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Forfatter: Abhijit Chougule
Titel: Indflydelse af atmosfærisk stabilitet p̊a den rumlige struktur af turbulens
Institut: DTU Vindenergi

Dansk Resumé:

Denne afhandling har tre kapitler. I det første kapitel behandles kryds-spektrale
faser mellem vindhastighedskomposanter m̊alt i to forskellige højder. Vindhastighed-
erne er m̊alt ved det nationale testcenter ved Høvsøre under ikke-neutrale, d.v.s.
diabatiske atmosfæriske forhold. Disse faser udtrykker i hvor høj grad turbulens
m̊alt i den ene højde er foran eller bagud turbulens i den anden højde. Fasevinklen
for tværkomposanten af vinden ses at være betydeligt større end for vindfluktua-
tionerne i middelvindsretningen som igen er større en fasevinklen for den vertikale
komposant. Faserne for komposanterne p̊a tværs og langs af middelvindretningen
vokser med bølgetallet og den vertikale højdeforskel, mens fasen for de vertikale
fluktuationer ikke ændrer sig synderligt med disse parametre. Fasevinkler for alle
atmosfæriske lagdelinger udviser stort set samme opførsel. Fasevinklerne for neu-
tral atmosfærisk lagdeling bliver sammenlignet med en “rapid distortion” teori,
som viser den samme rækkefølge af faserne som observationerne.

I det anden kapitel vurderes en model for den spektrale hastighedstensor udfra
et-punktsm̊alinger af vinden. Modellen indeholder tre parametre, som repræsen-
terer destruktionsraten af den specifikke turbulente kinetiske energi, en længdeskala
for turbulensen samt et m̊al for turbulensens anisotropi. Målinger foretaget med
soniske anemometre over skov og landbrugsland er blevet brugt til at beregne
modellens parametre for neutral, let stabil of let ustabil atmosfærisk lagdeling
for et bestemt hastighedsinterval. Destruktionsraten af energi over skoven var 9
gange højere end over landbrugsomr̊adet. Ingen betydelig forskel p̊a turbulensens
længdeskala blev observeret over de to typer terræn. Der var heller ikke forskelle
p̊a graden af anisotropi p̊a de to steder med undtagelse at tæt p̊a overfladen, hvor
turbulensen over skoven var lidt mere isotrop. Turbulens anisotropien var nogen-
lunde konstant med højden over skoven, mens den faldt let over landbrugslandet.
Ved brug af de fundne parametre kvantificeredes modellens evne til at forudsige
kohærens mellem vertikalt adskilte m̊alinger. Modellen overestimerede kohærensen
for alle tre hastighedskomposanter ved begge steder for de analyserede stabilitet-
sklasser. Modellen gav bedre forudsigelser for neutral stabilitet, end for let stabil
og ustabil lagdeling. Modellens forudsigelser var bedre for fluktuationer i mid-
delvindens retning og i den vertikale retning end for tværkomposanten. Der var
ingen betydelig forskel p̊a modellens præstation over de to terræn typer.

Det sidste kapitel opsummerer status for en spektral tensormodel i hvilken de
fysiske effekter p̊a turbulensen af b̊ade shear og temperaturlagdeling er modelleret.
Modellen er baseret p̊a “rapid distortion” teori, som bruger de lineariserede Navier-
Stokes ligninger i Fourier-rummet. Begrebet hvirvellevetid er brugt til at give de
lineære ligninger en stationær løsning. Den parametriserede hvirvellevetid fra Mann
(1994) er brugt. Udover de tre parametre fra Mann’s (1994) spektrale tensormodel
indeholder modellen to ekstra parametre som en konsekvens af indførslen af temper-
aturvariationerne. Disse parametre er Richardson-tallet, som er en stabilitetspa-
rameter, samt et m̊al for destruktionsraten af turbulente temperaturfluktuationer.
Modellen ser ud til at virke bedre for stabile end for ustabile atmosfæriske til-
stande. Modellen er i stand til at estimere længdeskalaerne for temperatur spektre
og temperatur-hastigheds kryds-spektrene godt. I det inertielle underomr̊ade (iner-
tial subrange) viser modellen at hastigheds-temperatur kryds-spektrene er propor-
tionelle med bølgetallet i strømningsretningen opløftet til potensen −7/3, hvilket
er foreneligt med observationerne. Modellen kan forudsige temperatur kohærenser,
dog med større held for stabil lagdeling end for ustabil. Modellens forudsigelser af
kohærenser sammenlignes med dem fra Mann (1994), og den nye model giver let
forbedrede resultater.
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Chapter 1

Vertical cross-spectral phases in
atmospheric flow

1.1 Introduction

The structure of atmospheric turbulence can be analysed in terms of two-point statis-
tics such as normalized cross-spectra (also known as coherences), which are typically
studied both experimentally and theoretically as a function of horizontal separation
distance for homogeneous turbulence in the atmospheric surface-layer (Mann [1994a];
Tong and Wyngaard [1996]). The coherences of the along-wind, cross-wind and verti-
cal velocity components (u,v,w) decrease with increasing separation distance, as seen
from both observations and theory (Mann [1994a]).

In this paper1 we investigate cross-spectra with particular emphasis on the associ-
ated phases ϕ for vertical separations ∆z, using observations at Høvsøre under diabatic
conditions (Sathe et al. [2012]). Chougule et al. [2012]2 studied the vertical phase
angles for all three velocity components (i.e. ϕu,ϕv and ϕw), including their behav-
ior in the neutral, horizontally homogeneous atmospheric boundary layer (ABL) using
measurement from Høvsøre and Cooperative Atmosphere-Surface Exchange Study in
1999 (CASES-99) (Poulos et al. [2002]; Sun et al. [2002]). Mann [1994a] studied ϕvw

1This paper, co-authored with J. Mann and M. Kelly, was presented in conference proceedings of
The Science of Making Torque from Wind, Oldenburg 2012.

2The paper titled “Vertical cross-spectral phases in neutral atmospheric flow” based on this study is
published in the J. Turb. co-authored by J. Mann, M. Kelly, J. Sun, D. H. Lenschow and E. G. Patton.
(c. f. Appdx A)

1



Cross-spectral phases

(the phase angle between v and w) for horizontal separations, and ϕuu(≡ ϕu) and ϕuw

for vertical separations where the w-component was measured further from the surface.
Few experimental investigations have been done on the phases. Heidrick et al. [1977]
experimentally studied the phases of the axial velocity component in fully developed
pipe flow using measurements taken at two different points, where the separation vec-
tor was oriented at different angles to the mean flow. Komori et al. [1983] studied
the phase angle between the vertical velocity-component and temperature in stably-
stratified open-channel flow. Both Heidrick et al. [1977] and Komori et al. [1983]
assumed turbulent motions approach as wavelike motions. The Sandia (Veers) method
from Veers [1988], which is used in wind engineering for load calculations on wind
turbines, assumes an average of zero phase between any two points because of an ex-
ponential form of the coherence function as given in Ref. Veers [1984]. The method
in Mann [1998], based on the Mann spectral tensor model from Mann [1994a] and
widely used in wind engineering, does give non-zero phases.

In addition to the observations, we also evaluate the phase angles from the Mann
spectral tensor model, which incorporates rapid distortion theory (RDT) (Pope [2000];
Townsend [1976]). The phases are determined by calculating the two-point cross-
spectra of velocity components and corresponding spectra as defined in Section 1.1.2.
The observations and the model used for the analysis are described in Section 1.2 and
Section 1.3, respectively. The results from the observations and the RDT model are
given in Section 1.4. In Section 1.5, we discuss more details, followed by conclusions
in Section 6.

1.1.1 Motivation

Mann [1994a] modeled the evolution of turbulence induced by uniform shear using
RDT in a neutral surface-layer. Mann [1998] used the model of Mann [1994a] to
develop a method to simulate the three-dimensional wind in the time domain. The
model in Mann [1994a] and the method in Mann [1998] are the industry standards for
aero-elastic calculation of wind turbine loads (IEC [2005]). Turbulence simulations
from Mann [1998] show systematic behavior in u,v and w fluctuations in the rotor
plane of a horizontal axis wind turbine, and when used to predict the respective phase
angles between two heights, we see that ϕv >ϕu >ϕw for k1∆z≤ 1, where k1 is stream-
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wise wavenumber. We expect that this behaviour in phasing is due to the vertical shear
as depicted in Figure 1.1.

 

a

b

Figure 1.1: Sketch of the eddy stretching due to the shear. The turbulence sensed at
point a leads in phase with respect to the turbulence sensed at point b in the rotor plane
of a horizontal axis turbine.

Chougule et al. [2012] shown that under neutral, horizontally homogeneous ABL,
ϕv > ϕu > ϕw and the RDT and LES modeled phases are consistent with the observed
phases under neutral condition. There are two basic assumptions considered in the
study of Chougule et al. [2012], one neutral stratification and second horizontally ho-
mogeneous flow. In order to confirm in more detail about the phase shift due to the
shearing effect and the phase behavior, we analyze diabatic data from Høvsøre with
the essentially inhomogeneous flow.

1.1.2 Definitions

The phases are calculated from complex cross-spectra. The cross-spectrum between
velocity components ui(t) (i = 1,2,3) and u j(t) ( j = 1,2,3) at heights z1 and z2, re-
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spectively, is defined as

χi j( f ,∆z) = 〈ûi( f ,z1)û∗j( f ,z2)〉, (1.1)

where f is frequency, ∆z = z2− z1, 〈 〉 denotes ensemble averaging, ∗ denotes com-
plex conjugate and ûi( f ,z1) is the complex-valued Fourier transform of the ith velocity
component ui(t) at height z1. The phase between the two velocity components is then

ϕi j( f ,∆z) = arg(χi j( f ,∆z)). (1.2)

The coherences, sometimes known as “squared coherences”, are calculated from the
cross-spectra and the single-point power-spectra via

cohi j( f ,∆z) =
|χi j( f ,∆z)|2

Fi( f ,z1)Fj( f ,z2)
, (1.3)

where Fi( f ,z) = 〈ûi( f )û∗i ( f )〉 is the single-point power-spectrum of the ith velocity
component ui(t) at height z.

If we assume that Taylor’s hypothesis of “frozen turbulence” is valid, then the
measured time series can be related to spatial fluctuations. So for the stream-wise
direction, single-point measurements can be related through k1 = 2π f/U , where U is
the stream-wise mean wind speed.

1.2 Høvsøre

The measurements are taken from the 116.5 m tall mast at the Høvsøre test site on the
west coast of Denmark. Sonic anemometers, sampling at 20 Hz and measuring in three
dimensions, are installed on the mast at heights of 10, 20, 40, 60, 80 and 100 m. The
land to the east of the mast can be considered as flat, homogeneous terrain. On the
west side of the mast, land extends 1500 m to the North Sea coast, including a dune
which can affect the flow. Five wind turbines are situated to the north of the mast.
More details about the location and instrumentation can be found in Refs. Sathe et al.,
2012].

Winds are selected from directions between 240◦ and 300◦ from where the flow is
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L-1È 10 m

20

40

60

80

PHL-1L

Figure 1.2: Histogram of atmospheric stabilities based on Obukhov lengths for wind
directions between 240◦ and 300◦, for all wind speed bins at the Høvsøre test site in
the west coast of Denmark. ABL is classified into 7 stabilities (c. f. Table 1.1).

essentially inhomogeneous and the data limited to when the 80 m mean wind speeds
fall between 8 and 9 m s−1. The calculations are done for diabatic conditions, where
atmospheric stability is classified based on the range of Obukhov lengths L0 as given
in Table 1.1 following Gryning et al. [2007]. The height interval chosen in the phase
analysis spans 40 – 100 m. Analysis is done using seven years of data from 2004 to
2010.

Table 1.1: Classification of ABL into seven atmospheric stabilities following Gryning
et al. [2007].

Obukhov Length (m) Atmospheric Stability
−100≤ Lo ≤−50 Very Unstable (VU)
−200≤ Lo ≤−100 Unstable (U)
−500≤ Lo ≤−200 Near Unstable (NU)
|Lo| ≥ 500 Neutral (N)

200≤ Lo ≤ 500 Near Stable (NS)
50≤ Lo ≤ 200 Stable (S)
10≤ Lo ≤ 50 Very Stable (VS)

The Figure 1.2 show the probability of occurrences of different atmospheric stabil-
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ities from very unstable (negative Lo) to very stable (positive Lo) case. The Obukhov
length Lo is defined as

Lo =
−u∗3

κ(g/T )w′T ′0
, (1.4)

where u∗ is the surface friction velocity which is constant within the surface layer and
decrease with the height above the surface layer, κ is the von Kármán constant (typ-
ically the value 0.4 is used), g is the acceleration due to gravity, T is the reference
temperature (if moisture is included then T is the virtual temperature and due to con-
served scalar, T becomes virtual potential temperature), w′T ′0 is the virtual potential
temperature flux at the surface.

1.3 Spectral tensor model

The Mann spectral velocity tensor model incorporates RDT with an assumption of
a mean uniform shear, plus a wavenumber-dependent eddy lifetime, to estimate the
structure of turbulence over uniform flat terrain, which has been extended to cover
gently varying orography (Mann [2000]). The model calculates the evolution of turbu-
lence in Fourier modes from an initial isotropic state, the energy spectrum of which is
given by the von Kármán form von Kármán [1948].

The Mann model contains three adjustable parameters:

• A length scale L describing the size of energy-containing eddies

• A non-dimensional anisotropy parameter Γ used in the parameterization of eddy
lifetime

• A measure of the energy dissipation αε2/3, where the Kolmogorov constant
α = 1.7 and ε is the rate of viscous dissipation of specific turbulent kinetic en-
ergy.

The analytical form of the spectral velocity tensor in Mann [1994a] is a function of
these three parameters and can be expressed as Φi j(k,L,Γ,αε2/3), where k = (k1,k2,k3)

is the three-dimensional wavenumber vector. The modeled cross-spectra which also
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become functions of the three parameters, are given as

χi j(k1,L,Γ,αε
2/3,∆y,∆z) =

∫
Φi j(k,L,Γ,αε

2/3)exp(i(k2∆y+ k3∆z))dk⊥, (1.5)

where
∫

dk⊥ ≡
∫

∞

−∞

∫
∞

−∞
dk2dk3 and ∆y is the transverse separation distance. The three

parameters are determined by fitting model single-point power-spectra, which from
Equation 1.5, are given by Fi(k1,L,Γ,αε2/3) = χii(k1,L,Γ,αε2/3,0,0) (no summa-
tion), to the measured single-point power-spectra through chi-squared fitting as given
in Ref. Mann [1994a].

Figure 1.3 gives an example of a model fit of power-spectra to the Høvsøre data at
40 m height for unstable, neutral and stable conditions illustrating extraction of L,Γ and
αε2/3. However, the Mann spectral tensor model assumes neutral stratification, and the
three parameters for non-neutral conditions can be obtained by forcing the model to
fit with measured spectra through chi-squared fits. The three parameters subsequently
used as an input to calculate numerically the cross-spectrum between any two velocity
components through Equation 1.5. Thus for vertical separations (∆y = 0), the model
cross-spectra and phases are expressed as χi j(k1,L,Γ,αε2/3,∆z) and ϕi j(k1,L,Γ,∆z),
respectively. The model phases are unaffected by ε .

The distortion of the wave vector due to shear dU/dz is given by k(t)= (k1,k2,k30−
k1(dU/dz)t), with the initial wave vector k0 = (k1,k2,k30). The model assumes a uni-
form shear so dU/dz is constant with height which is an approximation, but we do
not expect that a non-zero d2U/dz2 would significantly alter the results. In addition to
the uniform shear, the vertically inhomogeneous effect of blocking due to the surface
(e.g. ground) was included in Mann [1994a]; however, it does not produce significantly
different results. Nevertheless, as discussed above, χi j,Fi and ϕi j are functions of L,
which itself depends on the distance z from the ground. In this way the model treats
vertical inhomogeneity in application.

In the next section, the results from the observations and the model are provided,
followed by discussion in Section 5.
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Figure 1.3: Example of the model spectral fits (smooth lines) to the Høvsøre data
(points) at z = 40 m, for wind directions between 240◦ and 300◦ and wind speed bin 8-
9 ms−1. Number of thirty-minute time series: Unstable; 165, Neutral; 176 and Stable;
538.
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Figure 1.4: The cross-spectral phases (a) and the coherences (b) between 40 and 100
m at Høvsøre for a neutral ABL fitted with the spectral tensor model. Measurements:
ϕu;−∗−, ϕv;−�−, ϕw; –�–. Model: ϕu; - - -, ϕv; – – –, ϕw; ——. Similar notations
are followed for the coherences.
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1.4 Results

The phases and coherences from the Høvsøre observations are shown in Figure 1.4,
along with the predictions from the Mann model for neutral ABL. As described in
Section 3.1, the three adjustable parameters in the model are determined by fitting the
one-dimensional power-spectra of the model to that from the data at heights 40 and
100 m (see Figure 1.3). The average of the parameters at the two heights is used to
calculate the model cross-spectra.

The slopes of the phase curves predicted by the model are different than those
calculated from the measurements. However, the model is able to predict the order
in phasing, ϕv > ϕu > ϕw, for k1∆z ≤ 1. The model overestimates the u-, v- and
w-coherence for k1∆z ≤ 1. So at a given length scale, the fluctuations at two corre-
sponding heights in the modeled coherent eddies are more correlated than those from
the observation. It is also observed that the modeled phases are smaller than the phase
angles from the measurements. When phases are examined with different atmospheric
stabilities, we observe same order in phase shift for three velocity components as de-
picted in Figure 1.5.
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Figure 1.5: The phases between 40 and 100 m at Høvsøre for different atmospheric
stabilities for wind directions between 240◦ and 300◦.
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1.5 Discussion

In this section we describe some more details about the behaviour of the phases under
diabatic conditions. The phase angles for neutral ABL are studied and compared with
the RDT and LES model in Chougule et al. [2012], where the winds at Høvsøre are
selected from east (between 60◦ and 120◦) with essentially homogeneous flow over flat
terrain. Here we represent the results corresponding to winds from west (from North
sea, inhomogeneous terrain). There is no significant difference in the phase angles
as compared with Chougule et al. [2012]. However, it is observed that the L and Γ

parameters are significantly greater for the winds from west than those from east for
the same height span as given in Table 1.2.

Table 1.2: Average of L and Γ parameters at Høvsøre for the winds from east
(Chougule et al. [2012]) and west, for the given height span 40-100 m.

