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Abstract

Major histocompatibility complex (MHC) molecules play a crucial role in
adaptive immunity by sampling peptides from self and non-self proteins to
be recognised by the immune system. MHC molecules present peptides on
cell surfaces for recognition by CD8" and CD4" T lymphocytes that can initi-
ate immune responses. Therefore, it is of great importance to be able to iden-
tify peptides that bind to MHC molecules, in order to understand the nature
of immune responses and discover T cell epitopes useful for designing new
vaccines and immunotherapies. MHC molecules in humans, referred to as
human leucocyte antigen (HLA) molecules, are encoded by extremely poly-
morphic genes on chromosome 6. Due to this polymorphism, thousands
of different MHC molecules exist, making the experimental identification
of peptide-MHC interactions a very costly procedure. This has primed the
need for in silico peptide-MHC prediction methods, and over the last decade
several such methods have been successfully developed and used for epitope
discovery purposes.

My PhD project has been dedicated to improve methods for predicting
peptide-MHC interactions by developing new strategies for training predic-
tion algorithms based on machine learning techniques.

Several MHC class I binding prediction algorithms have been developed
and due to their high accuracy they are used by many immunologists to facil-
itate the conventional experimental process of epitope discovery. However,
the accuracy of these methods depends on data defining the MHC molecule
in question, making it difficult for the non-expert end-user to choose the
most suitable predictor. The first paper in this thesis presents a new, publicly
available, consensus method for MHC class I predictions. The NetMHCcons
predictor combines three state-of-the-art prediction tools and provides the
most accurate predictions for any given MHC molecule.

While the methods for MHC class I binding have reached a very high
accuracy and are widely used for immunological research, the case of MHC
class 1II is less clear. The open binding groove of MHC class II molecules
and differences in polymorphism among MHC encoding genes makes pre-
dictions of peptide binding to MHC class II molecules a complicated prob-
lem. We addressed these issues in order to develop the first pan-specific
predictor common for all three human class II isotypes, HLA-DR, HLA-DP
and HLA-DQ. The second paper introduces the NetMHClIpan-3.0 predic-
tor based on artificial neural networks, which is capable of giving binding
affinities to any human MHC class II molecule.

Chapter 4 of this thesis gives an overview of bioinformatics tools devel-
oped by the Immunological Bioinformatics group at Center for Biological
Sequence Analysis. The chapter provides detailed explanations on how to
use different methods for T cell epitope discovery research, explaining how
input should be given as well as how to interpret the output.

In the last chapter, I present the results of a bioinformatics analysis of epi-
topes from the yellow fever virus. The analysis demonstrated the absence of

vii



distinct regions of higher epitope density within the virus polyprotein. Also,
the density of epitopes among different proteins was demonstrated to mostly
depend on protein length and amino acid composition, underlining the im-
portance of identifying peptide-MHC interactions. Furthermore, using yel-
low fever virus epitopes, we demonstrated the power of the %Rank score
when compared with the binding affinity score of MHC prediction meth-
ods, suggesting that this score should be considered to be used for selecting
potential T cell epitopes.

In summary, this thesis presents methods for prediction of peptides that
bind to both MHC class I and class Il molecules, which is important for driv-
ing immunological research within the field of T cell epitope discovery and
for general understanding of the cellular responses.
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Dansk resumé

Major histocompatibility complex (MHC) molekyler spiller en afgerende
rolle i adaptiv immunitet, ved at udvelge peptider fra egne og ikke-egne
proteiner til genkendelse af immunsystemet. MHC molekyler preesenterer
peptider pa celleoverfladen, som sd genkendes af CD8" og CD4" T lymfo-
cytter, som er i stand til at initiere et immunrespons. Det er derfor yderst
vigtigt at kunne identificere peptider, som binder til MHC molekyler, for
derved at kunne forsta arten af immunresponset, samt at opdage T celle epi-
toper, som kan bruges til at designe nye vacciner og immunterapi. Humane
MHC molekyler, humant leukocyt antigen (HLA) molekyler, kodes af ek-
stremt polymorfe gener pd kromosom 6. Grundet denne polymorfi eksisterer
der tusindvis af forskellige MHC molekyler, hvilket gor den eksperimentelle
identifikation af peptid-MHC interaktioner til en seerdeles bekostelig pro-
cedure. Af denne arsag er behovet for in silico peptid-MHC forudsigelses-
metoder opstdet, og over det sidste arti er adskillige sdidanne metoder med
succes blevet udviklet og anvendt til bestemmelse af epitoper.

Mit ph.d.-projekt har veeret dedikeret til at forbedre metoder til
forudsigelse af peptid-MHC interaktioner, ved at udvikle nye strategier til
treening af forudsigelsesalgoritmer baseret pa machine learning-teknikker.

Adskillige algoritmer til forudsigelse af MHC klasse I binding er blevet
udviklet, og anvendes, grundet deres hoje nejagtighed, af mange im-
munologer til at lette den konventionelle eksperimentelle proces til bestem-
melse af epitoper. Npojagtigheden af disse metoder atheenger dog af de
forudseetninger, som definerer det pageldende MHC molekyle. Dette
gor det sveert for en ikke-ekspert slutbruger at veelge den bedst egnede
forudsigelsesalgoritme. Den forste artikel i denne afhandling preesen-
terer en ny, offentligt tilgeengelig konsensusmetode for MHC klasse I
forudsigelser. NetMHCcons forudsigelsesalgoritmen kombinerer tre state-
of-the-art forudsigelsesveerktojer og giver den mest nojagtige forudsigelse
for ethvert MHC molekyle.

Mens metoderne for MHC klasse I binding har opndet en meget hoj nej-
agtighed og anvendes vidt omkring til immunologisk forskning, sa er sit-
uation med MHC klasse II mindre afklaret. En dben bindingskleft, samt
forskelle i polymorfi imellem de MHC-kodende gener, gor forudsigelsen
af peptider til MHC klasse II molekyler til et kompliceret problem. Vi
adresserede disse problemstillinger med henblik péd at udvikle den forste
pan-specifikke forudsigelsesalgoritme, felles for alle tre humane klasse II
isotyper, HLA-DR, HLA-DP og HLA-DQ. Den anden artikel introducerer
NetMHClIpan-3.0 forudsigeren baseret pa kunstige neurale netveerk, som
er i stand til at angive bindingsaffinitet til ethvert humant MHC klasse 11
molekyle.

Kapitel 4 i denne afhandling giver et overblik over de bioinformatiske
veerktejer, som er udviklet af gruppen for Immunologisk Bioinformatik pé
Center for Biologisk Sekvensanalyse. Kapitlet giver detaljerede beskriv-
elser af, hvordan de forskellige metoder til forskning inden for T celle epi-
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topopdagelse anvendes, samt hvordan input skal gives og hvordan output
skal fortolkes.

I det sidste kapitel preesenterer jeg resultaterne af en bioinformatisk anal-
yse af epitoper fra gul feber virus. Analysen fandt at der ikke er nogle re-
gioner internt i poly-proteinet, der indeholder en hejere forekomst af epi-
toper. Derudover blev det vist, at teetheden af epitoper imellem forskellige
proteiner mest athang af proteinets leengde og aminosyresammensaetningen,
hvorved vigtigheden af at forudsige peptid-MHC interaktioner blev demon-
streret. Ydermere har vi, ved hjeelp af gul feber virus epitoper, demon-
steret styrken af %Rank scoren sammenlignet med bindingsaffinitetsscoren
fra MHC forudsigelsesmetoderne, og konkluderer at denne score ber anven-
des frem for bindingsaffinitet til at udveelge potentielle T celle epitoper.

For at opsummere, praesenterer denne afhandling metoder til
forudsigelse af peptidbindinger til bAde MHC klasse I og klasse Il molekyler,
hvilket er vigtigt for at fremme immunologisk forskning i feltet for T celle
epitopbestemmelse, og for generel forstaelse af det celluleere respons.
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Chapter

Introduction

key role in the adaptive immune responses by presenting

peptides to the immune system. In the case of non-self ori-
gin, these peptides are known as epitopes and are the potential cause
of an immune response. A large part of immunological research is
dedicated to the discovery of new epitopes, with the goal to develop
new vaccines and immunotherapies. Due to the thousands of MHC
variants that exist, it is a highly labour and cost intensive procedure
to perform direct experimental studies of peptide-MHC interactions.
Therefore, methods predicting peptide binding to MHC act as re-
source saving tools in epitope discovery.

M AJoR histocompatibility complex (MHC) molecules play a

1.1 The adaptive immune system

The main role of the immune system is to protect organisms from in-
fectious diseases, pathogens, foreign agents and tumour cells. This
is achieved by the generation of various cells and molecules capa-
ble of differentiating self from non-self components and eliminating
them. In jawed vertebrates the immune system consists of two parts:
innate immunity and adaptive immunity, which work in collabora-
tion to protect the body. The innate immune system acts as the first
line of defence, protecting the organism from invading pathogens in a
rapid and non-specific manner. The adaptive immune system, on the
other hand, is capable of recognizing foreign agents in a specific man-
ner, eliminating them, and developing an immunological memory so
that, if the immune system encounters the same pathogen again, a
rapid and highly effective response will be triggered.

1



Chapter 1. Introduction

The adaptive immune system comprises a large number of cells
and molecules that participate in the processes of non-self antigen
recognition, pathogen elimination and development of immunolog-
ical memory. The two arms of the adaptive immune system are the
humoral immune system, with the key cells being B lymphocytes, and
the cellular immune system, where T lymphocytes play the main role.
B lymphocytes, or B cells, secrete antibodies that circulate in blood
plasma and lymph, and are able to recognise pathogenic invaders and
neutralise them. Another important function of B cells is their abil-
ity to differentiate into memory cells that have a long lifespan and
trigger a fast immune response in case of the host encountering the
same antigen again. As opposed to B cells, T cells are not capable of
recognising free antigens, and their interactions with MHC molecules
are required for the activation of the immune system. There are two
classes of MHC molecules, MHC class I and MHC class II, which are
associated with different groups of T cells [1, 2]:

¢ Cytotoxic T lymphocytes (CTL) recognise peptides from the in-
tercellular environment presented on MHC class I molecules ex-
pressed on all nucleated cells. CTLs are effector cells with the
ability to recognise and kill infected cells. CTLs are also known
as CD8™ cells due to the CD8 glycoprotein receptor they express
on the surface [3, 2].

e T helper cells are also called CD4" cells since they express the
CD4 receptor. Through secretion of various cytokines, T helper
cells activate other cells of the immune system such as B cells,
CD8* cells, macrophages etc. CD4" cells recognise antigens
from the extracellular environment loaded on MHC class II
molecules expressed by so-called antigen presenting cells (APC)
including B cells, macrophages and dendritic cells [4, 2].

1.1.1 Major histocompatibility complex molecules

Major histocompatibility complex molecules play a crucial role in the
cellular immune system by presenting pathogen-derived peptides on
the cell surface for recognition by T lymphocytes. Peptides presented
by MHC class I and class I molecules originate from different sources
via different antigen presentation pathways. Moreover, MHC class I
and class II molecules differ in their protein structure, leading to a dif-
ferent conformation of their binding cleft. This section presents MHC
class I and class Il molecules from a structural and functional point of
view.



1.1. The adaptive immune system

1.1.2 MHC class I

Peptides presented by MHC class I molecules derive from cytosolic
and nuclear proteins that have been degraded by the proteasome.
Such peptides, usually composed of 8-11 amino acids, are trans-
ported into the endoplasmic reticulum (ER) by the transporter associ-
ated with antigen processing (TAP). The ER is the place where MHC
molecules are assembled and loaded with peptides that by their struc-
ture and biological properties fit into the binding groove of the MHC
molecule [2, 5]. Peptide binding to MHC is a very selective process. It
has been estimated that only one out of 200 random natural peptides
would bind to a given MHC class I molecule [6]. When a peptide binds
to an MHC class I molecule, the stable peptide-MHC complex, with
the help of chaperones, is transported to the cell surface through the
Golgi apparatus (Figure 1.1a) [2, 5].

MHC class I molecules are membrane glycoproteins composed
of a heavy chain (x) and a p2-microglobulin (f2m) chain. The «
chain consists of three domains: transmembrane a3 domain and
membrane-distal #1 and a2 domains (Figure 1.2a). The a1 and a2 do-
mains form the binding groove [7, 8]. For MHC class I molecules, the
binding groove is closed at both ends, restricting the length of binding
peptides to fall in the range of 8-11 amino acids (Figure 1.2b).

In humans, MHC molecules are called human leucocyte antigen
(HLA) system. Heavy MHC class I chains are encoded on chro-
mosome 6 by three very polymorphic genes: HLA-A, HLA-B, and
HLA-C. Thousands of different allelic versions of HLA exist [9] with
the most polymorphic residues located within the binding cleft, re-
sulting in a large number of possible MHC molecules with different
binding specificities [2]. Such a vast polymorphism is a huge draw-
back in the process of epitope discovery and creation of new vac-
cines. Therefore, pan-specific methods capable of giving predictions
even for uncharacterized MHC molecules play a very important role.
Such pan-specific peptide-MHC binding prediction algorithms are
presented later in this chapter followed by the details on specific tools
given in Chapter 2 and 4 of this thesis.

1.1.3 MHC class II

As opposed to MHC class I, MHC class Il molecules bind peptides de-
rived from proteins taken up from extracellular environment. MHC
class I molecules are initially assembled in the endoplasmic reticulum
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a) CDs*Teell b) CD4* T cell
~__ - Exogenous \ =
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Proteins in Proteasome
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or nucleus

Figure 1.1. MHC class I and class II antigen presentation pathways. a) MHC
class I presents peptides from cytosolic and nuclear proteins degraded by the
proteasome. These peptides are transported into the ER by the TAP receptor
where they are loaded on MHC class I molecules. Stable peptide-MHC com-
plexes are then transported to the cell surface through the Golgi system. b)
MHC class II molecules bind peptides from exogenous proteins that are taken
up into the cell by endocytosis or phagocytosis. MHC class II molecules are
assembled within the ER and transported through the Golgi system to MIIC.
Eventually endosomes containing degraded proteins fuse with the MIIC com-
partment, where peptides are loaded on MHC class II molecules. Finally,
peptide-MHC complexes are transported to the plasma membrane for presen-
tation to CD4™ cells. Figure source [2].

and transported through the Golgi aparatus to the MHC class II com-
partment (MIIC). Proteins taken up by the process of endocytosis or
phagocytosis are cleaved by proteases and form endosomes that even-
tually fuse with the MIIC. Finally, after loading the peptides on MHC
molecules within MIIC, peptide-MHC complexes are transported to
the plasma membrane to be presented to CD4™" T lymphocytes (Figure
1.1b) [2, 10].

Structurally, MHC class Il molecules are very different from MHC
class I. MHC class II molecules are heterodimers composed of «
and B chains, both having transmembrane domains (#2 and B2) and
membrane-distal domains (a1 and B1, Figure 1.2¢) [11, 12]. The a2
and B2 domains compose the peptide binding pocket which is open
at both ends and is able to accommodate peptides of 15-20 residues,
or even whole proteins (Figure 1.2d) [13, 14].



1.1. The adaptive immune system

Figure 1.2. Protein structures of MHC class I and MHC class II molecules.
a) MHC class I structure of HLA-A*0201 with peptide LLEGYPVYV (PDB en-
try 1DUZ [15]) showing a1, a2, 3 domains (light blue), B2-microglobulin (f2m)
(green) and the peptide (red). b) Binding pocket of the same peptide-MHC com-
plex demonstrating the closed binding groove of MHC class I molecules. c)
Structure of MHC class II molecule HLA-DRA*0101-DRB1*0301 with the 15-
mer peptide PVSKMRMATPLLMQA (PDB entry 1A6A [16]). al and a2 do-
mains are shown in cyan, B1 and B2 in light blue, and the peptide is shown in
red. d) Top view of the same MHC class II and peptide complex showing that
the binding groove is open at both ends and that the peptide extends outside
of the pocket. The figure was made using the PyMOL software [17].

In humans, MHC class II encoding genes also lie within chromo-
some 6. Three different loci encode the a and B chains: HLA-DR,
HLA-DP, and HLA-DQ. In the case of HLA-DR, only B chain en-
coding loci (DRB) have been found to be polymorphic, therefore
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the binding specificities of HLA-DR molecules are determined by
DRB, and a specific molecule can be denoted by an allele name, e.g.
HLA-DRB1*0101. Regarding HLA-DP and HLA-DQ, both « and B
chains display polymorphism and a specific molecule can be identi-
fied by specifying the names of the alleles encoding both chains, e.g.
HLA-DPA1*0201-DPB1*0501 [11, 10, 18].

1.2 Bioinformatics methods

This section presents bioinformatics tools used in the work presented
in this thesis, including some details about the machinery underlying
our prediction methods, as well as ways to evaluate and benchmark
them.

1.2.1 Artificial neural networks

In biology, binding motifs of amino acid or nucleotide sequences in bi-
ology can be predicted by different methods. In cases where binding
specificity at one position of the motif is independent from the other
positions, so-called position-specific scoring matrices (PSSM) can be
used [19] . Such matrix-based approaches often act as a good first ap-
proximation of the receptor binding motif. However, due to structural
constraints, ligand residues must compete for the space in the recep-
tor binding pocket. This is also the case for MHC molecules. Indeed,
it was demonstrated by Nielsen et al. that there is a signal of mutual
information between the seven non-anchor residue positions (1, 3, 4,
5, 6,7, and 8) of HLA molecules [20]. To handle such mutual infor-
mation, higher order correlations need to be captured, and this can be
solved by artificial neural networks (ANN) with hidden layers.

Artificial neural networks belong to the group of machine learn-
ing techniques that at first are trained to associate different patterns
from the large sets of data, and are capable of predicting the outcome
of a new example afterwards. Structurally, ANNs are similar to bi-
ological neural networks within the brain. Neural networks consist
of a large number of interconnected neurons influencing each other
by sending information via synapses. The most simple, and most
often used in bioinformatics, is a so-called feed-forward multilayer
network. The structure of the feed-forward network is similar to the
structure described by Rumelhart et al. [21]. Feed-forward multilayer
networks were also used for development of the methods presented
in this work.
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A schematic representation of a feed-forward neural network is
shown in Figure 1.3. The network consists of an input layer composed
of five neurons, one hidden layer with four neurons and an output
layer with a single neuron. The input layer contains input data in some
numeric encoding (presented later in this chapter). An artificial neural
network may contain more hidden layers, and the output layer may
consist of many neurons. Each unit of the network receives signals via
synapses with associated weights from the neurons of the previous
layer. These weights are real numbers quantifying the influence that
one neuron has on the other. A total influence received by one neuron
can be calculated by summation of all the weighted inputs. In our
example, the input received by the output layer neuron O; would be
expressed as:

0j = ZHiwi]' (11)
i

An output of each neuron is then calculated as a function of its
input using a non-linear transfer function f(x) as follows:

The most commonly used function is a sigmoid function expressed
as:

FO) = g

A neuron is activated and sends input to the neurons in the next
level if its output value is above a certain threshold.

(1.3)

Training of ANNs

In order for an artificial neural network to give predictions, it first
needs to learn patterns in the data from a set of training examples.
The training process of an ANN corresponds to the optimization of
network parameters that in the feed-forward networks correspond to
the weights between neurons. During training, the network receives
associated input and output values from the training set. Initially, all
weights are assigned to random values and are updated using back-
propagation during multiple iterations to minimize the error between
the output presented to the network as the target and the output cal-
culated by the network. Back-propagation is conventionally imple-
mented using gradient descent methods [22].
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Input layer

Hidden layer

Output layer

Figure 1.3. Schematic representation of a feed-forward network with one hid-
den layer. The units of each layer are connected to all the neurons from the next
layer. In our example, hidden layer (i) is fully connected to the output layer ()
by the weigths w;;.

Biological sequence encoding

The mathematical model behind the architecture of neural networks
implies that the input to the network must come in numerical format.
In biology, however, we normally have sequences of peptides or pro-
teins that we want to give as an input to the neural network. To allow
this, several encoding schemes for converting amino acid sequences
to numerical strings have been developed. Two of the most often used
schemes are sparse and BLOSUM encodings. In sparse encoding, each
amino acid is represented as a 20-bit vector composed of 19 zeros, and
one position, whose index encodes the amino acid, is set to "1". For
example, alanine as the first amino acid in the alphabet would be rep-
resented as 10000000000000000000.

As opposed to sparse encoding, the BLOSUM encoding scheme
is based on biological properties of amino acids and takes their sim-
ilarities into account [23]. The encoding is based on a 20x20 substi-
tution matrix and the intersection between two amino acids is associ-
ated with a substitution value based on their similarity [20]. The most
commonly used (and the one used in the work presented here) is the
BLOSUMBS50 matrix.

1.2.2 Pan-specific prediction methods

Prediction methods for peptide-MHC binding can be divided into
two main groups: allele-specific and pan-specific methods. Allele-
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specific predictors are trained using only peptide sequences and their
binding affinities to one specific MHC molecule. Therefore, these
methods are able to give predictions only to the molecules that have
been part of the training set. On the contrary, pan-specific meth-
ods have a power to extrapolate from known MHC molecules to the
ones with limited or no experimental peptide binding data. This is
achieved by including information about MHC molecules in the train-
ing procedure.

For the pan-specific methods presented in this thesis, MHC class I
and class Il molecules are represented by a so-called pseudo sequence.
Pseudo sequence consists of residues from the peptide binding groove
of the molecule that are in potential contact with the peptide. These
residues are within 4.0 A of the peptide in one or more MHC class
I or class II structures available in the Protein Data Bank (PDB). In
addition, only the important residues that are polymorphic across se-
quenced MHC molecules are included in the pseudo sequence. Figure
1.4 shows pseudo sequence in the structure of HLA-A*0201.

Figure 1.4. MHC pseudo sequence representation. Residues comprising
pseudo sequence are highlighted in blue in the structure of the HLA-A*0201
molecule (PDB entry 1DUZ [15]).

Pseudo sequence representing MHC molecules is encoded and fed
to the neural network together with the peptides and their associated
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binding affinity. Binding affinities are also transformed to be suitable
for the ANN training by making them fall between 0 and 1 using the
relation: 1—1log(IC50nM)/log(50,000). An example input for training
of a pan-specific method is given in Table 1.1.

Table 1.1. Example input, before encoding, for pan-specific prediction methods
presented in this thesis. MHC molecules are represented by pseudo sequences.
Binding affinities are log-transformed to fall between 0 and 1.

Peptide Pseudo sequence Log-affinity
AEFWDVFLS  YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY 0.0847
ADPVDAVIN  YYAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY 0.2890
IRHHVRWAL  YHTEYRNICAKTDVGNLYWTYNFYTWAVLAYEWH 0.4350

YIRRNMINK  YYAMYRNNVAQTDVDTLYIMYRDYTWAVWAYTWY 0.5266
KAGQYVTIW  YDSGYREKYRQADVNKLYLWYDSYTWAEWAYTWY 0.3436
YTAVVPLVS YTAMYLQNVAQTDANTLYIMYRDYTWAVLAYTWY 0.0014

1.2.3 Cross-validation

In order to assess the predictive performance of the neural net-
works, we have to evaluate how well the method generalises to an
independent data set. This is done by training the ANNs using
cross-validation, where a full data set is divided into a number (1)
of subsets. The training procedure is repeated n times with the ANNs
being trained on 1 — 1 subsets. Each time the remaining subset is used
as a test set to obtain predictions. At the end, the results are combined
and a performance score is calculated. In the work presented here we
used 5-fold cross-validation as depicted in Figure 1.5. The networks
are using 4/5 of the data for training and 1/5 to test the performance.
The procedure is repeated five times so that each subset is used as a
test set once.

Nested cross-validation

The above mentioned cross-validation procedure is very commonly
used with machine learning techniques. However, in some cases,
in addition to evaluation of the predictive performance, the test set
is used to stop the training in order to avoid overfitting. The stop-
ping procedure can be very important when training neural networks
in order to ensure their generalisability. As depicted in Figure 1.6,
the prediction error on the training set continuously decreases dur-
ing training, while the error on the test set reaches a minimum and
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Test set Training set

Test set

Training set

Figure 1.5. Schematic representation of a 5-fold cross-validation setup. In
each round, one subset of the data is used as a test set (orange) while the other
4/5 of the data set (blue) are used to train the neural network. The procedure is
repeated five times, giving the role of a test set to a different subset once.

starts to increase. This means that the network became too specific to
the training set and is able to learn it better and better. At the same
time, the network is loosing its ability to generalize on the test set,
which means that the network shows overfitting. Therefore, the test
set can be used to terminate training when the prediction error reaches
the minimum. However, using cross-validation training in this setup,
there is a potential to overestimate the predictive performance due to
the fact that the test set is used both to stop the training and to evalu-
ate the predictive performance of the network. To avoid that, a nested
cross-validation procedure should be employed as showed in Figure
1.7. In 5-fold nested cross validation, the data is split into five sub-
sets and in each round one subset used as evaluation set is completely
taken out from the training data. On the remaining data set, 4-fold
cross-validation is then performed as presented previously. When the
optimal parameters have been found by the 4-fold cross validation, the
evaluation set is used to get predictions using an average of the four
networks from the cross-validation. The procedure is repeated five
times, each turn changing the evaluation set.

1.2.4 Performance measures

In order to evaluate the predictive power of a prediction method, dif-
ferent performance measures can be used, depending on whether the
outcome of a prediction method is quantitative (e.g. giving real bind-
ing affinity values) or qualitative (e.g. classifying binders and non-
binders). The two measures mainly used in the work presented here

11
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Figure 1.6. Training of a neural network with overfitting. Training set and
test set error is shown as a function of training cycles (epochs). After reaching
the minimum, the test set error increases while the training set error steadily
decreases.

are Pearson's correlation coefficient (PCC) [24] and area under receiver
operating characteristic curve (AUC) [25].

