicit in the market access probit equation is an

optimization process where carriers access a market if net profit is greater than or equal

to zero. Therefore, it is possible that the dispersion of net profit, the latent variable, is

greater than the dispersion in the load factor, resulting in a negative correlation between

the two residual terms.

A second explanation for the negative correlation is related to carriers’expectations.

For a truck in a backhaul trip it is usually diffi cult to get a return load. A carrier may,

therefore, choose to carry a small load (implying a lower load factor) instead of running

empty if freight rates cover market access costs (implying less empty running). A negative

correlation can also occur because of carriers’ tendency to have a higher level of load

factor on trucks for which there is no anticipated return load than on trucks expected to

be loaded in both a front-haul and backhaul directions. Similarly, carriers may forego a

loading opportunity in outbound direction ( Barla et al. 2010) if they anticipate a backload

leading to a negative correlation between the probability of market access and the load

factor.12

Table 3 reports elasticity estimates of the main explanatory variables. Panel A and

Panel B display the percentage changes in the probability of loaded trip and the load

factor for loaded trips, respectively. The estimates show that the dependent variables

are rather inelastic, on average. The relative elasticities of the variables are, however,

revealing. Distance has the highest impact in the probability of loaded trips. Figure

2 shows interesting patterns of the relative elasticities of the age and size of a truck

for different distance bands. As seen, their elasticities greatly differ by distance. At the

average trip distance (120 km), there is about 0.5 percentage point difference. Interestingly,

for trips longer than 550 km both elasticities virtually reduce to zero. This finding implies

that for farthest trips, we see loaded trips regardless of the characteristics of the truck.

12As one of the anonymous referees pointed out, there are fundamental differences between intercity
versus intracity markets that are not fully captured in the data and this in turn may translate into a
selectivity problem.

14



5.2 Robustness checks

This section presents alternative estimates to check the robustness of the main results. The

first part of this section provides estimates using truck level data to test the importance

of the interdependence between trips made by the same truck. The second part compares

the joint model presented in Table 2 to alternative models such as the Tobit model and

the two-part model.

The econometric model in Section 3 is based on the assumptions that all trips made by

a truck are independent, but some of the trips might be part of a trip-chain or a tour. If so,

both the market access decision and the load factor may not be determined at an individual

trip level (as is assumed here); so, the interdependence between trips within a trip-chain

should be controlled for. To address this problem we look at determinants of capacity

utilization at a truck level. We now re-define capacity utilization as the average load

factor and the number of loaded trips made by each truck per week. Despite the problems

that may result from aggregation of variables from a trip to a truck level, each observation

now comes from an individual truck in the sample, and independence is achieved by

definition.13

We use most of the explanatory variables in Section 3 and maintain similar hypotheses.

Following Hubbard (2003), we specify the following multivariate regression:

TLFi = α1Z1i + e1i (4)

TLTi = α2Z2i + e2i (5)

where TLFi is the average load factor during loaded trips per truck i; Z1i includes

carrier, haul, and truck characteristics; TLTi stands for the share of loaded trips, Z2

contains all the variables in Z1 and truck age. We also estimate an alternative two-

equation system where TLFi is measured based on all trips (including both empty and

loaded trips), and TLTi is redefined as the number of trips per truck per day. Such a

truck level analysis adds more realism to our analysis if the main variables of interest have

similar influence on the two vehicle utilization indicators (the share of loaded trips per

13This comes at a cost, each truck is now assumed to carry only one commodity, the one that is trans-
ported most frequently, though it may carry more. In addition, as a result of aggregation we lose some
trip level information: freight movement balance between regions and volume of a cargo. The presence of
other control variables in the dataset, however, makes this problem less serious.
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truck and the number of trips per truck per day). Following the discussion in Section 3,

an important identifying assumption is that correlations between truck age and the load

factor reflect only differences in the number of periods in use, and not differences in load

factor per period in use.

As with our main findings, the estimated coeffi cients for Model 1 in Table 3 have

the signs we expect except for the coeffi cient of for-hire which is now negative, but not

significant. Other things being equal, trucks owned by for-hire carriers have a higher load

factor, and longer trips have higher predicted load factor and share of loaded trips. The

coeffi cients on size and size squared imply that size has an increasing effect on load factor,

but neither has a statistically significant effect on the share of loaded trips. More-or-less

similar results hold in Model 2, where the dependent variables are the load factor defined

for all trips and the number of trips per day. Understandably, the effect of distance on the

number of trips made per day is negative. Older trucks are estimated to make fewer trips.

In both models the errors across the two equations appear to be negatively correlated.

Interestingly, this result is in line with the effect of rho in Table 2.

To test whether the decisions on the empty/loaded movement and on the load factor

are determined by the same process, we can compare the fit of the Tobit model and other

more flexible models, such as the two-part model ( Cragg, 1971), and the Heckman model

(Wooldridge,2010). Note that unlike the Tobit model these two models assume that the

dependent variables are determined by separate processes. Based on the results on Table

4, the likelihood ratio test (LR test) shows that the single process assumption of the

Tobit model can be rejected at the 1 per cent level against the alternative two-part model.

Normality and homoskedasticity tests also showed that the Tobit model results in a poor

fit. As for the choice between the two-part and the Heckman models, since the two models

are not nested we cannot perform the LR test. Alternatively, as suggested by Leung and

Yu (1996) a test of rho = 0 in the Heckman model can be used to test the null hypothesis

that the two-part model is correct. As discussed in section 5.1, the null hypothesis (rho

= 0 or the correlation between the error terms in Eq. 1 and Eq. 2 is zero) is rejected at

the 5 per cent level. Given these findings, the joint model (i.e. the Heckman model) used

in the paper is appropriate and supported by the data.
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6 Conclusions and policy implications

This paper has analyzed the underlying determinants of two important aspects of capacity

utilization in road freight transportation: the extent of empty running and the load factor.

Detailed information about a truck’s operation at a truck and trip level made it possible

to model the empty/loaded movement decision and the load factor jointly. Trip distance is

shown to have a positive effect on both the load factor and the probability of loaded trips.

Furthermore, while being a for-hire carrier does not appear to have a significant effect on

the probability of being loaded, it has a positive and significant effect on the load factor.

This confirms the premise that for-hire carriers are more capable of aggregating loads

from different shippers than own-account shippers. Interestingly, the carrying capacity of

a truck appears to have a negative effect on the load factor, but a significant and positive

coeffi cient for its squared term shows that the effect is non-linear.

Admittedly, capacity utilization in road freight transportation is complex and it cannot

be fully explained by an econometric model nor easily be changed by policy levers. It is,

however, possible to draw the following policy implications from this paper. First, the

relationship between distance and utilization can be seen as the relationship between

the variable cost of operating a truck (which is positivity correlated with distance) and

utilization. Thus one implication of the present study is that, in the face of policies or

exogenous shocks which raise the variable cost of trucking operation, firms will improve

the utilization of their trucks.

Second, since for-hire carriers have better capacity utilization, trucking regulation

could conceivably be used to change the balance between for-hire and own-account car-

riers in favor of the former. Third, the effect of truck size implies that while an increase

in truck size contributes to excess capacity to some extent, its overall effect is probably

positive. Allowing bigger trucks on the roads, therefore, does not necessarily lead to lower

utilization. This analysis can be seen as a first step on the way to finding the effect of

truck size on capacity utilization, but this issue needs a closer analysis, and more data

to reach clearer conclusions. Finally, in future studies the findings of this paper and the

proposed model can be used to quantify the effect of policy interventions, such as road

pricing, on the load factor and extent of empty running.
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Table 1.  Summary statistics 

    Variable ID Variable discription  Avg./% Std. dev.  
LF Load factor for loaded trips  53% 33 
 Load factor for all loaded trips  36% 36 
Distance Trip dstance (km) 120 100 
MC Maximum legal carrying capacity (tonnes) 28 13 
Size Number of axles  4.8 1.5 
Fleet Fleet Size 37.6 76 
CW Cargo weight (tonnes) 14.1 19.4 
Age Age of truck (years ) 3.76 3.5 
L 1 if a truck is loaded  69% 0.46 
For-hire 1 if a truck is owned by a for-hire carrier 86% 0.35 
Net-importer 1 if a trip is made towards a net importing 

region 
42% 0.49 

Voluminous 1if a cargo is voluminous 6% 0.23 
Source: The Danish Heavy Vehicles Trip Diary, 2006 and 2007 and MOTV vehicle registration data, 
2006 and 2007. All the statistics are calculated at trip level. Statistics for the Cargo size variable are 
based on loaded trips only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 : FIML Heckman Model estimates  

    Variables  Model 1 Model 2 Model 3 Model 4 
Load Factor Equation (LF)        
For-hire 0.0645*** 0.0654*** 0.0680*** 0.0680*** 

 
(0.021) (0.021) (0.021) (0.021) 

Distance 0.0003*** 0.0004*** 0.0004*** 0.0004*** 

 
(0.000) (0.000) (0.000) (0.000) 

Size -0.0400*** -0.0401*** -0.1238*** -0.1225*** 

 
(0.005) (0.005) (0.029) (0.030) 

Voluminous 
 

-0.1032*** -0.1021*** -0.1026*** 

  
(0.021) (0.021) (0.020) 

Size2 
  

0.0096*** 0.0094*** 

   
(0.003) (0.003) 

Fleet size 5-12 
   

0.0019 

    
(0.019) 

Fleet size 13-33 
   

0.0208 

    
(0.018) 

Fleet size > 33 
   

-0.0078 

    
(0.017) 

Commodity fixed effects Included Included Included Included 
Constant 0.6076*** 0.6040*** 0.7628*** 0.7632*** 

 
(0.049) (0.049) (0.077) (0.077) 

Rho -0.1545** -0.1545** -0.1489** -0.1568** 

 
(0.074) (0.070) (0.071) (0.067) 

Sigma -1.2659*** -1.2706*** -1.2732*** -1.2732*** 

 
(0.017) (0.017) (0.017) (0.016) 

Market Access Equation (L)        
For-hire 0.0222 0.0220 0.0222 0.0188 

 
(0.041) (0.041) (0.041) (0.042) 

Distance 0.0043*** 0.0043*** 0.0043*** 0.0043*** 

 
(0.000) (0.000) (0.000) (0.000) 

Size -0.0373*** -0.0374*** -0.0471 -0.0514 

 
(0.011) (0.011) (0.071) (0.070) 

Size2 
  

0.0011 0.0018 

   
(0.008) (0.008) 

Fleet size 5-12 
   

0.0957** 

    
(0.046) 

Fleet size 13-33 
   

-0.0260 

    
(0.045) 

Fleet size > 33 
   

0.0533 

    
(0.043) 

Age -0.0096** -0.0097** -0.0099** -0.0088* 

 
(0.005) (0.005) (0.005) (0.005) 

Net-importer  0.1418*** 0.1416*** 0.1406*** 0.1412*** 

 
(0.046) (0.046) (0.046) (0.046) 

Constant 0.1875*** 0.1883*** 0.2082 0.1786 

 
(0.068) (0.068) (0.146) (0.147) 

Log.Likelihood  -12371 -12365 -12306 -12279 
No. Of observations L= 18,176 , LF = 12655  

Note: Clustered standard errors, at vehicle level, in parentheses.  *** p<0.01, **p<0.05,*p<0.1 



Table 3: Elasticity estimates 

Panel A : Marginal effects (% ∆ )  for P(Loaded = 1) 
 For-hire 0.010 

   
 

(0.015) 
   Distance 0.18*** 
   

 
(0.005) 

   Size -0.077** 
   

 
(0.029) 

   Age -0.019*** 
   

 
(0.006) 

   Net-importer 0.071*** 
   

 
(0.01) 

   Panel B : Marginal effects (% ∆)  for (Load factor | Loaded = 1) 
Distance 0.067*** 

   
 

(0.01) 
   Size  -0.171*** 
   

 
(0.054) 

   Note: Standard errors, in parentheses, calculated by the Delta-method.  Significance is marked *** 
p<0.01, ** p<0.05, and * p<0.1. The marginal effects are a 1 % increase for the continuous variables 
and a discrete change from the base level for dummy variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1: Load factor and truck size  

 

 

 

Figure 2: Marginal effects of truck characteristics and distance 

 

 



Table 4:  Alternative Estimates  

Variables  OLS Tobit Two-part 

Pr(L=1) E(LF|L=1) 
For-hire 0.0235 0.0279 0.0203 0.056 

 
(0.015) (0.019) (0.042) (0.037) 

Distance 0.0007*** 0.0011*** 0.0043*** 0.0003*** 

 
(0.000) (0.000) (0.000) (0.000) 

Size -0.0860*** -0.0970*** -0.0537 -0.1773*** 

 
(0.027) (0.033) (0.07) (0.051) 

Size2 0.0088*** 0.0096*** 0.0021 0.0192*** 

 
(0.003) (0.004) (0.008) (0.006) 

Fleet size 5-12 0.0012 0.011 0.0942** -0.0348 

 
(0.017) (0.029 (0.046) (0.037) 