Wind direction L (m) Γ

60◦ and 120◦ 40 3.3
240◦ and 300◦ 92 4.0
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Figure 1.6: The phases between 40 and 100 m at Høvsøre for different atmospheric
stabilities for wind directions between 60◦ and 120◦.

It should be noted that the model spectra fits in Figure 1.3 are very poor because
the upstream surface conditions are inhomogeneous, and that the fits from the eastern
sector presented in Chougule et al. [2012] are much better. The predicted coherences
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in Figure 1.4 (left plot) are correspondingly poor (again much worse than those in
Chougule et al. [2012]), but the phases are still reasonable.

As discussed in Section 3.1, the phases from the spectral tensor model are functions
of L and Γ parameters. The model phases increase with the decrease in L parameter
and increases with the increment in Γ. At a given mean wind speed (say 8 m s−1), the
turbulence length scale decrease from very unstable towards very stable (Ref. Sathe
et al. [2012]) and hence the model phases should increase. However, as shown in
Sathe et al. [2012] there is no systematic effect of atmospheric stability on Γ at a
given mean wind speed. Following this discussion, it can be concluded that there is
no systematic effect of atmospheric stability on the phase angles. This can also be
seen from Figure 1.5. The stability based phase analysis is new relative to Chougule
et al. [2012]. However, the study in Sathe et al. [2012] is also restricted to winds at
Høvsøre from east and the above discussion should make more sense when we observe
the diabatic phase angles corresponding to winds from east as depicted in Figure 1.6.
For the winds from west reader may able to find systematic decrease in v-phase from
very unstable towards vary stable by observing Figure 1.5.

More intuitive explanation behind the behavior of the phase angles due to shear
based on rapid distortion theory may be found in Chougule et al. [2012].

1.6 Conclusions

The phase angles of all the three velocity components are analysed from Høvsøre data
for inhomogeneous terrain under diabatic conditions. These phases behave similarly to
those under neutral ABL with no significant changes. The diabatic phase angles from
inhomogeneous flow are insignificantly different than those for homogeneous flow.
There is no systematic effect of atmospheric stability on the phase angles. Phases of the
cross-spectra of all three velocity components show systematic behaviour: ϕv > ϕu >

ϕw for k1∆z ≤ 1. RDT model is able to predict the observed neutral, inhomogeneous
phase ordering.
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Chapter 2

Spectral tensor parameters for wind
turbine load modeling from forested
and agricultural landscapes

2.1 Introduction

An adequate description of the structure of atmospheric turbulence is important for
the calculation of dynamic loads on wind turbines. The classical concepts used for
describing such structure include the velocity spectra, co-spectra, as well as the cross-
spectral properties coherence and phase (Kaimal and Finnigan [1994]; Kristensen and
Kirkegaard [1986]; Townsend [1976]). Spectral analysis is useful for analysis of the
length scales inherent in turbulent motion (Tennekes and Lumley [1972]). In addition
to the length scale estimations, coherences are also important to wind engineers (Dav-
enport). Coherences are usually described as a function of separation perpendicular to
the mean velocity as in Tong and Wyngaard [1996].

Spectral tensor models are often used to model the spectra and cross-spectra e.g.,
Kristensen et al. [1989], and such models can be used for the estimation of dynamic
loads on turbines through simulation of the wind field toward the rotor. Models devel-
oped by Kaimal et al. [1972], Veers [1988] (Sandia method), and Mann [1994b] are
commonly used in wind energy industry. The three-dimensional spectral tensor model
of Mann (M94) differs from the other models mentioned above in many respects. It
incorporates rapid distortion theory (RDT) (Pope [2000]; Townsend [1976]) with an as-
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sumption of uniform mean shear and consideration of eddy life time, while the model
by Kristensen et al. [1989] is a kinematic model, and the models by Kaimal et al. [1972]
and Veers [1988] are more empirical models incorporating many model parameters.
The stationary M94 model is applicable for homogeneous neutral surface-layer turbu-
lence. RDT has previously been used in non-stationary spectral tensor modeling of
homogeneous uniform sheared (Maxey [1982]), unsheared stably stratified (Hanazaki
and Hunt [1996]), and sheared stably stratified (Hanazaki and Hunt [2004]) turbulent
flows.

IEC [2005] recommends the use of M94 for the estimation of loads on wind tur-
bines through simulation of rotor inflow (Mann [1998]). The spectral shapes and co-
herences that the model predicts have previously been compared with the data mea-
sured over sea, over a flat rural terrain, and even in boundary-layer wind-tunnels as
described in Mann [1994a]. In these studies, coherences of the along-wind, cross-
wind, and vertical velocity components (u,v, and w, respectively) have been found to
decrease with increasing cross-wind separation distance, which matched with both ob-
servation and theoretical predictions, but coherences of all the velocity components
for given vertical separations have never been estimated. The boundary-layer wind-
tunnel testing described in Mann [1994a] showed that the wind tunnel turbulence was
slightly more isotropic than the natural turbulent wind. None of the M94 tests were
conducted beyond 70 m above the terrain. Later, the model one-point spectra were fit-
ted to observations of wind speed made by sonic anemometer at higher heights even for
non-neutral conditions (Peña et al. [2010a]), although the model was not extended to
account for temperature effects. The study conducted by Peña et al. [2010a,b] demon-
strated a close connection between the mixing length derived from the wind speed
profile and the turbulence length scale from the M94 model. The spectral tensor re-
sulting from the fitting of the measured one-point spectra was used to investigate how
dynamic wind loads depend on atmospheric stability (Sathe et al. [2012]). However,
the cross-spectral properties were never investigated in the studies described in Peña
et al. [2010a,b]; Sathe et al. [2012]. The exception from only looking at one-point spec-
tra was Chougule et al. [2012], who compared the predicted two-point cross-spectral
phases with measurements. Chougule et al. [2012] demonstrated that the v-phase ϕv

was significantly greater than the u-phase ϕu, which in turn was greater than the w-
phase ϕw for k1∆z≤ 1, where k1 is the stream-wise wave number and ∆z is the vertical
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separation; the M94 model predicted this phase behavior correctly. The Sandia method
of Veers [1988], on the other hand, assumes an average of zero phase between any two
points such that the imaginary parts of the cross-spectra are zero. However, the ac-
tual consequence of the differences in the cross-spectral phases on the wind loads of
horizontal axis wind turbines has never been studied.

Generally, wind turbines are placed in open landscapes with low aerodynamic
roughness; hence, wind engineering model tools have been developed keeping in mind
that they have to perform well in such conditions. However, during the last decade,
the siting of wind turbines in forested areas has become increasingly common. One of
the drawbacks associated with forested areas is the increased load on the rotor caused
by the high turbulence levels of the atmospheric flow. The model has never been com-
pared with turbulence spectra measured over a forest, let alone the comparison with
two-point statistics such as coherences or cross-spectral phases. It is therefore highly
relevant to extend the validation to data taken in forested areas.

In this study1, we investigated the performance of the M94 model concerning the
prediction of velocity spectra measured over a forest, compared the parameters de-
scribing the model spectra with those from a low-roughness agricultural landscape,
and tested the performance of the model in coherence predictions for both the agri-
cultural and forested sites. This study differs from the previous studies mainly in the
following respects:

1. Validation of M94 in a forested area

2. Evaluation of coherences of all three velocity components for vertical separation

3. Quantification of the model performance in the prediction of coherences

Our approach to the study is described in Section 2.2. For the analysis, we used data
from two different sites, the Ryningsnäs site in Sweden (forested landscapes) and the
Høvsøre test site in Denmark (agricultural landscapes), as described in Section 2.2.1.
We selected the data based on the selection criteria described in Section 2.2.2, followed
by the spectral tensor modeling described in Section 2.2.3. Analysis of both observed
and modeling results are provided in Section 2.3, with discussions in more detail in

1This manuscript is submitted to the Wind Energy with the same title and co-authoring with J. Mann,
A. Segalini and E. Dellwik.
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Section 2.4. We conclude our study in Section 2.5 with some final considerations and
guidelines.

2.2 Method

We estimated the velocity spectra and co-spectrum of u and w from the measured time
series as

Fi j( f ,z)≡ 〈ûi( f )û∗j( f )〉, (2.1)

where i, j = 1,2,3; (u1,u2,u3) = (u,v,w); f is the frequency; 〈 〉 denotes ensemble av-
erage operator; the superscript ∗ denotes complex conjugate, and ûi( f ) is the complex-
valued Fourier transform of the ith velocity component at height z.

We selected the data according to the classification of atmospheric stability in terms
of the Obukhov length Lo following Gryning et al. [2007], where Lo is defined as
(Kaimal and Finnigan [1994])

Lo =
−u∗3

κ(g/T )w′T ′0
, (2.2)

where u∗ is the surface friction velocity, κ = 0.4 is the von Kármán constant, g is
the acceleration due to gravity, T is the mean surface-layer temperature and w′T ′0 is
the vertical heat flux at the surface. The measured spectra and co-spectra given in
Equation 2.1 change with atmospheric stability (Kaimal et al. [1972]), i.e., Fi j( f ,z) is
a function of Lo.

We performed χ2-fits (described in Mann [1994b]) of the M94 model to the mea-
sured power-spectra in Equation 2.1 to obtain the three parameters (described in Sec-
tion 2.3), that were used as inputs to estimate the model cross-spectra. Model coher-
ences and cross-spectral phases were compared with those from the measurements.
The cross-spectra, coherences, and cross-spectral phases were calculated from the
measurements using general definitions, which can be found in Chougule et al. [2012].
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2.2.1 Experimental data

Experimental data were obtained from the measurements taken at two different sites:
the forested landscapes in Ryningsnäs (where data were taken from a mast above the
forest canopy), and a sector with flat agricultural terrain at the Høvsøre test site in Den-
mark. Wind speed measurements were taken with Metek sonic anemometers (USA-1,
Basic, Metek Gmbh) with a sampling frequency of f = 20 Hz and measuring in three
dimensions. Statistical analyses were based on 30 minute intervals.

2.2.1.1 Ryningsnäs

The 138 m tall tower at Ryningsnäs is located in a relatively flat, forested terrain in
Southeastern Sweden at 57◦16.57′N, 15◦59.19′E. Data from the sector between 235◦

and 275◦ were selected. In this sector, the influence from a local clearing as well as
two nearby turbines to the south and the north-east, respectively, is avoided. Further,
the flow distortion from the mast on the measurements is minimal and the upstream
terrain is forested for more than 100 km, such that the whole boundary layer should be
adapted to the high surface roughness. The forest near the tower is 20-25 m tall and
consists mainly of Norway spruce (Pinus Sylvestris). Generally, the forest cover is not
homogeneous, but rather consists of patches of different tree heights intercepted with
clearings, lakes and lower-roughness areas.

The sonic anemometers were installed at the heights of 40, 59, 80, 98, 120 and
138 m. The measurements were performed between November 2010 and February
2012. More information on the site and the measurements can be found in Bergström
et al. [2013].

2.2.1.2 Høvsøre

The measurements were taken from the 116.5 m tall mast located at the coordinates
56◦26′26′′N, 08◦09′03′′E in the Høvsøre test site near the west coast of Denmark.
Sonic anemometers were installed on the mast at heights of 10, 20, 40, 60, 80, and
100 m. The land to the east of the mast is flat, consisting mostly of agricultural land-
scapes. Five wind turbines were placed to the north of the mast. To avoid the wake
effects of wind turbines, winds were selected from the region between 60◦ and 120◦.
Around 65◦ and at 8 km from the mast, there are lines of trees and a big forest that
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extends about 12 km in both north-south and east-west directions. A small village is
situated at approximately 100◦ about 2.8 km from the mast, which could also have af-
fected the flow downstream to west. On the west side of the mast, land extends 1500 m
to the North Sea coast, including a dune. More details about the location and instru-
mentation can be found in Sathe et al., 2012]. The analysis was done using seven years
of data from 2004 to 2010.

2.2.2 Data selection

Data from both the sites were selected based on a narrow wind speed interval measured
at 80 m height as well as bins of Lo measured at 40 and 10 m on the masts at Ryningsnäs
and Høvsøre sites, respectively. Due to limitations on the availability of data and in

Table 2.1: Classification of atmospheric stability according to the Obukhov length
intervals (in m−1).

Near-neutral stable (NNS) 0.002≤ L−1
o ≤ 0.005

Neutral (N) |L−1
o | ≤ 0.002

Near-neutral unstable (NNU) −0.005≤ L−1
o ≤−0.002

order to compare the results from two sites, we analyzed NNS, neutral (N), and NNU
stability cases (cf. Table 2.1). Since the results for the other wind speeds were similar,
the results for the wind speed bin 7-8 ms−1 only are provided.

Figure 2.1 shows the histogram of atmospheric stability in terms of Lo from the
Ryningsnäs (left plot) and Høvsøre (right plot) sites, for the velocity bin 7-8 ms−1. For
this wind speed interval, hardly any occurrences of very stable or very unstable cases
were observed at the Ryningsnäs site.

2.2.3 Spectral tensor model

The velocity-spectrum tensor Φi j(k) of M94 is valid in the neutral surface-layer with
the assumption of uniform shear dU/dz, where k(t) = (k1,k2,k30− k1(dU/dz)t) is a
three dimensional wave vector, and t is time. The model calculates the evolution of
Fourier modes under the influence of the mean shear from an initial isotropic state. In
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Figure 2.1: Histogram of atmospheric stabilities based on the Obukhov lengths for
wind directions between 235◦ and 275◦ at the Ryningsnäs test site in Sweden (left
plot) and for wind directions between 60◦ and 120◦ at the Høvsøre test site in the west
coast of Denmark (right plot). The wind speed bin selected was 7-8 m s−1 measured
at z = 80 m.

isotropic turbulence, the velocity-spectrum tensor is

Φi j(k0) =
E(k)
4πk2

(
δi j−

kik j

k2

)
, (2.3)

where k0 = k(0) and k is the length of the vector k. The energy spectrum E(k) given
by von Kármán [1948] as

E(k) = αε
2/3L5/3 (kL)4

(1+(kL)2)17/6 , (2.4)

where α ≈ 1.7 is the Kolmogorov constant, ε is the rate of viscous dissipation of
specific turbulent kinetic energy (TKE), and L is a turbulence length scale.

In order to make the model stationary, the time dependency in the model was re-
moved by incorporating the general concept of an eddy life time, τ(k), and the param-
eterization of τ(k) in M94 was

τ(k) = Γ

(
dU
dz

)−1

(kL)−2/3
[

2F1

(
1
3
,
17
6

;
4
3

;−(kL)−2
)]−1/2

, (2.5)

where Γ is a parameter to be determined and 2F1 is the Gaussian or ordinary hyperge-
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ometric function. The analytical forms of Φi j(k) in M94 can be expressed as

Φi j(k)≡Φi j(k,αε
2/3,L,Γ). (2.6)

Equation 2.6 can also be given as

Φi j(k,αε
2/3,L,Γ) = αε

2/3L11/3
Φi j(kL,1,1,Γ), (2.7)

and Φi j(k0) = αε2/3L11/3Φi j(kL,1,1,0). So the model contain three adjustable pa-
rameters that were determined from the single-point measurements. These three pa-
rameters were as follows:

• αε2/3 from Equation 2.4

• L, which represents the size of the energy containing eddies

• Γ, from Equation 2.5, which is a measure of turbulence anisotropy

Using Equation 2.6, the cross-spectrum between any two velocity components can
be given as

χi j(k1,αε
2/3,L,Γ,∆y,∆z) =

∫
Φi j(k,αε

2/3,L,Γ)exp [i(k2∆y+ k3∆z)]dk⊥, (2.8)

where
∫

dk⊥ =
∫

∞

−∞

∫
∞

−∞
dk2dk3. ∆y and ∆z are transverse and vertical separations, re-

spectively. Using Equation 2.8, the single-point power-spectrum of the ith velocity
component, can be given as, Fi(k1,αε2/3,L,Γ) = χii(k1,αε2/3,L,Γ,0,0) (with no in-
dex summation), where ∆y = ∆z = 0.

The three parameters at any height z were calculated by fitting model (co-) spectra
χi j(k1,αε2/3,L,Γ,0,0) with measured power-spectra (including co-spectrum of u (i =
1) and w ( j = 3)) from Equation 2.1 and using Taylor’s hypothesis: k1 = 2π f/U ,
where U is the mean wind speed at z. For vertical separations ∆z, coherences and
cross-spectral phases were defined, respectively, as

cohi j(k1,L,Γ,∆z) =
|χi j(k1,αε2/3,L,Γ,∆z))|2

Fi(k1,αε2/3,L,Γ)Fj(k1,αε2/3,L,Γ)
, (2.9)

ϕi j(k1,L,Γ,∆z) = arg(χi j(k1,αε
2/3,L,Γ,∆z)), (2.10)

20



Spectral tensor parameters

where L and Γ are the average of L and Γ parameters at two heights z1 and z2 (so
that ∆z = z2− z1), and k1 = 4π f/(U1 +U2). The model coherences and cross-spectral
phases are independent of αε2/3, which can be seen from Equation 2.7 and the defini-
tions above.

The M94 model assumes horizontal homogeneity, zero Coriolis force, and a uni-
form shear dU/dz, that is constant with height. We do not expect that the curvature
of the ABL velocity profile (i.e. non-zero d2U/dz2) would alter the results signifi-
cantly; however, because the three parameters were determined from the single-point
measurements, one should expect these parameters to vary with height.

Let us consider the performance of the three parameters with respect to the vari-
ances and co-variances. A change in αε2/3 causes a shift of the spectra in the ordinate
direction; an increase in αε2/3 results in shifting of u,v and w spectra up and uw

co-spectrum down and vice-versa. An increase in L results in shifting of the spectra
both to the left along the abscissa and upward along the ordinate and vice-versa. The
model assumes initial isotropic turbulence where Γ = 0, leading to σ2

u = σ2
v = σ2

w and
〈uw〉 = 0. For Γ > 0 the turbulence is anisotropic, i.e., σ2

u > σ2
v > σ2

w and 〈uw〉 < 0,
so Γ describes the anisotropic nature of turbulence. The various length scales of the
velocity components can be calculated as functions of L and Γ. Higher values of Γ

imply larger scale separation between the three velocity components and the length
scale of u is greater than that of v which again is greater than that of w.

2.3 Analysis and Results

We showed the velocity spectra and uw co-spectrum from Ryningsnäs and Høvsøre
met masts measured at 80 m height for NNS, N, and NNU stratifications along with
the model fits. The cross-spectra between 80-100 m height were then analyzed using
the average of the three parameters determined at these two heights as an input.

