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Abstract 

Contamination of soils and groundwater keep attracting attention of worldwide. The 

contaminants of concern include a wide range of toxic pollutants such as heavy metals, 

radionuclides, and organic compounds. The environment and humans are exposed to these 

pollutants through different exposure pathways to unacceptable dosages, leading to intolerable 

adverse effects on both public health and the environment. In the last decades, soil and water 

remediation have gained growing awareness, as the necessity becomes clearer for development of 

such techniques for elimination of the negative impact from the contamination on human health and 

land use.  

Electrochemical remediation has been recognized as a promising group of technologies for 

remediation of contaminated sites, leading to several research programs worldwide for the 

development. Electrochemical remediation is also synonymously referred to as electrokinetics, 

electrokinetic remediation, electroremediation or electroreclamation. Electrochemical remediation 

technologies are part of a broader class of technologies known as direct current technologies. The 

techniques utilize the transport processes obtained by application of the electric DC field: transport 

of water (electroosmosis) and ions (electromigration), with electromigration being the most 

important transport process when treating heavy metal contaminated soils. 

Electrodialytic remediation (EDR), one of the enhanced electrochemical remediation techniques, 

is developed at the Technical University of Denmark in the early 1990s and aims at removal of 

heavy metals from contaminated soils. The electrodialytic remediation method differs from the 

electrokinetic remediation methods in the use of ion exchange membranes for separation of the soil 

and the processing solutions in the electrode compartments. Therefore no current is wasted for 

carrying ions from one electrode compartment to the other. 
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The EDR technique has been tested for decontamination of a variety of different heavy metal 

polluted particulate materials: mine tailings, soil, different types of fly ashes, sewage sludge, 

freshwater sediments and harbor sediments. In previous works including both lab and pilot scale 

experiments, this technique has demonstrated effective removal of heavy metals from all the 

contaminated materials. In the PhD project, the focus turns to energy saving aspect of EDR which 

influencing costs and thus the applicability for remediation beyond bench and pilot scale. 

The overall aim of the present PhD study is to clarify and understand the underlying mechanisms 

of the effect of pulse current on energy consumption and removal of heavy metals during 

electrodialytic soil remediation. Series of experiments with constant and pulse current in two 

different industrially polluted soils were conducted. 

Results showed that the pulse current gave positive effect in relation to energy saving and 

improvement of removal of heavy metals during EDR. The positive effect was related to 

enhancement of the acidification process, increasing the electric conductivity in soil pore fluid, and 

diminishing the polarization process of membranes and soil particles. The efficacy of pulse current 

was found dependent on applied current density, soil buffering capacity, and applied pulse 

frequency. In stationary EDR, the efficacy of pulse current was more significant at higher current 

densities, higher buffering capacities, and lower pulse frequencies (i.e. adequate relaxation time 

with respect to the current “ON” time). On the contrary in suspended EDR, higher pulse frequency 

was preferred, and the difference was due to the different transport process of ions between 

stationary and suspended EDR. The major energy was consumed by the fouling of cation exchange 

membrane in stationary EDR, whereas major energy consumption was found in soil suspension in 

suspended EDR. Compared with stationary EDR (maximum 70% energy saving), less energy was 

saved (maximum 33%) in suspended EDR, even with higher applied current densities. 
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Although it was demonstrated that the pulse current is a possible way to decrease the energy 

consumption and increase the removal efficiency of heavy metals during EDR, long-term tests are 

still needed in future research to evaluate the possible decay of the enhancing effect induced by 

pulse current as a function of remediation time. Although the influences of applied current density 

and soil buffering capacity on pulse current were investigated, the test range of current density and 

buffering capacity was relatively narrow; therefore more experiments are needed to make the 

conclusions more general. Moreover, clarification on the redistribution of ionic species in the soil 

pore fluid and interaction between ions and soil particles at the relaxation period are also needed for 

fundamental understanding the mechanisms related to pulse current. 
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Sammendrag 

Forurening af jord og grundvand tiltrækker til stadighed opmærksomhed verden over. De 

forskellige typer af forurening, som giver bekymring, inkluderer en lang række toksiske 

forbindelser så som tungmetaller, radioaktive stoffer og organiske forbindelser. Miljøet og 

mennesker eksponeres for disse forureninger gennem forskellige eksponeringsveje og i uacceptabelt 

høje doser, hvilket leder til uacceptable, uønskede bivirkninger på både folkesundhed og miljøet. I 

de seneste årtier har jord og grundvandsrensning fået stigende opmærksomhed i takt med at det 

tydeliggøres, at der er behov for disse teknikker for at eliminere den negative effekt fra forureninger.  

Elektrokemisk rensning er generelt anerkendt som en lovende gruppe af teknikker til rensning af 

forurenede arealer, hvilket har ledt til flere forskningsarbejder verden over til udvikling af disse 

teknikker. Elektrokemisk jordrensning har flere navne, som anvendes synonymt; elektrokinetisk 

jordrensning, electro-remediering eller electroreclamation. De elektrokemiske rensningsteknologier 

er en del af en større gruppe af teknologier kendt som jævnstrømsteknologier. Elektrokemisk 

jordrensning bygger på de transportprocesser, som opnås når jorden påtrykkes et elektrisk 

jævnstrømsfelt: transport af vand (elektroosmose) og ioner (elektromigration), og af disse er 

elektromigration den væsentligste transportproces i forbindelse med tungmetalforurenet jord. 

Elektrodialytisk jordrensning (EDR) er en af de udbyggede elektrokemiske jordrensningsmetoder. 

Den er udviklet på Danmarks Tekniske Universitet i starten af 1990erne med det formål at fjerne 

tungmetaller fra forurenet jord. Den elektrodialytiske jordrensningsmetode adskiller sig fra de 

øvrige ved at ionbyttermembraner adskiller jord og procesvæsker i elektrodekamrene, hvilket 

betyder, at der ikke spildes strøm på at bære harmøse ioner fra det ene elektrodekammer til det 

andet. 

EDR er blevet testet til tungmetalfjernelse fra en lang række forskellige partikulære materialer: 

jord, mineaffald, forskellige typer af flyveasker, spildevandsslam, ferskvandssedimenter og 
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havnesedimenter. I alle tilfælde har teknikken vist sig effektiv til tungmetalfjernelsen, og det gælder 

både de forsøg, som er udført i laboratorieskala og pilotskala. Dette PhD projekt fokuserer på 

energibesparende aspekter i relation til EDR, idet disse er væsentlige for den overordnede 

behandlingspris, når metoden anvendes i fuldskala.  

Det overordnede formål med PhD projektet var at klarlægge effekten af pulserende strøm på 

energiforbrug og tungmetalfjernelse, og samtidig forstå baggrunden for herfor. Arbejdet er 

eksperimentelt baseret og bygger på serier af eksperimenter med pulserende og konstant strøm med 

to forskellige industrielt forurenede jorde. 

Det eksperimentelle arbejde viste, at den pulserende strøm havde en positiv effekt i relation til 

både mindre energiforbrug og forbedret fjernelse af tungmetaller under EDR. De positive effekter 

var relateret til forbedring af forsuringen af jorden under processen, øget elektrisk ledningsevne i 

jordvæsken og reduktion af polarisationsprocesser ved membraner og jordpartikler. 

Virkningen af pulserende strøm blev fundet afhængig af den påtrykte strømtæthed, jordens 

bufferkapacitet og den anvendte puls. I stationær EDR var effekten af den pulserende strøm større 

ved høj strømtæthed, høj bufferkapacitet og lav puls frekvens (dvs. tilstrækkelig tid uden strøm i 

forhold til tid med strøm). Modsat blev det fundet for EDR på suspenderet jord, at høj puls frekvens 

gav det bedste resultat. Forskellen var pga. de forskellige transportprocesser i de to opstillinger. Den 

største elektriske modstand lå over kationbyttermembranen i stationær EDR (pga. udfældninger), 

medens det var suspensionen af jord, som gav den højeste modstand i suspenderet EDR. I 

sammenligning med stationær EDR, hvor energiforbruget blev reduceret med op til 70%, var 

energibesparelsen mindre for suspenderet EDR, hvor der blev sparet op til 33% ved den højeste 

påtrykte strømtæthed. 

De opnåede resultater blev fundet gennem relativt korte forsøg, og videre forskning må klarlægge 

effekten af den pulserende strøm over hele rensningsperioden. Forsøgsfeltet, i forhold til 
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strømtæthed og jordens bufferkapacitet, var relativt smalt, og flere eksperimenter er nødvendige for 

at kunne generalisere konklusionerne. Yderligere skal fremtidig forskning klarlægge omfordelingen 

af ionforbindelser i porevæsken og interaktionen mellem ioner og jordpartikler i perioder uden 

strøm, for at opnå en fundamental forståelse for effekterne af den pulserende strøm på 

partikelniveau. 
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1. Introduction 

 

1.1 Electrokinetic and electrodialytic soil remediation 

 

Many toxic chemicals like heavy metals and persistent organic pollutants have been released to 

the environment by industrial activities, due to accidental spills or improper management. It 

resulted in many contaminated sites all over the world. Soil, sediment, and groundwater 

contamination has been a major problem at these polluted sites, which need urgent remediation to 

protect public health and the environment. The absence of a specific technology solution has 

increased the interest in finding new and innovative techniques for the efficient removal of 

contaminants from soils to solve groundwater, as well as soil pollution (Shackelford and Jefferis, 

2000). 

