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Resumé

Moderne styringer til vindmgller designes med forskellige formal og bruges blandt andet til
at reducere variationer i mgllens omlgbstal og den genererede effekt, samt til at reducere
udmattelses- og ekstremlaster pa vindmgllens komponenter. Moderne styringsdesign ggres
baseret pa modeller af lav orden, og for at sikre en ngjagtig styring skal disse modeller
ngjagtig repreesentere det aeroelastiske respons af vindmgllen. Formalet med denne afhan-
dling er at undersgge den ngdvendige modelkompleksitet i styringsdesign til vindmgller og
at undersgge og udvikle metoder til at designe vindmgllemodeller af lav orden til brug i
modelbaseret styringsdesign.

Afhandlingen indeholder en karakteristik af den dynamik, der har betydning pa det aeroe-
lastiske respons af moderne vindmgller i aben-slgjfe, baseret pa en hgjordens lineser aeroe-
lastisk model af en vindmelle. En af de vaesentlige konklusioner i denne analyse er,
at overfgringsfunktionen fra kollektiv pitch-vinkel sendringer til sendringer i generator
hastigheden indeholder to lavfrekvente ikke-minimum fase nulpunkter. Det vises blandt
andet, at korrekt modelering af disse nulpunkter krzever frihedsgrader, der beskriver blad
flap- og sideveerds tarnbeveaegelse.

Forskellige metoder til at designe aeroelastiske modeller af vindmgller med lav orden
beskrives og udvikles. Lav-ordens modeller designes ved modal trunkering ved brug
af de aeroelastiske egensvingningsformer for en fuld fleksibel vindmglle. Det viser sig
ngdvendigt at anvende relativt mange aerodynamisk dominerede egensvingningsformer for
at repraesentere effekten af det afkastede hvirvelteeppe og dynamisk stall, hvilket skyldes
antagelsen om uafhsengige stromningsrgr anvendt i Blade Element Momentum (BEM)
metoden. Ngjagtige lavordens modeller er derefter designet under antagelse af kvasi-
statisk aerodynamik ved trunkering med et sat lavirekvente egensvingningsformer. En
anden reduktionsmetode kaldet balanceret trunkering viser sig at kunne beskrive effekten
af det afkastede hvirveltaeppe og dynamisk stall ved kun fa tilstands-variable. Det vises,
at et seet reducerede modeller fundet ved forskellige operationspunkter kan forbindes ved
interpolation og derfor kan anvendes i styringsdesign.

I afhandlingen foreslas en ny metode til at reducere separat antallet af strukturelle og
aerodynamiske tilstands-variable i aeroelastiske modeller ved brug af strukturelle og aero-
dynamiske basis vektorer. Ngjagtig approksimation af det lavfrekvente bladrespons opnaes
ved brug af et szt lavfrekvente, strukturelle egensvingningsformer for et blad og ved
statisk residualisering af de hgjfrekvente egensvingningsformer. Effekten af det afkastede
hvirveltaeppe og dynamisk stall kan tilneermes ved brug af et see aerodynamiske svingn-
ingsformer, der er slaver af strukturelle svingningsformer. Fremtidigt arbejde er at afprgve
denne teknik pa andre modeller af de instationaere aerodynamiske kreefter pa vindmeller
og at anvende de reducerede modeller til styringsdesign.
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Abstract

Wind turbine controllers are used to optimize the performance of wind turbines such as
to reduce power variations and fatigue and extreme loads on wind turbine components.
Accurate tuning and design of modern controllers must be done using low-order models
that accurately captures the aeroelastic response of the wind turbine. The purpose of this
thesis is to investigate the necessary model complexity required in aeroelastic models used
for controller design and to analyze and propose methods to design low-order aeroelastic
wind turbine models that are suited for model-based control design.

The thesis contains a characterization of the dynamics that influence the open-loop aeroe-
lastic frequency response of a modern wind turbine, based on a high-order aeroelastic
wind turbine model. One main finding is that the transfer function from collective pitch
to generator speed is affected by two low-frequency non-minimum phase zeros. To cor-
rectly predict the non-minimum phase zeros, it is shown to be essential to include lateral
tower and blade flap degrees of freedom.

The thesis describes and analyzes various methods to design low-order aeroelastic mod-
els of wind turbines. Low-order models are designed by modal truncation by using the
aeroelastic mode shapes of a fully flexible wind turbine. To capture the effect of shed vor-
ticity and dynamic stall, a relatively large number of aerodynamically dominated modes
are required, due to the assumption of independent annular flow tubes in the Blade Ele-
ment Momentum theory (BEM). A set of accurate reduced-order models are subsequently
designed assuming quasi-steady aerodynamics, by truncation with a set of low-frequency
mode shapes. In a comparison, the balanced truncation method is found to be able to
capture the effect of the shed vorticity and dynamic stall using only few states. A set
of reduced-order models obtained at various operating points are shown to be easily con-
nected by interpolation and are thereby suited for gain-scheduling control design.

A new method is proposed to reduce separately the number of structural and aerodynamic
states in aeroelastic models by using a set of structural and aerodynamic basis functions.
Accurate approximation of the low-frequency blade response is obtained using a set of
purely structural blade mode shapes and by static residualization of the high-frequency
blade modes. The effect of shed vorticity and dynamic stall on the blade response can
be captured using a set of aerodynamic slave modes of the low-frequency structural flap
modes. Future work is to test the proposed method on others models of the unsteady
aerodynamic forces on wind turbines and to use the reduced models for controller design.
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Chapter 1

Introduction

The purpose of modern wind turbines is to harvest the power of the wind and convert
mechanical wind power into electrical energy used in households and industry. Today, the
use of wind turbines to generate electrical power has become a feasible alternative to the
burning of fossil fuels.

Horizontal axis wind turbines, which is the subject of this thesis, have been used to
generate electricity as early as the late nineteenth century by Poul La Cour in Denmark [1].
In the beginning of the 1970’s the increasing price of fossil fuels motivated further research
into horizontal axis wind turbines, leading to the design of three-bladed, fixed-speed,
stall-regulated wind turbines in the 1980’s denoted as the ’danish’ design concept [2].
Stall-regulated wind turbines were the dominating design of newly installed wind turbines
for many years. Stall-regulated wind turbines benefit from the passive decrease in lift
occurring at above rated wind speeds due to stall that limits the aerodynamic torque on
the rotor. Stall-regulated turbines with large, flexible blades can suffer from stall-induced
edgewise blade vibrations resulting in large blade root bending moments.

Today, most newly installed turbines are variable-pitch, variable-speed wind turbines
using asynchronous generators. A variable-pitch, variable-speed turbine can be operated
close to maximum power capture at all wind speeds. The main advantage of using variable-
pitch wind turbines is the ability to actively regulate the aerodynamic torque on the rotor
and thereby control the generated power and rotor speed. Another advantage is the
ability to perform active load reduction with the controller using collective, cyclic and/or
individual pitch. Figure 1.1 shows a photograph of a modern, horizontal axis wind turbine
with three blades in operation close to the West coast of Jutland, Denmark.

Today, the trend is that wind turbines are upscaled, such that they are designed with
larger rotor diameters and higher towers. The overall cost-effectiveness of wind turbine
upscaling has received a lot of attention and was recently studied in the UpWind project [3]
in which various suggestions are made to circumvent design challenges for wind turbines
with a capacity of up to 20 MW. With increasing turbine size, the vibration of the wind
turbine tower and blades becomes more low-frequent, such that the wind turbine control
system is more likely to interact with the structural vibration of the flexible bodies of the
wind turbine.

Active control of wind turbines is used to optimize the performance of wind turbines.
The primary goal of the wind turbine controller is to limit variations in the generator
speed and the generated power and this is usually done by varying the generator torque
and collective blade pitching in response to a measurement of the generator speed signal.
Recently a lot of focus is on designing wind turbine controllers that actively reduce loading
on wind turbines, such as controllers that actively increase the damping of the drivetrain
torsional vibration through generator torque control and active load reduction of the tower
base bending moments by collective pitching. Proper design of a wind turbine controller
can reduce power variations, fatigue and extreme loads on components and prevent insta-
bilities to occur. Model-based controllers are suited for design of such controllers designed
to achieve multiple objectives with multiple controller inputs. To meet the objectives of



Figure 1.1: Modern upwind, variable-speed, pitch-regulated, horizontal axis wind turbines
in operation close to the West coast of Jutland, Denmark.

the controller, the controller must be designed on a model that correctly predicts the aero-
servo-elastic response of the wind turbine. This thesis deals with the necessary complexity
of such control design models and how to design low-order aeroelastic models of wind
turbines suited for model-based control design.

The remainder of this chapter contains an overview of the state of the art in low-order
aeroelastic models used for wind turbine control design, followed by a description of the
motivation and content of the thesis.

1.1 State of the art

This section gives a short description of the concepts of unsteady aerodynamics of shed
vorticity, dynamic stall and dynamic inflow, followed by a review of the low-order aeroe-
lastic models usually used for control design.

1.1.1 Engineering models of unsteady aerodynamics

The Blade Element Momentum (BEM) theory is the prevailing method used to predict
the aerodynamic forces on horizontal axis wind turbines in engineering and control design
models. The BEM theory provides a method of predicting the static aerodynamic forces
acting on wind turbine blades operating with constant inflow perpendicular to the rotor [4].

A wind turbine blade in operation experiences an airflow that varies in time, because of
wind turbulence, wind shear and whenever the rotor is not aligned with the inflow. Another
source of time-varying inflow is that of dynamic inflow. Dynamic inflow characterizes
the dynamic changes in the induction at the rotor plane caused by the rotor wake when the



loading on the rotor changes due to changes in pitch angles or the wind speed. The effect
of dynamic inflow was demonstrated in early experiments on the Tjeereborg turbine [5]
by measuring the wind turbine response from a change in blade pitch. Figure 1.2 shows a
time series of the measured shaft torque in response to a change in collective pitch angle
from the Tjeereborg experiments, reproduced from Hansen et al. [6]. A simplified model of
dynamic inflow suited for coupling with the BEM model was developed by Qye [7] using
two first order filters with radially dependent time constants. The time constants used to
describe the effect of dynamic inflow are on the order of the mean wind speed divided with
the rotor diameter. Recent models of dynamic inflow used in aeroelastic simulation tools
are similar to the model proposed by @ye and has been validated with Computational
Fluid Dynamics analysis [5, 8]. Common practice is to design controllers using models
where instant update of the induction is assumed [2]. The effect of including dynamic
inflow in controller and estimator design has received a lot of attention as reviewed by
Henriksen et al. [9] who propose a simplification to Qye’s dynamic inflow model making
the model suited for controller and estimator design.

When the blades sees a change in relative inflow, the aerodynamic forces are not
immediately changed as predicted by the static lift and drag curves, but experience a lag.
For an airfoil operating in attached flow, the aerodynamic forces are lagging because of the
memory effect of circulation shed into the wake of the airfoil when the bound circulation on
the airfoil changes, denoted the shed vorticity [11]. The influence of the shed vorticity on
the aerodynamic forces on the airfoil becomes prominent when the vibrational frequency
is high relative to the inflow velocity (i.e. at high reduced frequencies). Figure 1.3 shows
an example of measured variations in lift coefficient versus angle of attack for an airfoil
undergoing harmonic pitching both below and above stall, reproduced from Leishman [10].
The effect of shed vorticity is to decrease the slope of the lift curve in attached flow [12],
such that the changes in the aerodynamic forces are lower than evaluated at the static
lift and drag curves. Dynamic stall is a phenomena that occurs in stalled operation
where the presence of a vortex shed from the trailing edge causes a decrease in pressure
on the suction side of the airfoil and thereby much higher lift than for an airfoil in static
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operation at the same angle of attack [13]. Early work by Rasmussen et al. [14] shows the
importance of dynamic stall in prediction of aerodynamic damping of wind turbine blades
at typical frequencies of structural vibration. In wind turbine applications it is important
to predict both the effect of shed vorticity and dynamic stall [10].

There exist a limited number of state space models describing the effects of shed vor-
ticity and dynamic stall. The dynamic stall model developed by Qye [15] is widely used
in nonlinear aeroelastic simulation models of wind turbines. Hansen et al. [12] developed
a model including both the effects of shed vorticity and dynamic stall, which has been lin-
earized for use in aeroelastic modal analysis and controller design. Another example is the
ONERA model [16]. These models use between one and four time constants at each blade
section for all three blades to describe the aerodynamic forces which leads to high-order
models that are not directly suited for controller design. Control design models typically
assume quasi-steady aerodynamic forces, which means that the changes in aerodynamic
forces are predicted from the static lift and drag curves at the blade sections. To the
authors knowledge there are no examples of wind turbine models suited for control design
that include the effects of shed vorticity and dynamic stall.

One of the drawbacks of the Blade Element Momentum theory is that it assumes that
there is no aerodynamic coupling between aerodynamic forces at different radial sections
of the blades, usually denoted as the strip theory. In reality, the aerodynamic forces
experienced at one blade section are affected by the forces experienced in neighbouring
sections. The prediction of the aerodynamic coupling effects in the spanwise blade direction
can be improved in BEM models by making a 3D correction to the aerodynamic profile
coefficients [17]. Models of both the shed and trailing vorticity in the near wake has
been designed and coupled to the BEM model to describe the 3D aerodynamic coupling
effects using indicial functions [17]. A current research topic is to couple the models used to
describe the dynamic effect of the near wake on the blade loading with models of structural
dynamics.

Reduced-order models of the unsteady aerodynamic forces on aircrafts has recently
been designed by modal truncation using purely aerodynamic eigenmodes that describes
the dominant flow structures. Reduced-order models of unsteady aerodynamics has been
designed for e.g. incompressible, potential flows using a vortex-lattice model [18] and flows
described by the Euler equations as reviewed by Dowell [19]. For better approximation
at low frequencies, a static and dynamic correction method has been proposed [20]. The
Proper Orthogonal Decomposition (POD) technique [21] is a model reduction technique
that constructs a set of basis vectors that optimally describes the energy content in a
number of snapshots of the flow field with a low number of states. The POD technique
has been used in wind turbine analysis to describe the main effect of turbulence in the
inflow [22].

1.1.2 Low-order aeroelastic models for controller design

(ye [23] proposes to tune the gains of a classical controller in the collective pitch to speed
loop using a model that includes only one state describing rigid body rotation of the
rotor. Changes in aerodynamic forces caused by changes in rotor speed, mean wind speed
and collective pitch angles are predicted under assumption of frozen wake. Linear time-
invariant aeroelastic models are obtained at various operating points by linearization of the
nonlinear aerodynamics at the desired operating points. The effect of model complexity
on this tuning of a classical controller is addressed by Hansen [24], who uses a high-order
linear aeroelastic model including tower, drivetrain and blade flexibilty and effects of shed



vorticity and dynamic stall to tune a classical collective and cyclic pitch controller. If the
gain of the proportional-integral controller is tuned using a model of a rigid turbine, then
the closed-loop pole of the rigid body rotor mode has a frequency higher than that tuned
for and a damping ratio much lower, due to the flexibility of the turbine.

Bossanyi [25] has investigated the necessary model complexity used for control design
of a pitch-regulated, variable-speed wind turbine. When operating in generator torque
control, he suggests to use a model that contains at least rigid body rotation of the
drivetrain and rotor and the first torsional drivetrain mode by coupling of the rotor inertia
to a generator inertia by a torsional spring. For above rated operation using collective pitch
control, he suggests also to model at least the inertia of the rotor and generator, the pitch
actuator and the longitudinal tower vibration. The first longitudinal tower mode must be
included because the pitch-controller excites this mode through variations in aerodynamic
thrust and because the pitch-controller is used to actively damped tower vibrations to
reduce tower loads.

Correct modelling of the tower dynamics is also important due to the presence of a
non-minimum phase zero that limits the bandwidth of the collective pitch controller of
the generator speed. Leithead et al. [26] analyze the frequency response from collective
pitch demand to generator speed and show existence of a non-minimum phase zero at the
15¢ tower modes and show how to compensate for them in closed-loop operation. The
non-minimum phase zero is a limitation on the bandwidth of the pitch to speed controller
because of the large negative change in phase occurring at the zero which is not cancelled
by the poles of the tower motion. The change in phase associated with the non-minimum
phase zero makes the speed respond opposite to that of a minimum phase zero and must
therefore be correctly predicted. The non-minimum phase zeros is a problem for large
turbines and especially for offshore turbines, because of the low tower frequencies. Fischer
[27] clarifies under what conditions that the non-minimum phase zero exists based on
a simplified model including a longitudinal tower degree of freedom and one state to
describe rigid body rotor rotation. Changes in the aerodynamic forces are modeled with
quasi-steady gradients of rotor torque and thrust from changes in pitch and from changes
in the relative wind speed seen by the rotor.

Wright & Balas [28] investigate how the complexity of the control design model influ-
ence collective pitch control of a two-bladed turbine. They find that it is important to
include rigid body rotor rotation, drivetrain flexibility, the first collective flap modes and
longitudinal tower bending mode. To ensure stable closed-loop behavior the controller
model must include the free-free drivetrain torsion mode.

A conventional way to model the structural vibration of wind turbines in low-order mod-
els is to use the purely structural mode shapes of each of the wind turbine substructures:
tower, drivetrain and blades. One common approach is to use the Component Mode Syn-
thesis method [29, 30] in which the wind turbine is modelled using the rigid body modes
and a set of structural modes describing the flexibility of the substructures, which are then
subsequently connected to represent the structural dynamics of the wind turbine. Variants
of the component mode synthesis method are applied in the TURBU tool [31], in Bladed
[32] and in FAST [33]. TURBU can provide reduced-order models by such an order reduc-
tion scheme of a finite beam element model of tower, drivetrain and three blades that is
coupled with an unsteady BEM model including aerodynamic states to describe dynamic
stall. Reduced-order models provided by TURBU are utilized for extreme gust control [34]
and individual pitch control [35] and one can reduce the order of the model from 600 to
100 states and conserve the frequency response up to 5 Hz [31]. To conserve the frequency



response at low frequencies it was required to ”include the quasi-steady behavior of the
high-frequency modes” in the blade and tower substructures. To the authors knowledge,
order reduction is not applied of the equations describing dynamic stall.

Some order reduction techniques in Finite Element analysis of structural mechanics
are reviewed by Cook [30]. One approach is to do modal expansion, where the basis is
shifted and a set of generalized states are used to describe vibration of a reduced set
of structural mode shapes. To achieve better approximation at low frequencies, a static
correction can be applied whereby the static deflection under external excitation of the
structure is ensured to be exact.

Design of linear low-order aeroelastic models for model-based control design has been
extensively studied for aircrafts [21, 36]. Traditionally, the structure is assumed to vibrate
in prescribed structural mode shapes and unsteady aerodynamic forces are described as
slaves of these prescribed structural mode shapes. Order reduction techniques are devel-
oped to represent unsteady aerodynamic forces cast in the frequency domain by low-order
rational transfer function matrices for each structural mode shape. A rational transfer
function matrix can be realized in a state space formulation and be used in model-based
control design. In the design of reduced-order aeroelastic models for aircrafts, Karpel [37]
proposes to use a dynamic residualization scheme in which the effect of aerodynamic and
structural stiffness and damping forces on high-frequency modes is retained.

Order reduction using wind turbine mode shapes is one of many order reduction tech-
niques that can be used to generate low-order models for controller design. One property
of modal order reduction is that each mode dominate the response close to the aeroelas-
tic frequency of this mode, such that good approximation typically can be achieved in
a specified frequency interval by using the modes in the region. The design of reduced-
order models for control design has been extensively studied in the control engineering
community. A comprehensive review of these order reduction techniques can be found in
a book by Antoulas [38] described in a line of thought suited for control engineers and
in a review by Ersal et al. [39]. The balanced reduction technique is a projection-based
technique in which the original basis of the states is projected onto another basis by a sim-
ilar transformation. The balanced truncation technique is proposed by Moore [40] and is
widely used in the design of low-order linear state space models. The balanced truncation
technique use a transformation onto a reduced set of basis vectors that contains most of
the signal energy transmitted from a chosen set of inputs to a set of outputs in a transfer
function matrix. In the case of lightly damped second order modes that typically arise in
models of structural dynamics, the balanced basis converges towards the modal basis as
the damping decreases [41]. The aeroelastic mode shapes of a wind turbine are however
largely damped by aerodynamics and the two methods are therefore not similar in this
case. Clarx & Cox [21] use balanced truncation to reduce the number of free wake vortices
in a vortex-lattice model of aerodynamic forces on a typical airfoil section.

A wind turbine is operated at various conditions depending on e.g. the mean wind speed
at the rotor. The models used for design of controllers and estimators must vary with the
operating point, because the aerodynamic forces depend nonlinearly on the relative wind
speed, and because of nonlinearities due to stall. Another reason is the effect on the local
changes in aerodynamic forces due to the deflected state of the blades. The effect of blade
deflection on the acroelastic stability of a wind turbine blade is studied by Kallesge [42],
who concludes that mainly the edgewise blade modes are affected by the blade deflection
through coupling with blade torsion due to the static flapwise blade bending.



The usual approach in control design to accommodate these effects is to design a con-
troller for a set of frozen values of the scheduling variable and then interpolate the controller
gains [23, 43]. Recent advances in design of gain-scheduling controllers for wind turbines
are designs of a linear parameter-varying (LPV) state space model of the wind turbine
that covers specific regions of the operating curve and models nonlinear changes with op-
eration point by parameter-varying matrices in the state space model. LPV controllers
are designed by Bianchi et al. [44] based on a model that includes nonlinear variations in
aerodynamic torque. Ostergaard et al. [45] also parameterizes aerodynamic thrust vari-
ations and includes drivetrain torsional flexibility and longitudinal tower flexibility and
shows improvements in performance relative to classical controllers.

Both in the design of model-based, gain-scheduling controllers and for LPV controllers
there is a need to have a set of low-order models at various operating points, that can
be described by a set of system matrices which can be parameterized with a scheduling
variable using a set of states that are somewhat consistent. One way to ensure that the
states are consistent is to use the structural or aeroelastic modal coordinates, i.e. the
generalized states that describes vibration of the structural or aeroelastic modes of the
turbine, as already seen in previous LPV controllers [44, 45]. For LPV control design the
set of reduced-order system matrices must be parameterized, e.g. by assuming polynomial
dependency with respect to the scheduling variable, which can be done by using linear
least squares optimization [46].

1.2 Motivation

The scope of this thesis is twofold:

1. To create insight into the aeroelastic response of modern horizontal axis wind tur-
bines in response to control signals and disturbances and thereby to describe what
wind turbine dynamics is relevant to include in control design models.

2. To analyze and propose methods to design low-order aeroelastic models of wind
turbines that accurately approximates the aeroelastic wind turbine response and are
suited for design of model-based controllers.

It is important that design and tuning of controllers and estimators is performed on
aeroelastic models that characterize accurately the response of wind turbines in opera-
tion. The objectives of the controllers cannot be reached if these models are inaccurate.
This thesis aims at giving a description of what influence the low-frequency, aeroelastic
frequency response of wind turbines in a way that is useful in the control design based on
more accurate aeroelastic models of wind turbines.

Typically, the models used in the design and tuning of controllers are very simplified
models cast directly as low-order models and are not validated thoroughly with more ac-
curate models or wind turbine measurements. More accurate models may be obtained
using a similar number of states by reducing the order of high-order aeroelastic models.
This thesis explores some of the existing order reduction techniques and proposes another
technique to design low-order aeroelastic models of wind turbines.

The main contributions of this thesis are:

1. A thorough analysis of the aeroelastic frequency response of a modern wind turbine
in open-loop, in which special attention is given to the response of the generator



speed output in response to harmonic changes in collective pitch, generator torque
and in the mean wind speed. It is found that the lateral tower vibration and collective
flap motion influence the prediction of two non-minimum phase zeros occurring at
low frequencies.

2. An evaluation of the use of the modal truncation order reduction technique in the
design of low-order linear aeroelastic wind turbine models, including a description
of the influence of both the structurally and aerodynamically dominated modes on
the static and dynamic frequency responses of a wind turbine.

3. A comparison of the modal truncation and balanced truncation order reduction
techniques in relation to the design of a set of low-order aeroelastic models of wind
turbines suited for the design of gain-scheduled model-based controllers.

4. A description and evaluation of a proposed order reduction technique that separately
reduces the order of the structural degrees of freedom and the number of aerody-
namic states in aeroelastic models by using a set of structural and aerodynamic basis
functions, respectively.

1.3 Outline

Chapter 2 presents the results given in [P1] and contains first a description of the high-order
linear aeroelastic model of a modern wind turbine used in the subsequent analysis. The
linear aeroelastic model is then validated with a nonlinear aeroelastic model by comparing
a set of aeroelastic frequency response functions for operation at various wind speeds. The
complexity of the linear model is then varied in an open-loop frequency response analysis
to clarify what must be included to capture the aeroelastic frequency response of a wind
turbine.

Chapter 3 presents the results and analysis given in [P2] and [P3] and contains a
description of the modal truncation order reduction method and an evaluation of the
effect of the low-frequency structurally and aerodynamically dominated modes, where the
latter describes the effects of shed vorticity and dynamic stall. Reduced-order models are
subsequently designed by modal truncation assuming quasi-steady aerodynamics. The
reduced-order models obtained by modal truncation are compared with models obtained
by balanced truncation and it is shown how the components of the reduced-order system
of equations are suited for interpolation with wind speed.

Chapter 4 contains a description of a new order reduction scheme using structural
and aerodynamic modes to reduce separately the structural and aerodynamic states in
aeroelastic models. As an example the technique is used to design low-order aeroelastic
models of a wind turbine blade. Chapter 5 contains the conclusions of the thesis and gives
recommendations for future work.



Chapter 2

Open-loop frequency response analysis

The purpose of this chapter is to analyze and describe the necessary model complexity
that is required to describe the aeroelastic wind turbine response in control design models.

This chapter contains first a description of the high-order linear aeroelastic model of
a wind turbine used in the subsequent analysis. The linear aeroelastic model is then vali-
dated with a nonlinear aeroelastic model by comparing the aeroelastic frequency response
functions for small amplitude control inputs in open-loop for a turbine in normal operation
at various wind speeds. The complexity of the linear model is then varied to clarify what
influence the aeroelastic frequency response functions from harmonic changes in generator
torque, collective pitch angle demand and in the mean wind speed to the generator speed
output at various wind speeds.

2.1 High-order linear aeroelastic model

This section contains a description of the linear aeroelastic model of the NREL 5 MW
onshore wind turbine defined by Jonkman et al. [47] and used for subsequent frequency
response analysis. The model is identical to the available HAWC2 model [48] except
that the static tilt is set to 0 deg to ensure uniform inflow. The structural damping of
the drivetrain is lowered, by changing the Rayleigh parameter for stiffness proportional
damping of torsional motion from 0.0184 Nm-s/Nm to 0.0120 Nm-s/Nm.

2.1.1 Model description

The high-order model used for frequency response analysis is the recent linear aeroelastic
model HAWCStab2 developed in house. A more complete description of the linear aeroe-
lastic model is provided by Hansen [24] for an isolated blade. The model is a linearization
of a geometrically nonlinear finite beam element model coupled with an unsteady Blade
Element Momentum model of aerodynamic forces on the blades including effects of shed
vorticity and dynamic stall. So far, the model assumes frozen wake and does not include
a model of dynamic inflow. A comparison is made using nonlinear time simulations to
clarify the effect of dynamic inflow.

Linearization is performed analytically around a stationary deflected state of the blades
obtained from an equilibrium between elastic and centrifugal forces and the static aero-
dynamic forces due to an assumed uniform inflow to the rotor plane. Gravity forces are
neglected to obtain this stationary steady operational state for any operational point given
by a mean wind speed, pitch angle and rotor speed.

The discretization used in the finite beam element model is illustrated in Figure 2.1.
The number of elements used to model the tower, drivetrain and each blade are eight, four
and 19 Timoshenko beam elements, respectively. Four elements are used for the drivetrain
to ensure correct modeling of bending and torsion of the drivetrain. Each element has two
nodes and six degrees of freedom (DOF's) per node to describe rotation and translation in
all three axis. The generator and pitch bearings are modeled as frictionless bearings. Pitch



Figure 2.1: Snap shots from HAWCStab2 animation of NREL wind turbine listing the
number of elements and showing the definitions of positive directions of inputs and outputs.

actuators are modeled by second order response of actual pitch to demanded input. The
aeroelastic turbine dynamics is investigated without effect of actuators, and the frequency
of the actuator model is therefore set so high that the demanded pitch angle is reached
almost instantly for the frequency range analyzed. Aerodynamic forces on the blades
are modeled by using 30 aerodynamic calculation points distributed such that they are
closely spaced at the blade root and tip. The model of unsteady aerodynamics includes
at each aerodynamic calculation point, two states to approximate the frequency response
of the Theodorsen theory and two states are used to describe trailing edge separation and
dynamic stall as described in Hansen et al. [12].

All degrees of freedom describing blade and hub motion and all aerodynamic states
are transformed into multiblade coordinates by the Coleman transformation to remove
dependency of the rotor azimuth angle in the system matrices. The state vector z; that
describes the structural and aerodynamical states for blade &k in blade-fixed coordinates,
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is transformed into multiblade coordinates by the Coleman transformation:
Z, = a, + aj cos <Qt + 2 (k- 1)) + by sin <Qt + 2 (k — 1)), k=1,2,3 (2.1)

where ag, a; and by are the collective and the two cyclic components of z, respectively.
When the blades are identical and identically mounted (isotropic rotor) and the wind speed
is uniform over the rotor and perpendicular to the rotor, then the Coleman transforma-
tion removes dependency of the azimuth angle in the system matrices of the linearized
aeroelastic model [49].

2.1.2 Equations of motion

The linear high-order aeroelastic model is described by the system of equations

Mz, + (Cs + G+ Cp)zs + (K+ K, + Kf)z, + Arx, =F; (2.2a)
Xo + Agxg + Csuzs + Ksozs = F, (2.2b)

where Equation (2.2a) governs structural vibration of the structural degrees of freedom
in z; and Equation (2.2b) describes the aerodynamic states x, used to model unsteady
aerodynamics on the blades. The matrices M, K and C; are the mass, stiffness and struc-
tural damping matrix, respectively. The stiffness matrix models both elastic stiffness and
centrifugal blade stiffness. The matrix G models gyroscopic forces on the blades and C,
and K, are the aerodynamic damping and stiffness matrices, respectively. The aerody-
namic states couples to the structural states through the term Afx, and the structural
dynamics excites the aerodynamic states through both a velocity dependent term Cg,Z;
and a translation/rotation dependent term Ky,zs;. The matrix Ay describes the lag on
the aerodynamic forces. The terms F, and F, represents structural and aerodynamical
forces due to actuators and changes in the wind speed. To improve the conditioning of
the eigenvalue problem set up directly on the first order form of Equation (2.2), a reduced
state transformation is applied using structurally undamped eigenvectors as described in
[P1] but omitted here for brevity.
The system in Equation (2.2) is put on first order form:

X =Ax+ Bu (2.3a)
y=0Cx (2.3b)
where, by definition:
Xq 0Q,
X = Zs Dou= 00, ;Y =100, (2.4)
Zg ow
[ _Ad _Ksa _Csa
A= 0 0 I (2.5)
| M'Ay -M ' (K+K,+Ky) —-MY(C+G+C,)
[ 0 Bda
B= 0 0 ; C= [ 0 0 0..1..0 } (2.6)
L M-!'B,, M !By
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where B, s, Bgs and By, have been linearized with respect to the inputs and are defined
from:

FS = Bus { (;ng } + Bd55W ; Fa = Bda5W (27)

where 0Q)4, 6. and W denotes small variations in the generator torque, collective pitch
angles and mean wind speed, respectively and where C extracts the generator speed
variations 0),. Figure 2.1 shows the definitions of positive inputs and outputs. There

is no gearbox model, i.e., the low speed shaft (LSS) speed of the generator is used in the
analysis.

2.1.3 Changes in the model complexity

The linear model is used to analyze the frequency response functions between each input
and each output. To investigate the effects of model complexity, different versions of the
linear model is used: Substructures may be made rigid by removing the DOFs. In cases
referred to as purely structural, the mean aerodynamic forces are included to find the static
blade deflection, but the variation of aerodynamic forces are removed in the linear system
of equations. In cases referred to as ’unst.aerodyn.’, the model includes unsteady airfoil
aerodynamics, whereas quasi-steady airfoil aerodynamics is referred to as ’gs.aerodyn.’.
The assumption of quasi-steady airfoil aerodynamics is achieved by setting %, = 0 in
Equation (2.2b), solving for x, and inserting the solution in (2.2a).

If all substructures are made rigid, only the generator bearing is retained, and quasi-
steady aerodynamics is assumed, the linear model reduces to the simple 1% order model
proposed by Bossanyi [25] and often used in control design models:

oQ 0Q

1,69, = 6Q, + 0| 9%+ 55| 9% (2.8)
0 0

where I, is the total rotational inertia of the drivetrain and rotor and Q) is the aerodynamic
torque on the rotor. The frequency responses predicted with the high-order linear model
are compared with the predictions using this 1%° order model and the gradients of the
aerodynamic torque assumes that the wake is frozen such that there is no change in the
induction for changes away from the operation point to be able to compare with the linear
model.

2.2 Validation with time simulations using nonlinear model

This section presents a validation of the aeroelastic frequency response predicted by the
linear model with the response predicted by the nonlinear aeroelastic model HAWC2 [50].
Validation is done on the frequency response from generator torque and collective pitch
to generator speed for the NREL 5 MW wind turbine operating at 8 and 20 m/s for small
amplitude input signals. The effects of dynamic inflow are clarified by validation with the
nonlinear model. The linear aeroelastic model is then used to perform aeroelastic modal
analysis to explain the sources of resonances in the frequency responses.

2.2.1 Frequency response

The frequency response functions predicted by the linear model given by Equation (2.3) is
found from the transfer function matrix G(s), which is the ratio of the Laplace transform
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of the output Y'(s) to the Laplace transform of the inputs U(s):

G(s) = I’;g _C(sI—A)'B (2.9)

where s is the complex Laplace variable. The steady amplitude and phase shift relative to
the input is found by matrix inversion as the modulus and phase of G (iw), where i = v/—1
and w is the excitation frequency.

The nonlinear aeroelastic model used in the simulations includes geometrical nonlin-
earities due to large deflections, nonlinear unsteady and wake aerodynamics and nonlin-
ear couplings between structural degrees of freedom and aerodynamic states. Structural
damping is modeled as Rayleigh type damping where damping is assumed proportional
to structural stiffness and inertia. Spectral damping is used in the linear model, where a
damping matrix is deduced that gives a specific damping ratio to each structural mode.
Structural damping in the linear model is tuned to approximate the structural damping
in the nonlinear model at standstill. The nonlinear aeroelastic model includes dynamic
inflow modeled as two 1%¢ order filters with radial dependent time constants. The two
filters models the dynamic contribution to the induction from the far wake and the near
wake, respectively [8, 50].

Figure 2.2 shows a typical time series of variations in generator LSS speed used for the
extraction of the frequency response function from HAWC2. The left diagram shows the
time series at start up and until reaching close to steady state. The large overshoot on the
speed during the initial transients has no influence on the present analysis. Excitation from
gravity forces, wind shear, tower shadow and wind turbulence are removed to reach close to
stationary state. The rotor accelerates until generator torque and collective pitch control
actions limits the rotational speed to around 12.1 rpm. At ¢ = 200 s, the pitch angles are
fixed to the desired value which is slightly different than that set by the controller, thereby
causing a slight disturbance on the speed signal which is dampened by the generator torque
control. At t = 295 s, generator torque is fixed and harmonic signal is overlayed at t = 300
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Figure 2.2: Typical time series of generator speed from simulations using nonlinear aeroe-
lastic model by subsequent FFT analysis a) at start up, b) before and after pitch angle is
fixed, c) before and after harmonic excitation is initiated and d) of the assumed stationary
variation.
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s on static generator torque and collective pitch separately, until the end of the simulation.
The overlayed harmonic changes in generator torque and collective pitch has amplitudes
of 48.5 kNm on the low speed shaft and 0.5 deg, respectively. A total of 205 simulations
has been performed for each operation point and input type using harmonic excitation
at different frequencies, such that the frequency response can be obtained in an interval
[0, 3] Hz.

After transients have dampened out a Fourier transformation is done on a time signal
spanning one period at the excitation frequency. In simulations where the generator torque
and collective pitch angles are varied at frequencies below 0.1 Hz, the signal is extracted
from ¢ = 1300 s. For excitation frequencies above 0.1 Hz, the signal is extracted from
t = 800 s. Figure 2.2d shows the time-series used for Fourier transformation. The time
step size is set such that one period at the excitation frequency includes 2V samples,
where N € [6;14] depending on the excitation frequency. It is ensured that the sampling
frequency is always higher than 50 Hz for excitation frequencies below 0.1 Hz and always
higher than 100 Hz for excitation frequencies above 0.1 Hz, to avoid damping and frequency
shifts introduced by the Newmark time integration scheme used in HAWC2.

Estimates of the linear frequency response are achieved by taking the Fourier amplitude
and phase at the excitation frequency, whereby remaining nonlinear and transient effects
are minimized. Figures 2.3 and 2.4 show comparisons of the frequency response from
generator torque and collective pitch demand to generator speed, respectively, predicted
by the linear and nonlinear models at 8 m/s and 20 m/s.

The response predicted by the linear model is similar to the response obtained from
nonlinear time simulations for small excitation amplitudes. The responses deviates around
1.6 Hz and 2.7 Hz, which can be explained by differences in the models of structural
damping of the 1%¢ and 25 drivetrain modes, because the responses can be made to fit,
separately at 8 m/s and 20 m/s, by applying small changes in the structural drivetrain
damping in the linear model. Note the large phase drop at the tower frequency in Figure
2.4 which is 720 deg and 360 deg for operation at 8 m/s and 20 m/s, respectively, due to
the non-minimum phase zeros as discussed later.

The time simulations with the nonlinear model include effects of dynamic inflow
whereas the linear model assumes frozen wake. Dynamic inflow has no significant ef-
fect on the frequency response from generator torque to speed at both 8 m/s and 20 m/s,
but it affects the frequency response from collective pitch to speed for operation at lower
wind speeds. At 8 m/s, Figure 2.4a shows that dynamic inflow affects the response around
the 15 tower modes at 0.32 Hz and below by decreasing the amplitude and increasing the
phase relative to frozen wake response. The reason is that the axial induction increases
when pitching to stall such that the inflow velocity decreases. Thus, the influence of dy-
namic inflow is to give a negative change in aerodynamic rotor torque, which counteracts
the positive change in torque due to higher angles of attack. As a result, a lower change
in rotor speed is needed at 0 Hz to establish zero net variations in the aerodynamic torque
on the rotor. At high wind speeds the axial induction factors are small and therefore the
effect of the wake dynamics is small already at 14 m/s (not shown).

2.2.2 Aeroelastic modal analysis

The linear aeroelastic model is used to determine the aeroelastic modes responsible for
the dynamics in the frequency response shown in Figures 2.3 and 2.4. The homogenous
solution to Eq. (4.15a) is:

x = veM = ve*(coswt + i sinwt) (2.10)
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Figure 2.3: Aeroelastic frequency response from generator torque 6@, to generator speed
0§y for NREL 5 MW wind turbine in operation at 8 and 20 m/s. Validation of aeroe-
lastic frequency response predicted by linear model with time simulations using nonlinear
aeroelastic model.
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Figure 2.4: Aeroelastic frequency response from collective pitch angle 66, to generator
speed 6€, for NREL 5 MW wind turbine in operation at 8 and 20 m/s. Validation
of aeroelastic frequency response predicted by linear model with time simulations using

nonlinear aeroelastic model.
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where v and X are solutions to the algebraic eigenvalue problem:
(A-—X)v=0 (2.11)

and v is an eigenvector and A = a + i3 the corresponding eigenvalue.

The solution to the eigenvalue problem (2.11) consists of structurally and aerodynam-
ically dominated modes. The structurally dominated modes consist mainly of pairs of
complex conjugated eigenvectors and eigenvalues and are characterized by the aeroelastic
damping ratio £ and aeroelastic frequency w given by:

w=Im{)\} & = —Re{A}/|N (2.12)

Table 2.1 lists the aeroelastic frequencies and damping of structurally dominated modes
ordered according to the aeroelastic frequency for operation at 8 m/s, 14 m/s and 20 m/s.
Due to the free generator bearing, there is a mode, that describes rigid body rotation of
the drivetrain and rotor in the generator bearing. This rigid body rotation mode is a
1%t order mode at 8 m/s and 14 m/s and a highly damped 2" order mode at 20 m/s.
In operational points where the blades are pitched, rigid body rotation of drivetrain and
rotor couple structurally with collective flap motion, such that vibrational energy in the
rotor rotation is transferred to collective flap vibration, which is not entirely limited by
aerodynamic damping, whereby the rigid body rotation mode becomes a 2" order mode.
Most modern wind turbines have the same order of some of the structurally dominated
modes. The 1%° tower modes will typically have lower frequency than the 15¢ collective
flap mode, because of large rotor inertia in the tower motion.

Each of the aerodynamically dominated modes (not listed in Table 2.1) describe vari-
ations in aerodynamic forces in local sections along the blade span due to the four by
four block diagonal form of the A; matrix. The BEM model assumes that changes in

w[Hz] §[%] w[Hz] ¢[%] w[Hz] ¢ [%] Description

8 m/s 14 m/s 20 m/s
A=-0.0112 rad/s A =-0.0184 rad/s 0.035 95.9 Rigid body rotation of rotor
0.32 0.38 0.32 0.44 0.32 0.61 1% lateral tower
0.33 6.19 0.33 7.30 0.33 7.98  1°' longitudinal tower
0.57 64.1 0.60 77.3 0.63 80.0 1% backward whirling blade flap
0.84 54.8 0.80 0.69 0.80 0.56  1°° backward whirling blade edge
0.78 1.45 0.81 68.1 0.84 714 1% collective blade flap
0.91 47.9 0.99 60.8 1.01 65.2 15 forward whirling blade flap
1.18 1.76 1.20 1.11 1.20 0.81  1°° forward whirling blade edge
1.55 16.4 1.52 20.9 1.53 21.7 274 backward whirling blade flap
1.65 2.4 1.65 2.43 1.62 3.14  1°* collective edge/drivetrain torsion
1.92 12.5 1.93 17.0 1.93 16.6 274 collective blade flap
1.89 13.7 1.93 15.3 1.94 16.3 274 forward whirling blade flap
2.63 1.92 2.64 2.04 2.62 2.10 2" longitudinal tower
2.65 3.62 2.68 3.76 2.73 3.89 2" collective edge/drivetrain torsion
2.76 3.34 2.77 3.77 2.75 3.65 1°* tower torsion (yaw)
2.85 0.71 2.85 0.70 2.85 0.62 2" lateral tower

Table 2.1: Open-loop aeroelastic frequencies and damping of structurally dominated mode
shapes with low aeroelastic frequency for NREL 5 MW turbine operating at 8, 14 and 20
m/s.
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aerodynamic forces at one aerodynamic calculation point does not couple with changes
in aerodynamic forces at neighboring calculation points, except weakly through struc-
tural motion, whereby the eigenvectors of the aerodynamically dominated modes are only
weakly coupling in the aerodynamic state variables across the calculation points.

Figure 2.5 shows the variations of cut-off frequencies with blade radius of time delays
modeling shed vorticity and dynamic stall for NREL 5 MW turbine in normal operation
at 8 m/s, 14 m/s and 20 m/s found under assumption of no coupling of the delays with
structural states. The cut-off frequencies in Figure 2.5 are the eigenvalues of the four
by four diagonal blocks of the A, matrix obtained directly from the steady state BEM
solution. The dashed horizontal line shows the aeroelastic frequency of the 15¢ longitudinal
tower mode for comparison. The figure shows cut-off frequencies of two of the four time
delays at each blade section; one that characterizes the effect of shed vorticity below stall
and one characterizing the pressure lag in the boundary layer in stalled flow [12]. The cut-
off frequencies increase with blade radius, because the relative inflow velocities increase,
causing a faster update of the aerodynamic forces because the shed vorticity is faster
convected away from the airfoil and the movement of the separation point of the dynamic
stall becomes faster. The cut-off frequencies have an order of magnitude similar to the
aeroelastic frequency of the 15 tower modes at some sections, and the delays may couple
to the rigid body rotor rotation mode and the 15* tower modes.