2.3.1 Spectra

The measured velocity spectra along with the model spectral fits for NNS, N and NNU
are shown in Figure 2.2, for Ryningsnäs (left plots) and Høvsøre (right plots) sites. The
power spectral densities at the Ryningsnäs site were observed to be higher than that of
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Figure 2.2: M94 spectral fits (solid lines) to the Ryningsnäs and Høvsøre measure-
ments (dots) in NNS, N and NNU ABLs at z= 80 m, for the wind speed bin 7-8 m s−1.
The number of 30-minute time series n and the model parameters at z =80 m are given
in Table 2.3.
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the Høvsøre site, due to the higher roughness. The mesoscale motions, identified from
the excess power spectral density for k1 < 0.002 m−1, seemed to appear at the Høvsøre
site and not at the Ryningsnäs site, which might be because the mesoscale motions
at Ryningsnäs were obscured by generally higher turbulence levels at that site. The

Table 2.2: Performance of the model in variance and co-variance predictions in terms
of ∆ at z = 80 m, where ∆ is the relative model over/under estimation of the vari-
ance. σ is the standard deviation. The model overestimation is denoted by ‘+’ and
underestimation by ‘−’.

Ryningsnäs Høvsøre
Stability σ2 (m2s−2) Meas. Model ∆% Meas. Model ∆%

NNS

σ2
u 2.92 3.04 +4.35 0.53 0.50 −5.7

σ2
v 1.98 1.96 −0.94 0.39 0.31 −20.5

σ2
w 1.25 1.26 +0.84 0.18 0.20 +11.1

−〈uw〉 0.67 0.86 +28.72 0.09 0.14 +55.5

N

σ2
u 5.37 5.34 −0.68 0.66 0.61 −7.6

σ2
v 3.68 3.60 −2.11 0.46 0.38 −17.4

σ2
w 2.35 2.32 −1.26 0.23 0.24 +4.3

−〈uw〉 1.32 1.54 +17.15 0.12 0.17 +41.7

NNU

σ2
u 6.11 5.91 −3.24 0.83 0.75 −9.6

σ2
v 5.27 4.31 −18.36 0.65 0.48 −26.2

σ2
w 2.95 2.83 −3.95 0.30 0.30 0.0

−〈uw〉 1.60 1.75 +9.66 0.17 0.21 +23.5

turbulence level on both sites can quantitatively be seen in terms of variances and co-
variances of the velocity components, as given in Table 2.2. Table 2.2 also gives an
indication of model performance in terms of ∆, which is the model estimation error
of the variance relative to the measured variance. A comparison of the ∆ values at
the Ryningsnäs and Høvsøre sites revealed that the model performs relatively better in
Ryningsnäs than Høvsøre, particularly for neutral stability. The ∆ value of the uw co-
variance was quite significant for Høvsøre NNS and N cases, and it decreased at both
the sites going from NNS to NNU. The values of TKE in Ryningsnäs were∼ 5, ∼ 8.5,
and ∼ 8 times those in Høvsøre, for NNS, N, and NNU, respectively. Comparing the
model parameters determined at the given sonic heights from two sites (Figure 2.3),
we found that the three model parameters from Ryningsnäs behaved similarly to those
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Figure 2.3: Comparison of the model parameters determined from the single-point
measurements for (a) the forested landscapes in Ryningsnäs and (b) the agricultural
landscapes in Høvsøre, for the wind speed bin 7-8 m s−1 measured at z = 80 m.
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from a flat agricultural terrain. The three model parameters determined at 80 m from
the two sites, along with the number of 30-minute time series n, are shown in Table 2.3.
The value of αε2/3 for Ryningsnäs was 8.75 times that for Høvsøre at z = 80 m for
the neutral case. There was no significant difference in the L vertical profile beyond
z = 40 m between the two sites. The length scales from the two sites were similar,
with the notable difference that L for the NNU case at Ryningsnäs was 24% higher
than that at Høvsøre at z = 100 m. The turbulence length scales L for all stabilities
were found to increase with height, with L for NNU being the greatest. There was
a very slight difference in the turbulence anisotropy at the two sites except at 40 m,
where the Ryningsnäs turbulence was as much as ∼ 22% more isotropic (for NNU).
The turbulence anisotropy remained more or less constant with height at Ryningsnäs,
whereas, the turbulence became slightly more isotropic with height at Høvsøre.

Table 2.3: Three spectral tensor parameters determined from χ2-fits for NNS, N, and
NNU stability cases at the Ryningsnäs and Høvsøre sites for the velocity bin 7-8 m
s−1. The measurements are taken from sonic anemometers located at z = 80 m.

Model parameters
Stability n αε2/3 (m4/3 s−2) L (m) Γ

Ryningsnäs
NNS 60 0.21 29.6 3.13
N 542 0.28 48.6 3.16
NNU 33 0.25 79.7 3.14

Høvsøre
NNS 256 0.032 32.8 3.02
N 226 0.032 43.2 3.16
NNU 68 0.028 70.4 3.26

2.3.2 Cross-spectra

The model coherences and cross-spectral phases were calculated using Equations 2.9
and 2.10, respectively. The coherence comparisons are shown in Figure 2.4. The
values of L, Γ at Ryningsnäs were as follows -for NNS: 32 m, 3; N: 53 m, 3.1; and
NNU: 90 m, 3.1; and those for Høvsøre were NNS: 35 m, 2.9; N: 46 m, 3.1; and NNU:
75 m, 3.2. Atmospheric stability was found to affect the coherence that increased from
stable to unstable stratification. Thermal stability had the most noticeable effect on the
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Figure 2.4: Comparison of the coherences from the measurements (dashed lines) and
M94 predictions (solid lines) for the two sites: (a) Ryningsnäs and (b) Høvsøre. The
average of the three parameters between two given heights was used to determine
model cross-spectra using Equation 2.8 and the coherences were calculated from Equa-
tion 2.9.
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w-coherence, while the u-coherence was less affected by it. From Figure 2.4, it can be
observed that the u-coherence is maximum at lower frequencies (k1∆z ≤ 0.2 for NNS
and 0.1 for NNU) and reduces more quickly with k1∆z. The model overestimated u-,
v-, and w-coherence at both the sites for all the given ABLs.

In order to assess the performance of the model in coherence predictions, we de-
fined a factor G, such that

G =
∫ 3

0
|cohn(k1∆z)−〈cohn,t(k1∆z)〉|d(k1∆z), (2.11)

which is the absolute area between the coherence estimated from n segments of the
time series cohn(k1∆z) (dashed lines in Figure 2.4) and the theoretically predicted co-
herence 〈cohn,t(k1∆z)〉 (smooth lines). The model performance in terms of G at both
sites is given in Table 2.4 for the coherences shown in Figure 2.4. For a perfect the-

Table 2.4: Model performance in terms of G factor in coherence predictions according
to Equation 2.11. The coherences are shown in Figure 2.4.

G
Stability coh Ryningsnäs Høvsøre

NNS
u 0.15 0.12
v 0.37 0.33
w 0.21 0.16

N

u 0.12 0.11
v 0.31 0.33
w 0.17 0.12

NNU

u 0.16 0.15
v 0.32 0.35
w 0.16 0.17

ory the value of G should be close to zero. The model performed relatively better in
predicting the u-coherence at both sites for neutral stability and relatively poorly for
predicting the v-coherence at both sites for all three stabilities.

The cross-spectral phases, which provide the arrival shift time of turbulence at two
heights, are shown in Figure 2.5, where it can be observed that ϕv > ϕu > ϕw. For
NNS, ϕv and ϕu at Ryningsnäs were observed to be greater than those at Høvsøre. The
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Figure 2.5: Comparions of cross-spectral phases between two heights from model
predictions and observations for the (a) Ryningsnäs and (b) Høvsøre sites. The model
phases were calculated using Equation 2.10.
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phase shift increases with k1∆z (0 < k1∆z < 1) as long as the coherence is non-zero.
From Figure 2.5, it is observed that the cross-spectral phases decreased slightly from
NNS to NNU. The phase results from the forested area were consistent with those from
the study by Chougule et al. [2012].

2.4 Discussion

As can be seen from the left plots of Figure 2.2, the RDT model was able to fit the one-
dimensional u-, v-, w-spectra and uw co-spectrum reasonably well for forested flow in
neutral and near-neutral ABLs. The ∆ values from heights other than 80 m, and the
velocity bins other than 7-8 ms−1 (5-6 and 6-7 ms−1), were consistent with Table 2.2
with ∆ for 〈uw〉 being greatest.

For the Ryningsnäs spectra, we see that the spectra shifted upwards along the or-
dinate from NNS (via N) to NNU, implying that the turbulent energy increased from
NNS to NNU. However, the Ryningsnäs αε2/3 and L curves (first two plots of first
column in Figure 2.3), show that the αε2/3 values were rather smaller, whereas, the
L values were greater for NNU case. So the increased turbulence due to buoyancy
effects was expressed in increased length scales which can also be seen from Høvsøre
results. Also since the length scales from the two sites were more or less same, the
increased turbulence due to the higher roughness was articulated more as an increased
αε2/3. As discussed in Section 3.1, where L from Ryningsnäs were grater than that
from Høvsøre for NNU at 100 m, which might be because for the same Lo, the heat
flux in Ryningsnäs is much larger than that at Høvsøre, resulting in the higher boundary
layer height, which might have an influence on the length scale.

The three parameters from both the sites varied in similar pattern with height for
other wind speed bins for all the three stabilities. For lower wind speed bins, both at
the Ryningsnäs and Høvsøre site, the αε2/3 curves shifted to the left with αε2/3 at
Ryningsnäs being approximately 10 times than that at Høvsøre, while L for NNU was
slightly decreased, whereas, at Ryningsnäs, Γ remained more or less constant, and the
turbulence at Høvsøre became more isotropic with height. From Equation 2.7, it can be
observed that the ratio between any two variances (or co-variances), becomes function
only of the Γ parameter, so the turbulence anisotropy can directly be represented in
terms of that parameter.
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Figure 2.6: Variation of αε2/3, shown by dots with Z at 7-8 ms−1 ( column (a)) and U
(column (b)), where Z = z−d. The displacement height d for Ryningsnäs is 13 m and
that for Høvsøre is 0. The solid lines are the neutral surface-layer scaling: αε2/3 ∝

Z−2/3 in column (a) and αε2/3 ∝ U2 in column (b).

For neutral ABLs at Ryningsnäs, there was no significant variation in L or Γ with
the mean wind speed bins 4-5, 5-6, 6-7, 7-8, 8-9, 9-10, and 10-11 ms−1. The standard
deviations calculated from these seven wind speed bins were ∼ 3.0 m and ∼ 0.05 at
z = 80 m, respectively. This was consistent with the results from the Høvsøre site, as
discussed in Sathe et al. [2012]. From Equations 2.9 and 2.10, it can be seen that the
model coherences and cross-spectral phases are functions of L and Γ, so they should
change very slightly with the mean wind speed in the neutral ABLs, which was also
observed from the measurements. With L and Γ at Ryningsnäs insignificantly different
from those at Høvsøre, only slight differences of the coherences and the phases be-
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tween the two sites for NNS, N and NNU, were expected (Figure 2.4 and 2.5), which
was consistent with observations. The above discussion was consistent with an other
investigated height separation (40-100 m), and the wind speed bins mentioned above,
where no significant difference was observed in L and Γ with the mean wind speed for
NNS, N and NNU.

Table 2.4 provides information on the performance of the model for coherence pre-
dictions for vertical separation. The model performance was better in predicting the
u-, and w-coherence than v-coherence, whereas the neutral stability predictions were
slightly better than NNS and NNU, at both the sites. The model performed almost
equally well at both the sites. We considered non-stationary data in order to obtain
more realizations. The non-stationarity effects for Ryningsnäs were negligible, except
in NNU case where there was a slight increase in σu and Γ, and G was reduced by
30%. Analyses of other height intervals showed similar order of G values for all three
stabilities for 7-8 ms−1, with G for v-coherence being the greatest (' 0.3). This was
in contrast to Mann [1994b], where the w-coherences were predicted poorest (over-
estimated) by the model. However, in that investigation the spatial separations were
horizontal, not vertical, as in the present investigation. In addition to the different
height intervals, the values of G from the other wind speed bins were consistent with
Table 2.4 for NNS, N and NNU, which could be because of the model coherence is a
function of L and Γ which changed insignificantly with the mean wind speed for the
three stabilities.

Because neither L nor Γ differ significantly between the two sites, and from the fact
that high turbulence levels in forested areas increased loads on the rotor, we would like
to analyze αε2/3 further. Figure 2.6 shows the neutral asymptotic limits (Kaimal and
Finnigan [1994]): ε ∝ U3/Z with Z = z− d for Ryningsnäs and Z = z for Høvsøre,
where d = 13 m is the displacement height (Bergström et al. [2013]). It can be ob-
served from the Z vs. αε2/3 curve that, at Høvsøre, the dissipation rate decreased with
height more slowly than expected, which might be because the site was not completely
homogeneous toward the east. It is known that rough-to-smooth transitions can be felt
extremely far downstream from the change (Antonia and Luxton [1972]). The lowest
points on the Z vs. αε2/3 curve are influenced by the relatively smooth terrain close
to the site, while the points further up have larger ε than expected due to the trees
and forest further east. The dots in the right plots of the Figure 2.6 corresponds to the
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velocity bins measured at z = 80 m, where for Ryningsnäs we selected 8 velocity bins
from 5-6 to 11-12 m s−1, while for Høvsøre the velocity bins were 5-6, 6-7, 7-8, 8-9,
and 10-11 m s−1.

Due to the limited number of realizations n, there is uncertainty in the estimated
(cross-) spectra and hence in the corresponding coherences and phases. Kristensen and
Kirkegaard [1986] showed that the coherence was systematically overestimated. How-
ever, the overestimation was insignificant for the n values in Table 2.3. The variance
of the phase estimate for u,v and w from Kristensen and Kirkegaard [1986] increaseed
with k1∆z, with the largest value of the standard deviation being 26◦ and 19◦ in ϕu for
NNU at k1∆z≈ 1 at Ryningsnäs and Høvsøre, respectively.

2.5 Conclusion

Our aim in this study was, to investigate the performance of the RDT based spectral
tensor model in predictions of the velocity spectra, co-spectra and cross-spectra over
the forested area, and to compare the results with those from the agricultural land-
scapes. The RDT model was found to be able to fit the one-dimensional spectra quite
well over the forested area. In terms of variances and co-variances, the model per-
formed relatively better in forested area, particularly for neutral ABLs. The spectral
tensor model needs only three parameters to describe the spectra: the viscous dissipa-
tion rate of TKE, a length scale, and a parameter describing the turbulence anisotropy.
The dissipation rate of TKE over the forest canopy was 9 times that over smooth agri-
cultural landscapes. No significant difference was observed in the variations of length
scales with height between forested and agricultural areas, while the length scales over
the forest canopy were more or less similar to those over agricultural landscapes. The
turbulence anisotropy remained more or less constant with height over forested area,
whereas it decreased slightly with height in agricultural landscapes. No significant
difference was observed in the turbulence anisotropy of the two sites.

The coherences from the RDT model were independent of the dissipation rate of
TKE, which was also supported by the measurements. Despite good spectral fits, the
model overestimated coherence of all the three velocity components for vertical sep-
arations. It performed relatively better in predicting the u-coherence in all stabilities;
however, its v-coherence prediction was relatively poor at both the sites. The model
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performed slightly better for neutral stability than for slightly stable and unstable strat-
ification at both the sites. Generally, there was no large difference between the per-
formance of the model in predictions at the forested and agricultural areas. The flow
over forest showed similar phase shifts to those over the agricultural areas. Finally, the
dissipation rate parameter of the model was evaluated against a standard expression
for neutral surface-layer scaling, where the agreement was better at Ryningsnäs than
at Høvsøre.
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Chapter 3

Modeling of the spectral velocity
tensor including buoyancy effects

3.1 Introduction

Turbulent motions, due to their fundamentally chaotic and irregular nature, are typi-
cally treated statistically rather than deterministically. A flow becomes turbulent when
the Reynolds number exceeds a critical value, which depends upon the geometric struc-
ture of the flow. In the atmospheric boundary layer (ABL), the Reynolds numbers are
always high, so the wind in the ABL is nearly always turbulent. There exists a wide
spectrum of spatial and temporal scales in the turbulent ABL. Kolmogorov suggested
that, statistically, energy is pumped through the large scales, which in turn is transferred
to smaller and smaller scales. The small-scale motions are statistically isotropic. When
the Reynolds number becomes small enough (i.e. at small scales), the kinetic energy
is dissipated into heat by viscous friction. In the stationarity state, the rate of viscous
dissipation must be equal to the rate of production of turbulent energy. Turbulence has
its origins in the inherent instabilities of laminar flow. The mechanisms for generating
and maintaining turbulence in the atmosphere includes the shear in the mean flow, and
buoyancy, where the latter is typically due to heating or cooling of the ground. Kaimal
and Finnigan [1994] described how the atmospheric boundary layer (ABL) responds
to changes in atmospheric stability.

The different processes in the turbulent motions which take place at different scales—
i.e. the production of turbulent energy at larger scales, its transfer to smaller and
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smaller scales, and finally its viscous dissipation— can be studied by means of spectral
representation. The spectrum of velocity fluctuations in the ABL covers millimeters
to kilometers in spatial scales and fractions of a second to hours in temporal scales
(Kaimal and Finnigan [1994]). If we assume that Taylor’s hypothesis of “frozen turbu-
lence” is valid, then the measured one-point time series can be related to spatial fluc-
tuations. The Fourier spectra and cross-spectra of the measurements (of wind speed,
say) change with atmospheric stability. The processes described above, and their be-
havior at different scales, can be studied theoretically by modeling of the spectral

velocity tensor for homogeneous turbulence; such a representation gives the complete
second-order structure of ABL turbulence, including spectra of all velocity compo-
nents and cross-spectra of any combination of velocity components at two arbitrarily
chosen points. In addition to the velocity components, the temperature— which acts as
an active scalar by modifying the velocity field through buoyancy— and its spectrum
can be modeled. In addition to the velocity variances and co-variances, the resulting
spectral tensor, which now includes the temperature, also gives the temperature fluxes
for different atmospheric stabilities.