Pearson's correlation coefficient

Pearson's correlation coefficient is a widely used measure for evaluat-
ing quantitative prediction methods. It is a linear correlation coeffi-
cient calculated as

PCC — Zi(ai; a)(pi —p) _ (1.4)
VEi(ai —a)*/(Zi(pi — p)?
where g is a measured value, p is a corresponding predicted value,
and @ and p denote the mean values of a and p, respectively. The val-
ues of PCC vary between —1 and 1, with 1 indicating a perfect positive
correlation, —1 showing a complete negative correlation, and a value
of 0 corresponding to a random prediction.

Receiver operating characteristic curve and AUC

For a prediction method that classifies the output into positives and
negatives, one can make a contingency table [25] which in machine
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Evaluation set

Training set

— @

Inner 4-fold cross-validation

Training set

Figure 1.7. Nested cross-validation. In each round, 1/5 of the data is used as
evaluation set (green) and is not included in the training process. The rest of the
data (blue) is used for 4-fold inner cross-validation to get optimal parameters
of the network. The four optimal networks from each inner cross-validation
round are averaged and used to predict the outcome of the evaluation set.

learning is often called a confusion matrix (Figure 1.8). Based on the
agreement between an output produced by a prediction method and
a target value, the results are divided into four groups: true positives
(TP) (actual positives predicted as positives), true negatives (TN) (ac-
tual negatives predicted as negatives), false positives (FP) (actual neg-
atives predicted as positives), and false negatives (FN) (actual posi-
tives predicted as negatives).

From a confusion matrix, the sensitivity of a method can be cal-
culated as the fraction of actual positives (AP) that are correctly pre-
dicted (TP): Sensitivity = ZE. Another useful measure is specificity
which is calculated as the fraction of actual negatives (AN) that are
correctly predicted (TN): Specificity = ZX-.

For quantitative data, such as peptide-MHC binding affinities,
sensitivity and specificity can be used to obtain a so-called receiver op-
erating characteristic (ROC) curve. Classifying the data into binders
and non-binders, the curve is made by plotting for different predic-
tion threshold values the sensitivity against (1— specificity). For the
actual values a threshold has to stay fixed dividing all the data into
binders and non-binders. In the case of MHC binding, peptides with

13
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Predicted value

Positive | Negative

TP | FN

Actual value

FP | TN

Negative | Positive

Figure 1.8. Confusion matrix for classification problems. The output of the
predictor is compared to the target values, thus dividing prediction results into
four groups: true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN).

an affinity stronger than 500 nM are conventionally considered bind
MHC molecules [26]. As stated above, AUC refers to the area under
the ROC curve and is used as a measure of the predictive performance
of a method. An AUC value close to 1 indicates a perfect predictive
performance and a high positive correlation between actual and pre-
dicted values. A value of 0 corresponds to a negative correlation, and
an AUC of 0.5 corresponds to a random prediction.

1.2.5 Evaluation strategies

The performance of peptide-MHC prediction methods is normally
evaluated by calculating performance measures for each query MHC
molecule. For pan-specific methods, in order to evaluate how well a
method performs on the molecules that are not part of the training set,
a leave-one-out approach (LOO) is used. In this case, all the binding
data associated with a molecule in question is excluded from the train-
ing set which is used to train the method. After the training process,
the predictive performance of the method for the query allele is eval-
uated using the excluded data. The query molecule is then changed
to another one and the procedure is repeated as many times as there
are molecules in the data set.

For the data sets used in this work, a large number of peptides
have been measured for their binding to multiple MHC molecules.
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Commonly these peptides share very similar binding affinities to sev-
eral alleles, as presented in the example in Table 1.2 for the peptide
AAAATCALV. Several MHC molecules having similar pseudo se-
quences and close binding affinities to the same peptide, provide an
advantage for an artificial neural network to learn their binding speci-
ficities. Due to this characteristic, the LOO evaluation approach must
in such cases be adjusted in order to ensure unbiased evaluation of the
predictive performance of the method. This is achieved by not only re-
moving the binding data for the allele in question, but also removing
common peptides between evaluation and training sets. However, us-
ing this strict LOO setup might lead to a significant reduction of the
training set, leaving the method with too few data points to learn gen-
eral features. In order to avoid this, only 1/3 of the common peptides
are removed from the training set at once. Such a training and eval-
uation procedure is schematically depicted in Figure 1.9. Firstly, an
evaluation set composed of data for one molecule is split into three
subsets: E1, E2, E3. Then, we remove peptides common between a
training set and each of the evaluation subsets, resulting in three re-
duced training sets (T1, T2, T3). We note that here, the data for a query
molecule is already removed from the initial training set. Each re-
duced training set is used to train artificial neural networks in a 5-fold
cross-validation manner. As a result, we obtain three trained ANNSs:
ANN1, ANN2 and ANN3. Each network is then used to predict the
output of its corresponding evaluation subset. Finally, all the predic-
tions are combined to assess the predictive performance (in terms of
PCC or AUC) of the method for the query molecule.

Table 1.2. Binding affinities of peptide AAAATCALV measured to several
MHC class I molecules. Binding affinities are log-transformed, as explained
in section 1.2.2.

Molecule name Pseudo sequence Log-affinity
HLA-A*0202 YFAMYGEKVAHTHVDTLYLRYHYYTWAVWAYTWY 0.7519
HLA-A*0203 YFAMYGEKVAHTHVDTLYVRYHYYTWAEWAYTWY 0.7964
HLA-A*0201 YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY 0.6568
HLA-A*0206 YYAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY 0.7667

15
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Figure 1.9. Schematic representation of the LOO training and evaluation
strategy used in this work. Evaluation set corresponds to the data of a query
molecule (blue) which is already excluded from the training set (red). Three
reduced training sets (T1, T2, T3) are obtained by removing common peptides
between the training set and three corresponding evaluation subsets: E1, E2, E3.
Using 5-fold cross-validation, each reduced training set produces an ANN with
optimized parameters: ANN1, ANN2 and ANN3. Each network is evaluated
using the corresponding evaluation subset, and the predictive performance is
obtained by combining all predictions.

16



Chapter

NetMHCcons: a consensus method for
MHC class I predictions

tion accuracy developed to date introduces difficulties for im-

munologists to choose the most suitable predictor for their re-
search goals. Several state-of-the-art methods have been developed in
our group within the recent years, and all of them differ in their accu-
racy depending on the conditions defining the query MHC molecule.
This chapter addresses the issue of confusion among the large number
of prediction tools available for MHC class I and presents a consensus
method NetMHCcons combining three state-of-the-art methods devel-
oped by our group.

T HE plethora of MHC class I prediction methods of a high predic-

2.1 Allele-specific and pan-specific methods

As presented in section 1.2.2, the main division between MHC predic-
tion tools is based on whether the method is able to extrapolate from
MHC molecules with defined binding specificities to whose with un-
characterized binding. As indicated by the name, allele-specific meth-
ods can only give predictions to MHC molecules (also called alleles in
this chapter) which are part of the training data sets. NetMHC is a
state-of-the-art allele-specific method developed in our group and is
included in the analysis presented in this chapter [27, 20]. The method
was benchmarked to be one of the best predictors in several indepen-
dent studies [28, 29]. The NetMHC method is based on ANNs and
has the power to accurately predict binding for peptides within the
range of 8-11 amino acids, despite the fact that most of the training
data include measurements for 9-mer peptides [27].

17
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The main properties defining MHC molecules for the
allele-specific methods, which influence their prediction accuracy,
are number of peptides and number of binders [30, 31, 32]. Here, the
number of peptides refers to the amount of peptide-MHC measure-
ments available in the training set for a particular MHC molecule,
and the number of binders quantifies actual binding peptides with an
affinity stronger than 500 nM.

A second group of MHC predictors consists of methods that are
able to learn MHC binding specificities and generalize to molecules
with very few or no binding measurements available. These are
so-called pan-specific methods that include the MHC molecule in a
form of pseudo sequence into the training process as presented in sec-
tion 1.2.2. In our study, we included the NetMHCpan method which
was demonstrated to rank at the top among pan-specific predictors
[32].

One more method involved in the consensus predictor is the
PickPocket method, which differs from the other two predictors by the
underlying algorithm. The PickPocket approach is based on the fact
that the peptide binding groove of MHC molecules has several pock-
ets that always interact with a particular part of the peptide. There-
fore, by comparing similarities of the pockets from MHC molecules
with known specificity and query molecules, it is possible to predict
new binding peptides for novel MHC molecules [31]. The PickPocket
method, when compared to ANN-based predictors, was shown to
give high accuracy predictions for molecules with low similarity to the
data available for training, allowing the extended use of the method
to non-human species [31].

For pan-specific methods, prediction accuracy on novel MHC
molecules correlates with their sequence similarity to the molecules
from the training set. Here, the two molecules are compared by us-
ing their pseudo sequences and calculating a pseudo-distance, as de-
scribed by Nielsen et al. [33].

2.2 Paperl

The following paper was published in the journal Immunogenetics in
October 2011. Supplementary material for this paper is given in Ap-
pendix A.
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NetMHCcons: a consensus method for the major
histocompatibility complex class I predictions

Edita Karosiene, Claus Lundegaard, Ole Lund, and Morten Nielsen

Center for Biological Sequence Analysis, Department of Systems Biology,

Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract

A key role in cell-mediated immunity is dedicated to the major his-
tocompatibility complex (MHC) molecules that bind peptides for pre-
sentation on the cell surface. Several in silico methods capable of pre-
dicting peptide binding to MHC class I have been developed. The ac-
curacy of these methods depends on the data available characterizing
the binding specificity of the MHC molecules. It has, moreover, been
demonstrated that consensus methods defined as combinations of two
or more different methods led to improved prediction accuracy. This
plethora of methods makes it very difficult for the non-expert user to
choose the most suitable method for predicting binding to a given MHC
molecule. In this study, we have therefore made an in-depth analysis
of combinations of three state-of-the-art MHC-peptide binding predic-
tion methods (NetMHC, NetMHCpan and PickPocket). We demonstrate
that a simple combination of NetMHC and NetMHCpan gives the high-
est performance when the allele in question is included in the training
and is characterized by at least 50 data points with at least ten binders.
Otherwise, NetMHCpan is the best predictor. When an allele has not
been characterized, the performance depends on the distance to the
training data. NetMHCpan has the highest performance when close
neighbours are present in the training set, while the combination of
NetMHCpan and PickPocket outperforms either of the two methods for
alleles with more remote neighbours. The final method, NetMHCcons,
is publicly available at www.cbs.dtu.dk/services/NetMHCcons, and
allows the user in an automatic manner to obtain the most accurate
predictions for any given MHC molecule.

Keywords MHC class I - T cell epitope - MHC binding specificity -
Peptide-MHC binding - Consensus methods - Artificial neural network

19



Chapter 2. NetMHCcons: a consensus method for MHC class I predictions

20

2.2.1 INTRODUCTION

Major histocompatibility complex (MHC) molecules play a key role
in cell-meditated immunity binding antigenic peptides and present-
ing them for recognition by the immune system on the cell surface.
Through antigen processing, proteins produced within a cell are de-
graded into short peptides, usually of 8-11 residues in length that
may then be loaded on MHC-I molecules and presented on the cell
surface. In this way, cytotoxic T lymphocytes are capable of recog-
nizing the infected cells and triggering an immune response. Thou-
sands of different allelic versions of MHC molecules exist [34], mak-
ing complete experimental characterization of peptide-MHC interac-
tions highly cost-intensive. A number of in silico prediction methods
for peptide-MHC binding have therefore been successfully developed
during the last decade (for a review, see, e.g., [35]). It has been demon-
strated that the predictive performance of MHC peptide binding pre-
diction methods depends strongly on both the number of peptides
and the number of actual binders available for training [30, 31, 32]. For
pan-specific methods, the performance has moreover been demon-
strated to dependent strongly on the amino acid sequence distance
to the nearest allelic neighbour in the data used to train the method
[36, 31]. Moreover have several benchmark studies shown that con-
sensus methods defined as a simple average of two or more different
methods can lead to improved prediction accuracy [37, 38, 39, 31, 32].
This means that one method or sets of methods may perform well for
one given MHC molecule while performing poorly for others. Even
though several benchmarks have been carried out to compare MHC
binding methods and rank them based on their prediction accuracy
[29, 28, 31, 32], it remains a highly non-trivial task for the end-user to
select the best suitable method for a given MHC molecule.

The objective of this study was to address this problem and de-
fine a method that for any given MHC molecule in an automatic man-
ner defines an optimal combination of a series of prediction meth-
ods, allowing the non-expert end-user to obtain accurate binding pre-
dictions. Three state-of-the-art methods NetMHC, NetMHCpan and
PickPocket were included in this study. NetMHC is an artificial neural
network-based (ANN) allele-specific method, capable of predicting
binding only to the molecules on which it has been trained [27, 20].
The two other methods are pan-specific meaning that they are able
to predict peptide binding also to MHC molecules for which limited
or no experimental peptide binding data is available. NetMHCpan, is
ANN-based [36, 33], and the PickPocket method is matrix-based and
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relies on receptor-pocket similarities between MHC molecules [31].
The choice of methods to be analyzed was made based on previous
benchmark studies. NetMHC and NetMHCpan methods have in sev-
eral large-scale benchmark studies been demonstrated to be among
the best publically available predictors [35, 28, 32]. Even though the
PickPocket method has not in any benchmark studies been shown to
provide a superior performance, it has been demonstrated that the
method for alleles with no close neighbours can improve binding
affinity predictions when combined with NetMHCpan [31]. All the
methods were benchmarked using a large and diverse set of quantita-
tive peptide binding affinity measurements, covering more than 100
MHC class I alleles.

It is apparent that not all methods can be applied to predict bind-
ing to any chosen MHC molecule. For example, the NetMHC method
is available only if the allele in question is also part of the training
set used to develop the method. On the other hand, the pan-specific
NetMHCpan and PickPocket methods are capable of predicting bind-
ing to any MHC molecule with known protein sequence. The de-
velopment of the consensus method was guided by simplicity and
robustness. This means that the combination of two or more meth-
ods was only included into definition of the final method if it demon-
strated a significantly improved performance compared to the indi-
vidual methods within the analysed conditions. In the paper, we
first benchmark each method individually and evaluate their perfor-
mance under different settings. Next, given these results, the consen-
sus method is defined in an allele-specific manner as a combination of
one or more prediction methods, and finally is the consensus method,
NetMHCcons, validated against an independent data set.

2.2.2 MATERIALS AND METHODS
Data set

The benchmark data set consists of quantitative nonameric
peptide-MHC class I binding data with a submission date prior
to September 2009 retrieved from the IEDB [40] and an in-house
MHC-peptide binding database. In total, it consists of 101,728 unique
peptide-MHC class I interactions covering 101 alleles: 34 HLA-A, 35
HLA-B, one HLA-C, one HLA-E, 11 chimpanzee (Patr), 12 rhesus
macaque (Mamu), one gorilla (Gogo), and six mouse alleles. Table
A.1 contains a detailed description of the benchmark data set. All
peptide binding measurements were obtained as IC50/EC50 values
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and for this study were log-transformed to fall in the range between 0
and 1 using the relation 1-log(IC50nM)/log(50,000) [20].

Analyzed methods and conditions

For our analysis, we used in-house versions of NetMHC, NetMHCpan
and PickPocket trained and evaluated on the MHC class I bench-
mark data set. Having both allele-specific (NetMHC) and pan-specific
(NetMHCpan and PickPocket) methods in the benchmark resulted into
two analyzed conditions: (1) when allele in question is part of the
training set; (2) when allele in question is not part of the training set.

When an allele for which the binding should be predicted was not
part of the training data, the analysis reduced to include only the two
pan-specific methods. In all other cases, the analysis included all three
methods. In order to obtain a reliable performance when evaluating
the methods, we constructed a reduced data set consisting of 78 alle-
les, for which at least 50 data points were available and at least ten of
them were binding peptides (i.e., having an affinity stronger than 500
nM). This reduced data set is presented in Table A.2.

Evaluation strategies

When training ANNSs, it is critical to define a strategy to avoid overfit-
ting. Conventionally, this is done using a test set to stop the network
training when the performance on the test set is optimal. This is a
highly CPU-intensive procedure since the evaluation must be made
using nested cross-validation. For 5-fold nested cross-validation for
instance, the data is split into five subsets. In each round, one subset
is employed as evaluation set and is not included into training process.
The remaining four subsets are used in the inner cross-validation loop
where four networks are constructed each using three sets to train the
network and one set used to stop the training to avoid overfitting. The
binding predictions of the peptide in the evaluation set are next calcu-
lated as a simple average of the four networks in each cross-validation
ensemble. Another faster strategy for cross-validation is to use the test
set as evaluation data. In this setting, the test set is used both to stop
the network training in order to avoid overfitting, and to evaluate the
predictive performance. This cross-validation approach has an inher-
ent potential of overestimating the predictive performance.

To evaluate to what degree the use of the faster training strat-
egy led to an overestimation of the predictive performance, the two
different evaluation strategies were compared for the NetMHC and
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NetMHCpan methods in terms of Pearson's correlation coefficients
(PCC). As the PickPocket method has no stopping procedure, this
method was not included in this comparison.

Our analysis showed that the difference between evaluation on
independent data sets compared to evaluation on test sets during
cross-validation is significant for the NetMHC method when the data
set is smaller than 1,000 data points (p=0.02), and not significant for
the sets with 1,000 or more data points (p=0.15). For the NetMHCpan
method, which always has a large evaluation set, no difference in
performance was observed between the two evaluation strategies
(p=0.19) (see Figure A.1). As aresult of this and in order to reduce the
computational efforts, we have for the further analysis chosen to use
independent set for NetMHC evaluations and make the NetMHCpan
evaluations on the test sets during cross-validation, which is a much
faster approach.

In order to evaluate the predictive performance of NetMHCpan
and PickPocket for alleles, which are not part of the training data, a
leave-one-out (LOO) approach was used, meaning that the data for
the allele in question was excluded from the training set. One impor-
tant characteristics of the benchmark data set is that many peptides
have been tested for binding to multiple MHC molecules. Given this
nature of the peptide data set, it is essential to design the LOO train-
ing strategy so that not only data for the specific allele in question is
removed from the training, but also peptides common between the
evaluation and training sets. In doing this, we assure that neither the
MHC molecule nor the peptides are present in the training and eval-
uation sets at the same time. In order to avoid reducing the training
set too much in this strict LOO setup, the evaluation set was split into
three subsets and the performance for each subset was evaluated. Set-
ting the number of evaluation subset partitions to three was based on a
compromise between increase in calculation time and the accuracy of
performance estimation. A small number of subset partitions would
be computationally fast but would lead to relative large reductions
in the size of the training data, and likewise would a large number of
subset partitions be computationally costly but lead to only a minor re-
duction in the size of the training data. A small evaluation of the per-
formance as a function of the number of evaluation subset was carried
out for the HLA-A*0201 allele. This is the allele in the data set char-
acterized by the largest number of peptide measurements, and hence
is the example where the peptide overlap to other molecules should
be the highest. This evaluation demonstrated that only limited gain
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in performance was achieved for subset divisions larger than three
(data not shown), therefore leading us to use three subset through the
benchmark evaluation.

Calculation of pseudo-distance to the nearest neighbour

Pseudo-distance between two alleles was calculated from the pseudo
sequences of MHC molecules as described in [33]. The nearest neigh-
bour for a specific allele is defined as the molecule from the neigh-
bour reference which includes MHC molecules with more than 50
data points and more than ten binders [36], with the smallest pseudo-
distance to this allele.

Defining the consensus method

A consensus method is defined in terms of combinations of two or
more different individual methods. Here, we use a simple average of
the raw log-transformed prediction scores from each method to define
the consensus method. Combined methods are represented using a
plus sign "+" in this study. For each allele, the performance of each
prediction method and their possible combinations were given as PCC
between the log-transformed predicted and measured binding affini-
ties.

Validation of the consensus method

An independent evaluation set consisting of data from the IEDB [40]
and an in-house MHC—-peptide binding database with a submission
date after September 2009 was constructed. This validation data set
had no overlap with the training set. In this way, we ensured that
the final consensus method was not trained and evaluated using the
same data points. In order to obtain reliable evaluations, the only al-
leles characterized by at least ten data points and at least two binders
were included. The validation data set included 14,923 peptide-MHC
binding data and covered 62 alleles (see Table A.3). Part of these alle-
les (46) were included in the training data set, hence allowing a vali-
dation of the consensus method in two conditions: (1) for the alleles
in question being part of the training data and (2) for the novel alleles
not described in the training data.
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Statistical analysis

In this study, the evaluation of significance of the observed differences
between the results was performed using one-tailed paired t-test with
a significance level of 0.05. If a very low p value was obtained during
analysis, it is then stated as "p<0.0001" and not by exact value.

2.2.3 REsuLTS

The objective of this study was to define a strategy that for any given
MHC molecule defines an optimal combination of a series of pre-
diction methods, allowing the non-expert end-user in an automated
manner to obtain accurate binding predictions for any given MHC
molecule. The "Results" section falls into three subsections. First, we
illustrate the end-user problem of identifying which method to use
for binding prediction for a given MHC molecule, next we analyse
in a large-scale benchmark how a simple yet powerful setting can be
defined leading to a consensus method that consistently outperforms
all single methods included in the benchmark, and finally the consen-
sus method is validated on an independent data set of MHC peptide
binding measurements not included in the method development.

Performance variations of different methods

The motivation to perform this study was based on earlier observa-
tions that different methods give different prediction results in differ-
ent conditions. To illustrate this, we compared how two ANN-based
methods (NetMHC and NetMHCpan) that were trained on identical
data would handle a given prediction task. A protein sequence was
submitted to the NetMHC and NetMHCpan methods, trained on the
benchmark data set, and the methods were asked to predict binding to
the HLA-B*3801 molecule, which was defined by 136 peptide-MHC
binding measurements of which only three were binders within the
training data set. In the left panel of Figure 2.1, the output of this ana-
lysis is represented as a scatter plot between the prediction values of
NetMHC and NetMHCpan. It is apparent from the figure that the cor-
relation between the prediction scores obtained by the two methods
is low — the PCC is 0.569 — and that the difference is in particular
large in the high binding tail of the two methods. In order to inves-
tigate the disagreement between these two methods in a more sys-
tematic manner, we obtained the predictions of both methods for all
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Figure 2.1. Overview of agreement and disagreement between NetMHC and
NetMHCpan methods. The left panel shows binding predictions to HLA-B*3801
allele by NetMHC and NetMHCpan methods for peptides from the same chosen
protein. Log-transformed prediction scores by each method are plotted. The
right panel demonstrates the dependency of the Pearson's correlation coeffi-
cient between the two methods as a function of number of peptides (the inner
plot) and number of binders available per allele in the training set.

MHC molecules included in the training data. The right panel of Fig-
ure 2.1 demonstrates how the correlation between the predictions by
NetMHC and NetMHCpan methods depends on the size of the training
set. For MHC molecules that are defined by few data points and have
small number of actual binders, the correlation coefficient between
NetMHC and NetMHCpan methods is very small. The difference be-
tween predictions of the two methods is diminished when the number
of peptides and binders in the training set is increased.

Defining the consensus method

Allele in question is part of the training data

When an allele is part of the training data, all three methods and
their combinations can be used to define the consensus method. Each
method was evaluated using cross-validation on the benchmark data
set. Figure 2.2 shows accumulative number of instances where each
method achieved the highest predictive performance as a function
of the number of data points and the number of binding peptides,
respectively, characterizing the different MHC molecules. The fig-
ure clearly demonstrates that some methods achieve the highest
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performance more often than others and, thus, are more important
for defining the optimal consensus method. Only one combination,
NetMHC + NetMHCpan, consistently improved prediction accuracy.
This combination has an increased accuracy for alleles character-
ized by a larger number of peptides and significantly outperforms
both the NetMHCpan and NetMHC methods (p=0.005) for the set
of alleles characterized by at least 500 data points. All in all, the
NetMHC + NetMHCpan combination gives a superior prediction per-
formance for most of the alleles from the benchmark data set. As can
be seen in Figure 2.2, NetMHC + NetMHCpan has the highest per-
formance 60 times out of 92 (65.2%), excluding ties. The second best
method is NetMHCpan, which achieves the highest prediction accu-
racy for the alleles with a little training data set and all in all gives the
best scores for 18 alleles (19.6%). A similar tendency is observed when
comparing the accumulative number of times any given method is
winning as a function of the number of binding peptides within the
training set (Figure 2.2, right panel). It is striking to observe that
both NetMHC and PickPocket rarely perform best as single methods.
Only when combined with NetMHCpan does NetMHC contribute to
the overall performance and adding PickPocket seems to have a direct
negative effect on the prediction accuracy.