2.3 Relevant frequency range for approximation

This section describes at what frequency intervals it is desirable to have good approxima-
tion of the response of generator speed in response to control actions from generator torque
and collective pitch demands in the design of a generator speed and power controller.
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Figure 2.5: Variation of cut-off frequencies with blade radius of time delays modeling lag on
aerodynamic forces due to shed vorticity and dynamic stall in separate blade sections for
NREL 5 MW blade in normal operation at 8 m/s, 14 m/s and 20 m/s, where T,,; denotes
one of two time delays describing shed vorticity below stall and Tj; denotes pressure
lag in the boundary layer in stalled flow [12]. Cut-off frequencies are found under the
assumption that there is no coupling to structural states. The dashed horizontal line
shows the aeroelastic frequency of the 15 longitudinal tower mode for comparison.
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Accurate approximation of the frequency response from control signals to measured
output is desired at frequencies where the control signals in closed-loop are high. A series
of closed-loop simulations has been made, using the nonlinear simulation code HAWC2 of
the model of the NREL 5 MW turbine in closed-loop with a classical proportional-integral
(PI) controller with Class B normal turbulence. The simulations are performed using a
Newmark time integration scheme with a time step of 0.02 s using a time series spanning
300 s. The controller is designed to maintain constant generator speed and power as
described by Hansen [24]. A measurement of the generator speed is used by the controller
to generate collective pitch angle and generator torque demands using two PI controllers.
The generator torque controller is designed to actively damped the torsional drivetrain
vibrations using a notch filter.

Figure 2.6 shows the Fourier amplitudes of time series of generator speed, collective
pitch angle demands and generator torque demands in closed-loop for the NREL 5 MW
turbine in normal operation at the above rated wind speed 19 m/s. The black points
in Figure 2.6 show the Fourier amplitudes for a fully flexible turbine with a static tilt of
5.0 deg. The blue points in Figure 2.6 show the Fourier amplitudes for a fully rigid turbine
in which the rotor tilt is set to zero and tower shadow, wind shear and gravity forces are
removed. The blue points are included to understand what cause the different peaks in
the Fourier amplitudes.

The spectral content of the collective pitch, generator torque and generator speed
signals for a fully flexible turbine are all characterized by a peak close to 0 Hz due to
rigid body rotation of the rotor, a peak at around the 1%* tower modes at 0.3 Hz and a
peak at around 1.7 Hz at the closed-loop frequency of the 15 drivetrain torsion mode.
All three signals also show a peak at 3P, where P is the rotational frequency of the rotor.
For a fully rigid turbine with no static tilt, wind shear, gravity and tower shadow (blue
points) there are also peaks at 3P in all three signals, and the peak at 3P can be explained
by the rotational sampling of turbulence [51], giving 1P loads at the blade root and 3P
variations in the generator speed which feeds back into the control signals. Good accuracy
is therefore desired both at the frequency of the rigid-body rotor mode, the 15 tower
modes, the 15¢ drivetrain torsion mode and at around 3P due to sampling of turbulence.

2.4 Frequency response analysis using high-order linear model

In this section, the complexity of the linear model is varied by changing the number of state
variables to clarify what must be included in a model to capture the aeroelastic frequency
response of a modern wind turbine, exemplified by analyzing the frequency responses from
harmonic variations in the generator torque, collective pitch angle demand and mean wind
speed to the generator speed output. For generator torque and collective pitch inputs, the
purely structural response due to the actuator input is investigated before the aeroelastic
response, to see the effect of structural dynamics and a separate section is in each case
used to analyze the response at the 15¢ tower modes.

2.4.1 Mean wind speed to generator speed

Figure 2.7 shows the aeroelastic frequency response from mean wind speed harmonic vari-
ations to generator speed at 14 m/s and 20 m/s predicted using unsteady aerodynamics
(filled line) and quasi-steady aerodynamics (dotted line). Note, that in the frequency
response we assume instant change in the mean wind speed; the unsteady aerodynamic
model does not describe dynamics related to how fast the mean wind speed changes in
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Figure 2.7: Aeroelastic frequency response from changes in mean wind speed to generator
speed for NREL 5 MW turbine at normal operation at 14 m/s and 20 m/s. Comparison
between the response predicted by the full-order model with unsteady aerodynamics (filled
lines) and with quasi-steady aerodynamics (dashed lines).

for example a gust. The full-order response of generator speed of harmonic variations in
mean wind speed is similar to that of collective pitch excitation below 1.0 Hz; a change in
mean wind speed changes the angle of attack and thereby the aerodynamic forces similar
to a change in pitch angle.

At both 14 m/s and 20 m/s, there are two non-minimum phase zeros at 1.2 Hz and
2.0 Hz causing negative phase shifts of -180 deg. At the zero at 1.2 Hz, the changes in
mean wind speed excites the 15 torsional drivetrain mode, which couples with the 15¢
edgewise blade bending mode. An increase in mean wind speed gives a positive change in
lift forces at the blade sections which forces the blade to bend relative to the hub positive
clockwise. The edgewise blade vibration in the 1% drivetrain torsion mode changes the
relative velocities at the blade sections, causing decreasing angle of attack and lift, that
counteracts the change in lift from the mean wind speed increase, such that there is little
net change in aerodynamic torque. The zero at 2.0 Hz exist due to coupling between
collective blade vibration in the 1%t drivetrain mode and in the 2°¢ drivetrain mode, such
that the net change in aerodynamic rotor torque is close to zero.

The effect of assuming quasi-steady aerodynamics (dotted lines in Figure 2.7) is to
increase the amplitude of the generator speed signal at the 1% drivetrain mode, because
the model predicts too large changes in aerodynamic torque for a change in wind speed
in attached flow due to the neglected effect of shed vorticity. The aeroelastic frequency
response from generator torque, collective pitch and mean wind speed inputs to generator
speed output all show little effect of assuming quasi-steady aerodynamics at excitation
frequencies below the 15¢ drivetrain mode, because at these low frequencies lag on aerody-
namic forces appears only at the inner blade sections that have no large contribution to
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the overall changes in aerodynamic rotor torque and thrust.

2.4.2 Generator torque to generator speed

Figure 2.8 shows the purely structural frequency response from generator torque to speed
for various cases of model complexity for the NREL 5 MW turbine in normal operation
at 8 m/s and 20 m/s. The only difference in the conditions at 8 m/s and 20 m/s is the
blade pitch, the mean rotational speed of the drivetrain and rotor, and the static blade
deformation about which the geometrically nonlinear structural model has been linearized.
The green curves in Figure 2.8 show the structural frequency response for a fully rigid
turbine. Rigid-body rotation of the drivetrain and rotor can explain the response up to
around the natural frequency of the 1% lateral tower mode at 0.32 Hz. The response of a
rigid turbine equals the response of the 1°* order model: I,6Q, = 6Q, and the rotational
inertia causes a phase of 90 deg at all frequencies and a drop in amplitude with frequency.

When the tower is made flexible (red curves), the generator torque is in resonance
with the 15 and 2°9 lateral tower modes at 0.32 Hz and 2.9 Hz at both wind speeds. The
lateral tower modes are excited by the generator reaction torque and are observable on
the speed signal because of nacelle roll relative to the tower top. The 15¢ and 29 lateral
tower modes cause two zeros to appear very close to these modes at 0.315 Hz and 1.8 Hz.
At the zero at 0.315 Hz, the change in rotor speed caused by the nacelle roll associated
with the lateral tower motion counteracts the rigid-body rotation caused by the generator
action torque. The zero nearly cancels the pole at 0.32 Hz creating a zero net phase shift
across the 15° tower modes. After resonance of the 15t lateral tower mode, the response is
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Figure 2.8: Purely structural frequency response from generator torque to generator speed
for NREL 5 MW wind turbine operating at 8 and 20 m/s. Comparisons of frequency
response predicted with models with no aerodynamic forces and with a fully rigid turbine
(green), rigid drivetrain and rotor (red), rigid rotor (blue) and fully flexible turbine (black).
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again governed by rigid-body rotation of the drivetrain and rotor. The similar phenomena
occurs at the zero located at 1.8 Hz where it is nacelle roll associated with the 2°¢ lateral
tower mode that cancels the rigid-body rotor rotation in the generator speed output.

The blue curves in Figure 2.8 show the structural frequency response when the tower
and drivetrain are flexible and the rotor is rigid. The 1% torsional mode of the drivetrain
leads to resonance at 2.2 Hz and a zero at 0.72 Hz at both 8 m/s and 20 m/s. At the
zero at 0.72 Hz, the rotor is moving while the generator end of the drivetrain is stationary,
because the generator torque is counterbalanced by rotor inertia forces.

The black curves in Figure 2.8 show the purely structural frequency response for a fully
flexible turbine. Due to the added blade flexibility, the 15° drivetrain mode now couples
with the 1% collective edge blade mode, whereby the resonance frequency is decreased
from 2.2 Hz to 1.6 Hz. The zero at 0.59 Hz at both wind speeds is also shifted from
0.72 Hz due to blade flexibility. At 20 m/s, the 15¢ and 2°¢ collective flap modes influence
the frequency response close to their modal frequencies of 0.75 Hz and 1.92 Hz due to
the static blade pitch and are accompanied by two zeros very close to these frequencies at
0.78 Hz and 1.86 Hz. The zeros and poles related to each of the 15° and 29 collective flap
modes make phase shifts that cancels each other. At the zero at 0.78 Hz, the generator
torque excites both the 1% drivetrain mode and the 15t collective flap mode in a motion
where edgewise blade bending relative to the hub in clockwise rotor direction is in phase
with flapwise bending downstreams and in phase with the applied generator torque. The
inertia forces from blade vibration in both the 15 drivetrain mode and the 1% collective
flap mode counteracts the applied generator torque. Similarly, at the zero at 1.86 Hz, the
generator torque excites the 15% drivetrain mode and the 2°¢ collective flap mode, and
the inertia forces from this motion counteracts the generator torque to form a zero in the
generator speed output.

Figure 2.9 shows a comparison between the purely structural response (magenta curves)
and the aeroelastic response (black curves) for a fully flexible turbine. The main effects
of including aerodynamic forces is seen at 20 m/s below the 15* tower modes and around
the 1%t and 2°¢ collective flap modes.

The response predicted by the simple 15¢ order model in Equation (4.26a) with rigid
structure and quasi-steady aerodynamics (blue curves) predicts the correct tendencies
below the 15¢ tower modes. At 20 m/s aerodynamic forces decrease the amplitude at low
frequencies and create a positive phase shift of 90 deg at 0 Hz compared to the purely
structural response, because aerodynamic damping forces dominate the inertia forces that
vanish at 0 Hz. At 8 m/s, the aerodynamic damping of the rotor is low and the response
is dominated by inertia until very close to 0 Hz. Although not seen for the present
turbine, the static change in blade deflection caused by static changes in aerodynamic
forces at 0 Hz, could cause that the aerodynamic gradients predicted for a rigid rotor are
wrong. The aerodynamic gradients could in particular be predicted wrongly by a rigid-
rotor assumption for a swept blade, because changes in steady state aerodynamic forces
from a change in e.g. generator torque could cause high blade torsion.

Around the 15¢ and 2" collective flap modes, the amplitude is reduced, due to large
aerodynamic damping of flap vibration. The influence of the collective flap modes is seen
from Figure 2.10 that shows a pole-zero map of the transfer functions in Figure 2.9. The
figure shows poles and zeros that influence the frequency response and that does not cancel
out in the transfer function. There are zero-pole cancelations of all asymmetric flap and
edgewise modes. There are no zero-pole cancelations of the 15 and 2" drivetrain modes at
all wind speeds because the generator torque excites the drivetrain modes. There is zero-
pole cancelation of the 1% collective flap mode at both 8 m/s and 20 m/s. The 274 collective
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flap mode is canceled by a zero at 8 m/s and is nearly canceled at 20 m/s indicating that
aerodynamic damping does not entirely limit vibration of the 2°¢ collective flap mode
and is responsible for the phase difference of 10 deg seen around 2.2 Hz in Figure 2.9.
Generally, it can be concluded, that the collective flap modes are not essential to include
to model the transfer function from generator torque to speed because of aerodynamic
damping.

For excitation frequencies below 3 Hz, there is no significant difference between using
unsteady and quasi-steady aerodynamics (not shown) on the response from generator
torque to generator speed because the modes that influence the response are mainly modes
characterized by vibration in the rotor plane where the effect of aerodynamic forces is
small, except on the rigid-body rotor mode. There is no effect of lag on lift and drag on
the rigid-body rotor mode because the frequency of vibration is so low, that lag only occurs
at blade sections close to the blade root, where the components to the overall changes in
aerodynamic rotor torque are small compared to sections closer to the blade tip.

The results shown above are for the NREL 5 MW turbine in onshore operation. For
another turbine the ordering of the aeroelastic frequencies of the 15* and 2°¢ collective
flap modes are likely to change relative to the zero at 0.72 Hz and the 15 drivetrain mode
at 1.6 Hz, respectively, but without any significant effect on the response due to large
aerodynamic damping of these modes.
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Figure 2.9: Aeroelastic frequency response from generator torque to generator speed for
NREL 5 MW wind turbine operating at 8 m/s and 20 m/s. Comparisons of frequency
response predicted with fully flexible structure and no aerodynamic forces (magenta),
with the 15 order model in Equation (4.26a) (cyan) and with fully flexible turbine with
unsteady aerodynamic forces (black).
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Figure 2.10: Aeroelastic poles and zeros of minimal realization of transfer function from
generator torque to generator speed for NREL 5 MW wind turbine operating at 8 m/s
and 20 m/s. (x poles, o zeros).

Effect of longitudinal tower vibration

The influence of longitudinal tower motion on the response from generator torque to
generator speed is illustrated in Figure 2.11. The figure shows the aeroelastic frequency
response close to the 15* tower modes for a turbine with a tower that is very stiff in
longitudinal direction (blue curves) and for a fully flexible turbine (black curves) operating
at 8 m/s and 20 m/s. The vertical lines show the aeroelastic frequencies of the 15 tower
modes for a fully flexible turbine. For a fully flexible turbine, there is a zero at 0.315 Hz
and a pole at 0.323 Hz due to nacelle roll associated with the 1%* lateral tower mode.
There are no changes in amplitude or any phase shifts occurring across the frequency of
the 1% longitudinal mode at 0.33 Hz which shows that the 15 longitudinal tower mode
has no influence. Thus, any deviations between the blue and black curves arise due to
longitudinal tower motion in the 1% lateral tower mode. It can be seen that longitudinal
tower vibration has a small influence only at 20 m/s, which is seen as larger phase shifts
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Figure 2.11: Aeroelastic frequency response at frequencies close to the 15¢ tower modes
from generator torque to generator speed for NREL 5 MW wind turbine operating at 8 m/s
and 20 m/s. Comparisons of frequency response predicted for a turbine with a tower that
is very stiff in longitudinal direction (blue) and for a fully flexible turbine (black).

across the zero at 0.315 Hz and at the 1%¢ lateral tower mode.

The small changes due to the increased longitudinal tower stiffness occurring at 20 m/s
are caused by removal of longitudinal tower motion in the 1% lateral tower mode. Figure
2.12 shows the tower top motion in the 1% longitudinal and lateral tower modes for a
fully flexible turbine with no aerodynamic forces (a), a turbine with rigid drivetrain and
rotor and quasi-steady aerodynamics (b) and for a fully flexible turbine with unsteady
aerodynamic forces (c¢) for the NREL turbine in normal operation at 8 m/s, 14 m/s and
20 m/s. Without aerodynamic forces, the 15¢ lateral and longitudinal tower modes consist
of purely lateral and longitudinal tower motion, respectively. Thus, gyroscopic forces due
to rotor tilting in the 1% longitudinal tower mode does not provide large coupling between
lateral and longitudinal tower motion. For a turbine with a rigid drivetrain and rotor with
aerodynamic forces (b), the 15t lateral tower mode has a component in the longitudinal
direction that changes with operation point. The similar trend is seen for a fully flexible
turbine (c). Thus, the coupling of the 1¢ lateral tower mode to longitudinal tower mo-
tion must be through aerodynamics, indicating that lateral tower vibration changes the
aerodynamic thrust.

2.4.3 Collective pitch demand to generator speed

Figure 2.13 shows the purely structural frequency response from collective pitch to gener-
ator speed for various cases of model complexity for the NREL 5 MW turbine operating
at the above rated wind speeds 14 m/s and 20 m/s. The green curves show the structural
response for a fully rigid turbine, where the pitching inertia forces of the flapwise bent
blades, makes the amplitude increase with the square of frequency and gives a phase of
-90 deg except very close to 0 Hz. Because the blades are bent downwind, the pitching
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Figure 2.12: Tower top motion of the 1% lateral and longitudinal modes for a) a fully
flexible turbine without aerodynamic forces, b) a fully flexible turbine and unsteady aero-
dynamics and for ¢) a turbine with rigid drivetrain and rotor and unsteady aerodynamics
in normal operation at 8 m/s, 14 m/s and 20 m/s. Tower is seen from above and positive
longitudinal tower deflection is defined to be upstreams, i.e. the wind is coming from the
right of the plots.

inertia forces have a positive torque creating component in the positive direction of 6Q),
for a positive pitch towards stall leading to a phase of -90 deg. The amplitude is slightly
higher at 14 m/s than at 20 m/s, because of the larger static flap deflection.

The blue curves in Figure 2.13 shows the purely structural frequency response when
the drivetrain is flexible and tower and rotor are rigid. Drivetrain flexibility causes a
resonance with the 15¢ drivetrain mode at 2.2 Hz. The drivetrain mode is excited by the
pitch actuator due to misalignment between the center of gravity and the pitching axis.
The phase shifts -180 deg across the frequency of the 15 drivetrain mode at 14 m/s and
20 m/s.

The black curves in Figure 2.13 shows the structural response for a fully flexible turbine.
The pitch actuator excites the 15¢ collective flap mode at 0.74 Hz, because the centers of
gravity along the blade are not aligned with the pitch axis. The 15 collective flap mode is
accompanied by a minimum-phase zero at 0.73 Hz, where collective pitching excites both
the 15¢ drivetrain mode and the 1% collective flap mode. At this zero, the vibration of the
15 collective flap mode causes a torque to act on the rotor in the negative direction of 6Q,
for a change in pitch towards stall, that counteracts the pitching inertia forces such that
the net torque variations are zero. The zero nearly cancels the phase shift due to the 15
collective flap mode. The 15 drivetrain mode is in resonance at 1.6 Hz, shifted from 2.2 Hz
due to added blade flexibility and is accompanied again by a phase shift of -180 deg. The
274 collective flap mode at 1.9 Hz highly influence the response at both 14 m/s and 20 m/s.
The amplitude at the 2" collective flap mode is much higher than at the 1% collective
flap mode, because the pitching inertia forces are larger at higher excitation frequencies,
and because the 2" collective flap mode lies close to the 15¢ drivetrain mode, where rotor
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Figure 2.13: Purely structural frequency response from collective pitch to generator speed
for NREL 5 MW wind turbine operating at 14 and 20 m/s. Comparisons of frequency
response predicted from models assuming no aerodynamic forces and fully rigid turbine
(green), rigid rotor and tower (blue) and a fully flexible turbine (black).

speed variations are larger, which provides larger excitation of the 2°¢ collective flap mode.
Resonance of the 2" collective flap mode is accompanied by a zero at 1.89 Hz and 1.80 Hz
at 14 m/s and 20 m/s, respectively. At these zeros, collective pitching excites both the 15¢
drivetrain mode and the 29 collective flap mode. The 27¢ collective flap mode couples to
rotor rotation when the blades are pitched and is excited such that it creates a torque in
the negative direction of 6Q), for a change in pitch towards stall and thereby counteracts
the torque created due to vibration of the 1% drivetrain mode, such that there are no net
generator speed variations. This coupling is more significant at 20 m/s where the blades
are more pitched.

A comparison has been made of the pitching inertia forces for a rigid blade undergoing
harmonic pitch angle variations around the undeformed state and statically deflected state
of the NREL blade in normal operation at various wind speeds to clarify the effect of
static blade deflection. The pitching inertia forces are measured as the amplitude of forces
in the rotational direction of the rotor arising from harmonic variations in pitch angle
at frequency wy and amplitude Ag. The total pitching inertia forces for the blade are
found by summing up over the number of blade elements assuming constant structural
properties over each element. The amplitude of pitching inertia forces A, ; for element i
can be written

Ay = wimglisin gg ; Ag (2.13)

where ¢g; and [; are the polar coordinates of the element centre of gravity in the blade
system, m; is the element mass and A, ; is the amplitude of pitching inertia forces.
Figure 2.14 shows the total amplitude A, of pitching inertia forces versus wind speed
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for the NREL 5 MW turbine blade in the undeformed and statically deformed state in
response to harmonic pitching with an amplitude of 1 deg at a frequency of 1 Hz together
with the static position of the centre of gravity at the blade tip in the rotor coordinate
system. The pitching inertia forces are larger than of the undeflected blade at wind speeds
below 22 m/s because the blades are highly deflected downstreams in the flap direction and
peaks at 11 m/s where the thrust forces are highest. For blades with a significant prebend
upstreams, the pitching inertia forces are expected to be lower, because the static position
of the centre of gravity in the flap direction is further upstreams than for a non-prebended
blade.

The influence of aerodynamic forces on the frequency response is now analyzed. Figure
2.15 shows a comparison of the response for a fully rigid turbine without and with quasi-
steady aerodynamic forces and the response predicted by the simplified model in Equation
(4.26a). At 0 Hz, the effect of including aerodynamic forces is to increase the amplitude
and shift the phase with 180 deg because of changes in aerodynamic torque caused by
pitching. The steady state effect of a constant change in collective pitch is that the
generator speed settles at a new equilibrium between the steady state generator torque
and the aerodynamic torque on the rotor. Pitching towards feather gives less aerodynamic
torque because of lower angles of attack, whereby the rotor speed decreases. The decrease
in rotor speed gives an additional inflow velocity component, that increases the angle of
attack and thereby the aerodynamic torque, such that the net variation in aerodynamic
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Figure 2.14: Amplitude of pitching inertia forces in the edgewise blade direction posi-
tive towards rotational direction of the rotor for a rigid NREL 5 MW blade undergoing
harmonic pitch angle variations with amplitude of 1 deg and frequency of 1 Hz. Com-
parison of pitching inertia forces for undeflected blade and statically deflected blade for
normal operation at various wind speeds. Static position of the centre of gravity at the
blade tip in the blade coordinate system (x:positive towards rotational direction,y:positive
downstreams).
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Figure 2.15: Purely structural and aeroelastic frequency response from collective pitch to
generator speed for NREL 5 MW wind turbine operating at 14 m/s and 20 m/s. Compar-
isons of frequency response with models including a fully rigid turbine with no aerodynamic
forces (magenta), the 15 order model in Equation (4.26a) (blue), turbine with rigid flap
and no aerodynamic forces (green), a fully rigid turbine with quasi-steady aerodynam-
ics (cyan) and a turbine with blades rigid in flap direction and unsteady aerodynamics
(black).

rotor torque is zero at 0 Hz.

The response predicted with a fully rigid turbine with quasi-steady aerodynamics (cyan
curves) has a minimum-phase zero at 1.1 Hz and 2.1 Hz at 14 m/s and 20 m/s, respectively,
where there is a positive phase shift of around 180 deg, due to pitching inertia forces.
Under harmonic collective pitch angle variations, the pitching inertia forces gives a torque
on the rotor in positive direction of 6Q), for a change in pitch towards stall, whereas the
aerodynamic torque gives a higher torque in the negative direction and thus excites the
rotor in the opposite direction as the pitching inertia forces. The pitching inertia forces
grows with excitation frequency and above the zeros at 1.1 Hz and 2.1 Hz at 14 m/s and
20 m/s, respectively, they are large enough to dominate the response over variations in
aerodynamic torque.

The black curves in Figure 2.15 show the frequency response for a turbine with rigid
blades in the flap direction. At 0.32 Hz, collective pitching now couples with the 15¢
tower modes to create a minimum phase and a non-minimum phase zero at 14 m/s and
20 m/s that causes the phase to shift approximately 360 deg crossing the frequencies of
the 1%* tower modes, because of 180 deg phase shift over the non-minimum phase zero
and -180 deg over the lateral tower mode. The longitudinal tower mode introduce a zero
and a pole with phase shifts that cancels each other. The minimum-phase zero at 0.71 Hz
and 0.84 Hz for 14 m/s and 20 m/s, respectively, are shifted from 1.1 Hz and 2.1 Hz. To
illustrate why the added drivetrain and edge flexibility causes these zeros to shift to a lower
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frequency, the purely structural response for a turbine with rigid flap is shown in Figure
2.15 (magenta curves). Collective pitching excites the 15* drivetrain mode structurally and
vibration of this mode excites the rotor in phase with the pitching inertia forces, such that
the variations in aerodynamic torque are suppressed at lower excitation frequencies.

Figure 2.17 shows a map of poles and zeros that does not cancel out of the transfer
function from collective pitch to generator speed for the turbine where the blades are
made rigid in the flap direction. There are pole-zero cancelations of all asymmetric flap
and edgewise modes (not shown), no zero-pole cancelations of the 15¢ and 2°¢ collective
flap modes, and a lowly damped zero exist at 0.71 Hz and 0.84 Hz for 14 m/s and 20 m/s,
respectively. At 14 m/s the zero is non-minimum phase and causes a -180 deg phase shift
in the black curves in Figure 2.15, and at 20 m/s it is a minimum phase zero causing a
positive phase shift of 180 deg.

Figure 2.16 shows a comparison of the response for a fully flexible turbine without
aerodynamic forces (blue curves) and with quasi-steady aerodynamic forces (cyan curves).
The response predicted by the simplified model in Equation (4.26a) is also included (green
curves) to show that it captures the steady state response well at 0 Hz at both 14 m/s
and 20 m/s.

Compared to the response of a turbine where blades are rigid in the flap direction
(black curves in Figure 2.15), there is a large change in phase between the 15° tower modes
and the 1% drivetrain mode, which must be due to the added flapwise blade flexibility.
To explain this observation, the aeroelastic poles and zeros for the fully flexible turbine
has been plotted in Figure 2.17. The pole-zero map shows that the lowly damped zeros
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Figure 2.16: Aeroelastic frequency response from collective pitch to generator speed for
NREL 5 MW wind turbine operating at 14 m/s and 20 m/s. Comparisons of frequency
response with models including a fully flexible turbine with no aerodynamic forces (blue),
the 15¢ order model in Equation (4.26a) (green), a fully flexible turbine with quasi-steady
aerodynamics (cyan) and a fully flexible turbine with unsteady aerodynamics (black).
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Figure 2.17: Aeroelastic poles and zeros of minimal realization of transfer function from
collective pitch demand to generator speed for NREL 5 MW wind turbine operating at
14 m/s and 20 m/s. Comparison between pole-zero map for fully flexible turbine with un-
steady aerodynamics (black) and turbine with blades rigid in flap direction with unsteady
aerodynamics (blue) (% poles, o zeros).

at 0.71 Hz and 0.84 Hz at 14 m/s and 20 m/s, respectively, which are predicted for a
turbine with rigid flap, are replaced by two highly damped non-minimum phase zeros at
0.67 Hz and 1.1 Hz. These non-minimum phase zeros creates a phase shift of —180 deg
in the cyan curves in Figure 2.16 which occurs over a large frequency interval. It can be
concluded that collective flap DOF's must be included to correctly predict existence of the
non-minimum phase zeros at 0.67 Hz and 1.1 Hz for 14 m/s and 20 m/s, respectively.

The cyan curves in Figure 2.16 shows, that quasi-steady aerodynamic forces changes the
structural response at the 15 drivetrain mode and the 274 collective flap modes by adding
damping that lowers the response at these modes. The 1% drivetrain mode is mainly
damped by aerodynamics at 20 m/s, because at larger pitch angles, the 15 drivetrain
mode couples more with collective flap vibration. The zero located in between at 1.89 Hz
and 1.80 Hz at 14 m/s and 20 m/s, respectively, is also damped by aerodynamic forces
and the effect of the zero on the frequency response is not visible at 14 m/s, but can still
be seen at 1.80 Hz at 20 m/s.

The effect of using unsteady aerodynamics instead of quasi-steady aerodynamics is
seen by comparing the magenta and black curves in Figure 2.16. At 14 m/s there is no
clear difference, whereas at 20 m/s a clear difference is observed at the 15 drivetrain
mode and the 2"¢ collective flap mode. To explain this change, a pole-zero map has been
plotted in Figure 2.18 for a fully flexible turbine with quasi-steady aerodynamics (blue
points) and with unsteady aerodynamics (black points), that shows the poles of the 15¢
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Figure 2.18: Aeroelastic poles and zeros of transfer function from collective pitch demand
to generator speed for NREL 5 MW wind turbine operating at 14 m/s and 20 m/s with
frequencies close to the 15% drivetrain mode. Comparison between pole-zero map for fully
flexible turbine with quasi-steady aerodynamics (blue) and unsteady aerodynamics (black)
(* poles, o zeros).

drivetrain mode and the 2°¢ collective flap mode at various wind speeds together with the
zero with a frequency between these poles. The quasi-steady aerodynamic model predicts
correct location of the poles of the 15 drivetrain mode, but estimates a too low aeroelastic
frequency of the 2°¢ collective flap mode. At 10 m/s the 2" collective flap mode tends to
cancel with a zero, such that there is no influence of 24 collective flap mode at this wind
speed, because of lower pitch angles. With increasing wind speed the zero moves and does
not cancel the pole. With unsteady aerodynamics a similar trend is seen, but at 20 m/s
the zero has moved close to the 15¢ drivetrain mode, thereby almost cancelling the pole
of the 1% drivetrain mode and creating a drop in amplitude at the frequency of the 15¢
drivetrain mode at 20 m/s in the black curves in Figure 2.16.

To understand what causes the zeros shown in Figure 2.18, Figure 2.19 shows the
frequency response from collective pitch (positive towards stall) to the generator speed
and rotor speed (left) and the collective blade tip velocities in the flap and edgewise
blade directions relative to the hub (right) for the NREL 5 MW wind turbine in normal
operation at 8 m/s and 20 m/s. The results shown in Figure 2.19 are obtained by Fourier
transformation of the nonlinear time simulations which were used for validation previously.

The response at the resonance peak at 1.64 Hz at 8 m/s in Figure 2.19 characterizes
the 15* drivetrain torsional mode. The 1' drivetrain mode is characterized by a generator
speed and rotor speed that are in phase, where the rotor speed variations have slightly
lower amplitudes due to drivetrain torsion. The figure shows, that the collective edgewise
blade velocity relative to the hub (positive towards the rotational direction) in the 15
drivetrain mode is nearly in opposite phase as the rotor speed variations, which is due to
the inertia of the blades relative to the hub.
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Figure 2.19: Aeroelastic frequency response functions from collective pitch angle demand
(positive towards stall) to generator speed and rotor speed variations (a) and to the col-
lective blade tip velocities relative to the hub in the pitched blade root coordinate systems
(b) for the NREL 5 MW wind turbine in normal operation at 8 m/s and 20 m/s. The
responses are predicted by Fourier transformation of nonlinear time simulations using
HAWC?2. Edgewise blade velocities positive towards rotational direction and flapwise ve-
locities positive downstream.

Figure 2.18 showed that at 20 m/s the poles of the 2°¢ collective flap mode does
not cancel with the nearby zero, which is because the collective flapwise blade vibration
couples to rigid body rotor rotation through the inertia and aerodynamic damping forces
of the collective flap motion relative to the hub. Figure 2.19 shows that exactly at the
frequency of the zero at 1.66 Hz at 20 m/s, the collective flapwise blade tip velocity
(positive downstream) is out of phase with the rotor speed changes with a relative phase
of around -150 deg mainly because of the inertia forces on the blades from collective
flapwise blade vibration relative to the hub. What happens at the zero at 1.66 Hz at
20 m/s is that the inertia forces caused by collective flap vibration in the 2°¢ collective
flap mode counteracts the increased aerodynamic rotor torque caused by the increasing
angles of attack from collective pitching.

Figure 2.18 shows that a model including the effects of shed vorticity and dynamic
stall predicts that the zeros are placed closer to the pole of the 15¢ drivetrain mode at
high wind speeds relative to a model with quasi-steady aerodynamics. This trend can be
explained from the lower aerodynamic damping of the flap motion predicted with unsteady
aerodynamics, causing higher flapwise blade motion relative to the hub and thereby larger
inertia forces that are completely out of phase with the positive change in aerodynamic
torque caused by pitching.
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Non-minimum phase zero at the 15t tower modes

Controllability of generator speed with collective pitch is affected by a non-minimum phase
zero close to the frequency of the 1% tower bending modes. Figure 2.20 shows the real part
of zeros with frequency close to the 15¢ tower modes for normal operation at below rated
wind speed up to 25 m/s. The zeros are calculated for three different models including
only longitudinal tower flexibility and quasi-steady aerodynamics (as Fischer [27]), both
longitudinal and lateral tower flexibility, rigid drivetrain and rotor and quasi-steady airfoil
aerodynamics and for a fully flexible turbine and unsteady aerodynamics. The figure shows
that a model that only includes longitudinal tower flexibility and rigid-body rotation of
the rotor predicts that there are non-minimum phase zeros below 15 m/s and the non-
minimum phase zeros turns into minimum phase zeros above 15 m/s. Collective pitching
excites the longitudinal tower vibrations through changes in thrust forces. At the 15t
longitudinal tower mode, the thrust forces are in resonance with the longitudinal tower
mode and the tower top deflection and velocity in the longitudinal direction shift with a
phase of -180 deg across the 1% longitudinal tower mode. The longitudinal tower motion
change the inflow and below 15 m/s the resulting change in aerodynamic torque is large
enough to counterbalance the effect on the aerodynamic torque from the change in angle
of attack caused by pitching the blades. The change in inflow caused by longitudinal
tower vibration, cause the aerodynamic torque to experience a phase shift of -180 deg
across the 15 longitudinal tower mode, following the phase shift of the longitudinal tower
velocity and causing the non-minimum phase zero at the generator speed output. Above
15 m/s, the steady state relative velocities increase such that the effect on the aerodynamic
torque of longitudinal tower vibration decrease. The changes in aerodynamic torque from
a change in collective pitch angle is thereby mainly determined by the change in angle of
attack caused by pitching the blades. As a results, the non-minimum phase zero change to
a minimum-phase zero, that nearly cancels the effect of the 15¢ longitudinal tower mode.

When lateral tower flexibility is included (blue curves in Figure 2.20, the single zero
becomes two zeros and one of them is a non-minimum phase zero for all wind speeds. It
can be concluded that it is important to include lateral tower degree of freedom to predict
correctly that there are non-minimum phase zeros. Below rated wind speed, the model
with fully flexible turbine and unsteady aerodynamics predicts existence of up to three
non-minimum phase zeros at the 15 tower modes. At 8 m/s, the pole of the 1% longitudinal
mode and three non-minimum phase zeros gives a total phase drop of -720 deg, as seen
previously in Figure 2.3a.

Under collective pitch angle variations, the tower vibrates in both lateral and longitu-
dinal directions, which is illustrated in Figure 2.21 that shows the aeroelastic frequency
response from collective pitch demand to tower top lateral and longitudinal deflections for
the NREL 5 MW turbine with rigid drivetrain and rotor in normal operation at 14 m/s
and 20 m/s. The figure shows a comparison of lateral tower top deflection predicted for
a turbine with rigid drivetrain and rotor and for a turbine with rigid drivetrain and rotor
where the tower is made very stiff in the longitudinal direction, to analyze the effect of
longitudinal vibration on forces in the lateral direction. For a positive change in pitch
angle (towards stall) the thrust forces increase and results in fore-aft deflection in phase
with the change in pitch angle, except close to 0 Hz where rigid-body rotor rotation results
in small phase differences. Lateral tower deflection hugely increase at the 15¢ tower modes,
along with longitudinal tower vibration and results in lateral tower deflection equal in size
to longitudinal deflection at 0.3 Hz. At the 15* tower modes the lateral tower deflection
is shifted with a phase of approximately -90 deg relative to the longitudinal deflection,
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Figure 2.21: Aeroelastic frequency response from collective pitch demand to longitudinal
and lateral tower top displacement for the NREL 5 MW turbine in normal operation at
14 m/s and 20 m/s. Comparison between the response for a turbine with a rigid drivetrain
and rotor and a turbine with rigid drivetrain and rotor where the tower is made very stiff
in the longitudinal direction.
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showing that forces acting on the tower in the sideways direction are in phase with the
longitudinal tower velocity. The excitation of the lateral tower vibrations through collec-
tive pitching can be explained by the fact that the 1st lateral tower mode couples to the
longitudinal tower mode. The dotted lines show that the lateral tower top deflection is
order of magnitudes smaller if the tower is made stiff in the longitudinal direction, which
can be explained by the removed longitudinal tower motion in the 1% lateral tower mode.

Figure 2.22 shows the frequency response from collective pitch to generator speed close
to the 15¢ tower modes for operation at 14 m/s and 20 m/s as predicted by three differ-
ent linear models including 1) only tower longitudinal tower flexibility and quasi-steady
aerodynamics, 2) lateral and longitudinal tower flexibility and quasi-steady aerodynamics
and 3) for a fully flexible turbine with unsteady aerodynamics. The figure also shows the
response of generator speed measured at the generator bearing and at the generator end
of the shaft found by the nonlinear time-simulations using HAWC2 for a fully flexible tur-
bine. At 14 m/s, the model that only includes longitudinal tower flexibility (red curves)
predicts that there is a non-minimum phase zero at 0.32 Hz where phase drops almost
-360 deg over the shown narrow frequency range. At 20 m/s, the same model predicts a
minimum-phase zero at 0.32 Hz, giving a net phase shift of approximately 0 deg across
the shown frequency interval, because of 180 deg phase shift of the minimum-phase zero
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Figure 2.22: Aeroelastic frequency response from collective pitch demand to generator
speed at the frequency of the 15' tower mode for NREL 5 MW wind turbine operating
at 14 m/s and 20 m/s. Comparisons of frequency response predicted by linear models
assuming rigid tower in lateral direction, rigid drivetrain and rotor and quasi-steady aero-
dynamics (red), rigid drivetrain and rotor and quasi-steady aerodynamics (blue) and for
a fully flexible turbine with unsteady aerodynamics (black curve). Comparison between
generator speed response measured at bearing output and at shaft end from nonlinear
time-simulations with a fully flexible turbine.
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and -180 deg phase shift of the 1%* longitudinal tower mode. With lateral tower flexibil-
ity included, the frequency response is affected by a non-minimum phase zero at 0.32 Hz
resulting in a phase drop of approximately -360 deg at both 14 m/s and 20 m/s.

The dotted black and magenta curves in Figure 2.22 compares the generator speed
response measured at the generator bearing and at the generator end of the shaft found
from the nonlinear time-simulations using HAWC2. There is no non-minimum phase zero
at the speed measured on the shaft at 20 m/s, showing that the detected influence of
lateral tower motion is caused by nacelle roll associated with lateral tower vibration. The
nacelle roll cause a change in the generator speed output that counteracts the increased
speed due to the larger aerodynamic rotor torque arising from blade pitching, and the
nacelle roll thereby promotes existence of the non-minimum phase zeros.

So, it has been shown to be essential to include lateral tower dynamics besides what is
included in the model suggested by Fischer [27]. It is important for correct prediction of
non-minimum phase zeros, to include static blade torsion when predicting the gradients
of thrust and torque, because blade torsion directly changes the angle of attack. Correct
predictions of structural damping of both lateral and longitudinal tower motion may influ-
ence predictions of non-minimum phase behavior, because damping influence the amount
of vibration of these modes.

2.5 Chapter summary

The open-loop aeroelastic frequency response of a wind turbine from generator torque
and collective pitch control actions to generator speed is analyzed based on a recently
developed high-order linear aeroelastic model. The frequency response is analyzed for the
onshore NREL 5 MW wind turbine in normal operation at various wind speeds. The
analysis exemplifies the aeroelastic frequency response of most non-floating, three-bladed,
upwind wind turbines, because the ordering of the 15¢ tower, collective flap and driv-
etrain/collective edge modes is the same. The linear aeroelastic model is shown to be
valid for small amplitude inputs compared to the response of generator speed predicted
by time-simulations with the nonlinear aeroelastic model HAWC2.

The aeroelastic frequency response from generator torque to variations in generator
speed is shown to be affected by mainly rigid-body rotor rotation and by resonance of the
1% drivetrain torsional mode, which is coupled with collective edgewise blade vibration.
The lateral tower modes affects the response close to their aeroelastic frequencies due to
nacelle roll, whereas the effect of longitudinal tower vibration is insignificant. Inertia forces
acting on the blades due to variations in the rotational speed excites the collective flap
modes, mostly at high wind speeds where the blades are pitched. However, due to large
aerodynamic damping the influence of the collective flap modes on the transfer function
from generator torque to generator speed is insignificant.

The aeroelastic response from collective pitch demand to generator speed is determined
by rigid body rotation of drivetrain and rotor below the frequencies of the 15¢ tower modes.
At the 1% tower modes there are up to three non-minimum phase zeros below rated wind
speed and one non-minimum phase zero above rated. For correct prediction of the non-
minimum phase zero above rated, it is shown to be important to include both the 15t
lateral and longitudinal tower modes. Between the 15 tower modes and the 15 drivetrain
mode, the frequency response is affected by a highly damped non-minimum phase zero
at above rated wind speeds. To correctly predict existence of this zero it is shown to be
necessary to model correctly the influence of pitching inertia forces due to flapwise bent
blades and to include the 15 drivetrain mode, and collective flap degrees of freedom. It is
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important to include aerodynamic damping of the 15¢ drivetrain mode mainly at high pitch
angles. At 14 m/s, there is no difference in the response predicted with a quasi-steady
and an unsteady model of airfoil aerodynamics. At 20 m/s, the quasi-steady response
deviates at the 15 drivetrain mode, where it fails to predict the correctly influence of a
minimum-phase zero, that nearly cancels the pole of the 15 drivetrain mode.
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Chapter 3

Order reduction by modal and balanced
truncation

This chapter shows how to design low-order aeroelastic models of a wind turbine suited
for model-based control design. Low-order models are designed by order reduction of a
high-order linear aeroelastic wind turbine model containing structural degrees of freedom
that describes the flexibility of tower, drivetrain and blades and aerodynamic states that
describes the influence of unsteady aerodynamic forces on the blades.

Order reduction is done by the modal truncation technique using aeroelastic wind
turbine mode shapes. Instead of the common approach, which is to reduce the number
of structural degrees of freedom of each subcomponent of the turbine and subsequently
assemble these models [31, 32, 52, 53], reduced-order models are designed here using the
aeroelastic mode shapes of a fully flexible wind turbine. These mode shapes each includes
the couplings between the substructures and the aeroelastic couplings between structural
blade vibration and the resulting changes in the aerodynamic forces on the blades. Or-
der reduction is done using both the structurally and aerodynamically dominated modes
predicted by the high-order, linear aeroelastic model, and a description is given of the
influence of the aerodynamically dominated mode shapes. Subsequently, the order is re-
duced using aeroelastic mode shapes in which quasi-steady aerodynamics is assumed and it
is shown that the system matrices of the reduced-order models are suited for interpolation
with a scheduling variable.

The reduced-order models obtained by modal truncation are compared to models ob-
tained by the balanced truncation technique in terms of how many states must be used
to capture the aeroelastic low-frequency response of a wind turbine. It is analyzed how
the balanced truncation technique can capture the effect of shed vorticity and dynamic
stall, which is shown to require relatively many states in the modal truncation technique.
It is shown how the reduced-order models obtained by the balanced truncation technique
can be easily interpolated and therefore also are suited for design of gain-scheduling con-
trollers. The system matrices of the two sets of models are compared using a unique form
of the system of equations.

As an example, reduced-order models are designed using the high-order linear aeroe-
lastic wind turbine model called HAWCStab2 [54]. The model is identical to the model
described previously and used for frequency response analysis in Chapter 2. The reduced-
order models are evaluated on how well the models predict the aeroelastic frequency re-
sponse from generator torque, collective pitch angle demands and changes in the mean wind
speed to the generator speed output predicted by the high-order model. The reduced-order
models designed by the balanced reduction technique are also evaluated on how they cap-
ture the aeroelastic frequency and damping and mode shapes of the low-frequency wind
turbine modes.

This chapter contains first a mathematical description of the modal truncation method.
It is then shown how some of the aerodynamically dominated modes influence the fre-
quency response through coupling with rigid body rotor rotation and longitudinal tower
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vibration. Subsequently, reduced-order models are designed by modal truncation under
assumption of quasi-steady aerodynamics. This is followed by a description of the bal-
anced reduction technique, a description of the required number of balanced states and
a comparison of the two sets of system matrices obtained by modal and balanced trun-
cation, showing that the reduced-order system matrices are suited for interpolation with
wind speed. The chapter is finally concluded by a chapter summary.

3.1 Order reduction by modal truncation

Before reduced-order models are designed in later sections, a short description is given of
the modal truncation technique.