The modeling of the spectral velocity tensor has important implications in wind en-
ergy. In addition to the single-point spectra derived from the spectral tensor, the cross-
spectra of fluctuations at various points are also important for calculation of dynamic
loads on wind turbines. The International Electrotechnical Commission (IEC) (IEC
[2005]), recommends the use of the three-dimensional spectral tensor model by Mann
[1994b] (M94) for estimation of loads on wind turbines through simulation of rotor in-
flow (Mann [1998]). The spectral shapes and coherences that the model predicts have
previously been compared with data measured over sea, over flat rural terrain, and even
in boundary-layer wind-tunnels (Mann [1994a]). Examples of other models which de-
scribe the spectra and cross-spectra are those developed by Kristensen et al. [1989],
Kaimal et al. [1972], etc. The M94 model differs from the other models mentioned
above in many respects. It incorporates rapid distortion theory (RDT) (Pope [2000];
Townsend [1976]) with an assumption of uniform mean shear and consideration of
wavenumber-dependent eddy life time, while the model by Kristensen et al. is a kine-
matic model, and the model by Kaimal et al. is an empirical model incorporating many
model parameters. The stationary M94 model is applicable for homogeneous neutral
surface-layer turbulence. RDT has previously been used in non-stationary spectral ten-
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sor modeling of homogeneous turbulent flows— uniformly sheared (Maxey [1982]),
unsheared stably stratified (Hanazaki and Hunt [1996]), and sheared stably stratified
(Hanazaki and Hunt [2004]). The M94 model contains three adjustable parameters
which are determined from single-point measurements. Although the model was never
extended to account for buoyancy effects, it has been used to describe one-point spectra
for non-neutral conditions (Peña et al. [2010a]; Sathe et al. [2012]). For the simulation
of turbulence in the lower atmosphere and subsequent estimation of its loading effects
upon structures in the lower atmosphere, it would be useful to augment the spectral
tensor model, to include buoyancy effects. Stable and unstable stratification each have
different effects upon the mean wind and turbulence.

In this study an attempt is made to investigate the spectral tensor model of wind
velocity fluctuations, including temperature fluctuations, due to the effect of mean uni-
form vertical shear and the mean uniform temperature gradient. The model is based on
RDT, which gives the linearized Navier-Stokes equations in Fourier space. The idea of
the present model is based on the previous studies made by Mann 1994 and Hanazaki
& Hunt 2004 (HH04). We incorporate the general concept of an eddy life time in order
to make the model stationary. The parameterized eddy life time from M94 is used. In
addition to the three parameters from M94, the model contains two extra parameters
as a result of introducing mean uniform temperature gradient. These parameters are: a
stability parameter (the Richardson number) and the rate of destruction of temperature
variance.

This chapter summarizes the present state of the theory. In Section 3.2, we provide
basic definitions, and the properties of the spectral tensor. Section 3.3-3.5, provide
the derivation of the momentum, and the temperature equation, with the assumptions
and the considerations described within, along with the RDT limit. In Section 3.6, the
Fourier transform of the momentum and the temperature equation is provided, resulting
in the governing RDT equations. Section 3.7 of this chapter describes the modeling of
the spectral tensor starting from the initial conditions, such as the isotropic state and
corresponding spectral tensor, modelled via the von Kármán energy spectrum. The
resulting spectral tensor is made stationary via eddy life time described in Section 3.8.
We compare the model results with the measurements in Section 3.9, with the analysis
and discussion provided in Section 3.10. Finally, we conclude our study with future
work.

36



Modeling of the spectral velocity tensor including buoyancy effects

The definitions, properties and the relationships can also be found elsewhere (Kaimal
and Finnigan [1994]; Mann [1994a]; Pope [2000]; Stull [2009]; Wyngaard [2010],
etc.). For the purpose of the completeness, derivations for the most of the relationships
are presented.

3.2 Definitions and properties

In order to provide the mathematical tools, and the definition of the spectral velocity
tensor, let us first consider the periodic, three-dimensional fluctuating velocity field
u′(x, t), where x = (x,y,z) is the position vector in space. The spectral representation
of u′(x, t) can be written as

u′(x, t) =
∫

Z(k, t)eik·xdk, (3.1)

where for the periodic case being considered, Z(k, t) is given as (Pope [2000])

Z(k, t)≡
∞

∑
n=−∞

cnδ (k−kn), (3.2)

where k = (k1,k2,k3) is the wavenumber vector, cn is the complex Fourier coefficient.
The integral in Equation 3.1 forms a Fourier transform pair, where Z(k, t) is the Fourier
transform of the field u′(x, t) . Since the mean u′(x, t) is zero, it follows from Equa-
tion 3.1 that the means Z(k, t) are also zero. Also, since u′(x, t) is a real vector, for
each k, Z(k, t) is a complex vector that satisfies conjugate symmetry,

Z(k, t) = Z∗(−k, t), (3.3)
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where an asterisk denotes the complex conjugate. In wavenumber space, the diver-
gence of fluctuating velocity is given by Fourier transforming ∂u′i/∂xi as

∫ (
∂u′i
∂xi

)
e−ik·xdx = −

∫
u′i

∂

∂xi

(
e−ik·x

)
dx

= iki

∫
u′ie
−ik·xdx

= ikiZi

= ik ·Z, (3.4)

where periodicity and partial integration is used to obtain the first equality, and that the
continuity equation ∇ ·u′ = 0 implies that Z is normal to k:

k ·Z = 0. (3.5)

The indices i, j = 1,2,3 can be used for the velocity components, i.e., (u′1,u
′
2,u
′
3) =

(u′,v′,w′), and/or for the space vector (x1,x2,x3) = (x,y,z). In later sections, where the
scalar field (i.e.temperature) is included, we use the index notations: l,m= 1,2,3,4, for
the three velocity components and the scalar. Also, we use the notation, ‘−’ (overbar)
for the mean of a velocity component or a scalar, whereas we use symbol 〈 〉 for
higher order statistics, while by definition, both notations have the same meaning i.e.
u′ = 〈u′〉.

Given that Z(k, t) = 0, we consider the second-order statistic— the covariance of
two Fourier coefficients— as

〈Zi(k◦, t)Z j(k, t)〉. (3.6)

Using the definition of Z(k, t) in Equation 3.1, the above equation can be expanded
further as

〈Zi(k◦, t)Z j(k, t)〉 ≡
1

(2π)6

〈∫
u′i(x

◦, t)e−ik◦·x◦dx◦
∫

u′j(x, t)e
−ik·xdx

〉
,

=
1

(2π)6

〈∫ ∫
u′i(x

◦, t)u′j(x, t)e
−i(k◦·x◦+k·x)dx◦dx

〉
,

=
1

(2π)6

∫ ∫ 〈
u′i(x

◦, t)u′j(x, t)
〉

e−i(k◦·x◦+k·x)dx◦dx. (3.7)

38



Modeling of the spectral velocity tensor including buoyancy effects

Let, x = x◦+ r, where r is the separation vector, dx = dr, and the covariance tensor:

Ri j(r, t) =
〈
u′i(x

◦, t)u′j(x
◦+ r, t)

〉
, (3.8)

and using these definitions in Equation 3.7,

〈Zi(k◦, t)Z j(k, t)〉 ≡
∫

e−i(k◦+k)·x◦dx◦
∫

Ri j(r, t)e−ik·rdr. (3.9)

From above equation, it can be observed that the covariance of two Fourier coefficients
(≡ dRi j) is zero, or equivalently, these coefficients are uncorrelated, unless k◦+k = 0,
i.e., k◦ =−k, thus all the information that is contained in dRi j is,

dRi j(k, t) = 〈Zi(−k, t)Z j(k, t)〉,
= 〈Z∗i (k, t)Z j(k, t)〉. (3.10)

From above discussion, it can be shown that dRi j(k, t) is the Fourier transform of the
covariance tensor Ri j(r, t), and for homogeneous turbulence,

Ri j(r, t) = R ji(−r, t). (3.11)

In homogeneous turbulence, the spectral velocity tensor is defined as

Φi j(k) =
1

(2π)3

∫
Ri j(r)e−ik·rdr, (3.12)

where
∫

dr ≡ ∫ ∞

−∞

∫
∞

−∞

∫
∞

−∞
dr1dr2dr3. Note that the time dependency has been left

out for the simplicity. As shown in Equation 3.12, Φi j(k) and Ri j(r) form a Fourier-
transform pair, where

Ri j(r) =
∫

Φi j(k)eik·rdk. (3.13)

The problem with the definition in Equation 3.1 is that the two-point correlation Ri j

does not decay for |r| → ∞, so the spectral representation of the field u′(x, t), to be
considered as non-periodic, can be given in terms of the Fourier-Stieltjes integral

u′(x) =
∫

eik·xdZ(k) (3.14)
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where the integration in Equation 3.14 is over all wavenumber space (Batchelor [1953]).
It is observed from Equations 3.1 and 3.14 that dZ(k) in the non-periodic case cor-
responds to Z(k)dk in the periodic case (Pope [2000]). From Equations 3.8, 3.13,
and 3.14, ∫

Φi j(k)eik·rdk =

〈∫
eik◦·x◦dZi(k◦)

∫
eik·(x◦+r)dZ j(k)

〉
=

∫
ei(k◦+k)·x◦

∫ 〈
dZi(k◦)dZ j(k)

〉
eik·r

=
∫ 〈

dZ∗i (k)dZ j(k)
〉

eik·r, (3.15)

so the two-point correlations of the Fourier velocity components are related to the
spectral tensor by 〈

dZ∗i (k)dZ j(k)
〉

dk1dk2dk3
= Φi j(k). (3.16)

The spectral tensor Φi j(k) is a complex quantity that has the properties

Φi j(k) = Φ
∗
ji(k) = Φ ji(−k), (3.17)

kiΦi j(k) = k jΦi j(k) = 0, (3.18)

which can be interpreted from Equations 3.3 and 3.5.
The spectral tensor contains the information about the second-order statistics of all

the three velocity components through indices i, j. For example, on setting r = 0 in
Equation 3.13 we obtain

Ri j(0) = 〈u′iu′j〉=
∫

Φi j(k)dk, (3.19)

where Φi j(k) represents the Reynolds-stress ‘density’ in wavenumber space. The spe-
cific turbulent kinetic energy (TKE), K, will be equal to half the trace of the matrix
above, i.e. 1

2Rii(0) = 1
2〈u′iu′i〉. The directional information in k can also be removed,

by considering the magnitude k = |k|, and, further, the energy-spectrum function E(k)

is provided such that
K =

∫
∞

0
E(k)dk. (3.20)

40



Modeling of the spectral velocity tensor including buoyancy effects

Thus, E(k) is defined as the integration of 1
2Φii(k) over the surface of the sphere (in

wavenumber space) with radius k.
The spectral representation of the cross-correlation of the pair of stochastic pro-

cesses, taken over a separation r = (0,∆y,∆z) is given as the set of all cross-spectra

χi j(k1,∆y,∆z) =
1

2π

∫
∞

−∞

Ri j(x,∆y,∆z)e−ik1xdx, (3.21)

which is most often used in practical applications, such as estimation of loads on struc-
tures. The connection between the components of the spectral tensor and the cross-
spectra is

χi j(k1,∆y,∆z) =
∫

∞

−∞

∫
∞

−∞

Φi j(k)ei(k2∆y+k3∆z)dk2dk3

=
∫

Φi j(k)ei(k2∆y+k3∆z)dk⊥, (3.22)

where
∫

dk⊥ =
∫

∞

−∞

∫
∞

−∞
dk2dk3. ∆y and ∆z are transverse and vertical separations,

respectively. Using Equation 3.21, the single-point power-spectrum of the ith velocity
component (where ∆y = ∆z = 0), can be given as, Fi(k1) = χii(k1,0,0) (with no index
summation).

The cross-spectral properties, the squared coherence and the cross-spectral phase,
defined respectively as

cohi j(k1,∆y,∆z) =
|χi j(k1,∆y,∆z)|2

Fi(k1)Fj(k1)
, (3.23)

ϕi j(k1,∆y,∆z) = arg(χi j(k1,∆y,∆z)). (3.24)

With above discussion, the spectral tensor is modeled using Equation 3.16, where
the equation for the evolution of the Fourier modes dZ(k, t) will be deduced from the
Navier-Stokes equations (NSE), where the time dependent, random nature of the field
u′(x, t) implies the time-dependence and randomness of the field dZ(k, t) (in Fourier
space). In the next section, we derive the Fourier transform of the NSE, where we use
the assumptions of homogeneity, and the RDT limit for the modeling in Equation 3.16.
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3.3 Navier-Stokes equation

The governing NSE of the turbulent velocity field u(x, t), can be written as

∂ui

∂ t
+u j

∂ui

∂x j
=− 1

ρ

∂ p
∂xi

+ν
∂ 2ui

∂x j∂x j
−δi3g, (3.25)

where ui is the instantaneous ith velocity component, p is the pressure, ρ is the den-
sity, ν is the kinematic viscosity, g is the acceleration due to gravity, and neglecting
the Coriolis force. The flow can be decomposed into mean and fluctuating parts by
Reynolds decomposition:

u = u+u′,

p = p+ p′,

ρ = ρ +ρ
′.

 (3.26)

We treat the pressure term in Equation 3.25 by using Equation 3.26,

− 1
ρ

∂ p
∂xi

= − 1
ρ +ρ ′

(
∂ p
∂xi

+
∂ p′

∂xi

)
' −

(
1
ρ
− ρ ′

ρ
2

)(
∂ p
∂xi

+
∂ p′

∂xi

)
= − 1

ρ

∂ p
∂xi
− 1

ρ

∂ p′

∂xi
+

ρ ′

ρ
2

∂ p
∂xi

+
ρ ′

ρ
2

∂ p′

∂xi
. (3.27)

Considering hydrostatic balance, where the vertical mean pressure gradient is balanced
by the specific weight of the fluid, Equation 3.27 can be written neglecting the last
term; to second order in the fluctuations (Stull [2009]) this becomes

− 1
ρ

∂ p
∂xi

=− 1
ρ

∂ p
∂xi
−δi3g

ρ ′

ρ
. (3.28)

The density of dry air can be calculated using the equation of state of an ideal gas,
expressed as a function of temperature and pressure:

ρ =
p

RT
, (3.29)
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where R is the specific gas constant, T = T + T ′ is absolute temperature. Using
Reynolds decomposition from Equation 3.26,

ρ +ρ
′ =

p+ p′

R(T +T ′)

ρ

(
1+

ρ ′

ρ

)
=

p
RT

(
1+ p′

p

)
(

1+ T ′
T

) ,
ρ ′

ρ
' p′

p
− T ′

T
ρ ′

ρ
=

p′

ρRT
− T ′

T
(3.30)

or,
ρ ′

ρ
=−T ′

T
. (3.31)

The assumption of p′/ρRT ≈ 0 leading to Equation 3.31, can also be validated from a
scaling argument, p′ ≡ ρu′2, or, further, γ p′/RT = γρu′2/c2, where γ is the ratio of the
heat capacity at constant pressure (cp) to the heat capacity at constant volume (cv), and
c =

√
γRT is the speed of sound in air, where γρu′2� c2 (Wyngaard [2010]). Using

the relationship T ′/T = θ ′/θ (Wyngaard [2010]), where θ = θ + θ ′ is the potential
temperature (described in Section 5), and, from Equations 3.31, 3.28, and 3.25, the
resulting NSE becomes

∂ui

∂ t
+u j

∂ui

∂x j
=− 1

ρ

∂ p
∂xi

+δi3g
θ ′

θ
+ν

∂ 2ui

∂x j∂x j
−δi3g. (3.32)

The above equation contains a buoyancy term, which is the second term on the
right side of the above equation. An air parcel feels upwards force (positive buoyancy),
when it is warmer than its surroundings, where θ ′ is positive, and vice versa. It should
be noted that, p ≡ p(x),ρ ≡ ρ(x),θ ′ ≡ θ ′(x). The equation of motion for the ith
fluctuating velocity component can be obtained by inserting the decompositions 3.26
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into Equation 3.32,

Du′i
Dt︸︷︷︸

I

+u j
∂ui

∂x j︸ ︷︷ ︸
II

+u′j
∂ui

∂x j︸ ︷︷ ︸
III

+u′j
∂u′i
∂x j︸ ︷︷ ︸
IV

=− 1
ρ

∂ p
∂xi︸ ︷︷ ︸

V

− 1
ρ

∂ p′

∂xi︸ ︷︷ ︸
V I

+δi3g
θ ′

θ︸ ︷︷ ︸
V II

+ν
∂ 2ui

∂x j∂x j︸ ︷︷ ︸
V III

− δi3g︸︷︷︸
IX

,

(3.33)
where D/Dt ≡ ∂/∂ t +u j∂/∂x j is the total derivative. We neglect the non-linear fluc-
tuation terms and the effect of viscosity in the above equation; i.e. terms IV and VIII,
respectively. We often consider the mean velocity field,

(u,v,w) = (U,0,0), (3.34)

and, by assuming horizontal homogeneity, term II in Equation 3.33 vanishes. Also, in
addition to the horizontal homogeneity, by considering the hydrostatic balance, terms
V and IX vanish together; Equation 3.33 becomes

Du′i
Dt

=− 1
ρ

∂ p′

∂xi
+δi3g

θ ′

θ
−u′j

∂ui

∂x j
. (3.35)

3.4 Poisson’s equation

Taking the divergence on both sides of the Equation 3.32, where for the ith velocity
component, ∇ · ( )≡ ∂ ( )/∂xi, and, by using the continuity ∇ ·u= 0 and Equation 3.26,

∂u j

∂xi

∂ui

∂x j
+

∂u j

∂xi

∂u′i
∂x j

+
∂u′j
∂xi

∂ui

∂x j
+

∂u′j
∂xi

∂u′i
∂x j

=− 1
ρ

∇
2 p+g

∂

∂ z

(
θ ′

θ

)
, (3.36)

or,

∂ 2

∂xi∂x j
(uiu j)+2

∂u j

∂xi

∂u′i
∂x j

+
∂ 2

∂xi∂x j
(u′iu

′
j) =−

1
ρ

∇
2 p+

g
θ

∂θ ′

∂ z
−g

θ ′

θ
2

∂θ

∂ z
. (3.37)

Taking the mean on both sides of the above equation,

∂ 2

∂xi∂x j
(uiu j)+

∂ 2

∂xi∂x j
〈u′iu′j〉=−

1
ρ

∇
2 p. (3.38)
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Neglecting the last term in Equation 3.37 since (∂θ ′/∂ z)� (θ ′/T )(∂θ/∂ z), and by
subtracting Equation 3.38 from Equation 3.37;

2
∂u j

∂xi

∂u′i
∂x j

+
∂ 2

∂xi∂x j
(u′iu

′
j−〈u′iu′j〉) =−

1
ρ

∇
2 p′+

g
θ

∂θ ′

∂ z
, (3.39)

therefore,

− 1
ρ

∇
2 p′ = 2

∂u j

∂xi

∂u′i
∂x j

+
∂ 2

∂xi∂x j
(u′iu

′
j−〈u′iu′j〉)−

g
θ

∂θ ′

∂ z
. (3.40)

The consequence of introducing buoyancy term in the momentum equation is the last
term in the above equation. The Poisson equation for p′ consists of terms which rep-
resent interaction between the turbulent field and mean velocity gradient (first term on
right side of Equation 3.40); turbulence-turbulence interaction (second term); and, the
effect due to the uniform lapse rate through the gradient of potential temperature fluc-
tuation (last term). The first term in the right side of the Equation 3.40 is proportional
to the mean velocity gradient ∂u j/∂xi, and, scales linearly with S, where

S≡ (2Si jSi j)
1/2, (3.41)

and
Si j =

1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
. (3.42)

The “slow” turbulence-turbulence term, and the last term in Equation 3.40, are inde-
pendent of ∂u j/∂xi. In the rapid-distortion limit, where S→ ∞, the first term on the
right side of the equation is dominant, whereas the second term is negligible in com-
parison. Then Equation 3.40 becomes,

− 1
ρ

∇
2 p′ = 2

∂u j

∂xi

∂u′i
∂x j
− g

θ

∂θ ′

∂ z
. (3.43)
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3.5 Temperature equation

The potential temperature equation, by neglecting molecular diffusivity, is given by

∂θ

∂ t
+u j

∂θ

∂x j
= 0. (3.44)

Using Equations 3.26, 3.34, assuming horizontal homogeneity, and neglecting non-
linear terms, Equation 3.44 can be re-written as

Dθ ′

Dt
=−u′3

(
dθ

dz

)
, (3.45)

where ∂θ/∂ z ≡ dθ/dz is the uniform potential temperature lapse rate. The potential
temperature of a parcel of fluid at pressure p is the temperature that the parcel would
acquire if adiabatically brought to a standard reference pressure p0, usually 1000-mb
(millibars). The mean potential temperature can be given as θ = T +(g/cp)δ z, where
δ z is the height difference from the 1000-mb level, i.e. dθ/dz = ∂T/∂ z+ g/cp. By
neglecting the specific humidity, Equation 3.45 assumes a uniform lapse rate, to be
determined. In neutrally stratified air, dθ/dz = 0, while for unstable and stable strati-
fications, the slope is, negative (dθ/dz < 0) and positive (dθ/dz > 0), respectively.

