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Abstract

A numerical model is developed for a TLP configuration of a floating offshore wind turbine.
The platform dynamics and hydrodynamic forces are derived and implemented in an ad-
vanced aero-elastic code, Flex5, to compute the hydro-aero-servo-elastic loads and responses
on the floater and the wind turbine. This is achieved through three steps. In the first step,
an independent 2D code with fourteen degrees of freedom (DOFs) is developed and the re-
sponses are verified for load cases concerning steady and spatially coherent turbulent wind
with regular and irregular waves. In the second step, the 2D code is augmented with three
more DOFs. A three-dimensional wave model with directional spreading is derived and im-
plemented to obtain 3D code. Comparison of the 3D responses with that of the 2D shows
a good agreement. The 3D code is tested for load cases using steady and turbulent wind
with 3D irregular waves. In addition, the effect of wind-wave misalignment is investigated.
Further, in the third step, the 3D platform dynamics and wave loading are implemented
into Flex5, resulting in a fully coupled hydro-aero-servo-elastic code. The implementation
is tested to make the model reliable and robust. In addition, the responses are compared
to that of the 3D code responses, which shows a good agreement, in general. The extended
Flex5 code is used to carry out a parametric study to investigate the influence of vari-
ous configurations on the responses when subjected to different sea states and a potential
configuration is recommended. The potential configuration is subjected to sea states with
more narrow wave spectrum with collinear and oblique wave heading and a swell case. The
responses are compared with that of the baseline configuration and recommendations are
suggested for future work.





Resumé

En numerisk model er udviklet til en TLP konfiguration af en flydende offshore
vindmølle. Platform dynamikken og de hydrodynamiske kræfter udledes og imple-
menteres i en avanceret aero-elastisk kode, Flex5, for at beregne de hydro-aero-servo-
elastiske belastninger og strukturelle respons. Dette opn̊as gennem tre trin. I det
første trin, udvikles en uafhængig 2D kode med fjorten grader af frihed (DOFs),
og responsen er verificeret for lasttilfælde med b̊a de konstant vind og kohæ rent
turbulens med regelmæssige og uregelmæssige bølger. I det andet trin, udvides 2D-
koden med yderligere tre DOFs. En tre-dimensionel bølgemodel med retningsbestemt
spredning udledes og implementeres for at opn̊a en 3D-kode. Sammenligning mellem
2D og 3D resultater viser god overensstemmelse. 3D-koden testes for lasttilfælde
med konstant og turbulent vind med 3D uregelmæssige bølger. Desuden undersø
ges indflydelsen af forskelle i vind- og bølgeretning. I det tredje trin, implementeres
platform dynamikken og bølge belastning for 3D i Flex5, hvilket resulterer i en fuldt
koblet hydro-aero-servo-elastisk kode. Implementeringen testes for at gøre modellen
p̊alidelig og robust. 3D resultater fra Flex5 sammenlignes med resultater fra 3D ko-
den udviklet i andet trin, hvilket viser god overensstemmelse generelt. Den udvidede
Flex5 kode anvendes til at udføre et parametrisk studie for at undersøge indflydelsen
af forskellige konfigurationer under forskellige tilstande, og en potentiel konfiguration
anbefales. Den anbefalede konfiguration udsættes for belastningstilstande med small-
ere bølgespektrum for kollineære og skr̊at indkommende bølger og et dø nninge tilflde.
Den strukturelle respons sammenlignes med baseline konfigurationen og anbefalinger
for det fremtidige arbejde gives.
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Chapter 1

Introduction

As the world is moving towards greener energies, the wind energy is getting more and more
focus. Much research has been done on onshore wind turbines for the last three to four
decades. More recently a fair amount of research is being done on bottom mounted offshore
wind turbines. As an outcome of the research, the onshore and bottom mounted offshore
wind turbines have been produced industrially and many projects were implemented com-
mercially. The commercial implementation of these types of wind turbines helped to sub-
stantially increase the amount of knowledge from practical life. The offshore wind industry
started in 1991 when the first offshore wind farm was implemented in Vindeby, Denmark.
However, the market growth started only after a decade when the next offshore wind farm
was constructed in Middelgrunden, Denmark followed by one of the largest offshore wind
farms Horns Rev. The last decade has seen a steady growth in offshore wind industry
both in terms of installations (or capacity additions) and in terms of intense research and
development.

As the energy demand goes high, it needs to be looked farther into the sea, where the wind
potential is substantially high, Suzuki (1994) and Knauer (2006). Though the farther sea
looks promising, there are several challenges such as deep waters, combined wind, wave and
sea current loads, power transmission etc.,. Depending on the geographic locations, the
offshore wind potential varies. The offshore wind energy arena can be divided into three
types of water depths viz. shallow, moderate or transitional and deep waters, Jonkman
(2007). In Europe, a considerable amount of wind potential is available in the shallow waters,
however, coastal regions of Norway, Portugal, Italy and Spain have got deep waters. Most of
the potential available in the UK is in the transitional water depths. In addition, most of the
offshore potential in the US, Manwell et al. (2001) and Japan, Kosugi et al. (2002), Henderson
et al. (2002) and Kogaki et al. (2003), are in the deep waters. Manwell et al. points out
that a cost effective technology to extract deep water offshore wind energy needs to be
developed. For each of the water depths, different types of solutions are proposed. Some of
the examples are monopile foundation for shallow waters, jacket structure for transitional
depths and floating foundations for deep waters, which is illustrated in Figure 1.1. The
transitional and deep water solutions are still under research, commercial viabilities are still
under investigation.

The offshore wind energy interest is ignited by the following reasons:

• High annual average and less turbulent wind speeds

• Scarcity of land and saturation of available wind potential in the land

• Problems concerned with the noise and visual impact of large wind turbines

The main disadvantages of the deep water solutions are the prohibitively higher costs, still
premature technologies, especially on proper control algorithms, and additional complex
rigid body motions.

Though in the 90’s certain amount of work was done to expedite the floating offshore wind
turbine concepts, Halfpenny (1991), none of them were conclusive about the prospects.

2



1.1 Classification of deep water solutions 3

Figure 1.1: Classification of offshore technologies based on water depth, Jonkman
(2007)

However, in the early 2000, Henderson and Vugts (2001) came up with more focus on
these concepts as the offshore wind energy market was picking up the momentum by the
installation of Middelgrunden wind farm. They pointed out that the cost reduction of TLP
concept (one fifth) from early 90’s to 2000’s in the offshore oil and gas industry may also
be applicable for deep water offshore wind energy. Still the cost was prohibiting the further
prospects of the concepts.

However, in the later 2000’s a renewed interest in floating wind turbines was achieved be-
cause of the new oil and gas tax regulations in some countries and a subsequent research
funding. This paved the way for investigating the feasibility of a range of concepts, Lee et al.
(2005), Chen et al. (2006), state of the art numerical tools, Jonkman (2007), International
Energy Agency’s initiative on code comparison projects, Jonkman et al. (2010), and demon-
stration projects by the industry such as Blue H, Hywind and WindFloat. Focussed research
in each of the aspects or sub-systems of the floating wind turbines and innovative design
tools to predict the loads and responses accurately can improve the prospects of floating
offshore wind turbines and can become an economically and industrially feasible solution for
future energy needs.

1.1 Classification of deep water solutions

The deep water solutions can either be single unit floater or multi unit floater systems.
Single unit floaters are the platforms with single wind turbine systems, whereas multi unit
floaters are the platforms with more than one wind turbine on it. It can be a series of
wind turbines on a pontoon and the pontoons may be rotated for the wind turbine rotors to
be aligned with the wind direction. The rotatable platform systems are known as weather
waning systems because of its capability to adjust to the wind directions to capture max-
imum wind and to minimize wake effects. A typical example of a multi unit floater is the
WindSea concept. Henderson and a group of researchers, Henderson et al. (1999), studied
the response of multiple unit floater concepts in the frequency domain and its influence on
cost and some suggestions for cost reduction etc., Henderson et al. (2000) extended their
studies for considering multiple unit floating systems for different environmental conditions
at different locations. In that study, they carried out a simple loads analysis by considering
the wind turbine as a rigid structure and came up with a cost reduction matrix. They also
presented an excellent environmental conditions comparison matrix for different seas. In a
subsequent paper with Vugts, Henderson and Vugts (2001), Henderson points out about the
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prospects of floating wind energy solutions with some suggestions for a prospective solution.
In 2002, Henderson et al. (2002) reported the work of categorically assessing the resources
available in Japanese waters along with suggestions for potential deep water solutions. A
range of concepts along with the accessories such as mooring, anchoring, transmission sys-
tems were discussed in detail. Present challenges and future prospects were also explained.
Henderson and Patel (2003) reported the procedures followed for the development of an
analytical tool for modelling the floating wind turbine loads and the fatigue damage esti-
mation due to the vessel motion. Analysis was presented for a comparison of loads and
fatigue damage for some of the components (blade, tower, shaft etc.,) of onshore wind tur-
bine and floating wind farm. Computations were carried out for a multiple unit floating
offshore structure. Aerodynamic loads were calculated using the standard Blade Element
Momentum theory with rigid blades and tower. In a further paper in 2003, Henderson et al.
(2003) reviewed various concepts suitable for water depths ranging from 50 m onwards. Ad-
vantages and disadvantages of the concepts are listed along with some cost considerations.
The following figure shows a cost analysis for offshore wind turbine concepts dependent on
water depths.

Figure 1.2: Cost analysis dependent on water depths, figure courtesy Sway, Norway

The single unit floater systems are classified based on the method by which they achieve
the static stability. A schematic of different types of static stability methods is shown in
Figure 1.3(a). Hence the single floater systems can be broadly classified as ballast (for
example, spar buoy), mooring lines (for example, TLP) and buoyancy type (for example,
barge) concepts, see Butterfield (2005). These are illustrated in Figure 1.3(b). In addition
to these, there are also hybrid concepts such as taut leg, Sclavounos et al. (2010), semi
submersible types etc., see Roddier et al. (2001). Each of the concepts has its own advantages
and disadvantages. In a recent paper, Henderson and Witcher (2010) brings out the current
status of floating offshore wind energy by reviewing the working principles, advantages and
disadvantages along with detailed descriptions of classical floating concepts. The review
also shows the present state of the art along with identification of design space based on
stability, vertical and pitch motions, fatigue loading and cost considerations. The need for
special turbine control systems is emphasized. Based on the review, the TLP concept is
shown to have a wider market as it is suitable for water depths between 50 m and 300 m.
The Figure 1.2 also shows that TLP concept has a steadier cost across the water depths.
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Figure 1.3: (a) Static stability methods and (b) Classification of deep water solutions
based on stability, Jonkman (2007)

1.1.1 Spar

A spar buoy is a very long cylinder platform protruding out of the mean water surface. The
wind turbine is installed on top of this cylinder. The cylinder needs to be ballasted enough
to lower the centre of gravity below the centre of buoyancy in order to achieve stability. The
buoyancy force will be in balance with the gravity force and the restoring is achieved by
means of the vertical distance between the centres of buoyancy and the gravity. The spar
buoy will also be equipped with mooring lines for station keeping. The location of fairlead
position of the mooring lines is critical.

A typical example of Spar buoy type is the Hywind concept, developed by Statoil Hydro,
Norway. The prototype was installed with a Siemens 2.3 MW wind turbine approximately 12
km southeast of Karmøy island, Norway. The water depth at this location is approximately
220 m. This concept is designed for water depths ranging from 120 m to 700 m. The Hywind
prototype is shown in Figure 1.4(a).

Nielsen et al. (2006a) and Nielsen et al. (2006b) made an integrated dynamic analysis of
Hywind floating wind turbine concept using two independent codes viz. HywindSim and
Simo-Riflex. Out of these, the existing softwares Simo and Riflex were coupled to analyse
dynamics of rigid and floating bodies, whereas HywindSim is an inhouse MATLAB/Simulink
simplified code for the same purpose. Both of the codes use WAMIT for hydrodynamic loads
and the mooring line forces are computed quasi-statically in HywindSim. The Simo-Riflex
coupled model benefits the advantages of both SIMO and RIFLEX programs. The RIFLEX
program is based on nonlinear finite element formulation for flexible structures and hence
catenary moorings are modeled effectively. The wind turbine loads were modeled as a table
lookup set up for thrust coefficients in both of the codes. The coupled responses were
compared with that of model scale experiments. The authors emphasize the need for special
control algorithm in order to actively damp the wind induced tower motion at higher wind
speeds (beyond rated wind speed). In a further paper, Skaare et al. (2007a) and Skaare et al.
(2007b) extended the previous work by coupling the Simo-Riflex code with an advanced aero-
elastic code HAWC2. The wind turbine was modeled in HAWC2, whereas the substructure
including mooring was modeled in Simo-Riflex. The information such as reaction forces
and mass matrices from the HAWC2 are exchanged with the interface point displacement,
velocity, acceleration etc., from Simo-Riflex through a DLL routine. Responses for a set of
test cases were obtained and compared with that of the model scale tests to validate the
coupling method. Further, some instabilities in the tower pitch motion were recognized at
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above rated wind speed due to the negative damping caused by the conventional blade pitch
control strategy. These can be controlled by incorporating a special pith control algorithm.

Larsen and Hanson (2007) studied the instability mechanism due to negative damping
associated with floating offshore wind turbines. The cause for instability was identified
as the control frequency being less than the lowest structural natural frequency. This was
studied using HAWC2 code coupled with SIMO/RIFLEX. The analysis found that while the
wind turbine is operating above rated wind speed, the platform motion causes the relative
velocity to switch up and down the rated wind speed. Since a variable speed variable pitch
regulated wind turbine adopts a control technique of pitching the blades above rated power
to keep the rpm constant, the controller tries to pitch the blades faster according to the
change in wind speed, giving rise to an instability condition. The study also demonstrates
the need for special control algorithm to avoid the instability. Aerodynamic torque in the
high wind speed region was expressed by means of a proportional, integral and differential
gain terms of a PID control algorithm.

Karimirad et al. (2009) predicted the dynamic responses of a catenary moored spar float-
ing wind turbine subjected to extreme environmental conditions. The wind turbine was in
parked condition and the responses were computed using a coupled system of DeepC for
hydrodynamics, HAWC2 for wind turbine dynamics. The mooring line stiffness was com-
puted using SIMO/RIFLEX and the values were supplied externally to HAWC2 using DLL.
Hydrodynamic loads were computed using Morison’s equation and are compared with that
of a panel method. Subsequent to this, Karimirad and Moan (2010) reported the relevance
of hydrodynamic and aerodynamic damping on the dynamic responses of catenary moored
spar wind turbine. A quasi-static coupled model (HAWC2 and DeepC) was used for the
computation. The hydrodynamic damping is attributed to the quadratic drag component,
which is also proportional to the body velocity through Morison’s equation, as given below.

dF = ρCmAu̇r + ρAu̇W + 0.5ρCDDur|ur|
ur = uW − uB

(1.1)

In the equation, the first term corresponds to the added mass contribution, wherein the
relative motion of water particle and the structure is taken into account. The second term
corresponds to the Froude-Krylov force contribution. The last term corresponds to the
viscous quadratic drag contribution, which is nonlinear in nature. The equation (1.1) is a
semi-empirical relation for incremental inline force (force per unit length), which is valid
when the characteristic diameter of the body is much smaller than the wave length. The
incremental force is integrated over the height of the structure upto the free surface in order
to obtain the total force and corresponding bending moment. Case studies were conducted to
demonstrate the influence of the drag coefficient. Aerodynamic damping was implemented by
means of the blade relative velocity including the platform rigid body velocity components.
It was found that the high frequency platform motion is severe for electrical power (induces
more fluctuation) and hence reducing the platform frequency could help in obtaining steadier
electrical power. Since the present computations were using a land based wind turbine
control technique, implementation of a more specific control algorithm could also improve the
power production. Karimirad and Moan (2011a) implemented an extrapolation procedure
to determine the extreme responses based on the data from one hour simulations. The
spar buoy type wind turbine is subjected to operational and extreme loading based on
a joint probability distribution of wind and wave climate. The coupled responses were
obtained using a quasi-static coupled model of HAWC2 and DeepC. In a recent paper,
Karimirad andMoan (2011b) considered the wave and wave-wind induced dynamic responses
of a catenary moored spar wind turbine. The analysis was carried out for operational
and extreme conditions for a set of environmental conditions. The hydrodynamic loads
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from HAWC2 and DeepC were compared. It was observed that Naess method reduces
uncertainties in extreme value prediction. Further, the wave loads were found to cause
extreme responses during extreme conditions, whereas wind loads induced responses were
critical during operational conditions.

In a recent publication, Ormberg et al. (2011) details the development of a coupled tool to
predict the dynamic loads and responses of a floating wind turbine. The RIFLEX code was
extended by incorporating a Blade Element routine to calculate the aerodynamic loads and
a control algorithm to regulate the power. The hydrodynamic loads were computed using
WAMIT. Structural part of the model was implemented using a detailed finite element
approach. The system of equations were solved using a nonlinear time domain integration
scheme. The coupled model was used to compute the loads and responses for a number of
test cases and the model was bench-marked against other analysis tools, which is reported
in Luxcey et al. (2011).

Figure 1.4: (a) Hywind prototype, figure courtesy StatoilHydro and (b) Blue H
prototype, figure courtesy Blue H

1.1.2 TLP

TLP achieves stability through the pretension in the tension legs. Since the structure is
having positive buoyancy, the additional buoyancy needs to be balanced by applying equal
pretension in the mooring lines to achieve stability. Ballasting can also be used partly to
achieve stability. One of the such types is the Blue H concept, installed in Italian waters.
The Blue H prototype is shown in Figure 1.4(b).

Chen (2005) and Chen et al. (2006) studied three deepwater floater concepts viz. NREL
TLP, Dutch Trifloater and Japanese SPAR for 5MW horizontal axis wind turbine in 2D.
The static and dynamic responses for NREL TLP and Dutch Trifloater were compared.
Focus was given to 2D NREL TLP for the dynamic and aeroelastic coupled analysis. The
aeroelastic tool used was HAWC. For coupling with HAWC, linear regular wave forcing was
used. The HAWC responses show good agreement with 2D computations using a MATLAB
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implementation. However, the power was found to be fluctuating largely and tower top
and bottom shear force and bending moments were found to be larger than that of onshore
wind turbine. The need of special control or damping mechanisms were suggested for future
studies. This study is one of the first attempts to couple the hydrodynamics and platform
dynamics with wind turbine aeroelastic computation.

Lee et al. (2005) reported the coupled dynamic responses of TLP and spar buoy in the
time and frequency domain. In the time domain MSC ADAMS and FAST codes were
used, whereas in the frequency domain, SML (SWIM-MOTION-LINES) code was used.
The responses were studied for different sea states and its sensitivity for different frequency
ranges suggesting that both of the concepts are feasible ones. A fully coupled dynamic model
in frequency domain for tension leg and catenary moored wind turbine was formulated
by Sclavounos et al. (2008) using the LINES, WAMIT and FAST codes. Linear theory
was employed assuming rigid blades and tower. A set of environmental conditions were
considered for a series of candidates and were evaluated based on rms acceleration of nacelle.
In addition, a cost study was also carried out. Sclavounos et al. (2010) used WAMIT to
estimate hydrodynamic loads from linear waves and for nonlinear waves, an in-house code
was used. For mooring lines, the LINES code was used and for wind turbine loads, FAST was
used. The estimated loads and responses were used to compare the anchor capacity, tendon
pretension, frequency sensitivity and economic aspects of two floating concepts viz. Tension
Leg Platform (TLP) and Taught Leg Buoy (TLB) for 3MW and 5MW wind turbines. The
coupled model does not take into account the fully coupled effects of rotor-floater dynamics
interaction and flexibility of blades and tower. Focus was given to fatigue loads on floaters
and mooring lines. Based on the responses for a set of sea states, it was proposed that TLP
is a preferred floater for water depths greater than 50 m, whereas for water depths between
30 to 50 m, TLB is recommended.

1.1.3 Barge

For Barge type floaters, the stability is achieved by means of its large water-plane area.
It is a shallow-drafted platform. Some ballasting may be required to achieve the desired
draft. Mooring lines are used for station keeping purpose. Since the platform has sufficient
restoring without the mooring lines, it is easier to assemble the platform with the wind
turbine and float it out to the location of installation.

In the area of development of coupled hydro-aero-servo-elastic code, considerable amount of
work has been done by Jonkman, Jonkman (2007). One of the first publications by Jonkman
and Sclavounos (2006) attempted to make an integrated tool by assuming the platform rota-
tions to be small and using a linearized hydrodynamic description. The computations were
carried out in the time domain. The wave induced forces were computed using Morison’s
equation. It was intended to extend the code to consider nonlinear waves, presence of sea
current, study of Vortex induced Vibration (VIV) etc., In a subsequent paper, Jonkman
and Buhl (2007a), the simulations capabilities have been enhanced to deal with all kinds of
floating platforms. Further, the time domain coupled responses of barge were verified with
that of the frequency domain response and the quasi-static mooring line responses were
bench marked. The coupled areoelastic code was used to study the loads and responses
of a barge with a 5MW wind turbine under extreme conditions and the observations were
reported in Jonkman and Buhl (2007b). The loads and responses were compared with that
of a land based wind turbine. The analysis shows that under extreme conditions, the barge
is subjected to large motions, in particular pitch, which brings higher loads to the tower
and blades. One of the load cases showed a yaw instability. Design modifications were
suggested to reduce the platform motion and eliminate the instability which would provide
a cost-effective design. In a later paper, Jonkman (2008), Jonkman attempted to reduce
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the large pitch motion of the barge, by introducing barge pitch damping by means of a
feedback control and pitch-to-stall rotor speed regulation strategy. However, both of the
methods were not fully successful. It is important to note that the instability occurs above
rated wind speed. Jonkman summarised all the above methods and results in the PhD the-
sis, Jonkman (2007), which gives a complete picture of the work done so far on coupling the
hydrodynamics and aero-elastic codes and provides suggestions for further improvements.
The total external load on the support platform was expressed as in equation (1.2), where

A corresponds to hydrodynamic added mass matrix, FHydro
i is the ith component of the

hydrodynamic load and FLines
i is the ith component of the applied load from mooring lines.

The hydrodynamic loads were expressed using the equation (1.3). Suggestions for further
work include using the code to analyze other floating wind turbine concepts, introduction
of hydrodynamic second order effects such as slowly varying drift force and sum-frequency
effect into the Hydrodyn code, incorporating potential loading from VIV and sea ice, re-
placing the quasi-static mooring system with a dynamic model etc., Recommendations were
also made to carry out studies on a TLP and spar systems and also with higher capacity
wind turbines.

FPlatform
i = −Aij q̈j + FHydro

i + FLines
i (1.2)

FHydro
i = FWaves

i + ρgV0δ13 − CHydrostatic
ij qj −

∫ t

0

Kij (t− τ) q̇j (τ) dτ (1.3)

In (1.3), the first term attributes to the wave diffraction problem, the second and third
terms attribute to the hydrostatic problem and the last term and the added mass contribu-
tion constitute the radiation problem. Kij in the last term is known as the impulse response
function of the radiation problem. This can be found out by applying a suitable transfor-
mation to the the frequency dependent solution obtained from codes such as WAMIT, as
shown in (1.4).

Kij (t) = − 2

π

∫

∞

0

ω [Aij (ω)−Aij (∞)] sin (ωt) dω

or

Kij (t) =
2

π

∫

∞

0

Bij (ω) cos (ωt) dω

(1.4)

The wave diffraction, hydrostatic and radiation problems and the mooring line equations
are solved separately within the scope of the linearization assumptions.

1.1.4 Hybrid concepts / Semisubmersible

Hybrid concepts utilize certain features of the stability achieving mechanisms from two or
more classical concepts in order to achieve stability.

Semisubmersibles float on the mean water surface. Stability is achieved by means of ballast-
ing and mooring systems. One of such types is the WindFloat concept by Principle Power
Corporation, USA. The WindFloat prototype is shown in Figure 1.5.
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Figure 1.5: WindFloat, figure courtesy Principle Power

1.2 Deep water challenges

In order to make the deep water offshore wind energy a feasible solution, there are manyfold
challenges to be dealt with. A preliminary cost study can be found in Musial and Butter-
field (2004), which predicts the cost of energy production from a TLP concept would fall
substantially by the year 2025. A study carried out by Wayman et al. (2006) suggests that
the TLP would be a cost-effective one. Apart from the cost issue, the following challenges
need to be solved.

1.2.1 Right solution

Many solutions for the deep water wind turbines are still under consideration. Out of these,
a few were described above. However, from the literature, it is noticed that the best solution
is still a subjective one, because all of the solutions are highly site dependent. In addition to
the floater concept, it could also be on the type of wind turbine, say pitch or stall or active
stall regulated, two or three bladed, with tubular or lattice tower or it could also be possible
to have a completely different solution, say vertical axis wind turbine like the DeepWind
concept, as described by Vita et al. (2010). It is also imperative to ask whether a conventional
onshore turbine design is compatible for the selected floating solution or not. Henderson and
Patel (1998) carried out studies on the influence of platform motion on the wind turbine
loads (both extreme and fatigue) at different components. The analytical model is position
dependent, based on which the weighting functions were derived. The weighting functions
are used to establish a relation of the platform motion to any component. This was proved
for one of the components, whereas for the other components such as nacelle, it still needs
to be proved.

1.2.2 Complex loading pattern

Deep water wind turbines are subjected to complex combination of wind, wave and current
loading. The wave loading is basically nonlinear and three dimensional in nature. There
are a number of theories, which describe the wave loading based on the environmental con-
ditions, wave steepness, slenderness of the structure under wave loading etc., The principle
followed for the present work is described in detail in Chapter 3. The presence of a sea
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current will change the wave length and consequently the wave number. The wind and wave
misalignment will be a usually occurring load case. In addition, there are still research hap-
pening on the kind of wind velocity profile and turbulence model which can best describe
the wind conditions in the sea along with wake effects in wind-farm.

Loads and load cases are the corner stone for the whole design process of wind turbines
and hence prediction of loads are the key element for a cost-effective design. In the case
of onshore wind turbines, these loads are predicted using sophisticated aero-servo-elastic
codes, which are time tested and validated. However, offshore wind turbines, floating tur-
bines in particular, pose additional complex combination of aerodynamic, hydrodynamic,
gravitational and and other loads during transportation and installation. Though attempts
are made to augment the existing codes to include these complexities, validation is yet to
be done. The numerical tools need to be validated enough to assess the strengths and weak-
nesses of different floating concepts and associated loads and load cases. Hence, sufficiently
accurate and validated state of the art numerical code would be one of the first challenges
to be resolved in the case of deep water wind turbine challenges.

In the present research, it is attempted to address this part of the challenge rather than
proposing any particular configuration or solution. However, the TLP configuration is used
to derive the equations of motion and building the numerical tool. This can be generalized
for other configurations as well with relevant modifications.

1.2.3 Standards / guidelines

At present, the standards / guidelines available are for the onshore and bottom fixed offshore
wind turbines. For bottom fixed offshore wind turbines, the standard used for design is IEC
61400-3, IEC (2009) and the guidelines are DNV J101, DNV (2011) and Germanischer
Lloyd guidelines for wind turbines, GL (2007). However, there are no standard or guidelines
available for floating offshore wind turbines. These are under development.

1.2.4 Material selection

Research is still being done on the selection of floater material. Concrete and steel are the
conventional materials, however, a cost effective solution is still being finalized.

1.2.5 Mooring system

Based on the mooring system, the floating offshore wind turbine structures can be classified
as catenary mooring, taut leg mooring and tension leg mooring systems. Examples of
concepts that utilize catenary mooring systems are spar buoys, tri-floater concept, pill box
design etc., Vertical tension leg is a sub set of taut leg system.

1.2.6 Anchors

Based on the applications and load carrying capacity, there are different anchoring systems
available such as gravity based, drag embedded, driven pile, suction, drilled and grouted and
torpedo embedded anchors. The right one needs to be selected based on the soil conditions,
which determine the load capacity of the anchors. Out of these, the vertically loaded anchors
are more expensive due to their deep embedment in order to maximize the pull out load.
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1.2.7 Cabling

Though cabling for the power transmission is a proven area in the case of bottom mounted
wind turbines, this needs a serious consideration in the case of deep water solutions. The
main reasons for the challenge is that these units are placed far offshore and the moving
units itself pose challenges for the power transmission. The first point has impact on the cost
and transmission losses aspects. Today most of the power transmission are done through
High Voltage Direct Current (HVDC) conversion. One of the solutions for the transmission
issue is to have load centres in the sea, which is already in use in Danish waters.

1.2.8 Transportation and installation

Transporting the floating offshore wind turbine units to its specified sites and then installing
the machines is a great challenge. A number of methods are suggested in the literature.
However, these need to be proved in real conditions to finalize the right method. Unlike the
bottom fixed wind turbines, the use of specialized vessels for installation can be eliminated
by assembling the turbines at shore or at an offshore platform and then the assembled pieces
can be float out to the locations. This can considerably reduce the installation costs because
of the elimination of expensive installation vessels and reduced delay time associated with
weather window dependency.

1.2.9 Operation and maintenance

The operation and maintenance aspect for the deep water solutions are complicated com-
pared to their onshore counterparts. Research is being done to identify various solutions
/ techniques to make it possible cost effectively. One of the methods is to have a reliable
design and another one is the implementation of condition monitoring techniques. Despite
of these, there will still be problems related to changing the electronic chips / switches and
the major issues could arise when a replacement of major component is needed such as
blades or gearbox or generator, which needs dismantling and reassembling of the tower top
machinery. These challenges are yet to be resolved.

1.2.10 Measurement data

Unlike onshore wind energy development, the measured met-ocean data at the relevant
height are limited. The measurement stations such as those of the FINO projects, FINO
(2011), provide certain confidence for offshore developments. However, the lack of measure-
ment data for deep water areas pose one of the main challenges. In addition to the wind,
wave and current data, we also require the bathymetry. Further challenges include the es-
timation of correct wind velocity distribution in the sea and also the wind and wave joint
probability density function.

1.2.11 Other logistical considerations

Many other logistical considerations such as environmental impact, ship transport, icing,
earthquake effects etc., need to be dealt with. These are some of the areas need to be
assessed site specifically. These technical considerations will lead to the administrative
processes for the projects seeking permits for offshore wind energy development. These are
mainly dependent on the kind of policies adopted by different countries. Hence the growth
rate for offshore wind energy is not only dependent on technological advancements, but it
also has a dependence on policy matters.
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1.3 Brief review on the aero-elastic tools

A brief review on the presently available hydro-aero-servo-elastic tools is presented here.
The most widespread aero-elastic tools for onshore wind turbines are as follows:

• Flex5, developed by Stig Øye of Technical University of Denmark (DTU), Øye (1996).

• HAWC2 (Horizontal Axis Wind Turbine Code), developed by Risø-DTU, Larsen and
Hansen (2007).

• Bladed, developed by GL Garrad Hassan, Garrad and Hassan (2010).

• FAST, developed by National Renewable Energy Laboratory (NREL), Jonkman and
Buhl (2005).

• PHATAS (Program for Horizontal Axis Wind Turbine Analysis and Simulation), de-
veloped by Energy Research Centre of the Netherlands (ECN), Lindenburg (2005).

Out of the above codes, Flex5, HAWC2, Bladed and PHATAS are commercial codes and
FAST is an open source code, which are exclusively made for wind turbines. All these codes
compute the loads in time domain. All of these make use of Blade element momentum
theory with necessary corrections to represent the rotor aerodynamics. For the aerodynamics
purpose, FAST utilizes AeroDyn, Laino and Hansen (2002). In addition to these codes,
there are also a few more general purpose codes such as MSC ADAMS (Automatic Dynamic
Analysis of Mechanical Systems, developed by MSC), SIMPACK, which can be used for
the aero-elastic loads computation. While HAWC2, Bladed and ADAMS use a multibody
formulation, Flex5 uses a modal formulation and FAST uses a mixed form (modal and
multibody). In multibody formulation, the user has the flexibility to model or formulate
different geometry / shapes.

1.4 Present Work

1.4.1 Motivation and Objectives

In the last decade, considerable amount of work has been done by many researchers across the
world to extend the existing aero-elastic codes to compute bottom-fixed offshore wind turbine
loads and recently for floating offshore wind turbines, Larsen and Hansen (2007), Jonkman
(2007), Karimirad (2011). A complete review of the status of the coupling of aero-elastic
codes with offshore codes can be found in Cordle and Jonkman (2011) for floating offshore
wind turbines. By taking into account each of the modeling capabilities, there are only a
limited number of codes, which can compute the complete coupled behaviour accurately.
Further, validation against measurements are essential.

From Cordle and Jonkman (2011), it can be noted that though Flex5 is a widely used
aero-elastic code for the design analysis of onshore and bottom-fixed offshore wind turbines,
there is no reported results available for floating offshore wind turbines. In this perspective,
coupling the platform dynamics with Flex5 code is appropriate. More detailed description
about Flex5 can be found in Chapter 6. The study is highly motivated by the need of the
industry for floating wind turbines.

The goal is achieved by deriving the equations of motion for the coupled system dynamics
along with hydrodynamic and aerodynamic loading using first principles and implementing
the equations of motion to obtain a simplified code. Upon obtaining confidence on the
simplified code, the Flex5 code is augmented with relevant platform dynamics and three-
dimensional hydrodynamic loading model.
The main objectives of the thesis are as follows:
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• Development of an independent 2D and 3D numerical tool which can capture the
coupled dynamics of a TLP floating wind turbine

• Extension of Flex5, to estimate the loads and responses of a TLP floating wind turbine

• Investigating the instabilities involved in a TLP floating wind turbine

• Parametric study to identify the critical load cases

As a first step, equations of motion are derived for a two-dimensional configuration and
implemented. In 2D, a simplified coupling procedure is followed first and later the full
coupling is implemented. The coupled responses are validated through a series of test cases.
In the next step, the two-dimensional code is extended to a three-dimensional code. The
three-dimensional coupled responses are compared with that of two-dimensional responses
and a satisfactory comparison was obtained. Upon obtaining the three-dimensional coupled
responses, the platform dynamics and wave load procedures are coupled with Flex5. The
responses are compared with that of the three-dimensional code.

Finally, the augmented Flex5 code is used to carry out a parametric study, which evaluates
various configurations subjected to a set of load cases and the configuration performance
is assessed. The parametric study also reveals the extreme external conditions, which can
form some of the load cases. In addition, the influence of the floating wind turbine control
parameters are bench-marked against the onshore controller parameters.

1.4.2 Structure of the thesis

The text is organised as follows. In Chapter 2, the problem specification is provided along
with the model description and a systematic derivation of aerodynamic loads. The un-
steady Blade Element Momentum (BEM) theory is briefly described for the derivation of
aerodynamic loads.

Chapter 3 describes the formulation and implementation of wave kinematics computation
procedures. Linear irregular two-dimensional and three-dimensional waves are considered.
Irregular waves are formulated using the JONSWAP spectrum with an amplification factor
of 3.3. The wave loads are determined using Morison’s equation.

A two-dimensional coupling procedure is detailed in Chapter 4. Both simplified and full
coupling procedures are detailed and results are presented for a set of load cases. The
characteristics of the responses are discussed.