Fleet size 13-33 -0.0087 -0.0136 -0.0247 -0.0087 

 
(0.016) (0.02) (0.045) (0.035) 

Fleet size > 33 -0.0219 -0.0181 0.0534 -0.0750** 

 
(0.015) -0.018 (0.043) (0.034) 

Age 0.0030* 0.0023 -0.0096** 0.0116*** 

 
(0.002) (0.002) (0.004) (0.003) 

Net-importer  0.0166 0.0315* 0.1422*** -0.0136 

 
(0.012) (0.017) (0.046) (0.019) 

Constant 0.4350*** 0.3184*** 0.1877* 0.666*** 

 
(0.058) (0.071) (0.147) (0.011) 

R-squared 0.043 
   Log.Likelihood 

 
-13359 -12928 

Observations 18,176 18,176 18,176 12,637 
Note: Clustered standard errors, at vehicle level, in parentheses.  *** p<0.01, **p<0.05,*p<0.1 

 

 

 

 

 

 

 

 

 

 



Table 5: Multivariate (SUR) estimates  

  Variable  Model 1 Model 2 

α1 vector  

For-hire 0.0453** 0.0297** 

 
(0.017) (0.014) 

Distance 0.0004*** 0.0008** 

 
(0.0001) (0.0001) 

Size -0.0813 -0.0914*** 

 
(0.025) (0.022) 

Size2 0.0047 0.0062** 

 
(0.003) (0.003) 

Commodity fixed effects Included Included 

Constant  0.9002*** 0.6304*** 

  (0.058) (0.050) 

α2 vector 

For-hire -0.002 0.352*** 

 
(0.013) (0.101) 

Distance 0.0009*** -0.0062*** 

 
(0.000) (0.0004) 

Size -0.0294 0.2687 

 
(0.019) (0.151) 

Size2 0.0017 -0.0086 

 
(0.002) (0.017) 

Age -0.0021 -0.044*** 

 
(0.001) (0.009) 

Commodity fixed effects Included Included 

Constant  0.6604*** 1.626*** 

 
(0.047) (0.362) 

  Cross model correlation                          -0.0410 -0.0550 
  System weighted R-Square 0.2268 0.1911 
  No. Observations 1921 1921 

Note: Standard errors in parentheses.  Significance is marked *** p<0.01, ** p<0.05, and * 
p<0.1. 
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Abstract

There has been a growing interest in understanding how firms allocate their trucks

across hauls, and how this allocation changes under various economic environments.

This study investigates how variations in route/haul, carrier and vehicle characteristics

affect the optimal vehicle size choice and the associated choice of shipment size. We

show that the two choices are derived from the same optimization problem. There

can be a continuum of shipment sizes, but decision-makers in freight transport have

to choose from a limited number of vehicle alternatives. Therefore, we use a discrete-

continuous econometric model where shipment size is modeled as a continuous variable,

and vehicle size/type choice as a discrete variable. The results indicate that when

faced with higher demand, and during longer trips firms are more likely to use heavier

vehicles and ship in larger quantities which suggest that firms are realizing economies

of scale and economies of distance. The study also discusses the effect of vehicle

operating cost on the vehicle selection process and its policy implications.
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1 Introduction

The demand for freight transport service has been growing rapidly, and is predicted to grow

in the future. There has also been a proliferation of just-in-time inventory (JIT) practices,

resulting in increased overall freight transport activity. From the side of policy makers,

this growth has brought attention to the issues of allowing higher capacity vehicles on

the roads, and the impact these vehicles have on safety, the environment, and effi ciency.1

As freight volume increases, it is expected that transport services will be provided by

higher-capacity vehicles. Inventory practices such as JIT, however, suggest that part of

the growth in volume may have to be met by increasing service frequency.

These trends in freight transportation raise interesting research questions. At a basic

level, we can ask how freight operators choose a vehicle for a haul. It is also important to

know how the pattern of vehicle use or vehicle size choice changes with policy interventions

(such as a change in the permissible payload or road-pricing) or external shocks (such as

an increase in fuel price). Answers to these questions help to clarify the implications of

vehicle use patterns on traffi c congestion, pavement deterioration, pollution and safety.

This clarification becomes all the more important when we consider that different vehicles

have different impacts on these externalities.

The objective of this study is to investigate how variations in route/haul, carrier and

vehicle characteristics affect the optimal vehicle size choice in trucking. Previous studies

have mainly focused on mode choice as opposed to the process by which firms make vehicle

choices (the main topic here). This study addresses two important issues in the economics

of freight demand analysis. First, it outlines a conceptual framework based on shipment

size optimization theory to identify the main determinants of firms’choice of vehicle and

shipment size. Second, it provides a framework for modeling the interdependence between

quantity shipped and vehicle choice using a discrete-continuous econometric model devel-

oped by Dubin and McFadden (1984). For model estimation, a unique dataset from the

Danish heavy trucks trip diary was used. The dataset has detailed one-week operational

information on a trip-by-trip basis for about 2500 trucks in 2006 and 2007.

1The US Congress recently debated a transportation bill that would increase the weight of trucks allowed
on highways from 80,000 to 97,000 pounds (American Energy and Infrastructure Jobs Act of 2012). The
congress didn’t pass the bill; and it suggested that further studies on the impact of heavy-duty trucks are
needed to implement the bill, among others. The EU has also been considering similar measures (TML,
2008; Christidis and Leduc, 2009; OECD, 2010; Significance and CE, 2010). In many emerging economies,
leading truck manufacturers are also expecting the demand for medium and heavy-duty trucks to increase
(Daimler, 2011; Mathyssek, 2009).
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The results show that the main determinants of vehicle size choice are vehicle operating

cost, vehicle age and carrier type. As operating cost increases, the probability of heavier

vehicles being chosen also increases, while higher total cost leads to a gradual shift towards

smaller vehicles. These seemingly contradictory effects of cost have important policy

implications. For instance, in the face of policies (or exogenous shocks) which raise the

variable cost of trucking operations (e.g. road pricing or increase in fuel price) firms prefer

to use heavier vehicles. On the other hand, policies or other changes which increase fixed

costs, and therefore total cost (e.g. registration tax, permits, licenses, etc.) make firms to

use smaller vehicles.

In conformity with the predictions of shipment size optimization theory, we find that

trip distance and total freight demand to have significant positive effects on shipment size

choice. These findings suggest that firms realize economies of distance by using heavier ve-

hicles for longer trips and economies of scale by hauling larger quantities. Commodity-type

fixed effects and the density of a cargo were also shown to affect shipment size decisions. In

general, the results imply that increases in freight volume and today’s widespread business

practice of sourcing products from distant places will lead to increased demand for higher

capacity vehicles. The desire to have flexible and frequent services, however, may dampen

this tendency to some extent.

The rest of the paper is organized as follows. Section 2 gives a brief background to

theroectical and econometric studies on freight modeling. Section 3 develops the concep-

tual framework based on shipment size optimization theory; Section 4 presents a discrete-

continuous econometric model that jointly estimates shipment size and vehicle size choice;

Section 5 describes the data and presents the empirical results and Sections 6 summrizes

the paper.

2 Background

This study is based upon and further contributes to several studies. It is well-documented

in the literature that shipment size determines the choice of mode/vehicle and vice versa

(see for example, McFadden et al. 1986; Inaba and Wallace, 1989; Abdelwahab and

Sargious, 1992; Holguín-Veras 2002; Johnson and de Jong, 2011). In addition to recogniz-

ing this simultaneous decision process, these studies show that various haul, carrier, and

commodity characteristics are important factors that affect the decision on the optimal
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shipment size and vehicle size.

The basic assumption of econometric studies of freight mode/vehicle choice is that

mode/vehicle choice entails simultaneous decisions on how much to ship and by what

mode, which implies the use of a discrete-continuous econometric framework.2 McFadden

et al. (1985) and Abdelwahab and Sargious (1992) provide the most complete formulation

of the firm’s simultaneous choice of mode and shipment size. However, the applicability

of their models is rather limited when decision makers have to choose from more than two

mode alternatives. Inaba and Wallace (1989) use a switching regression technique, arguing

that shipment size and mode/destination choice are derived from the same optimization

problem. Their analysis improved upon the approach of McFadden et al. by including

spatial competition in the firm’s decision and providing estimates of unconditional freight

demand for more than two mode/destination choices. The econometric model of Inaba

and Wallace, which is based on Lee (1983), assumes independent error structure across

alternatives. Violation of this assumption would, therefore, seriously compromise the

results and applicability of their model as a forecasting tool.

Recently, Holguín-Veras (2002) and Johnson and de Jong (2011) used an indirect

approach to address the simultaneity problem. They model the discrete choice component

(vehicle class choice in Holguín-Veras and mode choice in Johnson and de Jong) as the

structural equation of interest, replacing actual shipment with prediction from a shipment

size auxiliary regression. This approach is an interesting one when the main focus is the

vehicle/mode choice because it is possible to apply advanced discrete choice models that

overcome the IIA problem that most selection models suffer from. But, unlike the above

studies, this approach does not allow for testing for simultaneity bias.

The current study uses a basic econometric model developed by Dubin and McFadden

(1984) to address the simultaneity bias in the context of a discrete-continuous choice. Their

model relaxes the procedure suggested by Lee (1983), which imposes a strong assumption

about the covariance between the error terms in the selection and the outcome equations.

We model the vehicle size/type choice process as a discrete choice, and the decision on

shipment quantity as a continuous variable. Furthermore, as robustness check for the main

results, the paper presents alternative estimates based on the indirect approach suggested

by Holguín-Veras (2002) and Johnson and de Jong (2011).

2An alternative sometimes is discrete-discrete (by classifying shipment sizes to a number of size classes),
as in de Jong and Johnson (2009) and Windisch et al. (2010).
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3 Conceptual framework

The determinants of vehicle/mode choice and shipment size are usually derived from ship-

ment size optimization theory (Baumol and Vinod, 1970 and de Jong and Ben-Akiva,

2007). On the one hand, when the flexibility and frequency of a delivery are important,

firms tend to choose smaller vehicles. High value products are also shipped in smaller quan-

tities to save inventory holding costs (de Jong and Ben-Akiva, 2007; Shah and Brueckner,

2012). On the other hand, when firms have high freight demand, they are more likely to

use their heavier vehicles and ship in larger quantities. Similarly, on longer trips firms tend

to ship in larger quantities. This is because larger vehicles incur less than proportionally

increased fuel/time cost per shipment, which in turn implies that as geographical distance

increases, the shipper can reduce fuel/time costs per unit of cargo shipped, both by in-

creasing the size of an individual shipment and by reducing shipment frequency (McCann,

2001).3 Put differently, larger shipment size for higher demand and for longer trips is due

to decreasing unit transport cost.

To guide our empirical model, this section presents a conceptual framework that de-

scribes a firm’s vehicle choice process. The main insight in the theoretical literature is that

shipment size and vehicle/mode choice are derived from the same optimization problem.

Inaba and Wallace (1989) used a spatial price competition model to show that there is

simultaneity between the quantity shipped and the mode/destination choices. McFadden

et al. (1985) and McCann (2001) used shipment size optimization theory to establish the

simultaneous nature of the firm’s choice of mode, shipment size, and frequency. According

to this theory, firms are assumed to minimize total logistics costs by trading off port or

terminal-handling costs, inventory holding costs, and transport costs.4 The solution to

this minimization, which is referred to as the ‘economic order quantity’ (EOQ), shows

how the optimized shipment quantity is related to the total shipment quantity per period,

haulage distances, and commodity characteristics (see for example, Baumol and Vinod,

1970; Blumenfeld et al., 1985; McFadden et al., 1985; McCann, 2001; Shirley and Winston,

2004; de Jong and Ben-Akiva, 2007; Combes, 2011).

3 In another strand of the literature, it is suggested that the choice of truck type is mainly explained by
the monitoring technology capabilities of trucks such as Electronic Vehicle Management Systems (EVMS)
and trip recorders (Hubbard, 2000; Barla et al., 2010). Although these capabilities clearly matter to some
degree, a complete analysis should allow for more dimensions in vehicle heterogeneity, both observed and
unobserved, when trying to explain the vehicle size choice process that takes place in reality.