3.6 Fourier transform

We Fourier transform the resulting Equations 3.35, 3.45 and 3.43, using the follow-
ing definitions, where we assume homogeneity of the fluctuations, a constant shear,
constant temperature gradient, and that θ(z) does not change significantly with z:

u′i(x, t) =
∫

eik(t)·xdZi(k(t), t),

p′(x, t) =
∫

eik(t)·xdΠ(k(t), t),

θ
′(x, t) =

∫
eik(t)·xdΘ(k(t), t),


(3.46)

where dΠ(k(t), t) and dΘ(k(t), t) being the Fourier coefficients of pressure and tem-
perature fluctuations, respectively.
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First, we Fourier transform Equation 3.43, using Equation 3.46 in Equation 3.43,

− 1
ρ

k2dΠ(k(t), t) =−2
∂u j

∂xi
ik jdZi(k(t), t)+

g
θ

ik3dΘ(k(t), t). (3.47)

For mean vertical shear, ∂u j/∂xi ≡ dU/dz, where i = 3, j = 1 and rewriting Equa-
tion 3.47,

− 1
ρ

dΠ(k(t), t) =− 2
k2

(
dU
dz

)
ik1dZ3(k(t), t)+

g
θ

ik3

k2 dΘ(k(t), t). (3.48)

Secondly, Fourier transforming Equation 3.35,

D
Dt

dZi(k(t), t) =−
1
ρ

ikidΠ(k(t), t)+δi3
g
θ

dΘ(k(t), t)− ∂ui

∂x j
dZ j(k(t), t). (3.49)

By replacing dΠ(k(t), t) in the above equation with that from Equation 3.48,

D
Dt

dZi(k(t), t) = iki

[
− 2

k2

(
dU
dz

)
ik1dZ3(k(t), t)+

g
θ

ik3

k2 dΘ(k(t), t)
]

+δi3
g
θ

dΘ(k(t), t)

−
(

dU
dz

)
dZ3(k(t), t), (3.50)

or,

D
Dt

dZi(k(t), t) =

(
2

kik1

k2 −δi1

)(
dU
dz

)
dZ3(k(t), t)

− g
θ

(
kik3

k2 −δi3

)
dΘ(k(t), t). (3.51)

Finally, Fourier transforming Equation 3.45, we get

D
Dt

dΘ(k(t), t) =−
(

dθ

dz

)
dZ3(k(t), t). (3.52)

Equations 3.51, and 3.52 constitute the governing RDT equations for homogeneous
turbulent flow that is stratified (dθ/dz) and sheared (dU/dz) in vertical z direction.
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3.6.1 Fourier transform of D/Dt; evolution of wavenumber vector

In this section we provide derivation for the Fourier transform of the total derivative:

Ds
Dt

=
∂ s
∂ t

+u j
∂ s
∂x j

, (3.53)

where s can be any scalar (like a temperature fluctuation) or, a fluctuating velocity
component, and its Fourier counterpart dS(k(t), t) will be defined according to the def-
initions in Equation 3.46. In homogeneous turbulence, with a uniform mean velocity
gradient, where the mean velocity is zero at the origin, the mean velocity field is

u j = xk
∂u j

∂xk
. (3.54)

Using the above equation in Equation 3.53, and expanding the same term further;

xk
∂u j

∂xk

∂ s
∂x j

=
∂u j

∂xk

∂

∂x j

[
xk

∫
eik(t)·xdS(k(t), t)

]
,

=
∂u j

∂xk

∂

∂x j

[∫ 1
i

(
∂

∂kk
eik(t)·x

)
dS(k(t), t)

]
,

' ∂u j

∂xk

∂

∂x j

[
−
∫ 1

i
eik(t)·x ∂

∂kk
dS(k(t), t)

]
,

= −∂u j

∂xk

∫
k jeik(t)·x ∂

∂kk
dS(k(t), t), (3.55)

where we assume that the term
∫
(1/i)(∂/∂kk)

(
eik(t)·xdS(k(t), t)

)
, which arises due to

the use of the chain rule in third step in the above relationship, is less dominant.
Using Equation 3.54, and 3.55 in Equation 3.53, and interpreting the rate of change

of wavenumber as
dkk

dt
=−k j

∂u j

∂xk
, (3.56)
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Ds
Dt

=
∂

∂ t

∫
eik(t)·xdS(k(t), t)− ∂u j

∂xk

∫
k jeik(t)·x ∂

∂kk
dS(k(t), t),

=
∫

eik(t)·x
[

∂

∂ t
dS(k(t), t)− k j

∂u j

∂xk

∂

∂kk
dS(k(t), t)

]
,

=
∫

eik(t)·x
(

∂

∂ t
+

dkk

dt
∂

∂kk

)
dS(k(t), t),

=
∫

eik(t)·x D
Dt

dS(k(t), t). (3.57)

The above definition was used in Equations 3.49, and 3.52. The interpretation in Equa-
tion 3.56 can be obtained from the solution Ds/Dt = 0 (Pope [2000]).

3.7 Calculations

We use non-dimensional time ξ , defined as

ξ =

(
dU
dz

)
t (3.58)

By representing dΘ(k(t), t) in terms of the new quantity dZ4(k(t), t), where

dZ4(k(t), t) =
g
θ

(
dU
dz

)−1

dΘ(k(t), t), (3.59)

the new quantity defined above will have dimensions (ms−1). From the above two
definitions, the RDT equations including buoyancy in Equations 3.51 and 3.52 can be
re-written as

D
Dξ

dZl(k(ξ ),ξ ) = Mlm(k(ξ ),ξ )dZm(k(ξ ),ξ ), (3.60)
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where l,m = 1,2,3,4;

Mlm(k(ξ ),ξ ) =



0 0 2k2
1

k2 −1 −k1k3
k2

0 0 2k1k2
k2 −k2k3

k2

0 0 2k1k3
k2 −

(
k2

3
k2 −1

)
0 0 −Ri 0


; (3.61)

and, the Richardson number, defined as (Kaimal and Finnigan [1994])

Ri =
(g/θ)

(
dθ/dz

)
(dU/dz)2 , (3.62)

=

(
N

dU/dz

)2

, (3.63)

where N is the Brunt-Väisälä frequency, and θ is representative of the height of interest
as dU/dz and dθ/dz are.

3.7.1 Initial conditions: isotropic turbulence

For mean vertical shear, and from Equations 3.56 and 3.58, the wavenumber vector
after strain time ξ is given by

k(ξ ) = (k1,k2,k30− k1ξ ), (3.64)

which gives the evolution of the wavenumber vector in time from an initial wavenum-
ber vector, k0 = k(0) = (k1,k2,k30), due to the application of mean vertical shear. For
the initial condition, at t = 0 the spectral tensor is given as

Φlm(k0,0) =
〈dZ∗l (k0,0)dZm(k0,0)〉

dk1dk2dk30
. (3.65)

In the context of an initial condition, we take k = |k0|, otherwise k = |k|.
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3.7.1.1 Velocity spectra

We assume as an initial condition a state of isotropic turbulence, where for the velocity
components the isotropic tensor is given as (Pope [2000])

Φi j(k0,0) =
E(k)
4πk2

(
δi j−

kik j

k2

)
, (3.66)

which satisfies (conjugate) symmetry, and the incompressibility given in Equations 3.17
and 3.18, respectively.

We use the form of the energy spectrum E(k), given by von Kármán as

E(k) = αε
2
3 L

5
3

(Lk)4

(1+(kL)2)
17
6
, (3.67)

where ε is the rate of viscous dissipation of specific turbulent kinetic energy, L is a
length scale and α ≈ 1.7 is the spectral Kolmogorov constant.

The one-point spectra are defined using Equation 3.21 as

F1(k1) =
∫

∞

−∞

∫
∞

−∞

Φ11(k0,0)dk2dk30, (3.68)

where the tensor Φ11 is integrated in (k2,k30) coordinates. In the isotropic case, it
corresponds to a circle with radius k2

r = k2
2 + k2

30 = k2− k2
1, where k = |k0|, and the

infinitesimal area change dk2dk30 corresponds to 2πkrdkr = 2πkdk, at given k1, so
Equation 3.68 becomes

F1(k1) =
∫ kr=∞

kr=0
Φ11(k0,0)2πkrdkr,

=
∫ k=∞

k=k1

Φ11(k0,0)2πkdk. (3.69)

Using Equation 3.66 in Equation 3.69,

F1(k1) =
9

55
αε

2
3

1(
L−2 + k2

1
) 5

6
. (3.70)

The single-point v- and w-spectra can be obtained by using F1(k1) from the relationship
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(Pope [2000])

F2(k1) = F3(k1) =
1
2

[
F1(k1)− k1

dF1(k1)

dk1

]
, (3.71)

therefore,

F2(k1) = F3(k1) =
3

110
αε

2
3

3L−2 +8k2
1(

L−2 + k2
1
) 11

6
. (3.72)

3.7.1.2 Temperature spectrum

For temperature, the isotropic three-dimensional spectrum is given as

Φθθ (k0,0) =
S(k)
4πk2 , (3.73)

where S(k) is the potential energy spectrum containing the form of the inertial sub-
range (Kaimal and Finnigan [1994]) as

S(k) = β1ε
−1/3

εθ L
5
3

(kL)2

(1+(kL)2)
11
6

(3.74)

Here εθ is the dissipation rate for half the temperature variance and β1 = 0.8 is a
universal constant (Kaimal et al. [1972]). The initial one-dimensional temperature
spectrum is given as

Fθ (k1) =
∫

∞

−∞

∫
∞

−∞

Φθθ (k0,0)dk2dk30, (3.75)

As discussed in the previous section, where we converted the cartesian coordinates into
the polar coordinates, for the isotropic form,

Fθ (k1) =
3

10
β1ε
− 1

3 εθ

1(
L−2 + k2

1
) 5

6
. (3.76)

From Equations 3.59, 3.73, and 3.74,

Φ44(k0,0) =
S′(k)
4πk2 , (3.77)

52



Modeling of the spectral velocity tensor including buoyancy effects

10-4 0.01 1 100 104
0.00

0.05

0.10

0.15

k1L

k 1
L

F
i

Hk 1
L

L�Ε2�3
L

5�3
,k

1
L

F
Θ

Hk 1
L

L�Β
1Ε

-
1�3

Ε Θ
L

5�3

u v,w Θ

Figure 3.1: Normalized initial velocity and temperature spectra.

where

S′(k) = αε
2
3 βηθ L

5
3

(kL)2

(1+(kL)2)
11
6
, (3.78)

= βηθ

1+(kL)2

(kL)2 E(k), (3.79)

β = β1/α , and

ηθ ≡
εθ

ε

[
g
θ

(
dU
dz

)−1
]2

. (3.80)

Finally we combine together the isotropic spectral velocity tensor and three-dimensional
temperature spectrum provided in Equations 3.66 and 3.77, and, by assuming zero ini-
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tial temperature fluxes, letting

dZ0 =



0 k3 −k2 0

−k3 0 k1 0

k2 −k1 0 0

0 0 0
√

k2 S′(k)
E(k)


×
√

E(k)
4πk4

where
Φ(k0,0) = dZ0 ·dZT

0 . (3.81)

From the definitions of E(k) and S′(k), Φ(k0,0) becomes a function of αε
2
3 ,L, and

βηθ , and can be expressed as

Φ(k0,0)≡Φ(k0,αε
2
3 ,L,βηθ ). (3.82)

The initial velocity and temperature spectra are shown in Figure 3.1.

3.7.2 Anisotropic tensor

We solve the set of RDT Equations 3.60 numerically, using a 4th order Runge-Kutta
adaptive time step method (Press et al. [2007]). Let A ≡ A(k,ξ ,Ri) be the solution
matrix obtained for the set of initial conditions I0, where

I0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (3.83)

Therefore the spectral tensor Φ(k,ξ ) formed from the solution of the RDT equations
can be given as

Φ(k,ξ ) = A · Φ(k0,0)
J

·AT, (3.84)
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where J = ∂ (k1,k2,k3)/∂ (k1,k2,k30) = 1 is the Jacobian. It should be noted that the
initial conditions used to obtain the solution matrix A are not that given by Equa-
tion 3.81, but by I0, and that Φ(k,0) = Φ(k0). From the above equation and Equa-
tion 3.61,

Φ(k,ξ )≡Φ(k,αε
2
3 ,L,ξ ,Ri,βηθ ). (3.85)

From Equations 3.67, 3.78, and 3.84, it can be proven that

Φ(k,αε
2
3 ,L,ξ ,Ri,βηθ ) = αε

2
3 L

11
3 Φ(kL,1,1,ξ ,Ri,βηθ ). (3.86)

The application of RDT to flows with both uniform mean shear and constant ver-
tical mean potential temperature gradient has been accomplished in the last decade,
but the analysis and focus thus far has mostly been limited to uniform shear with sta-
ble stratification, as in Hanazaki and Hunt [2004]. The governing RDT Equations 3.51
and 3.52 have the analytical solutions for dZ3 and dΘ provided in HH04, so the spectral
tensor Φlm with {l,m}= {3,3},{4,4}, and {4,3} has an analytical form (Hanazaki and
Hunt [2004]). Analytic forms for the other Fourier components are not available (dZ1

and dZ2), and hence, for Φlm with {l,m} = {1,1},{1,2},{1,3},{1,4},{2,2},{2,3},
and {2,4}. The Equations 3.60 for Fourier components are solved numerically. The
values for Φ33,Φ44 and Φ43 as functions of ξ from the numerical calculation are com-
pared in Figure 3.2, with that from the analytical solution in Hanazaki and Hunt [2004].
It should be noted that, instead of temperature, the RDT equations in HH04 are in the
form of density fluctuations, and that the initial density variance is

Φρρ(k0,0) =
S(k)
4πk2 2N2. (3.87)

The purpose of these plots is to show comparisons of the non-stationary solution, and
it can be observed (from the last figure in second row), that there is counter-gradient
flux (sign change of the 〈w′θ ′〉 flux), which is untrue for stationary conditions. Also,
Φ33 from M94 is compared with that from the numerical solution at Ri = 0, which
is shown in Figure 3.3. The algorithm and the numerics, using the initial conditions
mentioned above, were tested by reporducing HH04 results.
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Figure 3.2: The analytical solutions of the spectral tensor components from HH04
(solid lines) shown along with that from numerical calculations (dashed lines) as func-
tions of ξ , at a given initial wavenumber k0L = (5,5,5), for the same initial temper-
ature variance. The solutions are shown for different values of Ri: Ri = 0.01, first
column; Ri = 0.2, second column; and Φ44, first row; Φ43, second row; Φ33, third row.
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from M94, for the same initial wavenumber and length scale as in Figure 3.2. Note
that the M94 model is a stationary model, and that ξ corresponds to the anisotropy
parameter in the model determined from the single point measurement.

3.8 Stationarity and eddy life time

The spectral tensor in Equation 3.86 is non-stationary (time-dependent, via ξ ), and the
stretching of eddies due to shear for an infinitely long time is unrealistic. The eddies
must break at some point due to the stretching. The eddies will stretch or compress
depending upon their orientation in the plane of uniform shear. The small scales- more
isotropic turbulent eddies, are not affected by shear. In order to make the spectral
tensor stationary, we incorporate the general concept of eddy life time from M94 and
its parameterization

τ(k) = Γ

(
dU
dz

)−1

(kL)−2/3
[

2F1

(
1
3
,
17
6

;
4
3

;−(kL)−2
)]−1/2

, (3.88)

where Γ is a parameter to be determined and 2F1 is the ‘ordinary’ or ‘Gaussian’ hy-
pergeometric function. We make the spectral tensor in Equation 3.84 stationary by
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replacing t in Equation 3.58 with the wavenumber-dependent eddy life time given in
Equation 3.88, so ξ is exchanged with Γ in the arguments of Φ, and the anisotropic
spectral tensor becomes

Φ(k,αε
2
3 ,L,Γ,Ri,βηθ ) = αε

2
3 L

11
3 Φ(kL,1,1,Γ,Ri,βηθ ). (3.89)

It should be noted that, due to the incorporation of eddy life time in the spectral tensor,
the Jacobian term in Equation 3.84 becomes,

J =
∂ (k1,k2,k3)

∂ (k1,k2,k30)
,

= 1− k1

(
dU
dz

)
∂τ(k)
∂k30

= 1− k1

(
dU
dz

)
∂τ(k)

∂k
dk

dk30
. (3.90)

For the simplicity, we take J = 1, assuming that it might not affect the spectra much but
at lower wave numbers it might, and detailed investigation needs to be done. Figure 3.4
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Figure 3.4: Eddy life time (blue) from Mann [1994b] in arbitrary units (left plot), along
with its gradient with respect to the wavenumber (right plot). The dashed lines in the
left plot are k−2/3 (black) and k−1 (red), for k→ ∞ and k→ 0, respectively, and their
gradients in the right plot.

illustrates the k dependency of eddy life time and its gradient with k.
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Figure 3.5: Wind velocity field u(x, t) subjected to uniform mean shear and uniform
temperature gradient along z-axis, as shown in the coordinate system. In this example,
the turbulent fluctuations are enhanced by positive heat flux (unstable stratification)
and that 〈w′θ ′〉=−〈w′′θ ′′〉, due to 180◦ rotation of the field about the y-axis.