The results displayed in Figure 2.2 thus suggest NetMHCpan as
the optimal method for alleles characterized by few peptide measure-
ments, and a consensus method defined by number of peptides (N),)

W NetMHC
- @ NetMHCpan
O PickPocket

W NetMHC

- @ NetMHCpan

O PickPocket

B NetMHC + NetMHCpan

B NetMHC + PickPocket

® NetMHCpan + PickPocket

B NetMHC + NetMHCpan + PickPocket

M NetMHC + NetMHCpan
B NetMHC + PickPocket
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Figure 2.2. Accumulative number of winning for each method included in the
analysis depending on the number of peptides (leff) and number of binders
(right) per allele in training set.
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Figure 2.3. The average predictive performance of the alleles in the bench-
mark data set as a function of number of peptides (left) and number of
binders (right) per allele in the training data.

and number of binders (N,), respectively, per allele in training set.
The result of this analysis is given in Figure 2.3. The analysis demon-
strates that for alleles characterized by a small number of data points
(Np<50), the allele-specific NetMHC method performs poorly. In this
case, the pan-specific NetMHCpan method clearly achieves the highest
performance and significantly outperforms NetMHC (p=0.02). Con-
sidering the performance dependency on the number of binders per
allele, one can notice that combination of the two methods always out-
performs its components. The prediction accuracy of the NetMHC
method for MHC alleles characterized by few binders (N,<10) is,
however, very low, and the difference between NetMHCpan and the
consensus method defined as NetMHC + NetMHCpan is for these al-
leles statistically insignificant. NetMHCpan also achieves the highest
performance within the next bin (50<N. »<100). However, we cannot
access the significance of the difference between the different meth-
ods in this case as we have only three alleles within the bin. Based on
these observations and having in mind that we choose a single method
where it is not significantly different from the combined approach, we
defined the consensus method for the condition of the allele in ques-
tion being part of the training data as follows:

NetMHCpan for Np < 50 and Nj, < 10

NetMHC + NetMHCpan otherwise @1)

NetMHCcons = {
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Figure 2.4. Predictive performance of the alleles from the benchmark data
set as a function of distance to the nearest neighbour. The left panel shows
performance for each allele of the NetMHCpan and PickPocket methods. The
solid line represents the least square fit for the NetMHCpan data, and the dotted
line gives the least square fit for the PickPocket data. A full size of this graph is
available in Figure A.2. The right panel demonstrates the average performance
dependency on the distance to the nearest neighbour. The performance for each
allele was calculated using leave-one-out approach as described in "Materials
and methods". Distance to the nearest neighbour was calculated using MHC
pseudo sequences as described by [33].

Detailed results of the analysis of methods when allele in question
is part of the training data are given in Table A .4.

Allele in question is not part of the training data

When the MHC allele for which we wish to predict peptide binding
is not part of the training data set, only the pan-specific NetMHCpan
and PickPocket methods can be employed. It has been shown earlier
that the predictive performance of pan-specific methods depends on
the allelic environment. For example, NetMHCpan was demonstrated
to perform well for the alleles with well-characterized neighbourhood
[36], and PickPocket was shown to give a good prediction accuracy for
MHC molecules for which the similarity to characterized alleles was
low [31]. To investigate the performance of NetMHCpan, PickPocket
and their combination, we conducted an LOO evaluation on the
benchmark data set as described in "Materials and methods". The
results are illustrated in Figure 2.4 as the performance dependency
on the distance to the nearest neighbour as measured in terms of the
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MHC pseudo sequence similarity (detailed results of this analysis are
presented in Table A.5). The left panel of the figure demonstrates that
a large fraction of the alleles from our benchmark data set have close
nearest neighbours. Most of these alleles are human HLA-A and
HLA-B alleles, whereas chimpanzee (Patr), macaque (Mamu) and
mouse alleles tend to have more distant neighbours. It is apparent
that the performance of both methods depends strongly on the dis-
tance from MHC molecule in question to the nearest molecule in the
training set. Regression analysis for each method demonstrated, that
the performance is decreased significantly with increasing distance
for both methods (p<0.0001).

The right panel of the figure gives the average predictive perfor-
mance of the different methods as a function of the distance to the
nearest neighbour within the training data. The figure demonstrates
the high performance of NetMHCpan in prediction of binding to MHC
molecules with close neighbours. This method gives the highest PCC
values of all methods when the distance (D) is lower than 0.1 and
achieves the highest performance for 23 out of 40 MHC molecules,
while NetMHCpan + PickPocket wins only 15 times within this bin.
The difference between NetMHCpan and NetMHCpan + PickPocket was
not statistically significant. If the distance to the nearest neighbour
is larger than 0.1, the combination of the NetMHCpan and PickPocket
methods significantly outperforms both NetMHCpan (p=0.019) and
PickPocket (p=0.003) methods. Based on these observations and our
decision to use the simpler method where the significant difference is
not observed, we define the optimal method to predict peptide bind-
ing to MHC molecules not included in the training set as follows:

NetMHCpan for D < 0.1
NetMHCpan + PickPocket for D > 0.1

Based on the results obtained above, we can now define the final
consensus method. We define a reference set of alleles that are char-
acterized by at least 50 data points and at least ten binders. Based on
this reference set, the NetMHCcons method can be defined as

NetMHCcons = { (2.2)

NetMHC + NetMHCpan for D=0
NetMHCcons = { NetMHCpan for0 < D < 0.1 (2.3)
NetMHCpan + PickPocket for D > 0.1

where D refers to the distance between the query allele and its near-
est neighbour in the reference allele set. Note that having the distance
equal to 0 (D=0) means that the alleles in question is part of the train-
ing set.
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Validation of the final consensus method

The consensus method for peptide binding to MHC was next bench-
marked on an independent evaluation data set (see "Materials and
methods"). In order to compare the results with the methods com-
posing NetMHCcons, we obtained predictions of each method sepa-
rately and compared the results for the subsets of alleles depending
on how each method was involved in the final consensus method.
This resulted into three different comparisons of the average PCC val-
ues: (1) for the alleles that were part of the training set, the results of
NetMHCcons were compared with the results obtained by NetMHCpan
and NetMHC methods (41 allele); (2) NetMHCcons was compared with
NetMHCpan for all the alleles from the validation set (62 alleles); (3)
the comparison of the consensus method with NetMHCpan and Pick-
Pocket was done using the alleles that were not included in the training
data set and had a distance of 0.1 or larger to the training reference set
(17 alleles).

A summary of the validation results is given in Figure 2.5 (details
are given in Table A.6). The performance of NetMHCcons on the alleles
that were part of the training set was found to be significantly higher
than both NetMHC (p<0.0001) and NetMHCpan (p=0.01). Comparing
NetMHCcons and NetMHCpan performances using all the alleles, sig-
nificant difference between performance values was not observed, but
the consensus method has the highest performance of the two. The set
of alleles that have a distance of 0.1 or more to the training data com-
pose too small set to obtain significant p values; however, the average
values show that the consensus method also here has a higher perfor-
mance than both the NetMHCpan and PickPocket methods.

The NetMHCcons method is implemented as a web server and is
available online at: http://www.cbs.dtu.dk/services/NetMHCcons.
The method provides affinity predictions for any peptide of length
8-11 amino acids to any given MHC class I molecule of known pro-
tein sequence. Two submission types are handled — a list of peptides
or a protein in FASTA format. The server provides a possibility for
the user to choose MHC molecule in question from a list of alleles
or alternatively upload the MHC protein sequence of interest. The
method is also implemented as SOAP based Web Service available at:
http:/ /www.cbs.dtu.dk/ws/NetMHCcons/ .

2.2.4 DiISCUSSION

In this study, we performed a detailed analysis of several
state-of-the-art methods with a purpose of developing a consensus
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Figure 2.5. Validation results of the NetMHCcons method. The plot shows
three groups of comparisons, from the left: (1) NetMHCcons, NetMHCpan
and NetMHC for the alleles common between training and validation sets;
(2) NetMHCcons and NetMHCpan for all alleles in the validation set; (3)
NetMHCcons, NetMHCpan and PickPocket for alleles not included in the train-
ing data and having D>0.1. Significant difference between any two methods is
indicated by stars and was calculated using paired one-tailed ¢-test.

method that consistently provides the most accurate predictions for
any given MHC molecule. To the best of our knowledge, this study an-
alyzing and combining several different methods in an allele-specific
manner is the first of its kind. Having involved allele-specific
(NetMHC) and pan-specific (NetMHCpan and PickPocket) methods,
two different conditions were analyzed in our study. First of all, if
the given MHC allele had earlier been characterized, then all three
methods and their combinations were analyzed. Here, we found
that the prediction accuracy of the allele-specific NetMHC method
depended strongly on the number of data available characterizing the
given allele and demonstrated that for MHC molecules that are poorly
characterized, the NetMHCpan method is the best predictor. On the
other hand, increasing number of data points and binders available
for the MHC molecule in question, the NetMHC method becomes
important and the combination of this method with NetMHCpan
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provides the most accurate predictions. These conclusions are in
agreement with an earlier report [32].

The vast majority of MHC molecules remain uncharacterized in
terms of their binding specificity. For this reason, several pan-specific
methods have been developed [41, 42, 33, 31]. Moreover, several pub-
lications have demonstrated the importance of describing the subtle
differences in binding specificity between MHC molecules in order to
understand cellular immune responses of a given host to an infection
[43, 44, 45, 46]. In our analysis, we considered two of the pan-specific
methods NetMHCpan and PickPocket, both being able to produce high
accuracy predictions for MHC molecules with limited or no binding
data available. These methods were benchmarked under the condi-
tions when the allele in question was not part of the training data
set employing a LOO approach. We demonstrated that the perfor-
mance of both methods reduces with increased distance to the near-
est MHC molecule with characterized binding specificity. This is in
agreement with previous studies [31]. In our study, we additionally
investigated how the performance of both methods and their combi-
nation depended on the distance to the closest characterized MHC
molecule. At small distances, NetMHCpan demonstrated a superior
performance, which was not maintained when the distance increased
and at larger distances the contribution of the PickPocket method was
demonstrated to be important when combined with the NetMHCpan.
This is in accordance with the work by [31]. A consensus method de-
fined as combination of NetMHCpan and PickPocket was hence shown
to perform with the highest accuracy for MHC molecules with a large
distance to MHC molecules with characterized binding specificity.

The final NetMHCcons method was validated using a diverse in-
dependent evaluation set. It was demonstrated that NetMHCcons
achieved the highest performance compared with each separate
method included in this analysis. This is, to our knowledge, the first
consensus method defined as combination of three different meth-
ods, which involve both allele-specific and pan-specific approaches.
Our analysis demonstrated how several methods could be combined
into one capable of producing the most accurate predictions for any
given allele. Such a method is of high importance to the non-expert
user allowing in an automated manner to obtain accurate predictions
of binding to any MHC class I molecule of interest and also suggests
that a similar approach might be employed to improve the accuracy
of MHC class II predictors.

Several other high performing methods are publicly available for
MHC class I predictions including the average relative binding (ARB)
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matrix method [47] and the stabilized matrix method (SMM) [48], both
available as part of the IEDB tools for MHC class I binding prediction.
None of these methods have been included in this study. In order to
define a consensus method, a large independent evaluation data set
is needed for obtaining a reliable performance estimate of the differ-
ent methods and finding their optimal combination. The fact that the
evaluation data must be large and independent makes it troublesome
to include publicly available method in the benchmark analysis. If we
define a large benchmark data, large parts of the data will most likely
have been included in the training of the different methods and the
evaluation will be erroneous due to overfitting. If we limit ourselves
to recently published data that most likely has not been included in the
training of the different method, the evaluation data set become too
small to allow for a robust method evaluation. Only by retraining the
methods on the large data set can we maintain a large and indepen-
dent evaluation data set allowing for a robust and unbiased evaluation
of the different methods included in the benchmark. Including non-
in-house methods would require expert knowledge of each method
and hence must be carried out as a collaborative effort between the
authors of the different method and is beyond the scope of this pa-
per. We might suggest that such an effort should be carried out in the
future along the lines of previous benchmark studies [39, 28].

In conclusion, we have defined a method, NetMHCcons, in terms
of the NetMHCpan method and its combinations with NetMHC and
PickPocket based on conditions defining the MHC molecule in ques-
tion. The method is implemented as a web server allowing the user
in an automatic manner to obtain optimal predictions for any MHC
class I molecule of interest.

Acknowledgements This work was supported by two NIH (National
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NetMHClIIpan-3.0: a pan-specific method
for MHC class II predictions

prediction methods and how they have been expanded to be ap-

plied to non-human species as well, and combined to improve
their predictive accuracy. However, in comparison the situation for
MHC class 1II is far behind. Structural differences between MHC
molecules encoded by different loci have been limiting the develop-
ment of cross-loci and cross-species pan-specific methods. Addition-
ally, the amount of binding data available for MHC class I molecules,
especially HLA-DP and HLA-DQ, is very limited and covers only a
small fraction of the thousands of existing molecules. Moreover, as
opposed to HLA-DP and HLA-DQ, HLA-DR molecules are polymor-
phic only in their beta chain. For these reasons, class II pan-specific
prediction methods have so far been limited to HLA-DR molecules.
This chapter presents a novel pan-specific method capable of predict-
ing peptides binding to all HLA class II molecules with a known pro-
tein sequence. The following section presents details about develop-
ment of the method and gives its benchmarking results.

I N the previous chapter we demonstrated the power of MHC class I

3.1 Paperll

The following paper was published in the journal Immunogenetics in
July 2013 (Epub ahead of print). Supplementary material for this pa-
per is included in Appendix B.
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class II prediction method including all three
human MHC class II isotypes, HLA-DR, HLA-DP
and HLA-DQ

Edita Karosiene!, Michael Rasmussen?, Thomas Blicher?, Ole Lund?,
Saren Buus?, and Morten Nielsen!#

1Center for Biological Sequence Analysis, Department of Systems Biology, Technical
University of Denmark, DK-2800 Lyngby, Denmark

2Laboratory of Experimental Immunology, Faculty of Health Sciences, University of
Copenhagen, DK-2200 Copenhagen, Denmark

3The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical
Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark

4Instituto de Investigaciones Biotecnolégicas, Universidad Nacional de San Martin, San

Martin, Buenos Aires, Argentina

Abstract

Major histocompatibility complex class II (MHCII) molecules play
an important role in cell-mediated immunity. They present specific
peptides derived from endosomal proteins for recognition by T helper
cells. The identification of peptides that bind to MHCII molecules is
therefore of great importance for understanding the nature of immune
responses and identifying T cell epitopes for the design of new vac-
cines and immunotherapies. Given the large number of MHC variants,
and the costly experimental procedures needed to evaluate individual
peptide-MHC interactions, computational predictions have become
particularly attractive as first-line methods in epitope discovery. How-
ever, only a few so-called pan-specific prediction methods capable of
predicting binding to any MHC molecule with known protein sequence
are currently available, and all of them are limited to HLA-DR. Here,
we present the first pan-specific method capable of predicting peptide
binding to any HLA class Il molecule with a defined protein sequence.
The method employs a strategy common for HLA-DR, HLA-DP and
HLA-DQ molecules to define the peptide-binding MHC environment
in terms of a pseudo sequence. This strategy allows the inclusion of
new molecules even from other species. The method was evaluated in
several benchmarks and demonstrates a significant improvement over
molecule-specific methods as well as the ability to predict peptide bind-
ing of previously uncharacterised MHCII molecules. To the best of our
knowledge, the NetMHClIIpan-3.0 method is the first pan-specific pre-
dictor covering all HLA class II molecules with known sequences in-
cluding HLA-DR, HLA-DP, and HLA-DQ. The NetMHCpan-3.0 method
is available at http://www.cbs.dtu.dk/services/NetMHClIIpan-3.0.

Keywords MHC class II - T cell epitope - MHC binding specificity -
Peptide-MHC binding - Human leukocyte antigens - Artificial neural
networks
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3.1.1 INTRODUCTION

Major histocompatibility complex (MHC) molecules play a key role
in defining the specificity of the cellular immune system by pre-
senting antigens to the immune system cells. In case of MHC class
IT molecules, these cells are T helper lymphocytes that recognize
peptide-MHC complexes on the surface of antigen-presenting cells.
Peptides presented by MHC class II molecules are derived from pro-
teins taken up from the extracellular environment. Whereas a large
number of peptides can be generated from pathogenic proteins, only
a small part of these trigger an immune response. One of the most
important events defining which peptides will trigger an immune re-
sponse is binding to MHCII molecules expressed by the host [14].
The human MHC locus (in humans called HLA for human leuko-
cyte antigens) is extremely polymorphic and encodes thousands of
different HLA class II molecules. Characterising the peptide-binding
specificities of all the polymorphic MHC class II molecules is a se-
rious experimental challenge. Therefore, during the last decades,
large efforts have been put into the development of in silico methods
for predicting peptide-binding affinities to MHC class II molecules.
Using thousands of peptide-binding data points, several predictors
have been developed and benchmarked (for review, see [10]). One
very important subset of these predictors consists of the so-called
pan-specific methods that are capable of obtaining accurate predic-
tions for molecules with limited or no binding data [49, 50, 51, 52]. For
MHC class I prediction, it has been demonstrated that a pan-specific
approach can benefit from being trained on cross-loci, and even
cross-species, data. That is, the predictive performance for HLA-B lo-
cus molecules is improved when including HLA-A locus data in the
training of the pan-specific MHC class I binding prediction method
(and vice versa), and the overall performance of predictions of HLA
molecules is improved when including binding data representing
non-human MHC molecules [36]. Extending this approach to MHC
class II is not a trivial task. Differences in sequence polymorphism
and corresponding details in the molecular structures across the dif-
terent MHC class II loci complicate the development of cross-loci and
cross-species training strategies. This, combined with the very limited
amount of data available for most MHC class II molecules, has lim-
ited the application of pan-specific methods to HLA-DR molecules.
The understanding of HLA-DP and HLA-DQ binding specificities is
limited to a handful of molecules which have been characterised ex-
perimentally, and beyond a few mouse H-2 molecules, to the best of
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our knowledge, no general MHC class II prediction method is avail-
able for non-human primates and other non-human species.

The number of state-of-the-art pan-specific methods for MHC
class II molecules available up to date is very limited. The classical
MHC class II predictor, TEPITOPE [53], uses position-specific scor-
ing matrices derived from experimental data. The method is, how-
ever, limited to 51 HLA-DR molecules only. In addition to this,
a TEPITOPEpan predictor has been developed [18] by extrapolat-
ing from the binding specificities of the molecules characterised by
TEPITOPE. The method is based on MHC pocket similarities and is
capable of providing predictions for any HLA-DR molecule. The same
is achieved by the NetMHCIIpan-2.0 predictor [50], which outperforms
the TEPITOPEpan method in terms of prediction accuracy [18]. The
method is based on artificial neural networks and uses an MHC bind-
ing pocket pseudo sequence combined with the peptide sequence as
an input. Like the TEPITOPEpan method, NetMHClIIpan-2.0 predicts
binding for all HLA-DR molecules with a known primary sequence.

In this paper, we present a novel pan-specific predictor capable
of predicting binding affinities to all HLA class II molecules. The
method is based on artificial neural networks and has been trained on
more than 50,000 quantitative peptide-binding measurements cover-
ing HLA-DR, HLA-DP, HLA-DQ as well as two murine molecules. Us-
ing a panel of benchmark setups, we seek to investigate to what extent
the pan-specific method outperforms allele-specific approaches and
whether it can obtain accurate predictions even for HLA molecules,
which have not been experimentally characterised. Arrivingata true
pan-specific method enabling prediction of the binding specificity for
all HLA-II molecules, we end the analysis by conducting the first
global analysis covering all prevalent HLA-II molecules, investigating
and quantifying the functional diversity of the molecules encoded at
the three HLA-II loci.

3.1.2 MATERIALS AND METHODS
Data sets

Training data used to develop the method consisted of quantitative
MHC class II peptide-binding data retrieved from the IEDB database
[40]. In total, the training data set comprises 52,062 data points
covering 24 HLA-DR, five HLA-DP, six HLA- DQ and two mouse
(H-2) molecules. All molecules were covered by more than 50 pep-
tide binding data points measured as IC50/EC50 values which were
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log-transformed to fall in the range between 0 and 1 using the relation
1-1og(IC50nM)/10g(50,000) [20]. The evaluation set was restricted
to HLA-DR molecules and contained 9,860 binding affinity measure-
ments covering 13 molecules, four of which were not included in the
training set. A summary of the data used to develop the method is
presented in Table B.1, and evaluation data set details are given in Ta-
ble B.2.

Mapping of MHC molecules

For constructing the NetMHClIpan method, all MHC class Il molecules
need to be mapped to a common reference sequence. This is done
by aligning alpha and beta chain sequences of all MHC molecules to
the reference sequences, DRA1*0101 and DRB1*0101. For HLA-DR
molecules, the mapping on a sequence level is in agreement with the
mapping on the structural level. On the other hand, HLA-DP and
HLA-DQ molecules demonstrate minor variations from HLA-DR in
the peptide-binding domain in both the alpha and beta chains. To
evaluate the structural impact of these variations, we employed the
analysis described below. The analysis is based on the five avail-
able structures solved for HLA-DP and HLA-DQ molecules, which
are compared to a representative high-resolution HLA-DR structure
selected among the large number of structures available for HLA-DR
molecules. The list of available HLA-DP and HLA-DQ structures from
the Protein Data Bank (PDB) is given in Table 3.1.

Table 3.1. Structures of all HLA-DP and HLA-DQ molecules available in the
PDB database.

PDBID Alpha chain Beta chain

3LQZ HLA-DPA1%0103 HLA-DPB1%0201
10VQ HLA-DQA1%0102 HLA-DQB1*0602
1JK8 HLA-DQA1*0302 HLA-DQB1*0302
159V HLA-DQA1*0501 HLA-DQB1*0201
2NNA  HLA-DQA1*0301 HLA-DQB1*0302

An HLA-DR (PDB ID: 1A6A [16]) structure was chosen as a ref-
erence, and the HLA-DQ and HLA-DP structures were aligned to the
binding domain of this reference molecule (Figure 3.1). The super-
impositions were performed in PyYMOL [17] and demonstrate a high
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Figure 3.1. Superimposition of HLA-DR, HLA-DP and HLA-DQ alpha
chains. HLA-DR alpha chain (PDB ID: 1A6A [16]) is shown in yellow and was
used as a reference chain. HLA-DP chain (PDB ID: 3LQZ [54]) is shown in
green, HLA-DQ chain without a gap (PDB ID: 1JK8 [55]) is shown in orange and
HLA-DQ chain with a gap (PDB ID: 1S9V [56] is shown in blue. The area affected
by the deletion in DQA sequence is circled.

degree of structural conservation among the different loci (RMSD val-
ues between 0.7 and 0.8 A).

During the analysis, an important variation was observed
for HLA-DQ molecules only and was investigated in more de-
tail. We observed that sequences belonging to the HLA-DQA1*04,
HLA-DQA1*05 and HLA-DQA1*06 serotype groups (e.g. sequences
like HLA-DQA1%*0401) display a single amino acid deletion, which
from a pure sequence point of view, corresponds to position 53
in HLA-DRA [34]. However, this leads to a shift of the preceding
residues in the DQA sequences, which now realign with DRA po-
sitions 52 and 53. Although the deletion affects the orientation of
the short a-helical segment and the loop (residues 45-52) next to the
P1 binding pocket (area marked in Figure 3.1), these changes have
negligible impact on peptide binding, as the reorientation appears
to be a localised change, and very few contacts with the peptide are
observed within the area. Due to the minor impact of the area dis-
cussed above to the binding of the peptide, an automated sequence
alignment approach was chosen to identify the deletion in HLA-DQ
sequences. Pair-wise sequence alignments were made and visualized
using ClustalW [57]. Each HLA-DQ sequence was aligned one by one
to the reference sequence of HLA-DR. The results are presented in
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Figure 3.2. Figure 3.2a shows the alignments of HLA-DQ alpha chains
with the amino acid deletion, while Figure 3.2b demonstrates align-
ments of HLA-DQ alpha chains with no deletions. The alignments
demonstrated that for all the HLA-DQ sequences that have a deletion,
the deletion is consistently found in the same place (position 53 in the
reference sequence).

a 35 10 15

50 55 60 75 80

DRA1l_01_01 DMAKKETVWRLEEFGRFASFEAQGALANIA%DKANEEIMTKRSNYTPITN%PPEV%VLTN
DQAl_05_04 DLGRKETVWCLPVLRQFR-FDPQFALTNIAVLKHNLNSLIKRSNSTAATN=-—========
DQA1l_05_07 DLGRKETVWCLPVLRQFR-FDPQFALTNIAVLKHNLNSLIKRSNSTAATNEVPEVTVFSK
DQAl_05_01 DLGRKETVWCLPVLRQFR-FDPQFALTNIAVLKHNLNSLIKRSNSTAATN-=—=—=—==——
DQA1l_05_06 DLGRKETVWCLPVLRQFR-FDPQFALTNIAVLKHNLNSLIKRSNSTAATNEVPEVTVFSK
DQAl1l_05_03 DLGRKETVWCLPVLRQFR-FDPQFALTNIAVLKHNLNSLIKRSNSTAATNEVPEVTVFSK
DQAl_05_02 DLGRKETVWCLPVLRQFR-FDRQFALTNIAVLKHNLNSLIKRSNSTAAT - —=====—===—
DQAl1l_05_08 DLGRKETVWCLPVLRQFR-FDPQFALTNIAVLKHNLNSLIKRSNSTAATNEVPEVTVFSK
DQAl1l_05_05 DLGRKETVWCLPVLRQFR-FDPQFALTNIAVLKHNLNSLIKRSNSTAATNEVPEVTVFSK
DQAl 05_11 DLGRKETVWCLPVLRQFR-FDPQFALTNIAVLKHNLNSLIKRSNSTAATNEVPEVTVFSK
DQAl_05_10 DLGRKETVWCLPVLRQFR-FDPQFALTNIAVLKHNLNSLVKRSNSTAATNEVPEVTVFSK
DQAl1l_05_09 DLGRKETVWCLPVLRQFR-FDPQFALTNIAVLKHNLNSLIKRSNSTAATNEVPEVTVFSK
DQAl_04_02 DLGRKETVWCLPVLRQFR-FDPQFALTNIAVTKHNLNILIKRSNSTAATNEVPEVTVFSK
DQAl_04_04 DLGRKETVWCLPVLRQFR-FDPQFALTNIAVTKHNLNILIKRSNSTAATNEVPEVTVFSK
DQAl_06_01 DLGRKETVWCLPVLRQFR-FDPQFALTNIAVTKHNLNILIKRSNSTAATN==========
DQAl_06_02 DLGRKETVWCLPVLRQFR-FDPQFALTNIAVTKHNLNILIKRSNSTAATNEVPEVTVFSK
DQAl_02_01 DLERKETVWKLPLFHRLR-FDPQFALTNIAVLKHNLNILIKRSNSTAATNEVPEVTVFSK
b k3 skkkkk k3 33 K3 Kk Kkgkkkk Kk kk3 3 kkkk Kk %
DRA1l_01_01 DMAKKETVWRLEEFGRFASFEAQGALANIAVDKANLEIMTKRSNYTPITNVPPEVTVLTN
DQAl _01_04 DLERKETAWRWPEFSKFGGFDPQGALRNMAVAKHNLNIMIKRYNSTAATNEVPEVTVFSK
DQAl_01_05 DLERKETAWRWPEFSKFGGFDPQGALRNMAVAKHNLNIMIKRYNSTAATNEVPEVTVFSK
DQAl_01_01 DLERKETAWRWPEFSKFGGFDPQGALRNMAVAKHNLNIMIKRYNSTAATNEVPEVTVFSK
DQAl_01_02 DLERKETAWRWPEFSKFGGFDPQGALRNMAVAKHNLNIMIKRYNSTAATNEVPEVTVFSK
DQAl_01_03 DLEKKETAWRWPEFSKFGGFDPQGALRNMAVAKHNLNIMIKRYNSTAATNEVPEVTVFSK
DQOAl 03_02 DLERKETVWQLPLFRRFRRFDPQFALTNIAVLKHNLNIVIKRSNSTAATNEVPEVTVFSK
DQAl 03_03 DLERKETVWQLPLFRRFRRFDPQFALTNIAVLKHNLNIVIKRSNSTAATNEVPEVTVFSK
DQOAl 03_01 DLERKETVWQLPLFRRFRRFDPQFALTNIAVLKHNLNIVIKRSNSTAATNEVPEVTVFSK
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Figure 3.2. Part of sequence alignments of HLA-DQ alpha chains to HLA-DR
reference sequence of HLA-DRA1*0101 molecule. a) Sequence alignments
of HLA-DQ sequences with gaps, b) demonstrates the alignment of other
HLA-DQ molecules to the same reference sequence. Reference sequence and
the position corresponding to the insertion are marked in bold. The alignments
were visualized using ClustalW [57].