Several different technologies have been developed to remediate soils, sediments, and 

groundwater based on physicochemical, thermal, and biological principles (Sharma and Reddy, 

2004). However, they are often found to be costly, energy intensive, ineffective, and could 

themselves create other adverse environmental impacts when dealing with difficult subsurface and 

contaminant conditions. For instance, inadequate remediation has been demonstrated at numerous 

polluted sites (Reddy and Cameselle, 2009) due to the presence of low permeability and 

heterogeneities and/or contaminant mixtures (multiple contaminants or combinations of different 

contaminant types such as coexisting heavy metals and organic pollutants). Electrochemical 

remediation has been recognized as a promising technology for effective and efficient pollution 

remediation, both on their own and in concert with other remediation techniques, leading to several 

research programs worldwide for the development of this technology. 
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Electrochemical remediation is also referred to as electrokinetics, electrokinetic remediation, 

electroremediation, electroreclamation, and other such terms in published literature (Reddy and 

Cameselle, 2009). Electrochemical remediation technologies are part of a broader class of 

technologies known as direct or alternate current technologies. Electrokinetics includes transport of 

water (electroosmosis) and ions (electromigration) as a result of an applied electric field with 

electromigration the more common application for treating metal-contaminated soils (Athmer and 

Ho, 2009). The first field-scale application of electrokinetics for soil remediation was carried out by 

Geokinetics in 1987 (Lageman, 1993). Similar techniques were previously reported as used in the 

former Soviet Union since the early 1970’s to concentrate metals and explore for minerals in deep 

soils (USEPA, 1997). Electrokinetic techniques have an extended history in development for 

treatment of clay soils since their introduction as a construction technique in 1939 (Glendinning et 

al., 2007). For these applications, electrokinetics is defined as the application or induction of an 

electrical potential difference across a soil mass containing fluid or a high fluid content 

slurry/suspension, causing or caused by the motion of electricity, charged soil and/or fluid particles. 

A typical field electrochemical remediation system is shown in Figure 1.  

 
Figure 1: Schematic of implementation of in situ electrochemical remediation systems (Reddy and 
Cameselle, 2009). 
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Wells/drains are configured and drilled to surround a contaminated region. Electrodes are then 

inserted into each well/drain and a low direct current (DC) or a low potential gradient to electrodes 

is applied. As a result of the applied electric field several transport, transfer, and transformation 

processes are induced which cause contaminants to be transported into the electrodes where they 

can be removed. Alternatively, contaminants are stabilised/immobilised or degraded within the 

contaminated media. Several patents have been issued that deal with using electrochemical 

remediation in different creative ways. When water alone is used at the electrodes the process is 

known as unenhanced electrochemical remediation. When enhancement strategies (i.e. use of 

conditioning solutions and ion exchange membranes at the electrodes) are used, the process is 

known as enhanced electrochemical remediation. 

Electrodialytic remediation (EDR), one of the enhanced electrochemical remediation techniques, 

is developed at the Technical University of Denmark in the early 1990s and aims at removal of 

heavy metals from contaminated soils (Ottosen, 1995). The main purpose for using ion exchange 

membranes is that ions are hindered in entering the soil from the electrode compartments. Therefore 

no current is wasted for carrying ions from one electrode compartment to the other (Ottosen, 1997). 

Generally, ion exchange membranes are classified  into anion exchange membranes and cation 

exchange membranes depending on the type of ionic groups attached to the membrane matrix. 

Cation exchange membranes contains negatively charged groups, such as –SO3−, –COO−, –PO32−,

–PO3H−, –C6H4O−, etc., fixed  to the membrane backbone and allow the passage of cations but 

reject anions. While anion exchange membranes contains positively charged groups, such as –NH3+, 

–NRH2
+, –NR2H+, –NR3

+, –PR3
+,–SR2

+, (R = –NHCOO(CH2CH2O)nCONH–) etc., fixed  to the 

membrane backbone and allow the passage of anions but reject cations (Xu, 2005). According to 

the connection way of charge groups to the matrix or their chemical structure, ion exchange 

membranes can be further classified into homogenous and heterogeneous membranes, in which the 
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charged groups are chemically bonded to or physically mixed with the membrane matrix, 

respectively. However, most of the practical ion exchange membranes are rather homogenous and 

composed of either hydrocarbon or fluorocarbon polymer films hosting the ionic groups (Xu, 2005). 

The principle of laboratory EDR cells is shown in Figure 2. 

 
 
Figure 2. Schematic diagram of the laboratory cells for electrodialytic soil remediation 
(CAT=cation exchange membrane, AN=anion exchange membrane, ME=monitoring electrode, and 
letters A, B and C represent the potential drop of different parts). Water dissociation happens at the 
surface of AN both in stationary and suspend EDR. 

1.2 Application of EDR 

 

The EDR technique has been applied for decontamination of mine tailing, harbor sediment, fly 

ash, and soil (Pedersen et al., 2003; Jensen et al., 2007; Kirkelund et al., 2009; Ottosen et al., 2009). 
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In previous works including both lab and pilot scale experiments, this technique has demonstrated 

effective removal of heavy metals from the contaminated materials. 

Mine tailing. Metal sulfide-based mining produces huge amounts of solid waste, where the most 

concerning are the mine tailings. Copper mine tailings have been treated by EDR methods in 

laboratory scale by different investigators (Kim and Kim, 2001; Hansen et al., 2005). Hansen et al. 

(2007) found that produced tailings were much more difficult to remediate than tailings deposited 

more than 30 years ago. The important difference between the two tailing samples was the pH: the 

fresh tailings are approximately neutral, while the old deposited tailings are acidic. This is due to 

the oxidation of pyrite, the main residual mineral in sulfide tailings, which releases protons due to 

the overall reaction (Kontopoulus et al., 1995): 

4FeS2(s) + 15O2 + 14H2O → Fe(OH)3(s) + 8SO4
2− + 16H+                         (1) 

In the old tailings, copper was removed easily from the tailings due to the dissolution of the copper 

sulfides. This corresponds well with the findings from the sequential analysis of these tailings 

(Hansen et al., 2005), where the mobility of copper in old tailings was found to be highest. On the 

other hand, fresh tailings seemed to be difficult to treat without lowering the pH. Both sulfuric and 

citric acids were tested, and the complexing effect of citric acid seemed to enhance the process 

slightly. Hansen et al. (2008) evaluated an enhancement system, including an airlift stirring of 

suspended fresh tailings in dilute sulfuric acid. The tailings were remediated more efficiently in 

suspended EDR than in stationary EDR. Eighty percent of the copper was removed when 

suspending the tailings by airlift during EDR. In contrast, only 15% was removed in stationary EDR 

with similar operation conditions. Initial experiments showed that pH did not seem to be the most 

important parameter for copper removal in suspended tailings. The liquid-to-solid ratio (L/S ratio) 

was analyzed, and in the case of copper mine tailings, a suitable L/S ratio seems to be around 6-9 

ml/g. Furthermore, if no stirring was applied, maintaining the same L/S ratios, no copper removal 
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was observed, indicating that the electric current passes in the stagnant liquid above the settled 

particles. 

Harbor sediment. EDR was tested for remediation of harbor sediments in a number of works 

(Nystrom et al., 2003, 2005; Nystrom et al., 2005a,b; Nystrom et al., 2006; Ottosen et al. 2007), in 

which the potential was documented (Nystrom et al., 2003). Like for soils, remediation was shown 

to be faster for noncalcareous sediments compared to calcareous ones (Nystrom et al., 2005). 

Furthermore, remediation of sediment in suspension was more efficient than remediation of 

sediment in a solid column (Nystrom et al., 2005). It was also shown that the addition of HCl, lactic 

acid, citric acid, NaCl, and ammonium citrate reduced remediation efficiency. The highest removals 

obtained were 67%-87% Cu, 79%-98% Cd, 90%-97% Zn, and 91%-96% Pb regardless of the initial 

heavy metal concentration (Nystrom et al., 2005b). Recently, the potential of using electrochemical 

methods for treatment of freshwater sediments was documented in an electrochemical cell, where 

the metals were transported from the acidified sediment in which carbon rod anodes were placed 

directly, and into the catholyte separated from the sediment by a cellulose filter (Matsumoto et al., 

2007). Removal percentages of 18, 21, 53, 81, 86, and 98 for Pb, Cu, Ni, Cr, and Zn, respectively, 

were obtained after 10 days of treatment at 2.9 mA/cm2. Another work proved that Cu can be 

removed (up to 85% after 14 days with 0.15 mA/cm2) from artificially contaminated lake sediments, 

and that the use of nylon membranes and cation exchange membranes as barriers between sediment 

and cathode improves the treatment (Virkutyte and Sillanpaa, 2007). By means of the 

electrodialytic method also used for treatment of harbor sediments, it was shown that removal of Pb, 

Zn, Cu, Cr, and Ni could be obtained from industrially contaminated millpond sediment, with 

removals of approximately 95%, 85%, 75%, 65%, and 55%, respectively, after 14 days of treatment 

at 0.8 mA/cm2 (Jensen et al., 2007). 
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Fly ash. A serious drawback of MSWI is the production of chemically unstable flue gas 

purification products that are rich in heavy metals. It has been evaluated whether EDR can be used 

for treatment of different fly ashes (Pedersen et al., 2003; Ferreira et al., 2005a; Ferreira et al., 2005; 

Christensen et al., 2006). However, even though the two fly ashes seem comparable overall, there 

are many differences of importance when it comes to EDR. The major difference is that the ashes 

contain a high water soluble fraction (mainly salts), which makes it difficult to treat fly ash in the 

traditional cell. Hansen, Ottosen, and Villumsen (2004) found that about 2/3 wt% straw ash was 

dissolved during electrodialytic treatment, and thus the transference number of the pollutants was 

very low and the process to control was difficult due to the significantly decreasing volume of the 

ash. It proved beneficial to prewash the ash in water to remove the soluble parts before treatment 

(Pedersen, 2003). The advantage is that less current is wasted on the removal of harmless ions and 

the volume loss during treatment is less. Furthermore, by prewashing the residues, the production of 

chlorine gas at the anode was reduced. For the optimization of the process, it was also found to be 

highly beneficial to treat the ash in a stirred suspension as compared with its treatment as water-

saturated matrix (Pedersen, 2003). 