3.1.1 Reduction by modal truncation

Order reduction by modal truncation [38] is done by first applying a full-order state trans-
formation: x = ®q where ® is denoted the modal matriz and contains all the eigenvectors
of A in columns. By this state transformation, a linear time-invariant system of equations
on first order form, such as (2.3), can be written:

q=Aq+® 'Bu (3.1a)
y = C®q (3.1b)

where q is the new state vector with generalized states that each describes the motion of a
mode shape and A is the Jordan form of A. For any square matrix A, the Jordan form is
a block diagonal matrix that consist of Jordan blocks. If all eigenvectors of A are linearly
independent, then the Jordan form is a diagonal matrix with the eigenvalues of A in the
diagonal such that each Jordan block is of size 1 x 1. For all systems used in the present
analysis, the modal matrix ® has full rank and thus A has a diagonal Jordan form.

The state describing the azimuth rotation angle of the rotor d6,,; has been removed
from the system of equations prior to the eigenvalue decomposition in Equation (3.1) to
ensure that the modal matrix has full rank. This state has no effect on the response from
inputs to outputs and represents the pure integrator mode 66,.; = 6Q which shows up as
a mode with zero eigenvalue A = 0 giving a singular modal matrix.

The eigenvalue decomposed form (3.1) is then partitioned:

(o d-1% nJ{a )[R e e
y=C[ & ‘1’2}{%} (3.2b)

2

where indices 1 and 2 denote subcomponents of the matrices. Order reduction by modal
truncation is done by representing the full-order model by the subcomponents of the
system matrices with index 1, that corresponds to low-frequency aeroelastic modes and
by neglecting all other subcomponents denoted with index 2, such that the reduced-order
system of equations are given by:

a1 = A1q1 + [@7'], Bu (3.3a)
y=Ceiq (3.3b)
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This scheme of a full-order state transformation followed by reduction is applied instead
of using a classical modal expansion x ~ ®,.q, to get the diagonal structure of A, which
ensures that only the chosen subset of modes are excited by the inputs and measured at
the outputs. The modal matrix ® is not orthonormal, regardless of normalization of the
eigenvectors, i.e. 7! # ®*, where * denotes the conjugate transpose.

The components of the reduced-order system matrices in Equation (3.3) are complex
but are made real by using a coordinate transformation into the real and imaginary parts
of the generalized states q;. For each set i of complex-conjugated eigenvalues and eigen-
vectors, the transformed system is written:

qni = Aniqni + Br,iu NS Cniqr,i (343’)
] —bon —wa | Bria | _ [q)_l]i,a
Ari = [ wa  —&wn |’ Bri = B.is | | [®7'], ;B (3.4b)
T T
Cr,i,a _ éi,a
CT’7'L' — |: Cr’iHB :| =2C |: —@1"6 :| (34C)

where q,; = { Re(qi:) Im(qi;) }T and where w,, is the undamped frequency of mode
i found as wy,, = |\;|, where ); is the i’th eigenvalue of A. In Equations (3.4) wq and & are
the damped frequency and the damping ratio of mode 7, respectively, as defined previously
in Equation (2.12). The indices o and 8 denote the real and imaginary parts, respectively.
The factor 2C in the output matrix in (3.4c) arise because the total output equals twice
the real part of the output for one of the complex-conjugated poles.

3.1.2 Modal truncation including unsteady aerodynamics

In this section, two examples are used to describe the influence of aerodynamically domi-
nated modes on the aeroelastic frequency response of a wind turbine. The aerodynamically
dominated modes investigated here are those arising from shed vorticity and dynamic stall
as exemplified by the predictions of the high-order linear aeroelastic model described in
Chapter 2, see Figure 2.5.

Influence of aerodynamically dominated modes on steady state responses

Figure 3.1 shows a comparison between the aeroelastic frequency response from generator
torque to generator speed predicted by the high-order model (black) and by a reduced-
order model obtained by modal truncation including the rigid body rotor rotation mode
(blue) at 8 m/s and 20 m/s. The reduced-order model is seen to accurately approximate
the response below the 15 tower modes at 8 m/s but not at 20 m/s, where it predicts too
large amplitude at 0 Hz. The red curves in Figure 3.1 are obtained when including five
aerodynamically dominated modes as discussed later.

To find out what modes might cause that the rigid body rotor mode predicts an offset
at 0 Hz, the influence of each mode on the frequency response has been determined. For
each of the transfer functions, the importance of each mode is evaluated by the maximum
amplification in the frequency response predicted by each modal subsystem in Equation
(3.1), denoted the modal H,, norm. Figure 3.2 shows the modal H, norms versus aeroe-
lastic frequencies and cut-off frequencies of purely real eigenvalues for the transfer function
from generator torque to generator speed of all structurally dominated modes (black) and
all collective aerodynamically dominated modes (red) at 8 m/s, 14 m/s and 20 m/s.
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Figure 3.1: Aeroelastic frequency response from generator torque to generator speed for
NREL 5 MW wind turbine in normal operation at 8 m/s and 20 m/s predicted by the
full-order model (black) and a reduced-order model including the rigid body rotor mode
(blue) and a model including the rigid body rotor mode and five collective aerodynamically
dominated modes (red).

At 20 m/s in Figure 3.2¢, five to ten collective aerodynamically dominated modes
with cut-off frequencies below 0.3 Hz have modal norms close to that of the rigid body
mode, which is located at wg = 0.035 Hz at 20 m/s, and are therefore expected to sig-
nificantly change the frequency response. At lower wind speeds, the modal norms of the
collective aerodynamically dominated modes decrease and therefore also the influence of
these modes. A similar influence of the aerodynamically dominated modes is seen in the
frequency response from collective pitch angle demand and mean wind speed to genera-
tor speed (not shown). A reduced-order model that includes the rigid body rotor mode
and the five most important aerodynamically dominated modes which are highlighted by
red squares in Figure 3.2c, predicts the frequency response in the red curves in Figure
3.1. The inclusion of these modes in the reduced-order model significantly improves the
approximation to the steady state generator speed response to generator torque variations.

To evaluate how many aerodynamically dominated modes are needed, reduced-order
models has been designed that includes the rigid body rotor mode and from zero to ten of
the most important aerodynamically dominated modes. Figure 3.3 shows the relative error
on the amplitude at 0 Hz predicted by the eleven reduced-order models at 20 m/s for the
transfer functions from generator torque, collective pitch angle demand and mean wind
speed to generator speed. Without any aerodynamically dominated modes the amplitude
at 0 Hz deviates with up to 100% relative to the high-order response. A static error
below 20% in the response from collective pitch demand to generator speed is achieved by
including at least five aerodynamically dominated modes.

42



aeroelastic frecp)d [Hz] & cut-off freq.w [Hz]

- [2) - |b) 5 [c)x str.dom.
107 F 107 F 1 10°F E
* aero.dom.(col)
« « [J 5 dominating aet
-7 -7 * -7 *
— 10 107 3 107 +
S * * * %
E ki *
X
S 10° 10° | 1 100} E
= [5h *4
g -9 -9 -9 * %
e 107} 107 b % . A 107 F * #
T8 * % % * *
— % *
© ~ R * ~ * ~ *k
B 107 4 107 4 10 E
<] * * *
* * * ¥ *
1S % % * %k
% x * e
* * o * %3"**
1071t « ¥ 108 * f;k | 107k j:sHe
* R *% K *
B * ¥ .
-12 B -12 ¥ 12 * egj
10 ' ‘-2 ‘—1 H 0 10 ‘—2 ‘—1 ] 0 10 ‘—2 ‘—1 0
10 10 10 10 10 ) 10 10 10

Figure 3.2: H, norms of each aeroelastic modal subsystem of the system of equations (3.1)
of each structurally dominated modes (black) and collective aerodynamically dominated
modes (red) in the transfer function from generator torque to generator speed for the
NREL 5 MW wind turbine in normal operation at a) 8 m/s, b) 14 m/s and c) 20 m/s.
The red squares in ¢) show the five most dominating aerodynamically dominated modes

at 20 m/s.
5Q, 56, W
120 120 120 ‘
a) b) c)
*
100+ {1 100t 100}
*
=
S sof 1 sof ¥ 8o}
Gm
b *
o
5 6of 1 60f 60f
=
o *
e ¥
T 4of 1 40t * 40t
7 *
* *
*
20F % 1 20t * 20t
*
*
* ¥Rk x * Ok % %
0 * E'3 * * %k ¥ X 0 L
0 5 10 0 10 0 5

5
Number of aerodyn.dom.modes

10
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To explain the effect of the collective aerodynamically dominated modes, Figure 3.4
shows the variations in aerodynamic forces along a blade in the direction perpendicular
to the chord axis, denoted JF), for the most important aerodynamically dominated mode
at 8 m/s, 14 m/s and 20 m/s, respectively. The force variations are determined from
the eigenvectors of these modes, which are normalized such that the generator speed
components are positive and such that the maximum absolute value is unity. At 8 m/s
and 14 m/s the most important aerodynamic modes characterize changes in aerodynamic
forces only in one calculation point, whereas the mode at 20 m/s shows variation in
aerodynamic forces at many sections along the blade because of coupling with rigid body
rotor rotation, as explained in the following.

The aerodynamically dominated modes are excited by a change in the angle of attack,
caused e.g. by blade pitching, flapwise bending, or change of wind speed. At low wind
speed a change in angle of attack will cause only small changes in aerodynamic forces
because of low relative velocities. For increasing wind speeds, a change in angle of attack
will cause large variations in the aerodynamic rotor torque and thrust and the aerody-
namically dominated modes will therefore couple with rigid body rotation of the rotor and
the flapwise blade bending modes, causing a change in aerodynamic forces at all sections
along the blade. Figure 3.4 shows that at 20 m/s the structural coupling with rigid body
rotor rotation and flapwise blade bending modes gives a change in relative velocities that
decrease the angle of attack - giving higher lift forces - in the inner part of the blade
because of stall, and giving lower lift at mid- and outer part where the blades operate in
attached flow.

The aerodynamically dominated modes that influence the generator speed variations
at 0 Hz at high wind speeds are all characterized by a large variation in aerodynamic
forces at the blade mid-span. This observation can be explained by the facts, that the
aerodynamically dominated modes at the blade mid-span contributes more to the aerody-
namic rotor torque than modes close to the blade root and close to the blade tip, because
of low relative velocities and thereby low changes in lift at the blade root and because of
low inflow angles at the blade tip causing that changes in lift mainly changes the thrust
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Figure 3.4: Normalized changes in aerodynamic forces perpendicular to local chord direc-
tion versus blade radius of three aerodynamically dominated modes with cut-off frequencies
of 0.062 Hz, 0.077 Hz and 0.13 Hz for NREL 5 MW wind turbine in normal operation at
8 m/s, 14 m/s and 20 m/s, respectively. Each of the three modes has the highest influence
on rotor speed output of all aerodynamically dominated modes at the specific wind speeds.
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forces.

It has now been shown that some aerodynamically dominated modes couple with rigid
body rotor rotation and thereby are important in predicting the response of generator
speed variations at 0 Hz. Vice versa, the rigid body rotor mode will couple to some of the
aerodynamically dominated modes at above rated wind speeds. Figure 3.1 showed that
approximation with the rigid body rotor mode alone predicts too high amplitude at 0 Hz
in the transfer function from generator torque to speed at 20 m/s, which is because the
rigid body rotor mode couples with some of the aerodynamically dominated modes. The
rigid body rotor mode approximates the changes in rotor speed at 0 Hz too high, because
the effective changes in lift when the rotor speed changes are predicted too small in this
mode.

Influence of aerodynamically dominated modes on dynamic responses

The last section showed that five to ten aerodynamically dominated modes must be in-
cluded to achieve good approximation of the response at frequencies below the 15¢ tower
modes. This section shows that other aerodynamically dominated modes affect accurate
prediction of the non-minimum phase zeros at the 15¢ longitudinal tower mode in the re-
sponse from collective pitch to generator speed [26]. These aerodynamically dominated
modes are necessary to include in modal truncation, because the 1% longitudinal tower
mode couples to these modes. However, it has previously been shown, that a model as-
suming rigid drivetrain and rotor, and quasi-steady aerodynamics can correctly predict the
existence of non-minimum phase zeros at above rated wind speeds in the transfer function
from collective pitch to generator speed.

Figure 3.5 shows the aeroelastic frequency response from collective pitch angle demand
to generator speed for the NREL 5 MW wind turbine in normal operation at 14 m/s and
20 m/s as predicted by the high-order model (black) and by reduced-order models designed
by modal truncation including different aeroelastic modes. All reduced-order models in this
section include the rigid body rotor mode and the ten most dominating aerodynamically
dominated modes to ensure accurate prediction of changes in aerodynamic torque at 0 Hz.

The red curves in Figure 3.5 show that a model including also the 1%¢ longitudinal and
lateral tower modes predicts existence of a minimum phase zero at 0.31 Hz at both 14 m/s
and 20 m/s at the aeroelastic frequency of the 1% longitudinal tower mode. The green
curves in Figure 3.5 shows, that when furthermore the 1%t collective flap mode is included,
the model predicts a non-minimum phase zero at 0.32 Hz at 14 m/s but not at 20 m/s.

The reason why the 15 collective flap mode must be included, when it is previously
shown that a rigid rotor can predict the non-minimum phase zero, is because the 15
longitudinal tower mode couples with the 15t collective flap mode. In the forced response
of collective pitching at the 15° tower mode, the flap motion is however somewhat limited
by the changes in thrust forces associated with the variation in collective pitch. The 15¢
longitudinal tower mode couples with the 1% collective flap mode, because of the changes
in aerodynamic forces at the blades due to changes in relative velocities caused by the
longitudinal tower motion. The 15¢ longitudinal tower mode is characterized by a motion
where a positive tower velocity in the downwind direction is in phase with a collective
flapwise deflection velocity relative to the hub in the upwind direction, due to the changes
in aerodynamic forces on the blades associated with the longitudinal tower motion. The
reason why the model without the 15¢ collective flap mode cannot correctly predict the non-
minimum phase zero at the 15* tower modes is because of too small changes in aerodynamic
torque and thrust predicted with these modes, due to the collective flap vibration in the
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15¢ longitudinal tower mode.

The cyan curves in Figure 3.5b show, that the non-minimum phase can be correctly
predicted at 20 m/s by including four collective aerodynamically dominated modes with
cut-off frequencies of w. = 0.41 Hz, 0.45 Hz, 0.60 Hz and 0.75 Hz. The cut-off frequen-
cies are slightly higher than of those aerodynamically dominated modes already included,
because these modes are characterized by changes in aerodynamic forces at the blade tip
where the inflow velocities are higher and the cut-off frequencies therefore higher. Figure
3.6 shows snap shots of variation in aerodynamic forces of the aerodynamically dominated
mode with a cut-off frequency of 0.75 Hz. The chosen mode is characterized by high
changes in thrust forces at the blade tip, which can be explained by the relative small
inflow angles at the blade tip. The changes in thrust forces associated with the aerody-
namically dominated modes at the blade tip, makes these modes important for correct
prediction of the non-minimum phase zero at the 1% longitudinal tower mode.

3.1.3 Modal truncation including quasi-steady aerodynamics

An assumption of quasi-steady aerodynamics has been found to give accurate predictions
of the aeroelastic frequency response from changes in generator torque, collective pitch
angles and in mean wind speed, except at around the 1°* drivetrain torsion mode in the
response from collective pitch to speed, where a quasi-steady aerodynamic model fails to
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Figure 3.5: Aeroelastic frequency response from collective pitch angle demand to generator
speed predicted by the full-order model with unsteady aerodynamics (black) and predicted
by a reduced-order model including the rigid body mode and ten collective aerodynamically
dominated modes (blue), and by reduced-order models including also the 1% lateral and
longitudinal tower modes (red), including also the 1%% collective flap mode (green) and
including also four collective aerodynamically dominated modes characterizing unsteady
aerodynamics at the blade tip (cyan).
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Figure 3.6: Snap shots of variations in aerodynamic forces of one collective aerodynamically
dominated mode with cut-off frequency of w. = 0.75 Hz for the NREL 5 MW in normal
operation at 20 m/s. This mode is characterized by unsteady aerodynamics in a blade
section close to the tip, where a change in angle of attack produces high changes in thrust.

correctly predict a zero located close to the pole of this mode. Limitations of the pitch
actuator may limit the changes in actual pitch angles at variations in the pitch angle
demands at the frequencies of the 15¢ drivetrain mode and thereby also the influence of
the unsteady aerodynamics at these frequencies.

Order reduction is now performed by modal truncation using aeroelastic mode shapes in
which quasi-steady aerodynamics is assumed. It is shown how each of the transfer functions
from generator torque, collective pitch angle demands and mean wind speed to generator
speed can be approximated by gradually increasing the number of aeroelastic modes in
the reduced-order model. Before the design of reduced-order models, the following section
gives a modal analysis with quasi-steady aerodynamics.

Aeroelastic modal analysis with quasi-steady aerodynamics

Figure 3.7 shows the eigenvalues corresponding to aeroelastic modes with low frequency
predicted with quasi-steady aerodynamics. Figure 3.7a shows the real part of the eigen-
values and Figure 3.7b the positive imaginary part of the eigenvalues. The black curves
in Figure 3.7 show the real and imaginary parts of the pole of the rigid body rotor mode,
where the dashed black line is for the rigid body rotor mode predicted by a simplified
model assuming rigid lateral tower, rigid drivetrain and rotor and quasi-steady aerody-
namics. This simplified model is used for comparison to study the effects of flexibility of
the rotor and drivetrain and the effects of lateral tower flexibility.

Below 15 m/s there is no significant difference between the pole of the rigid body rotor
mode predicted from the high-order model with quasi-steady aerodynamics and from that
predicted using the simplified model, whereas above 15 m/s the eigenvalue of the rigid
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body rotor mode becomes more negative than that predicted with a model assuming rigid
rotor, because the rigid body rotor mode couples with the 1% collective flap mode. Above
24 m/s the rigid body mode couples with the 1 collective flap mode to form a 24 order
mode with real value of approximately —0.25 Hz and non-zero imaginary value.

The red curves in Figure 3.7 show the real and imaginary parts of the eigenvalues
of the 15¢ collective flap mode. Both the dotted red curves (o) and red curves marked
with circles (o) are associated with the 15¢ collective flap mode. Below 16 m/s, the 15
collective flap mode consists of a set of complex-conjugate poles. Up to 16 m/s, the real
part of the pole of the 1% collective flap mode decrease and the aeroelastic frequency
decrease, because the aerodynamic damping of this mode increase with wind speed due to
higher relative inflow velocities [55]. Above 16 m/s the 15¢ collective flap mode becomes
overdamped and the set of complex-conjugated eigenvalues of the 1% collective flap mode
shift to become two poles with purely real and distinct eigenvalues. The assumption of
quasi-steady aerodynamics causes that the aerodynamic damping of the 1% collective flap
mode is larger than when unsteady aerodynamics is included, see Table 2.1. The green,
blue and cyan curves in Figure 3.7 show the poles of the 1% lateral and longitudinal tower
modes and the 15¢ drivetrain torsional mode.

Frequency response from generator torque to generator speed

Table 3.1 lists the content of the various reduced-order models designed to approximate
the low-frequency aeroelastic wind turbine response.

Figure 3.8 shows the aeroelastic frequency response from generator torque to generator
speed predicted by a full-order model with quasi-steady aerodynamics (black) and by four
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Figure 3.7: Poles of low-frequency aeroelastic mode shapes for the NREL 5 MW wind
turbine in normal operation at wind speeds from 5 m/s to 25 m/s equidistant with 0.5 m/s
under assumption of quasi-steady aerodynamics. Figure (a) shows the real part of the
eigenvalues and Figure (b) the imaginary part, which is equal to the aeroelastic frequency.
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Figure 3.8: Aeroelastic frequency response from generator torque to generator speed for
NREL 5 MW turbine in normal operation at 8 m/s and 20 m/s. Comparison between
responses predicted by a model assuming quasi-steady aerodynamics (black) and predicted
by reduced-order models obtained by modal truncation including the aeroelastic modes in
model no. 1 to 4 defined in Table 3.1.

different reduced-order models denoted by model no. 1 to 4 defined in Table 3.1.

Model no. | Aeroelastic modes included in model

rigid body rotor, 1% lateral tower
rigid body rotor, 1% lateral tower, 1°° drivetrain

rigid body rotor, 15 lateral tower, 1°* drivetrain, 2°¢ collective flap

=W NN =

rigid body rotor, 1°* lateral tower, 15 drivetrain, 29 collective flap,
284 drivetrain, 2°¢ lateral tower

rigid body rotor
rigid body rotor, 15 collective flap

rigid body rotor, 1°* lateral tower, 15* longitudinal tower, 15 collective flap

co I o Ot

rigid body rotor, 15% lateral tower, 1°° longitudinal tower, 15° collective flap,
15% drivetrain

9 rigid body rotor, 15 lateral tower, 1°° longitudinal tower, 15° collective flap,
15t drivetrain, 2°¢ collective flap, 2°¢ drivetrain

Table 3.1: Description of the aeroelastic modes included in the various reduced-order
models used to approximate the aeroelastic frequency response of the NREL 5 MW turbine.
The aeroelastic modes are determined using quasi-steady aerodynamics.

49



The reduced-order model no. 1, that includes the rigid body rotor mode and the 15t
lateral tower mode estimates correctly the high gain at 0 Hz, see blue curves in Figure
3.8. The model correctly predicts the zero at 0.315 Hz and the resonance peak at 0.32 Hz
at both 8 m/s and 20 m/s, because they exist due to nacelle roll associated with the 15¢
lateral tower mode.

The red curves in Figure 3.8 show the response predicted by the reduced-order model
no. 2 including also the 1% drivetrain mode. At 8 m/s, the model captures correctly
the presence of the minimum-phase zero at 0.72 Hz and the resonance peak at the 15
drivetrain mode. At 20 m/s, the model 2 predicts a non-minimum phase zero at 0.72 Hz
that causes a negative phase shift of -180 deg. By including also the 2°¢ collective flap
mode (model no. 3), the zero at 0.72 Hz becomes a minimum-phase zero at 20 m/s,
whereas at 8 m/s there is no visible change in the response. The prediction of a non-
minimum phase zero of the reduced-order model no. 2 at 0.72 Hz, can be explained by a
coupling of the 15t drivetrain mode with the 274 collective flap mode at high wind speeds
due to the larger pitch angles. The 2°¢ collective flap mode (model no. 3) compensates for
the flap motion already included with the 15% drivetrain mode. By additionally including
the 2°¢ drivetrain and the 2"¢ lateral tower modes (model no. 4), the reduced-order model
can correctly predict the response up to 3 Hz.

Frequency response from collective pitch and mean wind speed to generator
speed

Figures 3.9 and 3.10 show the aeroelastic frequency response from collective pitch angle
demand and mean wind speed, respectively, to generator speed for the NREL 5 MW
turbine in normal operation at 14 m/s and 20 m/s, predicted by the full-order model with
unsteady airfoil aerodynamics (black), under assumption of instant update in the mean
wind speed, and with quasi-steady aerodynamics (dashed black) and by five different
reduced-order models that includes the aeroelastic modes given in model no. 5 to 9 in
Table 3.1.

The blue curves in Figures 3.9 and 3.10 show the responses predicted by the model
no. 5 that includes the rigid body rotor mode. At 14 m/s, the model correctly predicts
the response at 0 Hz whereas at higher wind speeds , e.g. 20 m/s, it predicts too high
amplitude for both pitch and wind speed inputs, as already described in Section 3.1.2 for
the model including unsteady aerodynamics. A correct amplitude and phase is achieved at
up to the aeroelastic frequency of the 15* tower modes by including also the 15* collective
flap mode in model no. 6, shown with red curves. The rigid body rotor mode couples
with the 1% collective flap mode at high wind speed when quasi-steady aerodynamics
is assumed, such that the rigid body rotor mode alone predicts too high gain at 0 Hz
because flap vibration lowers the aerodynamic damping of this mode due to the effect of
the flapwise blade motion on the angle of attack in the velocity triangle.

The dashed red curves in Figures 3.9 and 3.10 show the aeroelastic response predicted
by the model no. 7 that includes also the 15 tower modes. At both 14 m/s and 20 m/s and
for both inputs, the negative phase shift of -360 deg caused by the non-minimum phase
zero at the 1% longitudinal tower mode is captured by the model.

The green curves in Figures 3.9 and 3.10 show the response of the reduced-order model
no. 8, where also the 15 drivetrain mode is included. For collective pitch inputs, the model
approximates well both amplitude and phase up to the frequency of the 15¢ drivetrain
mode, except that it predicts too low amplitude at frequencies in between the 15° tower
modes and the 1% drivetrain mode mainly at 20 m/s. For mean wind speed inputs, the
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Figure 3.9: Aeroelastic frequency response from collective pitch demand to generator speed
for NREL 5 MW turbine in normal operation at 14 m/s and 20 m/s. Comparison between
responses predicted by a model assuming quasi-steady aerodynamics (black curves) and
predicted by reduced-order models obtained by modal truncation including the aeroelastic
modes in model no. 5 to 9 listed in Table 3.1.
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Figure 3.10: Aeroelastic frequency response from changes in mean wind speed to generator
speed for NREL 5 MW turbine in normal operation at 14 m/s and 20 m/s. Compari-
son between responses predicted by a model assuming quasi-steady aerodynamics (black
curves) and predicted by reduced-order models obtained by modal truncation including

the aeroelastic modes in model no. 5 to 9 listed in Table 3.1.
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model no. 8 (green curves in Figure 3.10) does not capture correctly the non-minimum
phase zero at the 1% longitudinal tower mode, which can be explained by the collective
flap motion introduced by the 15 drivetrain mode.

The cyan curves in Figures 3.9 and 3.10 show the response predicted by model no. 9
including the 2" collective flap mode and the 2" drivetrain mode and a total of thirteen
states. The combined effect of adding the 2™ collective flap mode and the 2°¢ drive-
train mode leads to a good approximation of the full order response with quasi-steady
aerodynamics up to 3 Hz at both 14 m/s and 20 m/s for both inputs.

3.2 Balanced order reduction

The aim of this section is to compare the modal truncaton reduction technique with
the balanced truncation reduction technique in terms of how many states are required
to capture the aeroelastic low-frequency response of wind turbines. Attention is given
to how many states are required in the balanced truncation technique to capture the
effect of the unsteady aerodynamic forces due to shed vorticity and dynamic stall, which
in the modal truncation technique requires a relatively large number of aerodynamically
uncoupled modes, due to the assumption of independent annular flow tubes in the BEM
theory.

As an example, the balanced truncation reduction technique is used to design reduced-
order models based on the high-order wind turbine model used previously and the reduced-
order models are evaluated on how well the models predict the aeroelastic frequency re-
sponse from generator torque, collective pitch angle demands and changes in the mean
wind speed to the generator speed output. The reduced-order models are also evaluated
on how they capture the aeroelastic frequency and damping and the mode shapes of the
low-frequency structurally dominated wind turbine modes.

One way of using the balanced reduction technique to generate low-order models suited
for gain-scheduling controllers has been investigated in the collaborate paper Adegas et
al. [P3]. In the paper, order reduction is done by extracting all structurally and aero-
dynamically dominated modes with aeroelastic frequency or cut-off frequency below a
certain threshold and then subsequently use the balanced reduction technique to decrease
the order of this intermediate size reduced-order model. In the collaborate paper, the
reduced-order models are finally prepared for interpolation by realizing the reduced-order
system of equations on a unique companion form, as explained in the paper.

Here, reduced-order models are also designed by extracting all structurally and aerody-
namically dominated modes with aeroelastic frequencies and cut-off frequencies lower than
a certain threshold into an intermediate size model using the modal truncation method.
A low-order model is subsequently designed by balanced truncation. The present analysis
provides a description of how the reduced-order models obtained by balanced truncation
approximates the eigenvalues and mode shapes of some of the low-frequency modes pre-
dicted by the full-order model.

This section contains first a description of the balanced model reduction technique.
Then it is analyzed how many balanced states are needed in the reduced-order models to
achieve good accuracy. It is then shown how the components of the reduced-order system
matrices vary with operating point and it is described how the reduced-order models
obtained by balanced order reduction approximate the aeroelastic frequency and damping
of the low-frequency aeroelastic mode shapes.
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3.2.1 Balanced reduction technique

Order reduction by balanced truncation is suggested by Moore [40], who propose to design
low-order models by using a set of balanced states that most efficiently represents the
response from a set of inputs to a set of outputs for a linear time-invariant state space
model on the form:

x(t) = Ax(t) + Bu(t) (3.5a)
y(t) = Cx(t) + Du(t) (3.5b)

where x is the state vector, u a set of inputs, y a set of outputs and A, B, C and D
the corresponding system matrices. A balanced realization is a full-order realization of the
system of equations, where each state characterize dynamics of a ’shape’ that is defined to
be equally controllable or reachable from the inputs u and observable from the outputs y.
Balanced truncation is performed by subsequently removing balanced states that are least
controllable and observable, because these states do not contribute to the input-output
response.

A balanced realization is achieved based on specific measures of the observable ’energy’
measured at the outputs and the control ’energy’ used to control or reach the states from
the inputs. Moore [40] propose to define the observable energy F, and the control energy
E. as

Eo:/ ylydt where y(t) = Ce®'x(0) (3.6a)

0

EC:/ xTxdt where x(t) =B (3.6b)
0

where y(t) is defined as the output response to a non-zero initial state (x(0) # 0) and zero
input (u = 0) and where x(t) is defined as the state response with zero initial conditions
(x(0) = 0) and a unit disturbance in the input, c.f. [56].

The observable energy E, and control energy E. in Equation 3.6 can be written as:

E,=xT(0)W,x(0)  E, = trace[W,] (3.7)

where W, is the observability Gramian and W is the controllability Gramian defined as

o0 o0
W,= [ eA'iCTCerldt ; W.= / ABBT At (3.8)
0 0

The components of the observability Gramian denotes how much each state contributes
to the output energy F, and the components of the controllability Gramian denotes how
much energy F. is transferred from the inputs to each state in the model.

The balanced realization is then defined as the realization of the system of equations (3.5)
where the observability and controllability Gramians are identical and diagonal; identical,
because then the states are equally controllable and observable; diagonal, because then
the total observable energy and control energy can be written as a sum of contributions
from each of the balanced states, ensuring that we gradually improve the approximation
of the frequency response from the inputs to the outputs when more balanced states are
added to the model.
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The observability and controllability Gramians in Equation 3.8 are solutions to the two
following Lyapunov equations

ATW,+W,A =-CTC (3.9a)
AW, + W AT = —BB” (3.9b)

and the problem of finding a balanced realization is to find a new system of equations de-
fined by the system matrices Ay, By, Cp and Dy, that gives solutions to the two Lyapunov
equations that are identical and diagonal.

The balanced realization of the full-order system of equations can be written as a full-
order similar transformation: x = Tqp where q; are the generalized balanced states and
T is the basis-shift transformation matrix with balanced ’shapes’ in columns, giving a
full-order system which is:

Qv = Apqpy + Byu (3.10a)
y = Cpap + Dpu (3.10b)

where A, = T"'AT, B, = T !B, C, = CT and D, = D. Different algorithms exist
to find the transformation matrix T and thereby the balanced realization, as reviewed by
Antoulas [38]. In the present analysis, the algorithm proposed by Laub et al. [57] is used
to obtain the balanced realization.

The diagonals of the observability and controllability Gramians of the balanced realization
contain the Hankel singular values, which are direct measures of how much each general-
ized state in the balanced realization contributes to the input-output response. If the first
k balanced states with largest Hankel singular values are included in the reduced-order
model, there is a guaranteed bound on the Ho, norm on the error system [58] given by

I G(5) = Gr(s) <2 D oy (3.11)
i=k+1

where G and G, are the full-order and reduced-order transfer function matrices, respec-
tively, s is the Laplace variable and o; is the 7’th Hankel singular value. Thus, the sum of
the Hankel singular values of balanced states that are not included in the reduced-order
model denotes an upper limit to how large error there is on any of the three transfer func-
tions investigated here. Equation (3.11) shows that the balanced reduction technique will
try and decrease the Ho, norm on the error between the original and the reduced-order
transfer function matrices. Thus, the balanced reduction technique will try and fit the
high-amplitude peaks in one or more of the frequency response functions from the three
inputs to the generator speed output, dependent on the applied input scaling done prior
to balancing.

Order reduction by balanced truncation is performed by removing the balanced states
which are least controllable and observable, i.e. the states with the smallest Hankel singu-
lar values such that the system of equations are represented by the subcomponents related
to the balanced states with highest Hankel singular values. The reduced-order system of
equations obtained by balanced truncation can then be written as:

Qp,tt = Ap1eQp,tt + By rru (3.12a)
Yy = Cpttqp,et + Dipu (3.12b)
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where qp ++ denotes the vector of balanced states included in the reduced-order model and
where matrices Ay ++, By s, Cp s+ are the subcomponents of the matrices of the balanced
realization corresponding to these balanced states.

3.2.2 Low-order models by balanced truncation

Order reduction is done here based on the linear aeroelastic model of the NREL 5 MW,
which is described in Chapter 2 and used previously in this chapter to design reduced-
order models by modal truncation with generator torque, collective pitch angle and mean
wind speed as inputs and generator speed as output. Balanced reduction is here done on
a model which is already reduced in order by modal truncation including all modes with a
cut-off frequency or undamped frequency below a chosen threshold of 3.0 Hz resulting in a
model including around 300 states, that fully captures the low-frequency response. Modal
truncation is done before balanced reduction to ensure that the balanced states describes
low-frequency dynamics and has a similar effect as frequency weighting of inputs and/or
outputs [38]. Without frequency weighting, the balanced reduction may try to capture
high-frequency dynamics, which are not relevant to include.

Scaling

Balanced reduction is done on a system of equations, in which the inputs and output are
scaled using the scaling matrices W, and W, defined by

u=W,i and y =W,y (3.13)

where @t and ¢ are the scaled input vector and the scaled output, respectively. Then,
balanced reduction is done on the new scaled system of equations defined by:

X = Ax + BW, i (3.14a)
y =W, 'Cx+ W, 'DW,u (3.14b)

The choice of input and output scaling matrices determines directly which of the three
single-input single-output transfer functions that the balanced reduction technique will
try and approximate. The aim of a controller could typically be to decrease the effect of
a mean wind speed disturbance on the generator speed response, such that good accuracy
is required of the frequency response from mean wind speed to generator speed. For the
control inputs, the scaling should correspond to how the weighting of the control inputs
is done in the design of the controller, such that it is ensured, that the response of the
actual control input used to limit variations in the generator speed is well approximated.

The usual procedure is to scale the generator torque and collective pitch control inputs
with the typical allowed changes of these control inputs in closed loop, and to scale the
wind speed disturbance input with typical changes in this input. The input and output
scaling matrices are defined as:

200 kNm 0 0
W, = 0 1 deg 0 ; Wy, =11rpm (3.15)
0 0 1m/s

The generator torque input is scaled with 200 kNm which is 1/20 of the static generator
torque acting at stationary operation at 20 m/s found to be approximately 4000 kNm. A
similar ratio is used in scaling of the two other inputs.
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Figure 3.11 shows a comparison of the scaled frequency response of the three transfer
functions from generator torque, collective pitch demand and from mean wind speed to
generator speed for the NREL 5 MW turbine in normal operation at 14 m/s and 20 m/s
predicted by the full-order model including unsteady aerodynamics. At both 14 m/s and
20 m/s, the highest Hankel singular values of the balanced model will aim at capturing
the response of collective pitch and variations in the mean wind speed up to around 1 Hz,
whereas around the frequency of the 15¢ drivetrain mode, it will aim at capturing the
response of collective pitching and generator torque variations at 14 m/s and of mean wind
speed variations and generator torque variations at 20 m/s, due to the high amplitudes of
the scaled frequency responses of these inputs shown in Figure 3.11.

Reduced-order models: Accuracy and interpretation

Figure 3.12 shows the 20 highest Hankel singular values for the scaled transfer function
matrix from generator torque, collective pitch angle and mean wind speed to generator
speed for the models of the NREL 5 MW turbine in normal operation at 8 m/s, 14 m/s and
20 m/s obtained by modal truncation including around 300 states. These Hankel singular
values represents the 20 balanced states, that are found most efficiently to describe the
frequency response from the scaled generator torque, collective pitch demand and mean
wind speed variations to the generator speed output. The figure shows that at 8 m/s and
14 m/s there are three balanced states and at 20 m/s there is one balanced state which has
significantly higher Hankel singular values and thus are expected to capture the principal
effect of the transfer functions. Figure 3.12 shows that between Hankel singular value
number 14 and 15 of the intermediate size models of the NREL 5 MW turbine at both
8 m/s, 14 m/s and 20 m/s, there is a clear jump in the Hankel singular values, showing that
the balanced states corresponding to the highest 14 Hankel singular values are expected to
capture the primary and secondary effects of the investigated transfer function matrices.

Figures 3.13-3.15 show the aeroelastic frequency response from generator torque, col-
lective pitch angle demands and mean wind speed to generator speed for the NREL 5 MW
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Figure 3.11: Aeroelastic frequency response amplitudes of transfer functions from gen-
erator torque, collective pitch demand and mean wind speed inputs to generator speed
output for scaled inputs and outputs of NREL 5 MW wind turbine in normal operation
at 14 m/s (left) and 20 m/s (right).
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Figure 3.12: The highest 20 Hankel singular values in descending order of the scaled
transfer function matrix from generator torque, collective pitch angle and mean wind
speed to generator speed for an intermediate size model of the NREL 5 MW wind turbine
in normal operation at 8 m/s, 14 m/s and 20 m/s obtained by modal truncation of all
structurally and aerodynamically dominated modes with frequencies below 3 Hz.

turbine in normal operation at 14 m/s and 20 m/s predicted by the full-order models and
for reduced-order models obtained by balanced truncation containing different number of
balanced states.

The red curves in Figures 3.13-3.15 show the frequency responses predicted by a model
including the three balanced states corresponding to the three highest singular values.
This model captures the response at 0 Hz for all three transfer functions at both 14 m/s
and 20 m/s, except for some small deviations for generator torque inputs at 20 m/s and
captures the response at the 15° drivetrain mode. Thus, these three balanced states are
thereby found to have a similar effect as the three generalized states of the rigid body rotor
mode and the 1%¢ drivetrain mode used in the modal truncation technique. The balanced
reduction technique aims at approximating the response of these modes because the scaled
amplitudes are relatively large at these frequencies in Figure 3.11. The three-state model
does not capture the response at the 15* tower modes, and thereby fails to predict the
large change in phase at 0.3 Hz in the response of collective pitching and mean wind speed
inputs.

The blue curves in Figures 3.13-3.15 show the response predicted with a model including
ten balanced states. The main effect of including the additional seven balanced states
compared to the previous 3" order model, is better approximation of the response at the
1%t lateral and longitudinal tower modes and of the response at the 2"¢ drivetrain mode
at around 2.7 Hz, such that the models now captures the non-minimum phase response at
the 15 tower modes for collective pitch and mean wind speed inputs. However, the model
predicts wrongly a —360 deg phase shift in the generator speed response at the 15 tower
mode for generator inputs.
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Figure 3.13: Aeroelastic frequency response from generator torque to generator speed for
NREL 5 MW turbine in normal operation at 14 m/s and 20 m/s. Comparison of response
predicted by the full-order model with unsteady aerodynamics (black) and response of
reduced-order models obtained by balanced reduction using various number of balanced
states.

The magenta curves in Figures 3.13-3.15 show the frequency response predicted with
a model including 14 balanced states, which is seen to capture accurately the frequency
responses for all three inputs at both 14 m/s and 20 m/s. The four additional balanced
states that has been included in this model relative to the previous model, mainly affects
the response at the 15* tower modes for generator torque inputs and at the 1% drivetrain
mode; for collective pitch angle demand inputs at 20 m/s the model captures accurately
the zero close to this mode, which was previously found to be affected by the lag from
shed vorticity and dynamic stall (see Figure 3.9).

The content of the reduced-order models obtained by balanced truncation is further de-
scribed from how the models predicts the aeroelastic poles and some of the aeroelastic
mode shapes relative to the full-order model.

Figure 3.16 shows the real and imaginary parts of the eigenvalues corresponding to the
low-frequency modes of the NREL 5 MW wind turbine in normal operation at various
wind speeds. The figure shows a comparison between the eigenvalues predicted by the
full-order model and predicted by the reduced-order models designed previously including
14 balanced state. The left column shows the real parts of the eigenvalues corresponding
to these modes, and the right column shows the positive imaginary part of the eigenvalues.
The top row of diagrams in Figure 3.16 shows the eigenvalues corresponding to the rigid
body rotor mode and a new aerodynamically dominated mode, as explained later. The
bottom row in Figure 3.16 shows the eigenvalues corresponding to the 1% lateral and
longitudinal tower modes, the 1°¢ and 2°¢ collective flap modes and the 1% drivetrain
torsion mode predicted by the full-order models and estimated by the reduced-order models
obtained by balanced truncation, as explained in the following. The figure shows the poles

o8



14 m/s 20 m/s

a)

.
S,

amplitude
[rpm/deg]
amplitude
[rpm/deg]

—full-order

I —bal.3 states
——bal.10 states
——bal.14 states

—full-order
102} —bal.3 states

—bal.10 states
——bal.14 states

»-\
oS,

1070
10

10°
10

2 107 10 2 107 10

400 T T 200

200

ok

-200
-200

phase
[deg]
phase
[deq]

-400 -
-400 1

_6001 -600

-800 =
10

-800 -
10

2 1

10
Excitation freq [Hz]

2 1

10
Excitation freq [Hz]

o o

10 10

Figure 3.14: Aeroelastic frequency response from collective pitch angle demand to genera-
tor speed for NREL 5 MW turbine in normal operation at 14 m/s and 20 m/s. Comparison
of response predicted by the full-order model with unsteady aerodynamics (black) and re-
sponse of reduced-order models obtained by balanced reduction using various number of
balanced states.

14 m/s 20 m/s

a)

.
S

10° b

.
S,

,_.
S,

i —full-order —full-order
——bal.3 states I —bal.3 states
10"t —pal.10 states 1 —bal.10 states
——bal.14 states ——bal.14 states

amplitude
[rpm / m/s]
amplitude
[rpm / m/s]

»-\
oS,

10"
10

2 10" 10

200

ol

-200

—-400

-600

phase
[deg]

-800

-1000 -

1200 — = —
10 10 10

10° 10"

Excitation freq [Hz] Excitation freq [Hz]

10°

Figure 3.15: Aeroelastic frequency response from mean wind speed to generator speed for
NREL 5 MW turbine in normal operation at 14 m/s and 20 m/s. Comparison of response
predicted by the full-order model with unsteady aerodynamics (black) and response of
reduced-order models obtained by balanced reduction using various number of balanced
states.

59



o
e

L 1 — + rigid—body rotor (full-order
g ° | 629@@@@@@@@@@@@@ | £ 011 O rigid-body rotor (bal.rom.) @C% 1
= 0Lk * 5 O®.. .. 5 * aerodyn.mode (bal.rom) L
s 02 * %% Yo®® | S 0,05 .8
© -03 * sk kK x k¥ £
—04 0 PREBRPRHRBRRDRDRD®
5 10 15 20 25
T T T T T 2 T T T T
or 4 * ko kK ok ok ok kK K kX ok % ¥k
,01,@’@@@@@@@@@@@@@@@@@@@8 el Oooooooooooé,
o2 * s . ] 16l @@@@@@@@@@@@@@@@@@@QQ 1
©) * 0O
-03r 7@ @ 1.4} O col.flap (bal.)
2 o4l @) Trax 6é®®®®®®®®®® ) 1st lat.tower (bal.)
2 09 © - 1stcolfiap (ful) | = 12| O 1t long.tower (bal.)
% -0.5} : @) 1st lat.tower (full) % ,L O 1st drivetrain (bal.)
2 o6 1st lon.tower (full) | £ . T
-+ st drivetr. (full) 08F .ottt
-0.7 *  2nd col.flap (full) osl OOOOQOO
-0.8 T
o BRI B Fo'0100/010/0/0/0/00/0/6/0/0/0/0/0/0/010)
s 10 : 20 25 0275 10 : 20 25

15 15
Wind speed [m/s] Wind speed [m/s]
Figure 3.16: Poles of low-frequency aeroelastic mode shapes of the NREL 5 MW wind
turbine in normal operation at various wind speeds predicted by reduced-order models
obtained by balanced truncation included 14 balanced states and compared with the poles
predicted by the full-order aeroelastic model.

corresponding to ten of the fourteen poles of the balanced reduced-order models. The
remaining four poles (not shown) have eigenvalues similar to the 2°¢ drivetrain torsion
mode and the 2"¢ lateral mode predicted by the full-order model.