4Decisions with regard to production technology, choice of input suppliers and/or receivers of their
output, and location, are all assumed to be exogenous.
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Below we present the basic structure of the theory based on McCann (2001)5, followed

by a discussion of the main hypotheses of the model. Assume that the per-period total

logistics cost (TLC) for firm i is given by6:

TLCi =
QiSi
qi

+
Iqi(ci + tidi)

2
+ tidiQi (1)

where Qi is the total per-period shipment quantity (tonne/period); Si is terminal

cost ($/vehicle); qi is the individual shipment size (tonne/vehicle); I is the inventory

capital holding coeffi cient (%/period); ci is the Free On Board (FOB) purchase price of

good ($/tonne); ti is the transport charge ($/tonne-kilometer); di is the haulage distance

(kilometer). The first term on the right-hand side is the total terminal handling costs

which are independent of the capacity of a vehicle. The second term is the inventory/stock

holding cost that can be further split into two components: Iqici
2 , the average stock holding

cost, and Iqitidi
2 , the inventory cost during transit.7 The final term is a transport movement

cost that is incurred when goods are moved. Minimizing TLCi with respect to qi results

in the following:

q∗i =

√
2QiSi

I(ci + tidi)
(2)

Eq. 2 implies that the optimized shipment size q∗ falls as the haulage distance

di increases. But this is counter-intuitive given empirical evidence that shows on longer

trips, larger shipment sizes and therefore larger vehicles are usually chosen (Kendall, 1972;

Jansson and Shneerson, 1982). According to McCann (2001), the reason for this incon-

gruous result is that in reality ti will also be a function of qi, and qi is a function of ti,

that is there is no closed form solution for the problem. McCann shows that defining the

transport cost component in Eq. 1 as a vehicle movement cost results in a shipment size

solution consistent with the empirical evidence. A key insight in his analysis is that for a

fixed total tonnage of goods to be shipped per time period, the per tonne-kilometer cost

5McCann’s formulation is used because it allows a unified framework to analyze the optimal shipment
size and the optimal vehicle size as part of the same optimization problem. Furthermore, it explicitly adds
a spatial dimension and transport cost to the basic theory, both of which are important elements in our
empirical model.

6This specification assumes that goods are delivered and consumed at a constant rate and there are
no stock-outs (i.e. replenishments are instant). And the firm is assumed to be an own-account shipper.
If factory gate pricing is assumed, the formulation can also apply to a for-hire carrier. Note also that
transport cost is specified in terms of a spatial measure, cost per tonne-kilometer, meaning that haulage
distance is explicitly included as a variable.

7The latter represents interest cost associated with labor and fuel operating costs incurred during transit
(McCann, 2001).
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ti depends on the weight of the individual batch shipment qi. To incorporate this insight

in the optimization problem, we first define vehicle movement cost as vi = a+ bqi, where

a and b are the intercept and slope parameter values across the range of vehicle choices

available. Assuming that the logistics planner has access to multiple vehicles and can

always make sure that individual shipments take place as full-load shipments, a transport

rate function can now be given as8:

t = a+bq
q = a+bq∗

q∗ = a
q∗ + b

If we replace ti with the above definition in Eq. 1, we have a new logistics cost

expression given as:

TLCi =
QiSi
qi

+
Iqici

2
+
Iqi(

a
qi

+ b)di

2
+ (

a

qi
+ b) diQi (3)

Minimizing TLCi with respect to qi results in the following solution for optimal

shipment/vehicle size:

q∗i =

√
2Qi(Si + adi)

I(ci + bdi)
(4)

Eq. 4 gives the so-called ‘square root laws’(Baumol and Vinod, 1970; Blumenfeld et

al., 1985) which govern the relationship between the optimal shipment/vehicle size and

the model’s parameters.9 First, q∗i clearly increases with the total freight demand (Qi).

Second, q∗i increases with distance if there are significant economies in vehicle movement

cost relative to the carrying capacity of a vehicle (i.e. a > b). This is because larger vehicles

will incur less than proportionally increased fuel/time cost per shipment, implying that as

geographical distance increases, the shipper can reduce fuel/time costs per unit of cargo

shipped, both by increasing the size of an individual shipment and by reducing shipment

frequency (McCann, 2001).10 Third, as the value of a shipment (ci) and its inventory

8 If the planner has a single vehicle at her disposal, the rate function is defined as ti = vi/qi.
9Note that the solution given in Eq. 4 is the solution to both the optimum shipment size and the

optimum vehicle size. This is because of the assumption that the logistics planner can always make sure
that individual shipments take place as full-load shipments (i.e. load factor = 1). This assumption is not
always valid, but is a common hypothesis in this kind of analysis (see Shah and Bruckner, 2011, who also
assume that there is full utilization). An important reason why many trucks are not full in terms of tonnes
is that the volume (m3) of the cargo often is the limiting factor, not the weight. A recent report for 13
European countries reveals that on about 30% of all trips made the trucks are empty, while the average
load factor (the percentage of a truck’s carrying capacity filled with a cargo) remained stable at 50% over
the period 1990-2008 ( the European Environmental Agency, 2010).
10Although empirical evidence can be furnished to support this claim, it is also observed that carriers

do not always operate with bigger vehicles on longer trips. For instance, a newer "small" vehicle might be
cheaper to operate than an older "large" vehicle even for longer trips. So, the effect of a vehicle’s age needs
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capital holding cost (I) increase, the optimal shipment size decreases.

To test the main hypotheses of the model empirically, we can take the logarithm of Eq.

4 and add a stochastic component. This is possible for estimation of the optimal shipment

size, but when q∗i represents vehicle size it is not appropriate to treat it as a continuous

variable for two reasons. First, due to vehicle design limitations and/or government reg-

ulations, a vehicle’s size can neither be infinitely reduced nor infinitely increased, which

means that there are always minimum and maximum capacity constraints. Second, vehi-

cles differ not only in their carrying capacity, but also in their type/class (e.g. rigid truck,

semi-trailers, articulated etc.). It is, therefore, more appropriate to treat q∗i as a discrete

variable if it represents vehicle capacity, and as a continuous variable if it represents ship-

ment size. The next section develops an empirical model in a discrete-continuous model

framework to analyze the choice of optimal vehicle size and shipment size.

4 Econometric framework

As described in the conceptual framework section, freight vehicle choice is part of a larger

joint decision process that includes choice of shipment sizes/frequency. Building on this

insight, this section presents a discrete-continuous (D/C) econometric model to analyze

the choice of optimal vehicle size and shipment size.11 The firm’s shipment size and the

net benefits, conditional on vehicle choice are given respectively by

q∗v = βvX + uv (5)

U∗v = γvZ + ηv, (6)

where X denotes variables that affect shipment size, U∗v is the reduced-form expres-

sion for the net-benefits from the choice of different vehicle types (v = 1...V ), and Z

denotes observable factors that determine the net benefit function, while βv and γv are

parameters to be estimated, uv and ηv are idiosyncratic terms. The conceptual framework

section established that total freight demand (Q) and shipment distance (d), and various

to be taken into account to find the true effect of distance on the optimal vehicle size. In our econometeric
model, we control for the effect of vehicle age.
11D/C models have been used to examine a wide range of topics, including transport mode/vehicle choice

(Inaba and Wallace, 1989; McFadden et al., 1985; Holguín-Veras, 2002), car ownership and use (Train,
1986; de Jong, 1991), labour participation and wages (Heckman, 1979), labor productivity (Lindqvist and
Vestman, 2010), and energy choice (Mansur et al., 2008).
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commodity characteristics determine the optimal shipment size. To capture the effect of

these variables, X includes a firm’s total freight demand, trip distance, and commodity

fixed effects. Although Section 2 showed that the optimal shipment size and the optimal

vehicle size depend on the same variables, in reality some variables will have bearing on

the shipment size choice only through their impact on the vehicle choice process. Thus,

Z contains all the variables in X and additional variables which describe the service at-

tributes of a vehicle and its owner. These are vehicle age, per-tonne operating cost, and

fleet size. The identifying assumption is that these variables affect shipment size choice

only through preferences for different types of vehicle.

The firm computes its optimal shipment size q∗ conditional on every feasible alterna-

tive. Thus conditional on X, it is observed to ship q∗ by alternative v if the net-benefit of

shipping by vehicle type v is greater than any type j, that is

U∗v > max(U∗j ) (7)

Note that the two error terms, uv and ηv, are correlated because of the possibility that

the transport planner makes a choice between vehicle sizes, and at the same time decides

how much to load on the chosen vehicle. In fact, as shown in Section 2, decisions on

the optimal shipment size and vehicle are generated from the same optimization problem,

which implies that the error terms are likely to be correlated. Ignoring this correlation

would lead to a specification bias. For this reason we need to model vehicle choice and

shipment size choice using a D/C model based on a two-step estimation method. A

multinomial logit model (MNL) of vehicle choice is estimated in the first step, with vehicles

classified into five different size and type categories to examine the determinants of the

choice process. In the second step, we estimate shipment size given the vehicle choice.

This step consists of using ordinary least squares (OLS) with selectivity correction terms

constructed from the first step.

In the literature, we find two main approaches to estimating a selection model with

multinomial choices. The first consists of using a selection correction term of the actual

choice (Lee, 1983), while the second uses selection correction terms of the alternative

choices (Dubin and McFadden, 1984).12 Lee’s model imposes strong restrictions on the

covariance between the continuous demand and the selection model (Schmertmann, 1994;

12A semi-parametric model which uses probability estimates from the first stage was suggested by Dahl
(2002), but it is less used.
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Bourguignon et al., 2007). Bourguignon et al. (2007) propose alternative estimators based

on Dubin-McFadden (1984) but allowing for a general distribution of uv, in particular,

the normal distribution. Their Monte Carlo studies show that the alternative estimators

are more robust in various data generating processes. What follows presents the basic

structure of the D/C model using the notation of Bourguignon et al. (2007).

As noted above, the two-step estimation is required due to the possible correlation

of the idiosyncratic terms uv and ηv. The econometric problem is how to estimate the

parameter vector βv while taking into account this possible correlation. If we assume that

E(uv|X,Z) = 0 and V (uv|X,Z) = δ2, where V denotes the variance, and ηv is distributed

extreme value type I, the probability that vehicle v is preferred is given by Pv

Pv =
exp(γvZ)∑
v

exp(γvZ)
(8)

The selectivity correction procedure involves using the parameter estimates from the

choice model to construct the selectivity correction terms, appending these to Eq. 5 to

get the following

q∗v = βvX + µ(P1, ..., PV ) + w1 (9)

where w1 is a residual that is mean-independent of the regressors.The intuition for

appending the correction terms is that the original model ( Eq.5) suffers from an omitted-

variable problem. What is omitted is the effect of the vehicle choice selection process on

the observed shipment quantity. One can remove the simultaneity bias by including the

correction terms. Furthermore, depending on the sign and significance of these terms, we

can tell whether the alternatives have been optimally or randomly chosen. For example,

we would know if a vehicle is carrying more or less shipment when it is observed in the

shipment size equation of another vehicle.

The various methods of estimating Eq. 9 differ in the kind of restrictions they impose

on µ(P1, ..., PV ). Dubin and McFadden (1984) assume an important linearity condition

E(uv | η1...ηV ) = σ
∑
v=1..V rv(ηv − E(ηv))

where, where rv is a correlation coeffi cient between u1and ηv, and by construction it

sums to zero (
∑
v=1...V rv = 0). They showed that OLS estimates of βv from the following

equation will be consistent:
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q∗1 = βvX1 + σ
∑

v=2...V

rv

(
Pv ln(Pv)

1− Pv
+ ln(P1)

)
+ w1 (10)

Bourguignon et al. (2007) relax the linearity condition of Dubin and McFadden (1984),

arguing that it imposes a specific form of linearity between uv and the extereme value type

I distribution, and thus restricts the class of allowed distributions of uv. They suggest a

variant of Dubin and McFadden’s model that can make uv linear in a set of normal

distributions, allowing uv in particular also to be normal. We consider both methods in

this paper.13 Finally, it is important to note that the econometric framework presented in

this section relies on the IIA assumption. Violation of this assumption could, therefore,

compromise our results. To test the importance of this assumption Section 5.2 gives

alternatives results based on the mixed multinomial logit model.

5 Data and empirical results

5.1 Data

The primary data source for this research was the Danish heavy trucks trip diary for 2006

and 2007. The diaries are filled out by truck owners, for-hire carriers and own-account

shippers, across Denmark, for approximately 1200 vehicles each year and cover all trips

undertaken during one week of operation. These data are used by Statistics Denmark to

calculate national freight transport using heavy vehicles (above 6 tonnes gross weight).

Data on the fleet size of companies and operating costs come from Statistics Denmark’s

database on companies’vehicle access (MOTV) and the Danish National Freight model

(2012), respectively. Together, these datasets provide detailed operational information for

modeling the joint decision of shipment size and vehicle choice. Table 1 presents the main

variables of interest, which include: vehicle attributes (age, vehicle class, and operating

cost per tonne); carrier characteristics (fleet size and carrier type: own-account shipper or

for-hire carrier); shipment characteristics (commodity classes, shipment weight, and cargo

density (m3); and haul characteristics (trip distance and origin-destination zones).

These datasets, however, do not include detailed information on the origin and desti-

nation of a trip, total shipment demand per period, or commodity price (for calculation of

13The STATA selmlog command developed by Bourguignon et al. (2007) was used to estimate the two
D/C models.
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value density), all of which are important attributes to examine the economic considera-

tions involved in the choice of vehicle and shipment size. To control for the effect of total

shipment demand (Q) on shipment size (q), we constructed segments for shipment demand

based on origin zone-commodity combinations.14 We know the origin and destination of

a trip at a zonal level (there are 15 zones in Denmark). There are 28 commodity classes

based on NST/R, EU’s standard goods classification for transport statistics. There are 840

possible combinations for the two years (15*28*2); however, there were only 581 positive

observations. Our empirical work relates differences in total shipment demand across the

demand segments to differences in shipment sizes across hauls. Furthermore, commodity

fixed effects were included to control for unobserved characteristics of a shipment that

might vary by commodity class.