Soil. The electrodialytic removal of Cu from soil polluted from wood preservation industry in 

unenhanced laboratory scale has shown successful (unenhanced here means no addition of 

enhancement solutions to the soil but utilization of the acidic front developing from the anode to aid 

the heavy metal desorption). The best removal percentages reached are 98% from a Danish wood 

preservation soil (Ottosen et al., 1997) and 82% from a Portuguese soil (Ribeiro and Mexia, 1997), 

both obtained with an electrodialytic setup. On the other hand, the success with electrodialytic 

removal of As from soil polluted from wood preservation in un-enhanced systems has been limited, 

e.g. removal of 35% As was obtained in only 1.5 cm in an experiment that lasted for 42 days 

(Ottosen et al., 2000) and 51% As was removed from a Portuguese soil during 35 days (Ribeiro et 
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al., 1998). Desorption of As is highly dependent on both redox potential and pH. The primary forms 

of As in soils are arsenate As(V) and arsenite As(III), and under moderately reducing conditions, 

As(III) is the predominant form whereas at higher redox levels the predominant form is As(V). The 

experiments made so far were conducted in closed laboratory cells and As(III) is expected to be the 

primary form and the main stable species in an reducing environment at neutral to acidic pH is the 

uncharged (H3AsO3) (Cullen and Reimer, 1989) and since it is uncharged it is not mobile with 

electromigration, which may be the major problem in relation to the inefficient As removal. Pb was 

easily dissolved by the acidification resulting from water splitting at the anion exchange membrane 

(Jensen et al., 2007). When higher currents and/or higher L/S ratios were applied, it was found that 

water splitting occurring at the cation-exchange membrane increased the pH, and this resulted in 

decreased remediation efficiency. It was shown that complete remediation of the soil-fines is 

possible, with the majority of the Pb being transported into the catholyte and precipitated at the 

cathode. It was also recommended that EDR is implemented using a number of reactors in series, 

where the initial reactor works at the highest possible removal rate, and the final reactor works at 

the target Pb concentration. 

Electric energy consumption is an important factor for the application of electrochemically based 

remediation techniques. Beyond bench and pilot scale setup, this aspect is very important. Power 

requirement is directly related to the size of the treatment area. Table 1 shows a summary of energy 

consumption of reported pilot-scale electrokinetic experiments. It can be seen that because of the 

difference among soil types and concentrations of metals as well as treatment period, the electric 

energy consumption and removal percentage of soil metals vary significantly from 38 to 2760 kWh 

m-3 (Table 1). 
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Table 1. Summary of energy consumption of reported pilot-scale electrokinetic experiments. 

Reference Soil Volume 
(m3) 

Pollutant 
(mg kg−1) 

Voltage 
drop 

(V m−1) 

Current 
(A m−2) 

Energy 
(kWh m−3) 

Duration 
(h) 

Removal 
percentage 

(%) 

Lageman 
(1993) 

Peat soil 210 

Pb: 300–
5000  
Cu: 500–
1000 

– – 38–65 430 Pb:>70 
Cu: 80 

Clay soil 90 Zn: 2410 20–40 8 160  
kWh t−1 1344 32.8 

Heavy 
clay soil 200 As: 400–

500 20–40 4 – 1560 93 

         
Acar and 

Alshawabkeh 
(1996) 

Kaolinite 0.46 Pb: 856 4.3–193 1.33 220 1300 – 
Kaolinite 0.46 Pb: 1533 18–262 1.33 700 2950 80–90 
Kaolinite: 
sand (1:1) 0.46 Pb: 5322 5.9–193 1.33 700 2500 – 

         Marceau et 
al. (1999) 

Clayey 
medium 2.7 Cd: 882 9–44.5 3 159 3259 98.5 

Gent et al. 
(2004) – 125 

Cr: 180–
1100  
Cd: 5–20 

10–13.5 9.7–18 208 4800 Cr: 78 
Cd: 70 

         
Alshawabkeh 
et al. (2005) 

Sandy and 
clayed soil 0.6 

Pb: 
1187–
3041 

70–120 2.6 1620 9  
months 70–85 

  1.2 
Pb: 
1187–
3041 

90–170 1.3 2760 11 
months 70–85 

         Zhou et al. 
(2006) Red soil 0.56 Cu: 829 80 1.68–

3.0 244 1680 76 

 

The overall objectives of this PhD study are to investigate the effect of pulsed electric field on 

energy saving and removal of heavy metals during soil electrodialytic remediation, and discuss its 

mechanism from the viewpoints of interaction between transport and surface reaction and re-

equilibrium process at relaxation period. 

 

1.3 Basic transport processes in soil under electric fields 

 

Soil is a system consisted of solid, liquid, and gas phase. More than 90% of the solid phase is soil 

minerals. Further, these minerals can be generally divided into coarse (>2mm), sand 

(0.05mm<Ø<2mm), silt (0.002mm<Ø<0.05mm), and clay (<0.002mm) by grain size. The clay 
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minerals determine soil behavior and carry the significant surface charge. The surface charge of 

clay is either a permanent charge caused by ionic substitution in crystal lattice or variable charges 

determined by soil pH (Sposito, 1989). The charged surfaces are counter-balanced by ions of 

opposite sign in the diffuse electric double layer. Ions in the solution with the same sign as the 

charged surface are co-ions and they are represented to a much lesser extent in the electric double 

layers than the counter-ions. Charge balance is always maintained throughout the system at all 

times, and the overall system with porous media and electrolyte must be electrically neutral. 

Charges cannot be added to, formed in, or removed from the system without addition, formation or 

removal of an equal number of the opposite charge.  

Significant material transport processes in soil during application of electric fields are 

electromigration, electroosmosis, and electrophoresis, which are more or less all related to the 

surface charge and the electric double layer in vicinity. Diffusion is also important since the 

concentration gradient is built up by material transport. These transport processes are briefly 

described below. 

Electromigration is the movement of ions and ionic complexes in both electric double layers at 

soil surface and soil solution in an applied electric field. The ions move towards the electrode of 

opposite charge: anions towards the anode and cations towards the cathode. Unlike in solutions, the 

ions in the compacted soil matrix cannot electromigratie directly to the opposite pole by the shortest 

route. Instead, they have to find their way along the tortuous pores and around the particles or air 

filled voids that block the direct path. Moreover, the ions can be transported only in continuous 

pores, but not in closed ones and ions are only transported in the liquid phase (Ottosen et al., 2008). 

Electromigration is the most important transport mechanisms for ions in porous media and the 

electromigration flux is dependent on the ionic mobility, tortuosity factor, porosity of the material, 

and charge of ions (Acar and Alshawabkeh, 1993). 
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Electroosmosis is the movement of water in a porous media towards the positive or negative 

electrode dependent on the overall surface charge of the porous material. Both counter- and co-ions 

will move towards the electrode of opposite charge. Since the counter-ions are in excess to the co-

ions in the soil electric double layer, a net-flow of ions across the electrode of opposite sign 

compared to the surfaces of the porous material will occur, and water molecules are pushed or 

dragged towards the electrode together with the counter-ions. Electroosmotic flow differs from flow 

caused by a hydraulic gradient because electroosmotic flow is mainly dependent on the porosity and 

zeta potential of the soil, rather than pore size distribution and macropores. Therefore, the 

electroosmosis is efficient in fine-grained soils (Acar and Alshawabkeh, 1993). However, the 

electroosmotic mobility is generally 10 times lower than the ion mobility during electromigration 

(Lageman et al., 1989). 

Diffusion is the movement of the ionic species in soil solution caused by concentration gradient. 

Due to the electrically induced mass transport in the porous material the concentration gradients are 

formed. Estimates of the ionic mobilities (the transport rate of ionic species under unit electric 

strength) from the diffusion coefficients using the Nernst–Einsetin relation indicates that ionic 

mobility of a charged species is much higher than the diffusion coefficient (about 40 times the 

product of its charge and the electrical potential gradient) (Reddy and Cameselle, 2009). Therefore, 

diffusive transport is often neglected. 

Electrophoresis is the opposite of electromigration and is transport of charged particles in an 

applied electric field. It can include all electrically charged particles (e.g. colloids, clay particles, 

and organic particles). Electrophoresis is generally of limited importance in compacted soil system 

(Probstein and Renaud, 1987), but can be significant if an electric field is applied to a slurry (Acar 

and Alshawabkeh, 1993). 
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Figure 3. The electrophoresis of clay particles after suspended EDR treatment (AN=anion exchange 
membrane and CAT=cation exchange membrane, the applied current was 30 mA and L/S=2.5). 

 

It can be seen from Figure 3 that after treatment most clay particles were transported to the anion 

exchange membrane side and attached on it (Figure 3C). Only sand or other uncharged particles 

remained in the soil samples (Figure 3D). The most important aspect of this electrophoresis 

phenomenon is the induced fouling of anion exchange membrane which results in a high voltage 

drop across the membrane (~30 V) and waste of energy. 

 

Remaining 
Sand Clay 
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1.4 Acidification processes in EDR 

 

In general, the pH in soil samples decreased during EDR treatment and the decreasing pH is an 

important factor influencing the mobility of heavy metals by dissolution and desorption. The H+ 

ions causing the acidification process come from water splitting at the bipolar interface between 

anion exchange membrane and clay particles, and transport towards the cathode by carrying the 

current (Mani, 1991; Ottosen et al., 2000a). As illustrated in Figure 4 that due to the negatively 

charged clay particles, a bipolar interface between anion exchange membrane and clay particles was 

formed, which depleted the ionic species rapidly in this region. 