The reduced-order models captures the eigenvalues of the rigid body rotor mode (black
points and circles in Figure 3.16) accurately up to around 15 m/s, where the full-order
model predicts that the rigid body rotor mode becomes a 2" order mode. The reduced-
order models predicts that the rigid body rotor mode couples to a 15t order aerodynamically
dominated mode above 23 m/s to form a 2"¢ order mode. That the rigid body rotor mode
couples with the aerodynamically dominated mode at high wind speeds and not the 15¢
collective flap mode - as seen previously with the quasi-steady aerodynamic model - is in
agreement with how the modes couples in the full-order model.

The eigenvalues shown with black asterisks in Figure 3.16 correspond to a new aerody-
namically dominated mode found by the balanced reduction technique, that represents the
effects of the large number of collective aerodynamically dominated poles of the full-order
model.

The red circles in Figure 3.16 shows another pole of the reduced-order model, which
is characterized by a high damping ratio that grows up to around rated wind speed and
then decrease with wind speed, and an aeroelastic frequency (Figure 3.16d) that is close
to 0.7 Hz below rated and then at rated increase to around 1.8 Hz. The red points (e)
and asterisks (*) in Figure 3.16 shows the poles of the 15¢ and 2°¢ collective flap modes
predicted by the full-order model. It is observed that below rated this pole of the reduced-
order model resembles the 15 collective flap mode, whereas above rated the pole resembles
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the 274 collective flap mode, indicating that above rated the 2" collective flap mode has
a larger influence on the generator speed response than the 1% collective flap mode.

Figure 3.16 shows, that the reduced-order model with the 14 balanced states captures
fully the poles of the 15t lateral and longitudinal tower modes and the 15¢ drivetrain mode
predicted by the full-order model.

Some attention is now given to how the reduced-order models captures the mode shapes
of the corresponding modes of the full-order model.

Figure 3.17 shows the variations in the collective aerodynamic forces in the new aero-
dynamically dominated mode shown with black asterisks in Figure 3.16 for operation at
8 m/s, 14 m/s and 20 m/s. The figure shows the variations in the aerodynamic forces
in this mode perpendicular to the local chord directions at the aerodynamic calculation
points versus blade radius. The forces shown in Figure 3.17 are found by transforming
the eigenvector corresponding to this mode given in the basis of the balanced ’shapes’
back into the original basis of nodal degrees of freedom and aerodynamic states. This
transformation can be written as: ¢, = T,.¢p, where ¢, is the eigenvector given in the
balanced basis, ¢, is the eigenvector given in the original basis and T, is the reduced-order
transformation matrix, which consists of the columns of T used in the balanced realization
(3.12) corresponding to the highest Hankel singular values.

The aerodynamic forces in Figure 3.17 of the aerodynamically dominated mode are
continuously distributed over the blade, opposite to those of the full-order model shown
previously in Figures 3.4 and have the same trend as the force-variations on the rigid
body rotor mode: steadily increasing variations in aerodynamic forces with blade radius,
due to the higher changes in relative inflow velocity, except at the tip where the chord is
small. Instead of the large number of uncoupled aerodynamically dominated modes of the
full-order model, analyzed e.g. in Figure 3.4, the balanced truncation technique efficiently
describes the influence of the lag caused by shed vorticity and dynamic stall by a single
state.

Figure 3.18 shows the collective blade deflections in the ’collective flap’ mode shape
predicted by the reduced-order models corresponding to the red circles in Figure 3.16. The
mode shapes of the reduced-order models are compared with the mode shapes of the 15

40 50 60

30
radius [m]

Figure 3.17: Normalized changes in aerodynamic forces perpendicular to local chord di-
rection versus blade radius of an aerodynamically dominated mode of the reduced-order
model obtained by balanced truncation for the NREL 5 MW wind turbine in normal
operation at 8 m/s, 14 m/s and 20 m/s, respectively.

61



5m/s 10 m/s 20 m/s

——col.flap.(bal.)

= —_ % —_—
E [ —1stcol.fiap (full) E os | E >
o 57 ==+2nd col.flap (full} i Q ! o % P
T o ” {8 o R / < | L
= el L = el l.v | oI .
-05, b -05 ~05 ==
] 10 20 30 40 50 60 10 20 30 40 50 60 0 10 20 30 40 50 60
0.15 015 03
= = —
E 0.1 E E 0.2
i=h £ E=h
g, o ~| @ 5
S = e > T e
O T T e--ieE ) o T ="

!
S
=S
<]

o

'
S
°
X

-0.1

.
15
N
S
@
&
N
5
a
8
2
g
)
e
5
n
S
w
s
s
]
a
3
@
3
o
e
5
N
S
w
S
s
&
a
3
@
3

D 04 D os o1
] 3] 3]
DT, 02 S ol S o = i
c e eem === 7777 T c c
S 0 ——N o o5 S 1
n -02 [ 0 2
2 & &
o o o
= -04 = -1 = -3
0 10 20 _30 40 50 60 0 10 20 _30 40 50 60 0 10 20 _30 40 50 60
radius [m] radius [m] radius [m]

Figure 3.18: Aeroelastic mode shape of a ’collective flap mode’ predicted by a reduced-
order model obtained by balanced truncation. This mode has an aeroelastic frequency
close to that of the 15¢ and 2°¢ collective flap modes below and above rated wind speed,
respectively. The figure shows the collective blade deflections in the flap and edge directions
relative to the hub and the torsional rotation around the local elastic axis versus blade
radius of this mode compared to the mode shapes of the 15 and 2™ collective flapwise
mode shapes predicted by the full-order model. Example: NREL 5 MW wind turbine in
normal operation at 5 m/s, 14 m/s and 20 m/s.

and 2"¢ collective flap modes predicted by the full-order model. At 5 m/s, the ’collective
flap” mode shape predicted by the reduced-order model is very similar to the shape of the
15 collective flap mode. At 10 m/s, the collective flap mode’ predicted by the reduced-
order model is still mainly characterized by vibration in the 15¢ collective flap mode, but
includes larger variations in the blade torsion than in either of the collective flap modes
of the full-order model. At 20 m/s, the 'collective flap mode’ contains more of the 274
collective flap motion than at low wind speeds, but the edgewise deflection and torsional
rotation of this mode does not accurately represent that of the 29 collective flap mode of
the full-order model. Thus, although the eigenvalues of the mode predicted by balanced
truncation are very close to that of the 2" collective flap mode at high wind speeds in
Figure 3.16, the mode shape does not accurately represent the actual mode shapes of the
274 collective flap mode.

If we compare how many balanced states are required compared to modal states in the
modal reduction technique, it is generally observed that the balanced reduction technique
is very efficient in capturing the effect of the large number of aerodynamically dominated
time constants, whereas it requires approximately the same number of states to capture
the effect of the structurally dominated modes.

The chosen input scaling performed prior to the design of the reduced-order models
affects the content of the reduced-order models. If reduced-order models are designed based
only on the generator input, the reduced-order models obtained by balanced truncation
tends to include a ’collective flap mode’ with an eigenvalue close to the 2" flap mode at all
wind speeds. If only the collective pitch angle demand input is used, the models obtained
by balanced truncation tend to include the 279 collective flap mode at all wind speeds, and
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two additional 1%* order modes at and above rated wind speed, somewhat characterizing
the 1% collective flap mode.

3.3 Reduced-order models for controller design

In this section, it is described that the system matrices of the reduced-order models
obtained by modal truncation and balanced truncation are suited for interpolation or
parametrization with a gain-scheduling variable characterizing changing operating point
of the wind turbine. As an example, it is chosen to study the changes in the system ma-
trices happening along the desired operational points of a wind turbine characterized by
a specific variation of the rotor speed and collective pitch angles as the mean wind speed
changes.

The reduced-order models are put on the eigenvalue decomposed form to ensure that
the system matrices are suited for interpolation. To make this form unique it is proposed
to normalize the eigenvectors relative to the generator speed output component of each
mode. There exist other methods to obtain a realization of models at different parame-
ters that are suited for interpolation or parametrization than the one proposed here. One
approach is to use one of the companion forms of the systems of equations, as proposed
in [P3].

3.3.1 Unique representation

To ensure that the components of the reduced-order matrices vary smoothly with operating
point, we choose to represent the system of equations in its eigenvalue decomposed form,
i.e. in the diagonal form given in Equation (3.1). The reduced-order models obtained
by modal truncation are already realized on diagonal form. The reduced-order models
obtained by balanced truncation given by Equations (3.12) are diagonalized, such that the
reduced-order system of equations can be written:

q=Aq+®,'Byu (3.16a)
y = Cy®pq + Du (3.16Db)

where A is the diagonal spectral matrix that consist of the eigenvalues of A, in the
diagonal and ®; is the modal matrix consisting of the eigenvectors of A, in columns.
The reduced-order models designed here by balanced truncation all have a matrix Ay
with distinct eigenvalues and therefore a modal matrix of full rank, such that the inverse
of the modal matrix can be found. The system matrices of the reduced-order models
obtained by balanced truncation are made real-valued in the same way as done in the
modal truncation technique as given by Equations (3.4) with new definitions of the input
and output matrices B, ; and C, ;:

| —fwn  —wa
Anz - |: Wy _fwn :| (3173.)
Br [N [@71} b,i
B, = ” = v | B 3.17b
’ [ Bris ] (@75 ’ ( )
Cr,i = [ Cni,a Cr,i”é’ } = 2(jb [ q)b7i,a _(I)b7i,6 } (317(3)

The components of the reduced-order input matrix B, and of the reduced-order output
matrix C, depends on how the eigenvectors of A are normalized prior to the eigenvalue
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decomposition. Here, the eigenvectors are normalized such that the generator speed output
from this mode becomes:

S +42)  and [Cbﬁgi]ﬂzwd(#—jZ) (3.18)

Vi-e 1@

where ¢; and ¢; are the two eigenvectors related to each 2°¢ order mode and where j =
v/—1 and wy and € are the aeroelastic frequency and damping ratio of the corresponding
mode, respectively. This specific normalization of the eigenvectors is convenient, because it
ensures that the components of the reduced-order input and output matrices can be given
a physical interpretation. Using the normalization given in Equation (3.18), the reduced-

order output matrix for the specific mode is found from Equations (2.6) and (3.4¢) to
be:

[Cila = wa(

C.i=[ 2Re(diq) —2Im(¢in) | = [ 2wné —dwy | (3.19)

where w;, is the undamped frequency of this mode found as w,, = |A;|, where }; is the i’th
eigenvalue of A. Similarly, the eigenvectors of the 15¢ order modes are normalized prior
to order reduction, such that their generator speed output equals: [Cp;la = —2\;. The
component of the output matrix C,.; for the 15t order modes is then:

Cri=—-2\ (3.20)

The components of C,; given in Equations (3.19) and (3.20) are the scaled real and imag-
inary parts of the eigenvalues related to the corresponding mode, which makes the output
matrix suited for parametrization, as shown in the following.

The reduced-order input matrix B, consist of modal blocks of B, ;, defined in Equa-
tions (3.4) and (3.17), that each describes the external excitation of the ¢’th mode. With
the specific normalization defined in Equations (3.19) and (3.20), the components of B, ;
can be given a physical interpretation which is related to how much the specific mode
contributes to the amplitude in the three frequency response functions considered here.

The transfer function matrix from the three inputs to the generator speed output of
the 7’th modal subsystem in Equations (3.3) and (3.16) is denoted G, ;(s) and is defined
as

Gr,i(s) = C’ni(SI - Ani)_ani (321)

for both 15¢ and 2" order modes, where s is the Laplace variable and the matrices A, ;,
B, ; and C, ; are the system matrices of the i’th modal subsystem. The amplitude of the
frequency response of G, ;(s) at 0 Hz for 1°* order modes and at wy for 2°¢ order modes
are found to be:

|G+,i(0)] = —2B,; (3.22)
. 4
IGri(jwa)|” = = (Bf}m +(1-)BZ, 5 —26/1— §2Br7i,aBr,i7,3) (3.23)

for 1t and 2" order modes, respectively, where B,.; o and B, ; g are the components of
the modal input matrix for 2°¢ order modes.

Equation (3.22) shows that for 15 order modes, we can understand the components of
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the input matrix B,; as the amplitude at 0 Hz in the frequency response of this mode
scaled with a factor of 1/2, i.e. B, ; denotes how much the i’th mode contributes to the
amplitude at 0 Hz in the frequency response from each inputs to the generator speed
output.

Equation (3.23) shows that the components B, ;. and B, ;g of the input matrix for
27d order modes denotes the amplitude in the frequency response of this modal subsystem
evaluated at the resonance peak at w = wy. For modes that are lowly damped, the last
term in (3.23) can be neglected, showing that whenever the amplitude at the resonance

peak in the modal frequency response either decrease or increase so does the magnitudes
of both B;.; o and B, ; 3.

To summarize, it is proposed to realize the reduced-order system of equations on the
eigenvalue decomposed form in Equation (3.17) and to normalize the eigenvectors of the
reduced-order A, matrix according to a chosen output which is the generator speed in the
present case. Normalization of the eigenvectors from Equation (3.18) could be done based
on other outputs, such as the longitudinal tower top deflection in each mode. The com-
ponents of the input matrix would then again have the interpretation given in Equations
(3.22) and (3.23), just with the longitudinal tower top deflection as the output.

3.3.2 Reduced-order system matrices

This section describes and compares the reduced-order system matrices obtained by modal
truncation and balanced truncation previously in this chapter and shows that these models
are suited for interpolation with wind speed. Both sets of models are represented on the
unique form described in the previous section.

A set of reduced-order models of the type no. 8, see Table 3.1, obtained by modal
truncation using quasi-steady aerodynamics and including the rigid body rotor mode, the
15¢ lateral and longitudinal tower modes, the 15¢ drivetrain mode and the 15t collective flap
mode, i.e. five modes in total, has been designed for the NREL 5 MW turbine in normal
operation at wind speeds from 5 m/s to 25 m/s. The model no.8 is used here for brevity,
although this model not accurately predicts the phase of the response of mean wind speed
changes, see Figure 3.10. The results however still apply for models of higher complexity,
because the subset of the matrices corresponding to the states of the modes in model no.8
remains unchanged in model no.9. The system matrices obtained by modal truncation are
compared to the system matrices obtained by balanced truncation with the 14 balanced
states used above. The modes included in the reduced-order models are ordered according
to their mode shape to make the models suited for interpolation.

The reduced-order matrices A, are on block diagonal form and consists of matrices A, ;
of each of the modes in the reduced-order models given in Equations (3.4b) and (3.17a).
The components of A, ; are the real and imaginary parts of the eigenvalues of mode 7 and
are shown previously in Figure 3.7 for the models obtained by modal truncation and in
Figure 3.16 for models obtained by balanced truncation.

The real and imaginary parts of the eigenvalues of the rigid body rotor mode, the 15t
lateral and longitudinal tower modes and the 15 drivetrain mode predicted by both modal
and balanced truncation all vary smoothly with wind speed. The components for the 15¢
collective flap mode included by modal truncation, Figure 3.7, show some discontinuities
at 11 m/s, where the blades operates close to stall. As described previously, the 15 col-
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lective flap mode shifts from a 2°¢ order mode into two 1%¢ order modes at 16 m/s and
the components of A, ; for this mode can be interpolated also close to 16 m/s. The real
and imaginary parts of the 'collective flap mode’ predicted by balanced truncation, Figure
3.16, can also easily be interpolated, despite the large shift in the poles of this mode at
around rated wind speed.

Figure 3.19 shows the components of the reduced-order output matrices C,; obtained
by both modal truncation and balanced truncation, extracting the generator speed output
from the generalized states of the rigid body rotor mode, the 1% lateral and longitudinal
tower modes and the 15 drivetrain mode for the NREL 5 MW wind turbine in normal
operation at wind speeds from 5 m/s to 25 m/s. The figure also shows the components of
the output matrix corresponding to the 1% collective flap mode in the model obtained by
modal truncation and the ’collective flap mode’ and the aerodynamically dominated mode
predicted by balanced truncation. For comparison, the output matrices for a fully flexible
turbine are compared to the output matrix corresponding to the 15¢ longitudinal tower
mode and the rigid body rotor mode for a turbine with rigid lateral tower, drivetrain and
rotor including quasi-steady aerodynamics.

The black points () and black circles in Figure 3.19 show the components of the output
matrix corresponding to the generalized state of the rigid body rotor mode, denoted C ;
and obtained by modal truncation and balanced truncation, respectively. The components
related to the rigid body rotor mode obtained by balanced truncation are very similar to
those obtained by modal truncation. The black dashed line in Figure 3.19 shows C) ;
predicted by a model with rigid rotor, drivetrain and rigid lateral tower. Both for a fully
flexible turbine and a turbine with e.g. rigid rotor, the components C,; increase with
wind speed above rated, because the aerodynamic damping of the rigid body rotor motion
increase with wind speed, due to the increased blade pitch angles and higher damping gives
lower time constants and thereby lower eigenvalues in Equation (3.20). The components
in C,; are higher for a fully flexible turbine than for a turbine with rigid rotor. This
observation can be explained by decreasing inertia in the rigid body rotor mode due to
coupling with collective flap blade vibration, causing the time constant of the rigid body
rotor mode to decrease.

The black asterisks (x) in Figure 3.19 show the components corresponding to the aero-
dynamically dominated mode found by balanced truncation. The components related to
the aerodynamically dominated mode vary smoothly with wind speed, except at around
22 m/s, where there is an abrupt change, because here the aerodynamically dominated
modes couples with the rigid body rotor mode to become a 24 order mode.

The red points and red asterisks in Figure 3.19 show the components of the output matrix
corresponding to the 15¢ collective flap mode, denoted C;. » and C. 3. Up to 16 m/s, the 15
collective flap mode is a 2™4 order mode, as previously explained, and the two components
Cr2 and C, 3 are equal to the first and second components of C,; in Equation (3.19),
respectively. Both C, 2 and C, 3 increase up to 16 m/s, because the acrodynamic damping
of the flap mode increase. The component C, 5 is continuous across 16 m/s, where the flap
mode change into two 15° order modes, because the specific normalization of the eigenvec-
tors ensures this; i.e. Cpo can be written as 2w, = —2Re(\), which is identical to the
output component for the 15* order mode: —2\ when the eigenvalue becomes purely real
at 16 m/s.

The red circles in Figure 3.19 show the components of the output matrix related to
the ’collective flap’ mode predicted by balanced truncation that vary smoothly with wind
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Figure 3.19: Components of the reduced-order output matrix C, for the generator speed
output for the NREL 5 MW wind turbine in normal operation at various wind speeds for a
set of reduced-order models including 14 balanced states on Jordan form (O). Comparison
with output matrix for reduced-order models obtained by modal truncation with quasi-

steady aerodynamics (e) and with components for a turbine with rigid rotor, drivetrain
and rigid lateral tower and quasi-steady aerodynamics (dashed lines).
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speed. Above rated speed at around 10 m/s, the components found by balanced trunca-
tion varies from C) 2 and C; 3 obtained by modal truncation, because here the pole shifts
to resemble that of the 2" collective flap mode.

The green points and green circles in Figure 3.19 show the components of the output
matrix corresponding to the states of the 15 lateral tower mode obtained by modal and
balanced truncation, respectively. The components are denoted C,4 and C; 5 and cor-
respond to the first and second component of C,; in (3.19). The components predicted
by the modal truncation and balanced truncation are nearly the same. The component
C.4 increase slightly with wind speed. This observation can be explained by the increas-
ing aeroelastic damping of the 15 lateral tower mode caused by coupling to longitudinal
tower motion, as explained previously in Chapter 2. The other component C; 5 is almost
constant with wind speed.

The blue points and blue circles in Figure 3.19 show the two components of the generator
speed output matrix related to the state of the 1% longitudinal tower mode predicted by
modal and balanced truncation, respectively. The two components are denoted C. ¢ and
Cy,7 and equals the first and second components of C,; in (3.19), respectively. The figure
shows a comparison between C,. ¢ and C,. 7 for a fully flexible turbine and a turbine with
rigid lateral tower, drivetrain and rotor. The components predicted by modal and bal-
anced truncation show a similar trend and vary slightly both below and above rated wind
speed. The model with a rigid rotor predicts components with magnitudes below that for
a fully flexible turbine. This observation can be explained by the fact that the aeroelastic
damping of the 15 longitudinal tower mode is higher for a rigid rotor than for a flexible
one because of collective flap vibration out of phase with longitudinal tower top vibration.

The cyan points and circles in Figure 3.19 show the components of C,.; for the 15 tor-
sional drivetrain mode predicted by modal and balanced truncation, respectively. These
components are denoted C,. g and C}. g and correspond to the first and second components
of C,; in (3.19), respectively. The components C, g and C, g increase gradually with wind
speed in both sets of models, which can be explained by the larger aerodynamic damping
of the rotor rotation motion in this mode, due to higher pitch angles.

Figure 3.20 shows the magnitude of the components of the reduced-order input matrix
B, obtained by modal truncation from the three inputs: generator torque, collective
pitch angle and mean wind speed to the generalized states of the rigid body rotor mode,
denoted B,;. The figure shows a comparison with the input matrix predicted with a
model with rigid lateral tower, rigid rotor and drivetrain and quasi-steady aerodynamics,
which are shown with black points. The black points and circles deviates highly at around
rated wind speed and above 20 m/s. Recall, that the interpretation of B, is given by
Equation (3.22) as the forced amplitude of the generator speed at 0 Hz caused by each of
the three inputs. The large deviations at around rated wind speed in Figure 3.20 shows
that an assumption of rigid rotor gives two large variations in the generator speed at 0 Hz
compared to a fully flexible turbine. This observation can be explained by the large static
flap deflection at around rated wind speed, that cause the blades to deflect torsionally
when they are e.g. pitched and the aerodynamic forces on the blades thereby are changed.
This observation indicates that the gradients of aerodynamic rotor torque to changes in
pitch and mean wind speed changes predicted for a rigid rotor are too large.

For collective pitch and mean wind speed inputs above 20 m/s, the input B, ; increase
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relative to that of a turbine with rigid rotor because the rigid body rotor mode couples
with the 15¢ collective flap mode at high wind speeds, causing the aerodynamic damping
of this mode to decrease and thereby the amplitude of the generator speed output at 0 Hz
to increase, as shown previously in Figures 3.9 and 3.10.

Figure 3.21 shows the magnitude of the components of the reduced-order input matrix
corresponding to the states of the rigid body rotor mode and the 1% collective flap mode
for the model obtained by modal truncation, and corresponding to the states of the rigid
body rotor mode, the aerodynamically dominated mode and the ’collective flap mode’ for
the model obtained by balanced truncation.

The components of the input matrix corresponding to the states of the rigid body
rotor mode obtained by balanced truncation, see Figures 3.21a-c, are nearly identical for
the two sets of models except above 20 m/s, where the rigid body rotor mode becomes
a 2°d order mode. The components of B, ; for both the rigid body rotor mode and
the aerodynamically dominated mode (black asterisks) varies smoothly with wind speed,
except at around rated wind speed, and at 20 m/s where the two 15¢ order poles of these
two modes couples to become a 2°4 order pole.

The red points and circles in Figures 3.21d-f show the components of B, ; related to
the 1%¢ collective flap mode included by modal truncation. The 15 collective flap mode is a
274 order mode below 16 m/s and above 16 m/s the 1% collective flap mode consist of two
1% order modes, when quasi-steady aerodynamics is assumed as explained previously. The
trend is that these components are low at low wind speeds for all three inputs, showing
that the influence of the 1% collective flap mode on the generator speed response is low.
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Figure 3.20: Magnitudes of the components of the reduced-order input matrix B, corre-
sponding to the state of the rigid body rotor mode for a set of reduced-order aeroelastic
models of the NREL 5 MW wind turbine in normal operation at various wind speeds
obtained by modal truncation with quasi-steady aerodynamics (). Comparison with
predictions for a model with rigid rotor, drivetrain and rigid lateral tower and quasi-steady

aerodynamics (e)
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Figure 3.21: Magnitudes of the components of the reduced-order input matrix B, for
a set of reduced-order aeroelastic models of the NREL 5 MW wind turbine in normal
operation at various wind speeds. Figures a-c shows the components corresponding to
the states of the rigid body rotor mode predicted by modal truncation and balanced
truncation including 14 balanced states, and shows the components corresponding to the
state of an aerodynamically dominated mode predicted by balanced truncation. Figures
d-f shows the components related to the states of the 15¢ collective flap mode obtained by
modal truncation with quasi-steady aerodynamics and Figures g-i shows the components

corresponding to the states of a ’collective flap’ mode predicted by balanced truncation.
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Some discontinuity with wind speed is seen at 16 m/s for all three inputs, because here
the flap mode turns from being one 2°4 order mode to two 15 order modes. Above 16 m/s
the amount of excitation of the 1% collective flap mode increase and becomes equally
important in the generator speed response as the rigid body rotor mode, because of the
coupling between rigid body rotor mode and collective flap motion at high pitch angles.
Above 16 m/s the sign of B,.; (not shown) for the rigid body rotor mode and the 15
collective flap mode are opposite, showing that the effect of the 15¢ collective flap mode
counteracts the effect of the rigid body rotor mode on the generator speed signal at 0 Hz,
as previously explained.

The red circles and red asterisks in Figures 3.21g-i shows the components of B, related
to the ’collective flap’ mode predicted by balanced truncation. It is observed that these
components vary smoothly with wind speed except for some abrupt changes at around
rated wind speed, where the poles of this model change.

Figure 3.22 shows the two components of the input matrices B, ; corresponding to the
states of the 15! lateral tower mode (row a), the 1°* longitudinal tower mode (row b) and
the 1% drivetrain mode (row c) for the NREL 5 MW wind turbine in normal operation
at wind speeds from 5 m/s to 25 m/s for the reduced-order models obtained by modal
truncation (e) and balanced truncation (). The figure shows a comparison with the
components of the input matrix corresponding to the 15 longitudinal tower mode for a
turbine with rigid lateral tower, rigid drivetrain and rotor and quasi-steady aerodynamics
(dashed lines in row b).

The two components corresponding to the 15¢ lateral tower mode are shown in row a
in Figure 3.22. Below 11 m/s both these components are almost constant for generator
torque input, because the lateral tower mode here is excited mainly by the generator
torque reaction forces on the tower. Above 11 m/s, both components increase slighly with
wind speed, which can be explained by the influence of longitudinal tower motion in this
mode, that causes the 15¢ lateral tower mode also to be excited by variations in thrust
forces. For the two other inputs: changes in collective pitch angles and mean wind speed,
row a in Figure 3.22, the two components increase with wind speed, showing that the
lateral tower mode has increasing influence on the generator speed response in response to
excitation with these inputs. This observation can be explained by the fact that there are
higher variations in the thrust forces in response to collective pitching and changes in mean
wind speed as the wind speed increases. This observation can also be explained by the
longitudinal tower motion in the 15¢ lateral tower modes at high wind speed, causing higher
excitation of the lateral tower mode. The components of the input matrix corresponding
to the 15¢ lateral tower mode of the model obtained by modal and balanced truncation are
similar.

Figure 3.22 row b shows the variation of the two components in B, ; corresponding
to the states of the 1% longitudinal tower mode. For generator torque inputs the two
components are close to zero below 11 m/s, whereas above 11 m/s the components increase
with wind speed. The generator torque input excites the longitudinal tower mode mainly
through changes in thrust forces caused by changes in the inflow at the blades when the
rotor speed changes. The increasing pitch angles from 11 m/s cause these changes in thrust
to increase with wind speed. For collective pitch and mean wind speed inputs, the two
components increase with wind speed, because of the higher changes in thrust associated
with collective pitching and changes in mean wind speed. The dashed black and red
curves in row b in Figure 3.22 shows the components for a turbine with rigid lateral tower,
rigid drivetrain and rotor and quasi-steady aerodynamics. For this simplified model the
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Figure 3.22: Components of the reduced-order input matrix B,. for a set of reduced-order
aeroelastic models of the NREL 5 MW wind turbine in normal operation at various wind
speeds, corresponding to the states of the 15¢ lateral tower mode (row a), the 1% longi-
tudinal tower mode (row b) and the 1% drivetrain torsion mode (row c¢). Comparison
between components of models obtained by balanced truncation with unsteady aerody-
namics (o) with models obtained by modal truncation with quasi-steady aerodynamics (e)
and with components for a turbine with rigid rotor, drivetrain and rigid lateral tower and

quasi-steady aerodynamics (dashed lines).
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inputs are smaller than for a fully flexible turbine, especially at high wind speeds. This
observation can be explained by the fact that the 15 longitudinal tower mode couples with
collective flap motion such that the aerodynamic damping of the longitudinal tower mode
is lower than for a rigid rotor. This lower aerodynamic damping of the 1% longitudinal
tower mode cause the tower vibrations to be larger and thereby cause larger changes in
the rotor speed, through the changes in aerodynamic rotor torque associated with the
longitudinal tower vibration.

Figure 3.22 row c shows the two components of B, ; corresponding to the states of
the 1% torsional drivetrain mode. For generator torque inputs, both of the components
are see to vary smoothly with wind speed. For collective pitch inputs, the magnitude
increase similar to the static flap deflection of the blades, because the 15¢ drivetrain mode
is excited by pitching inertia forces as described in Chapter 2. For wind speed inputs,
both components increase with wind speed, which can be explained by the larger pitch
angles causing larger variations in the aerodynamic rotor torque in response to changes
in the mean wind speed. The components found by balanced truncation are similar to
those obtained by modal truncation, except for wind speed inputs where the components
found by balanced truncation are lower than those obtained by modal truncation, which
can be explained by the lack of unsteady aerodynamics in the latter model, causing too
high changes in the aerodynamic rotor torque, as explained previously in Figure 2.7.

3.4 Chapter summary

In this chapter, linear aeroelastic low-order models of wind turbines are designed by order
reduction of a high-order model of a wind turbine of MW size. The high-order model is a
linearization of a structurally nonlinear finite beam element model of tower, drivetrain and
blades coupled with an unsteady Blade Element Momentum model of aerodynamic forces
including effects of shed vorticity and dynamic stall. Linearization is performed around
a deflected state of the blades determined by the static aerodynamic forces due to an
assumed uniform inflow to the rotor. Order reduction is done by modal truncation using
aeroelastic mode shapes predicted by the high-order model and by balanced truncation
using balanced states.

The main findings are that a relatively large number of aerodynamically dominated
modes are required in the modal truncation technique to provide good approximation of
the low-frequency response of the wind turbine. A large number of these aerodynamically
dominated modes are required due to the assumption in the BEM model of no spanwise
aerodynamic coupling of unsteady aerodynamic forces on the blades. Each of these aero-
dynamically dominated modes thereby mainly describes changes in aerodynamic forces at
local sections along the blade span. The aerodynamically dominated modes, that describes
the unsteady aerodynamic forces at sections at the blade mid-span, are found to couple
to the rigid body rotor rotation mode and thereby influence the generator speed response.
The aerodynamically dominated modes describing the variations in aerodynamic forces at
sections closer to the blade tip contributes mainly to changes in the thrust due to lower
inflow angles, and are therefore found to couple to the 15! longitudinal tower mode through
the collective flap motion of this mode.

Reduced-order models are subsequently designed by modal truncation under assump-
tion of quasi-steady aerodynamics, which provides accurate predictions of the investigated
frequency response functions from generator torque, collective pitch angle and mean wind
speed changes to the generator speed output, except at around the 1% torsional drivetrain
mode under collective pitching, as described in Chapter 2. It is shown how the frequency
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response functions predicted with the high-order model with quasi-steady aerodynam-
ics are gradually approximated by increasing the number of modes in the reduced-order
model. Good approximation is achieved up to the frequency of the 2°¢ drivetrain torsional
mode from a 13" order state space model including the rigid body rotor mode, the 15
longitudinal and lateral tower modes, the 15* and 2" collective flap modes and the 15
and 2" drivetrain torsion modes.

Order reduction of the high-order aeroelastic model of the wind turbine is subsequently
done by balanced truncation. A total of 14 balanced states are required to capture each
of the frequency response functions from generator torque, collective pitch angle demands
and mean wind speed to generator speed. The modal and balanced truncation technique
are found to be equally effective in capturing the effect of the structurally dominated
modes. A comparison is made of the poles and some of the corresponding mode shapes
predicted by the full-order and the balanced reduced-order models and the main finding
is, that although the poles predicted by the balanced reduced-order models are accurate,
the mode shapes of e.g. the collective flap mode does not resemble those of the full-order
models. It is found that models obtained by balanced truncation can accurately capture
the effect of the large number of aerodynamically dominated modes on the generator speed
response by a single time constant and the balanced reduction technique is therefore suited
to reduce the number of aerodynamic states in the models.

A set of reduced-order models are designed by both modal truncation and balanced trun-
cation for a modern wind turbine in normal operation at wind speeds in the interval from
5 m/s to 25 m/s. The reduced-order models are put on the eigenvalue decomposed form
using a specific normalization of the eigenvectors. In the eigenvalue decomposed form,
the components of the system matrices each relate to the dynamics of a specific pole of
the reduced-order model, which facilitates that the system matrices can be interpolated
or parameterized with wind speed suited for design of gain-scheduling controllers. The
reduced-order system matrices obtained by modal and balanced truncation realized on
the eigenvalue decomposed form are shown to be suited for interpolation with a schedul-
ing variable. However, some abrupt changes in the system matrices occurs at operation
points where two 15 order modes collapse into a single 2°4 order mode and vice versa.
The components related to the structurally dominated modes predicted by these models
are similar, except for the collective flap modes, showing that the two reduction techniques
agrees on how to include the influence of these modes.
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Chapter 4

Order reduction of aeroelastic models using
structural and aerodynamic basis functions

The purpose of this chapter is to describe and test another method to reduce the order
of aeroelastic models. The order reduction method use projection with structural and
aerodynamic basis functions to separately reduce the number of structural degrees of
freedom and aerodynamic states.

As an example, the order reduction method is tested on a high-order linear aeroelastic
model of a wind turbine blade. The model is similar to the model described in Chapter
2 and used throughout the thesis, however only the states of one blade is used here,
including a degree of freedom describing blade pitching around a pitch bearing. The high-
order model is a geometrically nonlinear finite beam element model of a modern wind
turbine blade, linearized around a deflected state of the blade and coupled with a model
of unsteady aerodynamics describing effects of shed vorticity and dynamic stall. Reduced-
order aeroelastic models are designed for the wind turbine blade including a simplified
model of a pitch actuator, which is assumed to provide almost no lag on the actual pitch
to a demanded pitch angle input. The purely structural blade modes predicted by the high-
order model are used to reduce the number of structural degrees of freedom. Reduction
of the number of aerodynamic states is done using aerodynamic basis functions that are
slaves of these structural mode shapes. Prior to reduction, the aerodynamic states in the
model are transformed such that they describe the lag on the aerodynamic forces caused
by the shed vorticity and dynamic stall and such that the quasi-steady aerodynamic forces
are a function of only the structural degrees of freedom.

The main findings are that for accurate prediction of the aeroelastic damping of the 15¢
flap mode above rated, it is important to include the 1% structural flap mode and the 15¢
structural torsional blade mode due to an aeroelastic coupling between flap and torsion.
It is found, that the aeroelastic frequency response from mean wind speed changes to
blade root flap bending moment is strongly influenced by both the 1t and 2" flap modes
and accurate approximation close to 0 Hz is obtained by residualization of aeroelastic
modes with frequency higher than the 2" aeroelastic flap mode. It is found that the four
aerodynamic slave modes of the 1°¢ and 2" structural flap modes can correctly capture
the effect of unsteady aerodynamic forces caused by shed vorticity and dynamic stall on
the aeroelastic frequencies and damping of the low-frequency blade modes and on the
frequency response from mean wind speed to blade root flap bending moment.

Section 4.1 contains a description of the proposed order reduction scheme in a general
form. In Section 4.2 the order reduction technique is used to reduce the order of the
aeroelastic wind turbine blade model, where Section 4.2.1 contains a short description of
the high-order blade model and Section 4.2.2 describes the low-frequency aeroelastic blade
modes. In Section 4.2.3 the specific reduced-order system of equations are derived which
are subsequently used in Sections 4.2.4 and 4.2.5 to analyze the necessary complexity of
the reduced-order models. A summary of the chapter is given in Section 4.3.
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4.1 Order reduction method

The governing equations of many aeroelastic systems are described by a high-order set of
ordinary differential equations in the general nonlinear form:

M(taxsap)is = fs(taxsv).csaxavl)?u) (413,)

).(a = fa(t,Xa,XS,).(s,is,p,u) (41b)

where Equation (4.1a) describes structural dynamics under influence of aerodynamic forces
and Equation (4.1b) describes the lag of unsteady aerodynamic forces. The variable x,
denotes the structural degrees of freedom, x,, is the aerodynamic state-vector, u is a vector
of inputs, p is an array of parameters and M is the mass matrix. The function fg represents
the resulting forces on the structure from e.g. elastic stiffness forces, structural viscous
damping, aerodynamic forces and external forces such as gravity forces and actuator forces.
The function f, in Equation (4.1b) represents structural and external excitation of the
aerodynamic state.

The set of ordinary differential equations (4.1a) describing the structural degrees of
freedom can be obtained by converting a set of partial differential equations using spatial
discretization by a finite element or finite difference discretization scheme [59, 60]. Most
aerodynamic models can be described as a set of first order ordinary differential equa-
tions [21]. An example could be the unsteady panel code [11], where the aerodynamic
states x, represents discrete vortex strengths. Current engineering type models used to
describe the effect of unsteady aerodynamics of wind turbines, such as the ONERA model
of dynamic stall [16], Oye’s dynamic stall model [15], models of shed vorticity and dy-
namic stall proposed by Beddoes & Leishman [10] and dynamic inflow models [7] are all
formulated as a set of ordinary differential equations.

In the present work, it is proposed to reduce separately the structural degrees of free-
dom and the number of aerodynamic state-variable by using a low number of structural
and aerodynamic basis functions, respectively, in the following projections:

xs ~ Pyqs X:; ~ ®,q, (4'2)

where ®, = ®,(¢, p) is an Ny x NI matrix consisting of N structural basis functions in the
columns, where N, is the number of degrees of freedom. The matrix ®, = ®,(¢,p) is an
N, x NJ matrix with N aerodynamic basis functions in columns where N, is the number
of aerodynamic states in the full-order model. The variables q, and qs in Equation (4.2)
are the new generalized aerodynamic and structural states.

Assuming that a set of structural and aerodynamic basis functions can be found, the
reduced-order system of equations are found by inserting the projections from Equation
(4.2) into the system of equations (4.1) and pre-multiply with ®1 and ®7 in Equation
(4.1a) and (4.1b), respectively. Since the matrices ®, and ®, are not necessarily composed
of orthogonal vectors, the reduction scheme is a so-called Petrov-Galerkin projection [38].
The reduced-order system of equations can then be written in similar form as the full-order
system:

M,;(t,qs, P)ds = S fs(t, ®.qs, P56, Paqa, P, 11) (4.3a)
do = (BT®,) 1@, (t, Bsqs, P55, Psds, Pada, P, 1) (4.3b)

where M,,; = ®TM®P, is the reduced-order projected mass matrix.
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Typically, the structural mode shapes of the low-frequency dynamic vibration modes are
used to approximate the structural degrees of freedom. Depending on the spatial distri-
bution of the loading on the structure, the low-frequency modes may not fully be able to
approximate the low-frequency response of some external load. Better approximation of
the low-frequency response, without increasing the order of the model, can be achieved
by static or dynamic residualization. In static residualization [30] the external loading
on the high-frequency modes are included under the assumption that the vibration of
these modes does not lag the external loading, such that the inertia and damping forces
of the high-frequency modes are neglected. For accurate approximation of flutter, Karpel
[37] propose to do dynamic residualization in which the effect of damping forces of high-
frequency modes is retained, without increasing the order of the model.

Residualization is performed here by using a combined set of both low- and high-
frequency mode shapes in ®, and subsequently partition the system of equations into
components corresponding to the low- and the high-frequency modes, such that the pro-
jected structural equations of motion (4.3a) can be written:

M M . ..S (I)Z .
[ MZ M:r ] { (Clls::’ }:{ q)ft }fs(t7q3,qS7QavPvu) (44)

s,

where index ¢ denotes low-frequency modes to be retained ('t for truncated) and index
r denotes high-frequency modes to be residualized. By neglecting inertia forces of high-
frequency modes (M. = 0) the bottom partition in Equation (4.4) can be written as:

0= @Zj,rfs (t, st q;r, éls,ta q:;m (':'ls,t; Qa, P, u) (45)

from which the states describing the high-frequency modes: qg ,., g5, can be written as a
function of the states of the retained, low-frequency modes;

(q:,rv fl:,r) = f(ta qs,t7 (.13,157 éis,ta qaa pa u) (46)

The states of the high-frequency modes can thereby be removed from the system of equa-
tions which in the residualized version becomes:

M Qs = q’s,tf: (t, Qs,t, Us,t5 s t, P, u) (4.7)

4.2 Example

The order reduction scheme is now used to design reduced-order aeroelastic models of a
modern wind turbine blade based on a high-order linear aeroelastic model. The following
section gives a short description of this high-order aeroelastic blade model.

4.2.1 High-order linear aeroelastic blade model

Reduced-order models are designed based on the high-order aeroelastic wind turbine model
described in Chapter 2, in which only the aerodynamic and structural states of a single
blade are used. The high-order model is a linearization of a geometrically nonlinear fi-
nite beam element model coupled with an unsteady Blade Element Momentum model of
aerodynamic forces including the effects of shed vorticity and dynamic stall. Linearization
is performed around an assumed steady state of a blade operating at various operating
points defined by a mean wind speed, rotor speed and pitch angle in which the blade is
stationary deflected by the static aerodynamic forces from assumed uniform inflow.
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The aeroelastic model is described by the following system of equations:

Xo + Agxg + Csazs + Kspzs = Bygu (4.8a)
Mi, +(Cs+G+C)z, + ( K+ K.r+ Ko +Kif)zs + Afx, = Bysu (4.8b)

where zs contains the structural degrees of freedom, where one degree of freedom describes
pitching around the pitch-bearing and in total 114 degrees of freedom describes the nodal
deflections along three axes and rotations around three axes of 19 nodes along the blade.
The aerodynamic state equation (4.8a), where X, is the aerodynamic state vector, describe
the time lag of the unsteady aerodynamic forces. Aerodynamic forces are calculated in 28
calculation points along the blade, giving in total 112 aerodynamic states. The matrix M is
the mass matrix, K the elastic stiffness matrix, K.y the centrifugal stiffness matrix, C, the
structural damping matrix, G the gyroscopic matrix, C, the aerodynamic damping matrix
and K, the aerodynamic stiffness matrix and K,y is the geometric stiffness matrix due
to the movement of the steady state aerodynamic force vector. The matrix A represents
coupling from aerodynamic states to structural states and matrices C,, and Ky, describes
coupling between structural velocities and displacements to aerodynamic states and Ay
describes the lag on the aerodynamic forces. The matrices By, and B, in Equation (4.8)
represent the small changes in aerodynamic and structural forces from changes in chosen
inputs u, e.g. changes in the mean wind speed and pitch torque from a pitch actuator
around the state, which has been linearized around.

Two versions are used of this high-order blade model. In one model, the blade is allowed
to perform frictionless, rigid body rotation around the pitch bearing and no assumptions
are made on pitch actuator dynamics to study the pure aeroelastic blade response. The
model with no actuator is used prior to order reduction in a description of the aeroelastic
frequencies and damping of the low-frequency blade modes. In the second model, a simpli-
fied pitch actuator model is included. The pitch actuator is modeled such that the actual
blade pitch angle respond as a second order filter in response to a demanded pitch input
angle. The pitch actuator model is implemented as a second order filter with unit gain
and a very high filter frequency, such that the blade responds almost immediately to a de-
manded pitch angle, whereby the dynamic effects of the pitch actuator is neglected in the
present study and the pitch actuator is denoted as quasi-static. The pitch actuator stabi-
lizes the rigid body pitching mode and allows to study the frequency response of the blade.

Prior to order reduction, a convenient transformation of the aerodynamic states x, is
applied to cast the system of equations on a form, where the quasi-steady aerodynamic
forces are a function of only the structural states, such that the aerodynamic states are
used to represent the lag due to shed vorticity and dynamic stall. The idea by using this
form of the system of equations is to use the structural basis functions in ®, to represent
the quasi-steady aeroelastic response, and then use the aerodynamic basis functions in
®, solely to describe the effect of lag on aerodynamic forces. The idea is illustrated in
Figure 4.1 that shows the typical variations in the normalized lift forces at a blade sec-
tion in response to a step in angle of attack predicted by the unsteady and quasi-steady
aerodynamic models used to characterize the effect of shed vorticity in attached flow [11].
With a quasi-steady aerodynamic model, there is by definition no lag in the aerodynamic
forces acting on the blade section in response to a change in the inflow and the aero-
dynamic forces instantly reach the level that occurs only after a while. In the unsteady
aerodynamics model the memory effect of the shed vorticity cause a lower change in lift
in fast changes of the inflow. The quasi-steady aerodynamic model predicts by definition
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the exact same aerodynamic forces as the unsteady aerodynamic model in the frequency
response at 0 Hz. The following section describes how to perform this transformation.