Table 2 presents vehicle classification, distribution and attributes. Three types of

vehicle choices appeared in the sample: rigid trucks, semi-trailers and articulated. For

estimation purposes, the vehicles were further subdivided into 6 different classes.15 The

categorization was based on gross vehicle weight (GVW). Another classification based on

the maximum legal carrying capacity (MCP) of a vehicle is also shown. Most trips were

made by vehicles weighing more than 18 tonnes, revealing that the data is predominantly

on heavy vehicles. The trip share of semi-trailers with 12-18-tonne capacity is rather small,

so it was decided to treat all semi-trailers as one class of vehicle. Doing so reduced the

vehicle choice set to 5. As shown the vehicle operating costs were positively correlated

with size, which implies higher fuel and operating costs for heavier vehicles.

To achieve a better approximation of the actual vehicle choice-making process by

carriers, the final sample for estimation was based on the following criteria. First, although

the vehicles were observed making both loaded and empty trips, the analysis was based on

loaded trips only. This made it possible to control for commodity characteristics. Second,

only vehicles which belonged to a fleet size of 5 or more were considered. Note that the

analysis assumes that for a given haul, carriers have access to at least one vehicle from

each vehicle class. So, restricting the lower bound of the size of the fleet to which a vehicle

belongs allows us to mimic the actual choice set a carrier had for a given haul.

14An example is "hauls of food by trucks based in Copenhagen". Hubbard and Baker (2003) and Boyer
and Burks (2009) used a somewhat similar segmentation of freight demand to account for the heterogeneity
that exists in freight transportation.
15A similar classification is used for the National Freight model for Denmark.
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5.2 Empirical results

The main estimation results are based on the D/C econometric model presented in Section

4. The first part of this section summarizes the results from the vehicle choice model, fol-

lowed by the shipment size choice model. The final part of this section reports alternative

results based on the mixed MNL model to check the robustness of the main results.

5.2.1 Main results

Table 3 presents coeffi cient estimates from Eq. 8, which was estimated by the multinomial

logit MNL model. Vehicle type V1 (rigid truck with less than 12-tonne capacity) is the

base category where the normalization γ1 = 0 and β12 = 0 is imposed. The estimates

for cost show that it is statistically significant at the 1% level, and, as expected, reduces

the probability of choosing a vehicle.16 A vehicle’s age has a significant negative effect for

the heavier vehicle types, V3, V4 and V5. This result implies that firms are less likely

to choose older vehicles, especially if they are heavier. This is partly due to the fact

that newer vehicles are usually equipped with better technological capabilities and partly

due to the higher cost of operating older and heavier vehicles. The effect of age for V2

is, however, positive and unexpected. The effect of fleet size is positive and statistically

significant at the 1% level. This result makes sense because bigger companies (in terms of

vehicle ownership) are more likely to have the heavier vehicle types in their fleet, which

in turn implies frequent usage.

Table 3 also reports the effect of total freight demand which is positive and statistically

significant at the 1% level. Evidently, when faced with higher demand firms are more likely

to use their heavier vehicles. The probability plots depicted in Figure 1 confirm this result.

As total freight demand increases, the probability of selecting the smaller rigid trucks, V1,

V2 and V3 declines. On the other hand, the probability of selecting the heavier vehicles,

V4 (semi-trailer truck)17 and V5 (articulated truck), increases with freight demand.

The effect of cargo density (i.e. the voluminous cargo dummy variable) is negative

and significant only for V2 and V3. This is an expected result, because heavier vehicles

are more likely to be preferred for dense or bulk cargo. The parameter estimates for for-

hire carrier dummy are positive and highly significant at the 1% level. This is expected
16Cost is defined as total cost (that is the per-kilometer vehicle operating cost (from Table 2) multiplied

by the trip distance) divided by the payload (that is, the maximum legal carrying capacity) of the vehicle.
Note that trip distance is indirectly included in this definition.
17The cargo density dummy indicates whether a cargo is voluminous or not based on the evaluation of

truck drivers.
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because for-hire carriers are more capable of aggregating loads for a given trip compared

to own-account shippers, which explains the former’s preference for heavier vehicles. The

commodity fixed effects (for 28 commodity groups) and quarter dummies (8 quarters for

2006 and 2007) are not reported, but most of these variables were significant at least at

the 5% level.

Table 4 reports elasticities for selected variables from Table 3. These elasticities are

average marginal effects which show the percentage change in the probability of choosing a

vehicle for a 1% change in the continuous explanatory variables or a discrete change from

the base category for the dummy variable. As shown, a 1% increase in freight demand

increases the probability of choosing vehicle V5 rather than V1, V2, V3 and V4 by 0.2%,

which implies that the vehicle choice process is rather inelastic to changes in demand.

In conformity with our earlier finding, an increase in cost/tonne implies a preference for

smaller vehicles (V1, V2, and V3) as opposed to heavier vehicles (V4 and V5). Note that

the cost variable includes both the variable (fuel and labor) and fixed costs of operating a

vehicle per kilometer. In order to achieve a more informative interpretation of this result,

we have to break the cost variable down into its components. But to do this, we need

more data for each cost component. Unfortunately, our dataset does not have information

on the various components of cost. One way to proxy the cost break down is to include

trip distance and fuel cost in place of the cost variable.18 It is reasonable to assume that

both are positively correlated with the variable cost of operating a vehicle.

Table 5 presents parameter estimates from an alternative MNL vehicle choice model

where trip distance and fuel cost are substituted for cost/tonne as a proxy for variable

costs. Interestingly, the effect of cost is now somewhat reversed. As shown, firms prefer to

use heavier vehicles over longer distances, and fuel price positively affects the probability

of choosing V3 and V4. The effects of the other explanatory variables are comparable to

those in Table 3. Table 6 shows elasticity estimates for trip distance and fuel price for

this MNL model. Although the effect is inelastic, an increase in trip distance increases the

probability of choosing V4 and V5. The effect of fuel price is mixed. It appears that V4

and V5 have inelastic but positive fuel price elasticity. On the other hand, the probability

of choosing V1, V2 and V5 declines for higher fuel prices.

Figures 2, 3 and 4 display probability plots for total and variable costs based on the

18To approximate fuel cost, we used the average monthly per-liter price of diesel fuel for the survey
month in which each vehicle was observed. The source of this data is the Danish Oil Industry Association
(EOF). See http://www.eof.dk/ for more details.
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MNL models presented in Tables 3 and 5, respectively. Clearly, as variable costs increase

(trip distance and fuel price), the probability of choosing V4 and V5 increases, while

higher total cost leads to a preference for smaller vehicles, V1 and V2. These apparently

contradictory effects of cost have important policy implications. For instance, in the face

of policies (or exogenous shocks) which raise the variable cost of trucking operations (e.g.

a fuel price rise) firms prefer to use heavier vehicles. On the other hand, policies or other

changes which increase fixed costs, and therefore total cost, (e.g. registration tax, permits,

licenses, etc.), force firms to use smaller vehicles.

The estimates from the vehicle selection model in Table 3 were used to estimate the

conditional shipment size for each vehicle using Eq. 10. The results from the Dubin and

McFadden (1984) model are presented in Table 7.19 The overall result is consistent with

the prediction of shipment size optimization theory: shipment size increases with trip

distance and total freight demand. As indicated in Section 2, trip distance can have a

positive effect on shipment size if there are significant economies in vehicle movement cost,

which in turn implies that shipment sizes are larger for longer trips.20

Table 7 also shows that being a for-hire carrier results in a higher shipment quantity

compared to being an own-account shipper. This result was expected since haulage firms

are more likely to consolidate shipments and ship in larger quantities. Evidently, volumi-

nous cargo (i.e. low density) results in lower shipment size. The commodity fixed effects

are not reported, but many of them, up to 50% for some of the vehicles, are highly signif-

icant, which reveals inherent and handling requirement differences between commodities.

Table 7 also reports the effect of the bias that is introduced if the vehicle choice process

is not taken into account. The signs and significance of the selectivity correction terms,

Select V1- V5, reveal the direction and level of this bias. Almost all the correction terms

are significant at least at the 5% level, which implies that there is simultaneity between

shipment quantity and vehicle choice decisions and that misspecification bias will arise if

Eq. 5 is not corrected for the vehicle selection process.21

19Results from the alternative model based on Bourguignon et al. (2007) are reported on Table 8. They
are more-or-less similar to the ones in Table 7, but include five correction terms, as opposed to the four in
Table 7, for each alternative.
20This hypothesis is based on McCann (2001), who suggests comparing parameters a and b from a

transportation rate equation t = a
q∗ + b. An OLS regression on the per-kilometer costs for each vehicle

category and their maximum carrying capacity showed that a > b, which implies the existence of economies
of capacity.
21We also estimated a shipment size model without taking the vehicle type selection process into account.

The results for this model showed that most of the explanatory variables are significant at the 1% level
and have the expected signs, but the point estimates are biased upward compared to those in Table 7 since
no correction is made for selection.
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The coeffi cient estimates of the correction terms tell us if a vehicle is carrying a larger

or smaller shipment quantity when it is observed in the shipment size equation of another

vehicle. For example, firms which for unobserved reasons employ a rigid truck with less

than 12-tonne capacity (V1) instead of an articulated truck (V5) tend to carry larger

shipment quantities.

5.2.2 Robustness checks

It is instructive at this point to discuss the potential limitations of the econometric re-

sults presented above and the procedure used to get around them. The main limitation is

the distributional assumption required to make the estimation of the MNL model compu-

tationally tractable: the alternative errors are independently and identically distributed

(that is the IIA assumption). Violations of the IIA assumption would compromise the

results. One way to fix this problem is to model the vehicle selection, Eq. 8, as the

main structural model of interest using a mixed MNL model while taking the effect of

shipment size on the vehicle size choice process into consideration. This procedure was

first proposed by Holguín-Veras (2002). In the present paper we extend this procedure to

allow cross-alternative correlation and parameter heterogeneity, assuming normal mixing

distributions over a dummy variable for rigid trucks, and over the cost variable. The next

paragraphs outline this alternative modeling framework and estimation results.

As in our earlier framework, assume that the net benefit of using a vehicle is calculated

across all interested parties (i.e. all carriers and shippers), the net benefit of using a vehicle,

U∗v , is given as

U∗v = Mθ + φqv + εk + ηv (11)

where, v = (1, . . . V ) represents vehicle sizes;M is a vector of explanatory variables that

determine vehicle choice; qv is the shipment size; εk is the unobserved vehicle characteristics

and is assumed to be an independently and identically distributed (i.i.d.) extreme value.

Vehicles are usually categorized based on their carrying capacity, but we note that vehicles

may differ in their carrying capacity while being of the same type/class. The model is,

therefore, set up in such a way as to allow correlation across alternatives which belong to

the same vehicle class/type (k). This correlation is captured by εk, which is assumed to

be distributed εk ∼ N(0,Σ). This specification mimics a vehicle class/type based nested
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logit model which is shown in Figure 5.

When deciding which vehicle to use for a given shipment, the transport planner con-

siders the operating cost per kilometer of a vehicle, and how closely it fits the shipment

to be transported. To capture these decision criteria, M includes two alternative specific

variables. The first one is Cv/fleeti, where Cv is the vehicle operating cost per kilometer

and fleet is the size of the fleet to which the vehicle belongs. Our specification implies

that the effect of Cv is more pronounced for carriers with smaller fleets. This is intu-

itive, because a planner with smaller fleet at his disposal is more likely to optimize on

a per-vehicle operating cost basis than one with a larger fleet. The latter is more likely

to optimize vehicle use across the whole fleet, which implies that the cost of operating a

single vehicle is less crucial.22 The second variable is a cargo-vehicle-fit variable which is

defined as

Lv = |MCv − qv| (12)

whereMCv is the maximum legal carrying capacity of a vehicle. Lv gives an indication

of how appropriate a particular type of vehicle is for handling a given shipment. If there

is a large difference between its maximum carrying capacity and the weight of a shipment,

a vehicle is less likely to be selected (Holguín-Veras, 2002; Johnson and de Jong, 2011).

Furthermore, M includes the age of a vehicle to allow for the possibility that carriers may

tend to use their newer vehicles more often to rest older trucks, especially when faced with

excess capacity (Abate, forthcoming; Hubbard, 2003).

As indicated in Section 3, we note that qv may be correlated with the unobserved

portion of U∗v , which leads to an endogeneity problem. This correlation is caused by a

simultaneity bias that comes from the possibility that the transport planner makes a choice

among a set of vehicles, and at the same time decides how much to load on the chosen

vehicle. To account for the endogenous nature of qv, following Holguín-Veras (2002) we

estimate the following auxiliary regression to predict shipment size:

q∗v = Hδ + ζ (13)

where H is a vector that contains explanatory variables that determine shipment size.