As described in Mann [1994b], the velocity components of the spectral tensor
model in Equation 3.89 satisfiy the symmetry groupI,

 1 0 0
0 −1 0
0 0 1

 ,

 −1 0 0
0 1 0
0 0 −1

 ,−I

 , (3.91)

where I is the identity matrix. The statistics should remain unchanged under some
rotations and reflections in the coordinate system shown in Figure 3.5. We neglect the
effect due to Earth’s rotation, so Φi j should satisfy left-right symmetry (second element
in Equation 3.91). We also neglect the effect of gravity, where the fluctuating field has
the symmetry about y-axis (third element). So, for any matrix T , from the above
symmetry group, the spectral velocity tensor in Equation 3.89 satisfies the relation

Φ(kL,1,1,Γ,Ri,βηθ ) = T ·Φ(T ·kL,1,1,Γ,Ri,βηθ ) ·T T, (3.92)

where we consider only the velocity component from Φ.
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3.9 Data comparison

3.9.1 Method

We estimate the velocity (auto-) spectra and co-spectrum of u and w from the measured
time series as

Fi j( f ,z)≡ 〈ûi( f )û∗j( f )〉, (3.93)

and the temperature spectrum and the component-wise kinematic heat fluxes, respec-
tively as

Fθ ( f ,z) ≡ 〈θ̂( f )θ̂ ∗( f )〉, (3.94)

Fiθ ( f ,z) ≡ 〈ûi( f )θ̂ ∗( f )〉, (3.95)

where ûi( f ), and θ̂( f ) are the complex-valued Fourier transforms of the ith velocity
component, and temperature, respectively at height z.

We select the data according to the classification of atmospheric stability in terms
of the Obukhov length Lo following Gryning et al. [2007]. The measured spectra and
co-spectra given above change with atmospheric stability (Kaimal et al. [1972]), i.e.,
Flm( f ,z) is a function of Lo.

From Equations 3.22, and 3.89, the model cross-spectrum between any two veloc-
ity components, or, between any velocity component and temperature, is given as

χlm(k1,∆y,∆z) = αε
2
3 L

5
3

∫
Φlm(kL,1,1,Γ,Ri,βηθ )ei(k2∆y+k3∆z)dk⊥L2,

≡ χlm(k1,αε
2
3 ,L,Γ,Ri,βηθ ,∆y,∆z). (3.96)

The model parameters at any height z, are obtained by fitting model one-dimensional
(co-) spectra χlm(k1,αε2/3,L,Γ,Ri,βηθ ,0,0), with measured power-spectra (includ-
ing co-spectra uw,uθ and wθ ) from Equations 3.93, 3.94, and 3.95, and using Taylor’s
hypothesis: k1 = 2π f/U , where U is the mean wind speed at z. The model param-
eters are used as inputs to estimate the model cross-spectra. Model coherences and
cross-spectral phases are compared with those from the measurements.

For vertical separations ∆z (∆y = 0), the set of all the coherences and the cross-
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spectral phases are given, from Equations 3.23, and 3.24, respectively, as

cohlm(k1,∆z) =
|χlm(k1,αε2/3,L,Γ,Ri,βηθ ,∆z)|2

Fl(k1,αε2/3,L,Γ,Ri,βηθ )Fm(k1,αε2/3,L,Γ,Ri,βηθ )
,

≡ cohlm(k1,L,Γ,Ri,βηθ ,∆z), (3.97)

ϕlm(k1,∆z) = arg(χlm(k1,αε
2/3,L,Γ,Ri,βηθ ,∆z)),

≡ ϕlm(k1,L,Γ,Ri,βηθ ,∆z), (3.98)

where Fl = χll(k1,αε2/3,L,Γ,Ri,βηθ ,0,0) (no index summation). The parameters
L,Γ,Ri, and ηθ , are averaged over two heights z1 and z2 (so that ∆z = z2− z1), and
k1 = 4π f/(U1 +U2). The model coherences and cross-spectral phases are independent
of αε2/3, which can be seen from Equation 3.96 and the definitions above. The cross-
spectra, coherences, and cross-spectral phases are calculated from the measurements
using general definitions, which can be found in Chougule et al. [2012].

3.9.2 Experimental data

Experimental data are obtained from measurements taken from the 116.5 m tall mast
located at the coordinates 56◦26′26′′N, 08◦09′03′′E in the Høvsøre test site near the
west coast of Denmark. Metek sonic anemometers (USA-1, Basic, Metek Gmbh), with
a sampling frequency of f = 20 Hz, and measuring in three dimensions, are installed
on the mast, at heights of 10, 20, 40, 60, 80, and 100 m. The land to the east of the
mast is flat, consisting mostly of agricultural landscapes. Five wind turbines are placed
to the north of the mast.

To avoid the wake effects of wind turbines, winds are selected from the region
between 60◦ and 120◦. Around 65◦ and at 8 km from the mast, there are lines of trees
and a big forest that extends about 12 km in both north-south and east-west directions.
A small village is situated at approximately 100◦ about 2.8 km from the mast, which
could also have affected the flow downstream to west. On the west side of the mast,
land extends 1500 m to the North Sea coast, including a dune. More details about
the location and instrumentation can be found in Sathe et al., 2012]. The statistical
analysis is done using seven years of data from 2004 to 2010, and the analysis is based
on 30 minute intervals.
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Figure 3.6: Histogram of atmospheric stabilities based on the Obukhov lengths at wind
speed 8–9 ms−1 for wind directions between 60◦ and 120◦ at the Høvsøre test site in
the west coast of Denmark.

3.9.3 Data selection

Table 3.1: Classification of atmospheric stability according to inverse Obukhov length
intervals (in m−1).

Stable (S) 0.005≤ L−1
o ≤ 0.02

Near-neutral stable (NNS) 0.002≤ L−1
o ≤ 0.005

Near-neutral unstable (NNU) −0.005≤ L−1
o ≤−0.002

Unstable (U) −0.01≤ L−1
o ≤−0.005

Data are selected based on a narrow wind speed interval measured at 80 m height
as well as bins of Lo measured at 10 m, where Lo is the Obukhov length (c.f. Chapter
2, Equation 2.2). We analyze S, NNS, NNU, and U stability cases (c.f. Table 3.1). The
results for the wind speed bin 8–9 ms−1 are provided. Figure 3.6 shows the histogram
of atmospheric stability in terms of Lo from the Høvsøre site, for the velocity bin 8–9
ms−1.
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3.9.4 Spectra

Just as the temperature Fourier components dΘ have been re-dimensionalized by the
pre-factor g

θ

(dU
dz

)−1
to become dZ4, which has the same dimensions as the Fourier

velocity components dZi (see Equation 3.59), the corresponding (co-) spectra become

Fθ (k1) =

[
g
θ

(
dU
dz

)−1
]−2

F4(k1), (3.99)

Fiθ (k1) =

[
g
θ

(
dU
dz

)−1
]−1

Fi4(k1). (3.100)

Table 3.2: The pre-factor (g/θ)(dU/dz)−1 in the Equation 3.59 determined from the
measurements.

Cases 40 m 60 m 80 m
S 0.7 0.8 0.9

NNS 0.9 1.0 1.2
NNU 1.3 1.8 2.6

U 1.6 2.8 3.7

The pre-factors determined from the measurements at the Høvsøre test site are
given in Table 3.2. The spectra and co-spectra are shown in Figure 3.7 at z = 40 m for
S (top plots) and NNS (bottom plots) atmospheric stabilities, and those for NNU and
U are shown in Figure 3.8. It is observed that the model seems to perform better for
stable stratifications than that for unstable stratifications, particularly in predicting the
uθ co-spectrum. Also, a sharp increase in the u- spectra at lower wavenumbers, both
in NNU, and U stability cases, is noticeable, which also causes an increase in the uw

and uθ spectra at lower frequencies (c.f. Figure 3.8). The parameter values from the
model fits are shown in Table 3.3.

3.9.5 Cross-spectra

The normalized cross-spectra, sometimes known as the squared coherences, defined in
Equation 3.23, are shown in Figure 3.9 for S, NNS, and NNU, between heights z1 = 40
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Figure 3.7: Model spectral fits (smooth lines) for S and NNS with the data (ragged
lines) at z = 40 m and the wind speed bin 8–9 ms−1.

Table 3.3: The spectral tensor parameters from the fits for S, NNS, NNU, and U
stability cases at the Høvsøre site for the velocity bin 8–9 m s−1. The number of 30-
minute time series n for each case are also provided in the table. The measurements
are taken from sonic anemometer located at z = 40 m.

Stability n αε2/3 (m4/3 s−2) L (m) Γ Ri ηθ

S 359 0.053 15 3.0 0.06 0.02
NNS 298 0.065 20 3.1 0.03 0.012
NNU 71 0.06 30 3.01 -0.032 0.025

U 106 0.0635 35 2.5 -0.033 0.15
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Figure 3.8: NNU and U spectral fits. Notation follows from Figure 3.7.

and z2 = 60 m, along with the cross-spectral phases defined in Equation 3.24.
From their definitions, coherences and cross-spectral phases are not influenced by

the weighting factor, so that cohθθ = coh44, and cohiθ = cohi4, and the same is true
for phases. We use averaged parameters obtained from the model one-dimensional
spectral fits at z1 = 40 m and z2 = 60 m as inputs to estimate model coherences and
cross-spectral phases. The averaged parameters are provided in Table 3.4, where the
stability class U has been omitted due to the poor performance of the model.

It is observed from the figures that the coherence predictions of the model for stable
stratifications are better than that for NNU, except at the lower frequencies. Also, the
model predicts u-coherence very well during stable conditions. The phase plots shows
that ϕv > ϕu > ϕw, and that the model predicts the same. It is also observed that the
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Figure 3.9: Comparisons of the coherences (left plot), and the cross-spectral phases
(right plot), from the measurements (dashed lines), and the model predictions (solid
lines) from the Høvsøre data, for S, NNS and NNU ABLs. The average of the model
parameters between two given heights, 40 and 60 m, is used to determine model cross-
spectra using Equation 3.22, and the coherences and the phases are calculated from
Equations 3.23, and 3.24, respectively.
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Table 3.4: The average of the parameters obtained from the fits at z1 = 40 m and
z2 = 60 m for S, NNS, and NNU stability cases at the Høvsøre site for the velocity bin
8–9 m s−1. These parameters are used as inputs to estimates the coherences and the
phases given in Equations 3.23 and 3.24, respectively.

Stability L (m) Γ Ri ηθ

S 17.5 3.0 0.06 0.027
NNS 22.5 3.05 0.028 0.012
NNU 40 3.0 -0.026 0.037

measured ϕθ lies between ϕv and ϕu, whereas the model shows that ϕv = ϕθ . More
analysis on the phases can be found in Chougule et al. [2012].

3.10 Discussion

In order to get an insight of the ranges of the parameters Ri, and ηθ in the spectral
tensor model in Equation 3.89, we use the empirical relations from Kaimal and Finni-
gan [1994], inspired by Monin-Obukhov similarity theory (MOST). However, we do
not incorporate these formulations into our model, and the sole purpose of using these
formulations is to get an idea of what ranges of the parameters should be expected. In
steady state, ε and εθ are given by

ε =−〈u′w′〉
(

dU
dz

)
+

g
θ
〈w′θ ′〉, (3.101)

and,

εθ =−〈w′θ ′〉
(

dθ

dz

)
, (3.102)

respectively. The dissipation rate of TKE is equal to the shear production (first term
in Equation 3.101) plus the buoyant production (second term in Equation 3.101). The
shear production term is always positive, whereas the buoyant production term can
be positive (source) or negative (sink), depending upon the vertical temperature flux
〈w′θ ′〉. The sign of 〈w′θ ′〉 is generally opposite of the sign of the temperature lapse
rate, as described in Figure 3.10, where 〈w′θ ′〉 is always positive for unstable stratifi-
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Figure 3.10: An illustration of influence of temperature lapse rate on the vertical tem-
perature flux, which acts as source or sink in the turbulence production via buoyancy
term, depending on whether unstable or stable stratification, respectively. An air parcel
assumed to be moved adiabatically in the direction of arrow from the position indicated
by,

⊗
.

cation, whereas it is negative for stable stratification. By using the above relationships
in Equation 3.80, we get

ηθ =
Ri

R−1
f −1

, (3.103)

where R f is the flux Richardson number, and can be given as (Kaimal and Finnigan
[1994])

R f =
(g/θ)〈w′θ ′〉
〈u′w′〉(dU/dz)

,

' Kh

Km
Ri, (3.104)

where Km, and Kh are the turbulent exchange coefficients for momentum and heat,
respectively. Using relationships from Kaimal and Finnigan [1994] for Ri and Km/Kh,

Ri =

{
z/Lo, −2≤ z/Lo ≤ 0,
(z/Lo)(1+5z/Lo)

−1, 0≤ z/Lo ≤ 1,
(3.105)
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Figure 3.11: The model parameters; Ri, and ηθ , as functions of z/Lo, using empirical
relationships from Kaimal and Finnigan [1994] and MOST.

and,
Km

Kh
=

{
(1+16|z/Lo|)−1/4, −2≤ z/Lo ≤ 0,
1, 0≤ z/Lo ≤ 1.

(3.106)

From the above relationships, Ri≡Ri(z/L0), for unstable (z/L0 < 0), neutral (z/L0 =

0), and stable (z/L0 > 0) stratifications. So the ηθ parameter can be expressed from
Equation 3.103, as

ηθ =
Ri2

(Km/Kh)−Ri
≡ ηθ (z/Lo). (3.107)

The parameters; Ri and ηθ are plotted against z/Lo in Figure 3.11. The MOST study
and the data comparisons were performed by Businger et al. [1971].

The integrations in Equations 3.19, and 3.22 are performed by using two- and three-
dimensional adaptive integration algorithms from the Risø Computer Library, and that
the ‘fast and reliable method’ developed by Mann [1994a]. The numerics seemed
to work with reasonable speed, where it takes ∼ 18-19 seconds to get all the seven
spectra and co-spectra, analysed above, for both; the required accuracy in the numerical
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integration of Equation 3.96 with ∆y = ∆z = 0, and the relative error in the numerical
integration of the partial differential equations (Equations 3.51, and 3.52), is 0.0001.

Table 3.5: Performance of the model in variance and co-variance predictions at z =
40 m. The model overestimation is denoted by ‘+’ and underestimation by ‘−’.

∆%
Model Stability u v w uw θ uθ wθ

New RDT

S -11.5 -17.3 +18.8 +30.4 -24.5 -17.0 +51.6
NNS -8.2 -8.0 +21.7 +38.5 -59.0 -6.26 +18.7
NNU +9.6 -17.6 +19.6 +61.2 -66.7 -50.0 -10.3

U +21.2 -31.7 +31.0 +67.3 -54.4 -67.4 -32.8

M94

S -5.0 -19.7 +11.7 +47.4
NNS -4.0 -12.8 +7.0 +45.0
NNU -8.0 -24.0 -4.5 +25.8

U -3.7 -34.0 +1.6 +23.8

In order to see the performance of the model, we adopt a similar method as given in
Chapter 2, where we estimate variances and co-variances both from the measured time
series and the model. Table 3.5 gives the relative model over/underestimation of the
(co-)variances, which are estimated for the spectra shown above for S, NNS, NNU, and
U stability cases. We also compare the results with those obtained from the spectral
fits from the M94 model. The M94 parameters are shown in Table 3.6. The spectral
fits from the M94 are shown in Figure 3.12 for stable and unstable ABL.

Table 3.6: The M94 model parameters from the fits for S, NNS, NNU, and U stability
cases at the Høvsøre site for the velocity bin 8-9 m s−1. The number of 30-minute time
series n for each case are provided in Table 3.3. The measurements are taken from
sonic anemometer located at z = 40 m.

Stability αε2/3 (m4/3 s−2) L (m) Γ

S 0.05 12 3.1
NNS 0.053 21 3.4
NNU 0.04 45 3.7

U 0.04 75 3.5
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Figure 3.12: The M94 spectral fits (smooth lines) to the data (ragged lines), from
Høvsøre at z = 40 m for NNS (top left), S (top right), NNU (bottum left), and U
(bottum right). The model parameters are provided in Table 3.6.

The parameters in the model are obtained by rough-manual fitting of the model cal-
culations to that from the measurements— the one-dimensional spectra and co-spectra,
whereas we perform the χ2-fits of the M94 model, which is described in Chapter 1 and
2. The reason that we do not perform χ2-fits to the new model is because of the look-
up table, which is required to build the χ2-fit interpolation functions; in order to make
a look-up table we should have an idea of the parameter ranges, especially Ri and ηθ .
The look-up table requires many calculations; for example, from the derivation which
we have proved in Equation 3.89, we fix αε2/3 = L = 1, and if we keep Ri as fitting
parameter, it requires (Γ =)l× (Ri =)m× (ηθ =)n numbers of (seven) (co-) spectrum
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calculations, in which each calculation (for all seven (co-) spectrum) takes approxi-
mately 18 seconds.

The results which are presented in this chapter are preliminary results, otherwise,
apart from that, the model seems to work well for stable ABL, whereas it performs
worse for unstable ABL (by looking at the (co-) spectra figures). By looking at the
NNU- and U- u-spectra, it is observed that there is a sharp increase in energy for k1 ≤
0.002, which also affects uw, uθ , and wθ - co-spectra roughly below this wavenumber.
In terms of ∆ values, which are provided in Table 3.5, it is observed that the model
performs slightly better for v and uw, both for S and NNS. The large errors in the θ -
variance correspond to the noise in temperature spectra at higher frequencies, as well
as mesoscale motions at lower frequencies.