The aerodynamic state vector corresponding to quasi-steady aerodynamics: x,(t) = x99(t)
is defined as the aerodynamic state vector where the time derivative of x, is zero. If we
define x, = f(t,X,, zs, %s) then x2° is defined from:

£(t,x9% z,,2,) = 0 (4.9)
and is found from (4.8a) to be:

x@5 = —A;'Copts — A;'Kouzs + A7 'By,u (4.10)

a

The right-hand-side terms in (4.10) describe the changes in inflow and angle of attack
at the blades due to structural velocities, displacements and from changes in the inputs,
respectively. The aerodynamic state vector in Equation (4.8) is transformed using a coor-
dinate shift into a new aerodynamic state vector x defined from:

X, (t) = x95(t) + x3 (1) (4.11)

such that a zero aerodynamic state vector x%(¢) = 0 in the new coordinates corresponds

to quasi-steady aerodynamics. A new transformed system of equations in which x} is the

aerodynamic state vector, is obtained by inserting x, from Equations (4.11) and (4.10)
into the system of equations (4.8) and is found to be:

Xi 4+ Agx), — A7 Cus — A 'K a2, =0 (4.12a)

Mé, + Cqszs + Kgszs + Apx;, = [Bus — AfA;'Bye|u (4.12D)

where the new total aeroelastic stiffness and damping matrices are defined as

Kos =K+ K+ K, +Kgp — AfA 'K, (4.13)
Cos=C+G+C,—A;A;'Cy, (4.14)
In the derivation of the transformed aerodynamic state equation (4.12a), the time deriva-

tive of the inputs are set to zero: 1 = 0, thereby assuming instant changes in the inputs.
Instead of the original terms in the aerodynamic state equation: Cy,zs and K.z, there
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Figure 4.1: Typical variations in lift at a blade section in response to a step in angle of
attack predicted by unsteady and quasi-steady aerodynamic models of shed vorticity in
attached flow [11].
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are now two new terms —A;lcmzs and —A;leais in which the order of the time
derivative has increased.

The transformed system of equations (4.12) can be written in the first order form:

%X, = A, x, +B,u (4.15a)
y =Cnxp (4.15b)

where y are a set of chosen outputs and C,, is the corresponding output matrix, and
where:

Xn={ xt 75 25} (4.16)
(1 -A;'K,. —A;'Ch. ] ' [-As O 0

A,=|0 I 0 0 0 I (4.17)
L 0 0 M —Af —KQS —CQS
[ 0

B, = 0 (4.18)
| Bus —AfA;'By,

and where the components of the output matrix are found as:

Cni=C (4.20)
Cn2 = Cy — C1A 'K, (4.21)
Cn3 = C3 — C1A;'Cy, (4.22)

where matrices C;, Cy, C3 are components of the original output matrix related to x,,
zs and zg, respectively.

4.2.2 Low-frequency aeroelastic blade modes

A short description is now given of the aeroelastic frequencies and damping of the low-
frequency blade modes predicted by the full-order model with unsteady aerodynamics. The
ability to correctly predict the aeroelastic frequencies and damping of the low-frequency
blade modes of the full-order model is used to evaluate the reduced-order models in Sections
4.2.4 and 4.2.5. The aeroelastic frequencies and damping are found from the eigenvalues
A of the matrix A, i.e. from the algebraic eigenvalue problem: Av = Av, where v is the
eigenvector.

Figures 4.2a-c show the aeroelastic frequencies and damping of the low-frequency blade
modes for the NREL 5 MW wind turbine blade in normal operation at wind speeds from
5 m/s to 25 m/s predicted by the full-order models. The blue and black markers in Figure
4.2 show the frequency and damping of the blade modes for the blade model with and
without the quasi-static pitch actuator, respectively. The results of the model without the
quasi-static pitch actuator is shown to describe the purely aeroelastic blade response.

The aeroelastic frequencies of the 15 blade flap mode without pitch actuator is found
to decrease with wind speed up to rated and to increase with wind speed above rated
(see bottom Figure 4.2a). The low aeroelastic frequencies of the 15¢ flap mode around
rated wind speed can be explained by a structural coupling between the flap mode and
the rigid body pitching mode, because of negative aerodynamic stiffness forces trying to
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pitch the blade. The aeroelastic frequency of the 15* flap mode increase when the pitch
actuator model is included and the coupling to the rigid body pitching mode vanish. The
aeroelastic damping of the 15* flap mode is found to increase up to rated wind speed both
with and without pitch actuator, because the relative wind speeds increase [55]. Above
rated, the damping ratio of the 15* flap mode without pitch actuator is found to decrease
with wind speed, whereas the model including the quasi-static pitch actuator predicts
nearly constant damping. The decreasing damping ratio of the 15¢ flap mode above rated
can be explained by the structural coupling to the rigid body pitching mode causing the
blade to perform rigid body pitching motion instead of flapping motion.

The aeroelastic frequency of the 2°¢ blade flap mode is nearly constant with wind
speed and is not largely affected by the presence of the quasi-static pitch actuator. The
aeroelastic damping of this mode increases up to rated wind speed, because of increasing
relative inflow velocities.

The aeroelastic frequency of the 15 edge blade mode with no pitch actuator (see mid
Figure 4.2a) is found to increase up to rated wind speed and to decrease above rated
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Figure 4.2: Aeroelastic frequencies and damping of the low-frequency blade modes for
the NREL 5 MW wind turbine blade in normal operation at wind speeds from 5 m/s to
25 m/s predicted by high-order models with unsteady aerodynamics with and without
"quasi-static’ pitch actuator model.
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wind speed. This variation in the frequency of the 15* edge mode can be explained from
a structural coupling with free-free torsional blade mode, that cause the blade to perform
torsional deflection when it deflects in the edgewise direction at wind speeds where the
static flap deflection is high. The model including pitch actuator predicts a nearly constant
frequency of the edge wise blade mode, because of the lack of coupling to torsion in this
mode. The 1% edgewise mode is very lowly damped by aerodynamics, because the edgewise
blade motion cause only little change in the angle of attack.

4.2.3 Reduced-order system matrices

In this section, the reduced-order system of equations for the aeroelastic blade model is
derived. The reduced-order system of equations are found by inserting the projections
from Equation (4.2) into the system of equations (4.12) and pre-multiply with ®I" and
&7 in Equation (4.12a) and (4.12b), respectively. The reduced-order equations can then
be written in similar form as the full-order system:

4o+ (®1®,) ' ®IA P, q, — (PL®,) ' PIA;1Cl P, Gs— (4.23a)
Ago Ciaa
(®7'®,) '®IA 'K, @6, =0

Ksa,@
®TM®, G, + L Cos®, s+ (4.23b)

Nk ingainl/ N il

Mo Co
®IKos®,qs + TA;®,q, = ¥ [B,s — AfA;'B,,Ju
Ks .

where the matrices Mg, Co and K4 are the reduced-order mass, aeroelastic damping and
aeroelastic stiffness matrices and where Ay ¢ is the new coupling from the aerodynamic
states to the structural states, A4 ¢ is the reduced-order aerodynamic lag matrix and
Csa, and Ky, 0 are the reduced-order coupling matrices from structural deflections and
rotations to the aerodynamic states.

In the present work, the structural blade mode shapes are used to reduce the number of
structural degrees of freedom. To achieve better approximation at low frequencies, a static
residualization step is performed in which the low-frequency effect of high-frequency blade
modes are included without increasing the order of the model. In the static residualization
step, the effect of high-frequency blade modes are included by neglecting the inertia forces
and damping forces of the high-frequency modes. By expansion with the purely structural
mode shapes of both low- and high-frequency modes, the projected system of equations
(4.23b) can be partitioned as:

M<I> tt M<I> tr (.-:ls t C‘I’ tt C<I> tr q.s t
, ) s, + ) : ol + 4.24
|: M<I>,'rt M‘Ihr'r Qs,r C<I>7rt C<I>,'rr Qs,r ( )
K<I>,tt K<I>,tr Qs,t Af,<I>,t . ‘I’g . -1
|: K<I>,rt K<I>,rr :| { Us,r + Af,<I>,r Qo = é;lj [Bus AfAd Bua]u
where index t denotes the index of modes that are retained in the model and r denotes the

index of high-frequency modes that are residualized. By neglecting inertia and damping
forces of the high-frequency modes (Mg = Cs » = 0) and the cross-coupling inertia
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and damping terms from high-frequency modes on the low-frequency modes (Mg =
Cs.+r = 0), the generalized states describing the high-frequency modes can be written as
a function of g, s, Qs,¢, U and the aerodynamic states qq:

Qs,r = K;,lrr {‘I’g [Bus - AnglBua] u— Mg Qs —
C@,rt(is,t - K<I>,rtqs,t - Af,@,rQa} (425)

The reduced-order system of equations, including the static residualization, is obtained
from the top-partition of (4.24) by inserting g, from (4.25). The reduced-order system
of equations on first order form is then found as:

q=A,q+B,u (4.26a)
y=C,q+D,u (426b)

with the reduced-order system matrices:

. T
a={ da st Qs }
Ay —Kawo —Csuo —Aso 0 0
A, = 0 I 0 0 0 I
0 0 Mg —-Are —-Ko —-Co

0

B, = 0
(#F ~ KoKy}, @) [Bus — AsA; B

-1

[ Cpi1®q — Co® K A, 17

Cr - Cn2§t - CnQ(I)rK;rlKrt
Cn3‘1>t - CnQ@rKT_rlCrt

D, = C,.2®, K, @/ [Bus — AfA; ' By

and with the new reduced-order matrices:
Mo = [Moi — KooKy b, Mo,
Co = |:C<I>,tt - K@,trK;,lm,C@,rt}
Ko = Ko — KooKy}, Ko
Ao = |:Af7<I>,t — K<1>7trK<£71TTAf7<I>,r}

The static residualization step is responsible for additional terms in the reduced-order
aeroelastic mass, stiffness and damping matrices through the coupling terms from low-
frequency modes on the high-frequency modes and gives additional terms also in the
reduced-order input matrix, output matrix and in the direct transfer matrix.

4.2.4 Reduction of structural order

In the present work, the matrix ®, is represented by the low-frequency structural, un-
damped mode shapes of the blade. Reduction is done using the pure rigid body pitching
mode governed only by the pitching inertia forces. Reduction is further done using the
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structural mode shapes found by fixing the blade at the root (cantilevered) and these mode
shapes are determined from the following eigenvalue problem

—w? ;Mb,; + Kos; =0 (4.27)

where w;; is the natural frequency and ¢s; is the eigenvector corresponding to mode .
Reduced-order models of varying complexity are analyzed in this and following sections.
The content on these models is listed in Table 4.1, where the first column describes what
structural blade modes are used and the second column describes how the aerodynamic
part is reduced. This section analyze the effect of using purely structural modes to reduce
the number of structural degrees of freedom by models no.1-6, that includes up to six
structural modes. In models no.1-6 all aerodynamic states are retained in the model to
focus on reducing only the number of structural states. Reduced-order models no.7-9
listed in Table 4.1 have varying complexity of the aerodynamic model and these models
are discussed in the next sections.

Figures 4.3a-c show the aeroelastic frequencies and damping of the low-frequency struc-
turally dominated blade modes for the NREL 5 MW wind turbine blade in normal opera-
tion at wind speeds from 5 m/s to 25 m/s predicted by high-order models with unsteady
aerodynamics (black squares) and with reduced-order models no.1-5.

The model no.1 includes all aerodynamic states and the rigid body pitching mode, the
1% flap and 1% edge structural blade modes. This model predicts correctly the aeroelastic
frequency and damping of the 15t aeroelastic flap mode at low wind speeds, whereas above
rated both the frequencies and the damping ratios of the 1% flap mode are predicted

Model | Structural modes | Aerodynamic basis functions
1 rigid body pitching, 15* flap and 1* edge | all aerodynamic states
2 rigid body pitching, 15* flap, 1°* edge all aerodynamic states
and 2" flap
3 rigid body pitching, 15 flap, 1°% edge, all aerodynamic states
274 fap and 1°° torsion

4 rigid body pitching, 15 flap, 1°% edge, all aerodynamic states
and 2" flap (w.res.)

5 rigid body pitching, 15 flap, 1°% edge, all aerodynamic states
224 flap and 1% torsion (w.res.)

6 rigid body pitching, 15 flap, 1°* edge, all aerodynamic states
1°* torsion, 2°¢ flap and 3" flap (w.res.)
7 rigid body pitching, 15 flap, 1°* edge, none
and 2" flap (w.res.)
8 rigid body pitching, 15 flap, 1°% edge, slaves of 1°° flap
and 2" flap (w.res.)

9 rigid body pitching, 15 flap, 1°% edge, slaves of 1°° and 2°¢ flap modes
and 2" flap (w.res.)

Table 4.1: Description of the content of reduced-order models in terms of what structural
mode shapes and aerodynamic shape functions are included. All mode shapes used to
represent the structural degrees of freedom and used to make aerodynamic slave modes
are the purely structural mode shapes.
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Figure 4.3: Aeroelastic frequencies and damping of the low-frequency blade modes for the
NREL 5 MW wind turbine blade in normal operation at wind speeds from 5 m/s to 25 m/s
predicted by high-order models with unsteady aerodynamics (black) and by reduced-order
models no.1-5 with the content listed in Table 4.1.

too low with this model. The model no.1 predicts correctly the aeroelastic damping and
frequency of the 15* edge mode at all wind speeds.

The red markers in Figure 4.3 show the aeroelastic frequencies and damping ratios
predicted with model no.2 including also the 2™ structural flap mode. By including the
27d flap mode the aeroelastic frequency and damping of the 2°d flap mode is captured
accurately, whereas the pole of the 15* flap mode above rated is still not correct at above
rated wind speeds.

The model no.3, including also the 1%* torsional blade mode with a natural frequency
at standstill of 5.80 Hz, is seen to give a clearly better approximation of the aeroelastic
frequency and damping of the 15° flap mode above rated than previous models. This ob-
servation can be explained by the lack of blade torsion in the 1% structural flap mode,
caused by coupling with aerodynamic forces. Blade vibration in the 1% aeroelastic flap
mode couples to torsional blade vibration through the changes in the aerodynamic torque
around the elastic center at the blade sections, due to the changes in inflow from the blade
vibration. Figure 4.3 shows that the aeroelastic damping of the 1% flap mode predicted
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by the reduced-order model increases when the torsional mode is included. The blade tor-
sion in the 1% aeroelastic flap mode cause higher aerodynamic damping because torsional
blade deflection towards feathering is in phase with the downwind flap deflection velocity,
as reported previously in a stability analysis performed by Hansen [54]. In model no.4 the
effect of all aeroelastic modes with frequency above the 2°d flap mode, and thereby also
the effect of the 15 torsional blade mode, is included by static residualization. The main
effect of static residualization is a shift in the aeroelastic frequency and damping of the 15¢
flap mode relative to model no.3, which may be due to the effect of the 15¢ torsional mode
not being correctly captured by residualization. The cyan curves in Figure 4.3 show the re-
sults of model no.5 including the 1¢ torsional blade mode and the static effect of all modes
above the 1% torsional blade model, showing better approximation of the aeroelastic fre-
quency and damping of the 13¢ flap mode above rated. Thus, it is seen to be important for
correct approximation of the aeroelastic frequency and damping of the 15¢ flap mode above
rated, to include the dynamic (opposed to the static) effect of the 15¢ torsional blade mode.

The reduced-order models are now evaluated on how they approximate the aeroelastic
frequency response from mean wind speed changes to blade root bending moments in the
flap direction. Figure 4.4 shows the aeroelastic blade frequency response of the NREL
5 MW wind turbine blade in normal operation at 14 m/s and 20 m/s predicted by the
full-order model including unsteady aerodynamics (black) and predicted by reduced-order
models no.1,2,4 and 6 listed in Table 4.1. Three vertical lines in Figure 4.4 are used to
mark disturbances from e.g. sampling of turbulence at the rotational frequency (1P) and
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Figure 4.4: Aeroelastic blade frequency response from mean wind speed changes to blade
root flap bending moment for the NREL 5MW blade in normal operation at 14 m/s and
20 m/s. Comparison between predictions of full-order model with unsteady aerodynamics
(black) and reduced-order models no.1, 2, 4 and 6 of varying structural complexity.
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multiples thereof, to show at what frequencies good accuracy is required (assuming that
the blades samples turbulence similarly at all blade sections).

The aeroelastic frequency response from mean wind speed to blade root flap bending
moment predicted by the full-order model with unsteady aerodynamics, is characterized
by an amplitude at 0 Hz of around 1200 kNm/(m/s) at both 14 m/s and 20 m/s and a
phase of 180 deg at 0 Hz, because the positive direction of the flap bending moment is
defined positive towards the rotational direction, using the right-hand rule. The frequency
response predicted by model no.1 including the pure rigid body pitching mode, the 15¢
structural flap mode and the 1% structural edge mode is shown with blue curves in Figure
4.4 and is generally governed by the highly damped second order response of the 15 flap
mode, that cause the decreasing amplitude beginning at around 0.7 Hz. at both wind
speeds. At 0 Hz, the model no.1 predicts too low amplitude compared to the high-order
model.

The model 1no.2 which also includes the 2"¢ flap mode (red curves) predicts a more
accurate - but still not a correct - amplitude a low frequencies, showing that the 2" flap
mode contributes largely at low frequencies. Especially at 1P the model no.2 predicts
a frequency response amplitude that deviates largely from the full-order model. Better
approximation of the frequency response close to 0 Hz is achieved at both wind speeds
by including the static contribution from structural modes with natural frequency above
the 2"4 flap mode (model no.4 - cyan curves). The model no.4 gives a slight offset at the
response around the aeroelastic frequency of the 2°4 flap mode, which can be avoided by
further including the 15* torsional mode (magenta curves) in model no.6, that also includes
the 34 flap mode, because this mode contributes to the response at 0 Hz.

4.2.5 Reduction of aerodynamic states

It is now analyzed, what aerodynamic basis functions that should be used in the Petrov-
Galerkin projection of the aerodynamic states in Equation (4.2). In the present work,
the aerodynamic basis functions are defined to be slaves of some of the structural mode
shapes.

The aerodynamic basis functions are defined as the stationary response of the aerody-
namic state x due to a harmonic vibration of a structural mode shape z; = ¢ ;e/“=i' at
the natural frequency of mode i, where j = y/—1. From Equation (4.12a) it is seen, that
the stationary response is given by x* = ¢,e/*=i’ where ¢, is determined from:

[jws,il + Ag] ¢ = [~w2 ;A7 Coa + jws,i A 'Kaa| bsi (4.28)

These aerodynamic basis functions are complex-valued and the projection of the aerody-
namic states in Equation (4.2) is done by approximation with the real part of ¢,q, by
using

XZ ~ Re{%%} = ¢a7aqa,a - (ba,Bqa”B = [ (ba,a _(ba,B } { 3(:; } (429)
to ensure that x) remains real-valued, where indices o and S denote real and imaginary
parts, respectively. Equation (4.29) shows that two aerodynamic basis functions: the real-
part ¢4, and the imaginary part ¢, 3 are used to represent x; for each of the chosen
structural modes.

Order reduction using aerodynamic basis functions is studied from models no.7-9 listed
in Table 4.1. Figure 4.5 shows a comparison of the aeroelastic frequencies and damping of
low-frequency blade modes of the NREL 5 MW blade in normal operation at wind speeds
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from 5 m/s to 25 m/s predicted by full-order models with unsteady aerodynamics (black),
full-order models with quasi-steady aerodynamics (blue) and predicted by reduced-order
models no.7-9.

The model with quasi-steady aerodynamics (blue markers in Figure 4.5) is a model that
includes all structural degrees of freedom and no aerodynamic states, due to the chosen
realization of the system of equations in (4.12). The model with quasi-steady aerodynam-
ics is seen to predict an aeroelastic frequency of the 1% flap mode that drops to zero and a
damping ratio that increase to unity at 15 m/s, i.e. the mode becomes overdamped above
15 m/s, which can be explained by a prediction of too large aerodynamic damping com-
pared to that of unsteady aerodynamics. The higher aerodynamic damping predicted with
quasi-steady aerodynamics also explains the higher damping ratios and lower aeroelastic
frequencies of the 2°d blade flap mode predicted with quasi-steady aerodynamics.

The model no.7 (red markers) includes the four structural modes used previously in
model no.4 and no aerodynamic states and is seen to predict aeroelastic frequencies and
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Figure 4.5: Aeroelastic frequencies and damping of the low-frequency blade modes for
the NREL 5 MW wind turbine blade in normal operation at wind speeds from 5 m/s to
25 m/s predicted by high-order models with unsteady aerodynamics (black), full-order
models with quasi-steady aerodynamics (blue) and by reduced-order models no.7-9 listed
in Table 4.1.
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damping of the low-frequency modes that is very similar to that predicted with quasi-
steady aerodynamics, showing that the chosen structural modes, that can capture the
unsteady aerodynamic response can also capture the quasi-steady aerodynamic response.

In model no.8 (green markers), the two aerodynamic basis functions that are slaves of
the 15 structural flap mode are included in the model, such that the model includes a total
of ten states. The two aerodynamic basis functions that are slaves of the 15° flap mode is
seen to capture the aeroelastic frequency and damping of the 15° flap mode below rated
wind speeds, whereas above rated the model no.8 still predicts too high damping of the
15t flap mode compared to the full-order model with unsteady aerodynamics. Model no.9
(cyan markers) further includes the two aerodynamic basis functions that are slaves of the
27d structural flap mode, and the reduced-order model is now seen to predict accurately
the aeroelastic frequency and damping of both the 15 and 2°¢ flap modes.

Figure 4.6 shows the aeroelastic frequency response from mean wind speed to blade root
flap bending moment for the NREL 5 MW wind turbine blade in normal operation at
14 m/s and 20 m/s, predicted by the full-order blade model with unsteady aerodynamics
(black) and with reduced-order models no.7 and 9.

The blue curves in Figure 4.6 show the frequency response predicted by model no.7 in
which no aerodynamic states are included, such that the aerodynamic model corresponds
to quasi-steady aerodynamics. The frequency response predicted with model no.7 is very
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Figure 4.6: Aeroelastic frequency response from mean wind speed to blade root flap bend-
ing moment for the NREL 5 MW wind turbine blade in normal operation at 14 m/s
and 20 m/s predicted by the full-order blade model with unsteady aerodynamics (black)
and reduced-order models no.7 and no.9 including ten generalized structural states and
respectively zero and four generalized aerodynamic states.
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similar to the frequency response of the quasi-steady aerodynamic model containing all
structural degrees of freedom, which is not shown for the same reason. From model no.7
it is seen, that the frequency response predicted with a model assuming quasi-steady
aerodynamics has a slightly higher amplitude at frequencies around 1P than the full-order
model with unsteady aerodynamics. Also, at frequencies around 3P the quasi-steady model
predicts a clearly lower amplitude than the model including unsteady aerodynamics. The
lower amplitudes in the frequency response predicted with quasi-steady aerodynamics can
be explained by a larger aerodynamic damping at the 15¢ flap mode predicted with this
model.

The red curves in Figure 4.6 show the frequency response predicted by model no.9
where the four aerodynamic slave modes of the 15 and 29 structural flap modes are used
to approximate the effect of shed vorticity and dynamic stall. These four aerodynamic
basis functions are seen to capture nicely the effect of the unsteady aerodynamics on the
frequency response from mean wind speed to the blade root flap bending moments. The
deviations in the frequency response predicted by model no.9 around 1.5 Hz and 2.0 Hz is
caused by too low order of the structural part, see results of model no.4 in Figure 4.4.

4.3 Chapter summary

In this chapter it is analyzed how to reduce separately the number of structural and
aerodynamic states in high-order aeroelastic models. It is proposed to reduce the order
of such high-order aeroelastic models by projection of the structural vector of degrees of
freedom and the aerodynamic state vector separately onto a reduced set of structural and
aerodynamic basis functions, respectively.

As an example, the order reduction method is used to design reduced-order aeroelastic
models of the NREL 5 MW reference wind turbine blade in normal operation at various
wind speeds based on a high-order linear aeroelastic model. The high-order model is a
linearized finite beam element model coupled with an unsteady Blade Element Momentum
model of aerodynamic forces including the effects of shed vorticity and dynamic stall. In
the example, reduction of the number of structural degrees of freedom is done by Petrov-
Galerkin projection with structural blade mode shapes and the number of aerodynamic
states are reduced by projection using aerodynamic basis functions, that are defined as
slaves of these structural mode shapes.

The accuracy of the reduced-order models are evaluated by how they approximate
the aeroelastic frequency and damping ratios of the low-frequency blade modes. Prior to
reducing the order, the effect of adding a ’quasi-static’ pitch actuator is analyzed, assumed
to provide an actual pitch angle in response to a demanded pitch angle with almost no lag.
The pitch actuator stabilizes the rigid body pitching mode and affects the 15t blade flap
mode at all wind speeds, explained by lack of coupling to the rigid body pitching mode,
and affects the 1% edge blade mode mainly at around rated, explained by lack of coupling
to free-free torsional blade mode in the presence of the actuator.

Main findings are that the aeroelastic frequencies and damping of the low-frequency
blade modes can be accurately approximated by using the low-frequency purely structural
blade mode shapes. The 1% structural torsional mode is found to be important to include
for accurate prediction of the aeroelastic frequency and damping of the 15t flap mode above
rated. For accurate approximation of the aeroelastic frequency response from mean wind
speed to blade root flap bending moment at low frequencies it is found to be important
to include the static effect of high-frequency structurally dominated modes, which can be
done using static residualization.
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Accurate approximation of the effect of unsteady aerodynamic forces on the low-
frequency blade modes and on the aeroelastic blade frequency response is obtained using
four aerodynamic basis functions that are slaves of the 1% and 279 structural flap modes.
Thus, the idea of reducing the order of aerodynamic states by projection with aerody-
namic basis functions is seen to work using basis functions that are slaves of structural
mode shapes.
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Chapter 5

Conclusions and future work

The main purposes of this thesis are to analyze the necessary model complexity of aeroe-
lastic models used for design of wind turbine controllers and to design low-order models
that accurately captures the aeroelastic wind turbine response and are suited for design
of modern model-based controllers and estimators.

5.1 Conclusions

The thesis provides a detailed analysis of the open-loop aeroelastic frequency response of
a modern wind turbine, that serves as a benchmark for validation of low-order aeroelastic
wind turbine models used for control design. The analysis describes the necessary model
complexity of control design models of wind turbines by gradually increasing the complex-
ities of the structural and aerodynamic models in a high-order linear aeroelastic model.
The high-order model is a linearization of a structurally nonlinear finite beam element
model of tower, drivetrain and blades coupled with an unsteady Blade Element Momen-
tum (BEM) model of aerodynamic forces including effects of shed vorticity and dynamic
stall. Linearization is performed around a deflected state of the blades determined by the
static aerodynamic forces due to an assumed uniform inflow to the rotor.

The generator speed response is already known to be affected by the longitudinal tower
flexibility that cause a non-minimum phase zero in the open-loop frequency response from
collective pitch to generator speed. Lateral tower motion is found to be important in
correct modelling of the non-minimum phase zeros due to the nacelle roll associated with
lateral tower vibration. The frequency response from collective pitch to generator speed
is found to be affected by another non-minimum phase zero at the aeroelastic frequency
of the 1% collective flap mode. To accurately approximate this non-minimum phase zero,
it is found to be important to include the collective blade flap degrees of freedom. The
effect of neglecting the effects of shed vorticity and dynamic stall and assume quasi-steady
aerodynamics has been discussed. An assumption of quasi-steady airfoil aerodynamics
is seen to affect the frequency response from collective pitch angle demand to generator
speed not below the frequency of the 15 drivetrain mode, where the lag on aerodynamic
forces affects the predictions of a single-input single-output transfer function zero.

Linear aeroelastic models of low order are designed for a modern wind turbine by order
reduction of high-order aeroelastic models. The low-order models are designed using two
order reduction techniques: modal truncation and balanced truncation. Order reduction
by modal truncation is done using the full-turbine, aeroelastic mode shapes. It is found
that in the modal truncation technique, a relatively large number of aerodynamically dom-
inated modes are required in the reduced-order model for good approximation, due to the
assumption of independent flow tubes in the BEM model. The aeroelastic model assumes
that the unsteady aerodynamic forces at local sections along the blades does not couple
with each other spanwise through aerodynamics, but only through structural displace-
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ment, thereby increasing the required order of the model. A set of reduced-order models
designed by modal truncation under assumption of quasi-steady aerodynamics was found
to provide good approximation of the frequency response from generator torque, collec-
tive pitch and mean wind speed inputs to the generator speed output by using the rigid
body rotor rotation mode, the 15 lateral and longitudinal tower modes, the 1%¢ and 274
collective flap modes and the 15¢ and 2" drivetrain torsional modes.

Reduced-order models were subsequently designed by balanced truncation, using a set
of basis functions that most efficiently describes the signal energy in the transfer func-
tions from chosen inputs to outputs. Good approximation was obtained using 14 balanced
states. Compared to the modal truncation technique, the balanced truncation technique
was found to capture the effect of shed vorticity and dynamic stall with only few states,
however the mode shapes predicted by balanced truncation does not necessarily resemble
the aeroelastic mode shapes of the wind turbine. The reduced-order system matrices ob-
tained by modal and balanced truncation are shown to be suited for parametrization with
a parameter that defines the optimal stationary operation with wind speed, by using a
unique eigenvalue decomposed form of the system of equations. The reduced-order models
obtained by both methods are therefore suited for design of gain-scheduling wind turbine
controllers.

Another order reduction method is proposed to reduce the order of aeroelastic models,
that use projection of the vector of structural degrees of freedom and aerodynamic state
vector onto a reduced set of structural and aerodynamic basis functions, respectively. The
order reduction method is tested on the high-order linear aeroelastic model used previously
for frequency response analysis, by retaining only the degrees of freedom and aerodynamic
states of a single blade. Prior to order reduction it is proposed to transform the aerody-
namic states used in the system of equations into new states, that solely describe the lag
of unsteady aerodynamic forces, such that the quasi-steady aerodynamic forces are slaves
of the structural states. The effect of gradually increasing the structural and aerodynamic
complexities in the reduced-order models is evaluated from how the reduced-order models
approximate the aeroelastic frequencies and damping of the low-frequency blade modes
and on the aeroelastic frequency response from mean wind speed variations to the flap
blade root bending moments.

The main findings are that to describe the aeroelastic frequencies and damping of the
15% aeroelastic flap mode it is important to include the 1%t structural, torsional blade mode,
because of an aeroelastic coupling between flap and torsion, also reported in literature.
Accurate approximation of the low-frequency aeroelastic blade frequency response from
mean wind speed variations to the flap blade root bending moments is obtained when
the effect of high-frequency modes is included by static residualization. It is found, that
four aerodynamic basis functions that are slaves of the 15 and 2" structural blade flap
modes can efficiently describe the effect of more than a hundred aerodynamic states used
to describe the effects of shed vorticity and dynamic stall along the blade.

5.2 Future work

Some suggestions are now given into relevant future work within the topics treated in the
thesis.

94



Improvements of the reduced-order models

Reduced-order models are designed in the thesis based on a high-order linear aeroelastic
model in which linearization is performed around an operational state of the wind turbine
defined by e.g. the static forces from an assumed uniform wind speed over the rotor and
under assumption of frozen wake.

Previous studies has shown the importance of including dynamic inflow in the control
design models, i.e. to describe the time-lag of the induction when the aerodynamic loading
on the rotor changes. The typical engineering type models describes the effect of dynamic
inflow as a time-lag on the induced velocities using one or more time constants at each
aerodynamic calculation point. These engineering type models of dynamic inflow uses too
many states in order for the models to be suited for control design. Henriksen [9] has
proposed a simplified model of dynamic inflow that includes only a single state to describe
the mean changes in the induced velocities over the rotor.

The methodologies described in Chapter 4 may be used to design low-order models of
dynamic inflow, by projection with a set of aerodynamic basis functions. One possibility
could be to include the effect of dynamic inflow by the aerodynamic shape functions that
are slaves of the rigid body pitching motion or found as the distribution of changes in the
induction along the blade caused by a harmonic change in the mean wind speed over the
rotor.

The proposed methodology in Chapter 4 to use projection with aerodynamic basis
functions may also be used to create reduced-order models that captures the aerodynamic
loading on the rotor in response to rotor yawing. Previous studies show that the dy-
namic loading on the rotor when yawing can be accurately predicted by a vortex-lattice
model [10]. To capture the aerodynamics of yawing the rotor, one could possibly use either
the eigenmodes of the rotor wake or the aerodynamic modes that are slaves of e.g. rigid
yawing of the rotor.

Another topic for future work is to design reduced-order linear aeroelastic models
for operation around an anisotropic condition. Anisotropy may be caused e.g. by wind
shear or blades that are pitched differently. In the thesis, the Coleman transformation is
used together with an assumption of isotropy to ensure that the system matrices contains
non-periodic terms, which ensures that the models are linear time-invariant. However, the
system matrices can also be realized as linear time-invariant models when operating around
an anisotropic condition, by using a Lyapunov-Floquet transformation, as described by
Skjoldan [61]. The ability to design linear time-invariant models in the case of anisotropy
enables, that reduced-order models can be designed using the methods presented and used
in the thesis.

Controller and estimator design using reduced-order models

The thesis analyses the effect of model complexity on the open-loop aeroelastic frequency
response of a wind turbine and a set of reduced-order models has been design that accu-
rately approximates the wind turbine response of a set of control and disturbance inputs.
The thesis describes how to obtain a set of reduced-order models that can be used to
design gain-scheduling controllers.

The next step is to use the set of reduced-order models for wind turbine control and
estimator design. The set of reduced-order models may be used to design a set of controllers
at each local operation point along one or more scheduling variables,; and then subsequently
make a table look-up on the controller gains at the specific operational point encountered
under operation. Such a set of models may also be suited for the fast update of controllers
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that use online re-linearization, such as Model Predictive Controllers [9]. It should be
analyzed how the closed-loop performance of a wind turbine is improved by changing the
complexity of the controller and observer design models.
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ABSTRACT

Wind turbine controllers are commonly designed based ordaber linear models to capture the aeroelastic wind tarbin
response due to control actions and disturbances. Thig phyaeacterize the aeroelastic wind turbine dynamics that
influence the open-loop frequency response from generatgué and collective pitch control actions of a modern non-
floating wind turbine based on a high-order linear model. ielel is a linearization of a geometrically nonlinear finite
beam element model coupled with an unsteady Blade Elementdvitum model of aerodynamic forces including effects
of shed vorticity and dynamic stall. The main findings are the lowest collective flap modes have limited influence
on the response from generator torque to generator speedo darge aerodynamic damping. The transfer function from
collective pitch to generator speed is affected by two ndmimum phase zeros below the frequency of tRedrivetrain
mode. To correctly predict the non-minimum phase zeros,éssential to include lateral tower and blade flap degrees of
freedom. Copyright© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Most modern wind turbines operate with variable rotor speed are controlled by generator torque and collective pitch
control. The primary task of the wind turbine controller asaptimize the generated power below rated wind speed and
to reduce the aerodynamic loading and maintain the rated spieed above rated wind speed. Below rated wind speed,
the generator torque is usually used to control the rotoeder optimal energy extraction. Above rated collectivielpi

and generator torque are used in combination to keep cdnstan speed and generated power. Proper design of a wind
turbine controller can reduce power variations, fatigug extreme loads on components and prevent instabilitiesdoro
The controller must be designed on a model that correctlgigi®the aero-servo-elastic response of the wind turlmne t
meet the objectives of the controller. This article seelai®wver the question: What is important to include in a moolel
wind turbine control design?

Bossanyi 1] has investigated the necessary model complexity useddinr@ design of a pitch-regulated, variable-
speed non-floating wind turbine. When operating in genetatgue control, he suggests to use a model that contains at
least rigid-body rotation of the drivetrain and rotor and fhist torsional drivetrain mode by coupling of the rotorriiee
to a generator inertia by a torsional spring. For above rafetation using collective pitch control, he suggests &so
model at least the inertia of the rotor and generator, thehttuator and the longitudinal tower vibration, becabse t
pitch controller can excite the longitudinal tower viboatiand therefore must be included in the model.

Wright & Balas ] investigate how the complexity of the control design moadéluence collective pitch control of
a two-bladed turbine. They find that it is important to in@udgid-body rotor rotation, drivetrain flexibility, the §ir
collective flap modes and longitudinal tower bending modeefisure stable closed-loop behavior the controller model
must include the free-free drivetrain mode.

Copyright © 2012 John Wiley & Sons, Ltd. 1
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Linear wind turbine models for control design are providedtlite TURBU tool B]. The control design models are
found by retaining the low-frequency aeroelastic modeseftower and blade components by order reduction of a high-
order linear wind turbine model. The control design modetsljets the open- and closed-loop frequency responses from
collective pitch to rotor speed among othe3s However, the effect of modeled aerodynamics and strattlynamics on
the aeroelastic frequency response is not directly adede3$ere are examples of use of linearized models proviged b
TURBU for extreme gust contro#] and individual pitch control].

Leithead et.al.§] analyze the frequency response from collective pitch dehta generator speed and show existence
of a non-minimum phase zero at th tower modes and show how to compensate for them in closquldperation. The
non-minimum phase zero is a limitation on the bandwidth efitich to speed controller because of the large negative
change in phase occurring at the zero which is not canceletthé poles of the tower motion. The change in phase
associated with the non-minimum phase zero makes the spgpadnd opposite to that of a minimum phase zero and must
therefore be correctly predicted. The non-minimum phaseszs a problem for large turbines and especially for offsho
turbines, because of the low tower frequencies. FiscRetl@rifies under what conditions that the non-minimum phase
zero exists from a simplified model including a longitudit@ier degree of freedom and one state to describe rigid-body
rotor rotation. Changes in the aerodynamic forces are reddeith quasi-steady gradients of rotor torque and thrashfr
changes in pitch and in the relative wind speed seen by tbe rot

The purpose of this article is to characterize the aeraelashd turbine dynamics that affects the frequency respons
of a modern, three-bladed, landbased wind turbine in opep-IThe open-loop response is analyzed based on a high-
order linear model and serves as a benchmark for validafipredictions of low-order models used in control design for
wind turbines. The aeroelastic wind turbine response i$yaed using a linear aeroelastic wind turbine model regentl
developed in house called HAWCStab?2 that is similar to arerltiodel B] except for a new nonlinear kinematic
formulation. The model is a linearization of a nonlinearrotational finite beam element model coupled with an unstead
Blade Element Momentum model of aerodynamic forces inalydiffects of shed vorticity and dynamic stad].[ The
paper analyze the aeroelastic wind turbine frequency resspof generator speed under generator torque and codlectiv
pitch demand control inputs for small vibrations about dyestate for operation at various wind speeds and with vgryin
model complexity. The main findings are that the frequenspoase from generator torque to speed is affected by the
lateral tower modes close to their aeroelastic frequerthiesto nacelle roll, whereas the lowest collective flap madtes
not important to include because of their high aerodynaramping. Both longitudinal and lateral tower motion are foun
to affect predictions of the non-minimum phase zero atifheower modes in the transfer function from collective pitch
to speed, opposed to previous investigatiafistat only include the longitudinal tower motion. It is fodirthat collective
flap vibration introduces another non-minimum phase zelabthe frequency of theé® drivetrain mode if pitch actuator
dynamics is neglected.

This paper contains first a description of the high-ordexdimaeroelastic model of the NREL 5 MW wind turbine used
in the subsequent analysis. The linear aeroelastic motietiisvalidated with a nonlinear aeroelastic model by compar
the aeroelastic frequency response functions from caelkepitch angle demands and generator torque control acfamn
small amplitude inputs for normal operation at 8 m/s and 26. Mhe complexity of the linear model is then varied to
clarify what must be included to capture the aeroelastigufeacy response from generator torque to generator speed fo
operation at 8 m/s and 20 m/s and from collective pitch inpoitgenerator speed for operation at 14 m/s and 20 m/s to
exemplify operation at all wind speeds.

2. HIGH-ORDER LINEAR AEROELASTIC MODEL

This section contains a description of the linear aeradelasvdel of the NREL 5 MW onshore wind turbine defined by
Jonkman et.all0] and used for subsequent frequency response analysis. dthel s identical to the available HAWC2
model [L1] except that the static tilt is set tbdeg to ensure uniform inflow. The structural damping of theedrain is
lowered, by changing the Rayleigh parameter for stiffnespqrtional damping of torsional motion fropn0184 Nm-s/Nm
t00.0120 Nm-s/Nm.

2.1. Model description

The high-order model used for frequency response analy$igirecent linear aeroelastic model HAWCStab2 developed
in house. A more complete description of the linear aertielasodel is provided by Hansef][for an isolated blade. The
model is a linearization of a geometrically nonlinear firdeam element model coupled with an unsteady Blade Element
Momentum model of aerodynamic loads on the blades includffegts of shed vorticity and dynamic stall. So far, the
model assumes frozen wake and does not include a model ofmilyriaflow. A comparison is made using nonlinear
time-simulations to clarify the effect of dynamic inflow.

2 Wind Energ. 2012; 00:1-?? © 2012 John Wiley & Sons, Ltd.
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Linearization is performed analytically around a statigndeflected state of the blades obtained from an equilibrium
between elastic and centrifugal forces and the static gaesdic forces due to an assumed uniform inflow to the rotor
plane. Gravity forces are neglected to obtain this statipeteady operational state for any operational point gvem
mean wind speed, pitch angle and rotor speed.

The discretization used in the finite beam element modelustiated in Figurel. The number of elements used to
model the tower, drivetrain and each blade are eight, fodrl@iTimoshenko beam elements, respectively. Four elements
are used for the drivetrain to ensure correct modeling oflignand torsion of the drivetrain. Each element has two sode
and six degrees of freedom (DOFs) per node to describeantatid translation in all three axis. The generator and pitch
bearings are modeled as frictionless bearings. Pitch @etiare modeled by second order response of actual pitch to
demanded input. The aeroelastic turbine dynamics is iigagsd without effect of actuators, and the frequency of the
actuator model is therefore set so high that the demandel pitgle is reached almost instantly for the frequency range
analyzed. Aerodynamic forces on the blades are modeled ihg 89 aerodynamic calculation points distributed such
that they are closely spaced at the blade root and tip. Thehoddinsteady aerodynamics includes at each aerodynamic
calculation point, two states to approximate the frequarsponse of the Theodorsen theory and two states are used to
describe trailing edge separation and dynamic stall agitescin Hansen et.al1p].

All degrees of freedom describing blade and hub motion ahdesbdynamic states are transformed into multiblade
coordinates by the Coleman transformation to remove degeaydof the rotor azimuth angle in the system matrices. The
state vector,, that describes the structural and aerodynamical statdddek in blade-fixed coordinates, is transformed
into multiblade coordinates by the Coleman transformation

Z, = a, + a1 cos <Qt+ 2%(k:—l)) + by sin <Qt+ 2%(k—l))7 k=1,2,3 1)

whereay, a; andb; are the collective and the two cyclic componentpfespectively. When the blades are identical
and identically mounted (isotropic rotor) and the wind spiseuniform over the rotor and perpendicular to the rotanth
the Coleman transformation removes dependency of the &ziamgle in the system matrices of the linearized aeroelasti
model [L3].

2.2. Equations of motion

The linear high-order aeroelastic model is described bgylstem of equations

Mz, + (Cs + G + Ca)zs + (K + Ka + Kif)zs + Apxo = F (2a)
).(a, -+ Aan + Csais + Ksazs = Fa (2b)

where Equation4a) governs structural vibration and Equatiabb) describes the aerodynamic states used to model
unsteady aerodynamics on the blades. The mathdeX andC, are the mass, stiffness and structural damping matrix,
respectively. The stiffness matrix models both elastiffr&tss and centrifugal blade stiffness. The mat@xmodels
gyroscopic forces on the blades aftl, and K, are the aerodynamic damping and stiffness matrices, riapgc
The aerodynamic states couples to the structural statesghrthe termA rx, and the structural dynamics excites the
aerodynamic states through both a velocity dependent €@, and a translation/rotation dependent tdfn, z,. The
matrix A4 describes the lag on the aerodynamic loads. The t&mandF, represents structural and aerodynamical
forces due to actuators and changes in the wind speed.