MHC class II pseudo sequence

For constructing the NetMHClIIpan method, MHC class II molecules
were represented by a pseudo sequence consisting of amino acid
residues important for peptide binding. Amino acid residues com-
prising the pseudo sequence were defined as having their side
chains pointing towards the peptide and being within 4.0 A of the
peptide-binding core in one or more of the MHC class Il structures (in-
cluding HLA-DR, HLA-DP and HLA-DQ molecules) available in the
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PDB (www.pdb.org; [58]). The MHC molecules were aligned using
the PYMOL molecular viewer [17] and interacting residue positions
extracted according to the distance criterion. Among the interacting
residues, only those found to be polymorphic across the sequences of
MHC molecules used for the training of the method were considered.
The final pseudo sequence is composed of 15 residues from the alpha
chain and 19 residues from the beta chain. The interaction map be-
tween the peptide and MHC pseudo sequence is given in Figure 3.3.

MHC alpha position | MHC beta position |
61]65[66]68]72[73] 911 71]74]77]78]81[85]86]89]90

position

Peptide binding core

10[11]12[13]14[15]16[17 20[21[22]23[24]25[26]27[28[29[30[31[32
Pseudo sequence position

Figure 3.3. Interaction map between the peptide and MHC class II pseudo
sequence. The columns give the MHC position numbering separately for al-
pha and beta chains and refer to HLA-DR. The rows show peptide binding core
positions. Red squares marking interaction between a particular position of the
peptide and MHC define contacts between corresponding two residues.

Method

The NetMHClIpan-3.0 method was implemented as a conventional
feed-forward artificial neural network method as described in de-
tail by Nielsen et al. [50]. The networks were trained using 5-fold
cross-validation. The data set was split into five groups of peptides
based on a common motif clustering as described by Nielsen et al.
[59]. The difference in network architecture from the study presented
by Nielsen et al. [50] was that network ensembles were trained with
10, 15, 40 and 60 hidden neurons. The BLOSUMS50 matrix was used to
encode peptide and MHC sequences for the network trainings. Each
training was repeated 10 times with different initial configuration val-
ues as described in Nielsen et al. [50]. In total, 40 (4 different numbers
of hidden neurons times 10 different random seeds) networks were
used for each training/test set combination leading to 200 (5 folds
times 40 networks) networks for each molecule.
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Leave-one-out setup

In order to assess the predictive performance of the method in the situ-
ation where a molecule is not part of the training data, a leave-one-out
(LOO) approach was applied. Using LOO, the binding data for the
molecule in question were excluded from the training data. Since our
data set has a large number of peptides that have been measured for
binding to multiple molecules, we also removed peptides common be-
tween the evaluation and training data sets to ensure unbiased LOO
trainings. In order not to reduce the training set too much in this
type of LOO trainings, the evaluation set was split into three sub-
sets resulting into three different 5-fold cross-validation trainings for
each molecule. The details about such LOO setup are described in
Karosiene et al. [60].

Nearest neighbour approach (NN-finder)

In order to evaluate the performance of the pan-specific method on
the molecules that are not found in the training set, we set up a nearest
neighbour prediction approach which in this study we call NN-finder.
This approach represents the simplest method where the predictions
of a query molecule are obtained by first finding its nearest neighbour
and using a subsequent allele-specific method to predict the query
binding specificity. First of all, for each molecule in question, we
found a corresponding nearest neighbour from the training set. The
distance between two MHC molecules was calculated from the amino
acid similarity between the two pseudo sequences as described by
Nielsen et al. [49], and the nearest neighbour to the molecule in ques-
tion was defined as the molecule in the training set having the shortest
distance. The binding data of each nearest neighbour were then used
as training data for the corresponding query molecule. We retrained
an allele-specific method from those training data using the NNAlign
method [61] with settings identical to those used for NetMHCII [59].
The predictive performance for each query molecule was obtained by
using its binding data as an evaluation set. In order for the perfor-
mance to be directly comparable to the LOO results, the splitting of
the evaluation set into three subsets was also used here.

Performance measures and statistical analysis

The predictive performance was measured in terms of Pearson's cor-
relation coefficient (PCC) and area under the ROC curve (AUC). PCC
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values vary between 0 and 1, where 1 represents perfect predictions
and 0 random predictions. For AUC measures, a performance value
of 1 corresponds to a perfect prediction, and a value of 0.5 reflects ran-
dom predictions. For more details concerning the performance mea-
sures, see Nielsen et al. [50]. Throughout this study, PCC and AUC
values were compared for different methods and evaluated using bi-
nomial tests with a significance level of 0.05.

Generation of HLA-II distance trees

For generation of the HLA-II distance tree, the most prevalent alpha
and beta chains in the European population were selected as defined
by the allele frequencies database (http:/ /www.allelefrequencies.net)
[62]. At a frequency threshold of 1%, we found 21 HLA-DRI,
three HLA-DPA1, 12 HLA-DPB1, 12 HAL-DQA1 and 13
HLA-DQB1 alleles. We constructed all HLA-DPA1-HLA-DPB1
and HLA-DQA1-HLA-DQB1 combinations arriving at a total of
21 HLA-DR, 36 HLA-DP and 156 HLA-DQ molecules. Sorting (on
a per-loci level) the different molecules on descending population
frequencies, we constructed a functional redundancy deduced set
containing 72 molecules using the Hobohm1 algorithm [63] with re-
dundancy defined as two molecules sharing a Pearson's correlation
coefficient of 0.99 or above when comparing the predicted bind-
ing affinities on a set of 200,000 random natural 15-mer peptides.
The set of 72 non-redundant HLA-II molecules is comprised of 21
HLA-DR, 14 HLA-DP and 37 HLA-DQ molecules. Next, we ap-
plied the MHCcluster method [64] to construct a tree describing the
functional similarity between the different molecules. In short, the
MHCcluster method functions as follows. Binding affinities of a set
of 200,000 natural random 15-mer peptides are predicted for each
of the HLA molecules using NetMHClIpan-3.0. Next, the functional
similarity between any two HLA molecules is defined by correlat-
ing the union of the predicted top 10% strongest binding peptides
for each molecule. The similarity is 1 if the two HLA molecules are
predicted to have a perfectly overlapping peptide repertoire and neg-
ative if there is no or very limited overlap. The distance between two
molecules is defined as 1—similarity. By using the unweighted pair
group method with arithmetic mean clustering, the distance matrix
is converted to a distance tree. Generating 100 distance trees using
bootstrap estimates the significance of the distance tree. The trees are
next summarized, and a consensus tree is made with branch bootstrap
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values. Sequence logos were constructed from the predicted binding
core of the top 1% strongest predicted binders using Seq2Logo method
with default settings [65].

3.1.3 REsuULTS

In the following section, we give the results of applying the new
pan-specific method: NetMHCIIpan-3.0 to predict binding for a large
set of MHC class II molecules from three human class II loci as well
as a small set of mouse H-2 molecules.

NetMHClIIpan-3.0 method's new approach for getting pseudo
sequence

In the most recent pan-specific MHC class II prediction method,
NetMHClIpan-2.0, the pseudo sequence is composed of 21 amino acids
from positions within the HLA-DR beta chain that are in potential
contact with a peptide using a 4.0 A distance cut-off and polymorphic
across the set of sequenced MHC class II molecules available at the
time of the study [50]. For the NetMHClIIpan-3.0 method described
here, the pseudo sequence contains 19 residues from the beta chain of
MHC molecules. The main difference between two pseudo sequence
obtaining approaches resulting into different number of pseudo se-
quence positions is that the NetMHClIIpan-3.0 considers polymor-
phism across the sequences of MHC molecules from the training set
only. In order to evaluate this new approach for obtaining the pseudo
sequence, we performed a 5-fold cross-validation training and com-
pared the results of those reported for NetMHClIIpan-2.0 [50]. In this
comparison, only HLA-DR molecules were considered due to avail-
ability of results from both methods. Moreover, for the new method,
only the part of the pseudo sequence corresponding to beta chain po-
sitions was included as the NetMHClIIpan-2.0 method only includes
beta chain residues in the pseudo sequence. The results are shown in
Table 3.2.

The results in Table 3.2 demonstrate that the new approach for ob-
taining the pseudo sequence leads to a significantly (p values<0.05)
improved predictive performance compared to the original approach
when the pan-specific training approach is applied to the HLA-DR
data set. The average increased from 0.688 to 0.695 and from 0.846
to 0.847 for PCC and AUC values, respectively. NetMHClIIpan-3.0
achieves the highest performance for most of the molecules (PCC
values are higher for 20 out of 24 molecules, and AUC values are
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higher for 17 out of 23 molecules, excluding ties). The results demon-
strate that the new approach of obtaining pseudo sequences for the
neural network trainings improves the predictive performance of the

method.

Table 3.2. Fivefold cross-validation performance for HLA-DR molecules of a
pan-specific NetMHClIIpan-2.0 compared with NetMHClIpan-3.0.

Molecule name

#pep

#bind

NetMHClIIpan-2.0

NetMHClIIpan-3.0

PCC AUC PCC AUC
DRB1*0101 7,685 4,382 0.711 0.846 0.716 0.848
DRB1*0301 2,505 649  0.709 0.864 0.723 0.868
DRB1*0302 148 44 0525 0.757  0.569 0.786
DRB1*0401 3116 1,039 0.670 0.848 0.671 0.846
DRB1*0404 577 336  0.630 0.818  0.656 0.829
DRB1*0405 1,582 627  0.698 0.858 0.712 0.862
DRB1*0701 1,745 849  0.740 0.864 0.732 0.862
DRB1*0802 1,520 431 0.526 0.780  0.542 0.784
DRB1*0806 118 91 0.796 0924 0.792 0.933
DRB1*0813 1,370 455 0.746 0.885 0.751 0.888
DRB1*0819 116 54  0.608 0.808 0.610 0.803
DRB1*0901 1,520 622 0.634 0.818 0.647 0.828
DRB1*1101 1,794 778 0777 0.883 0.780 0.883
DRB1*1201 117 81 0.764 0.892 0.768 0.896
DRB1%*1202 117 79 0.769 0.900 0.778 0.910
DRB1*1302 1,580 493 0.634 0.825 0.636 0.822
DRB1*1402 118 78  0.694 0.860  0.724 0.879
DRB1%*1404 30 16 0.613 0.737 0.511 0.629
DRB1*1412 116 63 0.757 0.894 0.754 0.890
DRB1*1501 1,769 709  0.653 0.819  0.682 0.830
DRB3*0101 1,501 281 0.690 0.850  0.700 0.858
DRB3*0301 160 70 0.736 0.853 0.752 0.869
DRB4*0101 1,521 485 0.675 0.837  0.699 0.847
DRB5*0101 3,106 1,280 0.765 0.882 0.769 0.885
Total 33,931 13,992
Average 0.688 0.846  0.695 0.847
p value 0.002 0.035

NetMHCIIpan-2.0 is the method described by Nielsen et al. [50], which uses pseudo

sequences composed of polymorphic amino acids that have one or more potential contacts

with a peptide (length=21). The performance values for this method are taken from the

publication. NetMHClIIpan-3.0 employs pseudo sequences obtained by finding contacts that

side chains of MHC molecules have with the peptide and taking polymorphic positions

within the training set (length=19 for beta chain only). The values in bold show the higher
score for each molecule for corresponding performance measures (PCC or AUC). p values
were obtained using a binomial test excluding ties.

#pep — number of peptide binding data available for each molecule, #bind — number of
peptides that have a binding affinity stronger than 500 nM.
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Per-locus training versus cross-loci training

To the best of our knowledge, all pan-specific prediction methods
for HLA class II molecules available up to date are limited to HLA-
DR. In this study, we introduce an approach for combining residues
from the alpha and beta chains into one pseudo sequence. The pro-
cedure for the pseudo sequence construction is universal to all MHC
class I complexes allowing the pan-specific method to be trained in a
cross-loci/cross-species manner (see "Materials and methods") arriv-
ing at one common method suitable for all MHC class II molecules.

To evaluate how such a cross-loci/cross-species impacts the pre-
dictive performance of the method, we compared per-locus (and per
molecule, see below) training with the pan-specific training including
cross-loci data. The results are shown in Figure 3.4. Detailed results
are given in Table B.3. The figure gives average PCC and AUC values
for each locus when the method was trained in a cross-loci manner
including all HLA molecules and when trained using binding data
restricted to each locus, respectively. As can be seen from the fig-
ure, the overall performance of the two training approaches is similar.
For HLA-DR, the predictive performance improved when training in
a cross-loci manner compared to per-locus training. For HLA-DQ and
HLA-DP, the performance on the other hand is slightly reduced. This
reduction is, however, only significant for HLA-DQ and only when
measuring AUC performance values.

B p-value = 0.031

| B | B

HLA-DR HLA-DP HLA-DQ HLA-DR HLA-DP HLA-DQ

Average AUC

Y Y N N B

Average PCC
06 064 068 072 076 08 084 088 092 096 1
08 082 084 086 088 09 092 094 096 098 1

Figure 3.4. Comparison of the method performance when trained on per-
locus data and cross-loci data. Average PCC and average AUC values for each
locus are demonstrated on the left and right panel, respectively. Significant p
values are given above the bars for corresponding loci. The difference in pre-
dictive performance between the per-locus and cross-loci training is significant
only for HLA-DQ when measuring AUC performance values.
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Pan-specific versus allele-specific method

As a pan-specific approach, the method presented in this study ben-
efits from the information even from molecules covered by limited
binding data or molecules from different loci/species. To demonstrate
this, we present a comparison of the performance values obtained for
the NetMHClIpan-3.0 method and allele-specific NN-align method us-
ing 5-fold cross-validation (see Table 3.3). The NN-align prediction
method was trained as described by Nielsen and Lund [66], using
the same data partitioning based on the common motif clustering ap-
proach as used for NetMHClIpan-3.0.

The results presented in Table 3.3 demonstrate that the pan-
specific NetMHClIpan-3.0 predictor significantly outperforms the
allele-specific NN-align method (p value<0.0001 for both PCC and
AUC values). These results show that the pan-specific method ben-
efits from the binding data measured to different molecules. It also
demonstrates that adding data from other molecules significantly
boosts the performance for molecules represented by limited peptide-
binding measurements. Out of ten molecules described by less than
400 data points and less than 100 binders, ten and nine are shown
to obtain higher performance using pan-specific predictor in terms
of PCC and AUC values, respectively. The allele-specific NN-align
method gives higher PCC and AUC values for three molecules all de-
fined by more than 1,700 peptide-binding data.

Leave-one-out performance

In order to demonstrate how the method performs when predicting
binding to novel and uncharacterised molecules, we performed a LOO
experiment. In the LOO experiment, a molecule in question was ex-
cluded from the training data set, and its binding data acted as an
evaluation set. Likewise, all peptides, included in the binding data
set of the given molecules, were excluded from the training data in
order to avoid biassed overlapping between the evaluation and the
training sets. This was done in three rounds by removing one third
of the peptides from the evaluation set at a time and performing
5-fold cross-validation training in each round. The performance for
the query molecule was obtained by combining the predictions of all
three evaluation subsets. For the benchmark, we compared the results
with the predictive performance of the simple allele-specific approach
based on finding the nearest neighbour, NN-finder. For this method,
the molecule in question and its binding data were also acting as an
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Table 3.3. 5-fold cross-validation performance for the pan-specific
NetMHClIpan-3.0 method compared with the allele-specific NN-align
method using our benchmark data set.

NetMHClIpan-3.0 NN-align

Molecule name #pep  #bind PCC AUC PCC AUC

HLA-DPA1*0103-DPB1*0201 1,404 538 0.922 0.957 0912 0.952
HLA-DPA1*0103-DPB1*0401 1,337 471 0.929 0962 0914 0.958
HLA-DPA1*0201-DPB1*0101 1,399 597 0.905 0948 0902 0.941
HLA-DPA1*0201-DPB1*0501 1,410 443 0.868 0954 0.865 0.950
HLA-DPA1*0301-DPB1*0402 1,407 523 0.912 0.957 0905 0.956
HLA-DQA1*0101-DQB1*0501 1,739 522 0.791 0901 0.802 0.907
HLA-DQA1*0102-DQB1*0602 1,629 813 0.698 0.872 0.659 0.855
HLA-DQA1*0301-DQB1*0302 1,719 386 0.723 0.813 0.729 0.833
HLA-DQA1*0401-DQB1*0402 1,701 559 0.807 0914 0.794 0.903
HLA-DQA1*0501-DQB1*0201 1,658 549 0.802 0.902 0.809 0.902
HLA-DQA1*0501-DQB1*0301 1,689 863 0.816 0919 0.810 0.918

H-2-TIAb 660 126 0.713 0.884 0.664 0.856
H-2-IAd 379 70 0.577 0.816 0.420 0.856
DRB1*0101 7,685 4,382 0.717 0.849 0.682 0.831
DRB1*0301 2,505 649 0.708 0.859 0.671 0.836
DRB1*0302 148 44 0.601 0.800 0266 0.627
DRB1*0401 3,116 1,039 0.659 0.841 0.609 0.817
DRB1*0404 577 336 0.663 0.838 0595 0.784
DRB1*0405 1,582 627 0.711 0.862 0.683 0.843
DRB1*0701 1,745 849 0.729 0.861 0.732  0.860
DRB1*0802 1,520 431 0.515 0.771  0.478 0.750
DRB1*0806 118 91 0.778 0.927 0.707 0.886
DRB1*0813 1,370 455 0.740 0.881 0.719 0.867
DRB1*0819 116 54 0.608 0.809 0334 0.661
DRB1*0901 1,520 621 0.652 0.828 0572 0.788
DRB1*1101 1,794 778 0.770 0.879 0749 0.868
DRB1*1201 117 81 0.787 0.909 0.694 0.848
DRB1*1202 117 79 0.783 0.916 0.682 0.849
DRB1*1302 1,580 493 0.612 0.814 0.607 0.804
DRB1*1402 118 78 0.753 0.890 0.546 0.800
DRB1*1404 30 16 0.611 0.728 0259  0.603
DRB1*1412 116 63 0.764 0.896 0574 0.789
DRB1*1501 1,769 709 0.677 0.831 0.629 0.803
DRB3*0101 1,501 281 0.683 0.851 0.613 0.816
DRB3*0301 160 70 0.754 0.864 0543 0.773
DRB4*0101 1,521 485 0.693 0.846  0.687 0.840
DRB5*0101 3,106 1,280 0.760 0.882 0.740 0.865
Average 0.735 0.871 0.664 0.838
p value <0.0001  <0.0001

p value’ 0.002 0.021

NN-align is the method described by Nielsen and Lund [66]; NetMHClIIpan-3.0 is the method
described here. The values in bold show the higher score for each molecule for
corresponding performance measures (PCC or AUC). The p values for PCC and AUC are
given below the first columns of PCC and AUC values respectively.

#pep — number of peptide binding data available for each molecule, #bind — number of
peptides that have a binding affinity stronger than 500 nM.

“p — values of the 10 molecules characterised by <400 data points and <100 binders.
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evaluation set, while the training data were composed of the peptide
binding data of the molecule from the training set having the short-
est distance to the molecule in question. The results are depicted in
Figure 3.5 and presented in detail in Table B.4. It is apparent from the
results that NetMHClIpan-3.0 outperforms the NN-finder approach for
allloci in terms of average PCC and AUC. Even though we find general
improvement when comparing the pan-specific method to the nearest
neighbour approach, a significant difference (due to the small number
of molecules for each subset) is observed only for HLA-DR molecules
(p value<0.0001). The significance for the mouse allelic locus (H-2)
was not assessed due to only two molecules being available.

= NN-finder

o
W NN-finder Loo

o Loo

p-value = 0.0003

p-value < 0.0001

Average PCC
Average PCC
Il 1 L

00 01 02 03 04 05 06 07 08 09 10
00 01 02 03 04 05 06 07 08 09 10

HLA-DP HLA-DQ H-2 HLA-DR HLA-DP HLA-DQ H-2 HLA-DR

Figure 3.5. Leave-one-out results for the NetMHCIIpan-3.0 method in com-
parison with the NN-finder approach. Average performance measures in terms
of PCC and AUC are given in the left and right panel, respectively. Significant
p values are given above the bars for corresponding loci (not available for H-2
locus).

The method shows decreased predictive performance with the dis-
tance to the nearest neighbour from the training set (Figure 3.6). The
figure illustrates how the predictive performance of the pan-specific
method depends on the distance to the nearest neighbour calculated
in terms of pseudo sequence similarities as explained in "Materials
and methods". Regression analysis showed that the performance is
decreased significantly with the increasing distance (p value=0.031,
exact permutation test).
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Figure 3.6. Predictive performance of the NetMHCIIpan-3.0 method for the
molecules from our data set as a function of distance to the nearest neighbour.
The performance was obtained using LOO setup as explained in the "Materials
and methods" section. The distance to the nearest neighbour was calculated as
described by Nielsen at al. [49]. The solid line represents the least square fit for
the data.

Independent evaluation of the final NetMHClIIpan-3.0 predictor

For the final evaluation of the pan-specific method common for
HLA-DR, HLA-DP, HLA-DQ and mouse molecules, the method was
trained using all the available data (52,062 data points) and evalu-
ated on an independent HLA-DR evaluation set containing 9,860 data
points. The method was compared with the most recent version of the
class II pan-specific predictor NetMHClIpan-2.0 [50]. From the results
given in Table 3.4, it is apparent that NetMHClIIpan-3.0 outperforms
NetMHClIIpan-2.0 (average PCC is 0.603 compared with 0.586 and av-
erage AUC 0.807 compared with 0.802). Although the difference in
performances was observed not to be significant, the new pan-specific
method shows higher performance for most of the molecules from the
evaluation set (NetMHClIIpan-3.0 wins nine out of 13 and six out of 12
times in terms of PCC and AUC measures, respectively).
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The NetMHClIpan-3.0 method presented and benchmarked in this
paper was implemented as a web server and is available online at
http:/ /www.cbs.dtu.dk/services/NetMHClIpan-3.0.

Table 3.4. Independent evaluation of the NetMHCIIpan-3.0 method compared
with the performance of the NetMHCIIpan-2.0 predictor.

Molecule name #pep #bind NetMHClIIpan-3.0 NetMHCIIpan-2.0

PCC AUC PCC AUC
DRB1_0101 717 550 0.820 0.908 0.817 0.910
DRB1_0301 703 408 0.699 0.850 0.703 0.862
DRB1_0701 682 375 0.754 0.873 0.771 0.882
DRB1_0801 838 363 0.738 0.875 0.713 0.861
DRB1_1101 813 426  0.790 0.901 0.787 0.902
DRB1_1301 803 462 0.573 0.792 0.488 0.753
DRB1_1302 765 404  0.392 0.713  0.289 0.668
DRB1_1501 758 218  0.499 0.764 0.496 0.767
DRB3_0202 726 287  0.490 0.755 0.495 0.750
DRB3_0301 782 449  0.555 0.776  0.602 0.800
DRB4_0101 778 235  0.292 0.654 0.254 0.635
DRB4_0103 764 474  0.538 0.798 0.505 0.795
DRB5_0101 731 461  0.699 0.841 0.697 0.841
Average 0.603 0.808 0.586 0.802
p value 0.267 1.000

NetMHClIpan-2.0 method is an updated version of the method proposed by Nielsen et al.
[50]. NetMHClIIpan-3.0 is the method presented in this study. Molecule names in bold show
molecules that were not part of the training set. The values in bold show the higher score for
each molecule for corresponding performance measures (PCC or AUC) between the two
methods. p values were obtained using binomial test for PCC and AUC values.