In Chapter 5, a three-dimensional coupling procedure is modeled along with three-dimensional
wave loading with directional spreading. A set of load cases similar to that of the two-
dimensional case are computed and the responses are compared with that of the two-
dimensional cases. The similarity and differences are pointed out and discussed in detail.
Some of the instabilities noticed are investigated and possible remedies are recommended.

The three-dimensional platform dynamics along with wave load procedure is coupled to
Flex5 and the coupling procedure along with the results are detailed in Chapter 6. A set of
load cases are computed and the results are compared with that of the previous results.

In Chapter 7, a parametric study is carried out to evaluate the performance of the baseline
configuration subjected to a set of load cases. Based on the analysis, alternative configu-
rations are suggested and evaluated. Further, recommendations are made for a potential
configuration.

In Chapter 8 the conclusions from the research are enlisted along with future areas of work.



Chapter 2

Model Description and Aerodynamic Loading

In this chapter, the problem specification is provided with a detailed description on the
aerodynamic loading formulation.

2.1 Problem specification

As described in Chapter 1, a Tension Leg Platform configuration of the floating offshore wind
turbine solution is being investigated. The platform configuration is chosen as described
in Joensen et al. (2007). The dimensions considered for the configuration are listed in
Table 2.1. Data from the NREL 5MW reference wind turbine is used, see Jonkman et al.
(2009). A schematic drawing of the floating TLP wind turbine is shown in Figure 2.1.

Table 2.1: TLP Dimensions.

Floater Diameter(Df) 16 m Spoke length (dt) 22 m

Height (h) 10 m Mass (mf ) 2E5 kg

Turbine Hub height (Ht) 100 m Tower submergence (ht) 15 m

Rotor diameter (D) 126 m Tower bottom diameter
(Dt)

6 m

Tower bending
rigidity (EIt)

4.05E11
Nm2

Nacelle mass (mn) 3.5E5 kg

Tower mass (mt) 3.47E5 kg Blade mass (mb) 17740 kg

Tendons Initial length (L0) 175 m Young’s modulus (Etend) 210E9 N/m2

Wind and wave climate for a placement on the west coast of Norway were chosen in the
present study. The coastal location is shown in Figure 2.2, and the environmental parameters
are listed in Table 2.2. The selected wind and wave climatic conditions are found on the web
site www.waveclimate.com. No further work was done to investigate site specific conditions.
The peak period was selected as the lowest period from the range of peak periods for the
selected wave height using the following equation,(DNV (2011)),

11.1
√

Hs/g ≤ Tp ≤ 14.3
√

Hs/g (2.1)

where Tp is the peak period and Hs is the significant wave height.

Floating offshore wind turbines are subjected to environmental loading conditions arising
from wind, wave and sea current. The aerodynamic loading from the wind is formulated in
the next section.
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Figure 2.1: Configuration schematic

Table 2.2: Wind and wave climate for North Sea.

wave conditions

Significant wave height 7 m

Peak period 10 s

Water depth 200 m

wind conditions

Annual average wind speed 10 m/s

Predominant wind direction West and South-
West
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Figure 2.2: Geographical location, Henderson et al. (2000)



18 Model Description and Aerodynamic Loading

2.2 Aerodynamic loads

The wind turbine rotor as well as the whole structure is subjected to wind loads, which are
time dependent. Wind loading on the rotor is usually modeled by means of unsteady Blade
Element Momentum (BEM) theory, Hansen (2008). The fundamental equations are derived
using one-dimensional momentum theory for a rotor disc. For this purpose, the rotor is
divided into N annular elements having a length dr, located at radial position r from the
rotor centre. The fundamental assumptions for the annular elements are given below:

• No radial flow dependency between the elements.

• The force exerted by the blades onto the flow is constant in each of the annular
elements, which is consistent with the assumption of an infinite number of blades.

The infinite number of blades assumption is corrected by means of Prandtl’s tip loss factor
for a finite number of blades. As the vortex system in the wake of a rotor with a finite number
of blades is different from that of a rotor with infinite number of blades, the Prandtl’s tip
loss factor needs to be applied in the equations for incremental thrust and torque, which is
explained in section 2.2.5.

The unsteady BEM takes into account the rotor induced velocity and the temporal and
spatial variation of wind velocity. The spatial variation of wind velocity is a consequence
of the blade tangential velocity variation along the radial positions due to the change of
azimuthal position and the variation of free stream wind velocity along the blade length due
to a wind shear profile. However, to obtain the aero-elastic loads, the aerodynamic model
needs to interact with a structural model, wherein the relative velocity seen by the blade is a
resultant of the wind and structural velocities. Hence, a structural model of the wind turbine
needs to be coupled with the unsteady BEM such that the calculation of the aerodynamic
loads are based on the relative velocity seen by the blade (through the angle of attack) and
the relative velocity is dependent on the structural velocity, which is a consequence of the
aerodynamic loading.

Since the blades and tower are considered as flexible, the structural velocity consists of the
velocity of vibrating blades and tower. In the case of floating wind turbines, in addition
to the above variables, induced velocity from the platform movement also need to be taken
into account.

Formulation and implementation of the aerodynamic loads through BEM is explained in the
following sections.

2.2.1 Coordinate System

The coordinate system followed for the development of aerodynamic loads is shown in Fig-
ure 2.3. The word coordinate system is abbreviated to system from here onwards. System
1 corresponds to the inertial coordinate system, placed at the sea bed. System 2 is located
at the floater bottom, 3 at the intersection point of floater top and tower bottom, 4 at the
tower top, 5 is placed on the main shaft, located at the main bearing and finally system 6
is placed at the blade root.

The hydrodynamic forces and the equations of motion for the complete system are derived
with respect to system 2, whereas system 3 represents the beginning of the wind turbine.
All the systems are moving along with the platform except system 1. Transformation from
system 1 to 2 shall take into account the platform rotations viz. roll, pitch and yaw. The
change from system 2 to 3 is the swapping of the x and z axes. System 4 takes into account
the nacelle tilt and yaw angles. System 5 is rotating along with the shaft and takes into
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account the azimuthal positions. System 6 is rotating along with the blade and takes into
account the blade cone angle.

Figure 2.3: Coordinate system for floating offshore wind turbine.

2.2.2 Transformation Matrices

Transformation matrices are derived for moving from one system to the other. The systems
1 and 2 are related with a transformation matrix, which takes into account rotations about
the x axis (roll), the y axis (pitch) and the z axis (yaw). Hence, rotations about x, y and z



20 Model Description and Aerodynamic Loading

axes give rise to the following transformation matrices.

Rx1 =





1 0 0
0 cos η4 sin η4
0 − sin η4 cos η4



 (2.2)

Ry1 =





cos η5 0 − sin η5
0 1 0

sin η5 0 cos η5



 (2.3)

Rz1 =





cos η6 sin η6 0
− sin η6 cos η6 0

0 0 1



 (2.4)

These rotations give rise to the final transformation matrix from system 1 to 2 as shown
below,

a12 = Rz1Ry1Rx1 (2.5)

where a12 represents the final transformation matrix from system 1 to 2, η4, η5 and η6 are
floater roll, pitch and yaw rotations respectively.

Moving from system 2 to 3 is possible by using the following transformation matrix.

a23 =





0 0 1
0 1 0
1 0 0



 (2.6)

Transformation from system 3 to 4 can be done by a rotation about x axis, which takes into
account the yaw angle, subsequently rotating about y axis to account for rotor tilt angle.
About z axis, no rotations are present and hence the transformation matrices are described
below.

Rotation about x axis is given by,

a1 =





1 0 0
0 cos θy sin θy
0 − sin θy cos θy



 (2.7)

Rotation about y axis is given by,

a2 =





cos θt 0 − sin θt
0 1 0

sin θt 0 cos θt



 (2.8)

Rotation about z axis is given by,

a3 =





1 0 0
0 1 0
0 0 1



 (2.9)

Hence the final transformation matrix from system 3 to 4 is,

a34 = a3a2a1 (2.10)
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where θy and θt are nacelle yaw and tilt angles respectively. The coordinate system is chosen
in such a way that in order to have the nacelle nose-up configuration, a negative tilt angle
is required.

The transformation matrix from system 4 to 5 can be obtained by rotating the coordinate
system about the z axis giving rise to the following equation. No other rotation is allowed
since the shaft is assumed to be stiff.

a45 =





cos θw sin θw 0
− sin θw cos θw 0

0 0 1



 (2.11)

where θw is the rotor azimuthal position.

System 6 is used to represent the rotor blade, wherein the local x axis is aligned along the
length of the blade, y axis along the blade chord length and z axis is normal to the blade,
pointing along the main shaft. Moving from system 5 to 6 shall take into account the blade
cone angle and hence the transformation matrix is given in the following equation.

a56 =





cos θc 0 − sin θc
0 1 0

sin θc 0 cos θc



 (2.12)

where θc is the blade cone angle. Similar to tilt angle, a negative cone angle needs to be
chosen.

2.2.3 Coordinate positions

The coordinates for each position is expressed in terms of the transformation matrices as
follows. The subscript in the vector represents the coordinate system.

A point in system 2 can be expressed in system 1 as given below.

r1 = a21r2 (2.13)

where r2 is the coordinate vector of the point in system 2 and a21 is the transformation
matrix from system 2 to 1.

Similarly, points in system 3, 4, 5 and 6 can be expressed to the immediate lower system as
detailed in the following equations.

r2 = a32r3 (2.14)

r3 = a43r4 (2.15)

r4 = a54r5 (2.16)

r5 = a65r6 (2.17)

Hence, a point in system 6 can be expressed in system 1 using the above transformations,
which is given below.
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r1 =







a21a32a43a54a65r6

a12
Ta23

Ta34
Ta45

Ta56
T r6

(2.18)

A point, P, on the blade can be expressed in the inertial coordinate system (system1) using
the following vector.

rP1 =





xp

yp
zp



 = rfb1 + rft1 + rt1 + rs1 + rb1 (2.19)

where rfb1 is the coordinate vector for platform bottom point in system 1, rft1 is the
coordinate vector for platform top point in system 1, rt1 represents the tower coordinate,
rs1 is the shaft coordinate and rb1 is the blade coordinate in system 1.

The floater bottom and top positions are given in the following expressions,

rfb1 =





0
0
L0



 (2.20)

rft1 = a21





η1
η2

h+ η3



 (2.21)

where L0 is the initial length of the tendons, h is the floater height and η1, η2 and η3
are the floater translational displacements viz. surge, sway and heave degrees of freedom
respectively.

The coordinates of the tower, shaft and blade are given s follows,

rt1 = a21a32





Ht

0
0



 (2.22)

rs1 = a21a32a43





0
0

−Ls



 (2.23)

rb1 = a21a32a43a54a65





r
0
0



 (2.24)

where Ht is the tower height, Ls is the shaft length, r is the radial position along the blade
from the blade root.

The wind velocity defined in the blade coordinate system is given by,

(V0)6 = a56a45a34a23a12(V0)1 (2.25)

where (V0)1 is the free stream wind velocity defined in the inertial system (system 1).

The velocity triangle seen by the blade is shown in Figure 2.4.
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Figure 2.4: Velocity triangle seen by the blade

From the figure, the relative velocity seen by the blade in the blade coordinate system can
be computed as given below.

(Vrel)6 = (V0)6 + (W)6 + (Vb)6 + (Vt)6 + (Vf )6 (2.26)

where W is the rotor induced velocity, Vf is the induced velocity due to the platform
movement, Vt is the tower structural velocity, Vb is the resultant of blade structural and
tangential velocity components. The subscript 6 shows that all the variables are computed
in system 6. This is done by evaluating the velocity components in its own systems and
transferring to the blade system.

The critical step in BEM is the computation of induced velocity, W, which is done by
means of a dynamic wake model. The dynamic wake model is explained in section 2.2.4.
The induced velocity due to the platform movement, Vf , has two components in the blade
system. The first component corresponds to the platform rigid body translational velocity,
whereas the second component corresponds to the translational velocity components due to
the platform angular velocity, which is detailed in the following equation.

(Vf )6 =





η̇1
η̇2
η̇3





6

+ (rf )6 ×





η̇4
η̇5
η̇6





6

(2.27)

where (rf )6 is the vector from platform to a point on the blade under consideration, evaluated
in system 6 by applying appropriate transformation. Similarly, the platform translational
and angular velocities are also expressed in system 6 by applying the corresponding trans-
formations.

The tower velocity has only one component, which is in the z direction corresponding to the
tower longitudinal degree of freedom. The tower velocity, which is measured in its system
and transformed to system 6 is given below.

(Vt)6 =





0
0
ẋt





6

(2.28)

where ẋt is the tower longitudinal structural velocity.
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The blade velocity Vb evaluated in its own system is given by the following equation,

(Vb)6 =





0
rω cos θc + V by

V bz





6

(2.29)

where ω is the rotor speed in radians/s, θc is the blade cone angle, V by and V bz are the
tangential and normal components of the blade structural velocity, which is computed using
the blade mode shapes in flapwise and edgewise directions. The x component of the velocity
vector is zero because of the absence of blade extensional degree of freedom.

When starting a simulation, the initial rotor induced velocity is assumed to be zero.

The angle between the relative velocity and the rotor plane, known as the inflow angle, φ,
is computed from the velocity triangle as given below.

tanφ =

(

Vrel (z)

−Vrel (y)

)

6

(2.30)

The angle of attack, α, is the angle between the relative velocity and the airfoil chord line,
which is the difference between the inflow angle and the local pitch angle as given below.

α = φ− (β + θp) (2.31)

where the local pitch angle is the summation of blade twist angle, β, and the blade pitch
angle, θp.

The lift and drag forces per unit length are computed using the following equations.

L =
1

2
ρacV

2
relCl (2.32)

D =
1

2
ρacV

2
relCd (2.33)

where ρa is the air density, which normally takes the value of 1.225 kg/m3 at standard
conditions (IEC), c is the blade chord length at a given radial position, and Cl and Cd are
the lift and drag coefficients, respectively.

From the lift and drag force distributions, the normal and tangential forces per unit length
on the rotor are computed as follows.

The normal force per unit length is given by,

Pn = L cosφ+D sinφ (2.34)

The tangential force per unit length is given by,

Pt = L sinφ−D cosφ (2.35)

The normal and tangential force distributions are integrated over the blade length and
summed for the three blades to obtain the total normal and tangential forces.



2.2 Aerodynamic loads 25

2.2.4 Computation of induced velocity - Dynamic wake model

Because of the flow over the three dimensional rotor, the vortex system formed on the blades
generate a downwash, referred to as the induced velocity, with a normal and a tangential
component. The induced velocity does not react immediately to a change in aerodynamic
loads, but with a time delay. This is computed through a dynamic wake model. Many
engineering models exist for the computation of dynamic wake. These models predict the
time delay using an exponential decay function with appropriate time constants. The model
proposed by Øye (1991) is used here. In this model, a filter is utilized for the induced
velocity, which consists of two first order differential equations as follows.

Wint + τ1
dWint

dt
= Wqs + kτ1

dWqs

dt
(2.36)

W + τ2
dW

dt
= Wint (2.37)

The quasi-static value of the induced velocity is written as:

Wqs =





W qs
x

W qs
y

W qs
z





W qs
y = Wt =

−BL sinφ

4πρarF |V 0 + fgn (n ·W) |

W qs
z = Wn =

−BL cosφ

4πρarF |V 0 + fgn (n ·W) |

(2.38)

where Wn and Wt represent the normal and tangential components of the induced velocity,
B represents the number of blades, r, radius to the blade element under consideration and
F corresponds to Prandtl’s correction factor, which is explained in section 2.2.5. Glauert’s
correction factor in the equation is fg and the normal vector n is in the direction of drive
train, which is the vector, (0, 0,−1).

The two time constants, which are calibrated, using a simple vortex method, is given below:

τ1 =
1.1

(1− 1.3a)

R

V 0
(2.39)

τ2 =

(

0.39− 0.26
( r

R

)2
)

τ1 (2.40)

where R is the rotor radius. General expression for the axial induction factor is:

a =
|V 0| − |V ′|

|V 0| (2.41)

However, the axial induction factor is not allowed to exceed a value of 0.5, which is explained
in section 2.2.5.

The simultaneous differential equations are solved analytically by assuming the right hand
sides of the equations to be constant, giving rise to the following scheme:
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• Calculate the quasi-static induced velocity at the current time step using the equation
(2.38).

• Estimating the right hand side of the equation (2.36) using backward difference scheme
is given below.

H = W i
qs + kτ1

W i
qs −W i−1

qs

∆t
(2.42)

where k = 0.6, ∆t is the time step, the superscripts i and i − 1 represent the present
and previous time position respectively.

• Solving the equation (2.36) analytically gives rise to the following equation.

W i
int = H +

(

W i−1
int −H

)

exp

(−∆t

τ1

)

(2.43)

• Solving the equation (2.37) analytically, will compute the induced velocity at current
time step using the following equation.

W i = W i
int +

(

W i−1 −W i
int

)

exp

(−∆t

τ2

)

(2.44)

Application of the dynamic time filter is necessary for the induced velocity in order to
capture the time domain behaviour of the loads and power when the thrust is changed, say
by pitching the blades.

The dynamic wake implementation is validated against the trend of Figure (9.8) in Hansen
(2008). The same kind of figure from the present implementation is shown in Figure 2.5.
The validation is not a quantitative comparison, as both of the wind turbines used to obtain
the results are different. The reference figure is for a 2MW wind turbine subjected to a wind
speed of 8.7 m/s, whereas the present implementation is for a 5MW wind turbine subjected
to 10 m/s wind speed. It is observed that the trends in both of the figures are the same,
especially with a small time constant of 2.5 to 5 s.
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Figure 2.5: Rotor shaft torque variation at a wind speed of 10 m/s when a step
pitch input is given

2.2.5 Correction factors

As explained, the BEM method is derived for an infinite bladed disc. In order to apply the
governing equations for a finite number of blades rotor, appropriate correction factors need
to be applied. All such correction factors are explained in this section.

Prandtl’s tip loss factor corrects the assumption of an infinite number of blades. The cor-
rection factor is applied to the incremental thrust and torque as given in the following
equations.

dT = 4πrρaV 02a(1− a)Fdr (2.45)

dM = 4πr3ρaV 0ω(1− a)a′Fdr (2.46)

where a and a′ are the axial and tangential induction factors respectively. Prandtl’s tip loss
factor, F is given below.

F =
2

π
cos−1(e−f ) (2.47)

where

f =
B

2

R− r

r sinφ
(2.48)
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Using the expressions for dT and dM , the following equations for the axial and tangential
induction factors are derived.

a =
1

4F sin2 φ
σCn

+ 1
(2.49)

a′ =
1

4F sinφ cosφ
σCt

− 1
(2.50)

where solidity ratio, σ(r) = c(r)B
2πr , normal force coefficient, Cn = Cl cosφ + Cd sinφ and

tangential force coefficient, Ct = Cl sinφ− Cd cosφ.

When the value of axial induction factor becomes high (approximately larger than 0.4),
the simple momentum theory breaks. For wind turbines, the situation of axial induction
factor going beyond 0.4 is often experienced. To have a constant mass flow rate, the control
volume at the rotor disc needs to be increased (or expanded), which means the velocity is
decreased. When the wake vortices are large, the streamlines are not smooth and hence the
Bernoulli’s equation is no longer valid. Hence, the Glauert’s correction is applied to take
into account this effect. Though several empirical relations between the thrust coefficient
and axial induction factor exist, the equation proposed by Spera (1994) is used here.

CT =







4a(1− a)F for a ≤ ac

4
(

a2c + (1− 2ac) a
)

F for a > ac

(2.51)

where critical axial induction factor, ac = 0.2.

Using the conventional equation for thrust coefficient, plugging the expression for incremen-
tal thrust and comparing the thrust coefficient expression with the above equation gives rise
to the axial induction factor, as given below.

For a ≤ ac ,

a =
1

4F sin2 φ
σCn

+ 1
(2.52)

For a > ac ,

a =
1

2

[

2 +K (1− 2ac)−
√

(K (1− 2ac) + 2)2 + 4 (Ka2c − 1)

]

(2.53)

where

K =
4F sin2 φ

σCn

(2.54)

2.2.6 Dynamic stall

From the velocity triangle shown in Figure 2.4, the angle of attack is a function of relative
velocity and local pitch angle. The angle of attack changes dynamically during every revo-
lution either because of the change in relative velocity or because of pitching the blade over
time. When the angle of attack takes a step change, the aerodynamic loads do not respond
at the same time, but with a time delay, which is assumed to be proportional to the ratio



2.2 Aerodynamic loads 29

of chord to the relative velocity seen at the blade section, (c/V rel6). Prior to the stall, the
steady airfoil data is sufficient to capture the loadings, whereas, this effect also need to be
captured in the stalled and post stalled regions.

In the post stall region, if a steady airfoil data are used, increasing the angle of attack causes
the lift to decrease, giving rise to a negative slope in the angle of attack vs. lift coefficient
curve. This negative slope can lead to self-induced vibrations and the wind turbine might
experience large blade flapwise moments. However, these large bending moments do not
appear in practice, Øye (1991). This problem can be dealt by implementing a dynamic stall
model.

The response of the aerodynamic load is dependent on whether the boundary layer is
attached or partly separated. For attached flow, the time delay is estimated using the
Theodorsen theory for unsteady lift and aerodynamic moment. Many models are suggested
in the literature to take into account of the dynamic effect. The Beddoes-Leishman model
takes into account the attached flow, leading edge separation, compressibility effects and
also corrects the drag and moment coefficients.

The model suggested by Øye (1991) is used here. In the Øye model, the dynamic stall
is modeled through a separation function, fs. For wind turbines, trailing edge separation
is assumed to be most important phenomenon in terms of dynamic airfoil data, however,
effects in the linear region may also be important. For trailing edge stall, the degree of stall
can be described through fs, a function that takes the value zero at leading edge separation
and unity at trailing edge separation. Hence the dynamic value of lift coefficient is expressed
as follows,

Cl,dyn = fsCl,inv(α) + (1 − fs)Cl,fs(α) (2.55)

where Cl,inv is the lift coefficient for inviscid flow without any separation (an extrapolation
of static airfoil data in the linear region), Cl,fs is the lift coefficient for fully separated flow
(for example, flow over a flat plate with sharp leading edge). The rate of change of degree
of stall is expressed below,

dfs
dt

=
f st
s − fs
τ

(2.56)

Integrating the above equation, the unsteady separation function is obtained.

fs(t+∆t) = f st
s + (fs(t)− f st

s ) exp

(−∆t

τ

)

(2.57)

where f st
s is the value of fs that reproduces the static airfoil data as given below,

f st
s (α) =

Cl,st(α) − Cl,fs(α)

Cl,inv(α)− Cl,fs(α)
(2.58)

τ ≃ A
c

V rel6
= 4

c

V rel6
(2.59)

where τ is a convective time constant, here taken as the time for the air to move four times
the chord length down stream. This dynamic model is only applied to the lift coefficient
data. Steady airfoil data is used for the drag and moment coefficients. Depending on the
angle of attack, the lift will vary. Using unsteady data, stabilizes the solution. Applying a
dynamic stall model, the airfoil data is always chasing the static value at a given angle of
attack that is also changing in time.
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The dynamic stall model is implemented in the computations and verified using Figure 9.9
in the text book by Hansen (2008). This is done by generating the steady lift curve from the
reference figure and corresponding inviscid and fully separated lift coefficients by empirical
expressions. From these three lift values, the separation function is computed for each angle
of attack. In this way, the curve in the reference figure is reproduced using the dynamic
stall implementation. A time constant of τ = 0.08s is used in the computation.

The dynamic stall loop is generated for the following sinusoidal variation of the angle of
attack.

α = 15 + 2 sin(12.57t) (2.60)

An initial condition of fs(0) = f st
s is used. The resulting curve, which is the same as that

of Figure 9.9 of Hansen (2008) is shown in Figure 2.6.
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Figure 2.6: Validation of dynamic stall implementation

2.2.7 Tower shadow model

The presence of tower distorts the incoming wind flow. Since the tower is a blunt body, the
wind flow over the tower can be represented using potential flow theory. In polar coordinates,
the incoming axial wind velocity has two components viz. radial and tangential as shown in
Figure 2.7. The expressions for radial and tangential velocity components are given in the
following equations.

Vr = V 0

(

1−
(

r1t
r

)2
)

cos θ (2.61)

Vθ = −V 0

(

1 +

(

r1t
r

)2
)

sin θ (2.62)

where r1t is the radius of the tower and θ is the angle made by the radial vector with the
horizontal.

As a consequence of tower shadow, the relative velocity drops, which is reflected as a drop
in the rotor thrust with a periodicity of three times the rotor frequency (3p). An example
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Figure 2.7: Influence of tower on incoming flow

of the tower shadow implementation is shown in Figure 2.8. The drop in the rotor thrust is
attributed to the presence of tower shadow, otherwise, the rotor thrust would have been a
constant line.
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Figure 2.8: Example of the presence of tower shadow

2.2.8 Dynamic yaw

Presence of a nacelle yaw, which is the misalignment between the free stream wind velocity
and the rotor plane, induces a velocity component along the blade length at the inner part
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of the blade. At this condition, a part of the rotor will be in wake. This flow situation is
three dimensional by nature, resulting in a different normal velocity to the rotor plane, as
compared to the free stream velocity. This will change the average level of induced velocity.
The influence of these differences can be taken into account by redistributing the rotor loads
azimuthally by implementing a dynamic yaw model.

The normal component of the induced velocity in the drive train coordinate system is trans-
formed to the blade coordinate system as given below.

(Wn)6 =





0
0
Wz



 (2.63)

(Wn)5 = aT56(Wn)6 (2.64)

V ′ = (V 0)5 + (Wn)5 =





V 0x
V 0y

V 0z +W5z



 (2.65)

The wake skew angle is given by the following equation.

cosχ =
n ·V′

|n||V′| (2.66)

where the wake skew angle, χ, is the angle between the wind velocity in the wake and the
rotational axis of the rotor, n is the normal vector in the direction of the rotational axis.

The wake skew angle is assumed to be constant along the blade radius and can be approxi-
mately equal to the angle computed at 70 % of the blade radial position, r/R = 0.7,

tan θ0 =

(

V 0y
V 0x

)

6

(2.67)

θwing(t+∆t) = θwing(t) + ω∆t (2.68)

where θ0 is the angle where the blade is deepest into the wake, θwing is the azimuthal position
of the rotor and ω is the rated rpm of the rotor in rad/s. Hence, the induced velocity at
the new azimuthal position at time (t+∆t) is given by,

W = W0

(

1 +
r

R
tan

(χ

2

)

cos(θwing − θ0)
)

(2.69)

where W0 is the mean induced velocity obtained from the dynamic wake model.

2.2.9 Wind shear model

The wind velocity field seen by the wind turbine varies both spatially and temporally. A
schematic drawing of such a wind field is shown in Figure 2.9. The mean spatial variation
of the flow field can be represented by means of a wind shear profile. The effect of wind
shear is an increase of mean wind velocity along the height above the ground following either
a logarithmic or a power law. At neutral atmospheric stability conditions, the wind shear
models recommended by IEC are power law and logarithmic profiles as given in the following
equations.
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Figure 2.9: Spatial and temporal variation of wind velocity

V (z) = V (zr)

(

z

zr

)α1

(2.70)

V (z) = V (zr)
ln
(

z
z0

)

ln
(

zr
z0

) (2.71)

where V (z) is the wind speed at height z, the height above ground, zr is the reference height
above ground used for fitting the profile, z0 is the roughness length and α1 is the wind shear
or power law exponent having a value of approximately 0.2 onshore, 0.14 or less in the ocean.

2.2.10 Turbulence

The turbulence available in the wind flow is represented through various models. In Fig-
ure 2.9, the fluctuating part on top of the mean flow is the turbulence component. In other
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words, the instantaneous velocity in any direction is the sum of its mean value and a fluc-
tuating component. The fluctuating component can be obtained from different turbulence
models. When the wind turbine is experienced with the wind flow, the turbulence available
in the ambient flow is distorted by the rotation of rotor giving rise to a requirement for
rotational sampling of the flow. The classical method of treating the turbulence is to use
any standard wind spectrum, IEC (2009), such as Kaimal or von Kàrmàn or Davenport
spectrum. The turbulence models suggested by Paul Veers (1988), Mann (1994) and Øye
takes into account the spectral moments and coherence of the turbulence.

In this thesis, two models are used viz. a spatially coherent Mann model and Øye model.
The Mann model is used for the two-dimensional and three-dimensional codes, whereas the
Øye model is used for Flex5 coupling.

2.3 Summary

In this chapter, the problem is described along with a configuration selection and represen-
tative dimensions. Having defined the problem, the unsteady BEM is described in detail
along with some of the implementation test cases. In the next chapter, the hydrodynamic
loads will be described in detail.



Chapter 3

Hydrodynamic Loading

In this chapter, the hydrodynamics part of the problem is formulated and the implementation
is described. For the water depth under consideration, wave load theory for deep waters is
applicable. This is explained through the wave kinematics development for two-dimensional
regular and irregular and three-dimensional irregular waves and finally the hydrodynamic
force computation.

3.1 Two dimensional linear regular wave theory

The most simple description of the surface waves is by means of regular Airy wave theory.
The surface waves are assumed as smooth sinusoidal or cosine shaped waves with a certain
amplitude and time period. Motion of the water particles depend on the vertical and hori-
zontal positions and time. For finite water depth, the wave particles take a circular orbital
shape and the wave period and wave length are related through the dispersion relation, as
shown below.

ω2 = gk tanh (khw) (3.1)

where ω is the angular wave frequency, g is the acceleration due to gravity, k is the wave
number and hw is the water depth.

The coordinate system is chosen at the mean water surface with positive x axis along the
wave propagation direction and z axis pointing upwards, which is consistent with the coor-
dinate system followed for the platform bottom point. This means that, the sea bed is at
z = −hw, the water depth. However, the hydrodynamic forces and moments are computed
about the platform bottom point. The velocity potential is shown in the following equation:

φ (x, z, t) = −ωηa
k

cosh (k (z + hw))

sinh (khw)
sin (ωt− kx) (3.2)

where the wave amplitude, ηa = H
2 .

The surface elevation, η, can be computed using the following equation.

η = ηa cos (ωt− kx) (3.3)

The wave kinematics are computed from the velocity potential using linear Airy wave theory
assuming the wave steepness, H

λ
, is small. Hence, the wave kinematics are given in the

following equations.

Water particle horizontal velocity,

u = ωηa
cosh (k (z + hw))

sinh (khw)
cos (ωt− kx) (3.4)

35
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Water particle vertical velocity,

w = −ωηa
sinh (k (z + hw))

sinh (khw)
sin (ωt− kx) (3.5)

Water particle horizontal acceleration,

u̇ = −ω2ηa
cosh (k (z + hw))

sinh (khw)
sin (ωt− kx) (3.6)

Water particle vertical acceleration,

ẇ = −ω2ηa
sinh (k (z + hw))

sinh (khw)
cos (ωt− kx) (3.7)

The implementation of wave kinematics is checked through a simple example for the environ-
mental conditions defined. As the maximum wave height for a wave climate with significant
wave height of Hs = 7 m is Hm = 1.86Hs = 13.02 m for a 3 hours realization, a wave height
of 13.02 m and a wave period of 10 s are used for the computation. An example of surface
elevation and wave kinematics, computed at mean water level is shown in Figure 3.1.
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Figure 3.1: Two dimensional regular wave kinematics

3.2 Two dimensional linear irregular wave theory

The wave kinematics so far discussed is for regular waves, which in their pure form are
not commonly seen in the ocean environment. Instead, the waves can be considered as
composed of many regular waves with different frequencies and amplitudes, which are known
as irregular waves. The concept of irregular waves is a realistic representation of the actual
waves, and can be expressed by means of statistical quantities.

The wave climate used for irregular waves in the present study has a significant wave height
of 7 m and a peak period of 10 s. The energy available in the wave is represented by means
of a wave spectrum, which contains a wide range of frequencies. Out of the many spectra
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proposed, two of the widely used ones are Pierson-Moskowitz spectrum and Joint North Sea
Wave Project (JONSWAP) spectrum. As the JONSWAP spectrum usually represents the
measured frequency spectrum fairly well for the North Sea, the JONSWAP spectrum with
a peak enhancement factor of 3.3 is used, and is shown in Figure 3.2.
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Figure 3.2: JONSWAP Spectrum

A set of uniformly distributed frequencies with a frequency resolution of 0.001 Hz is chosen.
This corresponds to a maximum computation time duration of 1000 s before repetition. The
spectrum is constructed using frequency cut offs between 0.04 Hz and 0.35 Hz, as the wave
energy outside this frequency range is negligible. The resulting spectrum is centered around
the peak wave frequency, fp of 0.1 Hz, as specified. The power spectral density is given by
the following equation.

Sη(f) =
αg2

(2π)4f5
exp

(

−5

4

(

f

fp

)

−4
)

γb (3.8)

where

α = 3.32285H2f4
p (3.9)

γ = 3.3 (3.10)

b = exp

(

− (f − fp)
2

2σ2f2
p

)

(3.11)

σ =







0.07 for f ≤ fp

0.09 for f > fp

(3.12)

For each of the frequency, the wave amplitude is computed from the power spectral density
of the wave spectrum. The wave number is calculated from the wave dispersion relation.
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Using these parameters, the surface elevation time series is computed using the following
equation,

η(x, t) =
∑

n

an cos (ωnt− knx+ θn) (3.13)

where an represents frequency dependent wave amplitude, θn represents the random phase
angle, which lies between 0 and 2π radians. The phase angles are used to make the surface
elevation random. The randomness in the phase angle is introduced using a random number
generator, however, to obtain reproducible results, a seed number of 0 is used.

The frequency dependent wave amplitude is given in the following equation.

an =
√

2Sη(f)∆f (3.14)

Implementation of the surface elevation is validated using the simple relation of significant
wave height and standard deviation, as shown in below, Sumer and Fredsøe (2006).

Hs = 4ση (3.15)

From the actual implementation, the standard deviation is 1.75 m, whereas the standard
deviation from equation (3.15) is also 1.75 m. Hence the implementation is validated. Fur-
ther, the implementation is validated by comparing the surface elevations from the present
model and that in a reference Bredmose and Jacobsen (2010). The reference time series
data is obtained from the same code used in the reference and was compared with the time
series data of the present implementation. The comparison is shown in Figure 3.3, wherein
both surface elevations match. The comparison is for a specific realization of a focused wave
group with a focus time of 60 s.
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Figure 3.3: Two dimensional irregular wave - surface elevation validation

As used for regular waves, Linear wave theory is used to compute the wave kinematics,
which gives rise to the horizontal and vertical velocity components as shown in the following
equations.
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u(x, z, t) =
N
∑

n=1

anωn

cosh (kn (z + hw))

sinh (knhw)
cos (ωnt− knx+ θn) (3.16)

w(x, z, t) =
N
∑

n=1

−anωn

sinh (kn (z + hw))

sinh (knhw)
sin (ωnt− knx+ θn) (3.17)

An example of the time series plots of surface elevation, horizontal and vertical velocities
are shown in Figure 3.4.
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Figure 3.4: Two dimensional irregular wave kinematics

Using the wave kinematics, the wave induced forces are computed by means of Morison’s
equation.