An eigenvalue problem can be set up directly on the first ofolen of Equations Z) but to improve its conditioning
the structural vector of DOFs is transformed using a redse¢df structural undamped eigenvectors and leaving kearin
DOF untransformed. Transformation is done using half thalwer of elastic modes for each substructure of the turbine
model corresponding to the modes with lowest frequency.fiibdes are determined for each substructure by assuming
that the given substructure is fixed in one end and that adrathbstructures are rigid. The transformationsis= ®.qs:,
where ®,,. is the projection matrix with eigenvectors in columns apg is the new reduced vector of generalized
coordinates. The applied transformation cause no visibier ®n the frequency responses analyzed in later sections.
After transformation of the vector of structural DOF, thetgyn in Equations?) can be written as

M(psr(‘jsr + (Cs + G + Ca)q)srqsr + (K + Ka + st)q)srqsr + Afxa = Fs (33)
).(a + Adxa + Csaq)sr(iST + Ksa(psrqsr =F, (3b)

The system in Equation8)is put on first order form:

%X = Ax+ Bu (4a)
y=Cx (4b)
Wind Energ. 2012; 00:1-?? © 2012 John Wiley & Sons, Ltd. 3
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Figure 1. Snap shots from HAWCStab2 animation of NREL wind turbine listing the number of elements and showing the definitions
of positive directions of inputs and outputs.

where in the present analysis:

Xa
x=Saw oy u={ 52 = ©
qu
_Ad _Ksaésr _Csaésr
A= 0 0 I (6)
-M,'®TA; -M '@ (K+ K, +Ki)®,, —M '®L(C+ G+ Co)®s,
0
B= 0 ; C=[0 0 0.1.0 | @
M, ' &I By,

whereM,,; = ®7. M®,, is the projected mass matrix ail, is defined from

F. :Bus{ *%s } ®)

Focus here is on the response of generator torque and e@ledch demand inputs which means that there are no forces
on the aerodynamic equation such that = 0. Forces due to actuatols; are linearized with respect to the inputs, by

4 Wind Energ. 2012; 00:1-?? © 2012 John Wiley & Sons, Ltd.
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retaining the linear term in the Taylor expansions of vasia in the inputs around static generator torque and static
pitch torque at each operation point. The output mattigxtracts the generator speed variatiofs . Figurel shows the
definitions of positive inputs and outputs. There is no gearbodel, i.e., the low speed shaft (LSS) speed of the gesrerat
is used in the analysis.

In Section4, the linear model is used to analyze the frequency respamstidns between each input and each output.
To investigate the effects of model complexity, differeatsions of the linear model is used: Substructures may be mad
rigid by removing the DOFs in the projection matx;,.. In cases referred to gmirely structural the mean aerodynamic
forces are included to find the static blade deflection, betvériation of aerodynamic forces are removed in the linear
system of equations. In cases referred touasst.aerodyn, the model includes unsteady airfoil aerodynamics, wagre
quasi-steady airfoil aerodynamics is referred togsderodyn. The assumption of quasi-steady airfoil aerodynamics is
achieved by setting, = 0 in Equation 8b), solving forx, and inserting the solution ir8§).

If all substructures are made rigid, only the generatorihgas retained, and quasi-steady aerodynamics is assumed,
the linear model reduces to the simpReorder model proposed by Bossangj iind often used in control design models:

) oQ
| 32 +

160, = 0Q, + 56
0

50 )

c
0

where I, is the total rotational inertia of the drivetrain and roterda? is the aerodynamic torque on the rotor. The
frequency responses predicted with the high-order lineadehare compared with the predictions using ttifsorder
model. In this analysis the gradients of the aerodynamigumrassumes that the wake is frozen such that there is no
change in the induction for changes away from the operat@ntpBossanyi I] does not say whether frozen-wake or
quasi-steady gradients are used in his analysis, but iroBettal. [L4] it is suggested to use the quasi-steady gradients.

3. VALIDATION WITH TIME-SIMULATIONS USING NONLINEAR MODEL

This section presents a validation of the aeroelastic &eqy response predicted by the linear model with the regpons
predicted by the nonlinear aeroelastic model HAWCH] [ Validation is done on the frequency response from generat

torque and collective pitch to generator speed for the NREBMVEB wind turbine operating at 8 and 20 m/s for small

amplitude input signals. The effects of dynamic inflow ararifled by validation with the nonlinear model. The linear

aeroelastic model is then used to perform aeroelastic navadysis to explain the sources of resonances in the freguen

responses.

3.1. Freguency response

The frequency response functions predicted by the lineaeigiven by Equationd) is found from the transfer function
matrix G(s), which is the ratio of the Laplace transform of the outpifts) to the Laplace transform of the input5(s):

C(sI-A)"'B (10)

wheres is the complex Laplace variable. The steady amplitude ardelshift relative to the input is found by matrix
inversion as the modulus and phase&fiw), wherei = /—1 andw is the excitation frequency.

The nonlinear aeroelastic model used in the simulationisidies geometrical nonlinearities due to large deflections,
nonlinear unsteady and wake aerodynamics and nonlinegplicgs between structural degrees of freedom and
aerodynamic states. Structural damping is modeled as iRayigpe damping where damping is assumed proportional
to structural stiffness and inertia. Spectral damping edus the linear model, where a damping matrix is deduced that
gives a specific damping ratio to each structural mode. &tralcdamping in the linear model is tuned to approximate
the structural damping in the nonlinear model at standSthle nonlinear aeroelastic model includes dynamic inflow
modeled as twad* order filters with radial dependent time constants. The titeré models the dynamic contribution to
the induction from the far wake and the near wake, respégtji, 16].

Figure 2 shows a typical time-series of variations in generator LB&4d used for the extraction of the frequency
response function from HAWC?2. The left diagram shows thetsaries at start up and until reaching close to steady. state
The large overshoot on the speed during the initial tratsibas no influence on the present analysis. Excitation from
gravity forces, wind shear, tower shadow and wind turbideaie removed to reach close to stationary state. The rotor
accelerates until generator torque and collective piteftrobactions limits the rotational speed to around 12.1.rpin
t = 200 s, the pitch angles are fixed to the desired value which igthjiglifferent than that set by the controller, thereby
causing a slight disturbance on the speed signal which ipdaed by the generator torque controlzAt 295 s, generator
torque is fixed and harmonic signal is overlayed at 300 s on static generator torque and collective pitch sepgratetil

Wind Energ. 2012; 00:1-?? © 2012 John Wiley & Sons, Ltd. 5
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the end of the simulation. The overlayed harmonic changgsrierator torque and collective pitch has amplitudessdf
kNm on the low speed shaft aiid5 deg, respectively. A total of 205 simulations has been peréal for each operation
point and input type using harmonic excitation at differeatjuencies, such that the frequency response can be etbtain
in an intervall0; 3] Hz.

After transients have dampened out a Fourier transformasiadone on a time signal spanning one period at the
excitation frequency. In simulations where the generatayute and collective pitch angles are varied at frequerzésy
0.1 Hz, the signal is extracted from= 1300 s. For excitation frequencies above 0.1 Hz, the signal isaete¢d from
t = 800 s. Figure2d shows the time-series used for Fourier transformatioe. tirhe step size is set such that one period
at the excitation frequency include§” samples, wheréV € [6; 14] depending on the excitation frequency. It is ensured
that the sampling frequency is always higher tharHz for excitation frequencies belo1 Hz and always higher than
100 Hz for excitation frequencies abo®el Hz, to avoid damping and frequency shifts introduced by tearidark time-
integration scheme used in HAWC?2.

Estimates of the linear frequency response are achievedMiygtthe Fourier amplitude and phase at the excitation
frequency, whereby remaining nonlinear and transientceffare minimized. Figure3 and4 show comparisons of the
frequency response from generator torque and collectiel piemand to generator speed, respectively, predictetieby t
linear and nonlinear models at 8 m/s and 20 m/s. The resporsicied by the linear model is similar to the response
obtained from nonlinear time-simulations for small exitita amplitudes. The responses deviates around 1.6 Hz and
2.7 Hz, which can be explained by differences in the modelstrictural damping of thé™ and 2% drivetrain modes,
because the responses can be made to fit, separately at 82§ awn/'s, by applying small changes in the structural
drivetrain damping in the linear model. Note the large ptdiep at the tower frequency in Figudevhich is 720 deg and
360 deg for operation at 8 m/s and 20 m/s, respectively, dtleetaon-minimum phase zeros as discussed later.

The time-simulations with the nonlinear model include etffeof dynamic inflow whereas the linear model assumes
frozen wake. Dynamic inflow has no significant effect on thegjfrency response from generator torque to speed at both
8 m/s and 20 m/s, but it affects the frequency response frdlmctive pitch to speed for operation at lower wind speeds.
At 8 m/s, Figureda shows that dynamic inflow affects the response aroundstiewer modes at 0.32 Hz and below by
decreasing the amplitude and increasing the phase retativezen wake response. The reason is that the axial iratucti
increases when pitching to stall such that the inflow vejodécreases. Thus, the influence of dynamic inflow is to give
a negative change in aerodynamic rotor torque, which coactt® the positive change in torque due to higher angles of
attack. As a result, a lower change in rotor speed is need@dHatto establish zero net variations in the aerodynamic
torque on the rotor. At high wind speeds the axial inductextdrs are small and therefore the effect of the wake dyramic
is small already at 14 m/s (not shown).
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Figure 2. Typical time-series of generator speed from simulations using nonlinear aeroelastic model by subsequent FFT analysis a)
at start up, b) before and after pitch angle is fixed, c) before and after harmonic excitation is initiated and d) of the assumed stationary
variation.
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Figure 3. Aeroelastic frequency response from generator torque §Q, to generator speed 62, for NREL 5 MW wind turbine in
operation at 8 and 20 m/s. Validation of aeroelastic frequency response predicted by linear model with time-simulations using nonlinear
aeroelastic model.
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Figure 4. Aeroelastic frequency response from collective pitch angle 660. to generator speed 6, for NREL 5 MW wind turbine
in operation at 8 and 20 m/s. Validation of aeroelastic frequency response predicted by linear model with time-simulations using
nonlinear aeroelastic model.

Wind Energ. 2012; 00:1-?? © 2012 John Wiley & Sons, Ltd. 7
DOI: 10.1002/we
Prepared using weauth.cls



Open-loop frequency response analysis of a wind turbine I. Senderby and M. H. Hansen

3.2. Aeroelastic modal analysis

The linear aeroelastic model is used to determine the amtieimodes responsible for the dynamics in the frequency
response shown in Figur8sand4. The homogenous solution to E44 is:

x =ve'' = ve™(coswt + isin wt) (11)
wherev and )\ are solutions to the algebraic eigenvalue problem:
(A=X)jv=0 (12)

andv is an eigenvector andl = « + ¢4 the corresponding eigenvalue.

The solution to the eigenvalue problem2)] consists of structurally and aerodynamically dominateades. The
structurally dominated modes consist mainly of pairs of pax conjugated eigenvectors and eigenvalues and are
characterized by the aeroelastic damping rat@md aeroelastic frequencygiven by:

w=Im{A} &= —Re{A}/|Al (13)

Tablel lists the aeroelastic frequencies and damping of strutjudtaminated modes ordered according to the aeroelastic
frequency for operation at 8 m/s, 14 m/s and 20 m/s. Due tor#eedenerator bearing, there is a mode, that describes
rigid-body rotation of the drivetrain and rotor in the geater bearing. This rigid-body rotation mode id%order mode
at 8 m/s and 14 m/s and a highly dampd order mode at 20 m/s. In operational points where the bladepitched,
rigid-body rotation of drivetrain and rotor couple struetily with collective flap motion, such that vibrational egg in
the rotor rotation is transferred to collective flap viboatiwhich is not entirely limited by aerodynamic dampingengby
the rigid-body rotation mode become£™ order mode. Most modern wind turbines have the same ordemoé ©f the
structurally dominated modes. Th& tower modes will typically have lower frequency than thecollective flap mode,
because of large rotor inertia in the tower motion.

The aerodynamic modes (not listed in Tableescribe dynamics in the local aerodynamic forces in eadiaksection
of the rotor. In the model of unsteady airfoil aerodynamids assumed that aerodynamic forces at one radial section is
uncoupled from aerodynamic forces in the other sectiomggtoe blade, except for coupling through the structuraiomot
The aerodynamic modes are either cyclic aerodynamic mbdésibrates at the frequency of the rotor speed, or collecti
modes that has real eigenvalue and are characterized byitheiconstant = —1/\. The collective aerodynamic modes
has cut-off frequencies from 0.07 Hz up to 17.0 Hz dependmghe relative inflow velocity. Aerodynamic modes with
low cut-off frequencies represent dynamics of shed vaytiahd dynamic stall in blade sections close to the blade root
because the relative inflow velocity is smaller here andithe tonstants therefore largdrd.

Table I. Open-loop aeroelastic frequencies and damping of structurally dominated modeshapes with low aeroelastic frequency for
NREL 5 MW turbine operating at 8, 14 and 20 m/s.

nr. w[HZ] ¢ [%] w [HZ] £ [%)] wl[Hz] ¢[%] Description

8m/s 14 m/s 20m/s
1 X=-0.0112rad/s X =-0.0184rad/s 0.035 95.9 Rigid-body rotation of shaft aridrro
2 032 0.38 0.32 0.44 0.32 0.61 1% lateral tower
3 033 6.19 0.33 7.30 0.33 7.98 1% longitudinal tower
4 057 64.1 0.60 77.3 0.63 80.0 1% backward whirling blade flap
5 084 54.8 0.80 0.69 0.80 0.56 1% backward whirling blade edge
6 0.78 1.45 0.81 68.1 0.84 71.4 1% collective blade flap
7 091 47.9 0.99 60.8 1.01 65.2 1% forward whirling blade flap
8 118 1.76 1.20 1.11 1.20 0.81 1*forward whirling blade edge
9 155 16.4 1.52 20.9 1.53 21.7 2" backward whirling blade flap
10 1.65 2.4 1.65 2.43 1.62 3.14 1% collective blade edge/drive train torsion
11 1.92 12.5 1.93 17.0 1.93 16.6 2" collective blade flap
12 1.89 13.7 1.93 15.3 1.94 16.3 2" forward whirling blade flap
13 2.63 1.92 2.64 2.04 2.62 2.10 2" longitudinal tower
14  2.65 3.62 2.68 3.76 2.73 3.89 2" collective edge/drive train torsion
15 2.76 3.34 2.77 3.77 2.75 3.65 1% tower torsion (yaw)
16 2.85 0.71 2.85 0.70 2.85 0.62 2™ lateral tower
8 Wind Energ. 2012; 00:1-?? © 2012 John Wiley & Sons, Ltd.
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4. FREQUENCY RESPONSE ANALYSIS USING HIGH-ORDER LINEAR MODEL

The last section showed that the linear aeroelastic moderately predicts the frequency response from generatguéo
and collective pitch actions to generator speed comparedrtonlinear model. In this section, the complexity of the
linear model is varied by changing the number of state viesato clarify what must be included in a model to capture
these responses. In each case, the purely structural sesgaa to the actuator input is investigated before the kestae
response, to see the effect of structural dynamics. A stpaeation is in each case used to analyze the responseldt the
tower modes.

It is desirable that the speed/power controller can hanifiéets of fluctuations in the inflow due to e.g. wind shear,
which is responsible for mainly 1P and 2P loads on the bladd$8R and 6P loads on the tower, where 1P is the rotational
frequency of the rotor, equal to 0.2 Hz at above rated winédgewWind speed fluctuations due to turbulence are generally
more low-frequent]4]. Thus, it is desirable that a controller model can corgeptedict the response of generator torque
and collective pitch actuation at least up to 6P, which isiadol.2 Hz at above rated operation.

4.1. Generator torque to generator speed

Figure 5 shows the purely structural frequency response from geetarque to speed for various cases of model
complexity for the NREL 5 MW turbine in normal operation at &mand 20 m/s. The only difference in the conditions at
8 m/s and 20 m/s is the blade pitch, the mean rotational spietbe drivetrain and rotor, and the static blade deformation
about which the geometrically nonlinear structural modes been linearized. The green curves in Figughow the
structural frequency response for a fully rigid turbinegi@ibody rotation of the drivetrain and rotor can explaie th
response up to around the natural frequency of thiateral tower mode at 0.32 Hz. The response of a rigid turbmeals
the response of the" order model7,.6€2, = §Q, and the rotational inertia causes a phase of 90 deg at allérees and

a drop in amplitude with frequency.

When the tower is made flexible (red curves), the generatgqueois in resonance with thg' and 2" lateral tower
modes at 0.32 Hz and 2.9 Hz at both wind speeds. The lateral tmwdes are excited by the generator reaction torque
and are observable on the speed signal because of nacktiatVe to the tower top. The® and2™ lateral tower modes
cause two zeros to appear very close to these modes at 0.3d5dHz8 Hz. At the zero at 0.315 Hz, the change in rotor
speed caused by the nacelle roll associated with the ldtsval motion counteracts the rigid-body rotation causethiey
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Figure 5. Purely structural frequency response from generator torque to generator speed for NREL 5 MW wind turbine operating at
8 and 20 m/s. Comparisons of frequency response predicted with models with no aerodynamic forces and with a fully rigid turbine
(green), rigid drivetrain and rotor (red), rigid rotor (blue) and fully flexible turbine (black).
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generator action torque. The zero nearly cancels the pde3atHz creating a zero net phase shift acrossitheower
modes. After resonance of th& lateral tower mode, the response is again governed by bigity- rotation of the drivetrain
and rotor. The similar phenomena occurs at the zero locate@ &z where it is nacelle roll associated with £ lateral
tower mode that cancels the rigid-body rotor rotation ingbaerator speed output.

The blue curves in Figurg show the structural frequency response when the tower anetrdin are flexible and the
rotor is rigid. Thel® torsional mode of the drivetrain leads to resonance at 2.2rdiza zero at 0.72 Hz at both 8 m/s
and 20 m/s. At the zero at 0.72 Hz, the rotor is moving whilegbrerator end of the drivetrain is stationary, because the
generator torque is counterbalanced by rotor inertia ®rce

The black curves in Figurgshow the purely structural frequency response for a fullitfle turbine. Due to the added
blade flexibility, the1* drivetrain mode now couples with thg' collective edge blade mode, whereby the resonance
frequency is decreased from 2.2 Hz to 1.6 Hz. The zero at 058t#oth wind speeds is also shifted from 0.72 Hz due
to blade flexibility. At 20 m/s, tha® and2™ collective flap modes influence the frequency response ttoseir modal
frequencies of 0.75 Hz and 1.92 Hz due to the static bladé jgitcl are accompanied by two zeros very close to these
frequencies at 0.78 Hz and 1.86 Hz. The zeros and polesdetagach of tha s and2™ collective flap modes make phase
shifts that cancels each other. At the zero at 0.78 Hz, thergéor torque excites both thé& drivetrain mode and the™
collective flap mode in a motion where edgewise blade bendilagive to the hub in clockwise rotor direction is in phase
with flapwise bending downstreams and in phase with the eghpienerator torque. The inertia forces from blade vibnatio
in both thel1® drivetrain mode and the™ collective flap mode counteracts the applied generatoutorgimilarly, at the
zero at 1.86 Hz, the generator torque exciteslthdrivetrain mode and th2" collective flap mode, and the inertia forces
from this motion counteracts the generator torque to formra in the generator speed output.

Figure 6 shows a comparison between the purely structural respanagepta curves) and the aeroelastic response
(black curves) for a fully flexible turbine. The main effeofsincluding aerodynamic forces is seen at 20 m/s belowithe
tower modes and around th& and2™ collective flap modes.

The response predicted by the simpleorder model in Equatiord] with rigid structure and quasi-steady aerodynamics
(blue curves) predicts the correct tendencies belowlthéower modes. At 20 m/s aerodynamic forces decrease the
amplitude at low frequencies and create a positive pha$e$B80 deg at 0 Hz compared to the purely structural response
because aerodynamic damping forces dominate the inertiaddhat vanish at 0 Hz. At 8 m/s, the aerodynamic damping
of the rotor is low and the response is dominated by inertid very close to 0 Hz. Although not seen for the present
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Figure 6. Aeroelastic frequency response from generator torque to generator speed for NREL 5 MW wind turbine operating at 8 m/s

and 20 m/s. Comparisons of frequency response predicted with fully flexible structure and no aerodynamic forces (magenta), with the
15t order model in Equation (9) (cyan) and with fully flexible turbine with unsteady aerodynamic forces (black).
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turbine, the static change in blade deflection caused hig stanges in aerodynamic forces at 0 Hz, could cause that the
aerodynamic gradients predicted for a rigid rotor are wrdrige aerodynamic gradients could in particular be predicte
wrongly by a rigid-rotor assumption for a swept blade, beeathanges in steady state aerodynamic forces from a change
in e.g. generator torque could cause high blade torsion.

Around the1 and 2™ collective flap modes, the amplitude is reduced, due to lagyedynamic damping of flap
vibration. The influence of the collective flap modes is seemfFigure7 that shows a pole-zero map of the transfer
functions in Figure5. The figure shows poles and zeros that influence the frequersppnse and that does not cancel
out in the transfer function. There are zero-pole canamatof all asymmetric flap and edgewise modes. There are no
zero-pole cancelations of the' and 2™ drivetrain modes at all wind speeds because the generatpret@xcites the
drivetrain modes. There is zero-pole cancelation oflfheollective flap mode at both 8 m/s and 20 m/s. Bffecollective
flap mode is canceled by a zero at 8 m/s and is nearly canceRBfiirats indicating that aerodynamic damping does not
entirely limit vibration of the2™ collective flap mode and is responsible for the phase diffszeof 10 deg seen around
2.2 Hz in Figuret. Generally, it can be concluded, that the collective flap @sogke not essential to include to model the
transfer function from generator torque to speed becauaeroflynamic damping. For excitation frequencies below 3 Hz
there is no significant difference between using unsteadygaasi-steady aerodynamics (not shown) on the respornse fro
generator torque to generator speed because the modesfthahée the response are mainly modes characterized by
vibration in the rotor plane where the effect of aerodynafoices is small, except on the rigid-body rotor mode. There i
no effect of lag on lift and drag on the rigid-body rotor modscause the frequency of vibration is so low, that lag only
occurs at blade sections close to the blade root, where thpamwents to the overall changes in aerodynamic rotor torque
are small compared to sections closer to the blade tip.

The results shown above are for the NREL 5 MW turbine in onstoperation. For another turbine the ordering of the
aeroelastic frequencies of th& and2™ collective flap modes are likely to change relative to th@z&r0.72 Hz and the
1% drivetrain mode at 1.6 Hz, respectively, but without anyniigant effect on the response due to large aerodynamic
damping of these modes.
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Figure 7. Aeroelastic poles and zeros of minimal realization of transfer function from generator torque to generator speed for NREL 5
MW wind turbine operating at 8 m/s and 20 m/s. (x poles, o zeros).
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4.1.1. Effect of longitudinal tower vibration

The influence of longitudinal tower motion on the responsenfigenerator torque to generator speed is illustrated in
Figure8. The figure shows the aeroelastic frequency response ddke 1 tower modes for a turbine with a tower that
is very stiff in longitudinal direction (blue curves) andrfa fully flexible turbine (black curves) operating at 8 m/slan
20 m/s. The vertical lines show the aeroelastic frequerafi¢ise 1% tower modes for a fully flexible turbine. For a fully
flexible turbine, there is a zero at 0.315 Hz and a pole at Ok828ue to nacelle roll associated with thi&|ateral tower
mode. There are no changes in amplitude or any phase shifisrimzy across the frequency of th& longitudinal mode
at 0.33 Hz which shows that thé' longitudinal tower mode has no influence. Thus, any deviatloetween the blue and
black curves arise due to longitudinal tower motion in tidlateral tower mode. It can be seen that longitudinal tower
vibration has a small influence only at 20 m/s, which is sedarger phase shifts across the zero at 0.315 Hz and at the
1% lateral tower mode.

The small changes due to the increased longitudinal tovifnests occurring at 20 m/s are caused by removal of
longitudinal tower motion in thé®' lateral tower mode. Figur@ shows the tower top motion in thé' longitudinal and
lateral tower modes for a fully flexible turbine with no aeyndmic forces (a), a turbine with rigid drivetrain and rotor
and quasi-steady aerodynamics (b) and for a fully flexibibite with unsteady aerodynamic forces (c) for the NREL
turbine in normal operation at 8 m/s, 14 m/s and 20 m/s. Witaetodynamic forces, the' lateral and longitudinal tower
modes consist of purely lateral and longitudinal tower wrtirespectively. Thus, gyroscopic forces due to rotangit
in the 1% longitudinal tower mode does not provide large couplingveen lateral and longitudinal tower motion. For a
turbine with a rigid drivetrain and rotor with aerodynamardes (b), thel™ lateral tower mode has a component in the
longitudinal direction that changes with operation poirite similar trend is seen for a fully flexible turbine (c). Bhthe
coupling of thel® lateral tower mode to longitudinal tower motion must be tlylo aerodynamics, indicating that lateral
tower vibration changes the aerodynamic thrust.

4.2. Collective pitch demand to generator speed

Figure 10 shows the purely structural frequency response from dolepitch to generator speed for various cases of
model complexity for the NREL 5 MW turbine operating at thevad rated wind speeds 14 m/s and 20 m/s. The green
curves show the structural response for a fully rigid tuebiwhere the pitching inertia forces of the flapwise bentdsad
makes the amplitude increase with the square of frequeretgiaas a phase of -90 deg except very close to 0 Hz. Because
the blades are bent downwind, the pitching inertia forcee lagpositive torque creating component in the positivectioa
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Figure 8. Aeroelastic frequency response at frequencies close to the 15! tower modes from generator torque to generator speed for
NREL 5 MW wind turbine operating at 8 m/s and 20 m/s. Comparisons of frequency response predicted for a turbine with a tower that
is very stiff in longitudinal direction (blue) and for a fully flexible turbine (black).
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Figure 9. Tower top motion of the 1% lateral and longitudinal modes for a) a fully flexible turbine without aerodynamic forces, b) a fully

flexible turbine and unsteady aerodynamics and for c) a turbine with rigid drivetrain and rotor and unsteady aerodynamics in normal

operation at 8 m/s, 14 m/s and 20 m/s. Tower is seen from above and positive longitudinal tower deflection is defined to be upstreams,
i.e. the wind is coming from the right of the plots.

of Q4 for a positive pitch towards stall leading to a phase of -99. dde amplitude is slightly higher at 14 m/s than at
20 m/s, because of the larger static flap deflection.

The blue curves in Figur&0 shows the purely structural frequency response when thietdin is flexible and tower
and rotor are rigid. Drivetrain flexibility causes a resoremith thel® drivetrain mode at 2.2 Hz. The drivetrain mode
is excited by the pitch actuator due to misalignment betvibercenter of gravity and the pitching axis. The phase shifts
-180 deg across the frequency of tiiedrivetrain mode at 14 m/s and 20 m/s.

The black curves in Figur&0 shows the structural response for a fully flexible turbinke Ppitch actuator excites the
1% collective flap mode at 0.74 Hz, because the centers of graldhg the blade are not aligned with the pitch axis. The
1% collective flap mode is accompanied by a minimum-phase #eBo7& Hz, where collective pitching excites both the
1% drivetrain mode and thé®' collective flap mode. At this zero, the vibration of th& collective flap mode causes a
torque to act on the rotor in the negative directiod@f, for a change in pitch towards stall, that counteracts thehjig
inertia forces such that the net torque variations are Z&ve.zero nearly cancels the phase shift due taltheollective
flap mode. Thel® drivetrain mode is in resonance at 1.6 Hz, shifted from 2.2dHe to added blade flexibility and is
accompanied again by a phase shift of -180 deg. ieollective flap mode at 1.9 Hz highly influence the response at
both 14 m/s and 20 m/s. The amplitude at 2i&collective flap mode is much higher than at tifecollective flap mode,
because the pitching inertia forces are larger at higheitatian frequencies, and because #7é collective flap mode
lies close to thel® drivetrain mode, where rotor speed variations are largbichvprovides larger excitation of th¢
collective flap mode. Resonance of tH¥ collective flap mode is accompanied by a zero at 1.89 Hz ar@Hz8at 14 m/s
and 20 m/s, respectively. At these zeros, collective piighixcites both thé*! drivetrain mode and th2" collective flap
mode. The2" collective flap mode couples to rotor rotation when the tiaate pitched and is excited such that it creates
a torque in the negative direction 6€), for a change in pitch towards stall and thereby counterdetgddrque created
due to vibration of thel® drivetrain mode, such that there are no net generator spaé@tions. This coupling is more
significant at 20 m/s where the blades are more pitched.

A comparison has been made of the pitching inertia forcea figid blade undergoing harmonic pitch angle variations
around the undeformed state and statically deflected staitee NREL blade in normal operation at various wind speeds
to clarify the effect of static blade deflection. The pitahimertia forces are measured as the amplitude of forcesein th
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Figure 10. Purely structural frequency response from collective pitch to generator speed for NREL 5 MW wind turbine operating at
14 and 20 m/s. Comparisons of frequency response predicted from models assuming no aerodynamic forces and fully rigid turbine
(green), rigid rotor and tower (blue) and a fully flexible turbine (black).

rotational direction of the rotor arising from harmonic igions in pitch angle at frequency, and amplituded,. The
total pitching inertia forces for the blade are found by sungwup over the number of blade elements assuming constant
structural properties over each element. The amplitudétdfipg inertia forces4,, ; for element can be written

Ap,i = wgmili sin ¢07iA@ (14)

wherego,; andl; are the polar coordinates of the element centre of gravithénblade systemn; is the element mass
andA, ; is the amplitude of pitching inertia forces.

Figurel11 shows the total amplitudd, of pitching inertia forces versus wind speed for the NREL 5 Nbine blade
in the undeformed and statically deformed state in resptanisarmonic pitching with an amplitude of 1 deg at a frequency
of 1 Hz together with the static position of the centre of gsaat the blade tip in the rotor coordinate system. The jaitgh
inertia forces are larger than of the undeflected blade al gfieeds below 22 m/s because the blades are highly deflected
downstreams in the flap direction and peaks at 11 m/s wherththst forces are highest. For blades with a significant
prebend upstreams, the pitching inertia forces are exgéatee lower, because the static position of the centre ofitgra
in the flap direction is further upstreams than for a non-pneled blade.

The influence of aerodynamic forces on the frequency regpisnsow analyzed. Figure2 shows a comparison of the
response for a fully rigid turbine without and with quastady aerodynamic forces and the response predicted by the
simplified model in Equationd). At 0 Hz, the effect of including aerodynamic forces is torease the amplitude and shift
the phase with 180 deg because of changes in aerodynamietcagsed by pitching. The steady state effect of a constant
change in collective pitch is that the generator speecesaitia new equilibrium between the steady state generatpreto
and the aerodynamic torque on the rotor. Pitching towarathé gives less aerodynamic torque because of lower angles
of attack, whereby the rotor speed decreases. The decreastel speed gives an additional inflow velocity component,
that increases the angle of attack and thereby the aerodyriarque, such that the net variation in aerodynamic rotor
torque is zero at 0 Hz.

The response predicted with a fully rigid turbine with qustgady aerodynamics (cyan curves) has a minimum-phase
zero at 1.1 Hz and 2.1 Hz at 14 m/s and 20 m/s, respectivelyienthere is a positive phase shift of around 180 deg, due
to pitching inertia forces. Under harmonic collective pitmgle variations, the pitching inertia forces gives auergn the
rotor in positive direction 06Q), for a change in pitch towards stall, whereas the aerodyntorgaie gives a higher torque
in the negative direction and thus excites the rotor in thgosjie direction as the pitching inertia forces. The pitghi
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Figure 11. Amplitude of pitching inertia forces in the forward rotational direction of the rotor for a rigid NREL 5 MW blade undergoing

harmonic pitch angle variations with amplitude of 1 deg and frequency of 1 Hz. Comparison of pitching inertia forces for undeflected

blade and statically deflected blade for normal operation at various wind speeds. Static position of the centre of gravity at the blade
tip in the blade coordinate system (x:positive towards rotational direction,y:positive downstreams).

inertia forces grows with excitation frequency and aboeezttros at 1.1 Hz and 2.1 Hz at 14 m/s and 20 m/s, respectively,
they are large enough to dominate the response over vasdatiaerodynamic torque.

The black curves in Figur&2 show the frequency response for a turbine with rigid bladethé flap direction. At
0.32 Hz, collective pitching now couples with th& tower modes to create a minimum phase and a non-minimum phase
zero at 14 m/s and 20 m/s that causes the phase to shift apgatety 360 deg crossing the frequencies of tHdgower
modes, because of 180 deg phase shift over the non-minimaseptero and -180 deg over the lateral tower mode. The
longitudinal tower mode introduce a zero and a pole with plshsfts that cancels each other. The minimum-phase zero at
0.71 Hz and 0.84 Hz for 14 m/s and 20 m/s, respectively, afeeghfrom 1.1 Hz and 2.1 Hz. To illustrate why the added
drivetrain and edge flexibility causes these zeros to shidt lower frequency, the purely structural response for lairier
with rigid flap is shown in Figuré2 (magenta curves). Collective pitching excites tRedrivetrain mode structurally and
vibration of this mode excites the rotor in phase with thelpitg inertia forces, such that the variations in aerodyinam
torque are suppressed at lower excitation frequencies.

Figure 14 shows a map of poles and zeros that does not cancel out ofathgfdér function from collective pitch to
generator speed for the turbine where the blades are madérite flap direction. There are pole-zero cancelatioradlof
asymmetric flap and edgewise modes (not shown), no zeroepoleelations of the and2" collective flap modes, and
a lowly damped zero exist at 0.71 Hz and 0.84 Hz for 14 m/s and/20respectively. At 14 m/s the zero is non-minimum
phase and causes a -180 deg phase shift in the black curviegine E2, and at 20 m/s it is a minimum phase zero causing
a positive phase shift of 180 deg.

Figure13shows a comparison of the response for a fully flexible twebiithout aerodynamic forces (blue curves) and
with quasi-steady aerodynamic forces (cyan curves). Tegorese predicted by the simplified model in Equatighig
also included (green curves) to show that it captures tlaalgtstate response well at 0 Hz at both 14 m/s and 20 m/s.

Compared to the response of a turbine where blades are mi¢fiet iflap direction (black curves in Figut@), there is a
large change in phase between tietower modes and th&® drivetrain mode, which must be due to the added flapwise
blade flexibility. To explain this observation, the aeraséilapoles and zeros for the fully flexible turbine has beerted in
Figurel4. The pole-zero map shows that the lowly damped zeros at &hH 0.84 Hz at 14 m/s and 20 m/s, respectively,
which are predicted for a turbine with rigid flap, are repthbg two highly damped non-minimum phase zeros at 0.67 Hz
and 1.1 Hz. These non-minimum phase zeros creates a phétsefshil80 deg in the cyan curves in Figufe which
occurs over a large frequency interval. It can be conclutatidollective flap DOFs must be included to correctly predic
existence of the non-minimum phase zeros at 0.67 Hz and 1farHZ m/s and 20 m/s, respectively.
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Figure 12. Purely structural and aeroelastic frequency response from collective pitch to generator speed for NREL 5 MW wind turbine

operating at 14 m/s and 20 m/s. Comparisons of frequency response with models including a fully rigid turbine with no aerodynamic

forces (magenta), the 1% order model in Equation (9) (blue), turbine with rigid flap and no aerodynamic forces (green), a fully rigid
turbine with quasi-steady aerodynamics (cyan) and a turbine with blades rigid in flap direction and unsteady aerodynamics (black).
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Figure 13. Aeroelastic frequency response from collective pitch to generator speed for NREL 5 MW wind turbine operating at 14 m/s

and 20 m/s. Comparisons of frequency response with models including a fully flexible turbine with no aerodynamic forces (blue), the

15t order model in Equation (9) (green), a fully flexible turbine with quasi-steady aerodynamics (cyan) and a fully flexible turbine with
unsteady aerodynamics (black).

16 Wind Energ. 2012; 00:1-?? © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/we
Prepared using weauth.cls



I. Sgnderby and M. H. Hansen Open-loop frequency response analysis of a wind turbine

a) 14m/s b) 20 m/s
1 - T T
350 fully flexible b 28 sttowertorsion 35 fully flexible 7 28 1st tower torsion
. ® ] .
turbine 27 turbine . /% ©
g * o rigi .
iai rigid fl . )
O rigid flap 26 * gid flap 56| 2nd drive train
5L i 2nd drive train N i
25 25
® 24 ® 24
F -0.1 -0.05 0 « -0.1 -0.05 0
25 1 25 B
2 2
< N 2nd fw flap
z, 1.95 2nd fw flap L , 1.95 e
L i ™ L il
2 E * & % [ *
©
Pl
2 © 191 2nd col. flap E 19+ 2nd col. flap
c —
> £ = 1st drive train ®
*
£ 151 " in 1 1.85 £ st 4 185
= Tst drive train 034 -032 -03 028 -034  -032  -03  -028
035 035
L | Tstlong. L o | 1st long.
1st col. flap 034 | tower 0.34 [ tower
* *
* 033 & L1l © 033 * 8
e} o ol * * 1st col. flap *
- o 0321 * 1st lat.
L 4 Istlat. § L i
0.5 0.5 tower
031 tower 031
I Q 03 I %% 03
-1 -0.5 0 0.5 -0.03 -002 -001 0 001 -1 -0.5 0 0.5 -0.03 -0.02 -0.01 0 001
real axis [Hz] real axis [Hz] real axis [Hz] real axis [Hz]

Figure 14. Aeroelastic poles and zeros of minimal realization of transfer function from collective pitch demand to generator speed for
NREL 5 MW wind turbine operating at 14 m/s and 20 m/s. Comparison between pole-zero map for fully flexible turbine with unsteady
aerodynamics (black) and turbine with blades rigid in flap direction with unsteady aerodynamics (blue) (x poles, o zeros).

The cyan curves in Figuré3 shows, that quasi-steady aerodynamic forces changesrtiutusal response at thig
drivetrain mode and the"™ collective flap modes by adding damping that lowers the mespat these modes. Th&
drivetrain mode is mainly damped by aerodynamics at 20 n&salise at larger pitch angles, th& drivetrain mode
couples more with collective flap vibration. The zero lodaite between at 1.89 Hz and 1.80 Hz at 14 m/s and 20 m/s,
respectively, is also damped by aerodynamic forces andffibet ©f the zero on the frequency response is not visible at
14 m/s, but can still be seen at 1.80 Hz at 20 m/s.

The effect of using unsteady aerodynamics instead of giaady aerodynamics is seen by comparing the magenta
and black curves in Figurg3. At 14 m/s there is no clear difference, whereas at 20 m/sa diference is observed
at the 1% drivetrain mode and the" collective flap mode. To explain this change, a pole-zero hapbeen plotted in
Figurel5for a fully flexible turbine with quasi-steady aerodynam(ishie points) and with unsteady aerodynamics (black
points), that shows the poles of th& drivetrain mode and the™ collective flap mode at various wind speeds together
with the zero with a frequency between these poles. The tieady aerodynamic model predicts correct location of the
poles of thel® drivetrain mode, but estimates a too low aeroelastic frequef the2™ collective flap mode. At 10 m/s
the 2" collective flap mode tends to cancel with a zero, such thaetiseno influence o2™ collective flap mode at this
wind speed, because of lower pitch angles. With increasing gpeed the zero moves and does not cancel the pole. With
unsteady aerodynamics a similar trend is seen, but at 20h@/zetro has moved close to th& drivetrain mode, thereby
almost cancelling the pole of tHé" drivetrain mode and creating a drop in amplitude at the feeqy of thel® drivetrain
mode at 20 m/s in the black curves in Figdi®

4.2.1. Non-minimum phase zero at the 1% tower modes

Controllability of generator speed with collective pitchaffected by a non-minimum phase zero close to the frequency
of the 1% tower bending modes. Figurs shows the real part of zeros with frequency close tolftiéower modes for
normal operation at below rated wind speed up to 25 m/s. Tiws zee calculated for three different models including/onl
longitudinal tower flexibility and quasi-steady aerodymnesr(as Fischerq]), both longitudinal and lateral tower flexibility,
rigid drivetrain and rotor and quasi-steady airfoil aenoayics and for a fully flexible turbine and unsteady aerodyina.
The figure shows that a model that only includes longitudioakr flexibility and rigid-body rotation of the rotor prexs
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Figure 15. Aeroelastic poles and zeros of transfer function from collective pitch demand to generator speed for NREL 5 MW wind
turbine operating at 14 m/s and 20 m/s with frequencies close to the 15 drivetrain mode. Comparison between pole-zero map for fully
flexible turbine with quasi-steady aerodynamics (blue) and unsteady aerodynamics (black) (x poles, o zeros).

that there are non-minimum phase zeros below 15 m/s and thenm@mum phase zeros turns into minimum phase zeros
above 15 m/s. Collective pitching excites the longitudittaler vibrations through changes in thrust forces. At tfte
longitudinal tower mode, the thrust forces are in resonavittethe longitudinal tower mode and the tower top deflection
and velocity in the longitudinal direction shift with a pleasf -180 deg across the" longitudinal tower mode. The
longitudinal tower motion change the inflow and below 15 rhésresulting change in aerodynamic torque is large enough
to counterbalance the effect on the aerodynamic torque fnenchange in angle of attack caused by pitching the blades.
The change in inflow caused by longitudinal tower vibraticawise the aerodynamic torque to experience a phase shift of
-180 deg across the" longitudinal tower mode, following the phase shift of theditudinal tower velocity and causing
the non-minimum phase zero at the generator speed outpoveAlts m/s, the steady state relative velocities increaste su
that the effect on the aerodynamic torque of longitudinaletovibration decrease. The changes in aerodynamic torque
from a change in collective pitch angle is thereby mainlyed®ined by the change in angle of attack caused by pitching
the blades. As a results, the non-minimum phase zero chargeninimum-phase zero, that nearly cancels the effect of
the 1% longitudinal tower mode.

When lateral tower flexibility is included (blue curves irgbie 16, the single zero becomes two zeros and one of them
is a non-minimum phase zero for all wind speeds. It can beladed that it is important to include lateral tower degree
of freedom to predict correctly that there are non-minimumage zeros. Below rated wind speed, the model with fully
flexible turbine and unsteady aerodynamics predicts exist®f up to three non-minimum phase zeros atltheower
modes. At 8 m/s, the pole of tHg" longitudinal mode and three non-minimum phase zeros givesahphase drop of
-720 deg, as seen previously in Figuie

Under collective pitch angle variations, the tower vibsdateboth lateral and longitudinal directions, which is $itated
in Figure 17 that shows the aeroelastic frequency response from debepitch demand to tower top lateral and
longitudinal deflections for the NREL 5 MW turbine with rigdtivetrain and rotor in normal operation at 14 m/s and
20 m/s. The figure shows a comparison of lateral tower top ci@ile predicted for a turbine with rigid drivetrain and
rotor and for a turbine with rigid drivetrain and rotor whehe tower is made very stiff in the longitudinal direction, t
analyze the effect of longitudinal vibration on forces ie thteral direction. For a positive change in pitch anglevétals
stall) the thrust forces increase and results in fore-dfedgon in phase with the change in pitch angle, except dose
0 Hz where rigid-body rotor rotation results in small phasecences. Lateral tower deflection hugely increase afithe
tower modes, along with longitudinal tower vibration anduiés in lateral tower deflection equal in size to longitwadin
deflection at 0.3 Hz. At thé® tower modes the lateral tower deflection is shifted with asghaf approximately -90 deg
relative to the longitudinal deflection, showing that f@@eting on the tower in the sideways direction are in phage wi

18 Wind Energ. 2012; 00:1-?? © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/we
Prepared using weauth.cls



I. Sgnderby and M. H. Hansen Open-loop frequency response analysis of a wind turbine

03 T T T T T T T T T T
025 [ o ® o ® o B
°
02+ i
’:E‘ 0.15 | 1 | ! | | | L 1 |
'6' 0.07 T T T T T T T T T T
8 o0 ° ® rigid lat. tower, drivetrain and rotor, gs.aerodyn,
% ® rigid drivetrain and rotor, gs.aerodyn.
+ 005 : : ® e fully flexible turbine, unst.aerodyn. M
[+
9 004t e ® ° , i
© ° [ ] [ ]
Y o003} e ' -
°
0.02 - e ® v ~
° °
0.01 |- o 9 ~
° °
° ) ® o o
tod 88 i aeg e dtese e
—0.01 I I I I 1 d ® © 0 0 0 ¢ ¢ o o e |
4 6 8 10 12 14 16 18 20 22 24 26
Wind Speed [m/s]

Figure 16. Variation of real part of zeros close to the 1% tower modes in transfer function from collective pitch to generator speed

for NREL 5 MW wind turbine in normal operation at various wind speeds. Comparisons between transfer function zeros predicted

by linear models assuming rigid tower in lateral direction and rigid drivetrain and rotor and quasi-steady aerodynamics (black), rigid
drivetrain and rotor and quasi-steady aerodynamics (blue) and for fully flexible turbine with unsteady aerodynamics (red).

the longitudinal tower velocity. The dotted lines show ttret lateral tower top deflection is order of magnitudes senall
if the tower is made stiff in the longitudinal direction, stiag that sideways tower forces mainly arise due to asymmetr
from rotor tilting associated with longitudinal tower deflion.