The q∗v values predicted from Eq. 13 are then used to calculate the Lv variable which

ultimately enters U∗v . To estimate the mixed MNL model, 2357 trips (7% of the total

22As a side benefit, dividing cost by fleet size gives us more cross-sectional variation.
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trips) were randomly selected. This number is equivalent to the total number of individual

vehicles in the sample, which roughly translates to one trip per vehicle.

Table 9 presents the results from the mixed MNL model presented above. In this model,

random coeffi cients for the cost and cargo-vehicle-fit variables were allowed. As expected,

the mean effects of operating cost and L are negative and are statistically significant at

the 1% level. The standard deviation of the random parameter for the L variable reveals

that there is a significant heterogeneity around its mean effect. However, the standard

deviation for the coeffi cient of the cost variable is not significant. Furthermore, older

vehicles are less likely to be selected for a haul.

The MNL model in section 5.1 is based on the assumption that unobservable char-

acteristics are not correlated across alternatives. The validity of this assumption can be

indirectly tested from the nest parameter of Eq. 11. To do this we added a random para-

meter which is assumed to be normally distributed to allow cross alternative correlation

between vehicle types V1, V2 and V3, which are all rigid trucks. The hypothesis is that

since they are all rigid trucks, they may share unobserved attributes. As shown in Table

9, the standard deviation of the nest parameter (rigid truck_std) was estimated, while

its mean was fixed at zero. As it turns out, the standard deviation is not statistically

different from zero, which implies that the three alternatives are rather dissimilar and

there is no correlation between their unobserved attributes. This finding supports the IIA

assumption, and thus the results from the selection model in this respect can be relied

upon.

6 Summary

This paper has developed a discrete-continuous model of shipment size and vehicle size

class choice. Similar models have been used before in freight transport, but mainly to

study the shipment size and mode choice decisions. As explanatory variables we used

characteristics of the route/haul, the shipment, the carrier and the vehicle. The data used

to estimate the model come from the Danish heavy trucks trip diary 2006/2007, which

contain information on individual truck trips during one week of operation, supplied to

Statistics Denmark by truck-owners, carriers and own-account shippers.

We found that increases in trip distance, increases in total demand for the origin-

commodity combination per period, less voluminous goods and the decision-maker being
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a for-hire carrier lead to a larger shipment size. The first two effects indicate economies

of distance and scale. Almost all of the selectivity correction terms are significant at least

at the 5% level, which implies that ignoring the simultaneity of shipment size and truck

size will lead to biased estimates.

Higher operating cost, lower total cost, higher total demand, dense and bulk cargo

and the decision-maker being a for-hire carrier make the use of heavier vehicles more

likely. The difference in the effect of operating cost and total cost has important policy

implications. For instance, in the face of policies (or exogenous shocks) which raise the

variable cost of trucking operations firms prefer to use heavier vehicles. On the other

hand, policies or other changes which increase fixed costs and therefore total costs make

firms to use smaller vehicles. A possible extension of this paper would be a simultaneous

estimation (full information maximum likelihood) of the two-equation model. For models

with multinomial choices and with continuous variable component, such a model would

be a new territory.
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Table 1: Summary statistics the sample used for estimation 

Variable  Definition  Mean (%) Std. Dev.  

Distance  Trip distance (km) 80.5 98.57 

MC Maximum legal carrying capacity (tonnes) 24.7 12.7 

q Shipment weight (tonnes)  13 10.14 

Cost Total operating cost/tonne (DKK) of a vehicle  39.5 52.75 

Fleet Total number of vehicles of a firm  85.3 144.47 

Age Age of vehicle (years) 4.4 3.95 

Demand Total shipment demand for origin-commodity 

combination (tonnes)  

4338 5240.72 

Fuel  Average month diesel fuel price per liter (DKK)  10.03 .73 

L Vehicle-cargo fit measure (tonnes) 12.1 10.98 

For-hire 1 if vehicle is owned by a for-hire carrier 84%  

Voluminous 1 if cargo is voluminous  1%  
 

Source: The Danish Heavy Vehicles Trip Diary and MOTV vehicle registration data, 2006 & 07. 
The number of observations is 38,989.  There are 581 observations for “Demand”, which is defined 
at a origin zone and commodity combination. Fuel prices are from Danish Oil Industry Association 
(EOF).  

 

Table 2: Vehicle classification 

Vehicle Class 
Gross Vehicle 

Weight (tonnes) 

Average 
Payload 

(tonnes)  

Trip Share 

(%) 

Cost/km 

(DKK) 

Rigid  truck  

V1  < 12  4.3 3.5 6.2 

V2 12 - 18 8.3 9.64 6.66 

V3 18 - 26  14.8 30.59 9.67 

Truck with 

trailer 

V4  12 - 18  8.2 0.01 7.29 

V4 > 18  31.1 22.65 10.74 

Articulated  V5   38.02 33.6 13.89 
  

 

 

 

 



 
 

Table 3: Vehicle Choice Model 1 

 V2 V3 V4 V5 

 

     Log. cost -0.231*** -0.364*** -0.613*** -0.443*** 

 
(0.0310) (0.0301) (0.0310) (0.0299) 

Age 0.0350*** -0.0392*** -0.121*** -0.185*** 

 
(0.00813) (0.00789) (0.00834) (0.00821) 

Log. fleet 0.460*** 0.488*** 0.364*** 0.450*** 

 
(0.0347) (0.0338) (0.0350) (0.0335) 

Log. demand 0.156*** 0.152*** 0.520*** 0.561*** 

 
(0.0387) (0.0371) (0.0392) (0.0375) 

Voluminous -0.415*** -0.849*** -0.136 -0.103 

 
(0.104) (0.107) (0.109) (0.0982) 

For-hire 0.587*** 1.344*** 2.226*** 2.707*** 

 
(0.0767) (0.0740) (0.0801) (0.0773) 

constant -0.819** 0.762** -1.325*** -2.066*** 

 
(0.384) (0.364) (0.384) (0.370) 

Observations 39,420       

Pseudo R-squared 0.21 

    

Note: Vehicle type 1 (solo truck with less than 12-tonne capacity) is the base choice. Commodity 
fixed effects and quarter dummy variables not shown. Robust standard errors in parentheses. *** 
p<0.01, ** p<0.05, * p<0.1.   

Table 4: Elasticity Estimates from Model 1 

 
V1 (%) V2 (%) V3 (%) V4 (%) V5 (%) 

 

      Log. cost 0.424*** 0.193*** 0.059*** -.189*** -0.018** 

 

(0.028) (0.015) (0.007) (0.009) (0.007) 

Age 0.099*** 0.134*** 0.059*** -0.022*** -0.086*** 

 
(0.007) (0.004) (0.0024) (0.002) (0.0025) 

Log. fleet -0.428*** 0.033** 0.059*** -0.064*** 0.022** 

 

(0.031) (0.015) (0.008) (0.01) (0.007) 

Log. demand -0.371*** -.215*** -.218*** 0.15*** 0.19*** 

 

(0.034) (0.02) (0.011) (0.013) (0.10) 

      
  Note: Standard errors in parentheses are calculated by the Delta-method. *** p<0.01, ** p<0.05, * 

p<0.1 

 

 



 
 

Table 5: Vehicle choice Model 2 

          

  V2 V3 V4 V5 

          
Log. distance 0.152*** 0.131*** 0.440*** 0.530*** 

 
(0.029) (0.028) (0.029) (0.028) 

Log. fuel price -1.484** 1.124** 1.586*** 0.611 

 
(0.641) (0.563) (0.578) (0.571) 

Log. Age 0.145*** -0.178*** -0.396*** -0.623*** 

 
(0.047) (0.043) (0.044) (0.043) 

Log. fleet size 0.608*** 0.699*** 0.622*** 0.703*** 

 
(0.034) (0.033) (0.033) (0.033) 

Log. demand 0.031 0.060 0.454*** 0.512*** 

 
(0.041) (0.040) (0.042) (0.041) 

Voluminous -0.117 -0.596*** 0.005 0.039 

 
(0.129) (0.130) (0.131) (0.123) 

For-hire 0.501*** 1.230*** 2.059*** 2.609*** 

 
(0.079) (0.076) (0.081) (0.079) 

constant  2.563 -1.438 -6.35*** -4.929** 

 
(1.522) (1.351) (1.386) (1.368) 

Observations 38.989 
0.21 

 
 Pseudo R-squared 

 
Note: Vehicle type 1 (solo truck with less than 12-tonne capacity) is the base choice. Commodity 

fixed effects and quarter dummy variables were included but not shown. Robust standard errors in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

Table 6: Elasticity Estimates from Model 2 

 
V1 (%) V2 (%) V3 (%) V4 (%) V5 (%) 

 

      Log. distance  -0.33*** -0.18*** -0.20*** 0.10*** 0.19** 

 
(0.03) (0.016) (0.007) (0.009) (0.007) 

Log. fuel price -0.77*** -2.26*** 0.34** 0.81*** -0.17 

 
(0.531) (0.371) (0.13) (0.17) (0.13) 

          

Note: Standard errors in parentheses are calculated by the Delta-method. *** p<0.01, ** p<0.05, * 
p<0.1. 

 

 

 



 
 

Figure1: Probability of vehicle choice and freight demand 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 2: Probability of vehicle choice and total cost 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 3: Probability of vehicle choice and fuel price  

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 4: Probability of vehicle choice and trip distance 

 

 

 

 

 

 

 

 

 

 

 



 
 

Table 7: Conditional shipment quantity model using the Dubin-McFadden Method 

  q1 q2 q3 q4 q5 

Log. Demand 0.144*** 0.132*** 0.078*** 0.058*** 0.097*** 

 

(0.039) (0.040) (0.017) (0.018) (0.019) 

Log. Distance 0.078** 0.170*** 0.211*** 0.273*** 0.359*** 

 

(0.037) (0.025) (0.013) (0.016) (0.023) 

For-hire 0.198** 0.434*** 0.103** 0.10 -0.079 

 

(0.101) (0.067) (0.044) (0.34) (0.055) 

Voluminous -0.051 -0.272*** -0.419*** -0.387*** -0.383*** 

 

(0.094) (0.095) (0.073) (0.046) (0.045) 

Select V1 
 

-0.879*** 0.738*** 0.424 0.697*** 

  
(0.202) (0.194) (0.262) (0.252) 

Select V2 0.811** 
 

-0.132 -1.285*** 0.406** 

 
(0.387) 

 
(0.198) (0.308) (0.171) 

Select V3 -2.176*** 1.159** 
 

0.941*** 1.422*** 

 

(0.500) (0.567) 

 

(0.178) (0.204) 

Select V4 0.063 1.060** -1.328*** 

 

-2.886*** 

 

(0.535) (0.460) (0.228) 

 

(0.411) 

Select V5 1.236*** -1.010*** 0.667*** 0.188 

 

 

(0.448) (0.326) (0.141) (0.147) 

 Sigma2 6.112** 3.911*** 2.718*** 2.025*** 8.378*** 

 

(2.845) (1.382) (0.593) (0.596) (2.025) 

Observations 1,233 3,623 11,888 9,011 13,235 
 

Note: The dependent variable is shipment quantity in log(tonne) for the five vehicle types. 
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

 



 
 

Table 8: Conditional shipment quantity model using Bourguignon et al. (2007) Method 

            

 

q1 q2 q3 q4 q5 

            
log. Demand 0.120*** 0.136*** 0.0801*** 0.0690*** 0.115*** 

 

(0.0369) (0.0370) (0.0134) (0.0180) (0.019) 

Log. Distance 0.0719** 0.178*** 0.201*** 0.309*** 0.321*** 

 

(0.0361) (0.0256) (0.0167) (0.0296) (0.022) 

For-hire 0.243* 0.405*** 0.110** 0.0882 -0.386*** 

 

(0.134) (0.0900) (0.0476) (0.0794) (0.042) 

Voluminous  -0.0872 -0.230*** -0.431*** -0.339*** -1.758*** 

 
(0.129) (0.0780) (0.0811) (0.0548) (0.442) 

Selection V1 0.0497 -0.237 0.695** 1.339*** 0.075 

 
(0.122) (0.232) (0.290) (0.343) (0.157) 

Selection V2 0.697 -0.292*** -0.0949 0.839*** 0.858*** 

 

(0.473) (0.0914) (0.239) (0.326) (0.142) 

Selection V3 -1.325*** 1.020*** 0.0534 1.164*** 1.009*** 

 

(0.231) (0.306) (0.115) (0.0961) (0.226) 

Selection V4 -0.170 1.305*** -1.141*** 0.0143 -1.237*** 

 

(0.716) (0.274) (0.225) (0.142) (0.279) 

Selection V5 1.006*** -0.466** 0.553** 1.210*** 0.477*** 

 
(0.312) (0.194) (0.260) (0.232) (0.051) 

Sigma2 2.759** 2.806*** 1.430*** 2.973*** 3.777*** 

 
(1.236) (0.928) (0.256) (0.640) (0.757) 

Constant -1.257*** 0.499 0.0566 2.397*** 1.443 

 

(0.443) (0.700) (0.175) (0.531) (0.700) 

Observations 1.233 3623 11888 9011 13235 

 
Note: The dependent variable is shipment quantity in log.(kg.) for the five vehicle types. Standard 
errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 



 
 

Figure 5: Vehicle choice nest structure 

 

Table 9: Mixed MNL vehicle choice model 

    
 Variables  Estimates  

    

L -2.05*** 

 
(0.13) 

Standard deviation of L 1.66*** 

 
(0.289) 

Age -0.06*** 

 
(0.02) 

Cost -0.39*** 

 
(0.107) 

Standard deviation of Cost 0.01 

 
(0.01) 

V2 0.64*** 

 
(0.149) 

V3 1.85*** 

 
(0.212) 

Rigid truck std.   0.03 

 

(0.153) 

V4 3.30 

 
(0.236) 

V5 4.11** 

 
(0.310) 

Rho-square 0.10 
Observations 2357 
Number of Halton Draws  1000 
Null Log-Likelihood  3172 
Final Log-Likelihood 2860 

Note: Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1.2. ‘Rigid truck std’ 

denotes standard deviation of the dummy variable for rigid trucks. 
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The Effect of Fuel Prices on Trucking Industry’s Network

Characteristics:
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Abstract

The 2000s were dominated by rising fuel prices and economic recession. Both had

an impact on the structure of the trucking industry and how freight was moved. This

paper examines how fuel prices shaped trucking industry’s network characteristics such

as the average length of haul, average load, and capacity utilization. In particular, we

show the effect of fuel price on average length of haul using 29 quarterly independent

surveys from the Danish heavy goods vehicle (HGV) trip diary from 2004 to 2011.