The spectral fits are done with the understanding of the role of the parameters in
modifying the (co-)spectra, and changing the values of the (co-)variances. For the
stable cases, an increase in the Ri value results in shifting the peaks of velocity spectra
slightly both to the right along the abscissa and downward (upwards for uw co-spectra)
along the ordinate, and the u-spectra is more influenced than the v- and w-spectra (the
influence on the v- and w-spectra in very slight). Also, the peaks of the θ -spectrum
and uθ co-spectrum shift upwards, whereas the peak of wθ shifts downwards, with an
increase in Ri, for stable cases. The effect of an increase in the value of ηθ , in stable
case, is opposite to that of Ri, except that the peak of the θ -spectrum shifts upwards,
similar to that with an increase in Ri, with a decrease in the temperature length scale.
In unstable cases, an increase in the absolute value of Ri has similar effect on the θ ,uθ ,

and wθ (co-)spectra as that in stable case, whereas the velocity spectra shift upwards
and the uw co-spectrum shifts downwards towards lower wavenumber, while ηθ affects
the spectra in similar manner to that Ri. The role of the other three parameters, namely
αε2/3,L, and Γ is described in Chapter 2. Also, the anisotropic nature of turbulence in
terms of Γ is analysed in a very simple way by analysing the anisotropic tensor mapped
in the palne of the principal invariants, called the Lumley triangle (see Appdx B for the
description and the results).

The performance of the model in coherence predictions can be determined in terms
of the G factor from Equation 2.11 in Chapter 2, which is the absolute area between
the smooth and ragged curves in the coherence plots shown in Figure 3.9 for S, NNS,
and NNU cases. We also compare the G values determined from the M94 model. It

72



Modeling of the spectral velocity tensor including buoyancy effects

Table 3.7: Model performance in terms of G factor in coherence predictions (Equa-
tion 2.11 in Chapter 2). The coherences are determined from the model and the mea-
surements between heights z1 = 40 and z2 = 60 m. The model performance is com-
pared with that of the M94 model.

G
Stability coh New RDT M94

NNS
u 0.03 0.03
v 0.08 0.10
w 0.12 0.15
θ 0.08 –

S

u 0.05 0.05
v 0.14 0.11
w 0.09 0.12
θ 0.09 –

NNU

u 0.18 0.20
v 0.37 0.43
w 0.22 0.28
θ 0.28 –

is observed from Table 3.7 that the new RDT model with the buoyancy effects gives
similar performance in the coherence predictions. In terms of G values, the new model
seems to work slightly better for NNU, despite the poor spectral fits.

The power law in the inertial sub-range, where the velocity-temperature co-spectra
are proportional to k−7/3

1 , is shown in Figure 3.13. It can be observed that in stable
cases, the sub-inertial range exists over a band of k1, narrower than in unstable cases,
while the model also able to predict the same— the energy cascade process in stable
and unstable ABL. Also, the difference means that the unstable turbulence is more
isotropic than that in stable case, and this can be seen from the anisotropy Γ parameter
given in Table 3.3, where Γ for stable case is lager than that for unstable case. The Γ

value for stable case, that obtained from the M94 model, is smaller than that for unsta-
ble, however. The unstable-uθ falls much faster with wavenumber than the measured
co-spectrum, as observed from Figure 3.13 (right plot).

In the inertial sub-range, the life time of eddies are proportional to k−2/3 and the
assumption in the M94 model is, at scales larger than the intertial sub-range, eddy
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Figure 3.13: The inertial subrange: Fiθ ∝ k−7/3
1 , shown in log-log plot, for i = 1 and 3.

Smooth lines represents the model co-spectra, whereas the measurements are shown
by ragged lines. Straight lines in both the plots are proportional to k−4/3

1 . Note, for S
−wθ , while for U −uθ are shown in respective plots.

life time is proportional to k−1 divided by their characteristic velocity (
∫

∞

k E(p)(p))1/2

such that, eddy life time in Equation 3.88 is proportional to k−2/3 for k → ∞ and
k−1 for k→ 0. The alternative formulations for eddy life time, which are provided
in Mann [1994a] and the references within, give different k-proportionalities for the
scales larger than the inertial sub-range, such as, k−2 and k−7/2 for k→ 0. The eddy
life time from M94 may not be the only choice, and the use of alternative forms of
eddy life time might be the future task. There is some difficulty in RDT modeling
of unstable v-spectra at lower frequencies, which might be due to the eddy life time,
the non-linear slow pressure term (second term in the right side of the Equation 3.40,
which is excluded in RDT), and might be important at larger scales. Also, the presence
of the ground, which has been ignored in the model but was incorporated in the US+B
model of Mann (1994), could be important in explaining the large v-spectrum at low
wavenumbers.

3.11 Conclusion and future work

The new RDT-based spectral tensor model is proposed, which, in addition to the ve-
locity spectra and co-spectra, also gives the temperature spectrum and the temperature
fluxes, as a result of including buoyancy effects via a mean uniform temperature gra-
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dient. The preliminary results presented in this study show that the model seems to
work better for stable than unstable conditions. The model is able to predict well the
length scales (corresponding to the peaks of (co-) spectra) of temperature spectrum
and temperature-velocity co-spectra, where the length scale of uθ is roughly equal to
that of u-spectra, and the length scales of θ and wθ are roughly equal to that of w-
spectra, in both stable and unstable ABLs. In the intertial subrange, wθ co-spectrum
is proportional to k−7/3

1 . The model overestimates energy in the u-spectrum at larger
spatial scales in unstable stratification, and a relatively large underestimation of the uθ

co-variance is noted. The model is able to predict the θ -coherence, while the predic-
tion is better in stable cases, than in unstable cases. We compare the model predictions
against the M94 model predictions in the coherence estimations, where the new model
seems to give slightly improved results. The cross-spectral phase results show that the
θ -phase lies between the v- and u-phase, whereas the model shows ϕθ ≈ ϕv.

The model in its present state needs to be improved in many ways; e.g. it can be
tested against alternative forms of eddy life time. Also the two extra parameters Ri

and ηθ are obtained from spectral fits, while the model will be tested against the Ri

values determined from the measurements. The temperature spectra from the Høvsøre
measurements are noisy, and therefore, in the future we could use other measurements.
We have not tested the model using the empirical relationships from the MOST as dis-
cussed in the Section 3.10, where the number of parameters is reduced to four instead
of five, and that it could be useful to test RDT model against MOST within the surface
layer. There is possibility of improving the spectral fits by making the look-up table
and making the interpolations function, which will be done by many (co-)spectra cal-
culations as discussed above on a computer cluster of DTU’s Wind Energy department.
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Vertical cross-spectral phases in neutral atmospheric flow
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The cross-spectral phases between velocity components at two heights are analyzed
from observations at the Høvsøre test site and from the field experiments under the
Cooperative Atmosphere-Surface Exchange Study in 1999. These phases represent the
degree to which turbulence sensed at one height leads (or lags) in time the turbulence
sensed at the other height. The phase angle of the cross-wind component is observed
to be significantly greater than the phase for the along-wind component, which in turn
is greater than the phase for the vertical component. The cross-wind and along-wind
phases increase with stream-wise wavenumber and vertical separation distance, but
there is no significant change in the phase angle of vertical velocity, which remains
close to zero. The phases are also calculated using a rapid distortion theory model and
large-eddy simulation. The results from the models show similar order in phasing, but
the slopes of the phase curves are slightly different from the observations, especially for
low wavenumbers.

Keywords: cross-spectra; phases; atmospheric turbulence; wavenumber; vertical
distance

1. Introduction

The structure of atmospheric turbulence can be analyzed in terms of two-point statistics
such as normalized cross spectra (also known as coherences), which are typically studied
both experimentally and theoretically as a function of horizontal separation distance for
homogeneous turbulence in the atmospheric surface layer [1, 2]. The coherences of the
along-wind, cross-wind, and vertical velocity components (u, v,w) decrease with increasing
separation distance, as seen from both observations and theory [2].

In this paper, we attempt to answer the research question, “how and why are the cross-
spectral phases with a vertical separation different, for different velocity components in the
neutral atmospheric boundary layer (ABL)?”

We investigate cross spectra with particular emphasis on the associated phases ϕ

for vertical separations �z, using observations at Høvsøre [3, 4] and from Cooperative
Atmosphere-Surface Exchange Study in 1999 (CASES-99) [5, 6]. No investigation of the
vertical phase angles for all three velocity components (i.e., ϕu, ϕv , and ϕw), including their
behavior in the ABL, has been noted in the literature. Mann [2] studied ϕvw (the phase angle
between v and w) for horizontal separations, and ϕuu(≡ ϕu) and ϕuw for vertical separa-
tions, where the w-component was measured further from the surface. Few experimental
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2 A. Chougule et al.

investigations have been done on the phases. Heidrick et al. [7] experimentally studied the
phases of the axial velocity component in fully developed pipe flow using measurements
taken at two different points, where the separation vector was oriented at different angles to
the mean flow. Komori et al. [8] studied the phase angle between the vertical velocity com-
ponent and the temperature in stably stratified open-channel flow. Both Heidrick et al. [7]
and Komori et al. [8] assumed turbulent motions approach as wavelike motions. The Sandia
(Veers) method [9], which is used in wind engineering for load calculations on wind turbines,
assumes an average of zero phase between any two points because of an exponential form
of the coherence function as given in Ref. [10]. The Mann method [11], based on the Mann
spectral tensor model [2] and widely used in wind engineering, does give non-zero phases.

In addition to the observations, we also evaluate the phase angles from the Mann
spectral tensor model [2], which incorporates rapid distortion theory (RDT) [12, 13], and
from data generated by large-eddy simulation (LES) [14]. The phases are determined by
calculating the two-point cross spectra of velocity components and corresponding spectra as
defined in Section 1.2. The observations and the models used for the analysis are described
in Section 2 and Section 3, respectively. The results from the observations and the models
are given in Section 4. In Section 5, we discuss more details and the mechanism explaining
the systematic behavior of the phases, followed by conclusions in Section 6.

1.1. Motivation

Mann [2] modeled the evolution of turbulence induced by uniform shear using RDT [12,13]
in a neutral surface layer. Mann [11] used the model of [2] to develop a method to simulate
the three-dimensional wind in the time domain. The model in [2] and the method in [11]
are the industry standards for aeroelastic calculation of wind turbine loads [15]. Turbulence
simulations from [11] show systematic behavior in u, v, and w fluctuations in the rotor
plane of a horizontal axis wind turbine, and when used to predict the respective phase angles
between two heights, we see that ϕv > ϕu > ϕw for k1�z ≤ 1, where k1 is a stream-wise
wavenumber. We expect that this behavior in phasing is due to the vertical shear. In order
to confirm that, we analyze observed and LES data in more detail.

Shear-induced turbulence may have an effect on wind turbine loading. Sathe et al. [4]
showed that in the ABL under stably stratified conditions, where turbulence is suppressed,
large wind gradients lead to increased fatigue loading on the turbine rotor. Due to the
presence of the ground in situations where there is no flow reversal or flow separation, one
expects that the wind approaches a given point (x, y, z) faster at heights farther from the
ground than at smaller z (closer to the surface), and so the turbulence sensed at the higher
point “leads” in time that sensed at the lower point for the same (x, y).

The sketch given in Figure 1 illustrates the deformation of an “eddy” by uniform shear.
The eddy hits the turbine plane first at point a, then at b. With increasing wind turbine
diameter, the bending moments due to the vertical shear become more prominent. The
combination of fatigue loads on wind turbines, due both to wind shear and shear-induced
turbulence – with its ability to induce significant coherent phase differences across the
vertical extent of a turbine rotor – motivates investigation of the phases in more detail.
However, the actual consequences for loads will not be investigated here.

1.2. Definitions

The phases are calculated from complex cross spectra. The cross spectrum between velocity
components ui(t) (i = 1, 2, 3) and uj (t) (j = 1, 2, 3) at heights z1 and z2, respectively, is

D
ow

nl
oa

de
d 

by
 [

U
ca

r/
N

ca
r]

 a
t 0

8:
22

 2
0 

A
ug

us
t 2

01
2 



Journal of Turbulence 3

Figure 1. Sketch of the eddy stretching due to the shear. The turbulence sensed at point a leads in
phase with respect to the turbulence sensed at point b in the rotor plane of a horizontal axis turbine.

defined as

χij (f,�z) = 〈ûi(f, z1)û∗
j (f, z2)〉, (1)

where f is frequency, �z = z2 − z1, 〈 〉 denotes ensemble averaging, ∗ denotes com-
plex conjugate, and ûi(f, z1) is the complex-valued Fourier transform of the ith velocity
component ui(t) at height z1. The phase between the two velocity components is then

ϕij (f,�z) = arg(χij (f,�z)). (2)

The coherences known as “squared coherences” [16] are frequently used in wind engi-
neering [17] and calculated from the cross spectra and the single-point power spectra [18]
via

cohij (f,�z) = |χij (f,�z)|2
Fi(f, z1)Fj (f, z2)

, (3)

where Fi(f, z) = 〈ûi(f )û∗
i (f )〉 is the single-point power spectrum of the ith velocity com-

ponent ui(t) at height z.
If we assume that Taylor’s hypothesis of “frozen turbulence” is valid, then the mea-

sured time series can be related to spatial fluctuations. So for the stream-wise direction,

D
ow

nl
oa

de
d 

by
 [

U
ca

r/
N

ca
r]

 a
t 0

8:
22

 2
0 

A
ug

us
t 2

01
2 



4 A. Chougule et al.

single-point measurements can be related through k1 = 2πf/U , where U is the stream-wise
mean wind speed.

2. Observations

Two different datasets are used to investigate the vertical cross-spectral phases: the Høvsøre
test site in Denmark and the CASES-99 field experiment. Both provide a unique opportunity
to investigate the phase angles between wind components as a function of the vertical
separation distance and the distance from the ground.

2.1. Høvsøre

The measurements are taken from the 116.5 m tall mast at the Høvsøre test site on the
west coast of Denmark. Sonic anemometers, sampling at 20 Hz and measuring in three
dimensions, are installed on the mast at heights of 10, 20, 40, 60, 80, and 100 m. The land
to the east of the mast can be considered as flat, homogeneous terrain. On the west side of
the mast, land extends 1500 m to the North Sea coast, including a dune which can affect
the flow. Five wind turbines are situated to the north of the mast. More details about the
location and instrumentation can be found in Refs. [3, 4].

To avoid the effects from the wind turbine wakes and focus on flow over essentially
uniform terrain, winds are selected from directions between 60◦ and 120◦, and the data
limited to when the 80 m mean wind speeds fall between 8 and 9 m s−1. The calculations
are done for data corresponding to neutral stability conditions, i.e., when the Obukhov
length Lo measured at z = 10 m is |Lo| ≥ 500 m. The height interval chosen in the phase
analysis spans 40 –100 m. Analysis is done using seven years of data from 2004 to 2010.

2.2. CASES-99

The CASES-99 was conducted over relatively flat grassland near Leon, Kansas, US during
October 1999. Mean and fluctuating wind components in three dimensions were sampled
at 20 Hz from sonic anemometers at six levels on a 60 m scaffolding tower. Although data
were collected throughout the diurnal cycle, CASES-99 was primarily focused on the stable,
nocturnal boundary layer, including transition periods. Poulos et al. and Sun et al. [5,6,19]
described the experiment and discussed some of the results. Here, we use the observations
from 40 m and 55 m on the night of 17 October, which had the maximum nighttime wind;
for this case, the mean wind averaged over these two heights was ∼12 m s−1 from the north
and |Lo| ≥ 200 m.

3. Modeling

Two different models are used to predict and analyze the phases in comparison with the
observations: the Mann spectral velocity tensor model and National Center for Atmospheric
Research’s LES model.

3.1. Spectral tensor model

The Mann spectral velocity tensor model incorporates RDT [12,13] with an assumption of a
mean uniform shear, plus a wavenumber-dependent eddy lifetime, to estimate the structure
of turbulence over uniform flat terrain, which has been extended to cover gently varying
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orography [20]. The model calculates the evolution of turbulence in Fourier modes from an
initial isotropic state, the energy spectrum of which is given by the von Kármán form [21].

The Mann model contains three adjustable parameters:� A length scale L describing the size of energy-containing eddies.� A non-dimensional anisotropy parameter � used in the parameterization of the eddy
lifetime.� A measure of the energy dissipation αε2/3, where the Kolmogorov constant α = 1.7 and
ε is the rate of viscous dissipation of specific turbulent kinetic energy.

The analytical form of the spectral velocity tensor in [2] is a function of these three
parameters and can be expressed as �ij (k, L, �, αε2/3), where k = (k1, k2, k3) is the three-
dimensional wave vector. The modeled cross spectra, which also become functions of the
three parameters, are given as

χij (k1, L, �, αε2/3,�y,�z) =
∫

�ij (k, L, �, αε2/3) exp(i(k2�y + k3�z))dk⊥, (4)

where
∫

dk⊥ ≡ ∫ ∞
−∞

∫ ∞
−∞ dk2dk3 and �y is the transverse separation distance. The three

parameters are determined by fitting model single-point power spectra Fi (k1, L, �, αε2/3) =
χii(k1, L, �, αε2/3, 0, 0) (no summation) to the measured single-point power spectra
through chi-squared fitting as given in Ref. [2].

Figure 2 gives an example of a model fit of power spectra to the Høvsøre data at
100 m height illustrating extraction of L,�, and αε2/3. One hundred seventy-six 30 min
time series are used to calculate spectra and co-spectra from the measurements. The three
parameters are subsequently used as an input to calculate numerically the cross spectrum
between any two velocity components through Equation (4). Thus, for vertical separations
(�y = 0), the model cross spectra and phases are expressed as χij (k1, L, �, αε2/3,�z) and
ϕij (k1, L, �,�z), respectively. The model phases are unaffected by ε.

The distortion of the wave vector due to shear dU/dz is given by
k(t) = (k1, k2, k30 − k1(dU/dz)t), with the initial wave vector k0 = (k1, k2, k30). The model
assumes a uniform shear, so dU/dz is constant with height, which is an approximation, but
we do not expect that a non-zero d2U/dz2 would significantly alter the results. In addition to
the uniform shear, the vertically inhomogeneous effect of blocking due to the surface (e.g.,
ground) was included in [2]; however, it does not produce significantly different results.
Nevertheless, as discussed above, χij , Fi , and ϕij are functions of L that itself depends
on the distance z from the ground. In this way, the model treats vertical inhomogeneity in
application.