 

 

Figure 4. Description of the bipolar interface and the following water splitting process between 
anion exchange membrane and clay particles. 

 

Water splitting can also take place at the cation exchange membrane, and can hinder the 

remediation process, as it results in an increased soil pH and the re-precipitation of the heavy metals 

in the area near cation exchange membrane. Ottosen et al. (2000a) found the limiting current 
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density for the cation exchange membrane to be between 0.3 and 0.5 (mA/cm2) for the actual soil of 

their experiments. No water splitting was detected near the cation exchange membrane as the soil 

pH was not higher than initial value in all experiments conducted in this study.  

 

 
Figure 5. Examples of acidification processes in suspended EDR (A), stationary EDR (B), and EKR 
(C) cited from (Al-Hamdan and Reddy, 2008).  

 

Figure 5 is the example of acidification processes in suspended EDR (A), stationary EDR (B), 

and EKR (C). Due to the different buffering capacity of experimental soils 1 (lower buffering 

capacity) and 2 (higher buffering capacity), the acidification pattern differed. It can be seen from 

Figure 5A, for soil 2, a “lag-period” was observed before a fast decrease in pH, during which the 

acidification overcame the buffering capacity of soil, whereas a continuous drop of the pH after 
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applying the current was seen for soil 1. From Figure 5B, it is obvious that the acidification starts at 

the anion exchange membrane due to water dissociation, and the acidic front is moving in the soil 

slice by slice toward the cathode. The extent of acidification is higher in experiments with higher 

applied current than that with lower applied current. Figure 5C is the pH profile after EKR 

treatment cited from (Al-Hamdan and Reddy, 2008). The major difference between stationary EDR 

(Figure 5B) and EKR (Figure 5C) is the pH variation at cathode side. Due to the cation exchange 

membrane which impedes the transport of OH- ions from catholyte to soil column, the pH at 

cathode side in EDR would not higher than the initial value, but in EKR the pH values higher than 

initial are obtained at cathode side. This region with increased pH will result in a re-precipitation of 

mobilized heavy metal (transported from anode side) and influence the removal efficiency. 

 

1.5 Mobility of heavy metals 

 

Once the adequate acidification process occurs, heavy metals are desorbed and removed from the 

soil under the driving force of the electric potential difference, as most heavy metal cations are 

dissolved in acidic conditions (Alloway, 1995). 

Acid front development, as well as heavy metal desorption/dissolution, depends on many factors 

and the extent to which the factors have influence on the remediation action are dependent on the 

soil type and the heavy metal itself. The pH and redox conditions in the soil are both important 

factors affecting heavy metal retention, and a change of these parameters may be beneficial to the 

remediation. Soil pH affects both the adsorption of heavy metals in exchange sites, the specific 

adsorption of heavy metals, as well as many dissolution processes. Some heavy metals are removed 

at higher pH (i.e. slightly acidic) than others. The order of removal of different heavy metals in the 

acidic front has been reported as follows: Ni ≈ Zn > Cu > Cr in a soil polluted from a chlor-alkali 
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factory (Suer et al., 2003) and Zn > Cu > Pb or Cd > Zn > Cu > Pb > Ni in different industrial 

polluted soils (Ottosen et al., 2001; Jensen, 2005). 

The chemical speciation of heavy metals in soil influences the removal efficiency by determining 

the mobilization extent of heavy metals. Five fractions (Tessier et al., 1979) are generally used to 

estimate the speciation of heavy metals, (I) exchangeable, (II) bound to carbonates, (III) bound to 

Fe-Mn oxides, (IV) bound to organic matter, and (V) residual. Carbonate and exchangeable fraction 

are easy to mobilize according to previous researches (Ottosen et al., 2009), and followed by 

fraction (III) to (V). Brief descriptions of different fractions are listed below: 

I. Loosely held contaminants, including the exchangeable and soluble forms, that can be readily 

extracted (extraction procedure represents mild extracting conditions). 

II. Tightly adsorbed contaminants and those associated or co-precipitated with carbonates. This 

fraction would be susceptible to changes of pH. 

III. Additional soluble metal oxides/hydroxides under slightly acidic pH as well as contaminants 

that are associated with Fe-Mn oxides. 

IV. Contaminants associated with easily oxidizable solids or compounds, including organic matter. 

V. Contaminants present at the crystal structure of clay minerals and as consolidated oxides and 

strongly held complexes (e.g. metal sulfides). 

Unless the transport of the acid front is retarded by the buffering capacity of the soil, the 

chemistry across the specimen will be dominated by the transport of the hydrogen ion. The 

carbonate content, organic matter, clay content, as well as cation exchange capacity (CEC) of the 

mineral that may react with the acid would increase the buffering capacity of the soil (Acar and 

Alshawabkeh, 1993). Kaolinite clays show much lower buffering capacity because of lower CEC 

compared with other clay minerals, such as montmorillonite or illite. The carbonate content is more 

susceptible than other indicators (i.e. CEC, clay content, and organic matter) since during the 
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acidification process, the calcium carbonate will react with H+ ions first and with a higher extent. A 

research reported in (Ottosen et al., 2009) indicated that the acid demand for acidification of the 

experimental soils correlates well with the carbonate content. 

For cationic species Cu, Zn, Pb, Cd, and Ni, it was found that the slice closest to anion exchange 

membrane that was remediated first and the transport direction was towards the cathode. For Cu, 

good removal percentages of up to 99% Cu was obtained in unenhanced systems; however, the 

duration of the successful experiments was very long. In general, the best results are obtained after a 

long period of applied current of more than 1 month of treatment. Enhancement in the case of Cu is 

mainly focused on a faster acidification of the soil, and thus remediation. Citric acid showed good 

results. The acid demand for soils with high buffer capacity is high, and in such soils the 

enhancement may be the addition of a complex binder for Cu so the remediation can occur at 

neutral to alkaline pH. An example of this is ammonia (Ottosen et al., 2000). For Zn, remediation 

results between 17% and 99% have been obtained. Most results are good, with >70% removal. The 

low removals were obtained in experiments of either short duration (Kim and Kim, 2001) or with 

calcareous soils (Maini et al., 2000; Ottosen et al., 2005; Wieczorek et al., 2005). This corresponds 

well to Zn being among the easiest heavy metals to mobilize by EKR (Ottosen et al., 2001; Suer et 

al., 2003). For Pb, some really low remediation percentages (0% – 10%) were obtained in studies of 

calcareous soil (Maini et al., 2000) and tailing soil (Kim and Kim, 2001), whereas around 50% 

removal was obtained in studies of different sludges (Khan and Alam, 1994; Kim et al., 2005). 

Highly successful removals (92%–98%) were obtained in full scale, as well as in a study of non-

calcareous soil (Clarke et al., 1996; Ottosen et al., 2005). Apart from confirming the fact that 

acidification, and thus buffer capacity, is a determinant of remediation success, it is difficult to 

deduct any conclusions from the results since Clarke et al. (1996) give no detailed information 

about remediation conditions. However, it seems that long remediation times are necessary for 
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successful removal (Ottosen et al., 2005). For Cd, both high and low remediation efficiencies have 

been reported for unenhanced treatment. It seems that the removal success is highly dependent on 

site and speciation. Low pH in the soil clearly favors the removal. For Ni, general low removal 

efficiency without any enhancement even for 2 months’ processing. Only Clarke, Lageman, and 

Smedley (1997) showed that a high removal efficiency could be achieved but remediation time and 

conditions were not mentioned, so it could not be evaluated if the remediation was enhanced or not. 

By contrast to the cationic species, it was found that As accumulated in the anolyte as a 

compound with negative charges (probably H2AsO3
-) not as ionic species precipitated on the 

surface of anode, which was against the direction of acidic front. Previous results with stationary 

EDR (Ottosen et al., 2000) showed that the As was immobile (as non-charged As(OH)3 or H3AsO3) 

under acidic and neutral conditions, but good removal was obtained by addition of either ammonia 

or hydroxide to maintain the alkaline conditions (pH›9), suggesting that the As (III) was the 

dominating species in those soils. But in suspended EDR the oxygen and carbon dioxide 

concentrations could be assumed to be in equilibrium with atmosphere, which should allow for 

oxidation of As (III) to moveable species H2AsO4
- or HAsO4

2- and facilitated the removal of As in a 

large range of pH (Jensen, 2005). 

 

1.6 Energy consumption in EDR cells 

 

The energy consumption of electrochemically based remediation techniques is an important 

factor influencing costs and thus the applicability. For an application of these techniques beyond 

bench and pilot scale setups, this aspect is very important. Generally, in an electrodialytic cell, the 

applied electrical potential is sufficient to overcome the ohmic resistance, the potential drop across 

the membranes, the dialysate and concentrate compartments drop due to concentration gradients 
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(diffusion potential), potential drop at working electrodes, and the potential drop at the membrane-

solution interfaces (Donnan potential) (Belfort and Guter, 1968; Tanaka, 2003). In electrodialytic 

remediation, the potential drop at electrodes and in the anolyte and catholyte could be assumed 

negligible compared to the value of other parts, especially when the electrolytes are circulated (Bard 

and Faulkner, 2001). Further, as most fine grained soils have a negative charged surface like a 

cation exchanger, and the positive ions removed from the soil are in excess of the negative ions, the 

removal processes are briefly controlled by two steps: (a) the transport in the contaminated soil and 

(b) the transport across the cation exchange membrane, which are also expected to be the main 

energy consumption steps. 

 

1.7 Polarization processes in EDR cells 

 

Polarization, as an inevitable process, is responsible for the nonproductive energy consumption. 

In the EDR system, it includes the polarization of electrodes, membranes and clay particles in the 

soil.  