Figure 18 shows the frequency response from collective pitch to geaoerspeed close to the' tower modes for
operation at 14 m/s and 20 m/s as predicted by three difféirerdr models including 1) only tower longitudinal tower
flexibility and quasi-steady aerodynamics, 2) lateral amdjitudinal tower flexibility and quasi-steady aerodynesrand
3) for a fully flexible turbine with unsteady aerodynamicheTigure also shows the response of generator speed measured
at the generator bearing and at the generator end of thefshatt by the nonlinear time-simulations using HAWC?2 for a
fully flexible turbine. At 14 m/s, the model that only inclugngitudinal tower flexibility (red curves) predicts thiaere
is a non-minimum phase zero at 0.32 Hz where phase drops &l8&isdeg over the shown narrow frequency range. At
20 m/s, the same model predicts a minimum-phase zero at @3@\thg a net phase shift of approximately 0 deg across
the shown frequency interval, because of 180 deg phaseashife minimum-phase zero and -180 deg phase shift of the
1% longitudinal tower mode. With lateral tower flexibility inaled, the frequency response is affected by a non-minimum
phase zero at 0.32 Hz resulting in a phase drop of approxiyna&@0 deg at both 14 m/s and 20 m/s.

The dotted black and magenta curves in Figi8eompares the generator speed response measured at thetgener
bearing and at the generator end of the shaft found from thénsar time-simulations using HAWC2. There is no non-
minimum phase zero at the speed measured on the shaft at 26hovgeng that the detected influence of lateral tower
motion is caused by nacelle roll associated with lateraktowbration. The nacelle roll cause a change in the generato
speed output that counteracts the increased speed dueltmgbeaerodynamic rotor torque arising from blade pitghin
and the nacelle roll thereby promotes existence of the nimimmam phase zeros.

So, it has been shown to be essential to include lateral tdywreamics besides what is included in the model suggested
by Fischer T]. It is important for correct prediction of non-minimum @eazeros, to include static blade torsion when
predicting the gradients of thrust and torque, becausehitadion directly changes the angle of attack. Correctigtieds
of structural damping of both lateral and longitudinal toweotion may influence predictions of non-minimum phase
behavior, because damping influence the amount of vibrafitimese modes.
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Figure 17. Aeroelastic frequency response from collective pitch demand to longitudinal and lateral tower top displacement for the
NREL 5 MW turbine in normal operation at 14 m/s and 20 m/s. Comparison between the response for a turbine with a rigid drivetrain
and rotor and a turbine with rigid drivetrain and rotor where the tower is made very stiff in the longitudinal direction.
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Figure 18. Aeroelastic frequency response from collective pitch demand to generator speed at the frequency of the 1% tower mode for
NREL 5 MW wind turbine operating at 14 m/s and 20 m/s. Comparisons of frequency response predicted by linear models assuming
rigid tower in lateral direction, rigid drivetrain and rotor and quasi-steady aerodynamics (red), rigid drivetrain and rotor and quasi-
steady aerodynamics (blue) and for a fully flexible turbine with unsteady aerodynamics (black curve). Comparison between generator
speed response measured at bearing output and at shaft end from nonlinear time-simulations with a fully flexible turbine.
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5. CONCLUSIONS

The open-loop aeroelastic frequency response of a wintheiftom generator torque and collective pitch control@tdi

to generator speed is analyzed based on a recently devdiagedrder linear aeroelastic model. The frequency respon
is analyzed for the onshore NREL 5 MW wind turbine in norma@tion at various wind speeds. The analysis examplifies
the aeroelastic frequency response of most non-floatingethladed, upwind wind turbines, because the orderingeof t
1% tower, collective flap and drivetrain/collective edge noiethe same. The linear aeroelastic model is shown to b vali
for small amplitude inputs compared to the response of gémespeed predicted by time-simulations with the nonlinea
aeroelastic model HAWC?2.

The aeroelastic frequency response from generator tomuariations in generator speed is shown to be affected by
mainly rigid-body rotor rotation and by resonance of tiiedrivetrain torsional mode, which is coupled with colleetiv
edgewise blade vibration. The lateral tower modes afféetsesponse close to their aeroelastic frequencies dueétiema
roll, whereas the effect of longitudinal tower vibratiorinsignificant. Inertia forces acting on the blades due téati@ns
in the rotational speed excites the collective flap modestiyat high wind speeds where the blades are pitched. Howeve
due to large aerodynamic damping the influence of the collefitap modes on the transfer function from generator torque
to generator speed is insignificant.

The aeroelastic response from collective pitch demand terg¢or speed is determined by rigid-body rotation of
drivetrain and rotor below the frequencies of thtower modes. At the® tower modes there are up to three non-
minimum phase zeros below rated wind speed and one non-ommiphase zero above rated. For correct prediction of
the non-minimum phase zero above rated, it is shown to bertiaupito include botlihe 1% lateral and longitudinal tower
modes. Between the™ tower modes and the™ drivetrain mode, the frequency response is affected by kyhigamped
non-minimum phase zero at above rated wind speeds. To tgrpeedict existence of this zero it is shown to be necessary
to model correctly the influence of pitching inertia forcemdo flapwise bent blades and to include tHarivetrain mode,
and collective flap degrees of freedom. It is important tdiide aerodynamic damping of thé drivetrain mode mainly
at high pitch angles. At 14 m/s, there is no difference in #sponse predicted with a quasi-steady and an unsteady model
of airfoil aerodynamics. At 20 m/s, the quasi-steady respaieviates at the® drivetrain mode, where it fails to predict
the correctly influence of a minimum-phase zero, that nezahcels the pole of the” drivetrain mode.
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On order reduction of high-order linear aeroelastic models
for wind turbine control design
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ABSTRACT

Linear models of low order describing the aeroelastic respof wind turbines are required in the design of modern thode
based controllers. In this paper low-order aeroelasticetsodf wind turbines are designed by order reduction of a-high
order linear aeroelastic model using modal truncation.figk-order model is a linearization of a geometrically magdr
finite beam element model of wind turbine substructures lealiprith an unsteady Blade Element Momentum (BEM)
model including effects of shed vorticity and dynamic stabbw-order models are designed to approximate the open-
loop aeroelastic frequency response from generator tpampliective pitch angle demand and mean wind speed inputs to
generator speed output in open-loop. It is shown to be nagessinclude a relatively large number of aerodynamically
dominated modes, which are uncoupled due to the assumptioependent annular flow tubes in the BEM theory.
Reduced-order models are subsequently designed based assamption of quasi-steady aerodynamics followed by
modal truncation. To approximate the transfer functiomfrgenerator torque, collective pitch angle demand and mean
wind speed to generator speed, it is shown to be essentiatliade the rigid-body rotor mode, tHé&' longitudinal and
lateral tower modes and thé' drivetrain mode. Tha*® collective flap mode must be included because the rigid-body
rotor mode couples to this mode at high wind speeds due tmtiredsed collective pitch angle. Reduced-order models
are deduced for all operational wind speeds and they caly é&stonnected by interpolation due to the modal truncation
approach that retains the state space. This set of reduded+models are therefore suited fr subsequent gain-sthgdu
control design. Copyrigh© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modern model-based control design requires linear modédsworder that provides good approximation of the aerd@las
response of wind turbines in response to control signalsdistdrbances. Low-order models are used to tune controller
gains for optimal closed-loop response and to estimate theé speed and turbine states based on measurenignt$g
purpose of this paper is to design low-order models by orelduction of a high-order linear aeroelastic model to be used
for model-based wind turbine control design.

The TURBU tool P] can provide reduced-order models by order reduction ofja-brder linear wind turbine model,
which couples a finite beam element model of tower, driveti@id three blades with an unsteady Blade Element
Momentum (BEM) model including aerodynamic states to dbeatynamic stall. Reduced-order models provided by the
TURBU tool are utilized for extreme gust contr@] fand individual pitch control4]. Order reduction of structural states
is done using the Component Mode Synthesis metBp@]|[ by reducing the order of the models of each substructude an
subsequently assemble these models, whereas order medseibt applied of the equations describing lag on aeradjma
forces. In the TURBU tool, one can reduce the order of the infsden 600 to 100 states and conserve the frequency

Copyright © 2012 John Wiley & Sons, Ltd. 1
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response up to 5 Hz as stated 2h [To conserve the frequency response at low frequencieastrequired toihclude the
quasi-steady behavior of the high-frequency mbdethe blade and tower substructures.

In Finite Element analysis of structural mechanics, othethmods are proposed for order reduction, which are reviewed
by Cook [B]. One approach is to do modal expansion, where the basiffisdshnd a set of generalized state variables are
used to describe vibration of a reduced set of structuralensbepes. To achieve better approximation at low frequencie
a static correction can be applied whereby the static deftecihder external excitation of the structure is ensuredeto
exact.

Design of linear low-order aeroelastic models for modeddabcontrol design has been extensively studied for afscraf
[7, 8]. Traditionally, the structure is assumed to vibrate irsprébed structural mode shapes and order reduction tasémsiq
are developed to represent unsteady aerodynamic fordds tiaes frequency domain by rational transfer function ricats
of low order for each structural mode shape, such that theetsstic model can be realized in a state space formulation
and be used in model-based control design.

Moore [9] propose order reduction byalanced truncationvhere the state space model is transformed into a basis such
that the state variables most effectively describe therggrigransmitted from multi-inputs to multi-outputs. Balzsed
residualizationis a variant of balanced reduction proposed by Fernando &®son [LO] aiming at good approximation
at low frequencies. A common approach is to apply frequergighiting on both in- and outputs before the balanced states
are found for better approximation in the chosen frequentsrval [L1].

Recent advances in design of gain-scheduling controltarsvind turbines are designs of a linear parameter-varying
(LPV) state space model of the wind turbine that covers $ipe@gions of the operating curve and models nonlinear
changes with operation point by parameter-varying matrinegthe state space model. LPV controllers are designed by
Bianchi et al. [L2] based on a model that includes nonlinear variations indygramic torque. @stergaard et dl3[ also
parameterizes aerodynamic thrust variations and inclddestrain torsional flexibility and longitudinal tower Ribility
and shows improvements in performance relative to classicdrollers.

Adegas et al.14] propose an order reduction scheme to design reduced-bRyéwind turbine models using balanced
truncation in combination with modal truncation. It is posed to realize the reduced-order state space model on a
canonical companion form, because this form is unique. ©@besign on the set of low-order models can be done
by designing a controller for each of the frozen values ofttteeduling variable and interpolate the controller gaidase
by Bottasso et al.15]. For LPV-control design the set of reduced-order systertrioes must be parameterized, e.g. by
assuming polynomial dependency with respect to the scimepwriable, which can be done by using linear least squares
optimization [L6].

Sgnderby & Hansenl[/] analyze the open-loop aeroelastic frequency responsenaddern wind turbine. The low-
frequency response from generator torque to generatod Spedfected by resonance of the rigid-body rotor mode, the
1% lateral tower mode and the" drivetrain mode. The non-minimum phase zero in the respémse collective pitch
angle demand to generator speed mainly caused by longitiudinmer motion is shown to be affected also by lateral tower
motion. Vibration of the blades in the flap direction showedaffect existence of another non-minimum phase zero below
the 1% drivetrain mode. A common approximation in aeroelastigtyo assume quasi-steady aerodynamic® vhere
the time constants related to unsteady lift and drag arevas$iio be much smaller than the time constants of structural
dynamics. The quasi-steady assumption means, that undeges in the inflow due to structural motion or changes in
wind speed, the aerodynamic forces moves on the statidi#ty and moment curves. The time constants that charaeteriz
unsteady aerodynamics due to shed vorticity and dynamiicfetaa wind turbine are very high, leading to low cut-off
frequencies and influence on the low frequency respahgeAn assumption of quasi-steady sectional aerodynamiss ha
no significant influence on the response from generator éoimepeed, but affects the speed in response to collectafe pi
inputs at around thé® drivetrain and2"™ collective flap modes.

In this paper low-order models are designed for model-based turbine control design using order reduction by modal
truncation with aeroelastic wind turbine mode shapes ptediby a high-order linear aeroelastic wind turbine mod#éd
HAWCStab2 [L9]. The model is a linearization of a nonlinear co-rotatiofiaite beam element model coupled with an
unsteady BEM model of aerodynamic forces including effeftshed vorticity and dynamic stall. Reduced-order models
are designed to approximate the open-loop aeroelastiodrmy response from changes in generator torque, cokectiv
pitch demands and mean wind speed to generator speed offéhenee NREL 5 MW reference turbin2(] for small
vibrations about steady state operation at various windds€T he paper shows that the reduced-order models ard suite
for parametrization along an operation point trajectorgewhealized on modal form.

The main findings are that a relatively large number of aenadyically dominated modes affect the low-frequency
response, because the BEM model assumes that there is my@amic coupling between unsteady aerodynamic forces
in sections along the blades. Reduced-order models arequdastly designed based on an assumption of quasi-steady
aerodynamics followed by modal truncation. A reduced-ordedel that contains the rigid-body rotor mode, tidateral
and longitudinal tower modes, thé' and 2™ collective flap modes and thi' and 2™ drivetrain mode predicted with
quasi-steady aerodynamics is seen to correctly approgithatlow frequency response from generator torque, ciléect
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pitch angle demands and harmonic variations in mean winddsfee generator speed output. The reduced-order system
matrices are shown to be suited for parametrization.

The paper contains first a short description of the highfitear aeroelastic model used for subsequent model
reduction and a description of the influence of assumingiegtaady aerodynamics on e.g. the aeroelastic frequencies
and damping of wind turbine modes. Then, a mathematicakig¢ien of the modal truncation method is given and it is
shown how some of the aerodynamically dominated modes idlithe frequency response through coupling with rigid-
body rotor rotation and longitudinal tower vibration. Risware then shown of modal truncation with aeroelastic mode
shapes using quasi-steady aerodynamics. The last se@gamiltes how the components of the reduced-order system
matrices are connected at various wind speeds.

2. HIGH-ORDER LINEAR AEROELASTIC MODEL

A brief description is now given of the linear aeroelasticdaloused for order reduction. A more complete description
of the model is provided by Hansehd] for an isolated blade. The model of the NREL 5 MW turbine igritical to the
HAWC?2 model used for frequency response analysid i [

2.1. Model description

The model used for order reduction is a linearization of ddiheam element model of tower, drivetrain, hub and blades
including geometrical nonlinearities, which is coupledhwan unsteady BEM model including effects of shed vorticity
and dynamic stall. So far, the model assumes frozen wakeglyhé is assumed that the induction is static.

Linearization is performed analytically around an openadi state defined by a mean wind speed, pitch angle and rotor
speed in which the blades are stationary deflected. Thestayi deflected state of the blades is obtained from a nailine
equilibrium between elastic and centrifugal forces andstiadic aerodynamic forces from an assumed uniform inflow to
the rotor plane. The stationary steady operational statet@ned by neglecting gravity forces, wind shear, turbegeand
other causes of a skew inflow to the rotor e.qg. tilt and yawesgl

In the particular model of the NREL reference turbine theanwdrivetrain and each blade are modeled by eight, four
and 19 Timoshenko beam elements, respectively. Each etdragiwo nodes and six degrees of freedom (DOF) per node
describe rotation and translation in all three axis. Pitctu@tors are modeled as second order low-pass filters betwee
reference and actual pitch angle as described by Har&gnlfi the present analysis the filter frequency is set so high
that there is practically no phase lag between demanded &nédl itch angles. Aerodynamic forces are evaluated at
30 aerodynamic calculation points along each blade. Udgteactional aerodynamics is described using two states for
shed-vorticity effects and two states to model dynamid ataach aerodynamic calculation point as described in éfans
etal. 22).

Structural DOF describing blade and hub motion and all agrachic states are described in multiblade coordinates
using the Coleman transformation. Linearization is pened around a state where isotropic rotor and isotropic eater
conditions are assumed, to remove dependency of the azangth in the system matrice2d.

2.2. Equations of motion

The linear aeroelastic model is described by the followiysjem of equations

Mz, + (Cs + G + Co)zs + (K + Ko + Ks)zs + Afx, = F (1a)
Xo + Augxa + Csazs + Ksozs = Fo (1b)

wherez, contains the structural DOF and, contains aerodynamic states used to describe time-lagsodulesteady
aerodynamics and wheM is the mass matridK the stiffness matrixC; the structural damping matri&s the gyroscopic
matrix, C, the aerodynamic damping matri¥, the aerodynamic stiffness matrix ad€,; the geometric stiffness
matrix due to the movement of the steady state aerodynamie feector. The matrixA ; represents coupling from
aerodynamic states to structural states and matfitgsand K, describes coupling between structural velocities and
displacements to aerodynamic states Anddescribes the lag on the aerodynamic forces. The right-hatedtermsF
andF, represent structural and aerodynamical forces due totacsuand changes in the wind speed, respectively. To
improve the conditioning of the eigenvalue problem set upatly on the first order form of Equatiod)( a reduced state
transformation is applied using structurally undampee@imigctors as described ih7] but omitted here for brevity.

The system in Equatiori) is put on first order form:

%X = Ax+ Bu (2a)
y=Cx (2b)
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where, by definition:

Xq 0Qq
x=< Qe ;o ou= 00, iy =08y (3)
élST‘ 6W
_Ad _Ksa _Csa
A= 0 0 I 4)
-M Ay -M ' (K+K.+Ksy) —-M Y(C+G+C,)
0 Bu,
B= 0 0 ; C=[0 0 0.1..0 | (5)

M 'B,, M 'Byg

whereB. s, Bas andBg, have been linearized with respect to the inputs and are dfiiom:

F.—B,. { ‘;% } ¥ BusW 3 Fa=BudW ©)

and whereC extracts the generator speed variatiofds. Changes in generator torqd€), and generator speed?, are
defined positive in the opposite direction as the rotor estaindié.. is defined positive towards stall. The low speed shaft
(LSS) speed of the generator is used in the analysis, whérebgssumed that there is no gearbox.

2.3. Low-frequency aeroelastic modes and aerodynamic dela  ys

The aeroelastic modes predicted by the linear wind turbindehconsist of structurally and aerodynamically domidate

modes. Tabld lists the aeroelastic frequencieg and damping ratiog of the structurally dominated modes ordered
according to the aeroelastic frequencies for the NREL 5 MYBite in normal operation at 8 m/s, 14 m/s and 20 m/s
where:

wa = Im{\;} &= —Re{A:}/|\i] )

and)\; is thei'th eigenvalue ofA.. Each of the aerodynamically dominated mode (isted in Tablel) describe variations

in aerodynamic forces in local sections along the blade shento the four by four block diagonal form of the,
matrix. The BEM model assumes that changes in aerodynamiedaat one aerodynamic calculation point does not
couple with changes in aerodynamic forces at neighboritgulzion points, except weakly through structural motion
whereby the eigenvectors of the aerodynamically dominatedes are only weakly coupling in the aerodynamic state
variables across the calculation points. Only the collectierodynamically dominated modes are shown to influence
the low frequency response and are characterized by thewoftérequenciesv. = —\; where \; are the purely real
eigenvalues corresponding to these modes. Fifjstews the variations of cut-off frequencies with blade wadf time
delays modeling shed vorticity and dynamic stall for NREL S\Murbine in normal operation at 8 m/s, 14 m/s and
20 m/s found under assumption of no coupling of the delayB sitituctural states. The cut-off frequencies in Figlieze

the eigenvalues of thé x 4 diagonal blocks of theA ; matrix obtained directly from the steady state BEM solutibhe
dashed horizontal line shows the aeroelastic frequendyedfitlongitudinal tower mode for comparison. The figure shows
cut-off frequencies of two of the four time delays at eachiblaection; one that characterizes the effect of shedeityrti
below stall and one characterizing the pressure lag in thmdery layer in stalled flowZ2]. The cut-off frequencies
increase with blade radius, because the relative inflowciteds increase, causing a faster update of the aerodynamic
forces because the shed vorticity is faster convected anvay the airfoil and the movement of the separation point ef th
dynamic stall becomes faster. The cut-off frequencies haverder of magnitude similar to the aeroelastic frequericy o
the 1% tower modes at some sections, and the delays may couple tigithddody rotor rotation mode and thé' tower
modes.

4 Wind Energ. 2012; 00:1-?? © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/we
Prepared using weauth.cls



I. Sgnderby and M. Hansen On order reduction of aeroelastic models for wind turbine control design

Table I. Open-loop aeroelastic frequencies and damping of structurally dominated mode shapes with low aeroelastic frequency for
NREL 5 MW turbine operating at 8 m/s, 14 m/s and 20 m/s.

nr. wy[HZ] £ [%] wq [HZ] £ [%] wq [HZ] £ [%] Description

8 mis 14 m/s 20 m/s
1 X\ =-0.0112rad/s X; =-0.0184rad/s 0.035 95.9 Rigid-body rotation of shaft aridrro
2 032 0.38 0.32 0.44 0.32 0.61 1% lateral tower
3 033 6.19 0.33 7.30 0.33 7.98 1% longitudinal tower
4 057 64.1 0.60 77.3 0.63 80.0 1% backward whirling blade flap
5 084 54.8 0.80 0.69 0.80 0.56 1 backward whirling blade edge
6 0.78 1.45 0.81 68.1 0.84 71.4 1% collective blade flap
7 091 47.9 0.99 60.8 1.01 65.2 1% forward whirling blade flap
8 118 1.76 1.20 1.11 1.20 0.81 1%forward whirling blade edge
9 155 16.4 1.52 20.9 1.53 21.7 2" backward whirling blade flap
10 1.65 2.4 1.65 2.43 1.62 3.14 1% collective blade edge/drive train torsion
11 192 12.5 1.93 17.0 1.93 16.6 2" collective blade flap
12 1.89 13.7 1.93 15.3 1.94 16.3 2" forward whirling blade flap
13  2.63 1.92 2.64 2.04 2.62 2.10 2" longitudinal tower
14 265 3.62 2.68 3.76 2.73 3.89 2" collective edge/drive train torsion
15 276 3.34 2.77 3.77 2.75 3.65 1% tower torsion (yaw)
16 2.85 0.71 2.85 0.70 2.85 0.62 2" |ateral tower
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Figure 1. Variation of cut-off frequencies with blade radius of time delays modeling lag on aerodynamic forces due to shed vorticity

and dynamic stall in separate blade sections for NREL 5 MW blade in normal operation at 8 m/s, 14 m/s and 20 m/s, where T,

denotes one of two time delays describing shed vorticity below stall and T3,; denotes pressure lag in the boundary layer in stalled

flow [22]. Cut-off frequencies are found under the assumption that there is no coupling to structural states. The dashed horizontal line
shows the aeroelastic frequency of the 1% longitudinal tower mode for comparison.
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3. QUASI-STEADY AERODYNAMICS

Quasi-steady aerodynamics is assumed by seking 0 in the aerodynamic state equatiohb), isolate forx, and
then substitutex, in Equation (8. An analysis of the effect of assuming quasi-steady aeraaycs on the aeroelastic
frequency response of two of the three transfer functiomdistl here, i.e. from generator torque and collective ptogie
demand to generator speed, can be found in previous studiesihd is not repeated here. Figitshows the aeroelastic
frequency response from mean wind speed harmonic vargatmgenerator speed at 14 m/s and 20 m/s predicted using
unsteady aerodynamics (filled line) and quasi-steady gaeodics (dotted line). Note, that in the frequency respanse
assume instant change in the mean wind speed; the unsteady@mic model does not describe dynamics related to
how fast the mean wind speed changes in for example a gustfulll@der response of generator speed of harmonic
variations in mean wind speed is similar to that of collezfitch excitation below 1.0 Hz; a change in mean wind speed
changes the angle of attack and thereby the aerodynamsfenilar to a change in pitch angle.

At both 14 m/s and 20 m/s, there are two non-minimum phaseszrb.2 Hz and 2.0 Hz causing negative phase shifts
of -180 deg. At the zero at 1.2 Hz, the changes in mean windispegites the * torsional drivetrain mode, which couples
with the 1% edgewise blade bending mode. An increase in mean wind spees! a positive change in lift forces at the
blade sections which forces the blade to bend relative tdtifiepositive clockwise. The edgewise blade vibration in the
1% drivetrain torsion mode changes the relative velocitidh@blade sections, causing decreasing angle of attackfand |
that counteracts the change in lift from the mean wind speectase, such that there is little net change in aerodynamic
torque. The zero at 2.0 Hz exist due to coupling betweenatblieblade vibration in thé®! drivetrain mode and in the™
drivetrain mode, such that the net change in aerodynanoc totque is close to zero.

The effect of assuming quasi-steady aerodynamics (datteslin Figure?) is to increase the amplitude of the generator
speed signal at the" drivetrain mode, because the model predicts too large @saingaerodynamic torque for a change in
wind speed in attached flow due to the neglected effect of gbetitity. The aeroelastic frequency response from gdoera
torque, collective pitch and mean wind speed inputs to geéaespeed output all show little effect of assuming quasi-
steady aerodynamics at excitation frequencies beloviteivetrain mode, cf.17], because at these low frequencies lag
on aerodynamic forces appears only at the inner blade ssdiitat have no large contribution to the overall changes in
aerodynamic rotor torque and thrust.
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Figure 2. Aeroelastic frequency response from changes in mean wind speed to generator speed for NREL 5 MW turbine at normal
operation at 14 m/s and 20 m/s. Comparison between the response predicted by the full-order model with unsteady aerodynamics
(filled lines) and with quasi-steady aerodynamics (dashed lines).
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Figure 3 shows the eigenvalues corresponding to aeroelastic moitledow frequency predicted with quasi-steady
aerodynamics. Figur&a shows the real part of the eigenvalues and Figot&e positive imaginary part of the eigenvalues.
The black curves in Figurg show the real and imaginary parts of the pole of the rigidybador mode, where the dashed
black line is for the rigid-body rotor mode predicted by a glifred model assuming rigid lateral tower, rigid drivetrai
and rotor and quasi-steady aerodynamics. This simplifiedains used for comparison to study the effects of flexibility
of the rotor and drivetrain and the effects of lateral towexifility.

Below 15 m/s there is no significant difference between thHe pbthe rigid-body rotor mode predicted from the high-
order model with quasi-steady aerodynamics and from thetipted using the simplified model, whereas above 15 m/s
the eigenvalue of the rigid-body rotor mode becomes morathegthan that predicted with a model assuming rigid rotor,
because the rigid-body rotor mode couples with tHieollective flap mode. Above 24 m/s the rigid-body mode cosiple
with the 1% collective flap mode to form @™ order mode with real value of approximately0.25 Hz and non-zero
imaginary value.

The red curves in Figuré show the real and imaginary parts of the eigenvalues offrmllective flap mode. Both the
dotted red curvess] and red curves marked with circles) @re associated with thé' collective flap mode. Below 16 m/s,
the 1% collective flap mode consists of a set of complex-conjugatesp Up to 16 m/s, the real part of the pole of the
1% collective flap mode decrease and the aeroelastic frequimargase, because the aerodynamic damping of this mode
increase with wind speed due to higher relative inflow véiesi[24]. Above 16 m/s the ' collective flap mode becomes
overdamped and the set of complex-conjugated eigenvafithe o™ collective flap mode shift to become two poles with
purely real and distinct eigenvalues. The assumption ofiegtaady aerodynamics causes that the aerodynamic dgampin
of the1® collective flap mode is larger than when unsteady aerodysmimincluded, see TableThe green, blue and cyan
curves in Figure3 show the poles of th&™ lateral and longitudinal tower modes and tiiedrivetrain torsional mode.
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Figure 3. Poles of low-frequency aeroelastic mode shapes for the NREL 5 MW wind turbine in normal operation at wind speeds
from 5 m/s to 25 m/s equidistant with 0.5 m/s under assumption of quasi-steady aerodynamics. Figure (a) shows the real part of the
eigenvalues and Figure (b) the imaginary part, which is equal to the aeroelastic frequency.
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4. ORDER REDUCTION

This section shows how the transfer functions from genetatque, collective pitch angle demands and mean wind speed
to generator speed can be approximated by modal truncation.

4.1. Reduction by modal truncation

Order reduction by modal truncatiof]] is done by first applying a full-order state transformatian= ®q where® is
denoted thenodal matrixand contains all the eigenvectors Afin columns. By this state transformation, the system of
equations %) can be written:

q=Aq+ % 'Bu (8a)
y=C®q (8b)

whereq is the new state vector with generalized states that eadlribes the motion of a mode shape afds the
Jordan form ofA.. For any square matriA, the Jordan form is a block diagonal matrix that consist ofldo blocks. If
all eigenvectors ofA are linearly independent, then the Jordan form is a diagoa#lix with the eigenvalues &k in the
diagonal such that each Jordan block is of dize 1. For all systems used in the present analysis, the modaixmitnas
full rank and thusA has a diagonal Jordan form.

The eigenvalue decomposed for8) is then partitioned:

a Ar 0@ o],
. = - B 9
ta =1 S [ e o
y=C| & %}{g;} (9b)
where indices 1 and 2 denote subcomponents of the matricgsr 2duction by modal truncation is done by representing
the full-order model by the subcomponents of the systemiocestrwith index 1, that corresponds to low-frequency
aeroelastic modes and by neglecting all other subcompsmemoted with index 2, such that the reduced-order system of
equations are given by:

a1 =Aiq1 + [®7'] Bu (10a)

1

y=CPiax (10b)

This scheme of a full-order state transformation followgdreduction is applied instead of using a classical modal
expansionk ~ ®,.q, to get the diagonal structure &f, which ensures that only the chosen subset of modes are@xcit
by the inputs and measured at the outputs. The modal métiix not orthonormal, regardless of normalization of the
eigenvectors, i.ed ! # ®*, wherex denotes the conjugate transpose.

The components of the reduced-order system matrices intiBqud.0) are complex but are made real by using a
coordinate transformation into the real and imaginary aftthe generalized stateg. For each sei of complex-
conjugated eigenvalues and eigenvectors, the transfosgsteim is written:

Ari = Ariqri +Briu 5y =Criqry (11a)
-1
L —Ewn —Wd . o Br,i,a _ [Q ]i,a B
Ari = { wa  —E€wn |’ Bri = B.is | [(I)_l]i,ﬁ B —
T T
Cr,qj,a o (pi,a
Cri= { o } — 20 { e ] (11¢)

whereq,; = { Re(qi,i) Im(qi,:) }T and wherev,, is the undamped frequency of modfund asv,, = |\;|, where

i Is thed’'th eigenvalue ofA. In Equations 11) w, and¢ are the damped frequency and the damping ratio of mipde
respectively, as defined previously in Equati@h [he indicese and 3 denote the real and imaginary parts, respectively.
The factor2C in the output matrix in11c) arise because the total output equals twice the real péreasutput for one of
the complex-conjugated poles.

4.2. Modal truncation including unsteady aerodynamics

In this section, two examples are used to describe the irduehaerodynamically dominated modes on the aeroelastic
frequency response of a wind turbine. Because the BEM madelnaes that there is no spanwise aerodynamical coupling
of unsteady aerodynamic forces on the blades, a relatiaefieInumber of aerodynamically dominated modes must be
included for good approximation.

8 Wind Energ. 2012; 00:1-?? © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/we
Prepared using weauth.cls



I. Sgnderby and M. Hansen On order reduction of aeroelastic models for wind turbine control design

4.2.1. Influence of aerodynamically dominated modes on stea dy state responses

Figure 4 shows a comparison between the aeroelastic frequencyn&sgmm generator torque to generator speed
predicted by the high-order model (black) and by a redugeéranodel obtained by modal truncation including the rgid
body rotor rotation mode (blue) at 8 m/s and 20 m/s. The rethacder model is seen to accurately approximate the
response below the! tower modes at 8 m/s but not at 20 m/s, where it predicts tgelamplitude at 0 Hz. The red curves
in Figure4 are obtained when including five aerodynamically dominatedes as discussed later.

To find out what modes might cause that the rigid-body rotodenpredicts an offset at 0 Hz, the influence of each
mode on the frequency response has been determined. Foofghehtransfer functions, the importance of each mode is
evaluated by the maximum amplification in the frequency @asp predicted by each modal subsystem in Equaéiipn (
denoted the moddll . norm. Figure5 shows the modall, norms versus aeroelastic frequencies and cut-off freqeenc
of purely real eigenvalues for the transfer function fromem@tor torque to generator speed of all structurally deweich
modes (black) and all collective aerodynamically domidatedes (red) at 8 m/s, 14 m/s and 20 m/s.

At 20 m/s in Figurese, five to ten collective aerodynamically dominated modeth wiit-off frequencies below 0.3 Hz
have modal norms close to that of the rigid-body mode, whidioéated atv; = 0.035 Hz at 20 m/s, and are therefore
expected to significantly change the frequency responsdowér wind speeds, the modal norms of the collective
aerodynamically dominated modes decrease and therefweta influence of these modes. A similar influence of the
aerodynamically dominated modes is seen in the frequersponse from collective pitch angle demand and mean wind
speed to generator speed (not shown). A reduced-order rtiatahcludes the rigid-body rotor mode and the five most
important aerodynamically dominated modes which are fgbted by red squares in Figuke, predicts the frequency
response in the red curves in FigdreThe inclusion of these modes in the reduced-order modeifgigntly improves the
approximation to the steady state generator speed resfmgseerator torque variations.

To evaluate how many aerodynamically dominated modes aréede reduced-order models has been designed that
includes the rigid-body rotor mode and from zero to ten ofittst important aerodynamically dominated modes. Figure
shows the relative error on the amplitude at 0 Hz predictethbyeleven reduced-order models at 20 m/s for the transfer
functions from generator torque, collective pitch anglendad and mean wind speed to generator speed. Without any
aerodynamically dominated modes the amplitude at O Hz tevigith up to 10% relative to the high-order response. A
static error below20% in the response from collective pitch demand to generateed|is achieved by including at least
five aerodynamically dominated modes.
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Figure 4. Aeroelastic frequency response from generator torque to generator speed for NREL 5 MW wind turbine in normal operation
at 8 m/s and 20 m/s predicted by the full-order model (black) and a reduced-order model including the rigid-body rotor mode (blue)
and a model including the rigid-body rotor mode and five collective aerodynamically dominated modes (red).
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To explain the effect of the collective aerodynamically dieaed modes, Figuréshows the variations in aerodynamic
forces along a blade in the direction perpendicular to tloeathxis, denoted F/, for the most important aerodynamically
dominated mode at 8 m/s, 14 m/s and 20 m/s, respectively. drice fariations are determined from the eigenvectors of
these modes, which are normalized such that the generaged sppmponents are positive and such that the maximum
absolute value is unity. At 8 m/s and 14 m/s the most impodanbdynamic modes characterize changes in aerodynamic
forces only in one calculation point, whereas the mode at 20simows variation in aerodynamic forces at many sections
along the blade because of coupling with rigid-body rotadation, as explained in the following.

The aerodynamically dominated modes are excited by a chantpe angle of attack, caused e.g. by blade pitching,
flapwise bending, or change of wind speed. At low wind spedthage in angle of attack will cause only small changes in
aerodynamic forces because of low relative velocities.ifk@easing wind speeds, a change in angle of attack willeaus
large variations in the aerodynamic rotor torque and thandtthe aerodynamically dominated modes will thereforgleu
with rigid-body rotation of the rotor and the flapwise blagmbing modes, causing a change in aerodynamic forces at all
sections along the blade. Figufeshows that at 20 m/s the structural coupling with rigid-boalpr rotation and flapwise
blade bending modes gives a change in relative velocitisdicrease the angle of attack - giving higher lift forcas - i
the inner part of the blade because of stall, and giving Idiftext mid- and outer part where the blades operate in agtdch
flow.

The aerodynamically dominated modes that influence thergeespeed variations at 0 Hz at high wind speeds are all
characterized by a large variation in aerodynamic forcéseablade mid-span. This observation can be explained by the
facts, that the aerodynamically dominated modes at thesbizd-span contributes more to the aerodynamic rotor torque
than modes close to the blade root and close to the bladestippise of low relative velocities and thereby low changes in
lift at the blade root and because of low inflow angles at thel®dltip causing that changes in lift mainly changes the thrus
forces.

It has now been shown that some aerodynamically dominatettsncouple with rigid-body rotor rotation and thereby
are important in predicting the response of generator spaegdtions at 0 Hz. Vice versa, the rigid-body rotor mode wil
couple to some of the aerodynamically dominated modes atataded wind speeds. Figufeshowed that approximation
with the rigid-body rotor mode alone predicts too high amygle at O Hz in the transfer function from generator torque to
speed at 20 m/s, which is because the rigid-body rotor modpgles with some of the aerodynamically dominated modes.
The rigid-body rotor mode approximates the changes in sgeed at 0 Hz too high, because the effective changes in lift
when the rotor speed changes are predicted too small in tidem
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Figure 5. H., norms of each aeroelastic modal subsystem of the system of equations (8) of each structurally dominated modes

(black) and collective aerodynamically dominated modes (red) in the transfer function from generator torque to generator speed for

the NREL 5 MW wind turbine in normal operation at a) 8 m/s, b) 14 m/s and c) 20 m/s. The red squares in c) show the five most
dominating aerodynamically dominated modes at 20 m/s.
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Figure 7. Normalized changes in aerodynamic forces perpendicular to local chord direction versus blade radius of three
aerodynamically dominated modes with cut-off frequencies of 0.062 Hz, 0.077 Hz and 0.13 Hz for NREL 5 MW wind turbine in
normal operation at 8 m/s, 14 m/s and 20 m/s, respectively. Each of the three modes has the highest influence on rotor speed output
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4.2.2. Influence of aerodynamically dominated modes on dyna mic responses

The last section showed that five to ten aerodynamically dated modes must be included to achieve good
approximation of the response at frequencies belowi thewer modes. This section shows that other aerodynamically
dominated modes affect accurate prediction of the nonmim phase zeros at thé' longitudinal tower mode in the
response from collective pitch to generator sped. [These aerodynamically dominated modes are necessangltme
in modal truncation, because th& longitudinal tower mode couples to these modes. Howevéiast previously been
shown, that a model assuming rigid drivetrain and rotor,quraki-steady aerodynamics can correctly predict theemdst
of non-minimum phase zeros at above rated wind speeds imahsfer function from collective pitch to generator speed
[17.

Figure8 shows the aeroelastic frequency response from colleciti#l® angle demand to generator speed for the NREL
5 MW wind turbine in normal operation at 14 m/s and 20 m/s adipted by the high-order model (black) and by reduced-
order models designed by modal truncation including déff¢aeroelastic modes. All reduced-order models in thissec
include the rigid-body rotor mode and the ten most domigatierodynamically dominated modes to ensure accurate
prediction of changes in aerodynamic torque at O Hz.

The red curves in Figuré show that a model including also thé' longitudinal and lateral tower modes predicts
existence of a minimum phase zero at 0.31 Hz at both 14 m/s@nd<Lat the aeroelastic frequency of tiidongitudinal
tower mode. The green curves in Fig@shows, that when furthermore ti& collective flap mode is included, the model
predicts a non-minimum phase zero at 0.32 Hz at 14 m/s butt 2t a/s.

The reason why thé® collective flap mode must be included, when it is previousigven that a rigid rotor can predict
the non-minimum phase zera7], is because theé® longitudinal tower mode couples with thé' collective flap mode.

In the forced response of collective pitching at tiietower mode, the flap motion is however somewnhat limited by the
changes in thrust forces associated with the variation lieative pitch. Thel® longitudinal tower mode couples with the
1% collective flap mode, because of the changes in aerodynamied at the blades due to changes in relative velocities
caused by the longitudinal tower motion. Th& longitudinal tower mode is characterized by a motion whepesitive
tower velocity in the downwind direction is in phase with dlective flapwise deflection velocity relative to the hubliret
upwind direction, due to the changes in aerodynamic foroethe blades associated with the longitudinal tower motion.
The reason why the model without th# collective flap mode cannot correctly predict the non-mimimphase zero at the

1% tower modes is because of too small changes in aerodynargiset@nd thrust predicted with these modes, due to the
collective flap vibration in tha*' longitudinal tower mode.

The cyan curves in Figurgb show, that the non-minimum phase can be correctly pretiatt@0 m/s by including four
collective aerodynamically dominated modes with cut-offguencies ofo. = 0.41 Hz, 0.45 Hz, 0.60 Hz and 0.75 Hz.
The cut-off frequencies are slightly higher than of thogedgnamically dominated modes already included, becdneset
modes are characterized by changes in aerodynamic forties blade tip where the inflow velocities are higher and the
cut-off frequencies therefore higher. Figirshows snap shots of variation in aerodynamic forces of thedgaamically
dominated mode with a cut-off frequency of 0.75 Hz. The chasede is characterized by high changes in thrust forces
at the blade tip, which can be explained by the relative sm#tw angles at the blade tip. The changes in thrust forces
associated with the aerodynamically dominated modes &fidlake tip, makes these modes important for correct predicti
of the non-minimum phase zero at th&longitudinal tower mode.
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Figure 8. Aeroelastic frequency response from collective pitch angle demand to generator speed predicted by the full-order model

with unsteady aerodynamics (black) and predicted by a reduced-order model including the rigid-body mode and ten collective

aerodynamically dominated modes (blue), and by reduced-order models including also the 1% lateral and longitudinal tower modes

(red), including also the 1%t collective flap mode (green) and including also four collective aerodynamically dominated modes
characterizing unsteady aerodynamics at the blade tip (cyan).

\

Figure 9. Snap shots of variations in aerodynamic forces of one collective aerodynamically dominated mode with cut-off frequency of
w. = 0.75 Hz for the NREL 5 MW in normal operation at 20 m/s. This mode is characterized by unsteady aerodynamics in a blade
section close to the tip, where a change in angle of attack produces high changes in thrust.
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4.3. Modal truncation including quasi-steady aerodynamic S

An assumption of quasi-steady aerodynamics has been faugiyé¢ accurate predictions of the aeroelastic frequency
response from changes in generator torque, collectivéd gitgyles and in mean wind speed, except at around%he
drivetrain torsion mode in the response from collectivetpiio speed, where a quasi-steady aerodynamic model fails to
correctly predict a zero located close to pole of this mddg. [Limitations of the pitch actuator may limit the changes in
actual pitch angles at variations in the pitch angle demandise frequencies of the" drivetrain mode and thereby also
the influence of the unsteady aerodynamics at these fregsenc

Order reduction is now performed by modal truncation usimgoelastic mode shapes in which quasi-steady
aerodynamics is assumed. It is shown how each of the trafisietions from generator torque, collective pitch angle
demands and mean wind speed to generator speed can be apgisakby gradually increasing the number of aeroelastic
modes in the reduced-order model. Tablbst the content of the various reduced-order models.

4.3.1. Frequency response from generator torque to generat or speed

Figure10 shows the aeroelastic frequency response from generatpretéo generator speed predicted by a full-order
model with quasi-steady aerodynamics (black) and by foffieréint reduced-order models denoted by model no. 1 to 4
defined in Tablél.

The reduced-order model no. 1, that includes the rigid-lotiy mode and thé™ lateral tower mode estimates correctly
the high gain at 0 Hz, see blue curves in Figlife The model correctly predicts the zero at 0.315 Hz and thenaese
peak at 0.32 Hz at both 8 m/s and 20 m/s, because they exisb dizeelle roll associated with thé' lateral tower mode.

The red curves in Figuré0 show the response predicted by the reduced-order model immiiling also thel®
drivetrain mode. At 8 m/s, the model captures correctly thes@nce of the minimum-phase zero at 0.72 Hz and the
resonance peak at thé' drivetrain mode. At 20 m/s, the model 2 predicts a non-mimmphase zero at 0.72 Hz that
causes a negative phase shift of -180 deg. By including b2t collective flap mode (model no. 3), the zero at 0.72 Hz
becomes a minimum-phase zero at 20 m/s, whereas at 8 m/sgimergisible change in the response. The prediction of a
non-minimum phase zero of the reduced-order model no. ZatHz, can be explained by a coupling of tifédrivetrain
mode with the2" collective flap mode at high wind speeds due to the largehgitles. The™ collective flap mode
(model no. 3) compensates for the flap motion already inclwdéh the1® drivetrain mode. By additionally including the
2" drivetrain and the"™ lateral tower modes (model no. 4), the reduced-order maatetorrectly predict the response up
to 3 Hz.