3.3 Three-dimensional linear irregular wave theory

The complete three-dimensional description of the ocean environment is obtained with ir-
regular wave theory with directional spreading. The wave is having a predominant direction
along with a spreading centered around this direction. While ±π will cover the entire di-
rections, significant energy is only concentrated around ±π/2 direction and the rest of the
directions are neglected. These waves are composed of finite number of regular waves with
different frequencies and directions.

Wave kinematics are derived using the linear wave theory. Similar to the two-dimensional
irregular waves, the wave amplitudes are derived based on a wave spectrum. However, the
spectrum needs to take into account the directional spreading of waves and hence it becomes
both frequency- and direction-dependent spectrum. For the frequency-dependent spectrum,
the JONSWAP spectrum, as described in section 3.2 is used. The frequency resolution
and the cut off frequencies remain the same. The directional spectrum takes the form of a
cosine-power distribution, as shown in the following equation.
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D(φ) =







2
π
cos2 (φ− θ0) for − π/2 ≤ φ ≤ π/2

0 elsewhere
(3.18)

where φ represents the range of directions between −π/2 to π/2 for a wave heading of
θ0 = 0. The wave heading angle is the mean of the range of directions under consideration.
Based on any wave heading, the range of directions can be selected. The general form of
the cosine-power is with a power of 2s, where s represents the degree of spreading around
the mean direction. In this computation, s = 1 is used as shown in (3.18) .

The power spectral density of the directional wave spectrum is the product of both frequency-
and direction- dependent spectral components, which is given in the following equation.

DS (f, φ) = Sη(f)D(φ) (3.19)

where Sη(f) is the frequency-dependent spectral function, as defined in equation (3.8). The
resulting wave spectrum is shown in Figure 3.9. In the figure, the spectrum is concentrated
in the frequency axis around the peak wave frequency of 0.1 Hz and in the directional axis
around the wave heading direction of 0◦, which is expected.

Figure 3.5: Three dimensional wave spectrum

The frequency- and direction-dependent wave amplitude and surface elevation are defined
as in the following equations.

anp =
√

2DS (f, φ)∆f∆φ (3.20)



3.3 Three-dimensional linear irregular wave theory 41

η(x, y, t) =

N
∑

n=1

M
∑

p=1

anp cos (ωnt− kn cos(φp)x− kn sin(φp)y + θnp) (3.21)

where n and p correspond to the frequency and direction components and θnp represents
random phase angle, which lies between 0 and 2π radians, depending on both frequency ωn

and direction φp.

The time series velocity components are computed from the following linear formulae:

u(x, y, z, φ, t) =

N
∑

n=1

M
∑

p=1

anp cos(φp)ωn

cosh (kn (z + hw))

sinh (knhw)

cos (ωnt− kn cos(φp)x − kn sin(φp)y + θnp)

(3.22)

v(x, y, z, φ, t) =
N
∑

n=1

M
∑

p=1

anp sin(φp)ωn

cosh (kn (z + hw))

sinh (knhw)

cos (ωnt− kn cos(φp)x− kn sin(φp)y + θnp)

(3.23)

w(x, y, z, φ, t) =

N
∑

n=1

M
∑

p=1

−anpωn

sinh (kn (z + hw))

sinh (knhw)

sin (ωnt− kn cos(φp)x − kn sin(φp)y + θnp)

(3.24)

where u, v and w are water particle velocities in x, y and z directions respectively.

A time series example of surface elevation, x, y and z components of the velocity are shown
in Figure 3.6.

The wave kinematics are Delta stretched, ISO (2005) from 25 m below mean sea level, as
described in the next section.
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Figure 3.6: 3D wave kinematics

3.4 Delta stretching method

The linear wave theory is valid only upto the mean sea level, whereas the instantaneous
sea surface is unsteady. For surface protruding structures, the wave kinematics at the
instantaneous water surface above mean sea level need to be computed, in order to obtain a
reasonably good estimate of the wave induced forces and moments. This is achieved by means
of certain modifications carried out on the linear wave theory. These modifications are widely
known as stretching methods, which have been suggested by different researchers. Some
of these stretching methods are Wheeler stretching, Wheeler (1970), linear extrapolation,
Forristall (1981), and Delta stretching, ISO (2005) and Rodenbusch and Forristall (1986).
All these empirical models assume small wave steepness. For a detailed review on the
stretching methods, the reader may consult, Gudmestad (1993), and for a comprehensive
error analysis of the models, Xü (1995).

As given in Forristall (1981), linear extrapolation overestimates the horizontal velocity and
Wheeler stretching underestimates it. Delta stretching provides an empirical average be-
tween the two other schemes. In the case of Wheeler stretching, the kinematics are stretched
from the sea bed upto the mean sea level. The kinematics are mapped to the stretched nu-
merical height, which will be used for further force computations. An example of the Wheeler
stretched height is shown in the following figure.

In the case of Delta stretching, the wave kinematics are stretched from a reference height.
The usual kinematics is followed upto this reference height and from there on, the kinematics
is mapped to a stretched numerical height. The reference height is chosen as half of the
significant wave height, h′ = Hs

2 , below the mean sea level, ISO (2005). Stretching is done
only on the wave crest, not on the wave trough. Hence the necessary and sufficient condition
for Delta stretching to be applied is that the surface elevation needs to be positive and the
height under consideration needs to be above the reference height. Otherwise, the usual
wave kinematics is followed. The stretching is done from the reference height upto a level
of ∆η, which is usually above the mean sea level. The empirical parameter ∆ for Delta
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Figure 3.7: Wheeler stretched height

stretching is chosen as 0.3. Hence the maximum stretched height can go upto 30% of surface
elevation, η, above the mean sea level. An example of the Delta stretched height is shown
in the Figure 3.8.
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Figure 3.8: Delta stretched height

From the figure, it can be noticed that the stretched height is above the mean water level.

The limiting cases of Delta stretching are obtained by using ∆ = 0 gives rise to Wheeler
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stretching and ∆ = 1 gives rise to linear extrapolation. The mathematical representation of
Delta stretching is illustrated below.

The coordinate mapping is given below.

z′ =







(z + h′)h
′+∆η
h′+η

− h′ for z > −h′ and η > 0

z otherwise

(3.25)

If z′ < 0, ie., below mean sea level, the wave velocities are written as follows.

u = ωηa
cosh (k(z′ + hw))

sinh khw

cos (ωt− kx) (3.26)

w = −ωηa
sinh (k(z′ + hw))

sinh khw

sin (ωt− kx) (3.27)

If z′ > 0, ie., in the range of mean sea level to the instantaneous water surface, the wave
velocities are Taylor expanded using the z′ coordinate, yielding,

u = ωηa

(

coshkhw

sinh khw

+ kz′
)

cos (ωt− kx) (3.28)

w = −ωηa

(

1 + kz′
coshkhw

sinhkhw

)

sin (ωt− kx) (3.29)

The same method can be also extended to two- and three-dimensional irregular waves. An
example of the vertical variation of horizontal velocity is shown in Figure 3.9. In the figure,
the step change in horizontal velocity is because of the delta stretching.
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Figure 3.9: Vertical variation of horizontal velocity
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3.5 Effect of wave diffraction and hydrodynamic force coefficients

The mean wave length in the wave environment under consideration is approximately 150
m. Hence, the ratio of characteristic diameter of the structure to the wave length is approx-
imately 0.13, which is less than 0.2. This condition justifies that the effect of diffraction can
be neglected and hence Morison’s equation is used for computing the hydrodynamic forces
with the following force coefficients.

The Keulegan-Carpenter Number (KC) for the floater configuration can be computed as
follows.

KC =
UmT

D
(3.30)

where Um is the maximum wave velocity, T is the wave period and D is the diameter of the
structure. Hence, for the floater, KC = 1.25 and for the tower, KC = 2.5. Since the KC
numbers are less than 7, the structure is considered to be in the inertia dominated regime
and hence the hydrodynamic force coefficients can be taken as those given below.

The hydrodynamic added mass coefficient for a cylinder in surge direction is the standard
value of Ca = 1.0, chosen from DNV (2011) and in the heave direction, it is 0.64, Sumer and
Fredsøe (2006), as the added mass effect from the water around the bottom of the cylinder
is considered similar to that of a circular disc moved perpendicularly to its own plane. For
this situation, the reference volume for Ca is the volume of a sphere with same diameter as
the disc. Similarly, the drag coefficient in the surge direction for a cylinder in this KC range
is then to be CD = 1.0, DNV (2011) and in the heave direction, the bottom of the platform
is considered to act like a rectangular box, for which, CDz = 2.0, Sumer and Fredsøe (2006).
In addition, the inertia coefficient follows the relation of CM = 1 + Ca.

The pitch and roll added masses are computed using the following procedure.

The pitch added mass is considered to have contributions from accelerating the fluid in the
lateral direction (side-wise) and the fluid in the top and bottom faces of the floater. For
obtaining the first component, the floater is discretized perpendicular to the X-Z plane,
giving rise to circular discs with diameter same as the floater diameter. The discretization
is shown in the Figure 3.10. The flow direction is along the X axis.

Figure 3.10: Floater discretization for side-wise pitch added mass

This will generate a pitch added mass, which is represented using the following equation.

Ipitch1 = 2ρCa1A1

∫ R

0

z2dz (3.31)
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where area of circular cross-section, A1 = πR2, and for each section, the added mass co-
efficient, Ca1 = 1, Sumer and Fredsøe (2006). The added mass and area of cross-section
are constant for all the elements and z is the perpendicular distance from the centre of the
floater to the section under consideration. Hence the side-wise contribution of pitch added
mass is obtained as Ipitch1 = 1.7131E7 kgm2.

Similarly, the added mass contribution in the longitudinal direction is obtained by discretiz-
ing the floater perpendicular to the X-Y plane, giving rise to rectangular sections with floater
height and varying lateral dimension. The discretization is shown in the Figure 3.11. The
flow direction is along the Z axis.

Figure 3.11: Floater discretization for longitudinal pitch added mass

This will generate a pitch added mass in the longitudinal direction, which is represented
using the following equation.

Ipitch2 = 2ρ

∫ R

0

Ca2(y)A2(y)y
2dy (3.32)

where A2(y) is the area of rectangular section, which varies along the y axis of the floater,
unlike the previous case, the added mass coefficient, Ca2, is also varying based on the width
to height ratio, Sumer and Fredsøe (2006), and hence these variables are kept inside the
integration symbol. The cross-sections are at a distance of y from the floater centre. Hence
the longitudinal contribution of pitch added mass is obtained as Ipitch2 = 3.2259E7 kgm2.

The total pitch added mass can be computed as Ipitch = Ipitch1 + Ipitch2 = 4.939E7 kgm2.

Similarly, the roll added mass can also be computed because of the floater symmetry.

3.6 Hydrodynamic force

The hydrodynamic forces are expressed by considering the relative movement of the structure
with respect to the oscillatory motion of water particles and are given by the following
equations, Morison et al. (1950).

In the surge direction, the force per unit length becomes

dF1 = CaρA (u̇− η̈1f ) dz + ρAu̇dz + CD

1

2
ρDfures (u− η̇1f ) dz (3.33)

In the sway direction, the force per unit length becomes

dF2 = CaρA (v̇ − η̈2) dz + ρAv̇dz + CD

1

2
ρDfures (v − η̇2) dz (3.34)

In the heave direction, the total force becomes
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F3 =
4

3
π

(

Df

2

)3

ρCaz (ẇ − η̈3) +
π

4

(

D2
fpb −

(

D2
f −D2

t

)

pt
)

+

π

8
D2

fρCDz|w − η̇3| (w − η̇3)

(3.35)

While in the roll and pitch directions, the moment per unit length as measured from the
bottom point of the floater (z = 0) are given in the following equations.

The incremental roll moment is given by,

dF4 = CaρA (v̇ − η̈2) (−z)dz + ρAv̇(−z)dz + CD

1

2
ρDfures (v − η̇2) (−z)dz (3.36)

The incremental pitch moment is given below.

dF5 = CaρA (u̇− η̈1f ) zdz + ρAu̇zdz + CD

1

2
ρDfures (u− η̇1f ) zdz (3.37)

where the magnitude of the resultant velocity is expressed as, ures =
√

(u− η̇1f )
2
+ (v − η̇2)

2
,

sea water density, ρ = 1025 kg/m3, cross-sectional area of the platform, A, platform surge,
sway and heave displacements η1f , η2 and η3 respectively, platform and tower bottom di-
ameters Df and Dt, z and dz represent the vertical distance from the platform bottom to

a point under consideration and the incremental vertical distance. The (̇) and (̈) represent
first and second derivatives of the variable with respect to time.

The excess dynamic pressure at bottom and top faces of the platform are pb and pt, which
can be expressed using the following general equation, Sumer and Fredsøe (2006).

p+ = p+ ρgz = ρg
H

2

coshk (z + hw)

coshkhw

cos (ωt− kx) (3.38)

The above equation is for a regular wave with straight forward generalization for irregular
two- and three-dimensional waves.

The wave induced yawmoment is considered to be zero, F6 = 0. In equations (3.33) to (3.37),
the first term is the added mass contribution, the second term is the Froude-Krylov force and
the third term is the quadratic viscous drag contribution. In equations (3.33), (3.34), (3.36)
and (3.37), the relative velocities and accelerations are computed by neglecting the pitch
induced surge and roll induced sway contributions, as these quantities are very small con-
sidering the dimensions of the floater.

The total horizontal force acting on the structure is found out by integrating the incremental
force from bottom of the structure to the top in the positive z direction. Delta stretching is
applied to the wave kinematics before computing the wave induced forces. The total force
is computed by dividing the structure into 40 equidistant segments vertically and summing
the forces corresponding to each element. A convergence study was also carried out by
doubling the discretization (80 elements), which has no influence on the final results. This
horizontal force becomes the external forcing function in the equation of motion in the
surge direction for the platform. The computer implementation of this forcing function in
the equations of motion is done slightly differently by grouping the structural acceleration
term from the external forcing function into the mass matrix of the equations of motion. A
similar methodology is also applicable for the sway force. The integration of incremental
roll and pitch moments to obtain the total moments is also done the similar way as the force
integration is carried out.
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The total vertical force on the structure is depicted in Equation (3.35). In the equation,
the Froude-Krylov force is the resultant of the excess dynamic pressure differences at the
bottom and top faces of the platform. As far as the added mass force is concerned, in the
vertical direction, the added mass is assumed as a spherical shape with a diameter equal to
the platform diameter. The computer implementation is exactly the same way as that in
the surge case. The drag force takes into account the relative motion between the vertical
component of the wave velocity and that of the structure.

The implementation of surge force equation is validated with a result in reference Bredmose
and Jacobsen (2010). The same dimensions and flow conditions used in the reference paper
is adopted for the validation purpose. This computation is for a force on a vertical cylinder
of 5 m diameter, which is placed at 20 m water depth, subjected to a focused wave group of
a JONSWAP spectrum with a peak period of 13 s. The focus time is 60 s. The comparison
of the surge force is shown in Figure 3.12. From the figure, it is observed that both of the
surge force quantities compare well and hence the force implementation is validated.
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Figure 3.12: Surge force validation

3.7 Summary

In this chapter, the hydrodynamics part of the problem is described in detail giving focus
on regular and irregular waves. The kinematics and force quantities derived in the chapter
is used for the coupled formulation and analysis of the problem. In the next chapter, two-
dimensional coupling and implementation of the problem will be explained along with results
and observations.



Chapter 4

Two Dimensional Coupling

In this chapter, the problem is formulated in a two dimensional space. Initially a comprehen-
sive model of the wind turbine along with aerodynamic loading module is formulated using
the method of virtual work and unsteady BEM for an onshore wind turbine. Subsequently,
the platform dynamics is formulated along with hydrodynamic loading in 2D space. Finally,
the coupling is carried out in two stages. In the first step, the aerodynamic load is applied
externally to the platform dynamics module, which is known as semi-coupled model. In the
final step, all the modules are formulated in an integrated approach giving rise to a fully
coupled model. The implementation of the models are tested for a number of load cases,
observations are made and conclusions are drawn.

4.1 Semi-coupled model

The wind turbine dynamics along with aerodynamic module is derived first using the method
of virtual work and unsteady BEM. Further, the platform dynamics in plane motion is
formulated based on the force equilibrium. Linear Airy wave theory is applied for the waves.
Hydrodynamic loads are modelled by means of Morison’s equation using two dimensional
linear irregular wave theory as explained in Chapter 3, section 3.2. Finally, the coupling
procedure is explained along with test cases and observations.

4.1.1 Wind turbine model

The NREL 5-MW reference wind turbine is modeled using eleven degrees of freedom, which
are detailed in Table 4.1. Tower and nacelle are modeled as lumped masses, connected
through a spring and damper, whereas, the blades are modeled as elastic beams with dis-
tributed stiffness and mass properties using the three lowest eigen modes. Procedure followed
for computation of the blade mode shapes is explained below.

Table 4.1: Wind turbine degrees of freedom

Degrees of freedom Number of
DOF

Tower longitudinal 1

Shaft Azimuthal position 1

Blade First and second flap for
each blade

6

Blade First edge for each blade 3

Total 11

The twist, rigidity and mass distribution along the blade length are shown in Figures 4.1, 4.2
and 4.3, Jonkman et al. (2009). The blade mode shapes are computed analytically by

49
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considering the mass and stiffness distribution, Hansen (2008). Blade beam model is shown
in Figure 4.4.
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Figure 4.1: Blade twist distribution
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Figure 4.2: Blade stiffness distribution

For computing mode shapes, the beam is not subjected to any external loads and considering
one element and applying Newton’s second law implies the following two equations in y and
z directions.
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Figure 4.3: Blade mass distribution

Figure 4.4: Blade beam model

dTz

dx
= m(x)üz(x)

dTy

dx
= m(x)üy(x)

(4.1)

where T is the shear force at a section of the beam. For an eigen mode, the deflection
type is of the form, u = A sin(ωt), which implies that the acceleration will be, ü = −ω2u.
Substituting this in the above equation will give rise to the following equations.

dTz

dx
= −m(x)ω2uz(x)

dTy

dx
= −m(x)ω2uy(x)

(4.2)

Considering the right hand sides of the above equations as external loads to a static beam
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bending equation, namely, pz = m(x)ω2uz(x) and py = m(x)ω2uy(x). Since the deflections
are not known a priori, the equations need to be solved iteratively.

To begin the iteration, the static deflection at the blade tip is used, which gives rise to the
frequency equation as follows.

ω2 =
pNz

uN
z mN

(4.3)

where the superscript N denotes the quantities at the blade tip. Using this frequency, a new
loading is computed at all discrete points as in the following equation.

piz = ω2mi ui
z

√

(uN
z )

2
+
(

uN
y

)2

piy = ω2mi
ui
y

√

(uN
z )

2
+
(

uN
y

)2

(4.4)

Corresponding to these loads, new deflections are computed and the steps are repeated
until the frequency converges. The deflections corresponding to the converged frequency are
known as first flapwise modes, φ1f

f = u1f
z and φ1f

e = u1f
y .

In order to obtain the first edgewise deflection shapes, the flapwise deflection contributions
are subtracted from the total deflection as depicted in the following equation and the same
procedure as in the first flapwise deflection is followed.

u1e
z = uz − const1u

1f
z

u1e
y = uy − const1u

1f
y

(4.5)

The constant const1 is computed by satisfying the orthogonality condition as in the following
equation.

∫ R

0

u1f
z mu1e

z dx+

∫ R

0

u1f
y mu1e

y dx = 0 (4.6)

Combining the equations (4.5) and (4.6) will give rise to the constant as follows.

const1 =

∫ R

0
u1f
z muzdx +

∫ R

0
u1f
y muydx

∫ R

0
u1f
z mu1f

z dx+
∫ R

0
u1f
y mu1f

y dx
(4.7)

Similarly, the second flapwise mode shapes are also computed by using the following orthog-
onality condition.

∫ R

0

u1e
z mu2f

z dx+

∫ R

0

u1e
y mu2f

y dx = 0 (4.8)

Hence, the second flapwise mode shapes are obtained as in the following equations.

u2f
z = uz − const2u

1e
z

u2f
y = uy − const2u

1e
y

(4.9)
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where the constant, const2 is given below.

const2 =

∫ R

0
u1e
z muzdx+

∫ R

0
u1e
y muydx

∫ R

0
u1e
z mu1e

z dx +
∫ R

0
u1e
y mu1e

y dx
(4.10)

The computed mode shapes are given in the following figure.
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Figure 4.5: Blade mode shapes

These input data are used to generate an onshore wind turbine model. The unsteady BEM
derived in the previous chapter is implemented for unsteady aerodynamic loads. The mean
rotor thrust from the present implementation (877 kN) is comparable with that of literature
(800 kN), Jonkman et al. (2009) and Joensen et al. (2007).

4.1.2 Platform model

The floater is modeled using the data given in Joensen et al. (2007), which has three degrees
of freedom, viz. surge, heave and pitch in plane motion. The tendons are assumed to be
linear elastic with negligible bending stiffness. As the tendon mass is small compared to the
mass of the floater and wind turbine, the inertia and buoyancy forces from the tendons are
further neglected in the equations of motion.

The static stability of the platform is illustrated in Figure 4.6. From the figure, to balance
the excess buoyancy, a pretension T0 is applied. The pretension is equally distributed to
both of the tendons with a magnitude equal to T0

2 . At static equilibrium, x coordinates of
centres of buoyancy, xb, and gravity, xG, are at zero position, as both buoyancy and gravity
forces are assumed to be acting along the centre line of the tower, which coincides with the
reference point.
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Figure 4.6: 2D - Static stability

Hence, the static stability of the complete system can be written as follows.

T0 = Fb − FG (4.11)

where Fb is the total buoyancy force and FG is the total gravity force, which are expressed
in the following equations.

Fb = Fb,f + Fb,t =
π

4
D2

fhρg +
π

4
D2

thtρg (4.12)

FG = FG,f + FG,t = mfg +mtg +mng (4.13)

where the quantities with subscripts f and t are contributions from floater and turbine, h is
the floater height, ht is the tower submergence, ρ is the sea water density, mf , mt and mn



4.1 Semi-coupled model 55

are mass of floater, tower and nacelle respectively. The diameters are represented using the
letter D.

The dynamic stability of the platform in plane motion is described in Figure 4.7. The figure
shows both un-displaced and displaced configurations. The displaced configuration is an
exaggerated figure when the platform is subjected to a combined displacement of surge, η1f ,
heave, η3, and pitch, η5.

Figure 4.7: 2D - Dynamic stability

While the platform is subjected to pitch, the buoyancy and gravity positions change accord-
ing to the following equations.
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xb =
Fb,fxb,f + Fb,txb,t

Fb

=









Fb,f0.5h+ Fb,t

(

h+ 0.5ht +

(

D2

t (2+tan2 η5)
32ht

))

Fb









sin η5

(4.14)

xG =
FG,fxG,f + FG,txG,t

FG

=

(

FG,f0.5h+ FG,t (Ht + 0.5h)

FG

)

sin η5 (4.15)

where Ht is the turbine hub height and other parameters are the same as explained earlier.
As the tendons are extensible, a change in platform position causes a change in instantaneous
tendon lengths and hence the instantaneous tensions of the tendons, as shown in Figure 4.7.
Using the geometry, the instantaneous lengths, L1 and L2, are expressed in the following
equations.

L1 =

√

(

L0 + η3 + d̃ sin η5

)2

+
(

η1f + d̃ (1− cos η5)
)2

(4.16)

L2 =

√

(

L0 + η3 − d̃ sin η5

)2

+
(

η1f − d̃ (1− cos η5)
)2

(4.17)

where L0 is the initial length of the tendons, d̃ = 0.707
(

Df

2 + de

)

and de is the spoke length.

The change in tendon lengths, ∆L1 and ∆L2, are computed as a difference between the
final and initial lengths. Hence, the instantaneous tensions, T1 and T2, of the tendons are
computed as given in the following equations.

T1 =
T0

2
+

(

AtendEtend

L0

)

∆L1 (4.18)

T2 =
T0

2
+

(

AtendEtend

L0

)

∆L2 (4.19)

where the area of cross-section of tendon, Atend = π
4 d

2
tend, dtend being the diameter of

a tendon and the Young’s modulus of tendon is, Etend = 2.1E11 N/m2, assuming the
material as steel. While the tendon diameter is 75.6 mm in the real configuration, in 2D to
have the same tendon stiffness, the two dimensional tendon diameter is chosen as 107 mm.

4.1.3 Semi-coupling method

In principle, the platform and wind turbine models need to be combined along with aerody-
namic and hydrodynamic loads and each of the models interact continuously. Formulation
of aerodynamic and hydrodynamic loads are described in the previous chapters. As a first
step, a simplified coupling of the aerodynamics, hydrodynamics and the platform dynamics
is carried out. The time varying rotor thrust for a configuration with clamped tower base is
obtained in section 4.1.1, is used for the semi-coupling. Next, the forces at the tower base
are applied within the dynamic model for the platform, wherein the hydrodynamic forces
are also external loads. The hydrodynamic loads interact with the platform dynamics in-
stantaneously. The platform dynamics, including the rotor thrust and hydrodynamic loads,
is modeled using the following equations of motion using Newton’s second law.



4.1 Semi-coupled model 57

The equation of motion in the surge direction is written as follows.

m1η̈1f = F1+ ktη1t + ctη̇1t−T1

(

η1f + d̃ (1− cos η5)

L1

)

−T2

(

η1f − d̃ (1− cos η5)

L2

)

(4.20)

whereas in the heave direction, it is given by,

m3η̈3 = F3+Fb−FG−ρg
π

4
D2

t η3−T1

(

L0 + η3 + d̃ sin η5
L1

)

−T2

(

L0 + η3 − d̃ sin η5
L2

)

(4.21)

and in the pitch direction the equation of motion becomes:

J5η̈5 = F5 + FGxG − Fbxb + Fw (Ht + h) cos η5 + T2

(

L0 + η3 − d̃ sin η5
L2

)

d̃ cos η5

+T2

(

η1f − d̃ (1− cos η5)

L2

)

d̃ sin η5 − T1

(

L0 + η3 + d̃ sin η5
L1

)

d̃ cos η5

−T1

(

η1f + d̃ (1− cos η5)

L1

)

d̃ sin η5

(4.22)

while the relative deflection of the tower top is governed by the following equation.

mtsη̈1t = Fw − ktη1t − ctη̇1t −mtsη̈1f (4.23)

where η1t is the longitudinal motion of the tower top, (̇) and (̈) represent first and second
derivatives of the variable with respect to time respectively. Further in the equations, Fw is
the rotor thrust from the wind. The wave excitation forces F1 (surge), F3 (heave) and F5

(pitch moment) are given in section 3.6 of Chapter 3.

The surge mass, m1, heave mass, m3 and mass moment of inertia in pitch direction, J5, are
the sum of structural mass and added mass in the corresponding directions. Equivalent tower
top mass, mts = mn + 0.5mt, where mn is nacelle mass and mt is the tower mass. Tower
stiffness and structural damping are represented through the spring stiffness coefficient kt
and damping coefficient ct.

Hence, a response of the platform from simultaneous wind and wave loads is obtained, while
the influence from the wave-induced rotor motion on the aerodynamic loads is missing.

4.1.4 Natural frequency analysis

Analytical expressions for surge, heave and pitch natural frequencies are given in the follow-
ing equations.

(fn)surge =
1

2π

√

T0

L0m1
= 0.026Hz (4.24)

(fn)heave =
1

2π

√

2AtendEtend

L0

+ π
4 ρgD

2
t

m3
= 0.34Hz (4.25)
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(fn)pitch

=
1

2π

√

1

J5

(

− (Wt (Ht + 0.5h) + 0.5Wfh) + Fbt

(

h+ 0.5ht +
D2

t

16ht

)

+ 0.5Fbfh+
2AtendEtend

L0
d̃2
)

= 0.143Hz

(4.26)

where all the parameters are explained in the previous section.

The semi-coupled model is validated by carrying out free decay numerical tests for surge,
heave and pitch degrees of freedom. The free decay tests are conducted to obtain natural
frequencies and the frequency domain responses are shown in Figures 4.8 to 4.10. The results
in the figures and that in the equations are agreeing very well for all of the frequencies. Hence,
further load cases can be computed using the present model.
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Figure 4.8: 2D - frequency response plot for surge
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Figure 4.9: 2D - frequency response plot for heave
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Figure 4.10: 2D - frequency response plot for pitch

4.1.5 Semi-coupled model - Load cases

As the semi-coupled model is achieved, the following four load cases are considered.

• LC1 - a simplified deterministic constant thrust force (877 kN), Joensen et al. (2007)

• LC2 - time series thrust from BEM with constant mean flow of 10 m/s wind speed,
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• LC3 - time series thrust from BEM with a sheared wind flow of 10 m/s mean wind
speed and

• LC4 - time series thrust from BEM with a sheared wind profile with mean 10 m/s
wind speed and a spatially coherent turbulence on top of it.

The turbulent wind signals were produced from a wind spectrum of the Mann model, Mann
(1994). The time series and frequency domain wind spectrum for spatially coherent tur-
bulence are shown in Figure 4.11. In the figure, the frequency domain y-axis is chosen as
semi-log axis for the quantity fS(f). In all of the load cases, the rotor thrust is ramped to
the real value within a time span of 50 s, to avoid unrealistic initial transient responses.
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Figure 4.11: Wind input for Load Case 4

The equations of motion are solved using MATLAB’s built in function ode15s, which is an
implicit solver with adaptive time stepping. Because the system to be solved is stiff, the
ode15s solver is preferred to ode45.

4.1.6 Semi-coupled model - Results and discussion

Responses are obtained for all the four load cases and are explained as follows.

The time and frequency domain response plots for irregular wave forcing for the four different
cases of aerodynamic loading are shown in Figures 4.12, 4.13, 4.14 and 4.15 respectively.
From 1000 s time series computation, 200 s steady state results are shown and for the
frequency response, the structural natural frequencies are indicated in the plots.
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Figure 4.12: 2D semi-coupled responses - Load Case 1
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Figure 4.13: 2D semi-coupled responses - Load Case 2

Surge response (η1f )

The time series results show a positive mean surge response, which is expected because of
the presence of rotor thrust. The surge response is very similar for the first and second load
cases (Figures 4.12 and 4.13). Constant thrust of Load Case 1 is chosen as the same mean
thrust of Load Case 2 (877 kN), which give rise to the similar responses. The mean surge
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Figure 4.14: 2D semi-coupled responses - Load Case 3
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Figure 4.15: 2D semi-coupled responses - Load Case 4

response for the third Load Case is slightly lesser than that of the first and second cases.
The reason for the smaller response is the reduced mean thrust at the lower part of the
rotor, which is due to the wind shear. In the case of turbulent wind, the surge response is
similar to that of Load Case 3 apart from a low frequency component associated with the
low frequency part of the turbulent wind spectrum.



4.2 Fully coupled model 63

The predominant peak is at the peak wave frequency (0.1 Hz) and peaks corresponding to
surge (0.027 Hz) and tower natural frequencies (0.24 Hz) are also seen.

Heave response (η3)

The time series shows a negative mean, which is expected because of the set-down effect of
the system. The predominant peak is at the peak wave frequency (0.1 Hz) and other peaks
corresponding to surge (0.027 Hz), heave (0.34 Hz) and tower natural frequencies (0.24 Hz)
are also seen. Presence of the surge frequency is a consequence of surge-heave coupling
through set-down effect. Since the presence of rotor thrust moves the platform to a distance
corresponding to a mean surge response and hence the platform is subjected to oscillatory
motion around this mean value, the platform does not cross the mean equilibrium position.
This condition leads to the excitation at coupled surge frequency, instead of a peak at the
double surge frequency.

Pitch response (η5)

The pitch response has a positive mean, which is due to the presence of rotor thrust. The
mean pitch (0.3 degrees) and fluctuation are very small, which may be caused by using a
longer spokes instead of the right dimension. When a real configuration is simplified to 2D,

the fairlead position should have been at d̃ = 0.707
(

Df

2 + de

)

instead of d̃ =
(

Df

2 + de

)

.

While the mismatch is only with numerical implementation, the right dimensions are shown
in the derivation of equations of motion. However, this mistake in implementation re-
affirms the understanding that longer spokes stabilize the rotational displacements. Using
the longer spokes enhances the natural frequency in the pitch mode. As a result, the
predominant frequency for all the load cases are found to be at around 0.33 Hz, which
is the enhanced pitch frequency. In real, the pitch frequency should have been around 0.14
Hz, as given in the natural frequency equation (4.26). Having a pitch frequency at 0.33
Hz poses another problem because the pitch response has a coupling with heave response,
which has a natural frequency around 0.34 Hz. The closely spaced two frequencies can lead
to resonance conditions, which can be observed as a growing pitch response in the figures.
In addition, the pitch response grows over time, dies out after some time and again grows
with a time interval, corresponding to the difference in these frequencies. In order to show
the complete pitch response, the x-axis for the time domain pitch response is chosen from
400 s to 1000 s. The mistake in using wrong spoke dimensions is rectified in the subsequent
computations.

In addition to the peak at 0.33 Hz, the frequency domain response has peaks at surge (0.027
Hz), peak wave and a peak corresponding to three times the rotor frequency (3p = 0.84
Hz), which is a consequence of the coupling between rotor and platform. However, the 3p
excitation could not be seen for the first load case, which was also not expected because the
rotor thrust is a constant value. In Load Case 4, the low frequency (0.01 Hz) wind forcing is
seen to induce a low frequency pitch response and unlike other cases, a peak corresponding to
surge natural frequency is not present. This may be because the turbulence effect dominates
as compared to the surge.

The semi-coupled model responses provide motivation for extending the model to a fully-
coupled model, which is explained in the next section.

4.2 Fully coupled model

Based on the understanding of the semi-coupled responses, the model is extended by for-
mulating the platform and wind turbine degrees of freedom together and implementing a
solver to obtain fully-coupled responses. The assumptions and number of degrees of free-
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dom remain the same as used for semi-coupled model. The wind and wave loading are fully
coupled in time domain through the structural degrees of freedom. Hereby, the rotor loads
become part of the floater generalized forces and the floater motion, contributes to the rel-
ative velocity seen by the blade and hence the rotor loads, which will eventually affect the
tower top and blade displacements. This will give rise to a coupled rotor-floater dynamics,
when subjected to simultaneous wind and wave loads. The equations of motion are derived
using the principle of virtual work and are given in the following equation.

[M]{ẍ}+ [C]{ẋ}+ [K]{x} = {Fg} (4.27)

where M, C and K are 14× 14 mass, damping and stiffness matrices respectively, x is the
field vector consisting of the 14 degrees of freedom and Fg is the generalized force vector.
The damping matrix contains diagonal element corresponding to the tower longitudinal
degree of freedom. A Rayleigh damping model with 2% structural damping for the tower is
considered. For a detailed description on principle of virtual work applied to wind turbines,
the reader may consult Chapter 12 of Hansen (2008).

The generalized force vector, mass, stiffness and damping matrices are derived as follows:

Generalized force vector:

Each element of the generalized force vector is derived by giving a virtual displacement in the
corresponding degree of freedom by keeping all other degrees of freedom to locked condition
and writing the virtual work done. Hereby, the generalized force vector is obtained as given
below.