#pep — number of peptide binding data available for each molecule, #bind — number of
peptides that have a binding affinity stronger than 500 nM.

Functional clustering of HLA class II molecules

Given the potential of the NetMHCpan-3.0 method to predict binding
for any MHC class II molecules with known alpha and beta chain
protein sequences, we next applied the method to give an overall
estimate of the functional diversity of molecules from the HLA-DR,
HLA-DP and HLA-DQ loci molecules. The analysis of the most preva-
lent alpha and beta chains in the European population was done as
described in the "Materials and methods", and the result is shown
in Figure 3.7. From the figure, it is apparent that the molecules en-
coded at the three loci display very limited functional overlap. Also,
one can notice that the HLA-DP locus molecules display a very lim-
ited functional diversity compared to the HLA-DR and HLA-DQ loci
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molecules. This is also reflected when measuring the functional diver-
sity of an HLA locus in terms of the mean and standard deviation of
the intra-locus distances. Here, we find that the mean intra-distance is
significantly shorter (p<0.001, Student's t-test) for HLA-DP compared
to HLA-DQ and HLA-DR. We can further relate these differences in
functional diversity to the degree of polymorphism at a population
level of the HLA pseudo sequences of each locus. Estimating poly-
morphism in terms of the Kullback-Leibler information content (or
divergence sum) [67] for the 34 positions in the pseudo sequence for
the three loci, we find that this value is significantly higher (p<0.001,
t-test) for DP compared to DQ and DR, hence demonstrating that DP
molecules share a significantly lower degree of polymorphism com-
pared to the molecules at the two other loci.

i ! A, !
nPA [ RT3 |zt

Figure 3.7. Functional clustering of the 72 HLA molecules from the European
population. HLA-DR molecules are displayed in red, HLA-DP molecules are
displayed in green and HLA-DQ molecules are shown in blue. Sequence logos
showing the binding motif are presented for selected molecules representing
the different specificity groups.

In terms of the predicted functionality, we recover for HLA-DRB1
the overall clustering proposed earlier [49] with 9 well-defined sub-
groups (supertypes). For HLA-DQ), the overall functionality seems re-
duced compared to HLA-DR, with only 5/6 well-defined subgroups,
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and as stated above, HLA-DP seems to encode for the least function-
ally diverse set of molecules with only one specificity group being
present. Sequence logos for selected subgroups and subgroup repre-
sentatives are included in the figure to illustrate the functional differ-
ence between the different molecules. In general, the predicted bind-
ing motifs are in agreement with the motifs proposed earlier for the
limited set of HLA class Il molecules experimentally characterised by
peptide binding data [68, 61].

3.1.4 DiScUSSION AND CONCLUSION

Identification of peptides binding to MHC is a critical step in under-
standing T cell immune responses. The human MHC genomic region
(HLA) is extremely polymorphic comprising several thousands alle-
les, many encoding a distinct molecule. The potentially unique speci-
ficities remain experimentally uncharacterised for the vast majority of
HLA molecules.

The sequences of human MHC class II molecules stored in the
IMGT database [34] cover over 600 different HLA-DR variants and
more than 6,000 different combinations of HLA-DP and HLA-DQ al-
pha and beta chains. Of these many molecules, less than 30 HLA-DR
and only 5 HLA-DP and 6 HLA-DQ molecules have been experimen-
tally characterised with binding data allowing for an accurate estimate
of their binding specificity. In order to span this gap, several meth-
ods have been developed and benchmarked during the last decade for
the prediction of peptide binding to MHC class II molecules (for re-
view, see [10]). Here, pan-specific methods play an important role, as
they are capable of giving predictions to those molecules, which have
not yet been characterised experimentally. However, until now, MHC
class II pan-specific binding prediction approaches have been limited
to HLA-DR molecules, leaving a gap in the general understanding of
binding specificities for HLA-DP and HLA-DQ molecules [10].

In this paper, we present a pan-specific method, NetMHClIIpan-3.0,
capable of predicting peptide binding to all HLA molecules. To the
best of our knowledge, this is the first predictor common for HLA-DR,
HLA-DP and HLA-DQ molecules. The method is based on artificial
neural networks and is trained on 52,062 quantitative peptide binding
data covering all HLA as well as two mouse molecules.

NetMHClIIpan-3.0 uses a new approach for defining the peptide-
binding environment of MHC in terms of pseudo sequence as com-
pared with the most recent NetMHClIIpan-2.0 method [50]. The main
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difference between the two approaches for obtaining pseudo sequence
is that for NetMHClIpan-3.0, only polymorphism within the train-
ing set is considered whereas the NetMHClIIpan-2.0 method includes
polymorphism across all known MHC class II sequences. Our re-
sults demonstrated that the new approach for defining the pseudo
sequence leads to a significantly improved predictive performance.

Several large-scale benchmarks were carried out that demon-
strated that the NetMHClIIpan-3.0 method fulfils the requirements for
the pan-specific methods. Its performance was found to be signifi-
cantly better than that of the allele-specific NN-align predictor [66].
In particular, the method outperformed NN-align for molecules char-
acterised with only a limited number of binding data. These re-
sults hence agree with the results obtained when benchmarking the
original NetMHCIIpan method [50] and underline the unique power
of the pan-specific approach in providing accurate predictions also
for molecules characterised with limited peptide-binding data as it
has also been demonstrated previously for MHC class I predictions
[60, 33, 32].

To mimic the situation where the NetMHClIIpan-3.0 method is ap-
plied to predict binding for uncharacterised MHC molecules, we con-
ducted a panel of LOO experiments. In these experiments, binding
data for one MHC molecule at a time were removed from the training,
and the predictive performance next evaluated on the left-out data.
The LOO results demonstrated that the proposed method is capable
of predicting binding affinity for the molecules for which no bind-
ing data are available in the training process. In addition to this, the
method showed decreased predictive performance with the distance
to the nearest neighbour from the training set, which is in agreement
with previous studies on MHC class I [36, 60, 31].

From the results included here, one can notice that HLA-DP
molecules demonstrate higher performance values compared with
DR and DQ performances. As this high performance is main-
tained also for the allele-specific (and pseudo sequence independent)
NN-align approach, the high performance is not due to the fact that DP
molecules are found to be very close to each other in terms of pseudo
sequence similarity and function. The reason for this different perfor-
mance is rather related to the differences within distributions of the
binding data available for each locus. The HLA-DP data are very well
separated with the majority of the data being either strong or very
weak binders. This is in strong contrast to the data for DQ and DR
molecules where the majority of the data have intermediate binding
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affinity (data not shown). This difference in binding affinity distribu-
tion strongly influences the predictive performance, as well-separated
data sets (as is the case for DP) in general achieve a higher predic-
tive performance. To prove this further, we have performed the ana-
lysis where we, in the evaluation of the prediction methods, mimicked
the distribution of the HLA-DP data for the DR loci. The analysis
demonstrated that the performance for DR molecules is significantly
increased when the data match the distribution observed for the DP
molecules compared to the original DR data distributions (data not
shown).

The NetMHClIpan-3.0 predictor showed higher performance when
compared with the NetMHClIpan-2.0 method on the external evalua-
tion set. The increased performance of the NetMHClIpan-3.0 method
demonstrates its promising ability to improve when more data be-
come available for molecules from other loci/species.

We further presented a powerful application of the developed
pan-specific predictor. We applied the NetMHClIIpan-3.0 method to
functionally cluster the most prevalent HLA alleles of the European
population. For HLA class I, clustering of molecules into supertypes
was proposed by the analysis carried out using experimental data
[69, 70] and extended by applying pan-specific class I predictor [33].
However, for MHC class II, the amount of experimental data remains
too limited to perform such a cluster analysis, which therefore so far
has been limited to HLA-DR molecules [49]. The analysis performed
here hence is the first study suggesting reduction of polymorphism of
HLA class II molecules by definition of clusters based on similarities
in predicted functional binding specificities. Such clustering builds
a base for facilitating identification of T helper cell epitopes within
different ethnic groups having a high value in the design of epitope-
based vaccines. As we have discussed earlier, developing a cross-loci
method for MHC class II is complicated due to the differences of se-
quences and structures of different loci [50]. However, as also sug-
gested in this earlier publication, with increasing amounts of binding
data covering HLA-DP and HLA-DQ molecules, pan-specific meth-
ods may benefit from cross-loci training. In this study, we demon-
strated that this is indeed the case. The performance of the proposed
NetMHClIIpan-3.0 method when trained on cross-loci was shown to
be comparable with that of a method trained on per-loci data. So
far, no significant improvement was found between the per-loci and
cross-loci trained method. However, this is most likely due to the
very low number of HLA-DQ and HLA-DP molecules included in
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the study and is expected to change with the inclusion of more data
covering HLA-DP and HLA-DQ molecules. The situation is hence
parallel to that observed for MHC class 1. Here, at first, only lim-
ited data characterising HLA-A and HLA-B molecules were available
for development of the original version of NetMHCpan, and an op-
timal performance was obtained when the method was trained in
a loci-specific manner [33]. Only when binding data became avail-
able covering more HLA molecules as well as MHC molecules from
non-human species (including non-human primates) was a cross-
loci/cross-species training strategy found to be optimal [36].

The training strategy outlined here for the MHC class II
pan-specific prediction method is highly flexible and readily allows
inclusion of novel data both in terms of peptides and MHC molecules.
This flexibility makes the method a powerful and unique platform for
the development of a pan-specific MHC class II predictor covering
not only the human class II molecules but also MHC molecules from
other species of interest. Lessons learned from MHC class I suggest
that such a true pan-specific approach is feasible and that predic-
tion accuracies for both human and non-human MHC molecules can
be greatly boosted given the ability of the pan-specific method to
leverage information across species and loci [71].

In conclusion, we believe the proposed NetMHClIIpan-3.0 method
is an important step forward in boosting MHC class II binding predic-
tions covering a large number of molecules from different species and
therefore reduces experimental costs for the immunologists working
within the field of epitope-based vaccine design.
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munology developed in our group. All the methods are publi-

cally available and include prediction tools for peptide binding
to MHC class I and class II molecules (NetMHCcons, NetMHClIpan),
a method for visualizing MHC binding motifs (MHCMotifViewer), a
patient-specific predictor of HLA restriction elements and optimal
epitopes (HLArestrictor), a method for predicting proteasomal cleav-
age sites (NetChop), and integrated tools for class I antigen presenta-
tion predictions (NetCTL, NetCTLpan). This chapter relates to the work
presented in Chapters 2 and 3 by including detailed guidelines on how
to use prediction methods for peptide-MHC binding. Instructions on
input submission are provided as well as explanations of the output.
Note that the chapter presents the old version of the NetMHClIIpan
method limited to HLA-DR molecules and not the new version com-
mon for all HLA class II molecules as presented in Chapter 3. This is
due to the fact that the paper included in this chapter was published
prior to the paper presented in Chapter 3.

T His chapter gives an overview of bioinformatics methods for im-

4.1 Paper III

The following paper was published as a chapter in a book edited by
Peter van Endert titled "Antigen Processing: Methods and Protocols"
in the series Methods in Molecular Biology, vol. 960 in January 2013.

59






4.1. Paper 111

Bioinformatics identification of antigenic peptide:
predicting the specificity of major MHC class I and
IT pathway players

Ole Lund, Edita Karosiene, Claus Lundegaard, Mette Voldby Larsen,
and Morten Nielsen

Center for Biological Sequence Analysis, Department of Systems Biology,

Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract

Bioinformatics methods for immunology have become increas-
ingly used over the last decade and now form an integrated part of most
epitope discovery projects. This wide usage has led to the confusion of
defining which of the many methods to use for what problems. In this
chapter, an overview is given focusing on the suite of tools developed
at the Technical University of Denmark.

Keywords Immune - Epitope - MHC - HLA - Class I - Class II - Antigen
processing - Proteasome - TAP - Visualization - Bioinformatics - Predic-
tion - Web server
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41.1 Introduction

Experimental methods for analyzing antigenic peptide generation,
transport, and binding to major histocompatibility complex (MHC)
class I molecules are expensive and time consuming. While bioinfor-
matics methods can never replace experiments in the laboratory, they
may in a highly cost-effective manner guide the experimental efforts
in a direction that increases the likelihood of discovering immuno-
logically important responses. At the Technical University of Den-
mark, we have over the last decade developed a number of methods
for predicting which part of an antigen most likely is presented to the
immune system. A complicating factor is that the MHC molecules
associated with response to foreign antigens are encoded at several
loci. Furthermore, these genes are the most polymorphicin the human
genome and thousands of different alleles are known. Many of these
alleles encode different variants of MHC molecules having different
peptide binding specificities. However, it is possible to cluster alle-
les with similar specificities into functional groups called supertypes,
tirst described by Sette and Sidney [70]. The pioneering methods for
predicting binding to MHC class I molecules such as BIMAS [72] and
SYPEITHI [73] helped initiate the field of immunological bioinformat-
ics, but these methods have since been surpassed by newer methods
like the ones described in this chapter, and we propose that experi-
mental efforts may be minimized by basing the experiments on these
newer methods.

4.1.2 Binding of peptides to MHC

In recent years numerous methods for predicting binding to MHC
molecules have been proposed. These methods can broadly be di-
vided into two classes: one being the allele-specific and one being
the pan-specific methods. Allele-specific methods are constructed
for a given allele, and can interpolate between different ligands and
give predictions for peptides for which no binding data are available.
An obvious limitation by these methods is that predictions can only
be made for alleles for which a number of binding data is already
available. This requirement has been circumvented by the so-called
pan-specific methods, which can also interpolate between different
MHC alleles and thus make predictions for alleles for which no known
binders are available. This strongly increases the number of alleles for
which predictions can be obtained, from the few hundreds for which
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binding data is available to the more than 3,000 for which the protein
sequence is known.

The accuracy of methods for MHC peptide binding prediction de-
pends critically on the available data characterizing the binding speci-
ficity of the MHC molecules. This makes it very difficult for the
non-expert user to choose the most suitable method for predicting
binding to a given MHC molecule. To complicate things even further,
it has been demonstrated that consensus methods defined as combi-
nations of two or more different methods led to improved prediction
accuracy.

4.1.3 Prediction of MHC class I peptide binding

To benefit from the consensus approach and to guide the non-expert
user on selecting the most appropriate binding prediction method
for a given MHC class I molecule, we have recently devel-
oped the NetMHCcons method.  The method is available at
http:/ /www.cbs.dtu.dk/services /NetMHCcons.

The method integrates predictions from three well-established
prediction methods (NetMHC [27, 20], NetMHCpan [36, 33], and
PickPocket [31]) and allows the user in an automatic manner to obtain
the most accurate predictions for any given MHC class I molecule of
known protein sequence. The three methods included in NetMHCcons
are state of the art and have performed well in recent benchmarks
[28,29,74,32,75, 76]. For MHC class I alleles with well-characterized
binding specificity, the method is defined as a combination of the
NetMHC and NetMHCpan methods, and for alleles with unknown
binding specificity, the method is defined in terms of the NetMHCpan
method combined with PickPocket. For details on the method and its
benchmark performance refer to [60].

The submission site of the server can be seen in Figure 4.1.

1. Select method. By default, the consensus method (NetMHCcons)
is selected but each of the three individual prediction methods
can be run separately.

2. Select Allele(s). To aid in navigation, the alleles listed by default
are limited to the human supertype representatives, but all al-
leles from different human/animal loci can be selected under
"Select species/loci" (the list of selectable alleles is limited to al-
leles with well-characterized binding specificity when using the
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NetMHCcons 1.0 Server
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&3 (1] HE Bioinformati... - teaching YouTube Google Maps Page via DTV proxy DTU wireless Homepage of Claus  SBNI _Predictors

SUBMISSION

Type of input  Fasta %

Past e FASTA field below:

or submita file in FASTA format directly from your local disk:
(Choose File ) no fle selected

Peptide length (several lengths are possible):
8mer peptides

9mer peptides
10mer peptides
Llmer peptides
All 8-11)

Select Method [ NetMHCcons %
Select species/ioci
HLA supertype representative | %

Select Allele (max 20 per submission)
HLA-A*0L:01 (AD)

o type allele names (ie HLA-A01:01) separated by commas (and no spaces). Max 20 alleles per submission).

Forlist of allowed allele names click here List of MHC allele names

or paste a single full length MHC protein sequence in FASTA formatinto the field below:

4

or submita file containing a full length MHC protein sequence in FASTA format directly from your local disk:
Choose File ) no file selected

Threshold for strong binder (% Rank) 0.5 ‘Threshold for strong binder (IC50) |50
Threshold for weak binder (% Rank) |2 ‘Threshold for weak binder (IC50) 500

Filter output ( No 1%

Sortby affinity ()

Save prediction to xis file )

(Submit)) ((Clear fields

Figure 4.1. Submission site of NetMHCcons server. Two submission types
are handled — a list of peptides or protein sequence(s). The server provides a
possibility for the user to choose MHC molecules in question from a list of alle-
les or alternatively upload a full-length MHC protein sequence of interest. The
user has a choice of setting the threshold for defining strong and weak binders
based on predicted affinity (IC50) or %Rank. The output can be sorted based on
predicted binding affinity as well as filtered on the user-specified thresholds.

NetMHC method). In the MHC allele selection field, multiple al-
leles can be selected but the selection is limited to 20 alleles per
submission. Multiple alleles can also be inputted as a comma-
separated list. For the pan-specific methods (NetMHCcons,
NetMHCpan, and PickPocket) the user can upload a file contain-
ing the protein sequence of an MHC class I molecule that is not
among the available, selectable alleles, and the method will per-
form peptide binding predictions for this molecule.

. Provide input sequence. The input can either be in peptide raw

text or protein FASTA format. In peptide format, each line is
assumed to be a separate peptide. All peptides must be of equal



4.1. Paper 111

length. In FASTA format, the sequence of each protein must be
preceded by a line beginning with a ">". When FASTA input is
used, multiple different epitope lengths from 8 to 11 residues
can be selected.

4. Select output formatting. By default the output is sorted by the
residue number, but the user can choose to sort the output by
the predicted binding affinity. Predictions for all the input pep-
tides given are by default but by setting "Filter output" to "Yes",
only the peptides predicted to bind stronger than the defined
thresholds are given in the output. The output can optionally
be saved to a file readable by spreadsheet applications for fur-
ther processing by the user.

5. Press submit.

6. Wait for the server to produce output. The output from the
server consists of a list of peptides, each associated with three
prediction values: 1-—log50k(aff), Affinity, and %Rank. The
1—-log50k value is the raw score provided by the prediction
method, and is related to the predicted binding affinity value
as 1—log(aff) /1og(50,000). The %Rank score gives % rank of the
prediction score to a set of 200,000 random natural 9-mer pep-
tides. Thresholds can be selected for which peptides to report as
strong binders (SB) and week binders (WB). The peptides are la-
beled as a strong binder if the %Rank score or the binding affin-
ity is below the specified thresholds for the strong binders. Like-
wise, peptides are labeled as weak binders if the %Rank or the
binding affinity is above the thresholds of strong binders, but
below the specified threshold for the weak binders.

References to other well-performing methods for prediction of MHC
class I binding can be found in one of the several reviews that have
been written on the subject including a recent one from our group
[76].

4.1.3.1 Prediction of MHC class II peptide binding

For class I, alignment-free methods like the ones described earlier can
readily be applied, since the binding motif is well characterized and
most natural peptides that bind MHC class I are of the same length.
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For MHC class 11, the situation is quite different due to the great vari-
ability in the length of natural MHC-binding peptides. This varia-
tion in ligand length makes alignment a crucial and integrated part of
estimating the MHC-binding motif and predicting peptide binding.
During the last decade, large efforts have been invested in developing
data-driven prediction methods for MHC class II peptide binding. For
an overview of these refer to one of the many reviews written on the
theme including the one written by our group [10].

The binding of a peptide to a given MHC class II molecule
is predominantly determined by the amino acids present in the
peptide-binding core. However, peptide residues flanking the bind-
ing core (the so-called peptide flanking residues, PFR) do also to some
degree affect the binding affinity of a peptide [77, 78, 66]. Most pub-
lished methods for MHC class II binding prediction focus on identi-
tying the peptide-binding core only, ignoring the effects on the bind-
ing affinity of PFRs. In the work by [66] it was demonstrated that the
additional information provided by the PFR leads to significantly im-
proved predictions.

Two high-performing methods for MHC class II binding predic-
tion developed by our group are NetMHCII [66] and NetMHClIpan
[49, 50]. The NetMHCII method is allele-specific and allows
for peptide-MHC binding predictions to a set of 14 HLA-DR,
six HLA-DQ, six HLA-DP, and two mouse H2 class II alleles.
NetMHClIpan is HLA-DR pan-specific, allowing for prediction of pep-
tide binding to all HLA-DR molecules with a known protein sequence.
Several benchmark studies have demonstrated these methods to be
high performing and state of the art [29, 38, 79, 80].

1. Select input sequences. Both methods accept input either as in-
dividual peptides in raw text format or as protein sequence(s)
uploaded in FASTA format (see earlier). If protein sequences
are uploaded, the user can specify the peptide length and pre-
dictions are made for each overlapping peptide of the specified
length. Multiple MHC alleles can be specified.

2. Customize search. The input to (and output from) the
NetMHCIIpan method is very similar to that of NetMHCII. Only
does the NetMHClIpan method (as was the case for MHC class
I'methods described earlier) allow the user to upload a file con-
taining the protein sequence of an HLA-DR molecule that is not
among the available, selectable alleles, and the method will per-
form binding predictions for this molecule. Likewise the user
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can define the prediction score threshold values used to clas-
sify prediction as strong and weak binders. Also can the output
from the NetMHClIpan server be saved to a file readable by most
spreadsheet applications for further processing by the user.

3. Select output formatting. By default the output is sorted by the
residue number but the output can also be sorted by affinity.
Predictions for all peptides are by default given but by setting a
"Threshold", only the peptides predicted to bind stronger than
the defined threshold (in 1—-log50k units) are given in the out-
put.

4. Press Submit.

5. Wait for output. As for the MHC class I prediction server de-
scribed earlier, the output from the MHC class II prediction
servers consists of a list of peptides, each associated with the pre-
dicted binding core and three prediction values: 1—log50k(aff),
Affinity, and %Rank. The 1—-log50k value is the raw score pro-
vided by the prediction method, and is related to the predicted
binding affinity value as 1—log(aff)/log(50,000). The %Rank
score gives % rank of the prediction score to a set of 200,000 ran-
dom natural peptides. Peptides are labeled as a strong binder if
the binding affinity is below 50 nM. Likewise, peptides are la-
beled as a weak binder if the binding affinity is below 500 nM.

4.1.4 MHCMotifViewer: browsing and visualization of
MHC class I and class II binding motifs

The number and binding specificity diversity of MHC molecules
can be overwhelming for most users. To help get an
overview, we have developed the MHCMotifViewer server
(http:/ /www.cbs.dtu.dk/biotools/MHCMotifViewer/). The home-
page is shown in Figure 4.2.

1. Select species/loci. By clicking on "Human alleles" different loci
can be selected. For other species the user is taken directly to a
list of alleles.

2. Select allele. Clicking on one of the thumbnail pictures will cre-
ate a larger logo for that allele. This is shown for HLA-A*0103
in the right panel of Figure 4.2. On the x-axis the nine positions
in the binding motif are given. The height of the columns of
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Figure 4.2. The MHCMotifViewer server. Left panel shows the homepage of the
MHCMotifViewer server where the organism can be selected. Human, murine,
chimpanzee, swine, gorilla, and macaque alleles can be browsed. In the right
panel an allele from the Human HLA-A loci (HLA-A*0103) is selected and its
motif is displayed as the sequence logo representation.

letters at each position corresponds to the predicted contribu-
tion to binding on that position calculated according to the for-
mula developed by Kullback-Leibler [67]. The amino acids for
which their frequency differs the most from the background fre-
quency for that amino acid in proteins in general are shown with
the highest letters. The overrepresented amino acids are shown
above the x-axis, and the underrepresented ones below.