The results show that the average length of haul is sensitive to changes in fuel price:

a DKK 1 increase in fuel prices leads to a 4 percent decrease in the average length of

haul in the 2004-2007 period. This implies that firms improve transport effi ciency by

reducing the number of kilometers needed to transport a tonne of cargo as a short run

response to fuel price increases. This result, however, is not confirmed for the years

following the 2008 financial crisis. It also depends on where in the distribution of the

average length of haul one looks.

Keywords: Fuel price; Average Length of Haul; Trucking Industry; Capacity Utilization
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∗I would like to thank Ole Kveiborg, Bertel Schjerning and for helpful comments. Thanks to Thomas
Jensen for his help and suggestions on the data. All errors are my own.

1



1 Introduction

The sharp rise in fuel price in the 2000s reignited interest in the study of the impact

of energy prices on the trucking industry’s structure and performance. The industry

responded to increases in fuel prices in various ways: accumulation of inventories, cen-

tralization, modal shift (Eyefortransport, 2008). Rising fuel price was also considered as

the most important reason for energy effi ciency improvement initiatives by freight carriers

(Liimatainen et al, 2012). Early estimates suggested that road transport costs repre-

sent about 1.6 percent of sales revenue for a typical European company (Ross, 1995).

This rather small share led to the conclusion that much of the strategic decision-making

of firms is relatively insensitive to variation in fuel prices (McKinnon, 1999). Although

transport costs remain relatively small, fuel costs for freight carriers have always been

significant. Besides, fossil fuel is still the main source energy for motive power (Knittel,

2012). It is, therefore, quite reasonable to expect that firms would respond to changes in

energy prices, especially during periods of rapid price rises.

Knowing the direction and magnitude of these responses gives further understanding

for tackling the perennial question in transportation economics: the price sensitivity of

transport activities. In freight transport, questions related to the extent of response and

the mechanism of response (modal shift, improvement in capacity utilization, or logistical

restructuring) to changes in transport costs are still relevant. The effects of changes in the

overall transport cost (cost/tonne-kilometer or cost/vehicle-kilometer) have already been

well documented in the literature (see Significance and CE (2010) for a comprehensive

recent review). The fuel price sensitivity of road freight transport, however, has been

less researched. In particular, the sensitivity of the network (operating) characteristics of

trucking firms such as average length of haul, average load, and capacity utilization has

been hardly touched.

This paper takes an important first step to showing how fuel price affects the network

characteristics of the trucking industry. It estimates the effect of changes in the price of

diesel on the average length of haul and the share of loaded trips (proxies for network

characteristics) using a unique quarterly dataset from the Danish heavy trucks trip diary

that spans 8 years. The data are disaggregated and allow for a simple and flexible empirical

strategy that controls for various vehicle, firm and haul characteristics.
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The central premise of this paper is that during periods of high fuel prices firms reduce

the average length of hauls (the average distance a tonne of freight moves) and improve

capacity utilization. The results confirm this premise to a reasonable degree. The price

of diesel significantly affects the operating characteristics of freight movement. A DKK 1

(' $0.17) increase in diesel price results in 4 to 7 percent decline in the average length

of haul in the years 2004-2007. However, this effect disappears in the years after the

financial crisis of 2008. A similar pattern is observed for the effect of diesel price on the

share of loaded trips vehicles make: with a significant effect in the pre-2008 period and no

significant effect afterwards.

The paper is structured as follows: Section 2 reviews the literature on the relationship

between fuel prices and freight demand. Section 3 presents the econometric model and

data, while Section 4 describes the estimation results. Section 5 concludes.

2 Fuel price and freight transport

Significance and CE (pp. 21, 2010) identify three potential responses from firms (carri-

ers/shippers) to an increase in fuel price. First, they invest more in fuel-effi cient vehicles or

implement a more fuel effi cient way of driving. Second, they improve transport effi ciency

or capacity utilization by reducing the number of kilometers needed to transport a tonne

of cargo. Third, if cost increases due to fuel price rises are not fully contained through

the first two mechanisms, shippers would ultimately be forced to reduce the number of

tonne-kilometers.

These responses mainly differ in terms of the time needed for implementation. Firms

can adopt more fuel-effi cient driving and improve transport effi ciency faster than they can

invest in more fuel-effi cient vehicles or reduce the need for transport (as implied under

the third response).1 In the long run, however, the reduction in distance will be lower

as firms adopt more fuel-effi cient vehicles. This is because of the so called “rebound

effect”. Using aggregate data from Denmark for 1987-2007, de Borger and Mulalic (2012)

find that improvements in fuel effi ciency resulted in a less than proportional reduction in

fuel use. Their estimates show that a 1 percent increase in fuel effi ciency led to 0.9-0.83

1As correctly pointed out by Green (1984) in terms of the production process, short run demand for
fuel is conditional upon the vehicle stock and the technology embodied in it, both of which are essentially
fixed. Thus firms need to reorganize production and distribution systems, source inputs locally and invest
in routing optimization technology as possible ways of reducing the average length of haul (McKinnon,
1999).
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percent reduction in fuel use depending in the time needed for adjustment.2 Despite being

disproportional, the reduction in fuel use is assumed to come from the reduced distance

traveled. The following paragraphs discuss possible effects of fuel price rise on the distance

traveled.

The effect of fuel price on a trucking firm’s network characteristics can be inferred from

its effect on the average length of haul (ALH), average load and the capacity utilization of

their vehicles. The literature provides no guide on how the latter two characteristics are

related to fuel price. As for ALH there are many studies that relate it to a firm’s overall

costs, of which fuel cost is an important part. ALH is usually taken as a measure of the

average distance a unit of freight is moved in a single vehicle movement. It is estimated by

dividing total tonne-km by total tonnes lifted: ALH =
∑
m TKM/

∑
M T where TKM

is the total tonne-kilometer for all movements (M) of a vehicle, and T is the total tonnes

lifted. Both in the literature and in industry, ALH, average load and shipment size are

used as proxies for network size and density.

ALH is mostly discussed in the literature in relation to a firm’s cost function. In almost

all of these studies, a firm’s network, which includes its average length of haul, is treated

as an exogenous environment in which the firm tries to minimize/maximize costs/profits.3

Such an approach is appropriate if the firm operates in a regulated environment in which

operating rights are determined by a regulator. Or it can be justified on the basis of the

very nature of freight transportation activity, which depends on the spatial distribution of

demand4 (locations of shippers or receivers of goods relative to major freight generators),

which changes only in the long run. Hence treating network structures as exogenous

can be justified. But if firms could freely choose their network structure or if there are

exogenous shocks in the economy (sharp rises in fuel price, economic recession, etc.) which

change the spatial distribution of demand, etc., the optimal network size (ALH) would be

endogenously determined based on cost considerations.5 What follows is a discussion of the

2Kamakaté and Schipper (2009) point out that improvement in the fuel economy of individual vehicles
plays a small part. They discuss that large reductions in trucking energy use and emissions will come from
better logistics and driving, higher load factors, and better matching of truck capacity to load.

3Ying and Keeler (1991) treat commodity attributes or network characteristics as exogenous, but they
point out that they are likely to be influenced by cost considerations as well.

4Boyer (1993) indicates that trucking is inherently spatial in nature, and that a service from point A
to point B is not a perfect substitute for a service from point C to point D; he argues that the two services
are “as likely to be complements as substitutes”.

5Friedlaender and Spady (1980) indicate that although the value and density of the commodity to be
shipped are exogenous to the firm, the way in which it is shipped is not; so ALH and shipment size are
endogenous to the firm, and are jointly determined with transport rate. See Morrison and Winston (1985)
for an interesting discussion on the effect of deregulation on the route structure of intercity transportation.
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relationship between a firm’s costs and its network structure when networks are exogenous,

and of the conditions under which network size could be endogenously determined.

There are two contradicting findings in the literature with regard to the effect of ALH

on trucking firm’s cost structure. One the one hand, it has been shown (see Friedlaender

and Spady, 1980; Chiang and Friedlaender 1984; Daugherty et al., 1985) that firms with

larger networks reduce their costs by exploiting economies of networks because larger

networks allow for better utilization of specialist equipment, and afford longer hauls which

are associated with more effi cient use of fuel and trucks.6 These studies find that longer

ALH results in lower costs to the firm.

On the other hand, Keeler (1989) and Gagné (1990)7 argue that if a firm has a longer

ALH, for a given output level, then it will likely have a thinner route structure which

implies less than optimal utilization of capacity, which will lead to higher costs. So, the

literature gives no clear conclusion on how ALH affects costs or vice-versa. Would firms

increase ALH to manage their operating costs? Or would they decrease it? Neither does

the literature provide answers as to whether firms would increase/decrease their ALH when

faced with changing economic circumstances. This is basically an empirical question, which

involves consideration of a firm’s vehicle choice process, inventory management, vehicle

technology choice, and the relative importance of freight transport as a factor of production

in the shipper’s production function. The next section presents an econometric model

which analyzes a reduced-form relationship between fuel price and the average length of

haul.

3 Methodology and Data

3.1 Empirical framework

Section 2 argued that increases in fuel price changes the network characteristics of freight

movement. It also showed that a likely short run response to higher fuel prices from firms

is that they will manage operating costs by cutting back haulage distances. It is quite

reasonable, therefore, to expect lower average length of hauls and improvement in capacity

utilization during periods of high fuel prices. This section presents an econometric model

6Ying and Keeler (1991) argue that a longer ALH reduces the cost per ton-mile of a shipment because
it implies lower terminal handling expense.

7Gagné argues that the cost elasticity of ALH depends on whether we evaluate these effects for a given
tonne-kilometer (TKM) or a given number of shipments. If it is based on TKM, longer hauls imply lower
costs, but if is based on the number of shipments longer hauls lead to higher costs.
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to test whether these hypotheses hold. Equation (1) below is a baseline regression model

for the average length of haul, and Equation (3) is a model for capacity utilization.

lnALHi,t = α+ βfi,t + γagei +Xϕ+ εi,t (1)

where the dependent variable lnALHi,t , is the log of the average length of haul of

a vehicle i in period t; fi,t is the per-liter price of diesel; agei, is the age of a vehicle;

α, β, and ϕ are coeffi cients; εi,t is a residual that is assumed to be orthogonal to the

explanatory variables. β is the parameter of interest and is expected to be negative since

higher fuel expenses directly add to firms’line-haul costs. γ is also expected to be negative

as older vehicles are usually driven a lower number of kilometers.8 Furthermore, Equation

(1) contains a vector of control variables, X, such as the number of axles on the vehicle,

the type of firm which owns it (own-account or for-hire), and commodity and year fixed

effects.

The number of axles is a proxy for vehicle carrying capacity. It is expected to affect

ALH positively because firms usually employ their larger vehicles on longer hauls where

there are fewer stops. As for the effect of ownership type, for-hire carriers typically have

longer network as they serve several customers which are distributed over a wide geograph-

ical area. Own-account shippers, on the other hand, tend to move most of their freight

from factory to factory, factory to distributor, etc which implies usage of vehicles over a

limited distance range.9

Interpreting β as the impact of diesel pirce on ALH requires the orthogonality condition

E(εi,t|fi,t) = 0 to hold: fuel price is independent of unobserved haul, vehicle and firm

characteristics that do affect ALH. One potential violation of this condition arises because

differences in ALH over vehicles may simply indicate differences in the unobserved spatial

distribution of freight demand.10 To control for this possible source of endogeneity X

includes the number of days a vehicle is used per period. This variable allows one to

see the effect of fuel price conditional on the number of days used and the other control

8 It is important to note that older vehicles’lower number of kilometers is partly due to the fact that
they are used fewer times per period. For a given number of usages, however, older vehicles are used as
much as younger ones (Hubbard, 2003). Operating cost differential affects the number of days or periods
in use rather than how effi ciently a truck is used per period. So, one would expect that older vehicle would
be used less frequently during times of higher fuel prices.