Fg =
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(4.28)

where F1, F3 and F5 are the hydrodynamic surge, heave forces and pitch moment respectively
and Fb, FG, xb and xG are the buoyancy and gravity forces, x coordinate of centres of
buoyancy and gravity and Fmoor1, Fmoor3 and Fmoor5 represent the mooring or the restoring
forces in surge, heave and pitch directions respectively. The vertical distance from the
platform bottom to the hub centre can be written as, Zn = h+Ht. The subscripts g6 to g8
represent the generalized quantities for the blade degrees of freedom viz. first flapwise, first
edgewise and second flapwise, respectively.

The rotor thrust from the aerodynamic loads, Fw is computed using unsteady BEM and is
written as:

Fw =

∫ R

0

(

pB1
n dr + pB2

n dr + pB3
n dr

)

(4.29)
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whereas the rotor torque, Maero, can be written as:

Maero =

∫ R

0

(

pB1
t r + pB2

t r + pB3
t r
)

dr (4.30)

where pn and pt represent the normal and tangential forces at a blade section of length
dr, placed at a radial position r. Superscripts B1 to B3 represent blade numbers 1 to 3
respectively.

Further, the generator torque, Mgen, follows different equations based on the control method
adopted. In the below rated power region, the control method is speed control, wherein
the rotor speed is varying while the blade pitch angles are kept constant. As the rotor
speed varies, the generator speed also varies proportional to gearbox ratio and hence the
generator torque varies based on a linear relation. Just below rated, the rotor speed follows
a steep variation to reach rated speed and power and subsequently the power control method
switches to pitch control thereby varying the blade pitch angles to obtain rated power. The
generator torque steep variation is given in the below equation, wherein, the proportional
constant, Agen, is arbitrary.

Mgen = Agen (ω − ωref ) (4.31)

When the rpm, ω, reaches the reference rpm, ωref , the rotor speeds up thereby forcing the
generator to generate the rated power so that the pitch control is activated immediately
to control the rotor acceleration. The reference rpm is chosen just below the rated rpm,
which is a typical characteristic for each generator design. An example of generator torque
characteristic is given in Figure 4.16.
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Figure 4.16: Generator torque variation

The generalized forces for the blade deflections are obtained as given in the following equa-
tions.



66 Two Dimensional Coupling

Fg6 =

∫ R

0





0
pB1
t

pB1
n



 ·





0

φ1f
1,y

φ1f
1,z



 dr

=

∫ R

0

(

pB1
t

(

φe
1f cos θp + φf

1f sin θp

)

+ pB1
n

(

−φe
1f sin θp + φf

1f cos θp

))

dr

(4.32)

where φ1f
1,y and φ1f

1,z are the y and z components of the first mode shape of blade 1. If a blade
pitch angle, θp, is present, the mode shapes derived based on the blade coordinate system
shall be transformed to the rotor system and hence the transformation using the flapwise
and edgewise components of first flapwise mode.

Similarly, generalized blade forces for first edge and second flapwise degrees of freedom are
also derived as given below.

Fg7 =

∫ R

0

(

pB1
t

(

φe
1e cos θp + φf

1e sin θp

)

+ pB1
n

(

−φe
1e sin θp + φf

1e cos θp

))

dr (4.33)

Fg8 =

∫ R

0

(

pB1
t

(

φe
2f cos θp + φf

2f sin θp

)

+ pB1
n

(

−φe
2f sin θp + φf

2f cos θp

))

dr (4.34)

where Fg6, Fg7 and Fg8 represent the generalized forces for blade 1 in first flapwise, first
edgewise and second flapwise degrees of freedom respectively. In the present computation,
it is assumed that all the three blades are identical in all aspects of the structural and mass
properties and hence the generalized forces derived for blade 1 is applicable for the other
two blades as well. Thus, Fg6 = Fg9 = Fg12, Fg7 = Fg10 = Fg13 and Fg8 = Fg11 = Fg14.
However, the normal and tangential forces in all the blades are not necessarily be equal
since the platform is subjected to rotational displacement. This difference is not taken
into account since the pitch displacement is assumed to be smaller. The superscript B1
represents blade 1 and the superscripts f and e represent flapwise and edgewise components
of the mode shapes. Subscripts 1f , 2f and 1e represent the first and second flapwise mode
shapes and first edgewise mode shape respectively.

Generalized mass matrix:

The method for the derivation of mass matrix is briefly described. Mass elements for each
of the columns are computed by first computing the inertia force corresponding to a unit
acceleration in that degree of freedom, whereas all other accelerations are kept zero. Next,
the virtual work done is computed by giving a virtual displacement to each of the degree
of freedom and by taking the dot product of the inertia force and the virtual displacement.
Each of the elements in the column under consideration is also computed following the same
procedure. Hereby, the following mass matrix is obtained.
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Mg =
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(4.35)

The mass matrix is symmetric, the diagonal elements being the generalized masses for the
corresponding degrees of freedom. First square section of 4 × 4 matrix corresponds to
the platform and tower degrees of freedom. It is assumed that the blade cross-coupling
terms are negligible for platform heave and pitch and hence these terms are not considered.
However, the blade cross-coupling terms with platform surge, tower top displacement and
rotor azimuthal degrees of freedom are considered, which is shown using the terms a6,1 to
a8,1 and a6,5 to a8,5. From the mass matrix, it is clear that the platform surge motion
induces a platform pitch and tower top surge.

The generalized mass elements are given below.

m1,1 = m1 +mts (4.36)

m2,2 = m3 +mts (4.37)

m3,3 = IG +mtsZ
2
n (4.38)

m1,3 = m3,1 = m3,4 = m4,3 = mtsZn (4.39)

where m1, m3 are the surge and heave mass, including the corresponding added mass terms
and IG is the pitch mass moment of inertia about the centre of gravity including the pitch
added mass. The diagonal generalized mass elements, GM1, GM2 and GM3, corresponding
to each of the blade mode shapes are given below.

m6 = GM1 =

∫ R

0

(

m

(

(

φf
1f

)2

+
(

φe
1f

)2
))

dr (4.40)

m7 = GM2 =

∫ R

0

(

m

(

(

φf
1e

)2

+ (φe
1e)

2

))

dr (4.41)

m8 = GM3 =

∫ R

0

(

m

(

(

φf
2f

)2

+
(

φe
2f

)2
))

dr (4.42)

As assumed for the generalized forces, all the blades have the same generalized masses,
which is shown in the mass matrix. The off-diagonal coupling elements corresponding to all
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the modes for blade 1 are given below. The other two blades also have the same inertia-
coupling coefficients as the blades are assumed to have the same properties and for small
pitch approximation. This leads to a6,1 = a9,1 = a12,1, a7,1 = a10,1 = a13,1 and a8,1 =
a11,1 = a14,1. Hence, the cross-coupling terms for the surge displacement are given in the
following equations.

a6,1 =

∫ R

0

(

px.0 + py.φ
1f
1,y + pz.φ

1f
1,z

)

dx

=

∫ R

0
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py
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1,e cos θp + φ1f

1,f sin θp

)

+ pz

(

−φ1f
1,e sin θp + φ1f

1,f cos θp

))

dr

(4.43)

a7,1 =

∫ R

0

(

px.0 + py.φ
1e
1,y + pz.φ
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1,z

)

dx
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0
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py
(

φ1e
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(
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1,f cos θp
))

dr

(4.44)

a8,1 =

∫ R

0
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dx
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(4.45)

where the inertia forces,





px
py
pz





6

= m[T ]26





1
0
0





wherein m is the mass per unit length of blade along the length, [T ]26 is the transformation
matrix from system 2 to system 6 and 1 in the vector corresponds to a unit acceleration in
the surge degree of freedom. In all the cross-coupling terms, px is multiplied with 0 because
the blade extensional degree of freedom (axial displacement) is not considered.

Similarly, the cross-coupling terms for the azimuthal rotor position are given below.

a6,5 =
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a7,5 =
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a8,5 =

∫ R
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where the inertia force for the coupling term a6,5 is





px
py
pz





6

= m[T ]56


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0
0
1


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
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r

φ1f
1,y

φ1f
1,z



.

The inertia force for coupling-terms a7,5 and a8,5 vary from a6,5 since the y and z coordi-
nates in the first edgewise and second flapwise degrees of freedom are different. Hence the
corresponding coordinates for the mode shapes are used. The rotational acceleration vector
about z axis needs to be transformed to the blade coordinate system using the transforma-
tion matrix [T ]56.

Since the inertia-coupling between the heave and pitch degrees of freedom with blade degrees
of freedom are not considered, these coupling terms, M(6,2) to M(14,2) and M(6,3) to
M(14,3) are set to zero. The inertia coupling terms for the tower top displacement with
blade degrees of freedom are exactly identical to those of the contributions from surge
displacement. The inertia-coupling terms between the blade degrees of freedom are zero
since the blades are assumed as independent to each other.

Generalized stiffness matrix:

Similar to the mass matrix, the stiffness matrix is computed column-wise. For the first
column, the first step is to compute the spring force corresponding to a unit displacement
in the first degree of freedom. While the system is subjected to this spring force, a virtual
displacement is given to the first degree of freedom, in order to compute the virtual work
done, which will give the first element of stiffness matrix in the first column. Similarly
all the elements in the first column are computed by giving virtual displacements to the
corresponding degrees of freedom. This way, all the columns of the stiffness matrix are
computed. The only non-zero elements in the stiffness matrix correspond to the tower
stiffness and the diagonal elements for the blade mode shapes, which are listed below.

K(4, 4) = ω2
tm4,4 (4.49)

K(6, 6) = K(9, 9) = K(12, 12) = GK1 = ω2
1fm6,6 (4.50)

K(7, 7) = K(10, 10) = K(13, 13) = GK2 = ω2
1em7,7 (4.51)

K(8, 8) = K(11, 11) = K(14, 14) = GK3 = ω2
2fm8,8 (4.52)

While ωt is the tower longitudinal natural frequency, ω1f , ω1e and ω2f are the first flapwise,
first edgewise and second flapwise blade circular natural frequencies respectively. The blade
natural frequencies are obtained from the eigen value analysis. The generalized stiffness
coefficients for all the blades are the same because the blades are assumed to be identical.

Generalized damping matrix:

As described for the stiffness matrix, the damping matrix is also computed column-wise.
For the first column, the first step is to compute the damping force corresponding to a
unit velocity in the first degree of freedom. While the system is subjected to this force,
a virtual displacement in given to the first degree of freedom, in order to compute the
virtual work done, which will give the first element of damping matrix in the first column.
Similarly, all the elements in the first column are computed by giving virtual displacements
to the corresponding degrees of freedom. This way, all the columns of the damping matrix
are computed. The only non-zero element in the damping matrix correspond to the tower
longitudinal degree of freedom, which is given below.
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C(4, 4) = ω1tm4,4
δ

π
= 2ζm4,4ω1t (4.53)

where δ is the logarithmic decrement corresponding to tower longitudinal structural damping
and ζ is the critical damping ratio for tower structural damping corresponding to a Rayleigh
damping model. The structural damping contribution from the blades are not considered.
However, the hydrodynamic damping contribution from quadratic drag is included in the
hydrodynamic loads and aerodynamic damping contribution is included using a dynamic
stall model in BEM. Since no other damping is being considered, all other damping matrix
elements are set to zero.

The centre-point at the bottom side of the floater is chosen as reference point for solving
the equations of motion. The coupled equations of motion are solved using the Runge-
Kutta-Nystrom algorithm, see Hansen (2008). The solver uses a fixed time step, which
is governed by the highest natural frequency of the system. For the present case, the
highest natural frequency does not go beyond 2.5 Hz, which give rise to a time step of
dt = 1/(20× 2.5) = 0.02s.

4.2.1 Comparison of responses

The responses computed using the semi-coupled model, as described in section 4.1, are used
for comparison. In the present computation, the semi-coupled model uses the correct spoke
dimension. A similar computation is carried out using the fully-coupled model and the
responses are compared and are shown in Figure 4.17. In the figure, both comparisons in
the time and frequency domain are shown. The response statistics are provided in Table 4.2
and the observations are discussed as follows.

0 0.2 0.4 0.6 0.8 1
10

−10

10
0

P
S

D
(s

ur
ge

)

frequency [Hz]
0 200 400 600 800 1000

0

5

10

15

20

S
ur

ge
 [m

]

time [s]

 

 

0 0.2 0.4 0.6 0.8 1
10

−10

10
−5

P
S

D
(h

ea
ve

)

frequency [Hz]

 

 

0 200 400 600 800 1000
−1

−0.5

0

0.5

H
ea

ve
 [m

]

time [s]

0 0.2 0.4 0.6 0.8 1

10
−10

10
0

P
S

D
(p

itc
h)

frequency [Hz]
0 200 400 600 800 1000

−0.1

−0.05

0

0.05

0.1

P
itc

h 
[r

ad
]

time [s]

heave frequency,0.33 Hz pitch frequency,0.34 Hz surge frequency,0.03 Hz wave frequency,0.1 Hz simplifiedsimplified fully coupled

Figure 4.17: Comparison of semi and fully coupled responses
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Table 4.2: 2D response statistics comparison

Surge Heave Pitch

Semi-
coupled
(m)

Fully-
coupled
(m)

Semi-
coupled
(m)

Fully-
coupled
(m)

Semi-
coupled
(deg)

Fully-
coupled
(deg)

Min. 2.598 5.86 0.174 0.017 -3.86 -0.32

Max. 15.95 15.09 -0.831 -0.821 4.98 1.84

Mean 9.4 9.52 -0.27 -0.26 0.61 0.63

SD 2.44 1.55 0.15 0.11 1.46 0.35

Surge response (η1f )

The fully-coupled surge response is comparable with that of semi-coupled case. The com-
parison is more close with respect to the mean and maximum values. The fully-coupled
standard deviation is about 36% lower than that of semi-coupled surge. However, the fully-
coupled minimum value is about 55% higher than that of semi-coupled case. Looking at
the difference in standard deviation, it is observed that the fully-coupled response has less
fluctuation compared to that of semi-coupled response.

Predominant peaks are at the surge natural frequency and at the peak wave frequency.
In addition, a small peak corresponding to the pitch frequency can also be seen only in
the case of semi-coupled response. This peak in the fully-coupled response would have been
damped out. The interesting part is that comparatively larger energy content is seen at surge
natural frequency and near the peak wave frequency in the case of semi-coupled response.
This might likely be due to larger damping in the fully-coupled model relative to that of
the semi-coupled model. This is also true for higher frequencies. The higher damping can
be attributed to the aerodynamic damping of the rotor, which was missing in the case of
semi-coupled response.

Heave response (η3)

The mean and maximum heave responses are comparable, however, the minimum fully-
coupled response is about 90% lesser than that of semi-coupled heave and the fully-coupled
standard deviation is about 27% lesser than that of semi-coupled case. Hence, similar to the
surge response comparison, it is observed that the fully-coupled response has less fluctuation
compared to that of simplified-coupling.

Predominant peaks are at the surge natural frequency, at the peak wave frequency and at
the heave natural frequency. Here also, comparatively larger energy content is seen at surge
and near the peak wave frequencies in the case of semi-coupled response. The reason for
higher damping might be the same as explained for the surge response.

In addition, it is noticed that the difference in energy content is not seen at the heave natural
frequency, which can be explained by the fact that the heave motion has no component
perpendicular to the rotor plane. Hereby, no aerodynamic damping is induced for pure
heave modes.

Pitch response (η5)

The pitch response from fully-coupled computation has much smaller fluctuation compared
to that of the semi-coupled response. However, the mean values of the responses remain
comparable. Frequency responses are comparable, however with a difference in energy con-
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tents at the predominant frequencies. The fully-coupled response has comparatively lesser
energy content than that of the semi-coupled model. In the case of fully coupled response,
the aerodynamic damping is present for the tower top motion, whereas this is not the case
for the semi-coupled response. Aerodynamic damping takes out considerable energy content
at the predominant frequencies, which may be the reason of smaller fluctuation of the pitch
response.

4.2.2 Two-dimensional fully coupled load cases

Four load cases with same wind and wave conditions used for semi-coupled model are inves-
tigated. The Load Cases 1, 2 and 4 are identical to Load Cases 2, 3 and 4 of semi-coupled
model. The load cases are listed below.

• Load Case 1 - no shear, no turbulence

• Load Case 2 - with shear, no turbulence

• Load Case 3 - no shear, with turbulence

• Load Case 4 - with shear, with turbulence

4.2.3 Fully-coupled model - Results and Discussion

Responses and loads are obtained for Load Case 1 to Load Case 4 and are shown in Fig-
ures 4.18 to 4.21. Each of the loads and responses are also shown as Power Spectral Densities
(PSD) in the frequency domain including an identification of major eigen frequencies. All
the responses are extracted with reference to the floater bottom point. The low frequency
peak (0.01 Hz) in all the platform responses for Load Cases 3 and 4 is due to the turbulent
wind excitation. Comparing the differences of responses for all the load cases leads to the
following observations:

• Presence of wind shear reduces the mean response slightly due to the reduced mean
thrust at the lower part of the rotor for a sheared wind profile leading to a smaller
integrated force, as observed for the semi-coupled case.

• Presence of wind turbulence slightly increases the mean responses, due to the increase
of mean thrust force associated with the addition of the fluctuating wind velocity
component. As the instantaneous wind velocity, V = V̄ + V ′, where V̄ is the mean
wind velocity and V ′ is the fluctuating velocity component due to turbulence. This
was also observed in semi-coupled response.

• Presence of turbulence also slightly increases the fluctuation of responses. Though
the difference is negligibly small, a higher turbulence may cause more difference. In
addition, turbulence also induces low frequency (0.01 Hz) excitation in pitch response.

A comparison of the surge response from all the four load cases is shown in Figure 4.22. A
positive mean surge is the consequence of rotor thrust. It is seen that, the surge response
from all the load cases compares well implying that the shear and turbulence are of minor
importance for the platform surge.

In the heave frequency response, the surge-heave coupling is noticed from the peak corre-
sponding to the surge natural frequency as a consequence of set-down effect.

The pitch response is very small due to the geometric constraint of the tendons, which only
allows pitch through elastic extension of the tendons. The positive mean pitch is due to the
pitch moment from the rotor thrust.
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Figure 4.18: 2D fully coupled loads and responses - Load Case 1
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Figure 4.19: 2D fully coupled loads and responses - Load Case 2

The mean of the coupled rotor thrust is comparable with the mean thrust value of the wind
turbine, 800 kN, given in Joensen et al. (2007). The rotor loads frequency responses have a
minor energy peak around 0.84 Hz, corresponding to three times the rotor frequency (3p) of
0.28 Hz (1p). From the frequency plots, a predominant peak at the wave frequency is seen
in the rotor loads, which shows a strong coupling with the wave forcing through platform-
induced motion. Further, the rotor thrust from Load Case 4 is compared with that of an
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Figure 4.20: 2D fully coupled loads and responses - Load Case 3
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Figure 4.21: 2D fully coupled loads and responses - Load Case 4

onshore wind turbine thrust in Figure 4.23. The up-scaled tower top displacement is shown
as well. It is seen that the mean thrust from the fully coupled computation is similar to the
onshore wind turbine mean thrust (for the time duration shown in the figure, the mean values
for the onshore and floating wind turbines are 856 kN and 862 kN respectively), however,
with a large additional fluctuation. The fluctuation is a consequence of the platform motion
and subsequently the tower top displacement.
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Figure 4.22: 2D fully coupled surge response comparison
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Figure 4.23: Comparison of fully coupled and onshore rotor thrust with scaled surge
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4.3 Two-dimensional coupling - Conclusions

The conclusions of model development for two-dimensional coupling are detailed below.

4.3.1 Semi-coupled model

As a first step, the problem was formulated and implemented in a two-dimensional frame-
work. While the platform equations of motion are derived based on a force equilibrium, the
aerodynamic loads are derived using Runge-Kutta-Nystrom scheme. The aerodynamic and
hydrodynamic loads and wind turbine and platform dynamics are coupled in a simplified
manner resulting in a rotor load induced platform motion. However, the platform induced
rotor dynamics was missing in the responses. The dynamics of TLP wind turbine was in-
vestigated in terms of four load cases. The model includes the surge-heave coupling through
set-down effect. In addition, the presence of turbulence excites the low frequency response
in pitch and the presence of tower shadow induces a 3p excitation in the pitch response.

4.3.2 Fully-coupled model

A fully coupled hydro-aero-elastic model is implemented for a floating TLP wind turbine in
plane motion with fourteen degrees of freedom. Coupled loads and responses were predicted
and compared to those of the semi-coupled model.

The effects of wind shear and turbulence were implemented in the aerodynamic loads using
a power law and spatially coherent turbulence model respectively. Presence of wind shear
slightly reduces the surge response, which is due to the reduced mean thrust at the lower
part of the rotor, when wind shear is present compared to that of a constant mean flow.
Presence of the turbulence excites the low frequency response in pitch.

The platform motion has a strong influence on the rotor loads, viz. thrust and torque. This
is seen as a predominant peak at the peak wave frequency in the thrust and torque frequency
responses. This is caused by the instantaneous relative velocity change seen by the blade,
which also includes the platform velocity. The change in relative velocity in turn changes
the angle of attack and the corresponding aerodynamic force coefficients.

It is observed that the rotor aerodynamics enhances the surge, heave and pitch response
damping at surge and wave frequencies.

The above observations and conclusions provide motivation for extension of the model to
include all the six platform degrees of freedom and the complete cross-coupling of blade
inertia terms, which is the scope of a three-dimensional model. This is carried out in the
next chapter.

4.4 Summary

In this chapter, a two-dimensional representation of the problem is formulated and imple-
mented in two stages of coupling viz. semi-and fully-coupled models. Both of the coupled
responses are compared for a set of load cases and significant conclusions are listed. The
coupled responses provide motivation for extending the code to 3D, which will be explained
in the next chapter.



Chapter 5

Three-Dimensional Coupling

In this chapter, the fully-coupled two-dimensional model implemented in the previous chap-
ter is extended to three-dimensional space, considering all the platform degrees of freedom.
Three-dimensional hydrodynamics derived in Chapter 3 is used for hydrodynamic loading.
Aerodynamic and hydrodynamic loads and platform dynamics are fully coupled to each
other giving rise to coupled loads and responses. The implementation is verified by com-
paring with that of the 2D results. In addition, the effect of wind-wave misalignment is
investigated.

5.1 Three-dimensional problem formulation

The platform and wind turbine together are formulated using a seventeen degrees of freedom
system in 3D. All the seventeen degrees of freedom are listed in Table 5.1. First six degrees
of freedom corresponds to the motion of the platform, whereas the remaining eleven degrees
of freedom relates to the wind turbine. The wind turbine degrees of freedom are the same
as used for two-dimensional formulation. Since the same wind turbine is being used, all the
mass and structural properties of the wind turbine remain the same. One difference is on
the number of tendons used. In the case of 2D space, the number of tendons were two,
whereas for 3D, four tendons are used, each attached to each of the spokes.

The equations of motion are derived using the principle of virtual work and can be written
as follows.

[M]{ẍ}+ [C]{ẋ}+ [K]{x} = {Fg} (5.1)

whereM, C andK are 17×17 generalized mass, damping and stiffness matrices, x is the field
vector consisting of the 17 degrees of freedom, (̇) and (̈) represent first and second derivatives

Table 5.1: Degrees of freedom.

Degrees of freedom Number of
DOF

Platform
(translation)

surge, sway and heave 3

Platform
(rotation)

roll, pitch and yaw 3

Tower Longitudinal 1

Shaft Azimuthal position 1

Blade First and second flap for
each blade

6

Blade First edge for each blade 3

Total 17

77
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with respect to time and Fg is the generalized force vector. For a detailed description on
principle of virtual work applied to wind turbines, the reader may consult Chapter 12 of
Hansen (2008).

The generalized force vector, mass, stiffness and damping matrices are derived as follows.

Generalized force vector

Each element of the generalized force vector is derived by giving a virtual displacement in
the corresponding degree of freedom by keeping all other degrees of freedom in the locked
condition and writing the virtual work done. Hence, the generalized force vector obtained
is given below.

Fg =
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(5.2)

where F1, F2, F3, F4 and F5 are the hydrodynamic surge, sway, heave forces, roll and
pitch moments respectively. Hydrodynamic yaw moment, F6 is considered to be zero. The
hydrodynamic forces and moments are explained in section 3.6 of Chapter 3. The buoyancy
and gravity forces are represented using Fb and FG, the x and y coordinates of the centres of
buoyancy and gravity are represented using xb, yb, xG and yG. The mooring forces, Fmoor1,
Fmoor2, Fmoor3, Fmoor4, Fmoor5 and Fmoor6 in surge, sway, heave translational and roll,
pitch and yaw rotational directions are derived in Appendix A. Vertical distance from the
platform bottom to the hub centre, Zn = h+Ht, Mw represents the effective rotor torque,
which is a difference between the aerodynamic and generator torque.

One of the generalized force terms corresponding to the first flapwise degree of freedom of
blade 1 is given below, whereas the complete derivation of the generalized force is given in
Appendix B.

Fg9 =

∫ R

0

(

pB1
t φ1f

1,y + pB1
n φ1f

1,z

)

dr =

∫ R

0

(

pB1
t

(

φ1f
1,e cos θp + φ1f

1,f sin θp

))

dr

+

∫ R

0

(

pB1
n

(

−φ1f
1,e sin θp + φ1f

1,f cos θp

))

dr

(5.3)

where pn and pt are the normal and tangential force per unit length for the blade 1, B1.
The subscripts f and e represent flapwise and edgewise components of the mode shapes,
whereas the superscripts 1f , 2f and 1e represent the first and second flapwise mode shapes
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and first edgewise mode shape respectively and φ is used for the mode shape. Blade pitch
angle is represented using the symbol θp and R represents blade length. Presence of pitch
angle requires the blade mode shapes to be transformed to the global coordinate system.
The blade mode shapes are the same for three of the blades, as derived in Section 4.2 of
Chapter 4.

Generalized mass matrix

The mass matrix is also derived using the method of virtual work. The mass elements
for each of the columns are computed by first computing the inertia force corresponding
to a unit acceleration in that degree of freedom, whereas all other accelerations are kept
zero. Next, the virtual work done is computed by giving a virtual displacement to each
of the degree of freedom and taking the dot product of the inertia force and the virtual
displacement, which will lead to the corresponding mass element. Each of the element in
the column under consideration is computed the similar way and then proceeding to the
next column. The mass matrix is fully populated because of the interaction between the
platform and blade degrees of freedom. Hence, the mass matrix can be written as follows.
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(5.4)

The diagonal elements of the mass matrix are the generalized masses for corresponding
degrees of freedom. The first square section of 7× 7 matrix corresponds to the platform and
tower degrees of freedom. One of the cross-coupling terms between the platform surge and
first flapwise degree of freedom of blade 1 is given below, whereas the complete derivation
is given in Appendix B.

M(9, 1) = a1 =

∫ R

0

(

px0 + pyφ
1f
1,y + pzφ

1f
1,z

)

dr

=

∫ R

0

(

py

(

φ1f
1,e cos θp + φ1f

1,f sin θp

))

dr

+

∫ R

0

(

pz

(

−φ1f
1,e sin θp + φ1f

1,f cos θp

))

dr

(5.5)

where φ1f
1,f and φ1f

1,e are flapwise and edgewise contributions of the first blade, first flapwise
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degree of freedom. Expressions for normal and tangential force distributions pz and py are
given in the following equation.







px
py
pz







= m(r)[T ]







1
0
0







(5.6)

where m(r) is the distributed mass per length along the blade and [T ] is the transformation
matrix from platform coordinate system to the blade coordinate system.

Generalized stiffness matrix

Similar to the mass matrix, the stiffness matrix is also computed column-wise. For the first
column, the first step is to compute the spring force corresponding to a unit displacement
in the first degree of freedom. While the system is subjected to this spring force, a virtual
displacement is given in the first degree of freedom. Dot product of the spring force with
virtual displacement in the first degree of freedom will give the virtual work done and hence
the first element of the stiffness matrix in the first column. Similarly all the elements in
the first column are computed by giving virtual displacements to the corresponding degrees
of freedom. This way, all the columns of the stiffness matrix are computed. The stiffness
contributions from the wind turbine are formulated using mass proportional terms by means
of the eigen frequencies. The only non-zero elements in the stiffness matrix correspond to
the tower stiffness and the diagonal elements for the blade degrees of freedom, which are
listed below.

K(7, 7) = ω2
tM(7, 7) (5.7)

K(9, 9) = K(12, 12) = K(15, 15) = GK1 = ω2
1fM(9, 9) (5.8)

K(10, 10) = K(13, 13) = K(16, 16) = GK2 = ω2
1eM(10, 10) (5.9)

K(11, 11) = K(14, 14) = K(17, 17) = GK3 = ω2
2fM(11, 11) (5.10)

Here ωt is the tower longitudinal natural frequency, ω1f , ω1e and ω2f are the first flapwise,
first edgewise and second flapwise blade circular natural frequencies respectively. The gener-
alized stiffness for blade 1 are assumed to be the same for the other blades, since the blades
are identical.

Generalized damping matrix

The damping matrix is also computed similar to mass and stiffness matrices using the
method of virtual work. For the first column, the first step is to compute the damping force
corresponding to a unit velocity in the first degree of freedom. While the system is subjected
to this force, a virtual displacement is given in the first degree of freedom. Dot product of
the damping force and the virtual displacement in the first degree of freedom provides the
virtual work done and hence the first element of the damping matrix in the first column.
Similarly, all the elements in the first column are computed by giving virtual displacements
to the corresponding degrees of freedom. This way, all the columns of the damping matrix
are computed.

The hydrodynamic damping is incorporated with the hydrodynamic forcing through quadratic
drag contribution, whereas the aerodynamic damping is incorporated using a dynamic stall
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model. Since these contributions are included in the force vector, the corresponding terms in
the damping matrix are zeros. The only non-zero element in the damping matrix is the diag-
onal element corresponding to the tower longitudinal degree of freedom, which corresponds
to 2% structural damping from the tower and is given below.

C(7, 7) = ωtM(7, 7)
δ

π
= 2ζM(7, 7)ωt (5.11)

where δ is the logarithmic decrement corresponding to tower longitudinal structural damping
and ζ is the critical damping ratio for tower structural damping.

For the floater motion, the centre-point at the bottom side of the floater is chosen as reference
point for deriving the equations of motion. The coupled equations of motion are solved using
the Runge-Kutta-Nystrom algorithm, see Hansen (2008).

5.1.1 Wave loading

Linear irregular three-dimensional wave forcing with directional spreading is considered for
the wave climate mentioned in Table 2.2. The three-dimensional wave kinematics can be de-
rived from a directional wave spectrum, consists of both frequency- and direction-dependent
spectra. As the Joint North Sea Wave Project (JONSWAP) spectrum usually represents
the measured frequency spectrum fairly well for the North Sea, the JONSWAP spectrum
with a peak enhancement factor of 3.3 was used. The wave energy below 0.04 Hz and above
0.35 Hz was omitted as the JONSWAP spectrum had negligible energy here. A frequency
resolution of 0.001 Hz is chosen. This corresponds to a maximum computation time duration
of 1000 s before repetition. The direction-dependent spectrum takes the standard form of
a cosine-power distribution with a degree of spreading, s = 1, Sumer and Fredsøe (2006).
Wave amplitudes were computed from the power spectral density corresponding to each of
these frequencies and directions from the wave spectrum. The wave kinematics are obtained
using the relations derived in Section 3.3 of Chapter 3.

The wave kinematics are Delta stretched, ISO (2005), from 25 m below mean sea level.
A Fast Fourier Transform (FFT) algorithm was implemented to achieve an efficient time
domain computation of the wave kinematics, see e.g. Bredmose (2002). Further, to achieve
computational efficiency, the wave kinematics are computed at the mean position. The
pre-computed kinematics are Taylor expanded to obtain the corresponding values at the
instantaneous positions. An example is shown in equation (5.12) for surface elevation.
Kinematics at intermediate time steps are computed by linear interpolation.

η = η0 + η1f
∂η

∂x
|0 + η2

∂η

∂y
|0 (5.12)

where η is the instantaneous surface elevation, obtained by Taylor expansion, η0,
∂η
∂x

|0 and
∂η
∂y

|0 represent surface elevation at mean position and first derivatives of surface elevation
with respect to x and y directions at mean position respectively and η1f and η2 represent
instantaneous platform surge and sway displacements.

From the wave kinematics, the wave induced forces are computed by means of Morison’s
equation as described in Section 3.6 of Chapter 3.

5.1.2 Wind loading

The aerodynamic loading is computed by means of unsteady Blade Element Momentum the-
ory, with inclusion of Prandtl’s tip loss factor for finite number of blades, Glauert correction
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for high values of the axial induction factor and corrections for the effects of tower shadow,
dynamic stall, dynamic wake and dynamic yaw, Hansen (2008). The model is capable of
handling wind shear and turbulence effects.

5.1.3 Coupling

The wind and wave loading are fully coupled in time domain through the structural degrees
of freedom. Hereby, the rotor loads become part of the floater generalized forces and the
floater motion, contributes to the relative velocity seen by the blade and hence the rotor
loads, which will eventually affect the tower top and blade displacements. By this way, a
coupled rotor-floater dynamics is achieved when subjected to simultaneous wind and wave
loads.

5.2 Natural frequency analysis

The 3D model implementation is verified through a comparison of decay tests using 3D and
2D codes. The heave natural frequency depends on axial tendon stiffness, which is dependent
on the tendon diameter. For the 3D configuration, each of the tendons has a diameter of
75.66 mm. While simplifying the 3D configuration to 2D, to have the same axial tendon
stiffness, the tendon diameter is chosen as 107 mm for the 2D model. This is illustrated
below.

In the case of 3D, the axial stiffness is equal to 4AtendEtend

L0

, where 4 designate the number

of tendons, the area of cross section of a tendon is, Atend = π
4 d

2
tend, dtend = 75.66 mm is the

diameter and Etend represents Young’s modulus of the tendon. Simplification to 2D gives
rise to a tendon diameter of (dtend)2D =

√
2 (dtend)3D and hence the tendon diameter of 2D

computation is equal to 107 mm.

Decay tests are conducted by using the correct tendon diameters and with the absence of
external loading from wind and wave, which is given below.

Surge decay test

The surge decay test is conducted by constraining all the degrees of freedom except surge
and applying an initial perturbation in the surge degree of freedom. Responses are obtained
and the frequency response is shown in Figure 5.1. The analytical expression for surge
natural frequency is shown in the following equation. From the equation and figure, the
surge frequency is found to be the same, 0.026 Hz, which is matching with the 2D surge
decay test result, as shown in Figure 4.8.

(fn)surge =
1

2π

√

T0

L0m1
= 0.026Hz (5.13)

Tests are also conducted by activating all the degrees of freedom and giving an initial
perturbation in the surge degree of freedom. The surge-heave coupling is visible in the
heave response with a peak corresponding to double the surge natural frequency, which is
shown in the Figure 5.2.

Sway decay test

The sway decay test is conducted by constraining all the degrees of freedom except sway
and applying an initial perturbation in the sway degree of freedom. Responses are obtained
and the frequency response is shown in Figure 5.3. The analytical expression for sway
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Figure 5.1: 3D - frequency response plot for surge natural frequency
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Figure 5.2: 3D - heave frequency response plot for surge decay test

natural frequency is shown in the following equation. From the equation and figure, the
sway frequency is found to be the same, 0.026 Hz.