The binding motif of up to four different alleles can be shown side
by side by clicking on "MHC Fight". By default, all four alleles are
the same, but by clicking on the blinking curser, the allele name can
be changed by deleting (part of) the name using the backspace key
and typing the new name. By holding the curser over the "K" button,
the display will shift between showing a Kullback-Leibler (K), and a
Sequence frequency (S)-based logo. In a sequence frequency-based
logo the relative height of each letter within a column is proportional
to the frequency of the corresponding amino acid at that position. A
more detailed explanation can be found in [45].
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4.1.5 HLArestrictor: patient-specific HLA restriction
elements and optimal epitopes within peptides

Considering the many different peptides that can be generated,
even from a small target protein, and the extensive polymorphism
of the presenting MHC molecules, identifying pathogen-specific,
HLA-restricted T cell epitopes can be an immense experimental task.
To reduce this complexity, one could conveniently exploit a com-
monly used approach of T cell epitope discovery: testing overlap-
ping peptides (OLP) with a length of 15-18 amino acids in IFNvy
release, ELISPOT, or flow cytometric intracellular staining assays.
Given a positive peptide it is, however, not a simple task to find
the actual stimulatory peptide (minimal epitope) and the present-
ing HLA restriction element. By way of example, a 15-mer peptide
tested positive in a patient with six different HLA class I molecules
could potentially be explained by any one of the possible 22 x 6 = 132
8-11-mer HLA combinations. To lower this experimental burden,
we have developed an immunoinformatics method, HLArestrictor
(www.cbs.dtu.dk/services/HLArestrictor) [43], which has been tai-
lored to support CTL epitope discovery in individual subjects. As
inputs, the method requires the amino acid sequence of the posi-
tive peptide(s) and the HLA type of the individual in question (high-
resolution HLA typing, e.g.,, HLA-A*0101, and preferably for all rel-
evant loci, e.g., for HLA-A, -B, -C for HLA class I-restricted CTL re-
sponses). Using these inputs, HLAvestrictor creates all possible 8,9, 10,
and 11-mer peptides from the target peptides(s), predicts their bind-
ing to all the HLA molecules in question, and generates an output
file consisting of the most likely peptide/HLA combination(s). Pep-
tide/HLA tetramers is one of the most efficient means to validate T
cell epitopes, and HLArestrictor can also be viewed as a tool for ef-
ficient design of specific peptide/HLA tetramers. The vehicle be-
hind the HLArestrictor is the NetMHCpan method, and the Webpage
interface bears a high resemblance to the interfaces for NetMHCpan,
NetMHClIIpan, and NetMHCcons.

1. Select input sequences. Multiple peptide sequences can be up-
loaded in FASTA format.

2. Select HLA alleles. The host HLA allele names can be selected
or typed in.

3. Select lengths of epitopes. The lengths of the predicted minimal
epitopes can be specified.
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4. Select prediction threshold. Threshold values defining how the
prediction scores are interpreted can be specified in terms of
threshold values for strong and weak binding peptides.

With default settings, the server will scan all possible 8, 9, 10, and
11-mer peptides from the target peptides(s) for binding to all HLA
alleles of the host and report peptides with %Rank score less than or
equal to 0.5 or affinity stronger than 50 nM as strong binders, and pep-
tides with %Rank score less than or equal to 2 or affinity stronger than
500 nM as weak binders.

4.1.6 Interpreting the output from the prediction servers

All the prediction servers described here provide three prediction
scores for each peptide, as well as a label classifying the peptides into
groups of strong and weak binders. For the end user, these predic-
tion values are meant to serve as a guide to make rational peptide
selections for epitope discovery and/or interpretation of immune re-
sponses. This opens for questions on how to define relevant thresh-
olds relating prediction values to likelihoods of a peptide being a T
cell epitope. It is becoming apparent that not all MHC molecules
present peptides at the same binding threshold [81, 46]. The two dis-
tinct prediction values (affinity and %Rank) are included to capture
these intrinsic differences between MHC molecules in terms of bind-
ing threshold for presentation of peptides. Large benchmark studies
have demonstrated that the vast majority of known CTL epitopes are
characterized by having a %Rank score less than or equal to 2 or an
affinity stronger than 500 nM [43, 44, 82]. These numbers are hence
used as default values for the definition of weak binding peptides for
all MHC class I prediction methods. For MHC class II the situation is
less clear. While it is clear that the prediction values correlate strongly
with the measured binding affinity, few studies have investigated the
direct correlation between %Rank score, predicted affinity values, and
the likelihood of a peptide being immunogenic. The default values
for the classification of peptides as weak and strong binders are hence
poorly justified for MHC class II, and the relationship to the likelihood
of being immunogenic is at the best poorly investigated. However,
for both MHC class I and class II it is clear that using the prediction
score to rank peptides provides a highly cost-effective tool to guide
the experimental efforts in a direction that increases the likelihood of
discovering immunologically important responses.
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4.1.7 The MHC class I antigen presentation pathway

As part of the protein recycling machinery, proteins in our cells are cut
into shorter peptides by the proteasome. These peptides may bind to
the transporter associated with antigen processing (TAP) and be trans-
ferred to the endoplasmic reticulum (ER). Inside the ER, peptides may
be further trimmed, bind the MHC class I molecules, and be trans-
ported along with it to the cell surface. If the peptide is of non-self
origin, the peptide-MHC complex may bind to a T cell receptor (TCR)
on a cytotoxic T cell, which will then initiate an immune response.
More detailed descriptions of and references to these processes can
be found in other chapters of this book. The three most essential of
the above steps (cleavage by the proteasome, transport by TAP, and
binding to MHC class I) have been modeled by bioinformatics meth-
ods that can predict which peptides from a given protein/organism
are most likely to be presented to the immune system.

4.1.8 NetChop: proteasomal cleavages (MHC class I ligands)

A method has been developed, which predicts proteasomal cleavage
sites. The method is called NetChop [83], and a server is available at
http:/ /www.cbs.dtu.dk/services /NetChop/.

1. Select prediction method. Two different versions of the method
exist: "C term 3.0" and "20S 3.0". They differ by the sets of
data they have been trained on. While NetChop 20S 3.0 has
been trained on in vitro constitutive proteasome protein digests,
NetChop C term 3.0 has been trained on natural MHC class I lig-
ands. The rationale for the latter is that the proteasome most
likely has generated the ligand s C-terminal ends. NetChop C
term 3.0 predicts the C-terminal end of CTL epitopes with a
higher specificity than NetChop 20S 3.0 (has fewer false posi-
tives). The main reason for this is that since it is trained on nat-
ural ligands, it predicts a combination of MHC class I binding,
TAP transport efficiency, and proteasomal cleavage.

2. Select input sequence. The input to the server is proteins or
peptide fragments in FASTA format (see earlier). The method
assigns a score in the range 0-1 to each residue in the input se-
quence. The higher the score, the more likely it is that the pro-
teasome cleaves after this residue. Note that the score refers
to cleavage of the peptide bond on the C-terminal side of the
residue to which the score is assigned.
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3. Select prediction threshold. By default, 0.5 is used as the thresh-
old for predicted proteasomal cleavage. In the output, scores
above the threshold are assigned an "S" in the C (cleavage) col-

noan

umn, while lower scores are assigned a ".".

41.9 NetCTL and NetCTLpan: integrated class I antigen
presentation

Two methods that integrate predictions of proteasomal C-terminal
cleavage, TAP transport efficiency, and MHC class I binding for the
overall prediction of MHC class I presentation called NetCTL and
NetCTLpan have been developed by our group. The NetCTL method
[84] is available at http://www.cbs.dtu.dk/services/NetCTL/. For
prediction of proteasomal cleavage, it uses NetChop C term 3.0 (see
above). Predictions of TAP transport efficiency are based on the
weight matrix-based method described by Peters et al. [85]. For pre-
dictions of MHC class I binding, NetMHC (see above) is used.

1. Select input sequence. The input to the server is proteins or pep-
tide fragments in FASTA format (see earlier).

2. Select Allele/supertype. The user must specify for which of the
12 MHC class I supertypes the predictions should be performed
(A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58, or B62; for
a definition of supertypes see [70]). NetCTL integrates the indi-
vidual scores from NetChop, the TAP matrix, and NetMHC into
one, overall score. To allow for comparison between different
MHC class I supertypes, the rescaled affinity is used (see [84]
for details on how the rescaled affinity is calculated).

3. Select weighting of processing steps. As default, the relative
weight of C-terminal cleavage is 0.15, while it is 0.05 for TAP
transport efficiency. The default weights have been found to re-
sult in optimal performance, but can be changed by the user.

4. Select prediction threshold. The user can also specify which
threshold to use for defining a CTL epitope. By default it is 0.75.

5. Select sorting of output. Lastly, the user can specify how the 9-
mers of the input sequence should be sorted in the output. In the
default "no sort" option, the 9-mers are listed according to the or-
der in which they appear in the input sequence. Alternatively,
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they can be sorted according to the combined score, MHC bind-
ing, proteasomal cleavage, or TAP. For each 9-mer sub-peptide
in the input sequence, the output will list the predicted affinity
and the prediction scores of proteasomal cleavage, TAP binding,
and finally a combined score. If the combined score is above the
selected threshold for defining an epitope, it is marked by an "E".

NetCTLpan is an extended and improved version of NetCTL, which
is available at http://www.cbs.dtu.dk/services/NetCTLpan/ and
described in detail in [46]. The C-terminal proteasomal cleavage and
TAP transport efficiency are predicted as for the NetCTL method,
while MHC class I binding is based on the NetMHCpan method. While
NetCTL only allows for predictions of peptides restricted by one of the
12 MHC class I supertypes, NetCTLpan allows for predictions of CTL
epitopes binding any MHC class I molecule for which the protein se-
quence is known. As for the above-described pan prediction meth-
ods, it is additionally possible to paste in or upload a file containing
the protein sequence of an MHC class I molecule that is not among the
available, selectable alleles, and the method will perform CTL epitope
predictions for this molecule. NetCTLpan furthermore performs pre-
dictions for 8-11-mers. The Webpage interface of NetCTLpan bears a
high resemblance to the interfaces of NetCTL. One difference is that it
is possible to select a threshold that the combined score must exceed
for the predictions to be displayed in the output page. By default, this
threshold is —99.9, which results in all predictions being displayed. In
the output page, the same values are listed as in the NetCTL output.
Additionally, the %Rank value is given (see above for definition of the
%Rank value).
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Bioinformatics analysis of epitopes from
yellow fever virus vaccine strain 17D

project dedicated to discover T cell epitopes from a yellow

fever virus. The prediction methods presented in previous
chapters composed the largest part of our contribution to the project.
The methods were highly used by our collaborators for the selection of
potential epitopes. In addition to the prediction tools, we contributed
to the project by performing a short study on epitope mapping and
distribution analysis. This chapter presents the main findings of this
project.

D UurING my PhD, T have been involved in a collaborative research
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5.1 Introduction

5.1.1 Yellow fever disease and yellow fever virus

Yellow fever (YF) is one of the most infectious diseases found mostly in
tropical regions of Africa and South America. It is a mosquito-borne
disease caused by a yellow fever virus from the Flavivirus genus of
the Flaviviridae family [86]. YF virus infection in humans may lead to
fever, nausea, chills, headache, back and muscle aches etc. In severe
cases, infection causes liver damage with jaundice and leads to death
[87]. The number of YF infections reported by The World Health Or-
ganization reaches 200,000 including about 30,000 deaths every year.
YF disease has been re-emerging over the last two decades [88] and
since no antiviral drug is available for the treatment, vaccination re-
mains the only and most important solution for the prevention of the
disease. The live-attenuated vaccine against YF is considered to be
one of the most safe, effective and affordable viral vaccines that has
ever been created. The vaccine is based on the 17D virus strain and
was developed by Max Theiler in the 1930's. Since then, more than
500 million doses have been used with more than 95% successful pro-
tection for at least 10 years [89, 90].

5.1.2 YF virus genome polyprotein

The YF virus vaccine strain 17D (YF-17D) contains a 3,411 amino acid
polyprotein (GeneBank ID: AF052437.1 [91]) composed of three struc-
tural and several non-structural proteins [92, 93, 94, 95]. The RNA of
the YF virus is about 11 kilobases long and has only one open read-
ing frame within which the protein encoding genes have been de-
termined as follows: 5'-C-prM-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-
NS5-3' [96]. The composition of the genome polyprotein is schemati-
cally represented in Figure 5.1. The N-terminal end of the polyprotein
encodes three structural proteins (capsid protein C; membrane pre-
cursor, prM; and envelope protein E) that compose immature virions
assembled in the endoplasmic reticulum (ER). The remaining seven
proteins are non-structural (NS) proteins with different functions im-
portant for the replication and assembly of the virus [97, 98].

5.1.3 Experimental assays

Several immunological methods have been developed in order to mea-
sure T cell responses to individual antigens and identify potential epi-
topes from a chosen pathogenic genome. One group of such methods
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Figure 5.1. Schematic representation of the YF virus 17D vaccine strain
polyprotein. Structural and non-structural proteins are represented by the red
and blue units, respectively. The numbers inside the units indicate the length
(number of amino acids) of each protein.

is based on detection of various cytokines and includes enzyme-linked
immunosorbent spot (ELISPOT) and intracellular cytokine staining
(ICS) assays. Such assays are based on measuring a difference be-
tween production of cytokines by T cells in the presence and absence
of an antigen. An ELISPOT assay is highly sensitive towards quan-
tification of low-frequency T cell responses and is very widely used
to detect antibody-producing cells as well as to identify responses of
the T cells specific for viral antigens. On the other hand, even with a
lower sensitivity, the ICS assay possesses an ability to detect respond-
ing cell types. Due to these features both assays are commonly used
together, using ELISPOT assays for initial screening, followed by the
ICS method to validate detected responses and identify the respond-
ing cell types [99, 100]. For further validation of antigen-specific T
cells, tetramer staining technique is used [101]. The method is based
on tetramers consisting of multiple bound peptide-MHC complexes
in order to increase binding avidity for T cells. Tetramers bind only
peptide-specific T cells, therefore allowing in vitro identification of T
cells specific for infectious agents [101].

5.1.4 Data set

For our analysis, we used a list of 68 unique CD8™" T cell epitopes (see
Table C.1) identified by ELISPOT and ICS assays using blood samples
from a large cohort of donors vaccinated against yellow fever disease.
Phenotypic HLA allelic composition of the donors covered ten HLA-
A, 16 HLA-B and one HLA-C allele. Some of the epitopes have been
found to be associated with several MHC molecules, resulting in 86
epitope-MHC combinations as presented in Table C.2.
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5.2 Bioinformatics analysis

5.2.1 Epitope mapping to YF virus polyprotein

Using the list of epitopes presented in Table C.1, we mapped the reper-
toire of tested epitopes to the YF-17D polyprotein. The results are de-
picted in Figure 5.2. Each position of the polyprotein obtained a score
equal to the number of epitopes starting at that position. The figure
demonstrates that the distribution of epitopes across the full genome
is almost flat resulting only in a few gaps and one characteristic peak.

Epitope counts
3
1
1
1
)

.1 S O O

I T T T T T T 1
0 500 1000 1500 2000 2500 3000 3500

YF virus polyprotein sequence positions

Figure 5.2. Experimentally determined epitopes mapped to YF-17D polypro-
tein. Epitope count for each position represents a number of epitopes starting
at that position.

Zooming into the peak between positions 1,000 and 1,500 of the
polyprotein, we find corresponding epitopes mapped to the virus se-
quence as shown in Figure 5.3. Six epitopes comprising the highest
score in Figure 5.2 are found to be closely located on the genome
sequence. The epitopes are clustered into two groups of three pep-
tides belonging to either NS1 or NS2A proteins. We note that epi-
topes starting at position 1,114 have an overlap of ten amino acids and
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Figure 5.3. Region of the YF-17D polyprotein containing the highest number
of epitopes. Six epitopes were identified at the end of protein NS1 and at the
beginning of protein NS2A. The epitopes are mapped to the YF virus polypro-
tein sequence between positions 1114 and 1143. Different colours mark different
groups of amino acids.

are both found to be restricted to the HLA-B*0702 allele. Similarly,
epitopes starting at the first position of NS2A protein (1,131 position
of the polyprotein) are both found to bind to the HLA-B*4001 allele.
Tetramer staining analysis demonstrated that the RPRKTHESHL and
RPRKTHESHLYV peptides are recognized by two different T cell pop-
ulations. On the other hand, the GEIHAVPFGLV and GEIHAVPFGL
were recognized by the same T cell population and represent one ac-
tual epitope.

5.2.2 Distribution of epitopes within YF virus proteins

In order to investigate if some YF virus proteins contain a higher num-
ber of immunogenic signals than others, we calculated the density
of epitopes within each protein. The results are presented in Table
5.1 and visualised in Figure 5.4. The density was calculated as the
number of epitopes per single position of a protein. For comparison,
we defined a background density equal to the density of the whole
polyprotein. We used statistical analysis to compare proportions of
#epitopes/#residues of each protein to the background proportion and
assessed Z-scores. For a confidence level of 95%, the Z-scores should
satisfy the equations: Z-score<—1.96 and Z-score>1.96. Figure 5.4
shows that most of the proteins (seven out of ten) reach the density
above the background value of 0.02. However, no statistically signif-
icant differences between density of CD8" epitopes within each pro-
tein and whole polyprotein sequence were observed (see Table 5.1).
One can notice from Table 5.1 that in order to maintain uniform
density across all proteins, longer proteins should contain a higher
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Table 5.1. Epitope density of proteins from the YF-17D virus strain.

Protein name #epitopes #residues Density Z-score
Capsid protein C 1 102 0,010 -0,727
prtM 0 164 0,000 -1,826
Envelope protein E 10 493 0,020 0,052
NS1 11 352 0,031 1,410
NS2A 6 224 0,027 0,703
NS2B 4 130 0,031 0,859
NS3 13 623 0,021 0,152
NS4A 4 126 0,032 0,922
NS4B 5 250 0,020 0,007
NS5 14 905 0,015 -0,875

#epitopes refers to the number of epitopes within each protein, #residues refers to
the length of each protein in terms of amino acid number, Z-scores were calculated
comparing proportions of #epitopes/#residues.

number of epitopes than shorter proteins. This is confirmed in Figure
5.5 which demonstrates that the observed number of epitopes is a di-
rect function of protein size. Regression analysis confirmed that the
number of epitopes increases significantly with increased sequence
length of a protein (p<0.0001, exact permutation test).
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0.01
1
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|
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Proteins

Figure 5.4. Epitope density for each YF virus protein. The density was cal-
culated as the number of epitopes per single protein residue. Horizontal line
corresponds to the background epitope density of the amino acid sequence of
the whole virus genome.
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Figure 5.5. Dependency of the number of epitopes on the protein size. The
length of the protein is given in amino acid residues. Solid line represents the
least square fit for the data.

5.2.3 Epitope prediction models

The key step in antigen recognition by CD8" T cells is presentation of
antigen on MHC class I molecules. With this in mind, we analysed
the impact of the peptide-MHC predictions for the epitope identifi-
cation process. Having the epitope distribution profile presented in
Figure 5.2, we investigated to what degree epitope distribution can be
explained by the profile of predicted binders to MHC molecules.

The full sequence of the YF virus polyprotein was scanned for
overlapping 8- to 11-mers, resulting in 13,610 peptides. For this pep-
tide set we predicted binding affinities using the NetMHCcons method
[60]. From the output we selected only the strong binders with a pre-
dicted binding affinity <50 nM or a %Rank <0.5%. A %Rank score
is a different way to measure how well a peptide binds to a particular
MHC molecule and was previously described in Hoof et al. [44]. The
score is calculated by ranking the peptide in question by its predicted
affinity along with 200,000 natural random 9-meric peptides for the
same HLA molecule. A %Rank of 0.5% means that only 0.5% of ran-
dom peptides have a predicted binding affinity stronger than that of
the query peptide.
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The selection of the predicted strong binders from our peptide set
was then used to make an HLA binding profile for the YF-17D se-
quence. For this, we used phenotypic frequencies of all typed donors
representing Danish population. For each position, we calculated an
HLA frequency score corresponding to the sum of phenotypic HLA
frequencies for all HLA alleles from our data set having a strong
binder at that particular position. For comparison, the HLA frequency
score for the epitopes was obtained by adding up phenotypic frequen-
cies of the alleles binding the epitopes found in each position of the
sequence. The plotis shown in Figure 5.6 on the left panel and demon-
strates high correlation between the two profiles. The right panel of
Figure 5.6 shows corresponding profiles for the score where the HLA
frequency was replaced by a binary summation — adding 1 if the po-
sition is part of the strong binder or an epitope, and adding 0 if it is
not. The correlation between the two curves seems to decrease in this
case. Pearson's correlation coefficient calculated for the two curves is
equal to 0.406 (p<0.0001, exact permutation test) when the real HLA
frequencies were used and PCC=0.221 (p<0.0001, exact permutation
test) when only binding /non-binding strategy was applied. The dif-
ference between the PCC of the binary and the frequency-based mod-
els was found to be significant (p<0.001, using bootstrap). The corre-
lation coefficients and the p values were calculated using fitted curves
and not the raw data in order to remove noise occurring from having
too few epitopes. As can be seen from the results, epitope profile can
to a high degree be explained by the strong predicted binders, and
MHC frequency improves the model for epitope predictions.

5.2.4 Selection of potential epitopes using prediction
methods

We showed that the key step in identifying YF epitopes is finding
strong binders to their restricted MHC molecule. This makes peptide-
MHC binding prediction methods very important in the pre-selection
process of potential epitopes worth testing in the lab. During the re-
cent years our group has developed several MHC binding predic-
tion methods, as presented in Chapter 4. The methods have been
used by different groups of experimentalists to choose potential epi-
topes against different pathogens, however one issue remains un-
clear. As explained in Chapter 4, some prediction methods such as
NetMHCpan, PickPocket and NetMHCcons provide two kinds of scores
— binding affinity and %Rank — for definition of strong binders. Bind-
ing affinity in terms of nM is the most common predicted measure
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Figure 5.6. Correlation between predicted strong HLA binders and identified
YF virus epitopes. The profiles for strong HLA binders and epitopes are calcu-
lated by summing phenotypic population frequencies of HLA molecules from
the data set (leff) and using binding/non-binding binary summing approach
(right). The set of strong binders was created by selecting all 8-11mer peptides
from the YF virus sequence and using NetMHCcons method to predict binding
to HLA molecules. The PCC was calculated using 500 overlapping points from
each curve.

used by immunologists, leaving the %Rank as a rarely used measure
in the epotipe pre-selection process. We employed yellow fever virus
epitope data to investigate the impact of both measures.

Using the NetMHCcons prediction method, we investigated what
percentage of all 86 epitopes was identified with different cut-offs of
log-transformed affinity (1—1og50,000(aff)) and the %Rank score. The
results depicted in Figure 5.7 show that going in the direction from
strong to weak binders, the %Rank curve is much steeper than the
log-affinity curve. More than 95 % of epitopes can be identified with
a %Rank cut-off of 2% while for the binding affinity the log-score has
to go down to 0.2 (corresponding to an affinity of 5,800 nM) in order to
identify the same amount of epitopes. In addition to this, a ROC curve
in Figure 5.7 shows predictive performance of the method when us-
ing %Rank and log-score to differentiate binders from non-binders.
Here, 86 YF epitopes were acting as true positives and all the other
8-11mer peptides were assigned to be actual negatives. It is apparent
in Figure 5.7 that at the same specificity, the rank curve has higher
sensitivity and vice versa. For example, at the specificity of 0.980, the
log-score has a sensitivity of 0.919 while the rank reaches sensitivity
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Figure 5.7. Comparison of the %Rank and the log-transformed affinity scores
for choosing potential epitopes. Percentage of epitopes identified at different
cut-offs for both measures are shown on the left. The right panel gives ROC
curves of predictive performances obtained using both, %Rank and log-affinity
measures.

of 0.977. Moreover, at the sensitivity of 0.900, the log-score has speci-
ticity of 0.984 (FP=5,860) and for the rank score the specificity is 0.991
(FP=3,450). The AUC values were calculated to be 0.995 and 0.993 for
the %Rank and log-score, respectively, and to be significantly differ-
ent (p<0.01, using bootstrap), making the %Rank a better measure to
identify potential epitopes.

5.3 Discussion

One can expect that YF virus and other viruses from the Flaviviri-
dae family contain a higher number of highly immunogenic epitopes
within the structural proteins. Indeed, previous studies on T cell re-
sponses against West Nile virus from the same family, suggested that
envelope protein E is one of the most immunogenic proteins [102, 103].
In this study, using a set of 86 YF epitopes identified in a large cohort
of donors, we investigated whether the epitope distribution depends
on the structure and function of the proteins.

Mapping of the validated epitopes on to the YF virus polyprotein
demonstrated that there is no distinctive highly immunogenic region
within the whole sequence. The epitopes were found to be evenly dis-
tributed, with the more dense regions being affected by the bias of
the highly overlapping peptides existing in the data pool. For what
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concerns epitope density, none of the proteins showed to have signif-
icantly higher density of immunogenic peptides than the proteome
as a whole. Furthermore, we demonstrated that the number of epi-
topes depends strongly on the size of the protein. Hence, these find-
ings do not confirm what was found by previosly mentioned studies
[102, 103]. On the other hand, the results are in agreement with the
study published by our group on the West Nile virus [82].

A strong correlation between the HLA profile of predicted strong
HLA binders and actual validated epitopes restricted to a particular
HLA molecule, suggested that amino acid composition of the YF virus
polyprotein might be the most important property for selection of po-
tential epitopes. Based on such results, the YF epitope discovery pro-
cess can be mostly guided by the peptide-HLA binding, identification
increasing the importance of prediction methods for MHC binding.
In order to facilitate pre-selection process of potential candidates, we
examined the impact on the selection when using %Rank score and
log-transformed affinity score as selecting factors. Even though bind-
ing affinity measured in nM is preferred by immunologists working
within the field, our analysis demonstrated the power of %Rank score.
On the validated YF epitopes we demonstrated high sensitivity and
high selective power of the %Rank score. Also, %Rank is a better mea-
sure because different HLA molecules show different binding promis-
cuity. For example, running predictions for 200,000 natural random
peptides showed that at an affinity threshold of 500 nM, HLA-A*0201
binds 3.8% of the random peptides, while for HLA-A*0101 this num-
ber reaches only 0.4%. Therefore, the use of the %Rank measure
should strongly be considered for evaluating the potential epitopes
as vaccine candidates.