9Figure 3 shows the kernel density of the distribution of ALH by firm type. It is clear from the figure
that for-hire carriers’vehicles are used on longer hauls
10However, it is reasonable to expect vehicles to have a comparable distance range over which they are

frequently used. Hubbard (2003) argues that most trucks are used in consistent ways from period to period.
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variables.

Equation (1) assumes there is no unobserved heterogeneity in impact of diesel price

on ALH. However, it is possible that fuel prices affect ALH differently across vehicles

of different vintage. In the connection one might ask whether increases in diesel price

makes deriving older vehicles more expensive than driving younger vehicles. To test this

hypothesis a more general specification is:

lnALHi,t = α+ ρfi,t ×AGi +Xϕ+ εi,t (2)

Here the real diesel price, fi,t, is interacted with AGi, a dummy variable for whether

the vehicle belongs to the older vehicles category for a given period and within the same

vehicle type. The age categories are: AGi = 1 if age equals 1 or less, AGi = 2 if age equals

2 or 3, AGi = 3 if age equals 4 or 5, AGi = 4if age equals 6 or 7, AGi = 5 if age equals 8

or 9, and AGi = 6 if age > 9.

Note that identification comes from comparing the effect of diesel price on the ALH

of otherwise identical vehicles that only differ in their age. The parameter ρ is identified

by the time-series variation of the price of diesel and the cross-sectional variation of the

age group. This identification strategy implies that firms will use their older vehicles for

shorter hauls and their younger vehicles (which are probably are more fuel effi cient) for

longer hauls. Such a strategy allows us to observe how fuel prices affect older vehicles

compared with younger vehicles, not the effect of fuel price on the ALH of any given

vehicle. This distinction is crucial because the latter effect cannot be distinguished from

other factors that might affect both diesel price and ALH.

To check the robustness of the baseline regression, and to describe ALH differential in

a more realistic fashion the baseline regression model is extended on several fronts. First,

we classify the vehicles in our sample according to their Euro-class classification.11 Doing

so helps one to see whether firms would prefer to use vehicles in the latest Euro-class

during times of high fuel prices.

Second, many empirical applications have found quantile regression analysis useful

when the variables of interest potentially have varying effects at different points in the

11The Euro-classification is based on the classification available at the time a vehicle is observed in the
sample. It is based on EU’s emission standards legislation (Ref.) which has been imposed for new vehicles
sold in Europe since 1992. The classification categories are: Pre-Euro (prior to 1992), Euro I (1992 —30
September 1996), Euro II (1 October 1996 —30 September 2001), Euro III (1 October 2001 —30 September
2006), Euro IV (1 October 2006 —30 September 2009), and Euro V (1 October 2009 onwards).
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conditional distribution of the outcome variable. While mean regression provides a valu-

able summary of the impact of the covariates, it does not describe the effects on different

parts of the ALH distribution. In the context of this paper, it is likely that in the short run

firms are only able to cut short hauls (e.g. feeder trips), which are less fuel effi cient, im-

plying that fuel price rises may have larger effects on short hauls than on longer hauls. To

test this possibility, we use quantile regression (QR), introduced by Koenker and Bassett

(1978), and analyze the effect of diesel price at several points in the distribution of ALH.

Third, to fully exploit the time-dimension of the data, which is a repeated-cross-section, a

cohort was defined based on vehicle type, sector and firm type. Doing so made it possible

to test for the presence of inertia and whether firms were responding to contemporaneous

fuel price or lag fuel prices.

The lower levels of ALH during episodes of high fuel prices imply some sort of improve-

ment in capacity utilization. This is because firms would be able to provide the same level

of freight service only if they cut empty runs or increased average load during loaded

trips to improve the load factor. However, distinguishing the pure effect of fuel price from

other unobserved factors that affect capacity utilization is rather diffi cult because capacity

utilization will increase for all vehicles regardless of their age or sectors they are used in.

One way to check the relationship between fuel price and capacity utilization is through a

regression model that relates the share of loaded trips a vehicle makes per period and fuel

price. Such a model makes it possible one to see whether firms would increase the share

of loaded trips if fuel prices rise so as to keep line-haul costs in check. Accordingly, the

model for loaded-trip share is:

CUi,t = τ + θfi,t + Zϑ+ ωi,t (3)

where CUi,t is the share of loaded trips (out of total trips) for a vehicle i, in period t, a

proxy for capacity utilization; Z is a vector of vehicle, haul and firm characteristics; τ , θ,

and ϑ are coeffi cients; ωi,t is a residual that is assumed to be orthogonal to the explanatory

variables. CUi,t may not be an ideal measure of the level of capacity utilization unless

we control for the type of trips made by vehicles. As correctly pointed out by Figliozzi

(2007), urban delivery vehicles usually have a higher proportion of loaded trips because it

is only the last trip (usually back to terminals) that is empty. On the other hand, vehicles

engaged in inter-city trips face a problem of backhauls that leads to a higher proportion of

empty trips. To account for this operational difference, Equation 3 controls for the type
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of trip (as indicated by vehicle owners), distribution or normal trip.

All the above regressions control commodity fixed effects to account for possible dif-

ferences in the supply chain and logistical structure of moving different commodities.

Furthermore, the regressions contain year fixed effects to control for the average effect of

the price of fuel on the ALH and capacity utilization.

3.2 Data

The main source of data for this paper is the Danish heavy vehicles trip diaries. The diaries

report all the trips made by a vehicle for one week operation. They contain information

on vehicle type, number of axels, type and weight of commodity carried, haulage distance,

and the type of firm that owns the truck. Different trucks are sampled each quarter so

the data is best described as a repeated cross-section. Diesel prices are published by the

Danish Oil Industry Association (eof.dk) which has kept daily fuel prices since 1972. Much

to the advantage of this research, the trip diary data contains information on the specific

week in a quarter in which each truck in the sample made their trips. This made it possible

to use monthly average diesel prices12 which resulted in an extensive variation in the diesel

price variable.

The trip diary is unique and provides disaggregate data on road freight transport which

allows a detailed analysis of the trucking industry. Unfortunately, Statistics Denmark

changed the commodity classification from NST/R to NTS2007 in 2008 which reduced

the number of commodity types from 29 to 21. Due to the importance of this variable in

the econometric analyses, the data is divided into two periods, 2004 -2007 and 2008-2011.

Due to the economic recession in 2008, it would have been necessary to divide the data in

a similar fashion anyway.

Table 1 presents summary statistics. Figure 2 shows the trends of ALH for the three

vehicle types in the data. The two heaviest vehicle types, semi-trailers and articulated

trucks, have visibly longer ALH while, rigid trucks are commonly used on shorter hauls.

Figure 3 displays the kernel density of ALH for own-account shippers and for-hire carriers.

As shown the former have slightly lower ALH.

12Diesel is the main fuel type used by heavy trucks, and it is the main fuel type used in Denmark (de
Borger and Mulalic, 2012). Figure 1 shows the monthly average diesel price in Denmark from 1999-2012.
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4 Results

4.1 Diesel price and ALH

Table 2 reports estimates that show the relationship between the ALH and fuel price for

the period 2004-2007. Each column presents results for different sets of controls, age,

Euro-class, and the number of days a vehicle was operated. An increase in diesel price

significantly reduces the ALH of a vehicle. The point estimates for diesel price are very

similar across the models, and they show that a DKK 1 increase in price results in around

4 percent decline in the average length of hauls. As for the other explanatory variables,

vehicles owned by an own-account shipper exhibit lower ALH.

As expected, larger vehicles are employed in longer hauls, whereas older vehicles are

used for shorter hauls. Controlling for a vehicle’s Euro class instead of its age reveals

similar patterns; vehicles belonging in the older vehicles classifications, Euro class 5 and 6,

are used on shorter hauls. The last column shows that frequently used vehicles are also used

to move freight over longer hauls. This is an expected result because the characteristics

of a vehicle that make a vehicle frequently used are also correlated with how far it can be

used.

Table 3 reports a similar set of estimates for the period 2008-2011. Although it is

statistically insignificant, the effect of diesel price appears to have been reversed in this

period. This is partly due to the economic recession in the period, which might have

structurally changed the pattern of freight movement. It is also challenging to find a

causal effect of fuel price in this period because both fuel price and the average length of

hauls might have been affected by other factors. As for the other control variables, they

appear to have had comparable effects to those in Table 2.

To allow for a more flexible functional form, diesel price is interacted with indicator

variables for six vehicle age groups.13 Figure 4 shows the coeffi cients on these interaction

terms for each age group; the excluded group is age group 1, which corresponds to the

youngest vehicles (Age <= 1). The negative effect of diesel price on ALH is evident as

vehicles get older. However, the effects are relatively small for younger vehicles. For

vehicles in groups 5 and 6, those with age > 7, a DKK 1 increase in diesel price would

lead to 0.069 and 0.074 percentage point shorter haul length compared to vehicles in the

first group.

13 In unreported results, the fleet size of firms was used to explore the heterogeneity of fuel price. These
results, although comparable to the ones reported here, were not robust.
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One advantage of using a large sample is that it is possible to study how the effect of

diesel price changes at different aggregation levels. Accordingly, the data was aggregated to

form a cohort of vehicles based on three criteria: (i) the sector they are used in (agriculture,

chemicals, food, mining and construction, technology, wood and paper); (ii) the type of

firm which owns them (own-account shipper, for-hire carrier); and (iii) the vehicle type

category they belong to (rigid truck, semi-trailers, articulated). The resulting panel data

makes it possible to exploit the time dimension in the data.14 Table 4 reports a fixed

effects model on the cohort data. The contemporaneous and lagged effects of diesel price

are shown under columns 1 and 2, respectively. The results show that firms respond to

the existing diesel price levels, not to the levels in the previous period.

All the above estimates show the effects of the explanatory variables at a single moment,

that is the mean of the ALH of vehicles. Table 4 presents results from a quantile regression

that gives a richer characterization of the effect of diesel price and the control variables.15

The estimates are for quantiles: q = [0.1; 0.25; 0.5; 0.75; 0.9]. The effect of diesel price

differs depending on where on the distribution of the ALH one looks. As it turns out,

this effect is only significant at the 10th and 25th percentiles. This is partly due to the

possibility that in the short run firms are only able to cut shorter hauls in response to

higher fuel prices. Figure 5 shows the variation in the effect of the explanatory variables

at the different quantiles with the 95 % confidence interval. It is interesting to note that

most of these effects differ in size and importance throughout the distribution of ALH.

4.2 Diesel price and capacity utilization

Table 6 shows the relationship between the share of loaded trips (proxy for capacity uti-

lization) and diesel price. The results are mixed. Diesel price has a significant effect on the

share loaded trips a vehicle makes in the 2004-2007 period. However, it has no sigfnicant

effect in the 2008-2011 period. As indicated in Section 3 finding a causal relationship be-

tween fuel price and capacity utilization is rather diffi cult. This is because of the diffi culty

of distinguishing the pure effect of fuel price from other unobserved factors. As expected

vehicles used in hauls in which there are several stops (distribution trips) appear to have

higher share of loaded trips.

14All the variables were averaged at cohort level and estimation was done using a similar procedure to
that suggested by the seminal work by Deaton (1985).
15Quantile regression on the 2008-2011 data gave no significant result.
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5 Conclusions

This paper has examined the effect of fuel prices on the operating characteristics of freight

movement. It proposes an empirical model which is based on central arguments that

during periods of high fuel prices firms lower average length of hauls, the average distance

a tonne of freight moves, and improve capacity utilization. The model was tested using a

unique dataset from the Danish heavy goods vehicle (HGV) trip diary for 2004 to 2011.

The results show that the average length of haul is sensitive to changes in fuel price with

a decline ranging from 0.4 to 0.7 percent for every DKK 1 increase in diesel price in the

period 2004-2007. This result, however, is not confirmed for the years following the 2008

financial crisis. It also depends on where in the distribution of the average length of haul

one looks. In particular, fuel price rises are shown to have larger and significant effects

only in the lower end of its distribution (10th and 25th percentile). As for the effect of

fuel price on capacity utilization, rising diesel prices led to an improvement in the number

of loaded trips vehicles make per period in use. However, this effect is significant only in

the period 2004-2007.

Possible caveats should be noted regarding these results. First, the fact that there is

no consistent effect of diesel price on the operating characteristics for the whole sample

period might imply that the findings are driven by a single episode of energy price rises.

The economic recession in the post-2008 period has also made it diffi cult to deduce strong

causal relationships. The results should thus be interpreted with care. Second, although

the relationship between the price of diesel and the operating characteristics is suggestive,

it needs to be recalled that fuel costs are part -not the whole part- of the total operating

cost of a vehicle. The operating characteristics would therefore have also been driven by

other components of cost.