(fn)sway =
1

2π

√

T0

L0m2
= 0.026Hz (5.14)
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Figure 5.3: 3D - frequency response plot for sway natural frequency

Similar to the surge decay test, a test is also conducted by activating all the degrees of
freedom and giving an initial perturbation in the sway degree of freedom. The sway-heave
coupling is visible in the heave response with a peak corresponding to double the sway
natural frequency, which is shown in the Figure 5.4.

Heave decay test

The heave decay test is conducted by constraining all the degrees of freedom except heave
and applying an initial perturbation in the heave degree of freedom. Responses are obtained
and the frequency response is shown in Figure 5.5. The analytical expression for heave
natural frequency is shown in the following equation. From the equation and figure, the
heave frequency is found to be the same, 0.34 Hz, which is matching with the 2D heave
decay test result, as shown in Figure 4.9.

(fn)heave =
1

2π

√

4AE
L0

+ π
4 ρgD

2
t

m3
= 0.34Hz (5.15)

Roll decay test

The roll decay test is conducted by constraining all the degrees of freedom except roll and
applying an initial perturbation in the roll degree of freedom. Responses are obtained and
the frequency response is shown in Figure 5.6. The analytical expression for roll natural
frequency is shown in the following equation. From the equation and figure, the roll frequency
is found to be the same, 0.14 Hz.
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Figure 5.4: 3D - heave frequency response plot for sway decay test
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Figure 5.5: 3D - frequency response plot for heave natural frequency

(fn)roll =

1

2π

√

√

√

√

(

−Wt (Ht + h)− 0.5Wfh+ Fbt

(

0.5ht + h+
D2

t

16ht

)

+ 0.5Fbfh+ 4AE
L0

d̃2
)

J4

= 0.14Hz

(5.16)
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Figure 5.6: 3D - frequency response plot for roll natural frequency

Pitch decay test

The pitch decay test is conducted by constraining all the degrees of freedom except pitch
and applying an initial perturbation in the pitch degree of freedom. Responses are obtained
and the frequency response is shown in Figure 5.7. The analytical expression for pitch
natural frequency is shown in the following equation. From the equation and figure, the
pitch frequency is found to be the same, 0.14 Hz, which is matching with the 2D pitch decay
test result, as shown in Figure 4.10.

(fn)pitch =

1

2π

√

√

√

√

(

−Wt (Ht + h)− 0.5Wfh+ Fbt

(

0.5ht + h+
D2

t

16ht

)

+ 0.5Fbfh+ 4AE
L0

d̃2
)

J5

= 0.14Hz

(5.17)

Yaw decay test

The yaw decay test is conducted by constraining all the degrees of freedom except yaw and
applying an initial perturbation in the yaw degree of freedom. Responses are obtained and
the frequency response is shown in Figure 5.8. The analytical expression for yaw natural fre-
quency is shown in the following equation. From the equation and figure, the yaw frequency
is found to be the same, 0.28 Hz.

(fn)yaw =
1

2π

√

T0d̃2

L0J6
= 0.28Hz (5.18)
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Figure 5.7: 3D - frequency response plot for pitch natural frequency
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Figure 5.8: 3D - frequency response plot for yaw natural frequency

The parameters used in the equations are explained in the subsequent sections in detail.
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5.3 Comparison of 3D responses with 2D responses

The 3D model implementation is verified through a comparison of responses from 3D and 2D
codes. Hence, the 3D code is forced to perform like a 2D code by constraining the additional
degrees of freedom. Loads and responses are computed for the Load Case 1 (mean wind
speed of 10 m/s, no shear and no turbulence) of two-dimensional fully-coupled case using 2D
and 3D codes. Results are obtained and the comparison of responses is shown in Figure 5.9.
From the figure, it can be observed that a complete agreement for all the responses in both
time- and frequency-domains are achieved. The 2D results (red curve) are completely on
top of the 3D results (green curve). The predominant natural frequencies are marked. The
response comparison provides confidence in the 3D implementation.
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Figure 5.9: 2D and 3D responses comparison

5.4 Three-dimensional coupled responses

Validation of the 3D model implementation helps to carry out computations for multiple
load cases using the 3D code.

5.4.1 Load cases

Two load cases for wind conditions and four load cases for wave headings are investigated.
Combining wind and wave give rise to a total of eight load cases.

Load Case 1 - no shear, no turbulence with four predominant wave directions viz. 0, π
4 ,

π
2

and π radians, where 0 radians corresponds to the wind direction.

Load Case 2 - with shear, with turbulence with four predominant wave directions viz. 0, π
4 ,

π
2 and π radians.
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Wind conditions

A mean wind speed of 10 m/s is considered. The Load Case 1 is with a constant mean
wind velocity, while the Load Case 2 is using a sheared wind profile with the same mean
wind speed and a spatially coherent turbulence on top of it. The spatial coherence for the
turbulence was assumed for simplicity. Temporal variation is considered only for the main
wind direction component, u, whereas the variation in other components, v and w are not
considered. The fluctuating u component is produced from a wind spectrum of the Mann
model, Mann (1998).

In all load cases, the rotor thrust was ramped to the real value within a time span of 50 s,
to avoid an unrealistic initial transient response.

5.4.2 Three-dimensional coupling - Results and discussion

Rotor Loads

The rotor loads from a computation of Load Case 2 having wave direction aligned with wind
(0◦) is presented in Figure 5.10. The rotor torque and thrust are shown in the figure as time
series and the Power Spectral Densities (PSD) in the frequency domain. The predominant
frequency is marked. In addition to the peak wave frequency excitation, a smaller peak
around 0.49 Hz, corresponding to three times the rotor frequency (3p) of 0.163 Hz (1p) is
also visible. The 1p frequency corresponds to a rotor speed of 9.8 rpm, which is related to
the rotor speed proportional to 10 m/s wind speed (below rated).

The time series shows a larger fluctuation of the rotor loads compared to that of onshore
wind turbine rotor loads, as in figure 4.23, which is a consequence of the floater motion. The
same is confirmed from the predominant peak at 0.1 Hz, corresponding to the peak wave
frequency in the frequency domain.
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Figure 5.10: Rotor loads - Load Case 2 with a wave direction of 0 radian
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Figure 5.11 shows the floater response, which is extracted with reference to the floater bottom
point. The figure shows both time- and frequency-domain responses. Major frequency peaks
are identified.
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Figure 5.11: Floater response - Load Case 2 with a wave direction of 0 radian

• Surge response

The surge response is fluctuating around a mean of 6.3 m. The mean response is
attributed to the rotor thrust, whereas the fluctuating part is attributed to the wave
forcing. The predominant peaks are at the surge natural frequency (0.026 Hz) and
at the peak wave frequency (0.1 Hz). The low-frequency excitation of the response is
caused by the turbulent fluctuations in the wind.

• Sway response

The sway response standard deviation is 25% smaller than that of surge response,
which is due to the predominant wave direction along the global x-axis. It may be
because of the comparatively smaller sway force due to the smaller energy content
in the sway direction in the wide banded directional wave spectrum. In addition,
the rotor thrust from wind is not present in the sway direction, which makes the sway
response fluctuate near to zero mean. In the frequency domain, the predominant peaks
are at sway and peak wave frequencies. The sway natural frequency is identical to the
surge natural frequency owing to the symmetry of the configuration.

• Heave response

The heave response has a negative mean and the fluctuations are smaller. The fre-
quency response shows peaks corresponding to surge (0.026 Hz), heave and peak wave
frequencies. The heave frequency peak is at 0.34 Hz, corresponding to the heave nat-
ural frequency in equation (5.15). The energy content available in the surge frequency
is due to the surge-heave coupling.
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• Roll response

The roll response is fluctuating about an almost zero mean. The fluctuations are
growing and decaying intermittently. This could be caused by the proximity of roll
natural frequency with peak wave frequency. The fluctuations were also triggered by
the largely varying rotor torque, which is a part of roll excitation. The influence of rotor
torque on roll response can be noticed by the presence of a smaller peak corresponding
to 3p excitation in the frequency domain response. The maximum response is not very
large (lesser than 0.3 degrees). The frequency response has peaks corresponding to
peak wave frequency and roll natural frequency (0.14 Hz).

• Pitch response

The pitch response is fluctuating about a positive mean as a consequence of the moment
created by the rotor thrust. The pitch response also has growing tendency intermit-
tently, caused by the low frequency fluctuations in amplitude because of the adjacent
frequencies. The standard deviation of pitch is larger compared to roll response ow-
ing to the predominant wave direction. Peaks corresponding to peak wave frequency,
pitch natural frequency (0.14 Hz) and a small peak at heave natural frequency are
seen. The 3p excitation in the pitch response is broadened because of the presence of
wind turbulence. In addition, the low frequency response (0.01 Hz) is driven by the
turbulence.

• Y aw response

The yaw response is a highly fluctuating DOF, though around an approximately zero
mean. This is expected for a system similar to an inverted pendulum. The influence
of other degrees of freedom on yaw can be noticed from the presence of smaller peaks
corresponding to surge or sway and heave, roll and pitch DOFs. The surge/sway and
roll/pitch peaks are equally stronger as the wave excitation peak. The yaw excita-
tion can be seen at yaw natural frequency, 0.28 Hz. In addition, the presence of 3p
excitation reveals the strong influence of rotor loads on platform yaw.

The yaw rotations can be reduced by incorporating suitable floater damping in the
equations of motion. This damping may be the hydrodynamic damping caused by
the spokes, which is a physical phenomenon. While the floater is subjected to a yaw
rotation, the spokes move laterally by interacting with the wave motion resulting in
an added mass and a proportional damping. This added mass depends on the size
and shape of the spokes, which may be quantified as given in the following equation,
Withee (2004), valid for a square cross-sectioned spoke, having a width of w.

A6 = 4.754
(w

2

)2

ρ

(

(

de +
Df

2

)3

−
(

Df

2

)3
)

(5.19)

where ρ is the sea water density, de is the spoke length and Df is the floater diameter.

5.4.3 Comparison of different wave heading cases

The influence of different wave headings is investigated to understand the severity of wind-
wave misalignment. For this purpose, four different directions, viz. 0 (wind-wave aligned),
π
4 ,

π
2 and π radians are chosen. Irrespective of the wave heading, the wind is assumed to

be aligned with the rotor in all the cases. The floater responses from Load Case 2 for all
different wave headings are compared in Figure 5.12. The frequency response comparison is
given in Figure 5.13. From the frequency response, it is noticed that the sway, heave, roll
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and yaw responses have higher energy contents at 90 degrees wave heading. At 180 degrees
wave heading, all the responses have higher energy contents at higher frequencies except
for sway and pitch responses. In the case of sway, the 90 degrees wave heading dominates
throughout the spectrum, which was expected. This imply that the larger responses are
also coinciding with response directions corresponding to lesser aerodynamic damping. For
other cases, the 180 degrees wave heading imposes larger fluctuating forces opposite to the
wind direction giving rise to much larger fluctuating responses based on whether the two
fluctuating loadings are in or out of phase to each other and hence a repeating high frequency
component.

The comparison shows that the wave heading at 90 and 180 degrees cases are more severe.
It is observed that while 90 degrees wave heading is detrimental for sway, heave, roll and
yaw responses, 180 degrees wave heading is severely affecting the surge and pitch responses.
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Figure 5.12: Response comparison - Load Case 2 for all wave heading

A statistical analysis is carried out between the Load Cases 1 and 2 for all the wave headings.
Mean and standard deviation are used for the comparison. The comparison is shown in
Figure 5.14. From the figure, it is noticed that the standard deviation of Load Case 2 has
a slightly higher value compared to that of Load Case 1, which is explained by means of
the higher fluctuation present in the turbulent wind compared to a constant mean flow. In
the case of 90 degrees wave heading, the standard deviation for all the responses undergo
a change, whereas for 180 degrees wave heading, only slight change is visible. The changes
are explained as follows:

Considering the 0 degree wave heading responses as reference, in the case of 90 degrees wave
heading, the surge force in 90 degrees is acting as a sway force in 0 degrees and vice versa.
This is leading to a smaller standard deviation in surge and a higher standard deviation in
sway compared to 0 degree wave heading responses. In the same manner, the increase in
roll response (the cause being roll moment, which is a consequence of sway force) and the
decrease in pitch response (the cause being pitch moment, which is a consequence of surge
force) are also explained. Heave is not very much affected, however, yaw response undergo
a similar change because of the resultant of roll and pitch moments causing the platform
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Figure 5.13: Frequency response comparison - Load Case 2 for all wave heading

yaw. The mean yaw response may be caused by the resultant of roll and pitch moments.
The mean responses are unaffected because of the reason that the mean is dominated by
the rotor loads.
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5.5 3D coupling - conclusions

The following conclusions are made from the present chapter:

• A three dimensional fully coupled hydro-aero-elastic model was implemented for a
floating TLP wind turbine with seventeen degrees of freedom. The aerodynamic loads
were implemented using unsteady BEM, whereas the hydrodynamic loads were im-
plemented using Morison’s equation. The coupled loads and responses are predicted,
which are compared to that of a two-dimensional response. The comparison confirms
the three-dimensional implementation.

• Effects of wind shear and turbulence were implemented in the aerodynamic loads
using a power law and spatially coherent turbulence model respectively. The presence
of turbulence excites the low frequency responses and give rise to higher standard
deviation for the responses.

• The effect of various wave headings have been implemented and responses were pre-
dicted. Comparison of the responses shows that the 90 and 180 degrees wave headings
are critical load cases for the TLP configuration.

• Computations show that the fluctuating rotor torque is causing larger roll response,
which needs specialized control algorithms or floater design optimization.

• From the results, the yaw response can be reduced by incorporating a damping and
added mass contribution from the spokes by appropriately selecting the spokes dimen-
sions through a parametric study.

• The above observations show that further implementing the model in an advanced
aero-elastic code, Flex5, is necessary.

5.6 Summary

In this chapter, a three-dimensional representation of the problem is formulated and im-
plemented. Test cases are conducted to validate the implementation with respect to 2D
responses. Comparison of responses with 2D code provides excellent agreement. Different
wave heading cases are studied and recommendations are made. Although the 3D code can
represent the wind turbine reasonably well, the computation time is more. In addition, the
absence of a comprehensive controller model limits the capability of the code to operate
in broader operational conditions. These shortcomings can be overcome by implementing
the concept in an advanced aero-elastic code, Flex5, which will be explained in the next
chapter.



Chapter 6

Flex5 Coupling

In this chapter, the three-dimensional hydrodynamics and platform dynamics are imple-
mented in an advanced aero-elastic code Flex5. By default, the six degrees of freedom
corresponding to the foundation are constrained, which represents an onshore wind turbine.
In the present work, the constrained six foundation degrees of freedom are activated giving
rise to a floating wind turbine model. The NREL 5MW reference wind turbine was im-
plemented and verified for a set of test cases. Based on the analysis, recommendations /
conclusions are made.

6.1 Flex5 description

Flex5 is a modal based code developed by Stig Øye at Technical University of Denmark, Øye
(1996). Flex5 uses 28 degrees of freedom model for the wind turbine including six foundation
degrees of freedom. Modeling of wind turbines using 28 degrees of freedom in Flex5 is
carried out by reading in all the relevant input data of the wind turbine and environmental
conditions through input files. The generalized equations of motion are formulated using
the input data and are solved in Flex5 using the Runge-Kutta-Nystrom scheme as detailed
in Hansen (2008).

6.1.1 Flex5 coordinate system

The coordinate system followed in Flex5 is illustrated in Figure 6.1. The sketch shows the
coordinate system followed in Flex5 for a mono-pile wind turbine. The tower bottom has
two coordinate systems, F and T , wherein F refers to a ground fixed system and T refers
to a moving system, which can move along with the mono-pile deflection. The positive Z
axis is pointing along the wind direction, X axis is pointing down and the Y axis is pointing
into the plane. Compared to the coordinate system followed in the previous chapters for
the Matlab code, the Flex5 coordinate system is somewhat different. This can be taken into
account by a proper implementation of transformation matrices. The K2 system belongs to
the tower top, which is a fixed coordinate system. From the K2 system, at the intersection
of the tower centre line and main shaft, the K system is placed, which rotates along with
the shaft. Moving from the K system towards the rotor centre, other coordinate systems
such as R1 and R can be seen, which are rotating. However, the N system is a non-rotating
system, which is located in the main bearing housing.

95
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Figure 6.1: Flex5 coordinate system

6.1.2 Flex5 degrees of freedom

The degrees of freedom used in Flex5 aero-elastic code to represent a wind turbine are
explained in Table 6.1.

Table 6.1: Flex5 - Degrees of freedom.

Flex5 Degrees of freedom Number of DOF
Foundation top 1-6

Translation X (down) (heave) 1

Translation Z (horizontal downwind) (surge) 2

Rotation about Y (pitch) 3

Translation Y (sway) 4

Rotation about Z (roll) 5

Rotation about X (torsion in Tsys)(yaw) 6

Tower top deflection (bending) 7-10

Longitudinal first mode 7

Longitudinal second mode 8

Continued on next page
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Table 6.1 – continued from previous page
Flex5 Degrees of freedom Number of DOF

Transverse first mode 9

Transverse second mode 10

Nacelle 11-13

Rotation about X (yaw) (in K1 system) 11

Rotation about Y (tilt) (in K system to Nsys) 12

Shaft rigid body rotation about Z (in R1 system) 13

Shaft bending 14-15

Rotation about X (yaw mode) 14

Rotation about Y (tilt mode) (in R2 system to Rsys) 15

Deflection of Blade1 in V1sys 16-19

First flapwise mode (out of plane - Z) 16

Second flapwise mode (out of plane - Z) 17

First edgewise mode (in-plane - Y) 18

Second edgewise mode (in-plane - Y) 19

Deflection of Blade2 in V2sys 20-23

First flapwise mode (out of plane - Z) 20

Second flapwise mode (out of plane - Z) 21

First edgewise mode (in-plane - Y) 22

Second edgewise mode (in-plane - Y) 23

Deflection of Blade3 in V3sys 24-27

First flapwise mode (out of plane - Z) 24

Second flapwise mode (out of plane - Z) 25

First edgewise mode (in-plane - Y) 26

Second edgewise mode (in-plane - Y) 27

Shaft torsion in ZR1sys 28

Total 28

In the present formulation, the foundation module is modified to include the hydrodynamic
loading, restoring forces from the mooring lines, time dependent mass matrix caused by
the time dependent added mass term and the platform dynamics thereby making a floating
foundation. The turbine can be made stiff by constraining the corresponding degrees of
freedom. The hydrodynamic and mooring forces are treated as external loads apart from
the gravity and buoyancy contributions, which are the static contributions to the loading.

6.1.3 Flex5 input data

Flex5 needs several input data related to the wind turbine, its control system, the envi-
ronmental conditions such as wind, wave and current data, active and inactive degrees of
freedom. The wind turbine data include various geometric, stiffness, mass, damping proper-
ties of the structural and mechanical components. The data for the structural components
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are used to obtain the mode shapes such as the longitudinal and lateral modes for the tower
and similarly the flapwise and edgewise modes for the blades. The second modes for these
mode shapes are also calculated. Aerodynamic data such as lift, drag and moment coeffi-
cients for various angles of attack related to each of the airfoils used are provided through
look up tables. Operational data such as wind speed, turbulence intensity, air density, rated
speed are also provided. The control system, generator, mechanical brake, yaw system and
the blade pitch controller can be modeled by providing corresponding parameters such as
the controller gain, proportional and integral constants for a Proportional Integral (PI) con-
troller, generator rpm, power and power loss, mechanical brake moment, time delay. The
foundation data is provided through a separate data file, wherein the wave kinematics data
are specified. The parent Flex5 version does not have the option for wave kinematics data,
however, the idea is inspired by the offshore mono-pile version of Flex5. By this way, the
surface elevation and wave kinematics data obtained externally are taken as input for wave
load computations inside Flex5.

The present input data for the NREL 5-MW reference wind turbine was prepared based on
Jonkman et al. (2009).

6.1.4 Flex5 wind data

The mean wind speed and turbulence intensity are provided in the input file along with the
names of turbulence field files. The turbulence files are generated using a program, vindsim7.
This program works based on the Mann turbulence model, Mann (1998), with rotational
sampling. By rotational sampling, the wind fields are interpolated for the instantaneous
azimuthal position of the blades so that a reasonable wind description for the location is
obtained.

6.2 Flex5 development / modification

Modification of Flex5 to compute the floating wind turbine loads and responses is described
in the following sections.

6.2.1 Flex5 coupling method

Coupling of the platform dynamics and wave loads with the basic Flex5 equations of motion
is done using the following method. By default, Flex5 solves for the deflection, velocity and
acceleration of the six degrees of freedom for the tower bottom point.

To have a rigid coupling between the tower bottom and foundation top points, the force
balance needs to be maintained. Hence the equations of motion at the tower bottom point
in Flex5 can be represented as given below.

[M ]
F {η̈}+ [C]

F {η̇}+ [K]
F {η} = {F}F + {Fc} (6.1)

Similarly, the equations of motion for the platform top may be expressed as:

[M ]
H {η̈}+ [C]

H {η̇}+ [K]
H {η} = {F}H − {Fc} (6.2)

where Fc represents the connection force, which ensures that the tower bottom is rigidly
fixed to the platform top. The superscripts F and H represent Flex5 and Hydrodynamics
respectively. Adding the above two equations gives rise to the following coupled equation,
which is implemented in the coupled Flex5 model.
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[

MF +MH
]

{η̈}+
[

CF + CH
]

{η̇}+
[

KF +KH
]

{η} = {F}F + {F}H (6.3)

The above equation illustrates that the coupling can be done by augmenting the mass,
damping and stiffness matrices and the force vector with corresponding hydrodynamic con-
tributions provided the coordinate transformations are carried out consistently. Thus by
supplying [M ]

H
, [C]

H
, [K]

H
and {F}H at each time step, Flex5 can include the motion of

the substructure in the computations.

6.2.2 Flex5 modification

The foundation module of the basic Flex5 version is modified to accommodate the floating
platform dynamics, which includes hydrodynamic loads and mooring forces. The wave
kinematics data read from an external file is used to compute the hydrodynamic loads, which
are computed at the instantaneous positions by Taylor expanding the wave kinematics data,
in the space from the the mean position of the platform. The instantaneous wave kinematics
at the specific time of integration are obtained by linear interpolation in the pre-computed
data. It needs to be noted that the reference point for deriving the hydrodynamics forces
using the wave kinematics is the centre point of floater bottom face, however, in Flex5, the
reference point is at the intersection of the tower and foundation and the coordinate system
is different than the one used for deriving platform dynamics. Hence a transformation
is required from the floater bottom reference coordinate system to the Flex5 foundation
coordinate system. This is carried out in two steps. The first step is the transformation
from the floater coordinate system, system O, to the floater top coordinate system , system
T . In the second step, a transformation is carried out on system T to obtain system F ,
which is the tower bottom Flex5 coordinate system. This is illustrated in Figures 6.2 to 6.3.

Figure 6.2: Coordinate system transformation from O to T

For the transformation from system O to T , the rotational displacements about T will be the
same as that about O, whereas the translational displacements undergo a transformation,
which is illustrated as follows:

ηTj = ηOj , for j = 4 to 6.







η1
η2
η3







T

=







η1
η2
η3







O

+







η4
η5
η6







O

×







r1T
r2T
r3T







(6.4)

where the vector, connecting the reference points O and T , rT is given by the following
equation.
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Figure 6.3: Coordinate system transformation from T to F

rT =







0
0
h







(6.5)

The transformation can be expressed in matrix form as follows:

ηT = [TOT ]η
O (6.6)

ηO = [TTO]η
T (6.7)

where the transformation matrices are given by,

[TOT ] =

















1 0 0 0 r3T −r2T
0 1 0 −r3T 0 r1T
0 0 1 r2T −r1T 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















(6.8)

[TTO] =

















1 0 0 0 −r3T r2T
0 1 0 r3T 0 −r1T
0 0 1 −r2T r1T 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















(6.9)

and

[TTO] = [TOT ]
−1 (6.10)

Similar to the displacements, the forces in systems T and O can also be related through
the transformation matrices. The forces in T are the same as those in O, ie, FT

1..3 = FO
1..3,

whereas the moments are different, which are given in the following equations.

FT
4..6 = FO

4..6 − rT × FO
1..3 (6.11)

The force transformation can be expressed in matrix form as follows:
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FT = [TFOT ]F
O (6.12)

FO = [TFTO]F
T (6.13)

where the transformation matrices, [TFOT ] and [TFTO], are given by,

[TFOT ] =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 r3T −r2T 1 0 0

−r3T 0 r1T 0 1 0
r2T −r1T 0 0 0 1

















(6.14)

[TFTO] =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −r3T r2T 1 0 0
r3T 0 −r1T 0 1 0
−r2T r1T 0 0 0 1

















(6.15)

and

[TFTO] = [TFOT ]
−1 (6.16)

In the second step, the displacements are transformed from system T to system F and vice
versa, which are given below.

The displacement in system F is given by,

ηF = [TTF ]η
T (6.17)

With the inverse transformation,

ηT = [TFT ]η
F (6.18)

Similarly, the forces are also transformed from system T to F and vice versa using the
following transformations.

FF = [TTF ]F
T (6.19)

FT = [TFT ]F
F (6.20)

where the transformation matrices [TTF ] and [TFT ] are given by,

[TTF ] =

















0 0 −1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 1 0 0

















(6.21)
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[TFT ] =

















0 0 1 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 −1 0 0

















(6.22)

and

[TFT ] = [TTF ]
−1 (6.23)

After obtaining the displacement and force transformations, the equations of motion are
transformed from system T to system F .

The equations of motion in system O are represented as:

[M]O {η̈}O + [C]O {η̇}O + [K]O {η}O = {F}O (6.24)

The transformation of displacements in system O is given by:

ηO = [TTO][TFT ]η
F (6.25)

Inserting the above transformation in equation (6.24) implies the following equation of mo-
tion in system F .

[TTF ][TFOT ][M]O[TTO][TFT ] {η̈}F + [TTF ][TFOT ][C]O[TTO][TFT ] {η̇}F +

[TTF ][TFOT ][K]O[TTO][TFT ] {η}F = {F}F
(6.26)

The mass matrix in floater bottom coordinate system is given by the following equation.

[M]O =

















m1 0 0 0 m1,5 0
0 m2 0 m2,4 0 0
0 0 m3 0 0 0
0 m2,4 0 m4 0 0

m1,5 0 0 0 m5 0
0 0 0 0 0 m6

















(6.27)

where the non-zero mass elements in the mass matrix are the same as given in Appendix B
for the 3D code implementation with only one difference. The difference is the absence of
tower mass contribution in Flex5 implementation, whereas in the 3D code, the tower mass
is divided into two parts by lumping it with sub-structure and with the tower top mass.

The mass matrix in the Flex5 coordinate system is given by the following equation.

[M]F = [TTF ][TFOT ][M]O[TTO][TFT ] (6.28)

In the above equation, all the transformation matrices and the mass matrix in floater bottom
coordinate system, [M]O, were already given in the previous equations. The damping and
stiffness contributions from the foundation are included in the mooring line terms. The
hydrodynamic, restoring and static forces are transformed to the Flex5 system as given
below.
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[FH]F = [TTF ][TFOT ][FH]O (6.29)

[FR]F = [TTF ][TFOT ][FR]O (6.30)

[FS]
F = [TTF ][TFOT ][FS]

O (6.31)

where [FH]O is the hydrodynamic force, [FR]O is the restoring force and [FS]
O is the static

force in the floater bottom coordinate system. All the transformations are linearly accurate
as it assume small rotations. Computation of hydrodynamic force is detailed in section 3.6
of Chapter 3, whereas the restoring force calculation is explained in Appendix A. The static
force is given in the following equation.

[FS]
O =































0
0

Fb − FG,f

0
0
0































(6.32)

The only non zero term in the static force is the resultant of buoyancy force, Fb and floater
gravity force, FG,f .

6.2.3 Flex5 controller modification

The onshore wind turbine controller is modified to accommodate the floating foundation as
described below. The NREL 5MW reference wind turbine has mainly three control regimes
with two transition regimes. Control regime 1 corresponds to below cut-in wind speed,
wherein the generator torque is zero, which will move to the second regime, in which the
rpm is controlled for optimum tip speed ratio using the filtered generator rpm for a fixed
pitch angle. In regime 3, which is above rated wind speed, the blade pitch is controlled to
keep the power constant. The change over from one control regime to the other is obtained
by a linear transition through the transition regimes.

In Flex5, the pitch controller uses three parameters for a Proportional-Integral-Derivative
(PID) controller to represent the controller equations of motion, Hansen et al. (2005). For
a linearized case, the Derivative terms is neglected giving rise to a PI controller with the
following controller parameters Jonkman and Buhl (2005).

The proportional constant, KP is given by,

KP =
2IDΩ0ζϕωϕn

Ngear

(

−∂P
∂θ

) (6.33)

Similarly, the integral constant, KI is given by,

KI =
IDΩ0ω

2
ϕn

Ngear

(

−∂P
∂θ

) (6.34)

where ID is the drive train inertia, Ω0 = 12.1 rpm, the rated rotor speed, natural frequency
and damping of the controller are ωϕn and ζϕ respectively. The gear box ratio is Ngear and
(

−∂P
∂θ

)

is the aerodynamic power sensitivity to the blade pitch angle.
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Selection of a control frequency and damping will give rise to the KP and KI parameters.
For an onshore turbine, the controller parameters are given by, KP = 0.08 and KI =
0.028. However, as reported by Larsen and Hansen (2007), the floating wind turbines may
experience a pitch instability. For this reason, the influence of a range of control frequency
parameters on the responses are investigated. Hence, four cases are considered, which are
explained below.

Case 1 is the onshore control parameters, ie, KP = 0.08 and KI = 0.028, Case 2 corresponds
to a control frequency of 2fsurge, which gives rise to a KP = 0.0115 and KI = 0.0027. Case
3 is using a KP = 0.0033 and KI = 1.67E − 4 corresponding to a control frequency of
0.5fsurge and finally, Case 4 corresponds to a control frequency of 3fsurge, which gives rise
to a KP = 0.0197 and KI = 0.0006.

Implementing these parameter, gives rise to the responses, which are compared in Figure 6.4.
From the comparison, it can be observed that using the modified control parameters give rise
to reduced responses. Except that the responses are slightly reduced, the pitch instability
as referred by Larsen and Hansen (2007) could not be observed. The possibility is that the
TLP configuration is not sensitive to the pitch instability. To confirm this conclusion, many
test cases are carried out with different control frequencies and none of the results show any
influence of platform pitch instability.
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Figure 6.4: Controller influence on responses

6.3 Flex5 static stability test

The coupled model is tested to ensure the static stability. Hence the test was carried out
by not applying wind or wave loading. Equilibrium in each of the degrees of freedom are
computed by activating only one of the corresponding degrees of freedom and observing the
response. If the system is in equilibrium, the response would be approximately zero.

The response statistics and the responses are provided in Table 6.2 and Figure 6.5 respec-
tively. All the static stability responses are obtained by activating only the corresponding
degree of freedom and constraining all the remaining foundation DOFs.
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For the surge and sway static stability, the response is oscillating at the surge and sway
natural frequencies with a very small magnitude. The heave response is zero to the machine
accuracy level and hence it is not shown in the figure. The roll response is oscillating with
very small magnitude. For the first 200 s, the response is influenced by the initial conditions
and the steady state response has an abnormal behaviour. However, further investigation on
this is not carried out because of the very small values of the response magnitude. The pitch
and yaw responses are also oscillating at its natural frequencies with very small magnitudes.

The investigations show that the system is statically stable in its mean position.
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Figure 6.5: Static stability results

Table 6.2: Static stability results

Mean Std.
deviation

Surge (m) 1.622E-8 1.181E-8

Sway (m) 2.096E-7 1.487E-7

Heave (m) -3.481E-19 4.491E-20

Roll (rad) -4.696E-8 1.821E-7

Pitch (rad) -1.309E-4 9.245E-5

Yaw (rad) 9.684E-10 8.15E-10
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6.4 Flex5 decay test

A decay test was conducted to test the response of the coupled system to an initial displace-
ment in each of the degrees of freedom. While carrying out the tests, neither waves nor
wind is present. The system is expected to oscillate in its natural frequencies. The oscilla-
tions would decay based on the amount of damping present. The presence of hydrodynamic
damping is expected because of the motion of the platform in the still water. For all the
tests, since a very low air density and wind speed are considered, the aerodynamic damping
present in the system is negligible. The verification will also show the possible coupling
effects present in the system when all the foundation degrees of freedom are active. Hence,
all the tests consider two cases - Case 1 corresponds to the case where only one foundation
DOF is active, whereas Case 2 deals with activating all the foundation DOFs. A summary
of the decay test results with a comparison to that of the MATLAB code and analytical
results is shown in the following table.

Table 6.3: Natural frequency comparison - Flex5, MATLAB and Analytical

Flex5 MATLAB Analytical

DOF One DOF All DOF All DOF -
(Hz) (Hz) (Hz) (Hz)

Surge 0.026 0.026 0.026 0.026

Sway 0.026 0.026 0.026 0.026

Heave 0.34 0.34 0.34 0.34

Roll 0.15 0.15 0.15 0.15

Pitch 0.15 0.15 0.15 0.15

Yaw 0.23 0.23 0.23 0.23

6.4.1 Surge decay

The surge decay test is conducted by applying an initial displacement of 1 m in the surge
degree of freedom. The system is expected to oscillate about its mean position.

Results are obtained for both Cases 1 and 2. Both of the cases provide identical surge
response results and hence the result from Case 2 alone is shown in Figure 6.6, which shows
the response is decaying, which is ascribed to the hydrodynamic damping present in the
Morison’s equation through the quadratic drag term.

The coupling effect can be observed from the heave response obtained for Case 2, as shown
in Figure 6.7, which is due to the surge-heave coupling present in the system. The response
is very small, which oscillates around the heave frequency and double the surge frequency,
revealing the surge-heave coupling.



6.4 Flex5 decay test 107

0 100 200 300 400 500 600
−1

−0.5

0

0.5

1

time [s]
S

ur
ge

 [m
]

300 310 320 330 340 350 360 370 380 390 400
−1

−0.5

0

0.5

1

time [s]

S
ur

ge
 [m

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−10

10
−5

10
0

X: 0.02667
Y: 0.1613

frequency [Hz]

P
S

D
(s

ur
ge

)

Figure 6.6: Surge response for surge decay test - Case 2
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Figure 6.7: Heave response for surge decay test
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6.4.2 Sway decay

The sway decay test is also conducted for Cases 1 and 2 by applying an initial displacement
of 1 m in the sway degree of freedom. The system is expected to oscillate at its natural
frequency.

Similar to the surge, Case 2 result is only shown in Figure 6.8, which is oscillating at the
sway natural frequency with the similar kind of damping. The sway - heave coupling can be
observed from the Figure 6.9, wherein the response oscillates both at the heave and double
the sway natural frequencies.
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Figure 6.8: Sway response for sway decay test - Case 2
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Figure 6.9: Heave response for sway decay test
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6.4.3 Heave decay

The heave decay test is conducted for Cases 1 and 2 by applying an initial displacement of
0.1 m in the heave degree of freedom. Since there is no difference in the responses between
the Cases 1 and 2, the results corresponding to the Case 2 is presented in Figure 6.10. Unlike
other responses, the heave responses does not induce any coupled response because of the
pure oscillations. The influence of hydrodynamic damping is also visible.
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Figure 6.10: Heave response for heave decay test - Case 2
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6.4.4 Roll decay

The roll decay test is carried out for both of the cases by applying an initial displacement
of 1E-3 rad in the roll degree of freedom. The results for Case 2 are shown in Figure 6.11
because of the identical character of the results from both of the cases. The system is
oscillating at its natural frequency (first peak) and at the tower sidewise frequency (second
peak). This is because of the roll induced sidewise tower vibrations.