The electrode polarization is controlled by electrochemical polarization and/or concentration 

polarization, depending on the different rates of the electrode reactions and mass transport processes 

(Bard and Faulkner, 2001). Electrochemical polarization is due to the slower rate of electrode 

reaction compared to the mass transport process which results in an accumulation of net charges 

between the electrode and electrolyte interface. On the contrary, concentration polarization is due to 

the slower rate of mass transport process compared to the electrode reaction which causes the 

decreasing of electrolyte concentration at the vicinity of electrode and deviation of electrode 

potential from its equilibrium value. However, in EDR the electrodes are placed in compartments 
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separated from the soil by ion exchange membranes and electrolytes are circulated in the electrode 

compartments, which reduce the electrode polarization.  

Concentration polarization occurs in all membrane separation processes. In electrodialysis it is 

the result of differences in the transport numbers of ions in the solution and in the membrane. The 

net result of the difference is a reduction of the electrolyte concentration in the solution at the 

surface of the membrane, and a concentration gradient is established in the solution between the 

membrane surface and the bulk solution. This concentration gradient results in a diffusive 

electrolyte transport. A steady state is obtained when the additional ions, that are needed to balance 

those removed from the interface due to the faster transport rate in the membrane, are supplied by 

the diffusive transport. When the applied current density reaches the limiting current density of the 

membrane, water splitting (H2O → H+ + OH-) will happen at the interface between membrane and 

solution as a consequence of the concentration polarization (Tanaka, 2007; Strathmann, 2010). The 

optimum current for electrodialytic soil remediation is when the limiting current of the anion-

exchange membrane is exceeded while that for the cation-exchange membrane is not (Ottosen et al., 

2000a). The limiting current density of an anion exchange membrane in EDR is much lower than 

that of a cation exchange membrane because there are fewer anions than cations in soil solution. 

Further, next to the anion exchange membrane is the negatively charged soil surface, and a bipolar 

interface depleting ions rapidly is formed in between. This interface can be compared to a bipolar 

membrane, which is a membrane that consists of a layered ion-exchange structure composed of a 

cation selective layer (with negative fixed charges) and an anion selective layer (with positive fixed 

charges) (Xu, 2002). The water splitting of the anion exchange membrane is of crucial importance 

for development of an acidic front through the soil in which heavy metals mobilized. The acidic 

front will cause a rise in potential drop at the bipolar area. At the cation exchange membrane, at 

sublimiting current density (current density under the limiting value), the concentration polarization 
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will induce the increase in resistance at the boundary layer, both of which can increase the potential 

drop of membrane.  

In a compacted soil system, the most active part interacting with the external electric field is the 

clay particles (Sposito, 1989). It is hypothesized that the polarization processes of the clay particles 

mainly include polarization of the diffused double layer (Figure 6A) and induced polarization 

(Figure 6B). Due to the nonconductive bulk of clay particles, the diffused layer will move towards 

the opposite pole under applied electric field and give rise to a characteristic dipole moment, similar 

to the dielectric polarization (Derjaguin et al., 1980; Kornilovich et al., 2005). The polarization 

results in an induced electric field at the vicinity of clay particles, which is opposite and 

counteracted to the applied electric field thus impedes the transport of ions. In other words, more 

energy will be consumed to maintain an identical charge transport of cations compared to a non-

polarized clay matrix. However, this polarization effect could be considered as negligible small in a 

real soil. The above discussion of double layer polarization concerns an individual particle, but 

particles are in physical contact in a compacted soil. As the distance between particles decreases, 

the polarization weakens. The reason is that lines of electric force of the local fields of polarization 

charges close not on a particle’s own surface like shown in Figure 6A, but on the nearby 

polarization charges of the neighboring particles. As a result, instead of a dipole with a particle size 

in the first case, dipoles with inter-particle distance size are formed. At the same time, not only the 

length of the dipole decreases but the amount of polarization charges themselves declines 

(Kornilovich et al., 2005). 

The induced polarization in the clay pore fluid (Figure 6B) plays more important role at 

increasing the energy consumption in EDR than double layer polarization at clay surface. Two 

mechanisms are possible explanations for induced polarization (Sumner, 1976; USEPA, 2003). (1) 

Charges accumulate at both sides of pore space which narrow to within several boundary layer 
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thicknesses when an electric field is applied. Result is a net charge dipole which adds to any voltage 

measured at the surface. (2) Due to the incompatibility between the conductivity of the clay 

particles with low surface conductivity and the surrounding electrolyte solution (i.e. pore fluid) with 

high ionic conductivity (Pamukcu et al., 2004), induced space charge will probably occur with a 

potential difference across the interface layer, similar to the charging of the ionic double layer at the 

electrode-electrolyte solution interface. 

  

 
 

Figure 6. Schematic description of the polarization processes in clay matrix with (A) polarization of 
the diffused double layer and (B) induced polarization. 
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Considering the connection between clay particles and pore fluid as in series, the total potential 

drop (Vt) between two monitoring electrodes across the soil compartment in the EDR system under 

an external applied electric field can be expressed as:  

( )t eq RV V V η= + +                                                             (2)  

according to the expression of the potential drop in the electrolysis between anode and cathode 

(Bard and Faulkner, 2001), where Veq is the potential drop under equilibrium state, VR is the ohmic 

potential drop induced by the pore fluid, and η is the overpotential. 

 

1.8 Applications of pulsed electric field 

 

It has previously been reported that the application of a pulsed electric fields can give substantial 

improvements in the performance of pressure-driven membrane processes by reduction of 

concentration polarization, control of membrane fouling and increase in the membrane selectivity 

(Mishchuk et al., 2001; Lee et al., 2002). However, the fouling phenomenon has merely been 

observed in EDR soil cells. The transference number of the membranes and perm-selectivity did not 

change after being used in electrodialytic soil remediation experiments (Hansen et al., 1999). The 

positive result gained by application of pulsed current for EDR may mainly be a diminishing of the 

effect from polarization gradients and thus requirement for a lower potential to supply the same 

current. At electrokinetic remediation, researchers have also investigated application of a pulsed 

electric filed to improve the remediation process. A summary of experiments and results when 

applying a pulsed electric field in electrokinetic and electrodialytic soil remediation is shown in 

Table 2. It can be seen that the pulsed electric filed improve the remediation process by means of 

increasing the removal efficiency of heavy metals and/or decreasing the energy input for 

remediation.  
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Table 2. Summary of pulsed electric field application in electrokinetic and electrodialytic soil remediation. 

Experimental 
setup 

Power 
supply 

Pulse mode 
(ON time/OFF time) 

Frequency 
(cycles/h) Enhancing effect 

EKR 
(Kornilovich  
et al., 2005) 

Constant 
voltage 

1-10 V/cm 

5s/5s 
10s/10s 
15s/15s 

0.1-0.9s/0.9-0.1s 

360 
180 
120 

3600 

The use of pulse voltage changes the 
distribution of contaminations in soil and 
allows decreasing power inputs. 

EKR  
(Ryu et al., 

2009) 

Constant 
voltage 

1-3 V/cm 

1s/1s 
1s/1s 
2s/1s 
1s/2s 
1s/2s 

1800 
1800 
1200 
1200 
1200 

A high pulse frequency 
enhanced the removal efficiency of the 
heavy metals compared to a low pulse 
frequency at a supplied voltage gradient 
of 1 V/cm. 

EKR  
(Jo et al., 2012) 

Constant 
voltage 
1 V/cm 

15min/15min 
30min/30min 
60min/60min 

120min/120min 
240min/240min 

2 
1 

0.5 
0.25 

0.125 

The pulsed electrokinetic process lowered 
the electrical energy consumption to 42% 
of that of the conventional process, while 
producing a similar decrease in salinity. 

EKR  
(Reddy and 

Saichek, 2004) 

Constant 
voltage 

1-2 V/cm 
5days/2days 0.006 

Considerable contaminant removal can be 
achieved by employing a high voltage 
gradient along with a periodic mode of 
voltage application. 

EKR 
(Cérémonie et 

al., 2008) 

Constant 
voltage 

0-6 kV/cm 
-/~5ms - 

A significant increase of 330% of the 
total heterotrophic culturable bacteria 2 
days after soil samples was found 
resulting from pulsed electric current 
injections. 

EKR  
(Rojo et al., 

2012) 

Constant 
voltage 

15-22.8 V 

20s/1s 
2000s/100s 
3000s/200s 
2500s/100s 

171 
1.7 
1.1 
1.3 

Pulses in a sinusoidal electric field 
improve the EKR process, especially 
when the pulses and a polarity inversion 
in the sinusoidal electric field are present 
simultaneously, since both phenomena 
reduce polarization during the process. 

EDR  
(Hansen and 
Rojo, 2007) 

Constant 
voltage 
20 V 

100min/5min 
50min/2.5min 

25min/1.25min 

0.6 
1.2 
2.3 

Applying pulsed electric fields in EDR, it 
was found that the remediation time 
decreased compared to dc EDR. 
Increasing the pulse frequency, the 
copper removal in the anode side is 
improved, and in the cathode side an 
accumulation is observed. 
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Identification of knowledge gaps based on Table 2: 

A. All these reported works were performed using pulse voltage; there was no information 

about the effect of pulse current on the remediation process.  

B. The chosen of applied pulse frequency seemed random and the reasons for using these 

frequencies were not given, therefore there is a need for a method to determine the 

optimal frequency.  

C. The mechanism of the enhancement on remediation induced by pulsed electric field was 

not clarified.  

In the present PhD study, these gaps were filled out. 

Generally the pulse mode is determined by the ratio of current “ON” time to current “OFF” time. 