In summary, having a large data set of validated CD8" epitopes
from a YF virus allowed us to use bioinformatics tools to investigate
epitope distribution on the virus proteome, and to expand the knowl-
edge for guiding the epitope discovery process. The preliminary re-
sults of our study can facilitate research dedicated to extension of the
epitope repertoir not only for yellow fever, but also for other viruses
of the Flaviviridae family, and contribute to the development of new
vaccines.
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Epilogue

cial step in understanding cellular responses and in facilitating

research dedicated to epitope discovery, which is useful for de-
velopment of new vaccines and immunotherapies. In this thesis, I
present my contribution to the development of computational meth-
ods for predicting peptide-MHC interactions, which can reduce the
experimental effort needed to identify potential epitopes. The work
presented here was mostly dedicated to improve and develop pan-
specific prediction tools able to predict binding to any MHC molecule
with a known protein sequence, and in this way broadening their ap-
plicability within immunological research.

First, we addressed the issue that the prediction accuracy of
state-of-the-art MHC class I methods depends strongly on the experi-
mental data available that defines the MHC molecule in question. In-
spired by the previous works that demonstrated the power of com-
bining two or more methods in order to improve prediction accuracy
[37, 38, 31, 32], we developed a consensus method, NetMHCcons, pre-
sented in Chapter 2. The predictor combines one allele-specific and
two pan-specific methods and gives, in an automatic manner, the best
predictions for a chosen MHC molecule. Considering prediction accu-
racy of the NetMHCcons and other pan-specific methods, it is apparent
that the predictive performance of such methods is mostly defined by
the distance to the nearest neighbour in the training set. In order to
improve these methods, one should work in a dedicated manner to fill
the gaps in the MHC binding specificity space, by identifying novel
molecules that are more distant from the ones with a characterized
binding specificity.

IDENTIFICATION of peptides binding to MHC molecules is a cru-
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The NetMHCcons method outperforms each of the separate meth-
ods and builds a strong base for developing new consensus ap-
proaches. A recent study by Harndahl et al. demonstrated the
importance of peptide-MHC stability for identification of immuno-
genic peptides [104]. This led to the development of the NetMHCstab
method for predicting stability of peptide-MHC complexes [105]. A
combination of stability predictions with NetMHCcons showed signif-
icantly increased performance when identifying potential T cell epi-
topes [105]. This emphasizes the power of the NetMHCcons method
to be combined with different prediction tools. In future, it is possible
to integrate multiple prediction systems by adding relative weights
defining the impact of each separate method. Finally, when the gap of
predicting T cell receptor (TCR) interactions with peptide-MHC com-
plexes will be filled with some high accuracy methods, NetMHCcons
can become one of the tools included in integrative approaches for T
cell epitope predictions.

In the second project, I took the challenge of developing a pan-
specific predictor combining all HLA class II molecules, presented
in Chapter 3. In many aspects, MHC class II molecules are differ-
ent from MHC class I, complicating the process of developing tools
with the same accuracy as available for MHC class I. In order to de-
velop a common method, we had to take into account the structural
divergence of the HLA-DQ and HLA-DR/HLA-DP molecules, as well
as differences in polymorphism across the different loci. Detailed se-
quence and structure analysis resulted in a pseudo sequence combing
all HLA and two mouse molecules. To our knowledge, the developed
NetMHClIIpan-3.0 method is the first predictor common for all HLA
class I loci. The method benefits from cross-loci data, as is character-
istic for MHC class I predictors. This implies that in the future, with
more experimental binding data becoming available, the method has
the power to be extended to be trained on cross-species data. The re-
sults presented in Chapter 3 suggest that the trend of developing pre-
diction methods for class Il is similar to the one already observed for
class I. Therefore, another possible perspective is to follow the path of
evolution of MHC class I tools and develop a consensus predictor. For
this, the applicability of the receptor-pocket based approach for MHC
class II molecules needs to be investigated. Moreover, with stability
data for MHC class II molecules being generated, one can combine
MHC class II binding affinity and stability predictions to improve ac-
curacy of the methods for identification of potential CD4™" epitopes.



Finally, Chapter 5 demonstrates the importance of peptide-MHC
prediction methods, like the ones presented in this thesis, for experi-
mental epitope discovery. We used a list of T cell epitopes from yellow
fever virus to show that the location of epitopes across the viral pro-
teome is mostly defined by amino acid composition. Moreover, we
demonstrated the power of the %Rank score over binding affinity for
pre-selection of potential immunogenic peptides. From the results ob-
tained in this study it is possible to extrapolate to other viruses of the
same family, facilitating the design of new vaccines.

Throughout this thesis, I demonstrated the power of pan-specific
methods capable of predicting peptides that bind to MHC class I and
class II molecules. These methods may serve experimentalists work-
ing within the field of epitope-based vaccine discovery and develop-
ment of new immunotherapies. With space left for improving the
methods, I hope that this work will be an inspiration for future studies
contributing to immunological research.
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Figure A.1. Difference of performance between two evaluation strategies de-
pending on the number of peptides per allele in training set. The perfor-
mance difference in terms of Pearson's correlation coefficient was calculated as
follows: Difference = evaluation on test sets — evaluation on independent set. Pos-
itive difference of PCC corresponds to lower performance on independent set,
while negative difference refers to higher performance when using indepen-

dent evaluation set.

Table A.1. List of alleles composing the benchmark data set used for the analy-
sis. # data points indicates number of peptide binding measurements available
for that allele and # binders indicates the number of actual binders from all the

peptides.

Allele # data points  # binders
1 Gogo-B*0101 14 5
2 H-2-Db 1,496 480
3  H-2-Dd 201 13
4 H-2-Kb 1,366 349
5 H-2-Kd 343 146
6 H-2-Kk 168 79
7  H-2-Ld 147 34
8 HLA-A*0101 3,263 433
9 HLA-A*0201 7,064 2,281
10 HLA-A*0202 2,314 1,072
11 HLA-A*0203 3,937 1,278
12 HLA-A*0205 36 31
13  HLA-A*0206 3,223 1,266
14 HLA-A*0207 30 7
15 HLA-A*0210 18 0
16 HLA-A*0211 1,038 361
17 HLA-A*0212 1,143 275
18 HLA-A*0216 894 160
19 HLA-A*0219 1,203 204
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Allele # data points  # binders
20 HLA-A*0250 132 88
21 HLA-A*0301 4,708 1,016
22 HLA-A*0302 2 2
23 HLA-A*1101 3,891 1,157
24 HLA-A*2301 1,513 291
25 HLA-A*2402 2,065 367
26 HLA-A*2403 1,216 287
27 HLA-A*2501 519 66
28 HLA-A*2601 2,457 297
29 HLA-A*2602 202 67
30 HLA-A*2603 205 25
31 HLA-A*2902 1,839 470
32  HLA-A*3001 1,949 569
33 HLA-A*3002 912 234
34 HLA-A*3101 3,309 681
35 HLA-A*3201 575 275
36 HLA-A*3301 1,616 224
37 HLA-A*6601 4 4
38 HLA-A*6801 1,700 641
39 HLA-A*6802 3,188 643
40 HLA-A*6901 2,079 221
41 HLA-A*8001 782 113
42 HLA-B*0702 3,049 617
43 HLA-B*0801 2,151 490
44 HLA-B*0802 486 18
45 HLA-B*0803 217 9
46 HLA-B*1402 3 0
47 HLA-B*1501 3,290 908
48 HLA-B*1502 164 124
49 HLA-B*1503 416 332
50 HLA-B*1509 346 16
51 HLA-B*1517 846 271
52  HLA-B*1801 1,756 222
53 HLA-B*2701 1 1
54 HLA-B*2702 4 0
55 HLA-B*2703 433 0
56 HLA-B*2704 2 0
57 HLA-B*2705 2,389 394
58 HLA-B*3501 1,993 505
59 HLA-B*3503 5 1
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Allele # data points  # binders
60 HLA-B*3801 136 3
61 HLA-B*3901 957 233
62 HLA-B*4001 2,486 338
63  HLA-B*4002 568 192
64 HLA-B*4201 2 2
65 HLA-B*4402 1,390 138
66 ~HLA-B*4403 595 124
67 HLA-B*4501 578 143
68 HLA-B*4601 1,411 91
69 HLA-B*4801 861 68
70 HLA-B*5101 1,336 170
71  HLA-B*5301 620 211
72 HLA-B*5401 621 139
73  HLA-B*5701 1,719 214
74  HLA-B*5801 2,529 450
75  HLA-B*5802 31 9
76 ~ HLA-B*7301 115 14
77 HLA-C*0602 6 3
78 HLA-E*0101 3 2
79  Mamu-A1*00101 823 463
80 Mamu-A1*00201 355 205
81 Mamu-A1*00701 33 26
82  Mamu-A1*01101 491 188
83  Mamu-A1*02201 247 49
84  Mamu-B*00101 237 72
85  Mamu-B*00301 372 117
86  Mamu-B*00401 1 1
87  Mamu-B*00801 368 125
88  Mamu-B*01701 678 269
89  Mamu-B*04801 60 40
90 Mamu-B*05201 60 40
91  Patr-A*0101 203 50
92  Patr-A*0301 169 24
93  Patr-A*0401 144 37
94  Patr-A*0602 1 1
95  Patr-A*0701 287 66
96  Patr-A*0901 173 71
97  Patr-B*0101 454 112
98  Patr-B*0901 1 1
99  Patr-B*1301 97 69
100 Patr-B*1701 5 2
101  Patr-B*2401 193 62
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Table A.2. List of alleles from the benchmark data set for which at least 50 data
points were available and at least 10 of them were binding peptides. # data points
indicates number of peptide binding measurements available for that allele and
# binders indicates the number of actual binders from all the peptides.

Allele # data points  # binders
1 H-2-Db 1,496 480
2  H-2-Dd 201 13
3 H-2-Kb 1,366 349
4 H-2-Kd 343 146
5 H-2-Kk 168 79
6 H-2-Ld 147 34
7  HLA-A*0101 3,263 433
8 HLA-A*0201 7,064 2,281
9 HLA-A*0202 2,314 1,072
10 HLA-A*0203 3,937 1,278
11 HLA-A*0206 3,223 1,266
12 HLA-A*0211 1,038 361
13 HLA-A*0212 1,143 275
14 HLA-A*0216 894 160
15 HLA-A*0219 1,203 204
16 HLA-A*0250 132 88
17 HLA-A*0301 4,708 1,016
18 HLA-A*1101 3,891 1,157
19 HLA-A*2301 1,513 291
20 HLA-A*2402 2,065 367
21 HLA-A*2403 1,216 287
22 HLA-A*2501 519 66
23 HLA-A*2601 2,457 297
24 HLA-A*2602 202 67
25 HLA-A*2603 205 25
26 HLA-A*2902 1,839 470
27 HLA-A*3001 1,949 569
28 HLA-A*3002 912 234
29 HLA-A*3101 3,309 681
30 HLA-A*3201 575 275
31 HLA-A*3301 1,616 224
32 HLA-A*6801 1,700 641
33 HLA-A*6802 3,188 643
34 HLA-A*6901 2,079 221
35 HLA-A*8001 782 113
36 HLA-B*0702 3,049 617
37 HLA-B*0801 2,151 490

104



Allele # data points  # binders
38 HLA-B*0802 486 18
39 HLA-B*1501 3,290 908
40 HLA-B*1502 164 124
41 HLA-B*1503 416 332
42 HLA-B*1509 346 16
43 HLA-B*1517 846 271
44 HLA-B*1801 1,756 222
45 HLA-B*2705 2,389 394
46 HLA-B*3501 1,993 505
47 HLA-B*3901 957 233
48 HLA-B*4001 2,486 338
49 HLA-B*4002 568 192
50 HLA-B*4402 1,390 138
51 HLA-B*4403 595 124
52 HLA-B*4501 578 143
53 HLA-B*4601 1,411 91
54 HLA-B*4801 861 68
55 HLA-B*5101 1,336 170
56 HLA-B*5301 620 211
57 HLA-B*5401 621 139
58 HLA-B*5701 1,719 214
59 HLA-B*5801 2,529 450
60 HLA-B*7301 115 14
61 Mamu-A1*00101 823 463
62 Mamu-A1*00201 355 205
63 Mamu-A1*01101 491 188
64 Mamu-A1*02201 247 49
65 Mamu-B*00101 237 72
66 Mamu-B*00301 372 117
67 Mamu-B*00801 368 125
68 Mamu-B*01701 678 269
69 Mamu-B*04801 60 40
70  Mamu-B*05201 60 40
71 Patr-A*0101 203 50
72  Patr-A*0301 169 24
73 Patr-A*0401 144 37
74  Patr-A*0701 287 66
75 Patr-A*0901 173 71
76  Patr-B*0101 454 112
77  Patr-B*1301 97 69
78 Patr-B*2401 193 62
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Table A.3. List of alleles used to validate final consensus method. Alleles in
bold are common between training set and validation set. # data points indicates
number of peptide binding measurements available for that allele in the val-
idation set and # binders indicates the number of actual binders from all the

peptides.

Allele # data points  # binders
1  BoLA-N*01301 93 88
2 BoLA-N*05201 90 84
3 HLA-A*0101 242 44
4 HLA-A*0201 643 210
5 HLA-A*0203 43 32
6 HLA-A*0206 32 30
7 HLA-A*0211 44 40
8 HLA-A*0212 38 31
9 HLA-A*0216 24 18
10 HLA-A*0219 40 27
11 HLA-A*0301 394 157
12 HLA-A*0319 30 14
13 HLA-A*1101 189 18
14 HLA-A*2301 144 30
15 HLA-A*2402 11 2
16 HLA-A*2403 157 43
17 HLA-A*2501 416 5
18 HLA-A*2601 1,080 62
19 HLA-A*2602 213 67
20 HLA-A*2603 229 24
21 HLA-A*2902 169 59
22 HLA-A*3001 201 16
23  HLA-A*3002 165 28
24 HLA-A*3101 133 86
25 HLA-A*3207 87 78
26 HLA-A*3215 74 59
27 HLA-A*6601 173 7
28 HLA-A*6802 14 2
29 HLA-A*6823 81 76
30 HLA-A*6901 393 13
31 HLA-A*8001 389 9




Allele # data points  # binders
32 HLA-B*0702 430 229
33 HLA-B*0801 614 82
34 HLA-B*0802 514 18
35 HLA-B*1402 184 16
36 HLA-B*1501 415 57
37 HLA-B*1509 369 16
38 HLA-B*1517 329 12
39 HLA-B*1542 361 3
40 HLA-B*1801 503 15
41 HLA-B*2705 200 26
42  HLA-B*2720 91 89
43 HLA-B*3501 16 10
44 HLA-B*3801 142 3
45 HLA-B*3901 814 68
46 HLA-B*4001 189 32
47 HLA-B*4013 58 52
48 HLA-B*4506 359 4
49 HLA-B*4601 385 2
50 HLA-B*5101 572 4
51 HLA-B*5301 179 5
52 HLA-B*5701 506 12
53 HLA-B*5801 196 31
54 HLA-B*7301 14 3
55 HLA-B*8301 336 40
56 HLA-C*0401 364 5
57 HLA-C*0501 172 68
58 HLA-C*0602 220 88
59 HLA-C*1402 170 141
60 HLA-C*1502 82 33
61 HLA-E*0101 93 12
62 SLA-1*0401 15 14
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Table A.4. Benchmark results for different methods and their combinations
when allele in question is part of the training data set. The results are given as
Pearson's correlation coefficients (PCC) for 3 analysed methods: NetMHC (in-
dicated as MHC in this table), NetMHCpan (Pan), PickPocket (Pick), and for their
possible combinations, expressed as simple averages: NetMHC+NetMHCpan
(MHC+Pan),  NetMHC+PickPocket ~(MHC+Pick),  NetMHCpan+PickPocket
(Pan+Pick) and NetMHC+NetMHCpan+PickPocket (MHC+Pan+Pick).  #pep
indicates number of peptide binding measurements available for that allele

and #bind indicates the number of actual binders from all the peptides.

Allele #pep #bind MHC Pan Pick MHC+ MHC+  Pan+  MHC+
Pan Pick Pick Pan+
Pick
Gogo-B*0101 T4 5 04743 0.1237 -0.0435 03841  0.3437 00403  0.2957
H-2-Db 1,496 480 0.8676  0.8563  0.7020  0.8700  0.8439  0.8277  0.8567
H-2-Dd 201 13 05327 02671 01408 04985 03871 02117  0.3901
H-2-Kb 1,366 349 07146 07044 05700 07232 0.6877  0.6776  0.7064
H-2-Kd 343 146 07802 07776  0.7243 08029  0.7813  0.7888  0.8012
H-2-Kk 168 79 05106 0.6617 06503  0.6371  0.6040  0.6939  0.6607
H-2-Ld 147 34 08725 0.8066 07612  0.8639  0.8578 08178  0.8578
HLA-A*0101 3,263 433 0.8426 08261 06138  0.8430 08106  0.7827  0.8245
HLA-A*0201 7,064 2281 08766 0.8769 07811  0.8808  0.8569  0.8553  0.8696
HLA-A*0202 2,314 1,072 08421 0.8496 07726  0.8537  0.8338  0.8341  0.8457
HLA-A*0203 3,937 1278 08705 08740 07837 08775 08548  0.8531  0.8669
HLA-A*0205 36 31 05930 09512  0.8274 08177 07426 09215  0.8468
HLA-A*0206 3,223 1266 08143 08156 07023  0.8241  0.7949 07870  0.8092
HLA-A*0207 30 7 07131 08014 07579  0.8210 08101  0.8002  0.8251
HLA-A*0210 18 0 00000 0.0000 0.000  0.0000  0.0000  0.000  0.0000
HLA-A*0211 1,038 361 0.8516 08735 0.8056  0.8745  0.8528  0.8639  0.8698
HLA-A*0212 1,143 275  0.8798 08918 07712  0.8970  0.8637  0.8642  0.8829
HLA-A*0216 894 160 07885  0.8582 07106  0.8449  0.7896  0.8249  0.8309
HLA-A*0219 1,203 204 08411  0.8659 07202  0.8688  0.8216  0.8290  0.8498
HLA-A*0250 132 88  0.8590 09312  0.8962 09195  0.8924 09272  0.9210
HLA-A*0301 4,708 1,016 08176 08158  0.6529 08237  0.7962  0.7833  0.8100
HLA-A*0302 2 2 -1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
HLA-A*1101 3,891 1,157 0.8703  0.8702 07323 08762  0.8546  0.8479  0.8667
HLA-A*2301 1,513 291 07343 07537 07072 0.7569  0.7413  0.7510  0.7556
HLA-A*2402 2,065 367 07375 07518  0.6726  0.7544 07314 07372  0.7474
HLA-A*2403 1,216 287 09030 09025 0.8073 09124  0.8909  0.8836  0.9020
HLA-A*2501 519 66 07905 0.8187  0.6529  0.8346 07786 07820  0.8132
HLA-A*2601 2,457 297  0.8083  0.8151  0.6312  0.8241 07842 07772  0.8067
HLA-A*2602 202 67 09120 09302 0.8555 09379 09164 09225  0.9337
HLA-A*2603 205 25 0.6932  0.8602  0.6489  0.8399  0.7289  0.8192  0.8201
HLA-A*2902 1,839 470 07652 07740  0.6264 07795  0.7548  0.7544  0.7717
HLA-A*3001 1,949 569  0.8522  0.8569 07306  0.8629  0.8420  0.8389  0.8551
HLA-A*3002 912 234 07151 07219  0.6320 07360 07196  0.7204  0.7348
HLA-A*3101 3,309 681  0.8389  0.8398  0.6989  0.8465  0.8199  0.8146  0.8352
HLA-A*3201 575 275 07703 07817 07267 07957  0.7785  0.7842  0.7949
HLA-A*3301 1,616 224 07447 07481 05803 07625 07290  0.7194  0.7503
HLA-A*6601 4 4 02057 05662 02458 04402 02278  0.4467  0.3852
HLA-A*6801 1,700 641 08124  0.8223 07267  0.8265  0.8087  0.8117  0.8222
HLA-A*6802 3,188 643 08152  0.8147 0.6867  0.8246  0.8009  0.7914  0.8140
HLA-A*6901 2,079 221 08126 08101 06161  0.8307 07795 07616  0.8046
HLA-A*8001 782 113 0.8312  0.8348 07043  0.8558  0.8228  0.8100  0.8417
HLA-B*0702 3,049 617 08615 0.8576 07331  0.8677  0.8398  0.8282  0.8532
HLA-B*0801 2,151 490 07254 07710 05763 07655 07233  0.7391  0.7553
HLA-B*0802 486 18 08244 08171 05230 08568 07462 07327  0.8010
HLA-B*0803 217 9 04973 07338 05433  0.6866 05801  0.6775  0.6694
HLA-B*1402 3 0 -09997 0.0992 -0.1010 -02592  -0.2040  -0.0562  -0.1380
HLA-B*1501 3,290 908 07640  0.7586  0.6748  0.7695  0.7552  0.7454  0.7628
HLA-B*1502 164 124 04947  0.6065 04188  0.6049 05143 05768  0.5897
HLA-B*1503 416 332 07558 07904 07377 07942 07722  0.7870  0.7933
HLA-B*1509 346 16 06231 06184 04758 06685  0.6103 05862  0.6411
HLA-B*1517 846 271 0.8696  0.8825 07852  0.8879  0.8646  0.8647  0.8795




Allele #pep  #bind MHC Pan Pick MHC+  MHC+ Pan+ MHC+
Pan Pick Pick Pan+
Pick
HLA-B*1801 1,756 222 0.7798 0.7893 0.6487 0.7981 0.7602 0.7528 0.7802
HLA-B*2701 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HLA-B*2702 4 0 -0.8971 -0.0167  0.8745 -0.0567 0.8294 0.3010 0.2673
HLA-B*2703 433 0  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HLA-B*2704 2 0  -1.0000 1.0000  -1.0000 1.0000 -1.0000 1.0000 1.0000
HLA-B*2705 2,389 394  0.8772 0.8703 0.7663 0.8813 0.8611 0.8515 0.8716
HLA-B*3501 1,993 505  0.8223 0.8173 0.7083 0.8288 0.8032 0.7950 0.8162
HLA-B*3503 5 1 0.2988 0.9701 0.8264 0.9394 0.7875 0.9317 0.9132
HLA-B*3801 136 3 03427 0.4183 0.4136 0.4859 0.4388 0.4615 0.4804
HLA-B*3901 957 233 0.8342 0.8290 0.7030 0.8489 0.8223 0.8081 0.8368
HLA-B*4001 2,486 338  0.8789 0.8684 0.7318 0.8814 0.8507 0.8362 0.8643
HLA-B*4002 568 192 0.8095 0.8218 0.7392 0.8363 0.8093 0.8090 0.8273
HLA-B*4201 2 2 -1.0000  -1.0000  -1.0000  -1.0000  -1.0000  -1.0000  -1.0000
HLA-B*4402 1,390 138 0.7032 0.7125 0.6266 0.7227 0.6908 0.6898 0.7081
HLA-B*4403 595 124 0.7755 0.8030 0.7464 0.8073 0.7905 0.7973 0.8062
HLA-B*4501 578 143 0.8635 0.8258 0.7756 0.8670 0.8573 0.8219 0.8584
HLA-B*4601 1,411 91 0.7553 0.7373 0.5378 0.7731 0.7115 0.6786 0.7365
HLA-B*4801 861 68  0.8222 0.8439 0.6769 0.8584 0.8021 0.8063 0.8359
HLA-B*5101 1,336 170  0.7016 0.7372 0.6484 0.7346 0.7014 0.7152 0.7246
HLA-B*5301 620 211 0.7750 0.7917 0.7125 0.7984 0.7798 0.7833 0.7952
HLA-B*5401 621 139 0.8320 0.8310 0.7231 0.8497 0.8202 0.8108 0.8373
HLA-B*5701 1,719 214 0.8581 0.8492 0.7299 0.8668 0.8331 0.8221 0.8495
HLA-B*5801 2,529 450  0.8675 0.8668 0.7464 0.8753 0.8486 0.8383 0.8613
HLA-B*5802 31 9 04944 0.5033 0.3114 0.5875 0.4966 0.4423 0.5384
HLA-B*7301 115 14 0.5520 0.4858 0.5583 0.5782 0.5984 0.5624 0.6001
HLA-C*0602 6 3 0.0049 -0.6360  -0.0269  -0.2944  -0.0064 -0.3993  -0.3605
HLA-E*0101 3 2 -0.6663 -0.6220 -0.7575  -0.6502  -0.7075  -0.7020  -0.6870
Mamu-A1*00101 823 463  0.7999 0.7981 0.7219 0.8139 0.7925 0.7949 0.8084
Mamu-A1*00201 355 205  0.7727 0.7738 0.7333 0.7978 0.7763 0.7870 0.7963
Mamu-A1*00701 33 26 04997 0.3649 0.3619 0.4995 0.5117 0.3893 0.4970
Mamu-A1*01101 491 188  0.7462 0.7813 0.6740 0.7798 0.7407 0.7675 0.7715
Mamu-A1*02201 247 49  0.6508 0.7539 0.6231 0.7390 0.6721 0.7265 0.7261
Mamu-B*00101 237 72 09176 0.9074 0.8168 0.9242 0.9015 0.8940 0.9137
Mamu-B*00301 372 117 0.8206 0.8428 0.7575 0.8472 0.8224 0.8347 0.8433
Mamu-B*00401 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mamu-B*00801 368 125  0.8346 0.8647 0.7691 0.8657 0.8357 0.8549 0.8609
Mamu-B*01701 678 269  0.8224 0.7922 0.7328 0.8314 0.8169 0.8056 0.8292
Mamu-B*04801 60 40  0.8159 0.9111 0.8306 0.8842 0.8390 0.8874 0.8770
Mamu-B*05201 60 40  0.7853 0.8735 0.7787 0.8509 0.8052 0.8556 0.8459
Patr-A*0101 203 50  0.7478 0.6178 0.6989 0.7461 0.7729 0.6741 0.7518
Patr-A*0301 169 24 0.6360 0.7049 0.6163 0.7665 0.6976 0.7133 0.7559
Patr-A*0401 144 37 0.6981 0.8048 0.7525 0.8059 0.7635 0.8166 0.8133
Patr-A*0602 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Patr-A*0701 287 66  0.5604 0.6278 0.5569 0.6248 0.5827 0.6292 0.6231
Patr-A*0901 173 71 0.6173 0.6471 0.6543 0.6852 0.6567 0.6770 0.6915
Patr-B*0101 454 112 0.7790 0.8573 0.7635 0.8401 0.7992 0.8457 0.8378
Patr-B*0901 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Patr-B*1301 97 69  0.6667 0.7906 0.7219 0.7598 0.7096 0.7825 0.7609
Patr-B*1701 5 2 05076 0.9546 0.9774 0.7222 0.7988 0.9961 0.8757
Patr-B*2401 193 62 0.8563 0.8167 0.4979 0.8600 0.8296 0.7903 0.8473
Average 0.5940 0.6754 0.5724 0.6864 0.6459 0.6631 0.6809
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Table A.5. Benchmark results for pan-specific methods and their combination,
representing the situation when alleles in question are not part of the training
data set. The results are given as Pearson's correlation coefficients (PCC) for
NetMHCpan (indicated as Pan in this table), PickPocket (Pick), and for their com-
bination, expressed as a simple average NetMHCpan+PickPocket (Pan+Pick). dist
indicates the distance, as measured in terms of the MHC pseudo sequence sim-
ilarity, from the query allele to the nearest neighbour from the training set.