The results show that the response decay is very small compared to the other responses.
This may be because the hydrodynamic damping in the roll degree of freedom is negligible
compared to the translational degrees of freedom.
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Figure 6.11: Roll response for roll decay test - Case 2
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6.4.5 Pitch decay

The pitch decay test is also conducted for both of the cases by applying an initial displace-
ment of 1E-3 rad in the pitch degree of freedom. The results for both Case 1 and Case 2
are given in Figures 6.12 and 6.13.

The results show that the response decay is very small for the Case 1 while a considerable
amount of decay is present for the Case 2. The Case 1 response is identical to that of the
roll response, whereas the decay present for the Case 2 is because of a combination of the
hydrodynamic damping from the pitch and pitch induced surge motion and the structural
damping from the tower flexibility.
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Figure 6.12: Pitch response for pitch decay test - Case 1
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Figure 6.13: Pitch response for pitch decay test - Case 2
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6.4.6 Yaw decay

The yaw decay test is carried out for Case 1 and 2 by applying an initial displacement of
1E-3 rad in the yaw degree of freedom. The results for Case 2 is given in Figure 6.14.

The results show that the response is oscillating with a constant amplitude and hence no
response decay is present. The absence of response decay is because of the lack of hydrody-
namic damping in the yaw degree of freedom as the hydrodynamic yaw moment is considered
as zero. The second peak at around 0.83 Hz is due to the higher frequency from the tower.
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Figure 6.14: Yaw response for yaw decay test - Case 2
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6.4.7 Combined roll and pitch decay

A decay test is carried out by applying an initial roll displacement of 1E-3 rad and a pitch
displacement of 2E-3 rad. All the foundation degrees of freedom are active. Only relevant
results are shown here.

The roll response is shown in Figure 6.15, which has a small decay. The response is oscillating
at the roll natural frequency (0.15 Hz) and at the tower frequency (0.44 Hz).

The pitch response is shown in Figure 6.16, which has a considerable decay due to the damp-
ing contribution from the tower. The response is oscillating at the pitch natural frequency
(0.15 Hz).

The yaw response is shown in Figure 6.17, which has no decay. The response is oscillating
at the yaw natural frequency (0.23 Hz) and at the pitch (0.15 Hz) and tower (0.438 Hz)
frequencies. From the yaw response, it is clear that on the absence of any of the yaw
loading, the combined roll and pitch rotations induce yaw rotations and the yaw rotations
are restored through the mooring system. Since the yaw natural period is less than all the
other rotational natural periods, the system prefers to restore through the lowest period,
which corresponds to the yaw natural frequency. This can also be confirmed from the
frequency response plot in the figure.
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Figure 6.15: Roll response for the combined decay test
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Figure 6.16: Pitch response for the combined decay test
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Figure 6.17: Yaw response for the combined decay test
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6.5 Flex5 wave alone test cases

The Flex5 coupled code is tested for its capability to respond to wave alone situations. The
following test cases are considered.

6.5.1 Two-dimensional regular wave with 0 degree wave heading

The TLP wind turbine model is subjected to two-dimensional regular waves with 0 degree
wave heading. The generator is de-activated so that no power production is possible. The
test results obtained are shown in the following figures.

The surge response obtained is given in Figure 6.18, which shows a regular variation of
surge within the range of 5.7 m. Enlarged time series plot shows that the surge response
is mainly caused by the waves with a frequency of 0.1 Hz. The frequency response shows
the peaks corresponding to higher harmonics of the wave frequency and also a peak at the
surge natural frequency (0.026 Hz) associated with the initial transient.
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Figure 6.18: Surge response for 2D regular wave - 0 degree wave heading

Similar to the surge response, the sway response is shown in Figure 6.19. The sway response
is smaller than the surge response as expected because of the predominant wave direction.
The frequency response shows a major peak at the sway natural frequency of 0.026 Hz and
at the roll natural frequency (0.15 Hz). The excitation at the roll frequency is caused by
the roll induced sway response.

The heave response is shown in Figure 6.20, which shows a positive mean as expected. It
needs to be noted that, in the previous chapters, the mean was negative because of the
selection of the coordinate system. However, in Flex5, since the X axis is pointing down,
mean response for the present case is positive. The negative part of the fluctuation is caused
by the elastic deformation of the mooring system. In the frequency response, the major peaks
are at the peak wave frequency and at the heave natural frequency (0.34 Hz). In addition, a
peak at the double surge frequency is seen, revealing the surge-heave coupling. The double
surge frequency is seen because of the absence of rotor thrust from wind, which is explained
in section 4.1.6 of Chapter 4.
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Figure 6.19: Sway response for 2D regular wave - 0 degree wave heading
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Figure 6.20: Heave response for 2D regular wave - 0 degree wave heading

The roll response is shown in Figure 6.21. The figure shows very small roll response, which
is expected because of the predominant wave direction. A peak at the roll natural frequency
(0.14 Hz) shows that the roll fluctuations are caused by a small excitation at the natural
period.

The pitch response is given in Figure 6.22, which is fluctuating around zero mean with
more or less constant range. The zero mean is because of the absence of rotor thrust from
wind. The fluctuation is mainly caused by the wave excitation at its wave and higher wave
harmonic frequencies. In addition, smaller excitations are visible at the surge (0.026 Hz)
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Figure 6.21: Roll response for 2D regular wave - 0 degree wave heading

and pitch natural frequencies (0.15 Hz). The surge natural frequency excitation is due to
the surge-pitch coupling.
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Figure 6.22: Pitch response for 2D regular wave - 0 degree wave heading

The yaw response is shown in Figure 6.23, which is fluctuating about almost zero mean. The
modulation present in the response may be due to the closely spaced frequencies at 0.23 Hz
and 0.2483 Hz, which can be seen in the frequency response. The difference between these
closely spaced frequencies give rise to a frequency of 0.0253 Hz, which is corresponding to a
time period of approximately 39 s, which is identical to the time period of the modulation.
The two adjacent frequencies are corresponding to the yaw and lateral tower bending nat-
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ural frequencies. The fluctuations are mainly caused by the natural frequency excitation,
which can also be confirmed from the peaks at yaw (0.24 Hz) and heave (0.34 Hz) natural
frequencies. In addition, a smaller peak at 0.85 Hz may be due to the tower excitation.
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Figure 6.23: Yaw response for 2D regular wave - 0 degree wave heading
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6.5.2 Two-dimensional regular wave with 45 degrees wave heading

The TLP wind turbine model is subjected to two-dimensional regular waves with 45 degrees
wave heading. The test results are given below. All the responses are not shown here
because either it has the similar characteristics of the previous case or it can be related to
that of the previous case. However, the yaw response alone is shown here to demonstrates
the differences in the response.

The surge response has a regular variation with a steady state range of 4 m. The range of
4 m can be related to the previous surge response by the simple relation of 5.7 cos(45). In
other words, the amplitude can be related to the 0 degree case using the relation asurge,0 =
√

a2surge,45 + a2sway,45 =
√
22 + 22 = 2.83 and hence the response is verified. As in the

previous case, the fluctuations are caused by the waves with a frequency of 0.1 Hz. The
frequency response also has a smaller peak at surge natural frequency (0.026 Hz).

Unlike the 0 degree wave heading case, the sway response in the present case is equally
significant as surge response corresponding to the range of 5.7 cos(45) ≃ 4m. Similar to the
surge response, the fluctuations are caused by the wave excitation corresponding to the peak
wave frequency and a smaller natural frequency excitation at 0.026 Hz.

The heave response is fluctuating similar to the 0 degree case. The fluctuations are mainly
caused by the waves; the peak wave frequency (0.1 Hz) and its higher harmonics and in
addition the fluctuations around the natural period are also visible. Apart from these peaks,
a smaller peak is also present at double the surge frequency (0.052 Hz), which is because of
the surge-heave coupling.

The roll response has small roll fluctuations about zero mean mainly caused by the wave and
natural period excitations, which can also be noticed from the peaks at 0.1 Hz, 0.2 Hz and
0.15 Hz. The roll fluctuation magnitude is much higher than that of 0 degree wave heading
and comparable to that of the pitch fluctuation of the present case, which is expected because
of the oblique wave heading.

The pitch response is fluctuating around a zero mean similar to the roll response. The
fluctuation is mainly caused by the wave excitation (0.1 Hz and 0.2 Hz) and natural period
excitation at 0.15 Hz. The pitch magnitude is comparable to that of the roll magnitude
of the present case and that of the pitch magnitude of the 0 degree wave heading case, for
which the maximum amplitude, 0.007 rad is equal to

√
2 × 0.005, wherein 0.005 rad is the

maximum amplitude of the present case.

The yaw response is shown in Figure 6.24, which is fluctuating about a zero mean. The
fluctuations are mainly caused by the natural frequency excitation, which can also be con-
firmed from the peaks at yaw (0.23 Hz) and heave (0.34 Hz) natural frequencies. A peak is
also seen at the tower natural frequency.

The yaw response magnitude is much higher than that of the 0 degree wave heading. This
may be a mooring-induced yaw because when the platform is subjected to a comparable
magnitude of combined roll and pitch rotations, the restoring is achieved through the plat-
form yaw degree of freedom by the moorings. The restoring is happening through the yaw
degree of freedom because it has the lowest natural period compared to the other rotational
degrees of freedom. This is also demonstrated in section 6.4.7.
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Figure 6.24: Yaw response for 2D regular wave - 45 degree wave heading

6.5.3 Response comparison for 2D regular waves with 0 and 90 degrees wave heading

A computation is carried out for a 90 degrees wave heading case and the responses are
compared to that of the 0 degree wave heading case as described in section 6.5.1. Major
differences are found when the 90 degrees wave heading roll response is compared to that of
the 0 degree wave heading pitch response. This observation seems to be abnormal because
both of these responses are expected to have similar characteristics. Investigations are
carried out to identify the reasons for this difference and finally the root cause of this is
identified as the influence of rotor orientation with respect to the wave direction. Hence, the
rotor is yawed to 90 degrees and the responses are obtained for a 90 degrees wave heading,
which give rise to identical responses with that of the 0 degree wave heading.

Perfect agreement is observed for the main two-dimensional responses viz. surge, heave
and pitch considering 0 degree wave heading as reference. Because the 2D waves primarily
induces the 2D responses, which will have a better comparison, whereas the additional
degrees of freedom responses are due to the second order effects. Because of the presence
of the second order effects, which could not be captured completely due to a certain linear
accuracy of the problem formulation, the comparison of these responses may not produce
perfect results. The comparisons are given in the following.

Surge and Sway responses comparison A comparison of the surge response from
0 degree wave heading and the sway response from 90 degrees wave heading is shown in
Figure 6.25, which shows a very good agreement between the two responses. Since both of
the responses are on top of each other, it can not be distinguished.

Similarly a comparison of the sway response from 0 degree wave heading and the surge
response from 90 degrees wave heading is shown in Figure 6.26. The responses do not
compare very well. Although the responses are different, both are smaller in magnitude.
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Figure 6.25: Surge and sway responses comparison for 2D regular wave - 0 and 90
degrees wave heading
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Figure 6.26: Sway and surge responses comparison for 2D regular wave - 0 and 90
degrees wave heading

Heave response A comparison of the heave responses from 0 and 90 degrees wave heading
is shown in Figure 6.27, which shows a very good agreement between the two responses.

Roll and Pitch responses comparison A comparison of the pitch response from 0
degree wave heading and the roll response from 90 degrees wave heading is shown in Fig-
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Figure 6.27: Heave response comparison for 2D regular wave - 0 and 90 degrees
wave heading

ure 6.28. The responses show a good agreement in both amplitude and frequency, however
with a difference in phase. The difference in phase is due to the negative roll moment
produced by the waves heading in the positive y direction.
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Figure 6.28: Pitch and roll responses comparison for 2D regular wave - 0 and 90
degrees wave heading

Similarly a comparison of the roll response from 0 degree wave heading and the pitch response
from 90 degrees wave heading is shown in Figure 6.29, which are very small in magnitudes.
The responses do not compare very well. This may be because these responses are the
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consequence of the second order effects present in the system for a 2D forcing, however with
a limited linear accuracy in the formulation.
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Figure 6.29: Roll and pitch responses comparison for 2D regular wave - 0 and 90
degrees wave heading

Yaw response A comparison of the yaw responses from 0 and 90 degrees wave heading
is shown in Figure 6.30. The yaw response is small as expected since excitation of the yaw
degree of freedom is secondary for 2D regular waves. The responses do not compare very
well because of the same reasons for the other response differences.
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Figure 6.30: Yaw response comparison for 2D regular wave - 0 and 90 degrees wave
heading

6.6 Response comparison for Flex5 and MATLAB coupled codes

Test cases are carried out to compare the response predicted by the MATLAB and modified
Flex5 codes. In addition, the tests reveal some of the effects due to the influence of wind,
tower flexibility, gyroscopic force, varying generator moment and roll and mooring induced
yaw coupling. From each of the test cases, differences in the responses are identified along
with a discussion of the root causes.

6.6.1 Case 1

Case 1 considers 2D regular waves with 10 m/s constant mean wind speed with the tower
lateral flexibility constrained in the Flex5 code. The tower lateral flexibility is constrained
because the MATLAB code is not equipped with this degree of freedom. In addition, the
platform pitch degree of freedom is constrained in both of the codes so that the gyroscopic
effect due to the platform motion is absent. The response comparison is shown in the follow-
ing figures. The differences observed in the responses are mainly due to the comprehensive
control action present in Flex5. Since the platform pitch degree of freedom is constrained,
the pitch response is zero and hence the comparison is not shown.

The transient response phase of Flex5 is about 400 s due to the way the initial conditions
are set up.

Comparing the yaw response with that of Case 3 would reveal the influence of the gyroscopic
forces. In addition, comparing the yaw response with that of Case 2 would reveal the
influence of the tower flexibility.

The surge responses compare well both in time and in frequency domains. However, Flex5
code slightly overestimates the mean response, which may be due to a slightly higher thrust
caused by the instantaneous control action present in the Flex5 code. While the platform
has a surge velocity, the effective velocity seen by the blade is slightly more when both the
wind and the platform velocities are out of phase and vice versa. Based on the relative
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velocity, the blade pitch angle is regulated in Flex5 by a built-in pitch-controller, which
is not available in MATLAB code and hence a small difference in the response is present.
In addition, since the wind speed is below rated, the rotor rpm is controlled by an rpm
controller in Flex5, which is also not present in MATLAB code. The comparison is shown
in Figure 6.31.
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Figure 6.31: Case 1 - Surge response comparison (Flex5 and Matlab code)

The sway response is quite small compared to that of the surge response. The response
predicted by Flex5 has large difference up to 400 s compared to that of MATLAB code,
which is because of the influence of initial conditions in Flex5. However, above 400 s, both
of the responses are in the same range with a small difference in mean, which may be caused
by the roll moment (rotor torque) from the rotor, which is controlled proportional to the
rpm in Flex5. The comparison is shown in Figure 6.32.

The heave response also compares well both in time and in frequency domains. Similar
to surge response, Flex5 over-predicts heave response slightly, which is proportional to the
influence of surge-heave coupling. This can also be confirmed from the slight frequency shift
in the surge natural frequency. The comparison is shown in Figure 6.33.

Similar to the sway response, the roll response also has influence from the initial conditions,
however, Flex5 over-predicts roll response, which may be mainly due to the rpm control in
the Flex5 code. This can also be confirmed from the high frequency fluctuations present
in Flex5. In addition, the roll-yaw coupling present in the restoring force also causes a
difference in the response, which is observed from a peak in the frequency response at yaw
natural frequency. The comparison is shown in Figure 6.34.

The yaw responses comparison is shown in Figure 6.35. The response is mostly of high
frequency type, mainly due to the mooring induced roll-yaw coupling as described in sec-
tion 6.4.7, which can be observed in the frequency response peak at the roll natural frequency.
In addition, the rpm control in Flex5 also plays a role in the difference in responses.
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Figure 6.32: Case 1 - Sway response comparison (Flex5 and Matlab code)
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Figure 6.33: Case 1 - Heave response comparison (Flex5 and Matlab code)
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Figure 6.34: Case 1 - Roll response comparison (Flex5 and Matlab code)
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Figure 6.35: Case 1 - Yaw response comparison (Flex5 and Matlab code)
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6.6.2 Case 2

Case 2 considers 2D regular waves with 10 m/s constant mean wind speed with the tower
lateral flexibility constrained in the Flex5 code. Compared to Case 1, the pitch degree of
freedom is not constrained in this case and hence the influence of gyroscopic effect can also
be observed in the yaw response compared to that of Case 1. The response comparison
is shown in the following figures. The differences observed in the responses are due to a
combined effect of the control action and gyroscopic forces.

The surge responses compare well both in time and in frequency domains. The differences
are similar to that of Case 1 and the comparison is shown in Figure 6.36.
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Figure 6.36: Case 2 - Surge response comparison (Flex5 and Matlab code)

The sway response comparison is also similar to that of Case 1, however, the difference in
steady state mean is larger compared to that of Case 1. This may be due to the larger
energy content available at the roll natural frequency and an associated peak at the yaw
natural frequency in the Flex5 response, which shows a stronger influence from the roll-yaw
coupling. The comparison is shown in Figure 6.37.

The heave response comparison also has a similar character as that of Case 1, which is shown
in Figure 6.38.

The roll response predicted by Flex5 has larger fluctuation compared to that of MATLAB
code, which may be due to the strong influence of roll-yaw coupling and the control action
of rotor rpm. The comparison is shown in Figure 6.39.

The pitch response also compares well with the Flex5 response having slightly higher fluctu-
ation. The higher fluctuation may be due to the influence of rotor tilt moment acting on the
platform. Since the rotor tilt degree of freedom is not available in the MATLAB code, this
effect could not be captured in the pitch response. The comparison is shown in Figure 6.40.

Unlike Case 1, the yaw response predicted by Flex5 has larger fluctuation (both in terms
of mean and standard deviation), which is mainly due to the influence of gyroscopic effect,
which was absent in Case 1. The gyroscopic effect is an additional yaw moment produced
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Figure 6.37: Case 2 - Sway response comparison (Flex5 and Matlab code)
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Figure 6.38: Case 2 - Heave response comparison (Flex5 and Matlab code)

when a spinning rotor is subjected to a rotor tilt or a platform pitch motion, which is not
present in the MATLAB code. This can be observed in the Flex5 frequency response through
the peaks at pitch and yaw natural frequencies. The comparison is shown in Figure 6.41.
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Figure 6.39: Case 2 - Roll response comparison (Flex5 and Matlab code)
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Figure 6.40: Case 2 - Pitch response comparison (Flex5 and Matlab code)
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Figure 6.41: Case 2 - Yaw response comparison (Flex5 and Matlab code)
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6.6.3 Case 3

Case 3 considers 2D regular waves with 10 m/s constant mean wind speed. Compared to
the Cases 1 and 2, none of the degrees of freedom are constrained in both of the codes.
The response comparison is shown in the following figures. The differences observed in the
responses are having a combined effect of the tower flexibility, control action and gyroscopic
forces. Compared to Case 2, the tower flexibility induces more yaw responses through roll-
yaw coupling.

The surge responses compare with a small difference in the mean, which may be due to a
difference in rotor thrust predicted by Flex5 and MATLAB code. The comparison is shown
in Figure 6.42.
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Figure 6.42: Case 3 - Surge response comparison (Flex5 and Matlab code)

The sway response comparison is similar to that of Case 2. The tower lateral flexibility
present in Flex5 also influence the difference in the mean sway response. The comparison is
shown in Figure 6.43.

The heave response comparison has a similar character as that of Cases 1 and 2, which is
shown in Figure 6.44.

The roll response fluctuation in Flex5 is larger compared to that of MATLAB code, which
may be due to the tower lateral flexibility present in Flex5 code and also the other reasons
stated for cases 1 and 2. The comparison is shown in Figure 6.45.

The pitch response predicted by Flex5 has more fluctuation, which may be due to the
influence of rotor tilt moment acting on the platform. Since the rotor tilt degree of freedom
is not present in the MATLAB code, this effect could not be captured in the pitch response.
The comparison is shown in Figure 6.46.

The yaw response predicted by Flex5 has much larger fluctuation, which is mainly due to
the influence of the gyroscopic effect and the tower lateral flexibility. The tower lateral
flexibility induces higher yaw moment which in turn produces higher yaw response. The
comparison is shown in Figure 6.47.
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Figure 6.43: Case 3 - Sway response comparison (Flex5 and Matlab code)
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Figure 6.44: Case 3 - Heave response comparison (Flex5 and Matlab code)
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Figure 6.45: Case 3 - Roll response comparison (Flex5 and Matlab code)
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Figure 6.46: Case 3 - Pitch response comparison (Flex5 and Matlab code)
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Figure 6.47: Case 3 - Yaw response comparison (Flex5 and Matlab code)
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6.6.4 Case 4

Case 4 considers 2D regular wave alone case. The response comparison is shown in the
following figures. The comparison works fine mainly for the 2D responses and the differences
observed in the responses are identified and discussed.

In addition, Case 4 responses uncover influence of many of the effects. Comparing the Case 4
responses with that of Case 3 can demonstrate the influence of wind on roll and roll induced
yaw, gyroscopic and control effects and the varying generator torque.

The surge responses compare very well both in time and in frequency domains. The com-
parison is shown in Figure 6.48.
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Figure 6.48: Case 4 - Surge response comparison (Flex5 and Matlab code)

The sway response, which is very small, as predicted by MATLAB code is fluctuating more
compared to that of the Flex5 response, which was also expected based on the previous
analysis. The comparison is shown in Figure 6.49.

The heave response compares very well with only a slight difference in the mean. The
comparison is shown in Figure 6.50.

The roll response is very small and the fluctuation in MATLAB code is larger compared to
that of Flex5, which may be because the roll degree of freedom is a secondary response to
the 2D waves, as explained earlier. The response comparison is shown in Figure 6.51.

Compared to the Case 3 roll, the present response is one order lower, which is due to the
higher roll caused by the wind and the varying generator moment in Case 3. Similarly,
compared to the Case 2 roll, the present response is one order smaller, which is due to the
influence of tower flexibility and varying generator moment. Compared to Case 1, because
of the absence of varying generator moment, the present roll response is much smaller.

The pitch response compares well with only a slight difference. The comparison is shown in
Figure 6.52.

Between Cases 2 and 3, the pitch response in Case 3 is slightly more because of the presence
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Figure 6.49: Case 4 - Sway response comparison (Flex5 and Matlab code)
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Figure 6.50: Case 4 - Heave response comparison (Flex5 and Matlab code)

of tower flexibility. Between 3 and 4, the variation is more or less the same, however, the
Case 4 has zero mean compared to a positive mean in Case 3. This is because of the absence
of rotor thrust in the present case.

The yaw response is very small and the response from MATLAB code has much larger
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Figure 6.51: Case 4 - Roll response comparison (Flex5 and Matlab code)
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Figure 6.52: Case 4 - Pitch response comparison (Flex5 and Matlab code)

fluctuation, which has the same explanation as that of the roll response comparison. The
comparison is shown in Figure 6.53.

The yaw response predicted by Flex5 is one order smaller than that of all other cases, which
is an interesting observation because the presence of wind induces most of the coupling
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effects. Comparing with that of Case 1 reveals that the varying torque induces roll, which
in turn induces yaw through roll-yaw coupling. Case 2 comparison shows that in addition
to the above effect, the gyroscopic effect enhances the yaw response.
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Figure 6.53: Case 4 - Yaw response comparison (Flex5 and Matlab code)

6.6.5 Case 5 - 3D irregular waves with 10 m/s constant wind

The responses from coupled Flex5 code is compared against that from the MATLAB code
from the previous chapter. For this, the TLP configuration is subjected to combined wind
and wave loads. A 3D wave with 0 degree wave heading and a constant mean wind speed of
10 m/s are considered. The responses are obtained using the coupled Flex5 and MATLAB
codes. As the MATLAB code is a simplified code with limited degrees of freedom, obtaining
a complete agreement on response comparison is not expected. The translational degrees of
freedom are having better agreement, whereas the rotational degrees of freedom differ.

The surge responses compare well both in time and in frequency domains. The comparison
is shown in Figure 6.54. Slight differences occur at times, however, the differences are
very small. From the frequency response, it can be observed that the Matlab response has
slightly higher energy content at the surge natural frequency, which may be due to the lesser
aerodynamic damping in Matlab.

The sway responses are also comparable, however a complete agreement could not be ob-
tained, which was also expected. The differences may be because of the less comprehensive
wind turbine model in MATLAB code wherein the tower lateral (sidewise) degree of freedom
and the forces in that direction are not included. The responses are within the same range
and the comparison is shown in Figure 6.55.

A comparison of the heave responses from MATLAB and Flex5 code is shown in Figure 6.56,
which shows a good agreement between the two responses. The heave comparison also shows
that at the surge natural frequency, the energy content is more for the Matlab results, which
indicates a lesser aerodynamic damping. The presence of surge natural frequency in the
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Figure 6.54: Case 5 - Surge response comparison (Flex5 and Matlab code)
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Figure 6.55: Case 5 - Sway response comparison (Flex5 and Matlab code)

heave response is due to the surge-heave coupling.

The roll responses are not fully comparable. The comparison is shown in Figure 6.57. The
much higher roll response predicted by Flex5 is likely to be explained by a strong roll - yaw
coupling through tower lateral flexibility, which was not captured by the Matlab code.
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Figure 6.56: Case 5 - Heave response comparison (Flex5 and Matlab code)
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Figure 6.57: Case 5 - Roll response comparison (Flex5 and Matlab code)

A comparison of the pitch responses are shown in Figure 6.58. From the figure, the pitch
responses are comparable, however some differences are also observed. Similar to the surge,
the response from Matlab code has lower damping and hence larger fluctuations. The lower
damping in Matlab code is due to the less comprehensive modeling of the wind turbine, espe-
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cially the tower. In the case of Flex5, all the tower degrees of freedom are also contributing
to the damping, whereas this effect is not present in the Matlab code.
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Figure 6.58: Case 5 - Pitch response comparison (Flex5 and Matlab code)

The yaw responses comparison is shown in Figure 6.59, which are not comparable. The
reason for much higher yaw response predicted by Flex5 is because of the strong roll - yaw
coupling induced by the tower lateral flexibility and gyroscopic effects, which could not be
captured by the MATLAB code.
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Figure 6.59: Case 5 - Yaw response comparison (Flex5 and Matlab code)

6.7 Summary

In this chapter, the advanced aero-elastic code Flex5 is extended to capture the dynamics of
a TLP floating offshore wind turbine by including the platform dynamics and different wave
forcing models by reading the wave kinematics through a data file. The coupled code is tested
for various test cases along with a response comparison with the MATLAB code derived in
the previous chapters. The models agree well for the wave alone excitation. Differences
in sway, roll and yaw responses are observed, however, all these responses are small and
hence not a significant difference. The investigations demonstrate the sensitiveness of rotor
orientation when subjected to waves. In addition, the influence of wind, tower flexibility,
gyroscopic effect, varying generator moment, control action and roll-yaw coupling on the
responses are investigated. The extended Flex5 code may be used to carry out a parametric
study, which is dealt in the next chapter.



Chapter 7

Parametric Study

In this chapter, the modified Flex5 code is used to carry out a parametric study on the
floating TLP wind turbine. Initially, the system is subjected to five sea states, for which
the responses are computed. The computations showed larger yaw response, which needs to
be controlled. As an alternative, different configurations are investigated and the responses
are computed. Further, the better configuration is subjected to more severe sea states and
recommendations are made.

7.1 TLP wind turbine subjected to various sea states

The baseline configuration of the TLP wind turbine is subjected to five different sea states,
which are described in the following section. For these parameters, 3D irregular waves with
different spreading parameters and turbulent wind conditions are applied. The wind turbine
is under operational conditions while subjected to the above environmental loading.

7.1.1 Wind and wave climate

The five sea states considered for the investigation are listed in Table 7.1, Schløer et al.
(2012). The wave climate is based on the North Sea wind and wave occurrences as detailed
in Johannessen et al. (2002).

Table 7.1: Wind and wave climate

Hs (m) Tp (s) V (m/s) TI (%)

sea state1 2.3 6.8 6.7 22

sea state2 3.1 7.9 8.5 20

sea state3 5.1 10.5 13.4 16

sea state4 7.0 12.3 18.1 15

sea state5 9.4 14.2 23.5 14

As the wind speed (V) increases, the peak wave period (Tp) and significant wave height (Hs)
also increases, however, the turbulence intensity (TI) decreases. The wind shear profile is
considered with a power law index of 0.14. This range of wind and wave climate give rise
to a realistic sea states so that the loads and responses can be studied.

7.1.2 Responses for the five sea states

Responses are computed for the five sea states with zero degree wave heading. The wave
kinematics are corresponding to the spreading parameter s = 1. The responses are obtained

144
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at the tower bottom point, which are transformed to the floater bottom point with the con-
ventional coordinate system. The positive and negative peaks in the responses are identified,
sorted and accumulated probability curves are drawn for each of the responses.

The surge response comparison is shown in Figure 7.1. In the figure, the responses cor-
responding to the first and second sea states behave alike and the remaining responses
have slightly different characteristics because of the transition from the below rated control
regime to the above rated, as described in section 6.2.3 of Chapter 6. The turbine con-
trol method changes the rotor thrust and hence affects the floater responses. The largest
response happens for the sea state 5, as expected.

The sway response is shown in Figure 7.2, which has the similar characteristics of the surge
response, however, with a smaller magnitude compared to the surge. The smaller response
is due to the smaller rotor side-wise force and the smaller sway force caused by the 0 degree
wave heading. Hence the mean is almost zero as influenced by the wind and the fluctuation
is smaller as affected by the waves.

The heave responses as shown in Figure 7.3 are also behaving as expected. The stronger
waves induce stronger heave. In addition, as the sea state is higher, stronger is the wind,
which induces higher surge. A higher surge in turn induces a higher heave through the
surge-heave coupling. These two effects constitute the cause for a varying heave against sea
states. The positive peaks are mainly due to the tendon elasticity.

The roll response, which is shown in Figure 7.4, has a small positive mean due to the
influence of rotor torque. An interesting observation is that the responses corresponding to
the first and second sea states are more than that of the remaining three sea states. This is
because the first and second wave frequencies (0.147 and 0.13 Hz) are very close to the roll
and pitch natural frequencies, which induces resonance and hence larger response. It can
be noted that though the resonant responses are larger than that of other responses, the
responses are not growing over a period of time or affecting the structural integrity of the
system. However, it is recommended to avoid the resonance regime.

Figure 7.5 shows the pitch response as expected, which has a positive mean due to the
influence of rotor thrust. This response does not seem to have the same effect of resonance
as in the case of roll. This may be because the aerodynamic damping available in the pitch
direction plays an important role to attenuate the responses.

The yaw responses, as shown in Figure 7.6, are very large compared to the roll and pitch
responses. The yaw responses corresponding to the first and second sea states are larger
compared to the others, which is due to a strong roll-yaw coupling of the system. The
maximum yaw response, which is more than 10 degrees, may affect some of the small angle
approximation of the governing equations and hence may have higher impact on the results.

The yaw response is mainly caused by the combined effect of the aerodynamic forces, tower
flexibility, control action and the platform motion. Minimization of yaw response requires
each of these causes to be addressed. One of the easiest methods is to avoid the resonance
influence thereby reducing the roll-yaw coupling or to increase the yaw stiffness. Both of
these methods will increase the natural frequencies of rotational DOF. This requires an
investigation of various configurations.
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Figure 7.1: Surge response probability comparison - 0 degree wave heading
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Figure 7.2: Sway response probability comparison - 0 degree wave heading
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Figure 7.3: Heave response probability comparison - 0 degree wave heading

−0.005 0 0.005 0.01 0.015 0.02 0.025
0

0.2

0.4

0.6

0.8

1

P
(r

ol
l)

positive peaks

 

 

−0.025−0.02−0.015−0.01−0.00500.005
0

0.2

0.4

0.6

0.8

1

negative peaks

roll [rad]

P
(r

ol
l)

 

 

sea state1
sea state2
sea state3
sea state4
sea state5

sea state1
sea state2
sea state3
sea state4
sea state5

Figure 7.4: Roll response probability comparison - 0 degree wave heading
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Figure 7.5: Pitch response probability comparison - 0 degree wave heading
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Figure 7.6: Yaw response probability comparison - 0 degree wave heading
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7.2 Investigation of various configurations

Based on the results from the previous analysis, the yaw responses are larger and hence
some of the probable configurations are investigated. The following three configurations
are considered. Treating the baseline model as Configuration 1, the other models are listed
below.

• Configuration 1 - Baseline model (C1)

• Configuration 2 - Diameter of the floater is increased from 16 m to 18 m (C2)

• Configuration 3 - Lengths of the spokes are increased from 22 m to 32 m (C3)

• Configuration 4 - Instead of straight tendons, inclined tendons with an angle of about
3◦ (C4)

A natural frequency sensitivity analysis is carried out for all of the configurations, for which
the results are shown in Table 7.2.

Table 7.2: Natural frequencies (Hz)

C1 C2 C3 C4

surge 0.026 0.036 0.026 0.038

sway 0.026 0.036 0.026 0.038

heave 0.34 0.317 0.347 0.344

roll 0.15 0.165 0.212 0.154

pitch 0.15 0.165 0.212 0.154

yaw 0.23 0.268 0.317 0.238

When the floater diameter is increased by keeping the floater mass constant, the buoyancy
force and added mass in all the degrees of freedom increase. An increase in the buoyancy
force increases the pretension. As described in section 5.2 of Chapter 5, the surge, sway
and yaw natural frequencies are directly dependent on the pretension, whereas the roll
and pitch natural frequencies are dependent on the buoyancy force. The heave natural
frequency is independent of the pretension and the buoyancy force. In addition, all the
natural frequencies are inversely proportional to the added mass. Hence, an increase in
floater diameter increases all the natural frequencies except the heave natural frequency,
which can also be observed in the above table. The heave natural frequency reduces slightly
due to the marginal increase in the heave added mass, whereas for all the other natural
frequencies, the increase in stiffness dominates the effect of the increased added mass.

An increase in the spokes lengths give rise to an increased rotational natural frequencies
due to an increased stiffness, whereas the translational frequencies remain unchanged, as
expected. Adopting inclined tendons give rise to slightly increased natural frequencies in all
the DOFs, however, the increase in surge and sway natural frequencies are considerable, due
to an increased stiffness from the tendons. The horizontal component of the tendon tension
enhances the surge and sway stiffness.

7.2.1 Modified configuration responses

The modified configurations are subjected to the same five sea states and the responses are
obtained. Similar to the baseline case, the cumulative probabilities are computed for each
of the responses and a detailed discussion is given below.
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Figures for only surge, pitch and yaw responses are given, whereas the results of all the
DOFs are given and discussed in the statistical analysis. The surge and pitch responses
demonstrate the in-plane motion, whereas the yaw response demonstrates the out-of-plane
motion. The remaining three responses can be related to these three responses and hence
those responses are not shown here.