A relatively low pulse frequency (e.g. 30 cycles per day) should be applied when the pulsed electric 

field is introduced to improve the EDR process. The pulse mode in stationary EDR can be 

expressed as tON/tOFF=a/x, with “a” indicating the fixed current “ON” time and “x” indicates that the 

“OFF” time is a variable and determines the effectiveness of applied pulse mode.  

In suspended EDR the pulse mode is tON/tOFF=x/a, with the “ON” time as variable based on the 

different transport process of H+ ions between stationary and suspended EDR. For example, in 

stationary EDR, the effective mobility of H+ ions in the soil pore fluid is 760×10-6 cm2 V-1 s-1. In 

suspended EDR, the ionic mobility of H+ ions could be approximately estimated as its value in 

aqueous solution, which is 3625×10-6 cm2 V-1 s-1 (Acar and Alshawabkeh 1993). So the time for the 

transport of H+ ions from the anion exchange membrane to the cation exchange membrane in 

stationary EDR is around 3.7 h under unit electric field strength and assuming the distance from the 

anion exchange membrane to the cation exchange membrane is 10 cm, but in suspended EDR it will 

only take 0.8 h for the same transport process. This means that there is a much longer time for the 

contact between H+ ions and soil particles in stationary EDR than that in suspended EDR. The use 
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of x/a mode is not only because of the higher ionic mobility of H+ ions in suspended EDR, but also 

because of the fast reaction rate during the “OFF” time since the stirring system highly increases the 

contact between H+ ions and soil particles and thus increases the reaction rate. Therefore, the 

variation of “OFF” time in suspended EDR will hardly influence the efficacy of the pulse regime. 

 

2. Research methodology 

 

Two types of soils contaminated with different heavy metals were chosen for this study. The 

NORD soil was sampled from a wood preservation site and contaminated by Cu and As, and the 

KMC soil was sampled from a pile of excavated soil and contaminated by Cu and Cd. Information 

about experimental setup (EDR cells), analysis of soil characteristics, experimental design, and 

sample collection and data analysis after experiment are given in e.g. Appendixes I. The title, aim, 

and relation of the appendixes to the knowledge gaps are listed in Table 3. 

 

Table 3. List of Appendixes with title, aim, and relation to the knowledge gap. 

Appendix Title Aim Relation to 
knowledge gap 

I 
Effects of pulse current on energy 
consumption and removal of heavy 
metals during electrodialytic soil 
remediation 

The aims of this paper were to investigate 
the possibility for energy saving when 
using a pulsed electric field during 
electrodialytic soil remediation (EDR) 
and the effect of the pulsed current on 
removal of heavy metals. 

A 

II 
Effect of pulse current on acidification 
process and removal of heavy metals 
during suspended electrodialytic soil 
remediation 

The effect of pulse current on 
acidification process and removal of 
heavy metals during suspended 
electrodialytic soil remediation was 
investigated in this work. 

C 
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III Pulse current enhanced electrodialytic 
soil remediation – Comparison of 
different pulse frequencies 

This work is focused on the comparison 
of energy saving effect at different pulse 
frequencies. Based on the restoration of 
equilibrium, the relaxation process of the 
soil–water system was investigated by 
chronopotentiometric analysis to find the 
optimal relaxation time for energy 
saving. 

B 

IV 
Electrodialytic soil remediation 
enhanced by low frequency pulse 
current – Overall chronopotentiometric 
measurement 

The effect of low frequency pulse current 
on decreasing the polarization and energy 
consumption during the process of 
electrodialytic soil remediation was 
investigated in the present work. 

C 

V 

Reduction of hexavalent chromium in 
contaminated clay by direct current 
transported ferrous iron: Kinetics, 
energy consumption, and application of 
pulse current 

The effect of pulse current on reduction 
of hexavalent chromium in contaminated 
clay was investigated in this work. 

A, C 

VI Electrodialytic remediation of 
suspended soil – Comparison of two 
different soil Fractions 

The present paper focused on the 
processing parameters for remediation of 
a soil polluted with Cu and As from 
wood preservation. 

― 

VII The effect of pulse current on energy 
saving during electrochemical chloride 
extraction (ECE) in concrete 

This paper investigated the possibility for 
energy saving when using a pulsed 
electric field during ECE and the effect 
of the pulsed current on removal of 
chloride. 

― 

 

Characteristics of the used membranes reported in (Xu, 2005; Tanaka, 2007) and by the supplier 

are listed in Table 4.  

 

Table 4. Characteristics of the ion exchange membranes used in this study. 

Company Product Name Type Thickness 
(mm) 

IEC 
(mol/g) 

Electric 
resistance 
(Ω/cm2) 

Ionic 
transport 
number 

Bursting 
strength 
(kg/cm2) 

Features 

Ionics Nepton 

AR204 
SZRA 

B02249C 
AN 0.57 2.3-2.7 3 0.95 7.0 Desalination 

CR67 
HUY 

N12116B 
CAT 0.58 2.1-

2.45 2 0.89 7.0 Desalination 

Note: AN=anion exchange membrane, CAT=cation exchange membrane, and IEC=ion exchange capacity. 
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Figure 7 show the set-up for the pre-chronopotentiometric measurement of the transition time of 

membranes, which was conducted by automatic record of the potential drop between the saturated 

calomel electrodes inserted on both sides of the membranes. The potential drop was recorded by a 

datalogger (Agilent 34970A) with a rate of once per 5 s.  

 

 

Figure 7. Photograph of the pre-chronopotentiometric measurement of membranes. 

3. Major findings from the experimental work 

 

3.1 Energy distribution in EDR cells 

 

In all experiments a constant current was applied, and therefore the variation in potential is an 

indicator for the energy consumption. The distribution of potential drop over the cell with soil 

during stationary EDR is shown in Figure 8 (from Appendix IV). It can be seen that the total 

potential drop increases over time. The increase is fastest in beginning of the experiment. The 

potential drop is lowest in the electrolyte solutions in the anolyte and the catholyte compartments 

during the whole experiment. This is due to the circulation systems and that pH was controlled 
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around 2 during the experiment, so the conductivity of the solution was high. The potential drop 

over the cation exchange membrane including interphases to soil and catholyte (part c in Figure 8) 

was significantly higher than over the anion exchange membrane and related interphases (part a) 

and  over the soil (part b) after 12 h working time and increasing with time. This is seen from the 

slopes of part c. The part with cation exchange membrane was thus the most energy consuming part. 

In other words, when constant voltage was applied, the step transporting cations through the cation 

exchange membrane was the rate controlling step, by which the kinetics of the whole EDR process 

was determined. The increased potential drop at part c was probably due to the re-precipitation and 

crystallization of dissolved metal ions at the surface of cation exchange membrane (Figure 9) 

caused by the higher pH in the soil solution near cation exchange membrane. It can be seen from 

Figure 9 that many solid deposits unevenly distributed at the surface of cation exchange membrane 

after experiment, but not at the surface of anion exchange membrane. SEM-EDX mapping revealed 

that these solids are a mixture of aluminum and calcium oxides. 
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Figure 8. Distribution of potential drops across the stationary EDR cell, with “a”, “b”, and “c” 
indicates anion exchange membrane, soil compartment, and cation exchange membrane, 
respectively. 
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Figure 9. Photograph of anion exchange membrane (right) and cation exchange membrane (left) 
after experiment (A) and the SEM-EDX mapping of the solids on cation exchange membrane (B). 

 

Unlike stationary EDR with highest energy consumption over the cation exchange membrane, the 

major energy consumption in suspended EDR was in the soil compartment as shown in Figure 10. 

In the soil suspension, both the amount of frees ions and the electric mobility of the ionic species 

are higher than that in stationary EDR, so less energy was needed for transport of ionic species 

across the membranes. But at the same time the depletion of free ions caused an increasing of 

resistance in the soil suspension which gave rise to higher energy consumption in the soil 

compartment.  
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Figure 10. Energy consumption at different parts of suspended EDR cell (AN=anion exchange 
membrane, SS=soil suspension, and CAT=cation exchange membrane). 

3.2 Effect of pulse current on energy consumption and heavy metal removal 

 

In the present PhD study it was demonstrated that the pulse current had positive effects on energy 

savings and improvement of heavy metal removal during EDR treatment by enhancing the 

acidification process, increasing the electric conductivity in soil pore fluid, and diminishing the 

polarization process of membranes and soil particles (Appendix I-V). Basically, all these effects are 

due to the additional proceeding of chemical dissolution in the relaxation period when the current 

was switched off, which improves the effectiveness of H+ ions in dissolution ad desorption 

reactions rather than to carrying of current. When the current is applied again, there are more target 

ions and less H+ to maintain the mass transport process in soil-water system. The efficacy of the 

pulse current was found dependent on the applied current density, soil buffering capacity, and 

applied pulse frequency.  
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3.2.1 Effect of applied current density on pulsed EDR 

 

The effect of the pulse current was tested for different applied current densities (Appendix I). 

Results showed that at a current density of 0.1 mA/cm2 in the NORD soil and 0.2 mA/cm2 in the 

KMC soil, there was no difference in energy consumption and removal of heavy metals between 

pulse current and constant current experiments. At higher current densities though, i.e. 0.2 mA/cm2 

in NORD soil and 0.8 mA/cm2 in KMC soil, energy was saved 67% and 60% and the removal of 

heavy metals was increased 17-76% and 31-51% by pulse current in NORD soil and KMC soil, 

respectively. 