Third, firms’fuel price expectations were not considered in this paper. They might,

however, play an important role because of the possibility that some firms might engage

in oil futures, making them less sensitive to short run price fluctuations. It was not

possible to investigate this possibility in this research due to lack of data. Regardless of

these caveats, the findings of this study -exploratory as they may be- represent important

stepping stones for future research. They also reveal interesting short run freight demand

responses, which have not previously been studied.

12



References

[1] Daugherty, A., Nelson, F., and Vigdor, W., 1985. An econometric analysis of the cost
and production structure of the trucking industry. In: A. Daugherty, ed. Analytical
studies in transport economics. Cambridge University Press, 137.157.

[2] De Borger, B. & Mulalic, I., 2012. The determinants of fuel use in the trucking
industry– volume, fleet characteristics and the rebound effect. Transport Policy,
24(0), pp.284—295.

[3] Eyefortransport, 2008. The Impact of High Fuel Prices on Logistics. Available at:
http:// http://events.eft.com/fuelprices/newsstories3.shtml [Accessed December 02,
2012].

[4] Boyer, K.D., 1993. Deregulation of the Trucking Sector: Specialization, Concentra-
tion, Entry, and Financial Distress. Southern Economic Journal, 59(3), p.481.

[5] Chiang, S.J.W. & Friedlaender, A.F., 1984. Output Aggregation, Network Effects,
and the Measurement of Trucking Technology. The Review of Economics and Statis-
tics, 66(2), pp.267—276.

[6] Deaton, A., 1985. Panel data from time series of cross-sections. Journal of Economet-
rics, 30(1—2), pp.109—126.

[7] Figliozzi, M.A., 2007. Analysis of the effi ciency of urban commercial vehicle tours:
Data collection, methodology, and policy implications. Transportation Research Part
B: Methodological, 41(9), pp.1014—1032.

[8] Friedlaender, A.F. & Spady, R.H., 1980. A Derived Demand Function for Freight
Transportation. The Review of Economics and Statistics, 62(3), pp.432—441.

[9] Gagné, R., 1990. On the Relevant Elasticity Estimates for Cost Structure Analyses of
the Trucking Industry. The Review of Economics and Statistics, 72(1), pp.160—164.

[10] Greene, D.L., 1984. A derived demand model of regional highway diesel fuel use.
Transportation Research Part B: Methodological, 18(1), pp.43—61.

[11] Hubbard, T.N., 2003. Information, Decisions, and Productivity: On-Board Comput-
ers and Capacity Utilization in Trucking. The American Economic Review, 93(4),
pp.1328—1353.

[12] Hymel, K.M., Small, K.A. & Dender, K.V., 2010. Induced demand and rebound
effects in road transport. Transportation Research Part B: Methodological, 44(10),
pp.1220—1241.

[13] Kamakaté, F. & Schipper, L., 2009. Trends in truck freight energy use and carbon
emissions in selected OECD countries from 1973 to 2005. Energy Policy, 37(10),
pp.3743—3751.

[14] Keeler, T.E., 1989. Deregulation and Scale Economies in the U.S. Trucking Industry:
An Econometric Extension of the Survivor Principle. Journal of Law & Economics,
32, p.229.

13



[15] Klier, Thomas, and Joshua Linn.(forthcoming). The Price of Gasoline and the De-
mand for Fuel Effi ciency: Evidence from Monthly New Vehicles Sales Data. American
Economic Journal: Economic Policy

[16] Knittel, C.R., 2012. Reducing Petroleum Consumption from Transportation. The
Journal of Economic Perspectives, 26(1), pp.93—118.

[17] Koenker, R. & Bassett, G., 1978. Regression Quantiles. Econometrica, 46(1), p.33.

[18] Langer, A. and Miller, N.H (forthcoming). Automakers‘ Short-Run Responses to
Changing Gasoline Prices. The Review of Economics and Statistics.

[19] Liimatainen, H.; Stenholm, P., Tapio, P., and McKinnon, A., 2012. Energy effi ciency
practices among road freight hauliers. Energy Policy, 50(0), pp.833—842.

[20] McKinnon, A., 1999. A logistical perspective on the fuel ef-
ficiency of road freight transport. Improving Fuel Effi ciency in
Road Freight: The Role of Information Technologies. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.7044&rep=rep1&type=pdf
[Accessed November 12, 2012].

[21] Morrison, S.A. & Winston, C., 1985. Intercity transportation route structures un-
der deregulation: some assessments motivated by the airline experience. American
Economic Review, 75(2), pp.57—61.

[22] Ross, T., 1995. European Logistics Comparative Costs 1195. Institute of Logis-
tics/European Logistics Association, Corby.

[23] Significance and CE, 2010. Price sensitivity of European road freight transport to-
wards a better understanding of existing results, Report for Transport and Environ-
ment (T&E), The Hague, Significance/CE Delft, 2010

[24] Ying, J.S. & Keeler, T.E., 1991. Pricing in a Deregulated Environment: The Motor
Carrier Experience. The RAND Journal of Economics, 22(2), p.264.

14



Table 1: Summary Statistics  

 
[2004-2011] [2004-2007] [2008-2011] 

   
  Diesel price 9.38 9.70    10.26    

 
(1.14) (.73) (.89) 

Ln. Average length of haul   4.12 4.08     4.33     

 
(.913) (.89) (.88) 

Loaded share (%)  79.46  77.01    80.00      

 
(21.74) (21.48) (22.09) 

Vehicle age  4.75 5.04     4.01     

 
(4.08) (4.36) (3.54)          

No. axles  4.41 4.20      4.93     

 
(1.58) (1.60)           (1.46)           

No. observations  24106 6659 8,238 

 
 

    

Note: The cells report means, with standard deviations in parentheses. The statistics are based on Data 
from the Danish Heavy Vehicles Trip Diary (DST, 2012) and the Danish Oil Industry Association 
(EOF).      

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2: Main results: Log. Average Length of Haul, 2004-2007 - Vehicle level data  

 
[1] [2] [3] 

    Diesel price -0.043** -0.044** -0.046** 

 
(0.02) (0.02) (0.02) 

No. axels  0.113*** 0.115*** 0.113*** 

 
(0.007) (0.007) (0.007) 

Own-account carrier -0.209*** -0.211*** -0.203*** 

 
(0.026) (0.026) (0.026) 

Vehicle age  -0.022*** 
 

-0.020*** 

 
(0.002) 

 
(0.003) 

Euro class 3 
 

0.047 
 

  
(0.056) 

 Euro class 4 
 

-0.027 
 

  
(0.058) 

 Euro class 5 
 

-0.158** 
 

  
(0.067) 

 Euro class 6 
 

-0.283*** 
 

  
(0.07) 

 Number of days used  
  

0.032*** 

   
(0.009) 

Commodity Fixed Effects Yes Yes Yes 
Year Fixed Effects Yes Yes Yes 
Constant 4.240*** 4.167*** 4.128*** 

 
(0.181) (0.187) (0.184) 

N 6,659 6,659 6,659 
R-squared 0.275 0.275 0.277 
  

   Note: Standard errors in parentheses. Significance is marked:  *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 



 

Table 3: Main results: Log. Average Length of Haul 2008-2011 - Vehicle level data 

  [1] [2]  
      
Diesel price 0.210 0.191 

 
(0.174) (0.174) 

No. axels  0.081*** 0.083*** 

 
(0.007) (0.007) 

Own-account carrier -0.023*** -0.288*** 

 
(0.003) (0.028) 

Vehicle age  -0.286*** 
 

 
(0.028) 

 Euro class 2 
 

0.023 

  
(0.026) 

Euro class 3 
 

-0.008 

  
(0.027) 

Euro class 4 
 

-0.250*** 

  
(0.044) 

Euro class 5 
 

-0.162** 

  
(0.079) 

Euro class 6 
 

-0.365*** 

  
(0.97) 

Commodity fixed effects Yes Yes 
Year fixed effects Yes Yes 
Constant 3.430*** 3.410*** 

 
(0.419) (0.420) 

N 8,238 8,238 
R-squared 0.222 0.222 

   Note: Standard errors in parentheses. Significance is marked:  *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

 



 

Table 4: Fixed effects regressions of Log. Average Length of Haul- Cohort data 

      2004 - 2007     2008 - 2011 

 
[1] [2] [3] [4] 

  
    Diesel price  -0.071** -0.071** 0.062* 0.043 

 
(0.028) (0.030) (0.036) (0.030) 

Diesel pricet-1 

 
-0.025 

 
0.081 

  
(0.034) 

 
(0.052) 

Vehicle age -0.034** -0.034* -0.005 0.005 

 
(0.015) (0.017) (0.022) (0.016) 

Chemicals  -0.038 -0.055 0.003 -0.005 

 
(0.064) (0.068) (0.106) (0.105) 

Food 0.115* 0.114* 0.122 0.104 

 
(0.057) (0.058) (0.084) (0.083) 

Mining and construction  -0.410*** -0.418*** -0.459*** -0.476*** 

 
(0.067) (0.069) (0.114) (0.107) 

Technology  0.142*** 0.142*** -0.023 -0.063 

 
(0.050) (0.051) (0.082) (0.084) 

Semi-trailers 0.260*** 0.259*** 0.269*** 0.228*** 

 
(0.049) (0.050) (0.078) (0.070) 

Articulated  0.349*** 0.340*** 0.469*** 0.422*** 

 
(0.052) (0.058) (0.082) (0.068) 

Own-account  -0.104** -0.113** -0.220*** -0.257*** 

 
(0.045) (0.047) (0.071) (0.074) 

Wood and paper  
  

-0.172 -0.212** 

   
(0.121) (0.098) 

Year fixed effects Yes Yes Yes No 
Year_2008 

  
-0.246** -0.244*** 

Constant 5.123*** 5.193*** 3.768*** 3.182*** 

 
(0.332) (0.314) (0.414) (0.689) 

Observations 464 452 439 392 
R-squared 0.434 0.437 0.317 0.394 

 

Note: Standard errors in parentheses. Significance is marked:  *** p<0.01, ** p<0.05, * p<0.1. The 
reference category for sector type dummies is the agricultural sector.    

 

 

 

 



  

Table 5: Quantile Regressions of Log. Average Length of Haul, 2004-2007 

 
 q=.10  q=.25  q=.50  q=.75  q=.90 

Disel price  -0.092** -0.065* -0.022 -0.017 -0.009 

 
(0.040) (0.033) (0.026) (0.026) (0.021) 

No. axles  0.139*** 0.141*** 0.123*** 0.088*** 0.082*** 

 
(0.005) (0.004) (0.003) (0.004) (0.003) 

Own-account carrier  -0.301*** -0.233*** -0.203*** -0.170*** -0.135*** 

 
(0.010) (0.010) (0.007) (0.007) (0.009) 

Vehicle age  -0.027*** -0.021*** -0.018*** -0.020*** -0.016*** 

 
(0.040) (0.034) (0.040) (0.029) (0.033) 

Constant 3.666*** 3.893*** 3.930*** 4.628*** 4.913*** 

 
(0.372) (0.279) (0.219) (0.232) (0.182) 

Pseudo R2 0.16 0.18 0.17 0.15 0.12 

Observations 6,659 6,659 6,659 6,659 6,659 
 

Note: Standard errors in parentheses. Significance is marked:  *** p<0.01, ** p<0.05, * p<0.1. 
Standard errors were calculated through 299 bootstrap replications. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 6: Capacity utilization and diesel price  

  2004-2007  2008-2011  
      
Diesel price 0.016*** 0.001 

 
(0.006) (0.004) 

Distribution trip 0.258*** 0.247*** 

 
(0.004) (0.004) 

Semi-trailers  -0.017*** -0.028*** 

 
(0.006) (0.007) 

Articulated trucks  -0.015*** -0.021*** 

 
(0.005) (0.006) 

Own-account shippers  0.020*** 0.033*** 

 
(0.005) (0.006) 

Constant 0.502*** 0.613*** 

 
(0.049) (0.037) 

   N 6,659 8,238 
R-squared 0.453 0.385 

 

Note: The dependent variable is the share of loaded trips. Standard errors in parentheses. Significance is 
marked:  *** p<0.01, ** p<0.05, * p<0.1.   

 

 

 

 

 

 

 

 

 

 

 



Figure 1: Inflation-adjusted price of diesel  

 

Note: The diesel prices are monthly averages in 2010 prices.  

Figure 2:  Average Length of Haul by vehicle type  

 

Note: The solid horizontal line indicates the mean of average length of haul (87 km) during the 
sample period.   



Figure 3: Kernel density estimates by firm type  

 

Figure 4: Effect of diesel price on average length of haul (ALH) by age group  

 

Note: This figure shows the effect of diesel price on average length of haul by age group. The 
effects are relative to the youngest age group 1, which corresponds to the youngest vehicles 
(Age <= 1).   



 Figure 5: Quantile regression and OLS coefficients   

 

Note: This figure displays quantile regression and OLS coefficients and 95-percent confidence 
intervals for each explanatory variable for quantiles: q = [0.1; 0.25; 0.5; 0.75; 0.9]. 
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