The surge response is compared between the four configurations for each of the sea states,
which is given in Figure 7.7. For all the sea states, the Configurations 2 and 4 have lesser
response for a given probability compared to the other two configurations. This is mainly
due to the increased surge stiffness for Configurations 2 and 4. The surge responses for sea
states 2 and 3 have marginally higher mean compared to that of the sea states 4 and 5,
which may be due to the controller regime change taking place between these sea states. It
can also be confirmed because the mean response is mainly influenced by the rotor thrust,
which is directly influenced by the wind turbine control.

The platform pitch response comparison is given in Figure 7.8. Configuration 4 has a clear
advantage over other configurations for having smaller response for a given probability. The
advantage is mainly due to a negative mean, which is introduced by the negative moment
due to an additional mooring force in the surge direction. Otherwise, the Configuration 3
has smaller responses compared to the other configurations. Similar characteristics of the
pitch response with the sea states is noticed as that of the surge response. Approximately
70% reduction in pitch response is noticed for the Configuration 3 compared to that of the
baseline configuration.

Figure 7.9 shows the yaw response comparison, for which the response is smaller for config-
urations 3 and 4 for the smaller sea states, whereas a clear smaller response is observed only
for Configuration 3 for the higher sea states. This is because of the higher yaw stiffness in
Configuration 3 due to the longer spokes. Approximately 45% reduction in yaw response is
noticed for the Configuration 3 compared to that of the baseline configuration. The second
configuration has a comparable yaw response with that of the third due to a marginally
higher yaw stiffness in Configuration 2, introduced by the increased effective length of the
spoke (thereby the fairlead point) because of the increase of floater diameter. The yaw
response is more or less consistently increasing with the sea states, both in terms of mean
and maximum, mainly due to a higher wind and widely spread stronger waves. Stronger
wind induces higher aerodynamic forcing, which induces higher yaw with an exemption of
changes in controller action. Wider and stronger waves introduce higher roll, which in turn
causes higher yaw through roll-yaw coupling.

The sway, heave and roll responses are also having the similar characteristics. However,
the roll resonance effect for the first sea state in the case of second configuration is more
dominant, which can be noticed in Figure 7.13. Both the maximum and standard deviation
are higher than that of other responses, which is caused by the resonance effect. Similar
to the pitch and yaw responses, approximately 50% reduction in maximum roll response is
observed for Configuration 3.

With reference to the baseline configuration, approximately 25% of roll and pitch responses
reduction is observed for Configuration 4, whereas approximately 20% yaw response reduc-
tion is observed at an 80% probability level. A statistical analysis is carried out in the next
section to identify a feasible configuration.
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Figure 7.7: Platform surge response probability comparison for configurations
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Figure 7.8: Platform pitch response probability comparison for configurations
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Figure 7.9: Platform yaw response probability comparison for configurations
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7.2.2 Statistical analysis of various configurations

A statistical analysis is carried out to obtain an overview of the overall behaviour of the
proposed configurations against the baseline configuration for different sea states. The
results are given in the following figures from 7.10 to 7.15.

The surge response of Configurations 2 and 4 are marginally smaller upto the sea state 4,
whereas it is almost the same for all the configurations for the sea state 5, which means
all the configurations behave alike to the severe sea state. It may be because of a mixed
influence of waves, wind turbulence and control actions. In the case of sea state 5, the wind
speed is very close to the cut-out wind speed and hence the blade pitch regulation would
be much greater due to an effective increase and decrease of relative wind speed below and
above cut-out wind speed. This might cause additional response changes apart from the
large wave at sea state 5.

All the configurations have almost the same sway response though the response of config-
uration 4 is slightly higher. Since the sway response is mainly caused by the spread waves
in the sway direction, and hence it was expected to be smaller. However, the considerable
amount of sway may be due to a combined effect of roll induced sway and the influence of the
turbulent wind. Further, the lack of aerodynamic damping in this direction may accelerate
this response.

In terms of the maximum and standard deviations, the Configuration 4 heave response is
smaller than that of the other configurations up to the sea state 4 and beyond this, all the
maximum responses are more or less the same. However, the heave standard deviation for
Configuration 4 at sea state 5 is still smaller than that of the other responses. The difference
in the maximum response may be mainly induced by the surge-heave coupling effect.

The Configuration 3 roll response is smaller than that of the other configurations and also
more or less un-influenced by the sea states because of its higher stiffness from the longer
spokes. Compared to the other two configurations, Configuration 4 has smaller responses
both in terms of maximum and standard deviation.

The pitch and yaw responses are also smaller in the case of Configuration 3 because of the
higher stiffness.

Based on the analysis, Configuration 3 has smaller responses, however, the modification may
be expensive because of the material cost involved in making four 10 m larger spokes com-
pared to the baseline configuration. This motivates to investigate the fourth configuration
with inclined tendons further.
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7.2.3 Detailed analysis of selected configuration

The Configuration 4 is subjected to severe sea states corresponding to narrow banded di-
rectional spectrum and oblique waves. Computations are carried out for these cases for the
baseline configuration as well to compare the results. In addition to these sea states, a load
case corresponding to a combined action of a main wave and a swell is also investigated.
The responses are discussed below.

Zero degree wave heading In this case, collinear wave kinematics corresponding to a
spreading parameter of s = 4 is considered for all the sea states. Responses are obtained for
the baseline and the fourth configurations and the comparison is discussed.

For all the sea states, the surge response for Configuration 4 is smaller than that of the
baseline configuration, as shown in Figure 7.16. For the last sea state, the response dif-
ference is minimal beyond the 80% probability level. The reason for the smaller response
for Configuration 4 is due to the additional restoring forces from the inclined tendons, as
explained in the previous section.

The sway response is expected to be smaller than that of the previous case (s = 1) because
of the narrow banded direction spectrum and which is the case as seen in the statistical
analysis figure 7.26. However, the reduction in response is not dramatic because the wave
spectrum still has energy in this direction.

The heave and roll responses have the similar characteristic as in the previous case.

The pitch response for the case of Configuration 4 is smaller for a given probability compared
to that of the baseline configuration mainly because of the negative pitch moment caused by
the inclined tendons. The pitch response comparison is shown in Figure 7.17. In addition,
the maximum response for Configuration 4 is also lower.

The yaw response for the fourth configuration is smaller than the baseline configuration only
for the smaller sea states. Both of the responses become identical as the sea state goes high,
which can be noticed from the Figure 7.18. This may be due to the special condition of the
mean wind speed being very close to the cut-out wind speed thereby the control action is
quite extensive which might be dominating the basic character of the configuration.
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Figure 7.16: Platform surge response probability comparison for 0 degree wave
heading
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Figure 7.17: Platform pitch response probability comparison for 0 degree wave
heading
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ing
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45 degree wave heading Oblique wave heading with 45 degree is considered for both the
baseline and the Configuration 4. As in the previous case, the wave kinematics corresponding
to a spreading parameter of s = 4 is considered. Responses are obtained for all the sea states
and a response comparison is given below.

The surge, pitch and yaw responses are shown in Figures 7.19 to 7.21. From the figures,
it can be noted that in general, the oblique wave heading does not affect the responses
severely. In addition, the influence of oblique wave heading is very minimal in the case of
Configuration 4 compared to the baseline configuration mainly due to additional stiffness
and the inclined tendons. However, for the sea state 5, a very small difference in response
is observed for the Configuration 4 between the collinear and oblique wave heading due to
the dominating influence of the controller. In the case of sway, heave and roll responses, a
small difference in responses is noted mainly because of the lack of aerodynamic damping
in these degrees of freedom.

The frequency domain responses for the oblique wave heading case of Configuration 4 is
given in Figure 7.22, which has peaks corresponding to the natural frequencies and peak
wave frequency. The wind and wave spectra are also shown in the figure, wherein the
wind spectrum is influenced by the turbulence. Two shorter time series of the extreme
events, which occur for Configuration 4, subjected to 45 degree wave heading, are shown
in Figures 7.23 and 7.24. The extreme waves occur at 1054 s and 2225 s and hence the
maximum acceleration is obtained with a time delay corresponding to the phase shift which
in turn produces the surge force. The maximum surge force has a phase shift proportional to
the acceleration and hence the maximum surge response occurs with a time delay. Similarly,
the maximum pitch and yaw responses are also observed with a time delay. The wave
is acting like a focused wave during these time periods thereby triggering the maximum
responses.
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Figure 7.19: Platform surge response probability comparison for 45 degree wave
heading
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Figure 7.20: Platform pitch response probability comparison for 45 degree wave
heading
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Figure 7.21: Platform yaw response probability comparison for 45 degree wave
heading
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Figure 7.22: Platform frequency response of Configuration 4 with 45 degree wave
heading
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Figure 7.23: First extreme event in the platform response of Configuration 4 with
45 degree wave heading
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Figure 7.24: Second extreme event in the platform response of Configuration 4 with
45 degree wave heading
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Statistical analysis of selected configuration subjected to severe sea states A
statistical analysis is carried out to demonstrate the overall characteristics of the fourth
configuration compared to that of the baseline configuration against all the sea states in-
cluding a swell.

A swell is a left over wave from a previous storm, which may reach the structure days after
the storm. The swell is usually longer and more focused than the main wave, approaching
the structure from an oblique direction. In the present case, the swell is generated using the
standard JONSWAP spectrum with a spreading parameter of s=10 and a wave heading of
30 degrees. The wave kinematics are generated using both of the spectra with S = S1 + S2,
where S1 stands for the main wave and S2 is that of the swell spectra. The sea states used
for both the main wave and that of the swell are that of sea states 4 and 5 respectively. The
maximum and standard deviation values are plotted in the statistical analysis plots.

The results are given in the following figures from 7.25 to 7.30. As far as the maximum
response is concerned, the Configuration 4 responses are smaller than that of the baseline
configuration. Between the collinear and inclined waves, not much of a difference is observed
as explained in the previous section. The difference is marginal for the degrees of freedom,
where the aerodynamic damping is smaller, which shows a strong influence of the rotor on
floater responses. This observation is also applicable for the swell case, wherein the responses
from the Configuration 4 and baseline configuration are more or less the same for the surge
and pitch responses, whereas the difference in higher in the case of sway, heave, roll and yaw
responses, which do not have enough aerodynamic damping in the swell direction.
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Figure 7.25: Surge response statistics comparison
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Figure 7.26: Sway response statistics comparison
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Figure 7.27: Heave response statistics comparison
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Figure 7.28: Roll response statistics comparison
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Figure 7.29: Pitch response statistics comparison
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Figure 7.30: Yaw response statistics comparison
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7.3 Statistical comparison of results using onshore and TLP controller param-
eters

The present model uses the control gain parameters, which are derived for the TLP wind
turbine, as described in section 6.2.3 of Chapter 6. An investigation is carried out to un-
derstand the impact of the selection of control frequency and thereby the proportional and
integral constants of the PI controller with respect to the onshore controller parameters
when the wind turbine is subjected to a 3D wave and turbulent wind. The objective is to
confirm the observations made in the section 6.2.3, when various configurations are sub-
jected to severe sea states. Hence, computations are carried out for the fifth sea state for
all the configurations using the onshore controller parameters. A statistical comparison is
carried out between the responses with the onshore and floating turbine control parameters
and the comparison is given in the following figures.

There is not an advantage observed for configuration 1 by using the floating control param-
eters, because of slightly increased rotor thrust. The fluctuation of sway response is lesser in
the case of TLP control parameters, which is clearly due to a less fluctuating rotor torque,
which is also influencing the platform roll standard deviation as seen in the figure. The
heave response has an influence of the surge through the surge-heave coupling. The yaw
response does not have a considerable difference between the response.

The main advantage of using the control parameters for floating turbines is on the floater
pitch response, which can be clearly seen in the figure for all the configurations. This is
achieved by obtaining a less fluctuating blade pitch angle and hence less fluctuating rotor
moments.

Even in the severe sea states, the TLP configuration does not show any instabilities due
to the control action. Hence the well known pitch instabilities as reported by Larsen and
Hansen (2007) and Jonkman and Buhl (2005) for the floating wind turbines (mainly for spar)
may not be applicable for the TLP wind turbines because of its stiff mooring configuration.
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Figure 7.32: Sway response - statistical comparison with onshore controller
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Figure 7.34: Roll response - statistical comparison with onshore controller
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7.4 Summary

A parametric study was carried out to investigate the responses of the TLP wind turbine
subjected to various sea states. The influence of varying sea states was studied. Next, three
alternative configurations were suggested and it was investigated on how the alternatives
affect the responses. The responses were compared to that of the baseline configuration.
Based on the response comparison, Configuration 4 was selected. As a further investigation,
the selected configuration was subjected to the sea states with narrow banded wave spectrum,
oblique wave heading and a swell. In addition, the impact of using the control parameters
for floating wind turbines when the wind turbine was subjected to 3D irregular waves was
studied in relation to the onshore control parameters. The responses were compared with
that of the baseline configuration and the following conclusions are made.

The configuration with inclined tendons has smaller responses compared to the other con-
figurations. Although the rotational responses are much smaller in the case of Configuration
3, the cost might prohibit this option, which is also the case for the Configuration 2. Based
on the analysis, the Configuration 4 may be subjected to a more comprehensive loads and
load cases analysis to quantify the extreme and fatigue loads, which is not considered in the
present study.

The oblique and swell waves seem to induce larger responses than the collinear waves due
to a lack of aerodynamic damping.

For the calculations carried out, the TLP configuration is not affected by the known pitch
instability due to the control action because of its stiff configuration.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

An independent fourteen degrees of freedom code coupled with two-dimensional irregular
wave forcing for a tension leg platform wind turbine was derived and implemented. The code
is based on Blade Element Momentum theory for computing aerodynamic loads. The wave
kinematics were computed using linear Airy wave theory and the hydrodynamic forcing was
formulated using Morison’s equation. The 2D code was used to investigate the influence of
platform dynamics on the rotor loads and similarly the influence of rotor loads on platform
responses. It was found that an integral approach is needed to model floating offshore wind
turbines. In addition, semi-coupled approach showed that the responses lack the influence
of aerodynamic damping from the rotor. The surge-heave coupling present in the TLP
foundation through the set-down effect was observed. The influence of wind shear showed a
small reduction in the mean platform response because of a small reduction in rotor thrust.
Presence of the turbulent wind was found to excite low frequency response of platform pitch.

The two-dimensional code was extended to include the three-dimensional platform dynamics
and coupled to a three-dimensional hydrodynamic forcing module. The 3D hydrodynamic
forcing was computed using the 3D wave kinematics with directional spreading. The three-
dimensional implementation was verified by obtaining a perfect agreement of results with
the 2D code. The 3D code was further applied to compute the loads and responses for
wind-wave misalignment cases, which highlighted the direction sensitiveness of waves with
respect to wind. The computations also showed that instabilities might occur near to the
rated wind speed regime mainly due to the absence of a controller. A complete description
of turbulent wind was not implemented in the 3D code. Further, the computational time
used by the 3D code was quite large because of the implementation in Matlab.

The limitations of the 3D code were overcome by implementing the 3D sub-model for plat-
form dynamics and hydrodynamic forcing into an advanced aero-elastic code, Flex5. This
gave rise to a more complete hydro-aero-servo-elastic code for TLP wind turbines. The
implementation was verified through a set of test cases, which gave a good agreement of
responses with that of the initial 3D code. The test cases also enlightened the sensitiveness
of rotor yaw to the wave heading. The investigations showed that following.

• Mooring-induced coupling enhanced the yaw response.

• The longitudinal tower flexibility increased the platform pitch and the lateral tower
flexibility induced platform roll.

• A platform pitch increased platform yaw through the pitch-induced gyroscopic effects.

• A combined platform roll and pitch forced platform yaw through roll-yaw coupling.

• The varying generator moment induced larger roll.
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The extended Flex5 code was used to carry out a parametric study to evaluate the per-
formance of the TLP configuration subjected to five different sea states during operational
conditions. The responses showed that the baseline configuration has more yaw response
and hence alternative configurations were investigated. Based on the analysis, a configura-
tion with inclined tendons was selected for further investigations. The further investigations
were done using more narrow banded waves (both collinear and oblique) and a combination
of main wave with a swell. The oblique and swell waves induced larger responses than the
collinear waves because of the lack of aerodynamic damping in the transverse direction. A
comparison of the responses with that of the baseline configuration showed that the config-
uration with inclined tendons has smaller response and hence a further comprehensive loads
and load cases analysis is needed to finalize the selection.

The influence of controller parameters on the platform responses was investigated to observe
if the well known pitch instability or any other controller related instability occur for the TLP
configurations considered. Adapting the onshore control parameters based on the lowest
natural frequency of the system helped to reduce the platform pitch response, however, the
platform pitch response did not show any influence of the instability. This may be due to
the reason that the TLP configuration is relatively stiff in pitch compared to a Spar buoy
configuration. Hence, the TLP configuration may not be sensitive to a pitch instability
because of its stiff configuration.

8.2 Future Work

A comprehensive loads and load cases analysis may be carried out to quantify the extreme
and fatigue loads out to finalize a potential TLP configuration. The analysis would also
helps to study the differences in loads and responses with respect to an onshore wind turbine
thereby the feasibility of a TLP configuration may be assessed.

The loads and responses from the extended Flex5 may be compared with that of other codes
for certain identified load cases, which will be a first step towards an extensive validation.
By doing so, the strengths and weaknesses of the new implementation can be identified.

In the next step, the code may be validated using measurements from model study or field
study, which will make the code more robust. This will enhance the confidence in floating
wind turbine modeling.

The influence of diffraction and radiation may be investigated to validate the present as-
sumptions. It will also help to investigate larger diameter floater concepts, which may be
sensitive to diffraction and radiation.

A sophisticated controller algorithm module may be derived and implemented, which takes
into account the platform responses. This will provide more physical representation of the
concept and hence the loads and responses. In addition, stability aspects related to the
control actions, if any, can be understood.



Bibliography

Bredmose, H. (2002). Deterministic modelling of water waves in the frequency domain. PhD
Thesis, Technical University of Denmark , 174–179.

Bredmose, H. and N. G. Jacobsen (2010). Breaking wave impacts on offshore wind turbine
foundations: Focused wave groups and cfd. In Proceedings of the ASME 29th 2010 In-
ternational conference on ocean, offshore and arctic engineering OMAE2010, Shanghai
(China).

Butterfield, S. (2005). Dynamic stall simulated as time lag of separation. In Proceedings of
the 4th IEA symposium on the aerodynamics of wind turbines, Rome (Italy).

Chen, Z. (2005). Deepwater floater for wind turbines. M.Sc. Thesis, Technical University
of Denmark .

Chen, Z., N. Tarp-Johansen, and J. Jensen (2006). Mechanical characteristics of some
deepwater floater designs for offshore wind turbines. Wind Engineering 30, 417–430.

Cordle, A. and J. Jonkman (2011). State of the art in floating wind turbine design tools. In
Proceedings of the 21st (2011) International Offshore and Polar Engineering Conference
(ISOPE), Hawaii (USA), pp. 367 – 374.

DNV (2011). Design of offshore wind turbine structures. Offshore standard DNV-OS-J101 .

FINO (2011). http ://www.fino3.de. downloaded on 05.10.2011.

Forristall, G. Z. (1981). Kinematics of directionally spread waves. In Proceedings of Con-
ference on directional wave spectra applications, California (USA), pp. 129–146.

Garrad and Hassan (2010). Bladed theory manual version 4.0. October 2010.

GL (2007). Guideline for the certification of offshore wind turbines. Edition 2005.

Gudmestad, O. T. (1993). Measured and predicted deep water wave kinematics in regular
and irregular seas. Marine Structures 6, 1–73.

Halfpenny (1991). Dynamic stall simulated as time lag of separation. In Proceedings of the
4th IEA symposium on the aerodynamics of wind turbines, Rome (Italy).

Hansen, M. H., A. Hansen, T. Larsen, S. Øye, P. Sørensen, and P. Fuglsang (2005). Control
design for a pitch-regulated, variable speed wind turbine. Risø-R-1500(EN).

Hansen, M. O. L. (2008). Aerodynamics of wind turbines. Second edition, Earthscan.

Henderson, A. and M. Patel (1998). Floating offshore wind energy. In Proceedings of the
20th BWEA annual conference.

Henderson, A. R., B. Bulder, R. Huijsmans, J. Peeringa, J. Pierik, E. Snijders, M. van Hees,
G. H. Wijnants, and M. J. Wolf (2003). Floating windfarms for shallow offshore sites. In
Offshore wind energy in mediterranean and other european seas conference, Naples (Italy).

Henderson, A. R., R. Leutz, and T. Fujii (2002). Potential for floating offshore wind energy in
japanese waters. In Proceedings of the twelfth international offshore and polar engineering
conference, Kitakyushu (Japan).

175



176 BIBLIOGRAPHY

Henderson, A. R. and M. H. Patel (2003). On the modelling of a floating offshore wind
turbine. Wind Energy 6, 53–86.

Henderson, A. R., M. H. Patel, J. Halliday, and G. Watson (1999). Multiple turbine floating
offshore windfarms. In European Wind Energy Conference, Nice (France).

Henderson, A. R., G. M. Watson, M. H. Patel, and J. A. Halliday (2000). Floating offshore
windfarms - an option? In Offshore wind energy in mediterranean and other european
seas conference, Sicilia (Italy).

Henderson, A. R. and D. Witcher (2010). Floating offshore wind energy - a review of the
current status and an assessment of the prospects. Wind Engineering 34, 01–16.

Henderson, H. R. and J. H. Vugts (2001). Prospects for floating offshore wind energy. In
European Wind Energy Conference, Copenhagen (Denmark).

IEC (2009). Wind turbines - part 3: Design requirements for offshore wind turbines, iec
61400-3.

ISO (2005). Petroleum and natural gas industries - specific requirements for offshore struc-
tures - part 1: Metocean design and operating considerations. International Standard
ISO-19901-1 .

Joensen, S., J. J. Jensen, and A. E. Mansour (2007). Extreme value predictions for wave and
wind-induced loads on floating offshore wind turbines using form. In 10th Int. Symposium
PRADS2007, Pennsylvania (USA).

Johannessen, K., T. Meling, and S. Haver (2002). Joint distribution for wind and waves in the
northern north sea. International Journal of Offshore and Polar Engineering 12(1)(18).

Jonkman, J. (2008). Influence of control on the pitch damping of a floating wind turbine.
In ASME Wind Energy symposium,NREL/CP-500-42589, Reno (USA).

Jonkman, J. and M. Buhl (2005). Fast user’s guide. Technical report NREL/EL-500-
38230 August 2005.

Jonkman, J. and M. Buhl (2007a). Development and verification of a fully coupled simulator
for offshore wind turbines. In 45th AIAA Aerospace sciences meeting and exhibition,AIAA-
2007-212,NREL/CP-500-40979, Reno (USA).

Jonkman, J. and M. Buhl (2007b). Loads analysis of a floating offshore wind turbine using
fully coupled simulation. In WINDPOWER 2007 conference and exhibition,NREL/CP-
500-41714, Los Angeles (USA).

Jonkman, J., S. Butterfield, W. Musial, and G. Scott (2009). Definition of a 5-mw reference
wind turbine for offshore system development. NREL/TP-500-38060 .

Jonkman, J., T. Larsen, A. Hansen, T. Nygaard, K. Maus, M. Karimirad, Z. Gao, T. Moan,
I. Fylling, J. Nichols, M. Kohlmeier, J. P. Vergara, D. Merino, W. Shi, and H. Park (2010).
Offshore code comparison collaboration within iea wind task 23: Phase iv results regard-
ing floating wind turbine modeling. In Proceedings of European wind energy conference,
EWEC, Warsaw (Poland).

Jonkman, J. and P. Sclavounos (2006). Development of fully coupled aeroelastic and hy-
drodynamic models for offshore wind turbines. In 44th AIAA Aerospace sciences meeting
and exhibition,AIAA-2006-995,NREL/CP-500-39066, Reno (USA).

Jonkman, J. M. (2007). Dynamics modeling and loads analysis of an offshore floating wind
turbine. PhD Thesis, NREL/TP-500-41958 .



BIBLIOGRAPHY 177

Karimirad, M. (2011). Dynamic stall simulated as time lag of separation. In Proceedings of
the 4th IEA symposium on the aerodynamics of wind turbines, Rome (Italy).

Karimirad, M., Z. Gao, and T. Moan (2009). Dynamic motion analysis of catenary moored
spar wind turbine in extreme environmental condition. In Proceedings of European offshore
wind conference, Stockholm (Sweden).

Karimirad, M. and T. Moan (2010). Effect of aerodynamic and hydrodynamic damping on
dynamic response of spar-type floating wind turbine. In Proceedings of European wind
energy conference, EWEC, Warsaw (Poland).

Karimirad, M. and T. Moan (2011a). Extreme dynamic structural response analysis of
catenary moored spar wind turbine in harsh environmental conditions. Journal of offshore
mechanics and arctic engineering 133.

Karimirad, M. and T. Moan (2011b). Wave and wind induced dynamic response of a spar-
type offshore wind turbine. Journal of waterway, port, coastal and ocean engineering.

Knauer, A. (2006). Dynamic stall simulated as time lag of separation. In Proceedings of the
4th IEA symposium on the aerodynamics of wind turbines, Rome (Italy).

Kogaki, T., H. Matsumiya, and M. Nagai (2003). Technical and economic aspects of offshore
wind energy development in japan. In Proceedings of the International offshore and polar
engineering conference, Kitakyushu (Japan).

Kosugi, A., O. Ryu, K. Hiroshi, A. Yoshiaki, and K. Tsuguki (2002). A feasibility study
on a floating wind farm off japan coast. In Proceedings of the International offshore and
polar engineering conference.

Laino, D. and A. Hansen (2002). User’s guide to the wind turbine aerodynamics computer
software aerodyn.

Larsen, T. and A. Hansen (2007). How 2 hawc2, the user’s manual. December 2007.

Larsen, T. J. and T. D. Hanson (2007). A method to avoid negative damped low frequent
tower vibrations for a floating, pitch controlled wind turbine. Journal of Physics: Con-
ference series 75.

Lee, K., P. Sclavounos, and E. Wayman (2005). Floating wind turbines. In Proceedings of
20th International workshop on water waves and floating bodies, Spitsbergen (Norway).

Lindenburg, C. (2005). Phatas release ’nov-2003’ and ’apr-2005’ user’s manual - program
for horizontal axis wind turbine analysis and simulation. ECN-I–05-005 May 2005.

Luxcey, N., H. Ormberg, and E. Passano (2011). Global analysis of a floating wind turbine
using an aero-hydro-elastic model. part2: Benchmark study. In Proceedings of 30th Inter-
national conference on offshore mechanics and arctic engineering, OMAE2011, Rotterdam
(The Netherlands).

Mann, J. (1994). The spatial structure of neutral atmospheric surface-layer turbulence. J.
Fluid Mech. 273, 141–168.

Mann, J. (1998). Wind field simulation. Prob. Engng. Mech. 13, 269–282.

Manwell, J. F., A. L. Rogers, and J. G. McGowan (2001). Status of offshore wind energy in
the united states. In Proceedings of power engineering society summer meeting.

Morison, J. R., M. P. OBrien, J. W. Johnson, and S. A. Schaaf (1950). The forces exerted
by surface waves on monopiles. J. Petrol Techn. 189, 149–154.



178 BIBLIOGRAPHY

Musial, W. and S. Butterfield (2004). Future of offshore wind energy in the united states.
In Proceedings of EnergyOcean 2004, Palm Beach (USA).

Nielsen, F. G., T. D. Hanson, and B. Skaare (2006a). Integrated dynamic analysis of float-
ing offshore wind turbines. In Proceedings of 25th International conference on offshore
mechanics and arctic engineering, OMAE2006, Hamburg (Germany).

Nielsen, F. G., T. D. Hanson, and B. Skaare (2006b). Integrated dynamic analysis of float-
ing offshore wind turbines. In Proceedings of European wind energy conference, EWEC,
Athens (Greece).

Ormberg, H., E. Passano, and N. Luxcey (2011). Global analysis of a floating wind turbine
using an aero-hydro-elastic model. part1: Code development and case study. In Pro-
ceedings of 30th International conference on offshore mechanics and arctic engineering,
OMAE2011, Rotterdam (The Netherlands).

Øye, S. (1991). Dynamic stall simulated as time lag of separation. In Proceedings of the 4th
IEA symposium on the aerodynamics of wind turbines, Rome (Italy).

Øye, S. (1996). Flex4 simulation of wind turbine dynamics. In 28th IEA Meeting of Ex-
perts Concerning State of the Art of Aeroelastic Codes for Wind Turbine Calculationsn
(available through International Energy Agency).

Roddier, D., C. Cermelli, and A. Weinstein (2001). Windfloat: A floating foundation for
offshore wind turbines-part i: Design basis and qualification process. In Proceedings of the
28th international conference on offshore mechanics and arctic engineering, OMAE2009,
Hawaii (USA).

Rodenbusch, G. and G. Z. Forristall (1986). An emperical model for random directional wave
kinematics near the free surface. In Proceedings of 18th Offshore technology conference,
Houston (USA), pp. 137–146.

Schløer, S., H. Bredmose, H. Bingham, and T. Larsen (2012). Effects from fully nonlin-
ear irregular wave force on the fatigue life of an offshore wind turbine and its monopile
foundation. In Proceedings of the ASME 31st 2012 International Conferene on Ocean,
Offshore and Arctic Engineering, Rio de Janeiro (Brazil).

Sclavounos, P., C. Tracy, and S. Lee (2008). Floating offshore wind turbines: Responses in
a seastate pareto optimal designs and economic assessment. In Proceedings of 27th In-
ternational conference on offshore mechanics and arctic engineering, OMAE2008, Estoril
(Portugal).

Sclavounos, P. D., S. Lee, J. DiPietro, G. Potenza, P. Caramuscio, and G. D. Michele
(2010). Floating offshore wind turbines: Tension leg platform taught leg buoy concepts
supporting 3-5 mw wind turbines. In Proceedings of European wind energy conference,
EWEC, Warsaw (Poland).

Skaare, B., T. D. Hanson, F. G. Nielsen, R. Yttervik, A. M. Hansen, and K. Thomsen
(2007a). Integrated dynamic analysis of floating offshore wind turbines. In Proceedings of
26th International conference on offshore mechanics and arctic engineering, OMAE2007,
California (USA).

Skaare, B., T. D. Hanson, F. G. Nielsen, R. Yttervik, A. M. Hansen, and K. Thomsen
(2007b). Integrated dynamic analysis of floating offshore wind turbines. In Proceedings of
European wind energy conference, EWEC, Milan (Italy).

Sumer, B. M. and J. Fredsøe (2006). Hydrodynamics around cylindrical structures. Revised
edition, World Scientific.



BIBLIOGRAPHY 179

Suzuki, J. (1994). The spatial structure of neutral atmospheric surface-layer turbulence. J.
Fluid Mech. 273, 141–168.

Vita, L., U. Paulsen, and T. Pedersen (2010). A novel floating offshore wind turbine con-
cept:new developments. In Proceedings of the European wind energy conference, Warsaw
(Poland).

Wayman, E., P. Sclavounos, S. Butterfield, J. Jonkman, and W. Musial (2006). Coupled
dynamic modeling of floating wind turbine systems. In Proceedings of the Offshore Tech-
nology Conference 2006,OTC-18287, Houston (USA).

Wheeler, J. D. (1970). Method for calculating forces produced by irregular waves. J. Petrol
Techn., 119–137.

Withee, J. E. (2004). Fully coupled dynamic analysis of a floating wind turbine system.
PhD Thesis, Department of Ocean Engineering, Massachusetts Institute of Technology.
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Appendix A

Derivation of mooring force

A.1 Mooring force

The restoring forces offered by the mooring lines are formulated. A schematic sketch of the
un-displaced system is shown in Figure A.1.

Figure A.1: Schematic sketch of mooring lines

In the figure, only the first mooring line is shown. The geometric position of the fairlead
points, derived in system 2 (platform) is given below.
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The fairlead positions of the tendons 1 to 4 are,
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The anchor point positions with respect to the platform bottom centre point are written as
follows.
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The initial coordinates of the tendons are computed using the geometric relations as given
below.

ri1 = AP1 − FLP1 (A.9)

ri2 = AP2 − FLP2 (A.10)

ri3 = AP3 − FLP3 (A.11)

ri4 = AP4 − FLP4 (A.12)
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Hence, the initial tendon lengths can be computed by taking the modulus of the length
vector, such as, Li1 = ‖ri1‖. Similarly, the initial lengths for other three tendons, Li2, Li3
and Li4 can also be computed.

Let the platform is subjected to the following translational and rotational displacements.

spc =







η1
η2
η3







(A.13)

rpc =







η4
η5
η6







(A.14)

where spc and rpc are the translational and rotational displacements of the platform centre
point, η1, η2, η3, η4, η5 and η6 are the platform surge, sway, heave, roll, pitch and yaw
displacements respectively.

While the platform is subjected to the above displacements, the final tendon coordinates
can be found out using the following equations.

rf1 = ri1 − spc − rpc × FLP1 (A.15)

rf2 = ri2 − spc − rpc × FLP2 (A.16)

rf3 = ri3 − spc − rpc × FLP3 (A.17)

rf4 = ri4 − spc − rpc × FLP4 (A.18)

Hence, the final tendon lengths are computed by taking the modulus of the length vector,
such as Lf1, which is given below.

Lf1 = ‖rf1‖ (A.19)

Similarly, the final lengths for other three tendons, Lf2, Lf3 and Lf4 are also calculated.
The change in lengths of the tendons are obtained by subtracting the initial length from the
final tendon length as, dL1 = Lf1−Li1 and similarly dL2, dL3 and dL4 are also computed.

The instantaneous tendon tensions when the platform is subjected to displacements are
computed as given below.

T 1 =
T 0

4
+ dT 1 (A.20)

where T 0 is the initial tension and dT 1 is the change in tension of first tendon, which is
given below.

dT 1 =
AtendEtend

Li1
dL1 (A.21)

where Atend and Etend are the area of cross-section and Young’s modulus of the tendon.
Similarly, the change in tension and instantaneous tendon tensions are computed for the
other three tendons as well.
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The instantaneous tendon tensions generate a moment about the platform bottom centre
point, for which the moment arms are the same as the fair lead point vectors.

Hence the restoring force and moment vectors are computed as given below.

Restoring force from the first tendon is given by,

TF1 = T 1
rf1
Lf1

(A.22)

where the ratio, rf1/Lf1 represents the unit vector along the first tendon and similarly the
restoring forces from the other tendons TF2, TF3 and TF4 are also computed.

The moment arm for computing the restoring moments are given below.

r1Moment = FLP1 + rpc × FLP1 (A.23)

Similarly, the moment arms for other tendons, r2Moment, r3Moment and r4Moment
can also be computed.

The restoring moments are computed using the following equation.

RM1 = r1Moment×TF1 (A.24)

Similarly RM2, RM3 and RM4 can also be computed.

Hence, the total restoring forces and moments are calculated as given below.

TF = TF1+TF2+TF3+TF4 (A.25)

RM = RM1+RM2+RM3+RM4 (A.26)

where TF is the restoring force (surge, sway and heave) and RM is the restoring moment
(roll, pitch and yaw).



Appendix B

Derivation of generalized force and mass

B.1 Generalized force

The generalized force is derived as given below.