Allele dist Pan Pick Pan+Pick
H-2-Db 0.260 0.3645 0.3125 0.3849
H-2-Dd 0.291 -0.0857 -0.0462 -0.0630
H-2-Kb 0.291 0.2000 0.3240 0.2745
H-2-Kd 0.390 0.1697  0.5665 0.5216
H-2-Kk 0.376  0.4095 0.6276 0.5816
H-2-Ld 0.260 0.1958  0.1727 0.1956

HLA-A*0101 0.193  0.5320 0.4131 0.5074
HLA-A*0201 0.017 0.8555  0.7836 0.8421
HLA-A*0202 0.010 0.8136  0.7681 0.8129
HLA-A*0203 0.036 0.8366  0.7849 0.8290
HLA-A*0206 0.017 0.7471  0.6722 0.7334
HLA-A*0211 0.068 0.8628  0.7953 0.8547
HLA-A*0212 0.032 0.8831  0.7754 0.8592
HLA-A*0216 0.030 0.8493  0.7075 0.8148
HLA-A*0219 0.053 0.8311  0.7233 0.8020
HLA-A*0250 0.010 0.9061  0.8982 0.9137
HLA-A*0301 0.112 0.7433  0.5916 0.7058
HLA-A*1101 0.076  0.7917  0.7007 0.7753
HLA-A*2301 0.034 0.7319 0.7021 0.7392
HLA-A*2402 0.034 0.7136  0.6667 0.7116
HLA-A*2403 0.054 0.8416  0.7809 0.8429
HLA-A*2501 0.099 0.7406  0.6207 0.7192
HLA-A*2601 0.025 0.7372  0.6069 0.7247
HLA-A*2602 0.025 0.9354  0.8338 0.9279
HLA-A*2603 0.083 0.8384  0.5877 0.7850
HLA-A*2902 0.181 0.5078  0.5098 0.5363
HLA-A*3001 0.148 0.5027  0.4454 0.5022
HLA-A*3002 0.148 0.1671  0.3695 0.2626
HLA-A*3101 0.078 0.7208  0.0000 0.7208
HLA-A*3201 0.182 0.3247  0.5933 0.5417
HLA-A*3301 0.078 0.6731  0.5084 0.6422
HLA-A*6801 0.109 0.6147  0.6919 0.7069
HLA-A*6802 0.052 0.7253  0.6593 0.7280
HLA-A*6901 0.052 0.7705 0.6186 0.7350
HLA-A*8001 0.193 0.7809  0.5897 0.7437
HLA-B*0702  0.115 0.6855  0.6671 0.7106
HLA-B*0801 0.073 0.4659  0.4193 0.4676
HLA-B*0802 0.073  0.7417  0.4892 0.6828
HLA-B*1501  0.087  0.6280  0.6202 0.6430




Allele dist Pan Pick Pan+Pick
HLA-B*1502 0.087 0.5547 0.3987 0.5262
HLA-B*1503 0.091 0.5897 0.6659 0.6506
HLA-B*1509 0.130 0.3017 0.3014 0.3178
HLA-B*1517 0.180 0.8061 0.7233 0.7941
HLA-B*1801 0.147 0.6058  0.5950 0.6167
HLA-B*2705 0.293 0.3616  0.2469 0.3107
HLA-B*3501 0.088 0.7433  0.6978 0.7467
HLA-B*3901 0.147 0.6911 0.5211 0.6721
HLA-B*4001 0.096 0.7694 0.7103 0.7696
HLA-B*4002 0.096¢ 0.7032 0.7111 0.7356
HLA-B*4402 0.048 0.6000 0.6267 0.6480
HLA-B*4403 0.048 0.7361 0.7370 0.7534
HLA-B*4501 0.231 0.6115 0.6462 0.6708
HLA-B*4601 0213 05170 0.4664 0.5173
HLA-B*4801 0.099 0.6791 0.6596 0.6982
HLA-B*5101 0.205 0.6668 0.6343 0.6770
HLA-B*5301 0.088 0.7450  0.6929 0.7478
HLA-B*5401 0.245 0.5991 0.6180 0.6281
HLA-B*5701 0.070 0.7591  0.6940 0.7563
HLA-B*5801 0.070 0.8069 0.7191 0.7957
HLA-B*7301 0.291 0.4874 0.5140 0.5370
Mamu-A1*00101 0.280 0.4315  0.4527 0.4732
Mamu-A1*00201 0.280 0.2889  0.5673 0.4506
Mamu-A1*01101 0.230 0.6842  0.6490 0.6989
Mamu-A1*02201 0.158 0.6397 0.6156 0.6531
Mamu-B*00101 0.313 0.3691 0.0513 0.2320
Mamu-B*00301 0.055 0.8279 0.7529 0.8258
Mamu-B*00801 0.055 0.8296 0.7438 0.8354
Mamu-B*01701 0.446 0.3802 0.4042 0.4416
Mamu-B*04801 0.420 0.7857 0.2510 0.6421
Mamu-B*05201 0.359 0.7039  0.6315 0.7094
Patr-A*0101 0.125 0.4204 0.5559 0.5054
Patr-A*0301 0.076  0.7019 0.5912 0.7013
Patr-A*0401 0.081 0.6897 0.7782 0.7744
Patr-A*0701 0.407 0.3489 0.5665 0.5553
Patr-A*0901 0.081 0.5526 0.5684 0.5899
Patr-B*0101 0294 0.6457 0.7356 0.7470
Patr-B*1301 0.115 0.7805 0.7191 0.7785
Patr-B*2401 0.294 0.3059 -0.1087 0.1167
Average 0.6215  0.5725 0.6374
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Table A.6. Validation results of NetMHCcons method. The results are given as
Pearson's correlation coefficient (PCC) for final NetMHCcons (indicated as Cons
in this table) and other methods involved in it: NetMHCpan (Pan), PickPocket
(Pick) and NetMHC (MHC). Three different averages are given: 1) Average (all
alleles) indicates the average for all (62) alleles from the validation set 2) Average
(including Pick) represents the average for the alleles that were not included in
the training data set and were within 0.1 or larger distance to the training set (17
alleles) 3) Average (including MHC) represents average for the alleles that were
part of the training set (41 allele). #pep indicates number of peptide binding
measurements available for that allele and #bind indicates the number of actual
binders from all the peptides. dist indicates the distance, as measured in terms
of the MHC pseudo sequence similarity, from the query allele to the nearest
neighbour from the training set.

Allele #pep #bind  dist Cons Pan Pick MHC
HLA-A0101 242 44 0.000 0.8636 0.8290 - 0.8709
HLA-A0201 643 210 0.000 0.8775 0.8859 - 0.8687
HLA-A0203 43 32 0.000 0.7733 0.7734 - 0.7678
HLA-A0206 32 30 0.000 0.7489 0.7299 - 0.7424
HLA-A0211 44 40 0.000 0.6509 0.6850 - 0.6115
HLA-A0212 38 31 0.000 0.6347 0.6822 - 0.5805
HLA-A0216 24 18 0.000 0.8054 0.8274 - 0.7515
HLA-A0219 40 27 0.000 0.8419 0.8217 - 0.7742
HLA-A0301 394 157 0.000 0.7811 0.7736 - 0.7771
HLA-A1101 189 18 0.000 0.7346 0.7211 - 0.7328
HLA-A2301 144 30 0.000 0.6016 0.6098 - 0.5856
HLA-A2402 11 2 0.000 0.5652 0.5207 - 0.5842
HLA-A2403 157 43  0.000 0.8482 0.8469 - 0.8382
HLA-A2501 416 5 0.000 0.5981 0.6236 - 0.5497
HLA-A2601 1,080 62 0.000 0.8140 0.7927 - 0.8145
HLA-A2602 213 67 0.000 0.9440 0.9458 - 0.9271
HLA-A2603 229 24 0.000 0.8682 0.8900 - 0.8257
HLA-A2902 169 59 0.000 0.7945 0.7747 - 0.7961
HLA-A3001 201 16 0.000 0.6644 0.6248 - 0.6692
HLA-A3002 165 28 0.000 0.7415 0.7046 - 0.7421
HLA-A3101 133 86 0.000 0.8404 0.8461 - 0.8293
HLA-A6802 14 2 0.000 0.6404 0.6191 - 0.6489
HLA-A6901 393 13 0.000 0.6205 0.5907 - 0.6097
HLA-A8001 389 9 0.000 0.5601 0.5356 - 0.5499
HLA-B0702 430 229 0.000 0.8563 0.8505 - 0.8504
HLA-B0801 614 82 0.000 0.8889 0.8808 - 0.8860
HLA-B0802 514 18 0.000 0.8234 0.7927 - 0.8027
HLA-B1501 415 57 0.000 0.7714 0.7604 - 0.7646
HLA-B1509 369 16 0.000 0.7005 0.6046 - 0.6554
HLA-B1517 329 12 0.000 0.5214 0.5553 - 0.4894
HLA-B1801 503 15 0.000 0.5576 0.5399 - 0.5518




Allele #pep #bind  dist Cons Pan Pick MHC
HLA-B2705 200 26 0.000 0.6986  0.7149 - 0.6861
HLA-B3501 16 10 0.000 0.7649 0.7705 - 0.6489
HLA-B3901 814 68 0.000 0.7849  0.7365 - 0.7886
HLA-B4001 189 32 0.000 09245 0.9072 - 0.9251
HLA-B4601 385 2 0.000 0.4042 03701 - 0.3695
HLA-B5101 572 4 0.000 04427 04787 - 0.3997
HLA-B5301 179 5 0.000 04759 0.4320 - 0.4757
HLA-B5701 506 12 0.000 0.5528  0.5234 - 0.5494
HLA-B5801 196 31 0.000 08816 0.8624 - 0.8817
HLA-B7301 14 3 0.000 04626 0.4553 - 0.3435
HLA-A6823 81 76 0.030 04936 0.4936 - -
HLA-A3207 87 78 0.037 04745 0.4745 - -
HLA-A3215 74 59 0.049 05680 0.5680 - -
HLA-A6601 173 7 0071 04734 04734 - -
HLA-A0319 30 14 0101 0.5465 0.5968  0.3506 -
HLA-B4013 58 52 0.122 03163 03297  0.2580 -
HLA-B3801 142 3 0132 05475 0.6119  0.4410 -
HLA-B2720 91 89 0.134 06581 0.6704 0.6012 -
HLA-B1402 184 16 0.135 0.3272 0.3608 0.2745 -
HLA-B4506 359 4 0138 02557 0.2652  0.2354 -
HLA-B1542 361 3 0196 03083 03050 0.2823 -
HLA-C0501 172 68 0233 -0.5071 -0.5594 -0.2925 -
HLA-C1502 82 33 0234 03291 02715 0.3480 -
HLA-C1402 170 141 0236 04357 0.2140 0.4798 -
HLA-C0602 220 88 0253 -0.2785 -0.3231 -0.1538 -
HLA-B8301 336 40 0254 07698 07015 0.7931 -
BoLA-N01301 93 88 0309 03069 03572 0.1771 -
HLA-C0401 364 5 0315 0.0347 -0.0057 0.0788 -
SLA-10401 15 14 0352 0.0187 -0.0300 0.0852 -
HLA-E0101 93 12 0424 -0.0556 0.1127 -0.1332 -
BoLA-N05201 90 84 0455 -0.0279 0.0255 -0.0612 -
Average (all alleles) 0.5697  0.5613 - -
Average (including Pick) 0.2344  0.2296  0.2214 -
Average (including MHC) 0.7152  0.7046 - 0.6955
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Figure A.2. Predictive performance of the alleles from the benchmark data
set as a function of distance to the nearest neighbour. The figure shows per-
formance for each allele of the NetMHCpan and PickPocket methods. The solid
line represents the least square fit for the NetMHCpan data, and the dotted line
gives the least square fit for the PickPocket data.
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Table B.1. Summary of the quantitative MHC class II peptide-binding data
used for the method development.

Molecule name #pep #bind
HLA-DR

DRB1*0101 7,685 4,382
DRB1*0301 2,505 649
DRB1*0302 148 44
DRB1*0401 3,116 1,039
DRB1*0404 577 336
DRB1*0405 1,582 627
DRB1*0701 1,745 849
DRB1*0802 1,520 431
DRB1*0806 118 91
DRB1*0813 1,370 455
DRB1*0819 116 54
DRB1*0901 1,520 621
DRB1*1101 1,794 778
DRB1*1201 117 81
DRB1*1202 117 79
DRB1*1302 1,580 493
DRB1*1402 118 78
DRB1*1404 30 16
DRB1*1412 116 63
DRB1*1501 1,769 709
DRB3*0101 1,501 281
DRB3*0301 160 70
DRB4*0101 1,521 485
DRB5*0101 3,106 1,280
HLA-DP

HLA-DPA1*0103-DPB1*0201 1,404 538
HLA-DPA1%0103-DPB1*0401 1,337 471
HLA-DPA1*0201-DPB1*0101 1,399 597
HLA-DPA1*0201-DPB1*0501 1,410 443
HLA-DPA1*0301-DPB1*0402 1,407 523

HLA-DQ
HLA-DQA1*0101-DQB*10501 1,739 522
HLA-DQA1*0102-DQB*10602 1,629 813
HLA-DQA1*0301-DQB*10302 1,719 386
HLA-DQA1*0401-DQB*10402 1,701 559
HLA-DQA1*0501-DQB*10201 1,658 549
HLA-DQA1*0501-DQB*10301 1,689 863

H-2

H-2-1Ab 660 126
H-2-IAd 379 70
Total 52,062 20,451

The first column gives the names of the molecules, the second column (#pep) the number of
peptide data available for each molecule, the third column (#bind) gives the number of 117
peptide binders. Peptide binders are classified using an IC50 threshold value of 500 nM.
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Table B.2. Summary of the evaluation set.

Molecule name #pep #bind

DRB1*0101 717 550
DRB1*0301 703 408
DRB1*0701 682 375
DRB1*0801 838 363
DRB1*1101 813 426
DRB1*1301 803 462
DRB1%*1302 765 404
DRB1*1501 758 218
DRB3%0202 726 287
DRB3*0301 782 449
DRB4*0101 778 235
DRB4*0103 764 474
DRB5*0101 731 461

The first column gives the names of the molecules, the second column (#pep) the number of
peptide data available for each molecule, the third column (#bind) gives the number of
peptide binders. Peptide binders are classified using an IC50 threshold value of 500 nM.
The molecules not present in the training set are marked in bold.
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Table B.3. Per-locus training comparison with the pan-specific training includ-
ing cross-loci data.

Molecule name #pep #bind  Per-locus training Cross-loci training
PCC AUC PCC AUC
HLA-DP
HLA-DPA1*0103-DPB1*0201 1,404 538  0.922 0956  0.922 0.957
HLA-DPA1*0103-DPB1*0401 1,337 471 0931 0964 0.929 0.962
HLA-DPA1*0201-DPB1*0101 1,399 597 0.904 0.946  0.905 0.948
HLA-DPA1*0201-DPB1*0501 1,410 443  0.873 0.956 0.868 0.954
HLA-DPA1*0301-DPB1*0402 1,407 523  0.918 0.960 0.912 0.957
Average 0.910 0.957  0.907 0.956
p value 0.625 1.000
HLA-DQ
HLA-DQA1*0101-DQB1*0501 1,739 522 0.817 0919 0.791 0.901
HLA-DQA1*0102-DQB1*0602 1,629 813  0.692 0.874  0.698 0.872
HLA-DQA1*0301-DQB1*0302 1,719 386 0.738 0.823 0.723 0.813
HLA-DQA1*0401-DQB1*0402 1,701 559  0.815 0916  0.807 0.914
HLA-DQA1*0501-DQB1*0201 1,658 549  0.818 0.905 0.802 0.902
HLA-DQA1*0501-DQB1*0301 1,689 863  0.826 0921 0.816 0.919
Average 0.784 0.893 0.773 0.887
p value 0.219 0.031
HLA-DR
DRB1*0101 7,685 4,382 0.715 0.849  0.717 0.849
DRB1*0301 2,505 649  0.717 0.866  0.708 0.859
DRB1*0302 148 44 0577 0.769  0.601 0.800
DRB1*0401 3,116 1,039  0.663 0.843  0.659 0.841
DRB1*0404 577 336  0.655 0.826  0.663 0.838
DRB1*0405 1,582 627  0.704 0.860 0.711 0.862
DRB1*0701 1,745 849  0.734 0.864 0.729 0.861
DRB1*0802 1,520 431  0.532 0.777 0515 0.771
DRB1*0806 118 91 0.789 0925 0.778 0.927
DRB1*0813 1,370 455  0.743 0.885 0.740 0.881
DRB1*0819 116 54  0.637 0.823  0.608 0.809
DRB1*0901 1,520 621  0.647 0.829  0.652 0.828
DRB1*1101 1,794 778  0.775 0.880 0.770 0.879
DRB1*1201 117 81 0777 0.902  0.787 0.909
DRB1*1202 117 79  0.786 0915 0.783 0.916
DRB1*1302 1,580 493  0.626 0.819 0.612 0.814
DRB1*1402 118 78 0.737 0.891 0.753 0.890
DRB1*1404 30 16 0.512 0.607  0.611 0.728
DRB1*1412 116 63  0.766 0.900 0.764 0.896
DRB1*1501 1,769 709  0.674 0.828  0.677 0.831
DRB3*0101 1,501 281  0.690 0.855 0.683 0.851
DRB3*0301 160 70 0.744 0.858  0.754 0.864
DRB4*0101 1,521 485  0.695 0.847  0.693 0.846
DRB5*0101 3,106 1,280 0.767 0.885 0.760 0.882
Average 0.694 0.846  0.697 0.851
p value 0.541 0.405

#pep is the number of peptide binding data available for each molecule, #bind gives the
number of peptides that have a binding affinity stronger than 500 nM. The results of the
pan-specific approach trained per-locus and on all data are presented in PCC and AUC
values. Average performance measures are provided for each locus. p value gives p values
(using binomial test) for PCC and AUC values for each locus .
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Appendix C

Supplementary material for Chapter 5
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Table C.1. The list of 68 yellow fever epitopes used for the analysis.

No. Epitope No. Epitope

1  ALYEKKLAL 35 REMHHLVEF

2 AMDTISVFL 36 RIRDGLQYGW
3 DSDDWLNKY 37 RPIDDRFGL

4  DVILPIGTR 38 RPIDDRFGLA
5 EVNPPFGDSY 39 RPIDDRFGLAL
6 FHERGYVKL 40 RPRKTHESHL
7 FLDPASIAA 41 RPRKTHESHLV
8  GEAMDTISV 42 RQWAQDLTL

9 GEIHAVPFGL 43 RRFLPQIL

10 GEIHAVPFGLV 44 RVKLSALTL

11  GLFGGLNWI 45 RVKLSALTLK
12 GLVGVLAGL 46 RVLDTVEKW
13 GLYGNGILV 47 SEMKEAFHGL
14 GMVAPLYGV 48 SMQKTIPLV

15 HAVPFGLVSM 49  SMSMILVGV

16 HESHLVRSW 50 SPKGISRMSM
17 HEVNGTWMI 51 SPRERLVLTL
18 HLKRLWKML 52 SRIRDGLQY

19 HPFALLLVL 53 SVAGRVDGL
20 HTMWHVTRGAF 54 SVKEDLVAY
21 IIMDEAHFL 55 TESWIVDRQW
22 ILNDSGETV 56  TRRFLPQIL
23 IRDGLQYGW 57  VEFEPPHAA
24 IWYMWLGARY 58 VLAGWLFHV
25 IYGIFQSTF 59 VLWDIPTPK
26 KLAQRRVFH 60 VMYNLWKMK
27  KSEYMTSWFY 61 VYMDAVFEY
28 KTWGKNLVF 62 WYMWLGARY
29 KVVNRWLEFR 63 YEKKLALYL
30 LLDKRQFELY 64 YMDAVFEYTI
31 LLWNGPMAV 65 YMSPHHKKL
32 MPEAMTIVML 66 YMWLGARY
33 MYMALIAAF 67  YPSGTSGSPI
34 NTDIKTLKF 68 YTDYLTVMDRY
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Table C.2. Yellow fever epitopes used for the analysis with their associated

HLA class I molecules.

HLA

Epitope

HLA-A*0101
HLA-A*0101
HLA-A*0101
HLA-A*0101
HLA-A*0101
HLA-A*0101
HLA-A*0201
HLA-A*0201
HLA-A*0201
HLA-A*0201
HLA-A*0201
HLA-A*0201
HLA-A*0201
HLA-A*0201
HLA-A*0201
HLA-A*0201
HLA-A*0201
HLA-A*0201
HLA-A*0201
HLA-A*0201
HLA-A*0205
HLA-A*0205
HLA-A*0205
HLA-A*0301
HLA-A*0301
HLA-A*0301
HLA-A*0301
HLA-A*0301
HLA-A*1101
HLA-A*2402
HLA-A*2402
HLA-A*2402
HLA-A*2601
HLA-A*2902
HLA-A*2902
HLA-A*2902
HLA-A*3201
HLA-A*3201
HLA-A*3201
HLA-A*6801
HLA-B*0702
HLA-B*0702
HLA-B*0702
HLA-B*0702
HLA-B*0702
HLA-B*0702

DSDDWLNKY
NTDIKTLKF
YMWLGARY
YTDYLTVMDRY
LLDKRQFELY
KSEYMTSWFY
IIMDEAHFL
GLFGGLNWI
VLAGWLFHV
GLYGNGILV
ALYEKKLAL
LLWNGPMAV
GMVAPLYGV
SMSMILVGV
SMQKTIPLV
YMDAVFEYTI
FLDPASIAA
AMDTISVFL
GLVGVLAGL
ILNDSGETV
IIMDEAHFL
SVAGRVDGL
YMSPHHKKL
VLWDIPTPK
VMYNLWKMK
KVVNRWLEFR
RVKLSALTLK
KLAQRRVFH
VLWDIPTPK
IYGIFQSTF
MYMALIAAF
VYMDAVFEY
EVNPPFGDSY
WYMWLGARY
IWYMWLGARY
YMWLGARY
RVKLSALTL
KTWGKNLVF
RIRDGLQYGW
DVILPIGTR
RVKLSALTL
SPRERLVLTL
RPIDDRFGL
RPIDDRFGLAL
RPIDDRFGLA
MPEAMTIVML




HLA Epitope
HLA-B*0702 SPKGISRMSM
HLA-B*0702 RPRKTHESHL
HLA-B*0702 RPRKTHESHLV
HLA-B*0801 HLKRLWKML
HLA-B*1302 RQWAQDLTL
HLA-B*1501 SVKEDLVAY
HLA-B*1501 HTMWHVTRGAF
HLA-B*2702  SRIRDGLQY
HLA-B*2702 IRDGLQYGW
HLA-B*3501 HAVPFGLVSM
HLA-B*3501 MPEAMTIVML
HLA-B*3501 HPFALLLVL
HLA-B*3501 YPSGTSGSPI
HLA-B*3503 HAVPFGLVSM
HLA-B*3503 RPIDDRFGLAL
HLA-B*3503 MPEAMTIVML
HLA-B*3503 HPFALLLVL
HLA-B*3701 REMHHLVEF
HLA-B*3901 FHERGYVKL
HLA-B*4001 HEVNGTWMI
HLA-B*4001 YEKKLALYL
HLA-B*4001 GEAMDTISV
HLA-B*4001 REMHHLVEF
HLA-B*4001 GEIHAVPFGLV
HLA-B*4001 GEIHAVPFGL
HLA-B*4001 SEMKEAFHGL
HLA-B*4002 RQWAQDLTL
HLA-B*4002 YEKKLALYL
HLA-B*4002 VEFEPPHAA
HLA-B*4402 HESHLVRSW
HLA-B*4402 TESWIVDRQW
HLA-B*4402 SEMKEAFHGL
HLA-B*4403 HESHLVRSW
HLA-B*4403 TESWIVDRQW
HLA-B*5001 VEFEPPHAA
HLA-B*5701 KTWGKNLVF
HLA-B*5701 RVLDTVEKW
HLA-B*5801 KTWGKNLVF
HLA-C*0602 RRFLPQIL
HLA-C*0602 TRRFLPQIL
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