3.2. LES model

The pseudospectral LES code of Sullivan and Patton [14] simulates the ABL over flat,
homogeneous terrain, with high temporal and spatial resolution. A database containing LES
results from this code has been previously established, for different ABL states and surface
conditions; here we use LES results for a neutral ABL, consisting of 1000 instantaneous
volumes (snapshots) saved every two time steps. The domain size for the analyzed neutral
case is 2400 × 2400 × 1000 m3, with horizontal resolution δx = δy = 4 m and vertical
resolution δz = 2.5 m. A geostrophic wind of ug = 5 m s−1 is imposed, and the time step,
which is determined based on a CFL (due to Courant–Friedrichs–Lewy condition) number
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6 A. Chougule et al.

Figure 2. Example of the model fit of single-point spectra to the Høvsøre data at 100 m height to
determine the three parameters in the Mann model [2]. One hundred seventy-six 30 min time series
are used to calculate spectra from the measurements at Høvsøre. Measurements: u-spectrum; –∗–,
v-spectrum; –�–, w-spectrum; –�–, co-spectrum of u and w; –◦–. Model spectra and co-spectrum:
u; - - -, v; — — —, w; ——, uw; -·-.

of 0.75, is nearly constant at ∼0.7 s. The simulation meets the “high-accuracy zone”
LES criteria established by Brasseur and Wei [22], with essentially resolution-independent
results.

The surface is characterized by a roughness of z0 = 0.3 cm and a virtual potential tem-
perature of 300 K, with zero mean surface heat flux prescribed and the surface momentum
fluxes dictated by z0. A uniform virtual potential temperature is initially imposed up to
the top of the boundary layer, which is capped by a virtual potential temperature inversion
having dT /dz =0.003 K m−1. The boundary layer “top” can thus act dynamically and its
structure varies, with a diagnosed mean boundary layer depth zi of 616 m. The “snapshots”
used for the analysis correspond to simulation times long after the initial “spin-up” of the
code (∼1 h, much larger than the rough ABL timescale ∼zi/ug [23] and larger than the
large-eddy turnover timescale zi/u∗, where u∗ is the friction velocity). The (cross) spectra
are calculated for each instantaneous snapshot in horizontal planes at two given heights
and then averaged over all snapshots. Due to horizontal homogeneity, statistics are constant
over the horizontal plane.

In the next section, the results from the observations and the models are provided,
followed by discussion in Section 5.

4. Results

The phases from the Høvsøre observations are shown in Figure 3(a) and the coherences in
Figure 3(b), along with the predictions from the Mann model. As described in Section 3.1,
the three adjustable parameters in the model are determined by fitting the one-dimensional
power spectra of the model to that from the data at heights 40 and 100 m (see Figure 2).
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Figure 3. The phases (a) and the coherences (b) between 40 m and 100 m at Høvsøre for a neutral
ABL with the predictions from the Mann model [2]. Phase angles from the measurements: ϕu; –∗–,
ϕv; –�–, ϕw; –�–. Model phases: ϕu; - - -, ϕv; – – –, ϕw; ——. Similar notations are followed for the
coherences.

The average of the parameters at the two heights is used to calculate the model cross
spectra. The slopes of the phase curves predicted by the model are different than those
calculated from the measurements. However, the model is able to predict the order in
phasing, ϕv > ϕu > ϕw, for k1�z ≤ 1.

The model overestimates the u-, v-, and w-coherence for k1�z ≤ 1. So at a given
length scale, the fluctuations at two corresponding heights in the modeled coherent eddies
are more correlated than those from the observation. It is also observed that the modeled
phases are smaller than the phase angles from the measurements.

The phase angles from the CASES-99 are shown in Figure 4(a) between heights 40
and 55 m, along with the predictions from the Mann model. The Mann parameters are
determined in the same way as described for the Høvsøre case. The same order in phasing

Figure 4. A comparison of phases from (a) CASES-99 and (b) LES for a neutral ABL with the
phases from the Mann uniform shear model. Mann model: ϕu; - - -, ϕv; – – –, ϕw; ——. CASES-99
and LES: ϕu; –∗–, ϕv; –�–, ϕw; –�–.
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8 A. Chougule et al.

Table 1. The three parameters in the Mann model obtained from
single-point power spectra from Høvsøre, CASES-99, and LES
data, via chi-squared fits [2]. The averages of the parameters ob-
tained at given heights z1 and z2 are provided. Refer to Figure 2
for an example.

Data z1 [m] z2 [m] � L [m] αε2/3 [m4/3s−2]

Høvsøre 40 100 3.3 40 0.044
CASES-99 40 55 3.5 85 0.008
LES 50 100 2.9 52 0.028

is seen in the CASES-99. The phase ϕw is close to zero, which can also be seen at Høvsøre.
The Mann model underestimates ϕu and ϕv , as compared to the observations at both sites.

Figure 4(b) shows the phases between heights 50 and 100 m from the LES of a neutral
ABL. The LES spectra are fitted with the Mann model and the model parameters are
obtained to predict the phases. We also observe ϕv > ϕu > ϕw.

The three adjustable parameters in the Mann model obtained from the Høvsøre, CASES-
99 and LES are provided in Table 1.

5. Discussion

In this section, we describe some more details about the behavior of the phases. As we have
seen in Section 4, RDT is capable of explaining the fact that ϕv > ϕu > ϕw. However, it is
not entirely clear why this ordering is inevitable. In this section, the inequality is supported
with simple physical and geometrical arguments.

Thirty-minute time series are used for the analysis of the Høvsøre data. For the neu-
tral ABL, we obtain an ensemble of n = 176 realizations. As per the definition of the
ensemble average, we require an infinite number of realizations in order to obtain (cross)
spectra as defined in Section 1.2. So, due to the limited n, there is uncertainty in the esti-
mated (cross) spectra and hence in the corresponding coherences and phases. Kristensen
and Kirkegaard [24] showed that the estimated coherence is systematically overestimated.
Letting the true coherence to be denoted as coh, the estimated coherence 〈cohn〉 is given
due to [24] by

〈cohn〉 = α1 (5)

with

α1 = 1 − n − 1

n
(1 − coh)n2F1(n, n; n + 1; coh), (6)

where 2F1 is the hypergeometric function. We see that n is large enough to give almost
insignificant overestimation of the coherences. For example, for n = 176 we get 〈coh176〉 =
0.5014 for coh = 0.5 and 〈coh176〉 = 0.0155 for coh = 0.01 from Equations (5) and (6).

For winds from the west (i.e., from the North Sea), the flow is essentially inhomoge-
neous, so we might expect the phase angles to be different. But, quite surprisingly, when
we examine the phase angles for winds selected between 240◦ and 300◦, we find the same
difference and ordering of the phases with slightly greater values. Also when we analyze
the data for combinations of heights other than 40 and 100 m, we observe three things: first,
with increasing �z, both ϕu and ϕv increase for k1 ≤ 0.01, with no significant change in ϕw;
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second, for a given �z, moving further from the surface we see a slight decrease in ϕu and ϕv

but no systematic effect upon ϕw; and third, we still get the same order in phasing, i.e., ϕv >

ϕu > ϕw (irrespective of the values of z1 and z2, as long as the coherence is non-zero). When
we analyze the phases for mean wind speed intervals greater than 8–9 m s−1 (corresponding
to 80 m height), the phases are insignificantly affected, with the same difference and order-
ing. In addition to the phases being almost unaffected by the mean wind speed, they show
the same trend as in the two cases described above. In this regard, if we observe Figures 3(a)
and 4(a), the phases from CASES-99 are smaller than those from Høvsøre (as is �z).

Sathe et al. [4] showed the variation of the three parameters specifying the spectra as
a function of mean wind speed at different atmospheric stabilities. For the neutral case,
there is no significant variation in L or � with the mean wind speed between 3 and 16 m
s−1, but the αε2/3 parameter varies significantly as expected. Interestingly, as we discussed
in Section 3.1, the model phases are functions of L and � but not αε2/3. With increasing
�, which represents the degree of turbulence anisotropy, phase angles of all three velocity
components increase and the phase curves shift upward. From Ref. [4], for the variations of
L and � with mean wind speed, the standard deviations are ∼ 5.2 m and ∼ 0.11, respectively,
which has no appreciable effect upon the model phases. This aspect of the model prediction
is also consistent with the fact that the phases at Høvsøre are not dependent on the mean
wind speed over the intervals described in the previous paragraph. In this regard, if we
observe Figures 3(a) and 4(b), we see that the LES phases compare well with those from
Høvsøre, although the average of the mean wind speeds at 50 and 100 m in the LES is
∼4 m s−1. The vertical variation of the three parameters is described in Ref. [25].

As observed from the results in Section 4, modeled ϕu and ϕv are smaller than those
from the measurements; we do not know the exact reason for this, but it could be due to
inhomogeneity and as discussed in Section 3.1, the L parameter roughly follows z but does
not strictly represent z.

The LES results shown here are based on spatial calculations. When the phases are
calculated using simulated time series (i.e., in time-frequency domain) and using Taylor’s
hypothesis, we obtain a different result, as shown in Figure 5. We do not know the precise
reason behind this, but what is noticeable from Figure 5 is that the temporal-u-phase is
systematically smaller than the spatial-u-phase and the temporal-v-phase is greater than the

Figure 5. The LES phases based on time- and space-domain calculations. The temporal phases: ϕu;
- - -, ϕv; — — —, ϕw;——. The spatial phases: ϕu; –∗–, ϕv; –�–, ϕw; –�–.
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10 A. Chougule et al.

spatial-v-phase. The differences between the time- and space-domain calculations likely
result from the limited domain size, applicability of Taylor’s hypothesis, and the effect
of the LES code zeroing the mean vertical velocity over the horizontal plane at each
height and time step. In this connection, we suggest that two pulsed lidars mounted at two
different heights on a meteorological mast, staring upwind and measuring at many range
gates simultaneously, could shed light on the differences between the temporal and spatial
spectral phases. Several such lidars have been deployed in the field [26] but not in this
configuration.

5.1. Mechanism

The three-dimensional velocity field u(x) is decomposed into Fourier modes, so the en-
tire field can be written as a sum (or more precisely an integral) of terms of the form
u(k) exp(−ik · x), where u(k) is a complex vector, the Fourier amplitude. According to
Equation (4), all three-dimensional Fourier modes u(k) with a particular value of k1 con-
tribute to the cross spectrum at that one-dimensional wavenumber. In the following, we
consider qualitatively all these contributions to the cross spectrum and how they change
under the action of a shear dU/dz.

Because of incompressibility, ∇ · u(x) = 0, the velocity amplitudes are perpendicular
to the wave vectors: k · u(k) = 0. Furthermore, since the Fourier amplitude of the vortic-
ity ω(k) = −i k × u(k), then k, u(k), and ω(k) are mutually perpendicular. In RDT, the
vorticity equation is

D

Dt
ω(k) = ω(k) · ∇u(k), (7)

where k(t) = (k1, k2, k30 − k1(dU/dz)t) as mentioned in Section 3.1.
In Figure 6, Fourier modes are illustrated, with wavefronts in the vertical x–z plane for

some lagging, leading, and normal modes before and after shearing (Figures 6(a) and 6(d),
respectively). The corresponding wave vectors are shown in Figures 6(b) and 6(e). All
modes shown have a fixed horizontal wavenumber k1, but for some the fluctuations lead at
height z2 relative to z1, some have approximately zero phase difference, while for others
they lag. The corresponding vorticity ω(k) perpendicular to k is shown in Figures 6(c)
and 6(f). In isotropic turbulence, leading and lagging modes are equally energetic, so the
resulting phase is zero. Introducing a linear shear as in [2] changes this situation. Here, RDT
(Equation (7)) predicts that modes with vorticity roughly aligned with the principal axis of
strain become more energetic, while modes with vorticity aligned with the principal axis
of compression are suppressed. The consequences for the phase are illustrated by looking
at lagging, neutral, and leading modes corresponding, respectively, to red, green, and blue
in Figure 6.

For the u-component, the zero phase mode would typically have the most energy
〈|u(k)|2〉 due to the shape of the energy spectrum, because k ≡ |k| is smallest for all
Fourier modes contributing to the cross spectrum with horizontal wavenumber k1; but the
energy in the u-component is zero because u(k) is perpendicular to k. After some time, the
shear will tilt u(k) (if it has a vertical component) and some energy will be transferred to
the u-component, introducing a leading phase. The phase-lagging mode provides the most
energy to the u-component, when u(k) is in the x–z plane (in the plane of the figure). That
implies that the vorticity ω(k) is mainly perpendicular to the paper plane, which implies
that the mode is neither suppressed nor enhanced, since there is no vortex stretching. The
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Figure 6. Fourier modes before (a–c) and after (d–f ) being subjected to uniform shear. Physical
space modes are shown in a and d, the corresponding wave vectors in b and e, and the vorticity
Fourier amplitudes in c and f, provided that the velocity vectors are perpendicular to the paper plane.
The red colors correspond to Fourier modes where the fluctuations at the height z2 lag those at z1, for
green the modes are more or less in phase, and for blue the fluctuations lead at z2.

same could be said about the leading mode, and we conclude that only because the most
energetic modes are tilted forward, we expect a slightly leading phase of the u-component.

Modes with a lot of v energy have u(k) pointing mainly perpendicular to the paper
plane. That implies that ω(k) will be roughly aligned with the plane. For the mode with
lagging phase (red, in Figure 6), the vorticity is then compressed leading to reduced energy,
conversely for the leading modes. Here, the vorticity is stretched implying amplified fluc-
tuations and the zero phase is also tilting as in the u-component case discussed above. In
conclusion, distortion by the mean shear and tilting both enhance leading modes.

The zero phase mode has a lot of w-energy, but the vorticity is mainly perpendicular to
the paper plane, so no amplification occurs. As u(k) tilts forward, energy is transferred away
from the w-component and into the u-component, so phase shifting for w is suppressed.
For the leading mode, which is blue in Figure 6, vorticity is still mainly perpendicular to
the paper plane, so no amplification, but w will decrease because of the tilting of u(k).
For the lagging phase, the tilting increases w at the expense of u. Summing up the various
contributions, we must conclude that the w-phase must be very small or even negative.

With these qualitative arguments, one can intuitively deduce the inequality
ϕv > ϕu > ϕw.

6. Conclusions

The main goal of this study is to understand how and why the vertical cross-spectral phases
in the neutral ABL behave as observed. Phases of the cross spectra of all three velocity
components show systematic behavior: ϕv > ϕu > ϕw for k1�z ≤ 1. ϕu and ϕv tend to
increase with k1�z, but ϕw remains close to zero. We expect that this behavior is due to
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12 A. Chougule et al.

the vertical shear, and we show that this is consistent with simple physical and geometrical
arguments. RDT and LES both predict the observed phase ordering.
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Appdx B

The anisotropy (stress) tensor resulting from the M94 model and calculations from
NCAR’s LES (c.f. Appdx A, Section 3.2) is analyzed. The anisotropy tensor is defined
as

bi j =
Ri j(0)

2K
− 1

3
δi j, (108)

where K = 1
2Rii(0) and Ri j(0) = 〈u′iu′j〉 (See Equations 3.20 and 3.19). From Equa-

tion 108, the anisotropy tensor has zero trace, i.e. bii = 0. Since Ri j is a symmetric
second order tensor so is bi j, with the three principal invariants given by

Ib = bii(= 0), (109)

IIb =
1
2

bi jb ji, (110)

IIIb = det(b). (111)

It is also convenient to define two variables, p and q as (Pope [2000])

6p3 = 3IIIb = bi jb jkbki, (112)

6q2 = −2IIb = bi jb ji. (113)

The matrix b can also be transformed into principal axes with eigen-values λ1,λ2 and
λ3, where off-diagonal terms become zero, i.e. bii = λ1 + λ2 + λ3 = 0. So, using
λ3 =−(λ1 +λ2) and from Equations 110–113, we get

p3 = −1
2

λ1λ2(λ1 +λ2), (114)

q2 =
1
3
(λ 2

1 +λ1λ2 +λ
2
2 ). (115)
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Figure 14: Lumley triangle with axisymmetric limits showing different ellipsoid
shapes formed by different states of the Reynolds stress tensor. Source: A. J. Simon-
sen and P.-Å. Krogstad, Turbulent Stress Invariant Analysis: Clarification of Existing
Terminology.

In summary, given the Reynolds stress tensor, p and q are calculated from either
Equations 112–113 or 114–115. For M94, bi j is calculated numerically (as discussed
in Chapter 3). From the definition given in Equation 3.19 and relationship in Equa-
tion 2.7, in its normalized form, bi j becomes only function of the Γ parameter, and the
state of the anisotropy tensor can be represented in a p-q plane with varying Γ (between
0 to 4, say).

At any time and point in turbulent flow, the state of Reynolds stress tensor can be
presented as point in the p-q plane. There are some special states of Reynolds stress
tensor that correspond to particular points and curves in this plane, called the Lumley
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triangle (Pope [2000]) and shown in Figure 14.

Figure 15: Anisotropy invariants calculated from the M94 model and NCAR’s LES.
Black points, Neutral; Red points, Stable; Blue points, unstable; M94, –•– ( Direction
of arrows indicates increase of height z for LES— stable, unstable and neutral, and
increase of Γ for M94 from 0 to 4).

The anisotropy tensor was also calculated from high temporal and spatial resolution
LES of the atmospheric boundary layer over flat, homogeneous terrain for varying
stability from NCAR, kindly provided by Ned Patton (see Chougule et al. [2012]). The
calculations are done for three different stability cases: moderately stable (zi/Lo = 2),
unstable (zi/Lo =−10) and neutral (zi/Lo = 0), where zi is boundary layer depth. The
LES dataset consists of instantaneous three-dimensional fields, between heights 50 to
150 m. The variance and covariance are calculated for each stability case for each
snapshot and at each z level in horizontal slice and then averaged over all snapshots.
The results are plotted as shown in Figure 15. More details on the LES data can be
found in Chougule et al. [2012].
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The LES neutral data falls closer to the curve which corresponds to values of Γ be-
tween 3-4. The deficiency of M94 can be observed when compared with unstable LES.
The stable LES crosses the curve. The origin in Lumley triangle represents isotropic
turbulence where anisotropy tensor is zero (p = q = 0). This state of isotropic turbu-
lence corresponds to Γ = 0 on the curve. In addition to the Γ parameter, bi j from the
spectral tensor model with buoyancy effects, which is described in Chapter 3, would
become function of Ri using MOST, which can be seen from Equation 3.89.
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