 

3.2.2 Effect of soil buffering capacity on pulsed EDR 

 

The effect of pulse current on EDR of the KMC soil (with high buffering capacity) and the 

NORD soil (with low buffering capacity) were investigated in Appendix II. The buffering system 

existed in soil is the first mechanism reacting with the produced H+ ions and impeding the heavy 

metal mobilization. The H+ ions are produced (PH
+) by water dissociation at anion exchange 

membrane surface under over-limiting current density. Afterwards, part of them will be current 

carrier (IH
+) since the ionic mobility of H+ ions are much higher than other ions and a high 

transference number could be expected. IH
+ is the amount of H+ ions transported into the cathode 

side from anion exchange membrane, passing through soil suspension and cation exchange 

membrane. The other part will release the heavy metals from soil particles and is defined as reactive 

H+ ions (RH
+). This part includes (I) the amount of H+ ions conquering the soil buffering capacity 

(e.g. carbonate content and organic matter), (II) desorption (i.e. cation exchange) of non-specific 

adsorbed heavy metals, (III) dissolution of co-precipitated heavy metals, and (IV) mobilization of 
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specific adsorbed heavy metals from soil minerals combined with destroy of mineral lattice by H+ 

ions. Simplified expression by equation is PH
+=IH

++RH
+. To improve the efficiency of EDR is 

actually to increase the ratio of RH
+/PH

+. 

The results showed that pulse current improved the acidification process by supplying more 

reactive H+ ions. The molar ratio of reactive H+ ions to total produced H+ ions (RH
+/PH

+) was higher 

in pulse current experiments than constant experiments. Correspondingly, the removal efficiencies 

of heavy metals were also improved. However, the effect of improvement on the acidification 

process and the removal of heavy metals were more significant in the KMC soil than in the NORD 

soil. The positive effect from energy saving caused by pulse current was clearly shown 

experimentally since both the total energy consumption and the energy consumption per removed 

milligram heavy metals were lower in pulse current experiments than in constant current 

experiment in both soils. Moreover, the decrease in total energy consumption was higher in the 

KMC soil (up to 33%) than that in the NORD soil (up to 11%), which is anticipated related to the 

higher carbonate content in the KMC soil because in the soil with higher buffering capacity, more 

ions would be released after a pulse than that in the soil with low buffering capacity under a similar 

condition of acidification; therefore higher extent of energy saving was achieved. 

 

3.2.3 Effect of applied pulse frequency on pulsed EDR 

 

A comparison of energy saving effects at different pulse frequencies in stationary EDR is given 

in Appendix III. The applied pulse program was 60 min “ON” in every experiment, and 5, 15, or 30 

min “OFF”, which means the frequency was approximately 22, 19 or 16 cycles per day. Finding the 

optimal relaxation time is important since it determines both of the lowering of energy consumption 

by the pulse current and the duration of the treatment. It must on one hand be long enough to 
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complete the relaxation and on the other hand as short as possible to minimize the treatment time. 

The optimum duration of the relaxation period (“OFF”) is thus the time for restoration of 

equilibrium state. 

 The relaxation process of the soil-water system was investigated experimentally by 

chronopotentiometric analysis to find the optimal relaxation time for energy savings. The results 

showed that the pulse current decreased the energy consumption to varying extent depending on the 

pulse frequency. The experiment conducted with a frequency of 16 cycles per day showed the best 

restoration of equilibrium (i.e. re-equilibrium processes) and lowest energy consumption.  

The re-equilibrium processes at the relaxation period found by the chronopotentiometric analysis 

are given in Figure 11 with (A) for the initial stage i.e. in the beginning of the experiment, (B) for 

the middle stage, and (C) for the late stage. At the initial stage (Figure 10A), a similar relaxation 

trend was obtained in different pulse experiments. The experiment with frequency of 16 cycles per 

day showed the best condition approaching the equilibrium which can be seen from its relatively 

stable potential difference at relaxation period, followed by the experiment with 19 cycles per day, 

and the experiment with 22 cycles per day was far from equilibrium. It was hypothesized that The 

re-equilibrium process was determined by (1) the discharging of soil double layers driving by the 

electrostatic force, which was indicated by the sharp decrease in the potential after switching off the 

current; and (2) concentration gradients are built during the period with applied current and in this 

phase of the relaxation, these concentration gradients are leveled out by diffusion, which was 

indicated by the slow decrease in Figure 11A. In the middle stage (Figure 11B); the slight increase 

in potential after the initial drop in all pulse current experiments was probably due to a diffusion 

potential. Diffusion potential occurs when two solutions of different concentrations are in contact 

with each other. The more concentrated solution will have a tendency to diffuse into the 

comparatively less concentrated one. The rate of diffusion of each ion will be roughly proportional 

http://en.wikipedia.org/wiki/Ion�
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to its speed in an electric field. If the anion diffuses more rapidly than the cation, it will diffuse 

ahead into the dilute solution, leaving the latter negatively charged and the concentrated solution 

positively charged. So a potential difference will be produced at the junction of the two solutions. In 

a simple case with two same kind of electrolytes (1:1) but different concentration (ai,1<ai,2), the 

diffusion potential could be expressed as: 

,2

,1

(2 1) ln
aRTE t

zF a
±

+
±

= − −                                                        (3)   

where t+ is the transference number of cations, a± is the average activity of electrolyte. There is no 

simplified equation to quantitatively express the diffusion potential in a soil-water system. However, 

the pH and ionic strength are considered as the most important factors influencing the diffusion 

potential by changing the ionic mobility and the activity coefficient (Yu and Ji, 1993). The H+ ions 

produced by water dissociation near the anion exchange membrane and transported towards the 

cathode causes acidification resulting in dissolution process within the soil, which can give rise to 

huge difference in pH and ionic strength even over short distances in the soil, thus the diffusion 

potential increases.  
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Figure 11. Selected chronopotentiometric measurements (form Appendix III) of the relaxation 
processes within the soil compartment. The initial, middle and late stages of the experimental 
duration are represented by (A)-(C), respectively.  

 

In the late stage (Figure 11C); the discharging processes, which was seen in the two former 

stages, cannot be identified in any of the experiments. This does not necessarily mean that this 

discharging process is not occurring but the process was possibly masked by the high diffusion 

potential. The potential range (0.16, 0.09, and 0.06 V for experiment with pulse frequency 22, 19, 

and 16 cycles/day, respectively) in this stage may be an indicator for the deviation of the system 
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from the equilibrium state after the remediation process. From Figure 11C, it can be seen that the 

experiment with 22 cycles/day had the largest deviation from the equilibrium state, while it for the 

experiment with 16 cycles/day was smallest. Therefore, it can be concluded that the suitable 

relaxation time for the present experimental soil was between 15 to 30 min from the viewpoint of 

both energy consumption and remediation time. 

As mentioned earlier (Chapter 1.8), the efficacy of pulse current on suspended EDR is 

determined by the current “ON” time rather than on relaxation (“OFF”) time as in stationary EDR. 

Therefore, in suspended EDR, another factor the so-called transition time becomes important. The 

transition time is the time from application of current till the concentration at the membrane surface 

decreases to zero. The occurrence of a transition time indicates that an overlimiting current density 

has been applied over the anion exchange membrane. An overlimiting current here is enhanzing the 

remediation as it results in water dissociation at the anion exchange membrane, acidification of the 

soil suspension by the produced H+ ions following mobilization of heavy metals. It can be seen 

from Figure 12 that the transition time decreased with the increase in applied current density. Due 

to the lower concentration  of ionic species (shown by the conductivity data) in the solution with the 

NORD soil compared to the solution with the KMC soil, the transition time was shorter for the 

NORD soil than for the KMC soil under the same current density. In principal, water dissociation 

will occur as long as the experimental time is longer than the transition time, no matter what 

constant current density is applied to the EDR. In the EDR cells with pulse current, the transition 

time is highly important since it gives the highest limit of the pulse frequency. For example, at the 

applied current density of 1.2 mA/cm2 for the KMC soil and 0.3 mA/cm2 for the NORD soil 

(Appendix xx) the transition time was 1.4 and 0.9 min respectively. Therefore, the current “ON” 

time must not be shorter than these values at the actual current densities; otherwise the water 
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dissociation will be diminished by diffusion of anionic species towards the anion exchange 

membrane. 
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Figure 12. Chronopotentiogram of anion exchange membrane with (A) for KMC soil and (B) for 
NORD soil. 

4. Overall conclusions 
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This PhD study investigated the effect of pulse current (in low pulse frequency) for reducing the 

energy consumption and increasing the removal efficiency of heavy metals during the EDR process. 

Results showed that the pulse current had positive effects both on energy saving aspect by 

increasing the electric conductivity in soil pore fluid and diminishing the polarization process of 

membranes and soil particles, and improvement of removal of heavy metals by enhancing the 

acidification process.  

Applied current density, soil buffering capacity, and applied pulse frequency were found as the 

major important factors to determine the efficacy of pulse current. In stationary EDR, the efficacy 

of pulse current was more significant at higher current density, higher buffering capacity, and lower 

pulse frequency (i.e. adequate relaxation time with respect to the current “ON” time). Moreover, a 

re-equilibrium (i.e. the restoration of the soil-water system to its equilibrium state after the passing 

of current) mechanism at relaxation period was proposed to determine the optimal pulse frequency 

for its application. On the contrary, in suspended EDR, higher pulse frequencies were preferred due 

to the different transport process of H+ ions soil in pore fluid of stationary EDR and soil suspension 

of suspended EDR.  

The major part of the supplied energy was consumed by transport of cations through the cation 

exchange membrane in stationary EDR, whereas major energy consumption was in the soil 

suspension in suspended EDR. Applying pulse current to the two types of cells, result in higher 

energy savings in stationary EDR (maximum 70% energy savings), compared to suspended EDR 

(maximum 33% energy saving). 