First element:

A unit virtual displacement in the first degree of freedom gives rise to a virtual work of δW ,
which is the first element of the generalized force, as given below.

Fg1 = F1 · 1 + Fw · 1 + Fmoor1 · 1 (B.1)

where F1 is the hydrodynamic surge force, Fmoor1 is the mooring force in the surge degree
of freedom and Fw is the rotor thrust, given by the following equation.

Fw =

∫ R

0

(

pB1
n dr + pB2

n dr + pB3
n dr

)

(B.2)

Second element:

A unit virtual displacement in the second degree of freedom gives rise to a virtual work of
δW , which is the second element of the generalized force, as given below.

Fg2 = F2 · 1 + F b
g2 · 1 + Fmoor2 · 1 (B.3)

where F2 is the hydrodynamic sway force, Fmoor2 is the mooring force in sway degree of
freedom and F b

g2 is the force contribution from blades due to the platform sway virtual
displacement, given by the following equation.

F b
g2 =

∫ R

0







0
pB1
t

pB1
n







· [T ]B1
26







0
1
0







dr +

∫ R

0







0
pB2
t

pB2
n







· [T ]B2
26







0
1
0







dr

+

∫ R

0







0
pB3
t

pB3
n







· [T ]B3
26







0
1
0







dr

(B.4)

where [T ]B1
26 , [T ]

B2
26 and [T ]B3

26 represent the transformation matrices from platform (system

2) to blade 1, blade 2 and blade 3 (system 6) respectively and the vector







0
1
0







represents

the platform displacement, wherein only sway is present.

Third element:

184
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A unit virtual displacement in the third degree of freedom gives rise to a virtual work of
δW , which is the third element of the generalized force, as given below.

Fg3 = F3 · 1 + F b
g3 · 1 + Fb · 1− FG · 1 + Fmoor3 · 1 (B.5)

where F3 is the hydrodynamic heave force, Fb and FG are the buoyancy and gravity force,
Fmoor3 is the mooring force in heave degree of freedom and F b

g3 is the force contribution
from blades due to the platform heave virtual displacement, which is given by the following
equation.

F b
g3 =

∫ R

0







0
pB1
t

pB1
n







· [T ]B1
26







0
0
1







dr +

∫ R

0







0
pB2
t

pB2
n







· [T ]B2
26







0
0
1







dr

+

∫ R

0







0
pB3
t

pB3
n







· [T ]B3
26







0
0
1







dr

(B.6)

where the vector







0
0
1







represents the platform displacement, wherein only heave is present.

Fourth element:

A unit virtual displacement in the fourth degree of freedom gives rise to a virtual work of
δW , which is the fourth element of the generalized force, as given below.

Fg4 = F4 · 1 + F b
g4 + Fbyb − FGyG + Fmoor4 · 1 (B.7)

where F4 is the hydrodynamic roll moment, yb and yG are the y coordinates of centres of
buoyancy and gravity, Fmoor4 is the restoring moment in roll degree of freedom and F b

g4 is
the moment contribution from blades due to the platform roll virtual displacement, which
is given by the following equation.

F b
g4 =

∫ R

0







0
pB1
t

pB1
n







· [T ]B1
26











1
0
0







×







rx
ry
rz









 dr

+

∫ R

0







0
pB2
t

pB2
n







· [T ]B2
26











1
0
0







×







rx
ry
rz









 dr

+

∫ R

0







0
pB3
t

pB3
n







· [T ]B3
26











1
0
0







×







rx
ry
rz









 dr

(B.8)

where the vector







1
0
0







represents the platform displacement (only roll is present) and

the vector







rx
ry
rz







represents the coordinates of the blade section under consideration with

respect to the platform.
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Fifth element:

A unit virtual displacement in the fifth degree of freedom gives rise to a virtual work of δW ,
which is the fifth element of the generalized force, as given below.

Fg5 = F5 · 1 + F b
g5 + Fbxb − FGxG + Fmoor5 · 1 (B.9)

where F5 is the hydrodynamic pitch moment, xb and xG are the x coordinates of centres of
buoyancy and gravity, Fmoor5 is the restoring moment in pitch degree of freedom and F b

g5 is
the moment contribution from blades due to the platform pitch virtual displacement, which
is given by the following equation.

F b
g5 =

∫ R

0







0
pB1
t

pB1
n







· [T ]B1
26











0
1
0







×







rx
ry
rz









 dr

+

∫ R

0







0
pB2
t

pB2
n







· [T ]B2
26











0
1
0







×







rx
ry
rz









 dr

+

∫ R

0







0
pB3
t

pB3
n







· [T ]B3
26











0
1
0







×







rx
ry
rz









 dr

(B.10)

where the vector







0
1
0







represents the platform displacement (only pitch is present).

Sixth element:

A unit virtual displacement in the sixth degree of freedom gives rise to a virtual work of
δW , which is the sixth element of the generalized force, as given below.

Fg6 = F6 · 1 + F b
g6 + Fmoor6 · 1 (B.11)

where F6 is the hydrodynamic yaw moment, Fmoor6 is the restoring moment in yaw degree
of freedom and F b

g6 is the moment contribution from blades due to the platform yaw virtual
displacement, which is given by the following equation.

F b
g6 =

∫ R

0







0
pB1
t

pB1
n







· [T ]B1
26











0
0
1







×
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

 dr

+

∫ R

0
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0
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t
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n
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
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· [T ]B2
26


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
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
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×
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
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 dr

+

∫ R

0
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t

pB3
n







· [T ]B3
26


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
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×
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

 dr

(B.12)

where the vector







0
0
1







represents the platform displacement (only yaw is present).
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Seventh element:

The generalized force corresponding to a unit virtual displacement in the seventh degree of
freedom is the rotor thrust and hence, Fg7 = Fw.

Eighth element:

The generalized force corresponding to a unit virtual displacement in the eighth degree of
freedom is the torque, which is given by, Fg8 = Maero −Mgen.

where Maero is the rotor torque, which can be written as,

Maero =

∫ R

0

(

pB1
t r + pB2

t r + pB3
t r
)

dr (B.13)

and the generator torque, Mgen, is the same as given in section 4.2 of Chapter 4.

Ninth element:

The generalized force corresponding to a unit virtual displacement in the ninth degree of
freedom (first flapwise deflection in blade 1) is given below. The contribution is only from
blade 1 since the unit virtual displacement in blade 1 does not affect other blades.

Fg9 =

∫ R

0





0
pB1
t

pB1
n



 ·





0

φ1f
1,y

φ1f
1,z



 dr

=

∫ R

0

(

pB1
t

(

φe
1f cos θp + φf

1f sin θp

)

+ pB1
n

(

−φe
1f sin θp + φf

1f cos θp

))

dr

(B.14)

where the blade displacements in the global coordinate system, φ1f
1,y =

(

φe
1f cos θp + φf

1f sin θp

)

and φ1f
1,z =

(

−φe
1f sin θp + φf

1f cos θp

)

, wherein φf
1f and φe

1f are the flapwise and edgewise

contributions of the first flapwise mode shape and θp is the pitch angle.

Tenth element:

The generalized force corresponding to a unit virtual displacement in the tenth degree of
freedom (first edgewise deflection in blade 1) is given below.

Fg10 =

∫ R

0





0
pB1
t

pB1
n



 ·





0
φ1e
1,y

φ1e
1,z



 dr

=

∫ R

0

(

pB1
t

(

φe
1e cos θp + φf

1e sin θp

)

+ pB1
n

(

−φe
1e sin θp + φf

1e cos θp

))

dr

(B.15)

where the blade displacements in the global coordinate system, φ1e
1,y =

(

φe
1e cos θp + φf

1e sin θp

)

and φ1e
1,z =

(

−φe
1e sin θp + φf

1e cos θp

)

, wherein φf
1e and φe

1e are the flapwise and edgewise

contributions of the first edgewise mode shape.

Eleventh element:
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The generalized force corresponding to a unit virtual displacement in the eleventh degree of
freedom (second flapwise deflection in blade 1) is given below.

Fg11 =

∫ R

0





0
pB1
t

pB1
n



 ·





0

φ2f
1,y

φ2f
1,z



 dr

=

∫ R

0

(

pB1
t

(

φe
2f cos θp + φf

2f sin θp

)

+ pB1
n

(

−φe
2f sin θp + φf

2f cos θp

))

dr

(B.16)

where the blade displacements in the global coordinate system, φ2f
1,y =

(

φe
2f cos θp + φf

2f sin θp

)

and φ2f
1,z =

(

−φe
2f sin θp + φf

2f cos θp

)

, wherein φf
2f and φe

2f are the flapwise and edgewise

contributions of the second flapwise mode shape.

Twelfth element:

The generalized force corresponding to a unit virtual displacement in the twelfth degree of
freedom (first flapwise deflection in blade 2) is given below.

Fg12 =

∫ R

0





0
pB2
t

pB2
n



 ·





0

φ1f
2,y

φ1f
2,z



 dr

=

∫ R

0

(

pB2
t

(

φe
1f cos θp + φf

1f sin θp

)

+ pB2
n

(

−φe
1f sin θp + φf

1f cos θp

))

dr

(B.17)

Thirteenth element:

The generalized force corresponding to a unit virtual displacement in the thirteenth degree
of freedom (first edgewise deflection in blade 2) is given below.

Fg13 =

∫ R

0





0
pB2
t

pB2
n



 ·





0
φ1e
2,y

φ1e
2,z



 dr

=

∫ R

0

(

pB2
t

(

φe
1e cos θp + φf

1e sin θp

)

+ pB2
n

(

−φe
1e sin θp + φf

1e cos θp

))

dr

(B.18)

Fourteenth element:

The generalized force corresponding to a unit virtual displacement in the fourteenth degree
of freedom (second flapwise deflection in blade 2) is given below.

Fg14 =

∫ R

0





0
pB2
t

pB2
n



 ·





0

φ2f
2,y

φ2f
2,z



 dr

=

∫ R

0

(

pB2
t

(

φe
2f cos θp + φf

2f sin θp

)

+ pB2
n

(

−φe
2f sin θp + φf

2f cos θp

))

dr

(B.19)
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Fifteenth element:

The generalized force corresponding to a unit virtual displacement in the fifteenth degree of
freedom (first flapwise deflection in blade 3) is given below.

Fg15 =

∫ R

0





0
pB3
t

pB3
n



 ·





0

φ1f
3,y

φ1f
3,z



 dr

=

∫ R

0

(

pB3
t

(

φe
1f cos θp + φf

1f sin θp

)

+ pB3
n

(

−φe
1f sin θp + φf

1f cos θp

))

dr

(B.20)

Sixteenth element:

The generalized force corresponding to a unit virtual displacement in the sixteenth degree
of freedom (first edgewise deflection in blade 3) is given below.

Fg16 =

∫ R

0





0
pB3
t

pB3
n



 ·





0
φ1e
3,y

φ1e
3,z



 dr

=

∫ R

0

(

pB3
t

(

φe
1e cos θp + φf

1e sin θp

)

+ pB3
n

(

−φe
1e sin θp + φf

1e cos θp

))

dr

(B.21)

Seventeenth element:

The generalized force corresponding to a unit virtual displacement in the seventeenth degree
of freedom (second flapwise deflection in blade 3) is given below.

Fg17 =

∫ R

0





0
pB3
t

pB3
n



 ·





0

φ2f
3,y

φ2f
3,z



 dr

=

∫ R

0

(

pB3
t

(

φe
2f cos θp + φf

2f sin θp

)

+ pB3
n

(

−φe
2f sin θp + φf

2f cos θp

))

dr

(B.22)

B.2 Generalized mass

The generalized mass is derived column-wise by giving a unit acceleration in the correspond-
ing degree of freedom, which is detailed below.

First column:

A unit acceleration is given in the first degree of freedom and corresponding inertia loads
are calculated.

First element in the first column is the virtual work by giving a virtual displacement in the
first degree of freedom, which implies the following equation.

M(1, 1) = m1 +mts (B.23)

where m1 is the sum of the structural mass of the platform, half of the tower and the added
mass in surge direction and mts is the sum of nacelle and half of the tower structural masses.
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The second, third, fourth, sixth and eighth elements in the first column are zero since a
unit acceleration in the first degree of freedom does not produce any inertia forces in these
degrees of freedom.

The fifth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fifth degree of freedom, which is given below.

M(5, 1) = mtsZn (B.24)

where Zn is the vertical distance from floater bottom to the nacelle.

The seventh element is obtained by computing the virtual work corresponding to a virtual
displacement in the seventh degree of freedom, which is given below.

M(7, 1) = mts (B.25)

The ninth element is obtained by computing the virtual work corresponding to a virtual
displacement in the ninth degree of freedom, which is given below.

M(9, 1) =

∫ R

0



m(r)[T ]B1
26







1
0
0









 ·







0

φ1f
1,y

φ1f
1,z







dr (B.26)

The tenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the tenth degree of freedom, which is given below.

M(10, 1) =

∫ R

0



m(r)[T ]B1
26







1
0
0









 ·







0
φ1e
1,y

φ1e
1,z







dr (B.27)

The eleventh element is obtained by computing the virtual work corresponding to a virtual
displacement in the eleventh degree of freedom, which is given below.

M(11, 1) =

∫ R

0



m(r)[T ]B1
26







1
0
0









 ·







0

φ2f
1,y

φ2f
1,z







dr (B.28)

The twelfth element is obtained by computing the virtual work corresponding to a virtual
displacement in the twelfth degree of freedom, which is given below.

M(12, 1) =

∫ R

0



m(r)[T ]B2
26







1
0
0









 ·







0

φ1f
2,y

φ1f
2,z







dr (B.29)

The thirteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the thirteenth degree of freedom, which is given below.

M(13, 1) =

∫ R

0



m(r)[T ]B2
26







1
0
0









 ·







0
φ1e
2,y

φ1e
2,z







dr (B.30)

The fourteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fourteenth degree of freedom, which is given below.
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M(14, 1) =

∫ R

0



m(r)[T ]B2
26







1
0
0









 ·







0

φ2f
2,y

φ2f
2,z







dr (B.31)

The fifteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fifteenth degree of freedom, which is given below.

M(15, 1) =

∫ R

0



m(r)[T ]B3
26







1
0
0









 ·







0

φ1f
3,y

φ1f
3,z







dr (B.32)

The sixteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the sixteenth degree of freedom, which is given below.

M(16, 1) =

∫ R

0



m(r)[T ]B3
26







1
0
0









 ·







0
φ1e
3,y

φ1e
3,z







dr (B.33)

The seventeenth element is obtained by computing the virtual work corresponding to a
virtual displacement in the seventeenth degree of freedom, which is given below.

M(17, 1) =

∫ R

0



m(r)[T ]B3
26







1
0
0









 ·







0

φ2f
3,y

φ2f
3,z







dr (B.34)

Second column:

A unit acceleration is given in the second degree of freedom and corresponding inertia loads
are calculated.

The first, third, fifth, sixth, seventh and eighth elements in the second column are zero since
a unit acceleration in the second degree of freedom does not produce any inertia forces in
these degrees of freedom.

Second element in the second column is the virtual work by giving a virtual displacement
in the second degree of freedom, which implies the following equation.

M(2, 2) = m2 +mts (B.35)

where m2 is the sum of the structural mass of the platform, half of the tower and the added
mass in sway direction.

The fourth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fourth degree of freedom, which is given below.

M(4, 2) = mtsZn (B.36)

The ninth element is obtained by computing the virtual work corresponding to a virtual
displacement in the ninth degree of freedom, which is given below.

M(9, 2) =

∫ R

0



m(r)[T ]B1
26







0
1
0









 ·







0

φ1f
1,y

φ1f
1,z







dr (B.37)
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The tenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the tenth degree of freedom, which is given below.

M(10, 2) =

∫ R

0



m(r)[T ]B1
26







0
1
0









 ·







0
φ1e
1,y

φ1e
1,z







dr (B.38)

The eleventh element is obtained by computing the virtual work corresponding to a virtual
displacement in the eleventh degree of freedom, which is given below.

M(11, 2) =

∫ R

0



m(r)[T ]B1
26







0
1
0









 ·







0

φ2f
1,y

φ2f
1,z







dr (B.39)

The twelfth element is obtained by computing the virtual work corresponding to a virtual
displacement in the twelfth degree of freedom, which is given below.

M(12, 2) =

∫ R

0



m(r)[T ]B2
26







0
1
0









 ·







0

φ1f
2,y

φ1f
2,z







dr (B.40)

The thirteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the thirteenth degree of freedom, which is given below.

M(13, 2) =

∫ R

0



m(r)[T ]B2
26







0
1
0









 ·







0
φ1e
2,y

φ1e
2,z







dr (B.41)

The fourteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fourteenth degree of freedom, which is given below.

M(14, 2) =

∫ R

0



m(r)[T ]B2
26







0
1
0









 ·







0

φ2f
2,y

φ2f
2,z







dr (B.42)

The fifteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fifteenth degree of freedom, which is given below.

M(15, 2) =

∫ R

0



m(r)[T ]B3
26







0
1
0









 ·







0

φ1f
3,y

φ1f
3,z







dr (B.43)

The sixteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the sixteenth degree of freedom, which is given below.

M(16, 2) =

∫ R

0



m(r)[T ]B3
26







0
1
0









 ·







0
φ1e
3,y

φ1e
3,z







dr (B.44)

The seventeenth element is obtained by computing the virtual work corresponding to a
virtual displacement in the seventeenth degree of freedom, which is given below.
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M(17, 2) =

∫ R

0



m(r)[T ]B3
26







0
1
0









 ·







0

φ2f
3,y

φ2f
3,z







dr (B.45)

Third column:

A unit acceleration is given in the third degree of freedom and corresponding inertia loads
are calculated.

The first, second, fourth, fifth, sixth, seventh and eighth elements in the third column are
zero since a unit acceleration in the third degree of freedom does not produce any inertia
forces in these degrees of freedom.

Third element in the third column is the virtual work by giving a virtual displacement in
the third degree of freedom, which implies the following equation.

M(3, 3) = m3 +mts (B.46)

where m3 is the sum of the structural mass of the platform, half of the tower and the added
mass in heave direction.

The ninth element is obtained by computing the virtual work corresponding to a virtual
displacement in the ninth degree of freedom, which is given below.

M(9, 3) =

∫ R

0



m(r)[T ]B1
26







0
0
1









 ·







0

φ1f
1,y

φ1f
1,z







dr (B.47)

The tenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the tenth degree of freedom, which is given below.

M(10, 3) =

∫ R

0



m(r)[T ]B1
26







0
0
1









 ·







0
φ1e
1,y

φ1e
1,z







dr (B.48)

The eleventh element is obtained by computing the virtual work corresponding to a virtual
displacement in the eleventh degree of freedom, which is given below.

M(11, 3) =

∫ R

0



m(r)[T ]B1
26







0
0
1









 ·







0

φ2f
1,y

φ2f
1,z







dr (B.49)

The twelfth element is obtained by computing the virtual work corresponding to a virtual
displacement in the twelfth degree of freedom, which is given below.

M(12, 3) =

∫ R

0



m(r)[T ]B2
26







0
0
1









 ·







0

φ1f
2,y

φ1f
2,z







dr (B.50)

The thirteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the thirteenth degree of freedom, which is given below.
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M(13, 3) =

∫ R

0



m(r)[T ]B2
26







0
0
1









 ·







0
φ1e
2,y

φ1e
2,z







dr (B.51)

The fourteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fourteenth degree of freedom, which is given below.

M(14, 3) =

∫ R

0



m(r)[T ]B2
26







0
0
1









 ·







0

φ2f
2,y

φ2f
2,z







dr (B.52)

The fifteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fifteenth degree of freedom, which is given below.

M(15, 3) =

∫ R

0



m(r)[T ]B3
26







0
0
1









 ·







0

φ1f
3,y

φ1f
3,z







dr (B.53)

The sixteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the sixteenth degree of freedom, which is given below.

M(16, 3) =

∫ R

0



m(r)[T ]B3
26







0
0
1









 ·







0
φ1e
3,y

φ1e
3,z







dr (B.54)

The seventeenth element is obtained by computing the virtual work corresponding to a
virtual displacement in the seventeenth degree of freedom, which is given below.

M(17, 3) =

∫ R

0



m(r)[T ]B3
26







0
0
1









 ·







0

φ2f
3,y

φ2f
3,z







dr (B.55)

Fourth column:

A unit acceleration is given in the fourth degree of freedom and corresponding inertia loads
are calculated.

The first, third, fifth, sixth, seventh and eighth elements in the fourth column are zero since
a unit acceleration in the fourth degree of freedom does not produce any inertia forces in
these degrees of freedom.

The second element is the same as that of fourth element in the second column because of
symmetry, ie, M(2, 4) = M(4, 2).

Fourth element in the fourth column is the virtual work by giving a virtual displacement in
the fourth degree of freedom, which implies the following equation.

M(4, 4) = J4G +mtsZ
2
n (B.56)

where J4G is the sum of roll moment of inertia and the added mass in roll degree of freedom.

The ninth element is obtained by computing the virtual work corresponding to a virtual
displacement in the ninth degree of freedom, which is given below.
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M(9, 4) =

∫ R

0



m(r)[T ]B1
26











1
0
0







×







rx
ry
rz













 ·







0

φ1f
1,y

φ1f
1,z







dr (B.57)

The tenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the tenth degree of freedom, which is given below.

M(10, 4) =

∫ R

0



m(r)[T ]B1
26











1
0
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


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×




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rx
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











 ·







0
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1,y

φ1e
1,z







dr (B.58)

The eleventh element is obtained by computing the virtual work corresponding to a virtual
displacement in the eleventh degree of freedom, which is given below.

M(11, 4) =

∫ R

0



m(r)[T ]B1
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
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


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
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
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
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



 ·







0

φ2f
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φ2f
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





dr (B.59)

The twelfth element is obtained by computing the virtual work corresponding to a virtual
displacement in the twelfth degree of freedom, which is given below.

M(12, 4) =

∫ R

0



m(r)[T ]B2
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
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
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
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
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





0
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φ1f
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





dr (B.60)

The thirteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the thirteenth degree of freedom, which is given below.

M(13, 4) =

∫ R

0



m(r)[T ]B2
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


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
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
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
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
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
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





dr (B.61)

The fourteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fourteenth degree of freedom, which is given below.

M(14, 4) =

∫ R

0
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
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
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
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




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
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dr (B.62)

The fifteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fifteenth degree of freedom, which is given below.

M(15, 4) =

∫ R

0
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
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
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
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
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
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
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





dr (B.63)

The sixteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the sixteenth degree of freedom, which is given below.

M(16, 4) =

∫ R

0
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
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
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
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
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
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
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dr (B.64)
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The seventeenth element is obtained by computing the virtual work corresponding to a
virtual displacement in the seventeenth degree of freedom, which is given below.

M(17, 4) =

∫ R

0
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m(r)[T ]B3
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
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
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
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
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






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
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
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



dr (B.65)

Fifth column:

A unit acceleration is given in the fifth degree of freedom and corresponding inertia loads
are calculated.

The first element is the same as that of the fifth element in the first column because of
symmetry, ie, M(1, 5) = M(5, 1).

The second, third, fourth, sixth and eighth elements in the fifth column are zero since a
unit acceleration in the fifth degree of freedom does not produce any inertia forces in these
degrees of freedom.

Fifth element in the fifth column is the virtual work by giving a virtual displacement in the
fifth degree of freedom, which implies the following equation.

M(5, 5) = J5G +mtsZ
2
n (B.66)

where J5G is the sum of pitch moment of inertia and the added mass in the pitch degree of
freedom.

The seventh element is obtained by computing the virtual work corresponding to a virtual
displacement in the seventh degree of freedom, which is given below.

M(7, 5) = mtsZn (B.67)

The ninth element is obtained by computing the virtual work corresponding to a virtual
displacement in the ninth degree of freedom, which is given below.

M(9, 5) =

∫ R
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
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
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
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
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
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dr (B.68)

The tenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the tenth degree of freedom, which is given below.

M(10, 5) =

∫ R
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dr (B.69)

The eleventh element is obtained by computing the virtual work corresponding to a virtual
displacement in the eleventh degree of freedom, which is given below.

M(11, 5) =
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dr (B.70)

The twelfth element is obtained by computing the virtual work corresponding to a virtual
displacement in the twelfth degree of freedom, which is given below.



B.2 Generalized mass 197

M(12, 5) =

∫ R

0



m(r)[T ]B2
26











0
1
0







×







rx
ry
rz













 ·







0

φ1f
2,y

φ1f
2,z







dr (B.71)

The thirteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the thirteenth degree of freedom, which is given below.

M(13, 5) =

∫ R

0



m(r)[T ]B2
26











0
1
0







×







rx
ry
rz













 ·







0
φ1e
2,y

φ1e
2,z







dr (B.72)

The fourteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fourteenth degree of freedom, which is given below.

M(14, 5) =

∫ R

0



m(r)[T ]B2
26











0
1
0







×







rx
ry
rz













 ·







0

φ2f
2,y

φ2f
2,z







dr (B.73)

The fifteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fifteenth degree of freedom, which is given below.

M(15, 5) =

∫ R

0



m(r)[T ]B3
26











0
1
0







×







rx
ry
rz













 ·







0

φ1f
3,y

φ1f
3,z







dr (B.74)

The sixteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the sixteenth degree of freedom, which is given below.

M(16, 5) =

∫ R

0



m(r)[T ]B3
26











0
1
0







×







rx
ry
rz













 ·







0
φ1e
3,y

φ1e
3,z







dr (B.75)

The seventeenth element is obtained by computing the virtual work corresponding to a
virtual displacement in the seventeenth degree of freedom, which is given below.

M(17, 5) =

∫ R

0



m(r)[T ]B3
26











0
1
0







×







rx
ry
rz













 ·







0

φ2f
3,y

φ2f
3,z







dr (B.76)

Sixth column:

A unit acceleration is given in the sixth degree of freedom and the corresponding inertia
loads are calculated.

The first, second, third, fourth, fifth, sixth, seventh and eighth elements in the sixth column
are zero since a unit acceleration in the sixth degree of freedom does not produce any inertia
forces in these degrees of freedom.

Sixth element in the sixth column is the virtual work by giving a virtual displacement in
the sixth degree of freedom, which implies the following equation.

M(6, 6) = J6G (B.77)
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where J6G is the yaw moment of inertia.

The ninth element is obtained by computing the virtual work corresponding to a virtual
displacement in the ninth degree of freedom, which is given below.

M(9, 6) =

∫ R

0



m(r)[T ]B1
26











0
0
1







×







rx
ry
rz













 ·







0

φ1f
1,y

φ1f
1,z







dr (B.78)

The tenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the tenth degree of freedom, which is given below.

M(10, 6) =

∫ R

0



m(r)[T ]B1
26











0
0
1







×







rx
ry
rz













 ·







0
φ1e
1,y

φ1e
1,z







dr (B.79)

The eleventh element is obtained by computing the virtual work corresponding to a virtual
displacement in the eleventh degree of freedom, which is given below.

M(11, 6) =

∫ R

0



m(r)[T ]B1
26











0
0
1







×






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ry
rz













 ·







0

φ2f
1,y

φ2f
1,z







dr (B.80)

The twelfth element is obtained by computing the virtual work corresponding to a virtual
displacement in the twelfth degree of freedom, which is given below.

M(12, 6) =

∫ R

0



m(r)[T ]B2
26











0
0
1







×







rx
ry
rz













 ·







0

φ1f
2,y

φ1f
2,z







dr (B.81)

The thirteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the thirteenth degree of freedom, which is given below.

M(13, 6) =

∫ R

0



m(r)[T ]B2
26











0
0
1







×







rx
ry
rz













 ·







0
φ1e
2,y

φ1e
2,z







dr (B.82)

The fourteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fourteenth degree of freedom, which is given below.

M(14, 6) =

∫ R

0



m(r)[T ]B2
26











0
0
1







×






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ry
rz













 ·







0

φ2f
2,y

φ2f
2,z







dr (B.83)

The fifteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fifteenth degree of freedom, which is given below.

M(15, 6) =

∫ R

0



m(r)[T ]B3
26











0
0
1







×






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ry
rz













 ·







0

φ1f
3,y

φ1f
3,z







dr (B.84)

The sixteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the sixteenth degree of freedom, which is given below.
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M(16, 6) =

∫ R

0



m(r)[T ]B3
26











0
0
1







×







rx
ry
rz













 ·







0
φ1e
3,y

φ1e
3,z







dr (B.85)

The seventeenth element is obtained by computing the virtual work corresponding to a
virtual displacement in the seventeenth degree of freedom, which is given below.

M(17, 6) =

∫ R

0



m(r)[T ]B3
26











0
0
1







×







rx
ry
rz













 ·







0

φ2f
3,y

φ2f
3,z







dr (B.86)

Seventh column:

A unit acceleration is given in the seventh degree of freedom and the corresponding inertia
loads are calculated.

The first element is the same as that of the seventh element in the first column because of
the symmetry, ie, M(1, 7) = M(7, 1) and similarly M(5, 7) = M(7, 5).

The second, third, fourth, sixth and eighth elements in the seventh column are zero since
a unit acceleration in the seventh degree of freedom does not produce any inertia forces in
these degrees of freedom.

Seventh element in the seventh column is the virtual work by giving a virtual displacement
in the seventh degree of freedom, which implies the following equation.

M(7, 7) = mts (B.87)

The ninth element is obtained by computing the virtual work corresponding to a virtual
displacement in the ninth degree of freedom, which is given below.

M(9, 7) =

∫ R

0



m(r)[T ]B1
46







0
0
1









 ·







0

φ1f
1,y

φ1f
1,z







dr (B.88)

The tenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the tenth degree of freedom, which is given below.

M(10, 7) =

∫ R

0



m(r)[T ]B1
46







0
0
1









 ·







0
φ1e
1,y

φ1e
1,z







dr (B.89)

The eleventh element is obtained by computing the virtual work corresponding to a virtual
displacement in the eleventh degree of freedom, which is given below.

M(11, 7) =

∫ R

0



m(r)[T ]B1
46







0
0
1









 ·







0

φ2f
1,y

φ2f
1,z







dr (B.90)

The twelfth element is obtained by computing the virtual work corresponding to a virtual
displacement in the twelfth degree of freedom, which is given below.
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M(12, 7) =

∫ R

0



m(r)[T ]B2
46







0
0
1









 ·







0

φ1f
2,y

φ1f
2,z







dr (B.91)

The thirteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the thirteenth degree of freedom, which is given below.

M(13, 7) =

∫ R

0



m(r)[T ]B2
46







0
0
1









 ·







0
φ1e
2,y

φ1e
2,z







dr (B.92)

The fourteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fourteenth degree of freedom, which is given below.

M(14, 7) =

∫ R

0



m(r)[T ]B2
46







0
0
1









 ·







0

φ2f
2,y

φ2f
2,z







dr (B.93)

The fifteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the fifteenth degree of freedom, which is given below.

M(15, 7) =

∫ R

0



m(r)[T ]B3
46







0
0
1









 ·







0

φ1f
3,y

φ1f
3,z







dr (B.94)

The sixteenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the sixteenth degree of freedom, which is given below.

M(16, 7) =

∫ R

0



m(r)[T ]B3
46







0
0
1









 ·







0
φ1e
3,y

φ1e
3,z







dr (B.95)

The seventeenth element is obtained by computing the virtual work corresponding to a
virtual displacement in the seventeenth degree of freedom, which is given below.

M(17, 7) =

∫ R

0



m(r)[T ]B3
46







0
0
1









 ·







0

φ2f
3,y

φ2f
3,z







dr (B.96)

Eighth column:

A unit acceleration is given in the eighth degree of freedom and the corresponding inertia
loads are calculated.

The first seven elements in column 8 are zero since a unit acceleration in the eighth degree
of freedom does not produce any inertia forces in these degrees of freedom.

Eighth element in the eighth column is the virtual work by giving a virtual displacement in
the eighth degree of freedom, which implies the following equation.

M(8, 8) = 3

∫ R

0

m(r)r2dr (B.97)
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The ninth element is obtained by computing the virtual work corresponding to a virtual
displacement in the ninth degree of freedom, which is given below.

M(9, 8) =

∫ R

0



m(r)



[T ]56







0
0
1







×







r

φ1f
1,y

φ1f
1,z













 ·







0

φ1f
1,y

φ1f
1,z







dr (B.98)

The tenth element is obtained by computing the virtual work corresponding to a virtual
displacement in the tenth degree of freedom, which is given below.

M(10, 8) =

∫ R

0



m(r)



[T ]56







0
0
1







×







r
φ1e
1,y

φ1e
1,z













 ·







0
φ1e
1,y

φ1e
1,z







dr (B.99)

The eleventh element is obtained by computing the virtual work corresponding to a virtual
displacement in the eleventh degree of freedom, which is given below.

M(11, 8) =

∫ R

0



m(r)



[T ]56







0
0
1







×







r

φ2f
1,y

φ2f
1,z













 ·







0

φ2f
1,y

φ2f
1,z







dr (B.100)

Since the blades are identical, the remaining mass elements in column 8 are one and the
same as that in blade 1, ie, M(15, 8) = M(12, 8) = M(9, 8), M(16, 8) = M(13, 8) = M(10, 8)
and M(17, 8) = M(14, 8) = M(11, 8).

Ninth column:

A unit acceleration is given in the ninth degree of freedom and the corresponding inertia
loads are calculated.

The first eight elements in column 9 are the same elements corresponding to the symmetric
terms, ie, M(1, 9) = M(9, 1), M(2, 9) = M(9, 2), M(3, 9) = M(9, 3), M(4, 9) = M(9, 4),
M(5, 9) = M(9, 5), M(6, 9) = M(9, 6), M(7, 9) = M(9, 7) and M(8, 9) = M(9, 8).

The diagonal element is the virtual work by giving a virtual displacement in the ninth degree
of freedom, which implies the following equation.

M(9, 9) =

∫ R

0

(

m(r)

(

(

φ1f
1,y

)2

+
(

φ1f
1,z

)2
))

dr (B.101)

All the other elements in the ninth column are zero since the inertia force on the first flapwise
degree of freedom on blade 1 does not influence the other degrees of freedom in the blade 1
and other blades and hence no virtual work done is present.

Tenth column:

Similar to the ninth column, apart from the symmetric elements (M(1,10) to M(8,10)), only
diagonal element (which corresponds to the first edgewise degree of freedom of blade 1) is
present, which is given below. All other terms are zeros.

M(10, 10) =

∫ R

0

(

m(r)
(

(

φ1e
1,y

)2
+
(

φ1e
1,z

)2
))

dr (B.102)

Eleventh column:
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Similar to the ninth column, apart from the symmetric elements (M(1,11) to M(8,11)), only
diagonal element (which corresponds to the second flapwise degree of freedom of blade 1) is
present, which is given below. All other terms are zeros.

M(11, 11) =

∫ R

0

(

m

(

(

φ2f
1,y

)2

+
(

φ2f
1,z

)2
))

dr (B.103)

From 12th to 17th columns only the first eight symmetric terms and the diagonal terms are
only present. The diagonal terms for blade 2 and 3 are the same as that of blade 1 since
the blades are identical, ie, M(15, 15) = M(12, 12) = M(9, 9), M(16, 16) = M(13, 13) =
M(10, 10) and M(17, 17) = M(14, 14) = M(11, 11).

Hence all of the terms in the generalized mass matrix are derived.