4.3.2. Frequency response from collective pitch and mean wi nd speed to generator speed

Figuresll and12 show the aeroelastic frequency response from collectiah pingle demand and mean wind speed,
respectively, to generator speed for the NREL 5 MW turbinearmal operation at 14 m/s and 20 m/s, predicted by the
full-order model with unsteady airfoil aerodynamics (painder assumption of instant update in the mean wind speed
and with quasi-steady aerodynamics (dashed black) anddyglifferent reduced-order models that includes the aestiela
modes given in model no. 5 to 9 in Talle

The blue curves in Figuresl and 12 show the responses predicted by the model no. 5 that inclirgesgid-body
rotor mode. At 14 m/s, the model correctly predicts the raspcat 0 Hz whereas at higher wind speeds , e.g. 20 m/s,
it predicts too high amplitude for both pitch and wind speepluis, as already described in Sectib@.1for the model
including unsteady aerodynamics. A correct amplitude drabe is achieved at up to the aeroelastic frequency of‘the
tower modes by including also thé' collective flap mode in model no. 6, shown with red curves. fiiel-body rotor
mode couples with thé™ collective flap mode at high wind speed when quasi-steadydgaamics is assumed, such that

Table Il. Description of the aeroelastic modes included in the various reduced-order models used to approximate the aeroelastic
frequency response of the NREL 5 MW turbine. The aeroelastic modes are determined using quasi-steady aerodynamics.

Model no. | Aeroelastic modesincluded in model

rigid-body rotor,1% lateral tower

rigid-body rotor,1% lateral tower,1% drivetrain

rigid-body rotor,1% lateral tower,1%' drivetrain,2™ collective flap

rigid-body rotor,1%! lateral tower,1%! drivetrain,2" collective flap,2" drivetrain,2™ lateral tower

rigid-body rotor

rigid-body rotor,1% collective flap

rigid-body rotor,1%! lateral tower,1% longitudinal tower,1% collective flap

rigid-body rotor,1% lateral tower,1% longitudinal tower,1% collective flap,15 drivetrain

rigid-body rotor,1% lateral tower,1%! longitudinal tower,1% collective flap,1%t drivetrain,2™ collective flap,2™ drivetrain

©oO~NOOO~WNPRE
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the rigid-body rotor mode alone predicts too high gain at (belzause flap vibration lowers the aerodynamic damping of
this mode due to the effect of the flapwise blade motion on tigdesof attack in the velocity triangle.

The dashed red curves in Figuresand 12 show the aeroelastic response predicted by the model nat Tntludes
also thel® tower modes. At both 14 m/s and 20 m/s and for both inputs, égative phase shift of -360 deg caused by the
non-minimum phase zero at th& longitudinal tower mode is captured by the model.

The green curves in Figuréd and12 show the response of the reduced-order model no. 8, wheré¢hal$™ drivetrain
mode is included. For collective pitch inputs, the modelragjmates well both amplitude and phase up to the frequency
of the 1% drivetrain mode, except that it predicts too low amplituti&@eguencies in between tHé' tower modes and the
1% drivetrain mode mainly at 20 m/s. For mean wind speed inghésmodel no. 8 (green curves in Figurd) does not
capture correctly the non-minimum phase zero atithengitudinal tower mode, which can be explained by the ctilve
flap motion introduced by the® drivetrain mode.

The cyan curves in Figurdsl and12 show the response predicted by model no. 9 includin@theollective flap mode
and the2™ drivetrain mode and a total of thirteen states. The combaftett of adding the™ collective flap mode and
the 2" drivetrain mode leads to a good approximation of the fulleonesponse with quasi-steady aerodynamics up to
3 Hz at both 14 m/s and 20 m/s for both inputs.
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Figure 10. Aeroelastic frequency response from generator torque to generator speed for NREL 5 MW turbine in normal operation at
8 m/s and 20 m/s. Comparison between responses predicted by a model assuming quasi-steady aerodynamics (black) and predicted
by reduced-order models obtained by modal truncation including the aeroelastic modes in model no. 1 to 4 defined in Table II.
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Figure 11. Aeroelastic frequency response from collective pitch demand to generator speed for NREL 5 MW turbine in normal

operation at 14 m/s and 20 m/s. Comparison between responses predicted by a model assuming quasi-steady aerodynamics (black

curves) and predicted by reduced-order models obtained by modal truncation including the aeroelastic modes in model no. 5 to 9
listed in Table II.

14 m/s 20 m/s
1 0
10 T 10 T T T T T
a)
107 E
g2 LT
S E 3 E —]
== S1w f
= es ' T
@ = © =
10°F E
10 4 L L L L L 1074 L L L L L
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
T T T T T 400 T T T T T
200 P .
L \ 200 | 9
or ] ﬁ%\ —
or 7
-200} | 1 |
0] B e A ) -200 | 1
N> -a00} S N o e e e —
T o - C O -a00f - 1
< — <
RIS del 5 N\ ] a& \
——model no. T -600} 1
-goof —— model no.6 S~ _gool S |
1000l ~ ~ ~Model no.7 model no.9 |
— model no.g —full order, QS aero ~1000¢ ]
~1200 ‘ ‘ ‘ ‘ ‘ -1200 . s ‘ A ‘
0 0.5 1 . . 15 2 25 3 0 0.5 1 . X 15 2 25 3
Excitation freq [Hz] Excitation freq [Hz]

Figure 12. Aeroelastic frequency response from changes in mean wind speed to generator speed for NREL 5 MW turbine in normal

operation at 14 m/s and 20 m/s. Comparison between responses predicted by a model assuming quasi-steady aerodynamics (black

curves) and predicted by reduced-order models obtained by modal truncation including the aeroelastic modes in model no. 5 to 9
listed in Table II.
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4.4. Reduced-order models for controller design

A set of reduced-order models of the type no. 8 using quasidstaerodynamics and including the rigid-body rotor mode,
the1® lateral and longitudinal tower modes, ttédrivetrain mode and th&® collective flap mode, i.e. five modes in total,
has been designed for the NREL 5 MW turbine in normal opeamnatovind speeds from 5 m/s to 25 m/s, equidistant with
0.5 m/s. The model no.8 is used here for brevity, althoughriodel not accurately predicts the phase of the response of
mean wind speed changes, see FigiteThe results however still apply for models of higher comjtle because the
subset of the matrices corresponding to the state-vasaflthe modes in model no.8 remains unchanged in model no.9.
The modes included in the reduced-order models are ordeoedding to their mode shape to make the models suited for
parametrization.

The reduced-order dynamic matt. is on block diagonal form and consists of matrices; of the five modes that
are used in the reduced-order models, see Equatityn The components oA\, ; are the real and imaginary parts of
the eigenvalues of modeand are shown previously in FiguBe The real and imaginary parts of the eigenvalues of the
rigid-body rotor mode, tha* lateral and longitudinal tower modes and tt#drivetrain mode all vary smoothly with
wind speed, whereas the components foritheollective flap mode show some discontinuities at 11 m/syevtiee mean
blade pitch changes from negative to positive pitch angike.1® collective flap mode was seen to shift from2 order
mode up to 16 m/s into twd* order modes above 16 m/s. Above 16 m/s bisttorder modes are included in the model
to ensure that the order of the reduced-order model is the saall wind speeds.

The components of the reduced-order input maBixand of the reduced-order output mat€i% depends on how the
eigenvectors oA are normalized prior to the eigenvalue decomposition. Hareeigenvectors are normalized such that
their generator speed component becomes

1) and o =wi(—e —2) (12)

e e

whereg; o andg; o are the generator speed components of the two eigenveetatsd to eacB™ order mode and where

j =+/—1 andwy and¢ are the aeroelastic frequency and damping ratio of the sporeling mode, respectively. This
specific normalization of the eigenvectors is convenieataoise it ensures that the components of the reduced-opuler i
and output matrices can be given a physical interpretatidimen the eigenvectors ok are normalized such that their
generator speed components are given by those in Equdt®ntijen the reduced-order output matrix for this mode is
found from Equationss) and (L1¢) to be:

di0 = wa(

Cri=[ 2Re(¢i0) —2IM(¢iq) | = [ 2wné —dwa | (for 2" order modes) (13)

wherew, is the undamped frequency of this mode foundvas= |\;|, where); is thei’'th eigenvalue ofA. Similarly,
the eigenvectors of the" order modes are normalized prior to order reduction, suatthteir generator speed component
equalsi;.o = —2\;. The component of the output mati@,. ; for the 1% order modes is then:

C,;=—2\; (for 1* order modes) (14)

The components dF,; given in Equationsi3) and (L4) are the scaled real and imaginary parts of the eigenvadiieted

to the corresponding mode, which makes the output matrirdfior parametrization, as shown in the following. Figlige
shows the components of the reduced-order output m&triextracting the generator speed output from the generalized
state-variables of the rigid-body rotor mode, tliecollective flap mode, thé® lateral and longitudinal tower modes and
the 1% drivetrain mode for the NREL 5 MW wind turbine in normal opéwa at wind speeds from 5 m/s to 25 m/s. For
comparison, the output matrix for a fully flexible turbinecinding unsteady aerodynamics are compared to the output
matrix corresponding to th&™ longitudinal tower mode and the rigid-body rotor mode fouebine with rigid lateral
tower, drivetrain and rotor including quasi-steady aenadyics, as introduced previously.

The black points and black dashed curves in Figushow the components of the output matrix correspondingeo th
generalized state-variable of the rigid-body rotor modsadedC.. ;. Both for a fully flexible turbine and a turbine with
rigid rotor, the components increase with wind speed abatedr because the aerodynamic damping of the rigid-body
rotor motion - and thereby the magnitude of the eigenvaloéthis mode - increase with wind speed, due to the increased
blade pitch angles. The componetit. ; for a fully flexible turbine are higher than for a turbine witlyid rotor which
can be explained by decreasing inertia in the rigid-bodgrrotode due to coupling with collective flap blade vibration,
causing the magnitude of the eigenvalue to increase.

The red points and red circles in Figur&show the components of the output matrix correspondingaaticollective
flap mode which are denotdd,.» andC,. 3. Up to 16 m/s, tha* collective flap mode is 8" order mode, as previously
explained, and the two componer@s . andC,. 3 are equal to the first and second component€ of in Equation (3),
respectively. Both components increase up to 16 m/s, bedhesaerodynamic damping of the flap mode increase. The
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componeniC,.» is continuous across 16 m/s, where the flap mode change into*hwrder modes, because the specific
normalization of the eigenvectors ensures this;©g» can be written a8w,& = —2Re(\), which is identical to the
output component for the order mode—2\ when the eigenvalue becomes purely real at 16 m/s. Above 4hmtwo
component<,.» andC,. 3 vary similarly to the eigenvalues of the twd& order modes shown previously in Figuge

The green points in Figur&3 show the components of the output matrix corresponding écstate-variables of the
1% lateral tower mode, which are denot€f., andC,. 5 and corresponds to the first and second componefit,ofin
(13). The componenC.. 4 increase slightly with wind speed due to the increasingelastic damping of thé® lateral
tower mode, which can be explained by coupling to longitatliower motion, as explained previously iti7]. The other
componenC, 5 is almost constant with wind speed.
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Figure 13. Components of the reduced-order output matrices C,. ; extracting the generator speed output from the generalized state-

variables of the rigid-body rotor mode, the 1% collective flap mode, the 1% lateral and longitudinal tower modes and the 1% drivetrain

mode for the NREL 5 MW wind turbine in normal operation at wind speeds from 5 m/s to 25 m/s and found under assumption of

quasi-steady aerodynamics. The dashed curves show the output matrices predicted with a model with rigid lateral tower, rigid rotor
and drivetrain including quasi-steady aerodynamics. The unit ¢* denotes the unit of the generalized state-variables q;.
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The blue points and blue dashed lines in FigliBeshow the two components of the output matrix corresponding t
the 1% longitudinal tower mode which are denot€).s andC,.» and which equals the first and second components of
C,.; in (13), respectively. The figure shows a comparison betw@gp andC,. 7 for a fully flexible turbine and a turbine
with rigid lateral tower, drivetrain and rotor. The modetlwa rigid rotor predicts components with magnitudes beluat t
for a fully flexible turbine, which can be explained by theKaxf collective flap vibration in the longitudinal mode. The
aeroelastic damping of thg" longitudinal tower mode is higher for a rigid rotor than foflexible because of collective
flap vibration out of phase with longitudinal tower top vitiom, which explains the lower magnitudes©f. .

The cyan points in Figur&3 show the components @..; for the 1* torsional drivetrain mode, which are deno®d s
andC, ¢ and correspond to the first and second componen€,;fin (13), respectively. The componefd, s increase
gradually with wind speed, which can be explained by largeodynamic damping of the rotor rotation motion in tiie
longitudinal tower mode, due to higher pitch angles, whitso @&xplains the increasing values of the other component
C,.9 with wind speed.

The reduced-order input matriB, consist of modal blocks 0B, ;, defined in Equation1(), that each describes
the external excitation of théth mode. With the specific normalization of the eigenvestof A in Equations {3) and
(14), the components dB.. ; can be given a physical interpretation from the transfection matrix from the three inputs
to the generator speed output of ifth modal subsystem of the system of equationsli).(The modal transfer function
matrix is denoteds,.; (s) and is found from Equatiori() to be

Gr,i(s) = Cr,i(SI - Ar,i)_lBr,i (15)

for both 1% and 2™ order modes, where is the Laplace variable and the matric&s ;, B,.; andC,.; are the system
matrices of the'th modal subsystem. A physical interpretation of the comgts ofB.. is found from the amplitude of
the frequency response €, ;(s) at 0 Hz for1% order modes and at the aeroelastic frequangyor 2™ order modes,
which are found to be:

|G.:(0)] = —2B,; (for 1® order modes) (16)

|G (jwa)|* = é (Bfw +(1-&)B2 s —26/1— §2Bm,aBm-,ﬁ> (for 2" order modes) (17)

whereB,. ;. andB,.; s are the components of the modal input matrix 38t order modes.

Equation (6) shows that for1® order modes, we can understand the components of the inpiixni,.; as the
amplitude at 0 Hz in the aeroelastic frequency responsei®htbde scaled with a factor df/2; i.e. B, ; denotes how
much thei'th mode contributes to the amplitude at 0 Hz in the aeroel@istquency response from the generator torque,
collective pitch and mean wind speed inputs to the genesated output.

Equation (7) shows that for2" order modes, we can understand both componghts. and B, s of the input
matrix as the amplitude in the frequency response of thisainsmbsystem evaluated at the resonance peak, ie—=a .
For modes that are lowly damped, the last term i) (can be neglected, showing that whenever the magnitudes of
B..i,« andB,.; s either decrease or increase, so does the amplitude at thedastic frequency of this modfa, ; (jwa)|.

Figure 14 shows the magnitude of the components of the reduced-ongert matrixB,.; from the three inputs: a)
generator torque, b) collective pitch angle and ¢) mean wekd to the generalized state-variables of the rigid-body
rotor mode (black points) and thé collective flap mode (red points and circles). The figure shawomparison with the
input matrix corresponding to the rigid-body rotor modedicted with a model with rigid lateral tower, rigid rotor and
drivetrain and quasi-steady aerodynamics, which are shatirblack crosses.

Up to around 15 m/s, the black points and black crosses ir€&iglare close to each other, showing that the assumption
of rigid rotor has no effect on the response of the rigid-bomtpr mode. For collective pitch and mean wind speed inputs
above 15 m/s, the inpUB,; increase relative to that of a turbine with rigid rotor besmuhe rigid-body rotor mode
couples with the® collective flap mode at high wind speeds, causing the aesdimdamping of this mode to decrease
and thereby the amplitude of the generator speed output atto idcrease, as shown previously in Figutésand12.

The red points and circles in Figuig show the components @,. ; for the 1 collective flap mode. Thé™ collective
flap mode is 2" order mode below 16 m/s and above 16 m/sifieollective flap mode consist of tw* order modes,
as explained previously. The trend is that the componeri,gffor the 1¥* collective flap mode are very low at low wind
speeds for all three inputs, showing that the influence of treollective flap mode on the generator speed response is low.
Some discontinuity with wind speed is seen at 16 m/s for adlélinputs, because here the flap mode turns from being one
2" order mode to twd *! order modes. Above 16 m/s the amount of excitation ofifheollective flap mode increase and
becomes equally important in the generator speed respsrike &ggid-body rotor mode, because of the coupling between
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Figure 14. Magnitude of the components of the reduced-order input matrix B,. corresponding to the rigid-body rotor mode and the 1

collective flap mode for NREL 5 MW wind turbine in normal operation at wind speeds from 5 m/s to 25 m/s equidistant with 0.5 m/s

for generator torque, collective pitch and mean wind speed inputs. Comparison between components of B,. for a fully flexible turbine

with quasi-steady aerodynamics and a turbine with rigid lateral tower, rigid rotor and drivetrain with quasi-steady aerodynamics. The
unit f* represents the unit of the generalized force acting on each mode shape.

rigid-body rotor mode and collective flap motion at high piengles. Above 16 m/s the sign Bf.; (not shown) for the
rigid-body rotor mode and the™ collective flap mode are opposite, showing that the effethel™ collective flap mode
counteracts the effect of rigid-body rotor mode on the gatoerspeed signal at 0 Hz, as previously explained.

Figure15 shows the two componenB,. ; ., andB,.; s of the input matrice®,. ; to the1® lateral tower mode (row a),
the 1% longitudinal tower mode (row b) and tHé&" drivetrain mode (row c) for the NREL 5 MW wind turbine in norma
operation at wind speeds from 5 m/s to 25 m/s. The figure shoesrgarison of the components of the input matrix
corresponding to thé* longitudinal tower mode for a fully flexible turbine includj quasi-steady aerodynamics and a
turbine with rigid lateral tower, rigid drivetrain and rotand quasi-steady aerodynamics (dashed lines).

The componentB,. ; . andB,.; 5 corresponding to thé™ lateral tower mode are shown in row a) in Figd#e Below
11 m/s both these components are almost constant for gen¢oatjue input, because the lateral tower mode here is
excited mainly by the generator torque reaction forces erdver. Above 11 m/s, both components increase slighly with
wind speed, which can be explained by the influence of lodgitl tower motion in this mode, as reported irv], that
causes the* lateral tower also to be excited by variations in thrust éstd=or the two other inputs: changes in collective
pitch angles and mean wind speed, the componBhpts. andB..; g both increase with wind speed, showing that the
lateral tower mode has increasing influence on the genespt®d response in response to excitation with these inputs.
This observation can be explained by higher variationsrinsthforces from collective pitching and changes in meardwin
speed as the wind speed increases, due to higher relativeities and can also be explained by the longitudinal tower
motion in thel® lateral tower modes at high wind speed, causing higheragiait of the lateral tower mode.

Figure 15 row b) shows the variation of the componeis ; , andB,.; s for the 1*' longitudinal tower mode. For
generator torque inputs these two components are closeracbetow 11 m/s, whereas above 11 m/s the components
increase with wind speed. The generator torque input exttieelongitudinal tower mode mainly through changes ingthru
forces caused by changes in relative velocities at the blatien the rotor speed changes. The increasing pitch amgias f
11 m/s cause these changes in thrust to increase with wired spéso for collective pitch and mean wind speed inputs, the
component®..;, » andB..; s increase with wind speed, because of the higher changesist tissociated with collective
pitching and changes in mean wind speed. The dashed bladledmdirves in row b) in Figur&5 shows the input to the
1% longitudinal tower mode for a turbine with rigid lateral tewyrigid drivetrain and rotor and quasi-steady aerodygami
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Figure 15. Components of the reduced-order input matrix B,. ; corresponding to excitation of the 1% lateral tower mode (row a), the

15t longitudinal tower mode (row b) and the 1% drivetrain mode (row c) for the NREL 5 MW wind turbine in normal operation at wind

speeds from 5 m/s to 25 m/s equidistant with 0.5 m/s. Comparison between B,. ; for a fully flexible turbine including quasi-steady

aerodynamics and a turbine with rigid lateral tower, drivetrain and rotor and quasi-steady aerodynamics (dashed curves). The three
columns shows components for generator torque, collective pitch and mean wind speed inputs.

For this simplified model the inputs are smaller than for dyfélexible turbine, especially at high wind speeds. This
observation can be explained by the fact thatithéongitudinal tower mode couples with collective flap motgrch that

the aerodynamic damping of the longitudinal tower modevgelothan for a rigid rotor. This lower aerodynamic damping
of the 1% longitudinal tower mode cause the tower vibrations to bgdaand thereby cause larger changes in the rotor
speed, through the aeroelastic coupling between longididower vibration and the rotor speed through changesen th

aerodynamic rotor torque.
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Figure 15 row c) showsB,.; . andB,.; 5 corresponding to thé® torsional drivetrain mode. For generator torque
inputs, both of the components are see to vary smoothly witid wpeed. For collective pitch inputs, the magnitude
increase similar to the static flap deflection of the bladesabse thd*® drivetrain mode is excited by pitching inertia
forces as described il 7]. For wind speed inputs, both components increase with wiped, which can be explained by
the larger pitch angles causing larger variations in thedyeramic rotor torque when the mean wind speed changes.

5. CONCLUSIONS

In this paper, linear aeroelastic low-order wind turbinedels are designed by order reduction of a high-order moda! of
modern pitch-regulated wind turbine. Order reduction isedby modal truncation using aeroelastic mode shapes peddic
by a high-order model, which is a linearization of a geoneatty nonlinear finite beam element model of tower, drivietra
and blades coupled with an unsteady Blade Element MomerBEiM] model of aerodynamic forces including effects of
shed vorticity and dynamic stall.

The main findings are that a relatively large number of aanadyically dominated modes must be included to provide
good approximation of the frequency response of e.g. thid-ligdy rotor rotation mode and thé' longitudinal tower
mode, which is due to the assumption in the BEM model of nowjmmaerodynamic coupling of unsteady aerodynamic
forces on the blades. Reduced-order models are subsegdesitined under assumption of quasi-steady aerodynandcs a
it is shown how the frequency response functions prediciéidtive high-order model with quasi-steady aerodynamies ar
gradually approximated by increasing the number of modésemeduced-order model. Good approximation is achieved
up to the frequency of th2" drivetrain torsional mode from 8™ order state-space model including the rigid-body rotor
mode, thel® longitudinal and lateral tower modes, th& and 2™ collective flap modes and the' and 2™ drivetrain
modes. By using a convenient normalization of the eigelveatf the modes used in the model, the system matrices of
the reduced-order models are shown to be suited for paraat@in with operating point and therefore suited for dasig
of gain-scheduling controllers.
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Abstract— Linear aeroelastic models used for stability anal-
ysis of wind turbines are commonly of very high order. These
high-order models are generally not suitable for control analysis
and synthesis. This paper presents a methodology to obtain a
reduced-order linear parameter varying (LPV) model from a
set of high-order linear time invariant (LTI) models. Firstly,
the high-order LTI models are locally approximated using
modal and balanced truncation and residualization. Then, an
appropriate coordinate transformation is applied to allow inter-
polation of the model matrices between points on the parameter
space. The obtained LPV model is of suitable size for designing
modern gain-scheduling controllers based on recently developed
LPYV control design techniques. Results are thoroughly assessed
on a set of industrial wind turbine models generated by the
recently developed aeroelastic code HAWCStab2.

I. INTRODUCTION

Linear aeroelastic models used for stability analysis of
wind turbines are commonly of very high order. Multibody
dynamics coupled with unsteady aerodynamics (e.g. dynamic
stall) are among the recently developments in wind turbine
aeroelasticity [1]. The resulting models contains hundreds or
even thousands of flexible modes and aerodynamic delays.
In order to synthesize wind turbine controllers, a common
practice is to obtain linear time-invariant (LTT) models from
a nonlinear model for different operating points. Modern
control analysis and synthesis tools are inefficient for such
high-order dynamical systems; reducing the model size is
crucial to analyze and synthesize model-based controllers.

Model-based control of wind turbines has been extensively
researched during the last decade [2]. The linear parameter
varying (LPV) framework shown to be suitable to cope, in
a systematic manner, with the inherent varying dynamics
of a wind turbine over the operating envelope [3], [4], [5].
Wind turbine LPV models are usually simple, first-principles
based, often neglecting dynamics related to aerodynamic
phenomena and some structural modes. This in turn restricted
LPV control of wind turbines to the academic environment
only. A procedure to encapsulate high-fidelity dynamics of
wind turbines as an LPV system would be beneficial to
facilitate industrial use of LPV control.

This paper presents a procedure to obtain a reduced-
order LPV wind turbine model from a set of high-order
LTI models. Firstly, the high-order LTI models are locally

*This work is supported by Vestas Wind Systems A/S under the scope
of Vestas Control Programme at Aalborg University.

'Dept. of Electronic Systems, Aalborg University, 9220-DK Aalborg,
Denmark fda, jakob at es.aau.dk

2Dept. of Wind Energy, Technical University of Denmark, 2000-DK,
Roskilde, Denmark ivsg, mhha at dtu.dk

approximated using modal and balanced truncation and resid-
ualization. Then, an appropriate manipulation of the coordi-
nate system is applied to allow interpolation of the model
matrices between points of the parameter space. The obtained
LPV model is of suitable size for synthesizing modern gain-
scheduling controllers based on the recent advances on LPV
control design. Time propagation of the varying parameter is
not explicitly utilized. Therefore, the procedure assumes that
the varying parameter do not vary excessively fast in time, in
line with common practices in gain-scheduling control [6].
Results are thoroughly assessed on a set of industrial wind
turbine models derived by the recently developed aeroelastic
code HAWCStab2.

This paper is organized as follows. The modeling princi-
ples of the high-order LTI wind turbine models are exposed
in Section II. Section III is devoted to present the proposed
method. Section IV brings a numerical example along with
results. Conclusions and future work are discussed in Section
V.

II. WIND TURBINE MODEL

A nonlinear high-fidelity aeroelastic model is the starting
point of the modeling procedure. The wind turbine struc-
ture is modeled with nonlinear kinematics based on co-
rotational Timoshenko elements. Aerodynamics are modeled
with Blade Element Momentum (BEM) coupled with un-
steady aerodynamics based of shed-vorticity and dynamic
stall. Linearization is performed analytically around a steady
operational state for a given mean wind speed, rotor speed
and collective pitch angle. Hansen [7] gives a more com-
plete description of the linear aeroelastic model for an
isolated blade. Two main equations of motion, one related
to structural dynamics and another related to aerodynamics
contitutes the LTI model

Ms(t) + (C+ G+ Cq) Gs(t) + (K + Ky + Ky u(2)
+Apxa(t) = F(t) (D)
Xa(l‘) +Adxa(t) +Csa‘}s(t) + Ksa‘]s(t) = Fa(f)

where g, are the elastic and bearing degrees of freedom,
x, are aerodynamic state variables, M is the structural mass
matrix, C the structural damping matrix (Rayleigh), G the
gyroscopic matrix, C, is the aerodynamic damping matrix,
K the elastic stiffness matrix, Ky the geometric stiffness
matrix, K, the aerodynamic stiffness matrix, Ay is the
coupling of the structure to aerodynamic states, A, represents
aerodynamic time lags, Cy, and Ky, are coupling matrices to


ivsq
Rectangle

ivsq
Rectangle


structural states. F; and F;, represent forces due to actuators
and wind disturbance. The equations in first order form are

(2a)

u(t)=[Q:(1) () V(D]
(2b)
where the controllable inputs are the generator torque Q,
and collective pitch angle f, and V is the uniform wind
speed disturbance input. The model outputs considered here
are the generator angular velocity Q and tower top lateral
displacement g. The first output is usually measured and feed
to a speed controller that manipulates the pitch angle 3. The
second output can be utilized for lateral tower load mitigation
by generator torque control [?]. The aeroelastic tool offers
the possibility to select other inputs and ouputs, but we limit
to the ones just mentioned to clearly expose the results.

(1) = [xlt) as(t) 4(0)]"

III. REDUCED ORDER LPV MODEL

Consider N; stable multiple-input multiple-output (MIMO)
LTI dynamical systems (2) of order n corresponding to
parameter values 00, i=1,2,...,N,,

S - X,’([) :Aixi(l) JrB,‘u(l)
Y (1) = Cixi(t) + Diut)

where A; € R, B; € RV, C; € RY*", D; € R,
We seek a reduced-order parameterized model S(0) of order
r < n which approximates S;,

5(6): {X:A(O)x(t)-i-B(B)u ) @

y(t) = C(0)x(t) +D(6)ul(t)

where A(0) € R™", B(6) e R, C(0) € R, D(0) €
R™>™ are continuous functions of a vector of varying pa-
rameters 6 := [0y, 65,...,6y,] T The dynamics of the origi-
nal system S; and the approximated system S(0) are assumed
to evolve smoothly with respect to () and 6, respectively.
The parameter 6 may represent the current operating point. It
also may describe deviations on aerodynamics and structural
properties for the sake of parametric model uncertainties.
Plant parameters to be designed under an integrated plant-
controller synthesis scheme could also be parameterized.

Variation in aerodynamic forces under structural vibration
contributes significantly to changes in natural frequencies
and damping of some structural modes. A specific procedure
that takes these particularities into account is proposed here.
A flowchart containing the required steps is depicted in Fig.
1.

Known methods for model reduction constitutes the pro-
posed scheme and are briefly explained in the sequel, in the
context of our application. Consult the survey of [8] for a
more comprehensive exposure on model reduction.

| Original LTI Models

oy
Modal
Truncation
Model
Reduction l
Balanced
Truncation
i Reduced LTI Models
Modal Sorting
Consistency &
Interpolation
Coordinate
Transform
Interpolation
|

l LPV Model

Fig. 1. Scheme overview.

A. Model Reduction

A reduced order model is commonly obtained by trunca-
tion of appropriate states. Let the state vector x; be partitioned
into x; := [x,; x:;]7 where x,; is the vector of retained states
and x;; is the vector of truncated states. The original system

is partitioned accordingly
xr.i(t) Ari Ay xr.i(t) B,
SO =1 o I I sl R71(
[xm‘(t)] |:Atr,i At Xt,i(f) B; i ®)
_Ic.. J |Xri (1)
y= [Cm Ctﬁl] |:xt,i(t):| +Du(t)
and the reduced model is simply given by the state-space
equation of the retained states

&)

Xri = Arr.ixi(t) + Br,iu(l)y

()
y= Cnix,,,- +Du([) ©

If the original model is a stable system so is its trun-
cated counterpart. While truncation tends to produce a good
approximation in the frequency domain, the zero frequency
gains (DC gains) are not guaranteed to match. This can be
of particular importance in a wind turbine model because
some aerodynamic states may not influence the transient
behaviour but can contribute significantly to low frequency
gains. Matching DC gains can be enforced by a model
residualization method by setting the derivative of x; ; to zero
in (5) and solving the resulting equation for x,;. After trivial
manipulations, the reduced model is given by

i = (A — AnAy ' Ay] Xri+ [Br — AnAy ' By u(t)
y=[Cr—GA, A xi+ [D—GA, B, u(t)

Note that A ; is assumed invertible for (7) to hold.
Residualization is performed in both modal and balanced
reduction steps.

1) Modal Truncation: Due to size and numerical prop-
erties associated with large size systems and low damped
dynamics, most model reduction algorithms based on Hankel
singular values fail to produce a good reduced model. In

(7
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order to start the reduction process, the original model is
truncated to an intermediate size for subsequent reduction in
a more accurate way. In modal form the system is put into a
modal realization before states are truncated [9]. The modal
form realization has the state matrix A is in block diagonal
form with either 1 x 1 or 2 x 2 blocks when the eigenvalue is
real or complex, respectively. Let system S; be represented
in modal form,

Smil

3

{xz((t) = Am,ixm,i(t) + Bm,iu(t) (88.)

y l‘) = Cm,,'xmﬂ-(t) +Dm_,,-u(t)

Ap,i = diag(Ap ki),

Ak = —ei,; for real eigenvalues,
_E . . _E2
Apii= { Ek.i i . wk,zm for complex eigen.
a)kjm — &1 O i
Bm,l,i
Bm.2,i
Bm.i = . y Cm,i = [Cm,l,i Cm,2,i Cm,k,i]
Bk
i=1,...;,Ng, k=1,... Ny.

(8b)
where N,, is the number of modes, <§k‘,,- and y; are the
damping ratio and natural frequency of mode k and model i.
The diagonal blocks are usually arranged in ascending order
according to their eigenvalue magnitudes. The magnitude
of a complex eigenvalue is @y; while for a purely real
eigenvalue is ey ;. The retained states are then the ones with
magnitudes smaller than a chosen treshhold @. The interme-
diate model must contain all modes within the frequencies
of interest for control design. A large number of states (300
to 450) is expected at this stage since many modes are of
low frequency.

2) Balanced Truncation: The order of the intermediate
system is further reduced by balanced truncation. In bal-
anced truncation [?] the system is transformed to a bal-
anced realization. A MIMO LTI system of the form (3) is
said to be balanced if, and only if, its controllability and
observability grammians are equal and diagonal, i.e. P, =
Q; =diag(oy,...,0,), where oy,...,0, denotes the Hankel
singular values sorted in decreasing order and matrices P;, Q;
are the controllability and the observability Gramians. The
gramians are solutions of the following Lyapunov equations

AP+ PAT +BB] =0

)
AT Qi+ QA +CICi=0
If this holds, the balanced system is given by
Nt =W AVix, (1) + Wi Biu(r)
byi *
Y\ o(t) = CiVixg () + Diui(t) (10)
i=1,...,N;.

where x, € R", V =UZL /2 and W = LYZ /2, together
with the factorizations P = UUT, Q = LLT and the singular

value decomposition U Tr, =7xyT [10]. This state coordi-
nate equalizes the input-to-state and state-to-output energy
transfers, making the Hankel singular values a measure of
the contribution of each state to the input/output behavior.

Denote Vj(,) and W, the first r columns of V; and W;. The
reduced-order systems S

i=1,...,Ns.

5. {x = Afi(t) + B (t) an

.)El.
$(t) = Ciki(t) + Didii (t)

are obtained by truncation when the projectors V;(,) and
Wi are applied to the intermediate sized model. In words,
the balanced truncation removes the states with low Hankel
singular values, thus not much information about the system
will be lost. When applied to a stable system, balanced
truncation preserves stability and guarantes and an upper
bound on the approximation error in an H. sense [11].
Expected order of the final reduced system is 7 to 20 states.
The choice of the final order depends on the required model
complexity and admissible error between the full and reduced
model.

B. State-Space Consistency & Interpolation

Consider the balanced reduced models $; and put them
in modal form. The first step towards a consistent state-
space representation is to assure that all modes keep their
positions in the state matrix throughout the parameter space.
The second step to a consistent state-space is to ensure that
values of the entries of the system matrices change smoothly
between each LTI system. At this point, the system matri-
ces cannot be readily interpolated because the modal and
balanced similarity transformations applied to the original
system are not unique. One could think of interpolating the
system in modal form. Indeed, the state matrix A is unique
up to a permutation of the location of the modes and could
easily be interpolated, but the similarity transformation that
puts the system in modal form is not unique. Therefore,
matrices B and C may have entries with abrupt value changes.
The balanced realization is unique up to a sign change and
consequently abrubt sign changes in the system matrices may
occur from one LTI system to another. As suggested by [12],
these issues can be corrected by properly changing the sign
of the correspondent eigenvectors.

Istead of correcting the eigenvectors before similarity
transformations, we propose to transform the reduced order
LTT systems into a representation based on the companion
canonical form. No unique canonical form for multivari-
able systems is known to exist [13]. However, there exist
algorithms which, for a system under arbitrary similarity
transformation, find a unique companion form [14]. One
algorithm with such properties is implemented in the function
canon of MATLAB. The companion form is poorly con-
ditioned for most state-space computations [15]. In order
to avoid numerical issues, each mode k of the reduced
system in modal coordinates is transformed into a companion
realization. The system matrices of this particular realization
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are

B,
. Bc,Z,i
Ac,i = dlag(Ac,k,i)a Bc,i = . )
Bc,k,i
Cei= [Cc,l,i Cep,i Cc,k,i] ;
Acki = —ax,
Beri= |1 bigi bnu,l‘k,,} for real eigenvalues,
Clki
Cc,k,i =
Cny—1.k,i
Y
|0 —agin
Ac,k,i - 3
I —ag>
0 brigi Diny—1 ki :
Beri= o BB for complex eigen.
1 bogi bon, ki
Cl1k,i Clrk,i
Cc,k,i
| CnyLk,i Cnyrk,i
i=1,....N;, k=1,...,Np.

(12)
The characteristic polynomial of each mode appears in
the rightmost column of the matrix A.;. The entries of
Acki» Bex,i and C.y; may be easily checked for possible
inconsistencies of a particular mode, by detecting abrupt
value changes between LTI systems. The state-space matrices
are now at a realization suitable for interpolation. Let z(0) be
one matrix entry, function of 8. We focus on the polynomial
dependence

Np
2(6) = Y. mepi(6) (13)
k=1
where py is a set of multivariate polynomials on the parame-
ters 6y,..., 0y, and 1y are coefficients to be determined. Let
z; be the values of a matrix element for i = 1,...,N,. Define
the following matrices

pl(g(l)) pr(g(l))
H=| = -~ i |=[A Pyy]
(M) py, (0%
7l = [Zl ZNA:I , I = [771 . --TIN,,] .
(14)

A linear least squares fit minimizes the quadratic error
between z(0") and z;, i =1,..., N
I =arg ml_in(Z—HF)T(Z—HI‘) (15)

The optimal I'* is determined by initialy computing a
singular value decomposition of H

TE¥! = svd(H) (16)

With the decomposition at hand, the solution to the linear
least squares problem is given by

=¥’z (17)

where Z7 stands for the Moore-Penrose pseudoinverse of

. Repeating the above procedure for each matrix entry

results in the polynomial approximations of the matrices

A(6), B(0), C(6), D(0) that can be used for subsequent
analysis and design of controllers.

IV. NUMERICAL EXAMPLE

In this section, the proposed procedure is applied to the
NREL 5MW reference wind turbine model [16]. The aim
is to find an LPV model encapsulating the wind turbine
dynamics operating at the full load region. Large scale
MIMO LTI models with 877 states are computed by the
aeroelastic code HAWCStab2 for wind speeds equidistant
1 m/s (8% € {12,13,...,25}). The model is parameterized
by the mean wind speed 0 := V. A fifth-order polynomial
dependence of the LPV system matrices

[A(G)

By pa
c(8) DJ 67 (8

B(0)] [Ao Bo] , v [Aa
D(G):| o |:C0 D():| + Z |:Cd
gives a fair trade-off between interpolation accuracy and
polynomial order. Due to the different units of inputs and
outputs, the LTI systems should be suitably normalized
before the order is reduced. Parameter-independent scales
are applied to all LTI models such that expected signal
excursions are normalized to 1. The generator torque input
was scaled to 5% of the rated torque. The pitch angle input
and wind speed input remained unscaled. The rotor angular
velocity is scaled to the maximum excursion desired in
closed-loop, 5 % of its nominal value. The lateral tower top
displacement was scaled with the H.-norm of the inputs to
this output channel.

Bode plots of the original, intermediate and final reduced
order models for an operating point O = 15 m/s are depicted
in Fig. 2. The intermediate model with 410 states resulted
from modal truncation and residualization of the original
system. A balanced truncation with residualization further
reduced the size to 14 states. The magnitude plots have
an excellent agreement in the frequencies of interest. The
residualization in both steps assisted to a better fit of the
low frequency content of the tower displacement output.

The balanced realization “misses” a low frequency anti-
ressonance related to the transfer function from wind speed
input to tower displacement output. Notice the differences
in magnitude and more pronouncedtly phase around 1072
Hz. However, this anti-ressonance does not contribute signif-
icantly to the input-output behaviour of the MIMO system. A
comparison of the minimum and maximum singular values
is depicted in Fig. 3 and shows an excellent agreement.


ivsq
Rectangle

ivsq
Rectangle


Gen. Torque Q Pitch Angle 3 Wind Speed V 20
10 10 10
0 N 0 N
o -10 -10 o
% 20 A -20 ™~ | |
@ -30 -30) 0 AN | i
£ a0 1 40 o N
= ~~Orig. (877 states) L . A N ‘
= 50 Ul -0 e @ -10¢ . | \ A
—— Interm. (410 states) B A 4} — — —Orig. (877 states) JUAN A
60 Final (14 states) |80 ! 3 N R AR
70 5o . 70 . S gl — — Interm. (410 states) AN / RIS
10°  10° 10" 120" 100 100 107 100 10 10" 107 107 100 10" 10 8 Final (14 states) LN R
10 20 20 3 inal (14 states M Ny v
| £ 30t '\ [V
. | 0 0 | ] / o\ f Ny
= -10 | 20| i /N RN
7 / / |
2 1 B /\ -40 o N / YoM
20 f 1 -0 \ s Sy !
e I p no- ‘
S -0 N\ S M -60 ) 5o i
£ AN / o <
& ' — ~7 W =
-50 -100 \ { ] ~60 — - = =
60 120 120 10 10" 10 10
10°  10° 10" 120" 10' T10° 107 10t 10°  10' 100 107 100 10" 10 Frequency (Hz)
Frequency [Hz]
(a) Magnitude Fig. 3. Singular values of the original, intermediate and final reduced order
models for a mean wind speed of 15 m/s.
Gen. Torque Q Pitch Angle 3 Wind Speed V
100, 7 70
7y
. [ y Gen. Torque Q Pitch Angle 3 Wind Speed V
T 5 [ \‘ 68 ) 0. .
=] { | | —\
= o . 66 \ 03] A — Orig. (877 states)
< I i? i o0 ™ | 0.25 o O, —ImrmL (410 st n)w N
g o I L 64 L c o Y . states 05 \
i | b \ | T 02 W ~ Final (14 states) -0
© b | I ——-Orig. (877 states) | /| o - 2 om W 08 RN
3 -50 . -~ Interm. (410 states) ! 4 fh o \
= N Final (14 60 b g oy N, -15
. inal (14 states) 2 ool .
-100 : 15| T 9 S
10° 107 10" 107 10t 100 100100 207 100 10° 10t 0[“ - —_—
e ! 005 5 10 15 20 0 5 10 15 20 2% 5 10 15 20
L N . 0.02, 0.02, ~
— l 75 7’7 — P o AN
| P hhD I
\ 74 ™ AN {\v !‘1 [ [11 % l'/\. Al I [l ;{
| \ I Il Vo IR
| | I I
k \ U A
— 7 ; IRERN oA ]
| 65 ) IRERERN | AEREREE
| A P VAL
| 72 / |00 \o \'
y )Y Y
7 60 VU Vo
= =3 =1 5 LA =3 = 5 1603 = = 5 . ~
10 10 10 10 10° 107 10 10° 10" 10 10 10 10 10 o 5 207°% 5 TR TI—
Frequency [Hz] i |
(b) Phase

Fig. 2. Bode plots of the original, intermediate and final reduced order
models for a mean wind speed of 15 m/s.

Step responses of the original, intermediate and final
reduced order models for a mean wind speed of 15 m/s are
depicted in Fig. 4. Except for some high frequency content
in the signal from generator torque to tower position, the
responses are identical.

The location of the poles of the LPV system for a 2N;
grid of equidistant operating points is illustrated in Fig. 5.
The arrows indicate how the poles move for increasing mean
wind speeds. A smooth evolution of the poles along the full
load region is noticeable.

The relative difference of the Hankel singular values of
the interpolated LPV system and the reduced order system
defined as

_ Gint,r.,i - c;r,i

Orel,ri = x 100, i=1,...,N; (19)

ni
serves as a measure of the quality of the interpolation. A
good fit can be corroborated by some metrics of G, ,; given
in Tab. I. The mean difference in the Hankel singular values
is only 0.27% and the maximum difference just 2.75%.

V. CONCLUSION & FUTURE WORK

This paper presents a procedure to obtain a reduced-order
LPV model of a wind turbine from a set of high-order

Fig. 4. Step responses of the original, intermediate and final reduced order
models for a mean wind speed of 15 m/s.

LTI models. Finding ways to encapsulate high-fidelity LTI
aeroelastic models as an LPV system is an important step to
increase the utilization of recent advances in LPV control by
the wind turbine industry. The proposed procedure starts by
model reduction of the high-order LTI systems at different
values of the parameter space. Manipulations of the state-
space coordinates follows, in order to arrive at low-order
consistent LTI systems for subsequent interpolation. The
reduced-order LPV system has a suitable size for analysis
and synthesis of controllers and presents smoothly varying
dynamics along the scheduling parameter range.

A subject for future work is to initially interpolate the
set of high-order LTI models and later apply an appropriate
reduction method to realize a reduced order LPV model.
Preserving structure reduction methods applied directly in
the second order vector equations of motion in an interest-
ing topic to be studied. Model complexity versus required
polynomial degree and a comparison with models obtained
by first-principles is also subject of future work.
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