It has been demonstrated the pulse current is a possible way to decrease the energy consumption 

and increase the removal efficiency of heavy metals during EDR processes, however, long-term 

tests are still needed in future studies to evaluate the possible efficacy decay of pulse current as a 

function of remediation time. Although the influences of applied current density and soil buffering 
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capacity on pulse current were investigated, the test range of current density and buffering capacity 

was narrow; therefore more experiments are needed for future study to make the conclusion more 

general. Moreover, clarification on the redistribution of ionic species in soil pore fluid and 

interaction between ions and soil particles at the relaxation period are also needed for better 

understanding the mechanism of pulse current in a microscopic viewpoint. 
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a  b  s  t  r  a  c  t

The  aims  of  this  paper  were  to  investigate  the  possibility  for  energy  saving  when  using a pulsed  electric
field  during  electrodialytic  soil  remediation  (EDR)  and  the  effect  of  the  pulsed  current  on  removal  of
heavy  metals.  Eight  experiments  with  constant  and  pulse  current  in the  different  industrially  polluted
soils  were  performed.  At  a  current  density  of  0.1  mA/cm2 in soil  1 and  0.2  mA/cm2 in  soil  2,  there  was
no  difference  on  energy  consumption  and  removal  of heavy  metals  between  pulse  current  and  constant
current  experiments,  but  at higher  current  experiments  (i.e.,  0.2  mA/cm2 in soil  1 and  0.8  mA/cm2 in
soil  2)  the  energy  was  saved  67% and  60%  and  the removal  of  heavy  metals  was  increased  17–76%  and
31–51%  by  pulse  current  in soil  1 and  soil  2, respectively.  When  comparing  the  voltage  drop  at  different
parts  of  EDR  cells,  it was  found  that the  voltage  drop  of  the  area  across  cation  exchange  membrane  was
the  major  contributor  of energy  consumption,  and  the  pulse  current  could  decrease  the  voltage  drop  of
this  part effectively.  The  overall  removal  of  heavy  metals  in soil  1 (6–54%)  was  much  higher  than  soil  2
(1–17%)  due  to  the  different  acidification  process  and  chemical  speciation  of  heavy  metals  reflected  by
sequential  extraction  analysis.  Among  all experiments,  the  highest  removal  efficiency  occurred  in  pulse
current  experiment  of  soil  1, where  54%  of  Cu  and  30%  of  As  were  removed.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Electrodialytic remediation (EDR) is a method developed for
removal of heavy metals from soils. The method is closely con-
nected to electrokinetic remediation since the cleaning agent
of both methods is application of a direct current to the soil.
The electrodialytic remediation method differs from electrokinetic
remediation in the use of ion exchange membranes for separa-
tion of the soil and the solution in the electrode compartments.
The main purpose for using ion-exchange membranes is that ions
are hindered in entering the soil from the electrode compartments.
Therefore no current is wasted for carrying ions from one electrode
compartment to the other [1]. The EDR technique has been applied
for decontamination of e.g. soil, fly ash, and harbor sediment [2–5].
In previous works including both lab and pilot scale experiments,
this technique has demonstrated effective removal of heavy met-
als from the contaminated materials. In the present work, the focus
turns to energy saving aspect of EDR.

Generally, in an electrodialytic cell, the applied electrical poten-
tial should be sufficient to overcome the ohmic resistance, the
potential drop across the membranes, the dialysate and concen-
trate compartments drop due to concentration gradients (diffusion

∗ Corresponding author. Tel.: +45 45255029; fax: +45 45883282.
E-mail  address: tiran@byg.dtu.dk (T.R. Sun).

potential), potential drop at working electrodes, and the potential
drop at the membrane–solution interfaces (Donnan potential) [6,7].
However, in cases of electrodialytic remediation, the potential drop
at electrodes and in the anolyte and catholyte could be assumed
negligible compared to the value of other parts especially when the
electrolytes are circulated [8]. Further, as most fine grained soils
have a negative charged surface like a cation exchanger, and the
positive ions removed from the soil are in excess of the negative
ions, the removal processes are briefly controlled by two  steps:
(a) the transport in the contaminated soil and (b) the transport
across the cation exchange membrane, which are also expected to
be the main energy consumption steps. Concentration polarization
occurs in all membrane separation processes. In electrodialysis it
is the result of differences in the transport numbers of ions in the
solution and in the membrane. The net result of the difference is a
reduction of the electrolyte concentration in the solution at the sur-
face of the membrane, and a concentration gradient is established
in the solution between the membrane surface and the bulk solu-
tion. This concentration gradient results in a diffusive electrolyte
transport. A steady state is obtained when the additional ions, that
are needed to balance those removed from the interface due to the
faster transport rate in the membrane, are supplied by the diffusive
transport. When the applied current density reaches the limiting
current density of the membrane, water splitting will happen at
the interface between membrane and solution as a consequence
of concentration polarization [9,10]. The optimum current for
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Table 1
Characteristics of experimental soils.

Soil 1 Soil 2 Limiting values
of  heavy metals

Cu (mg  kg−1) 1502 1117 500
As (mg  kg−1) 212 – 20
Cd (mg  kg−1) – 16 0.5
Organic matter (%) 2.1 6.5
Carbonate content (%) 0.4 7.1
pH 6.7 7.6
Electric conductivity (mS  cm−1) 0.4 2.1
Clay (<0.002 mm) 5% 15%
Silt (0.002–0.06 mm)  21% 61%
Sand (0.06–2 mm)  72% 24%

electrodialytic soil remediation occurs when the limiting current
of the anion-exchange membrane is exceeded while that for the
cation-exchange membrane is not [11]. The limiting current density
of anion exchange membrane is supposed to be much lower than
that of cation exchange membrane because there are fewer anions
than cations in soil solution. Further, next to the anion exchange
membrane is the negatively charged soil surface which forms a
bipolar interface depleting ions rapidly. The water splitting of the
anion exchange membrane is of great importance for development
of an acidic front through the soil in which heavy metals mobilized.
The acidic front will cause a rise in potential drop at this area. At the
cation exchange membrane, under sublimiting current density, the
concentration polarization will induce the increase in resistance at
the boundary layer, both of which can increase the potential drop
of membrane.

It  has been reported that the application of pulsed electric
fields could give substantial improvements in the performance of
pressure-driven membrane processes by reduction of concentra-
tion polarization, control of membrane fouling and increase in the
membrane selectivity [12,13]. However, the fouling phenomenon
has merely been observed in EDR soil cells. The transference num-
ber of the membranes and permselectivity did not change after
being used in electrodialytic soil remediation experiments [14].
Thus use of pulsed current for EDR may  diminish the effect of build-
ing up polarization gradients and thus require a lower potential to
supply the same current. At electrokinetic remediation, researchers
have also attempted to change the electric field to improve the
remediation process. For example, Kornilovich et al. [15] indicated
that pulse voltage changes the distribution of contaminations in soil
and allows decreasing power inputs during electrokinetic remedia-
tion. Ryu et al. [16] found that pulsed electrokinetics could improve
the removal efficiency of heavy metals and decrease the energy
consumption at different extent depending on the pulse frequency.
Therefore, the objectives of this paper are to investigate the possi-
bility of pulsed electric field on energy saving of soil electrodialytic
remediation and the effect on removal of heavy metals.

2.  Experimental

2.1. Experimental soil

Two  types of soils contaminated by different heavy metals were
chosen for this study. Soil 1 was sampled from a wood preservation
site, and soil 2 was sampled from the top layer on an industrial site.
The soils were air-dried and passed through 2 mm mesh sieve. Some
characteristics of the soils are shown in Table 1.

2.2. Analysis of soil characteristics

Concentrations  of heavy metals were determined after pretreat-
ment of the soil according to Danish Standard method DS259 [17]

where  1.0 g of dry soil and 20.0 mL  (1:1) HNO3 were heated at
200 kPa (120 ◦C) for 30 min. The liquid was separated from the
solid particles by vacuum through a 0.45 mm filter and diluted to
100 mL.  The Cu and Cd concentrations were measured with AAS.
The As concentration was measured with ICP. Soil pH was mea-
sured by suspending 10.0 g dry soil in 25 mL  distilled water. After
1 h of shaking, pH was  measured using a Radiometer pH electrode.
The content of organic matter was found as a loss of ignition after
1 h at 550 ◦C. The carbonate content was determined volumetri-
cally by the Scheibler-method when reacting 3 g of soil with 20 mL
of 10% HCl. The amount was calculated assuming that all carbonate
is present as calcium-carbonate. Grain-size distribution was deter-
mined by wet-sieving approximately 100 g natural wet soil with
0.002 M Na4P2O7 through a 0.063 mm sieve followed by separation
by dry sieving of the larger fractions (>0.063 mm)  and sedimenta-
tion velocity measured by XRD of the smaller fractions (<0.063 mm)
on micrometritics® SEDIGRAPH 5100.

2.3. Desorption of heavy metals as a function of pH

To examine the pH dependent desorption of Cu, Cd and As from
the soils, the following procedure was  used: 5.0 g dry soil (dried at
105 ◦C for 24 h) and 25 mL  HNO3 in various concentrations (from
0.01 M to 1 M)  were suspended for 1 week. The suspensions were
filtered (0.45 mm)  and the Cu and Cd concentrations in the liquid
phase were measured with AAS and As with ICP. Extractions in
distilled water were made as a reference.

2.4. Sequential extraction of heavy metals

Sequential extraction was  performed according to the method
described in the Standards, Measurements and Testing Program of
the European Union [18]: 0.5 g of dry, crushed soil was treated in
four steps as follows: (1) extraction with 20.0 mL  0.11 M acetic acid
pH 3 for 16 h, (2) extraction with 20.0 mL  0.1 M NH2OH·HCl pH 2
for 16 h, (3) extraction with 5.0 mL  8.8 M H2O2 for 1 h and heating
to 85 ◦C for 1 h with a lid followed by evaporation of the liquid at
85 ◦C until it became almost dry by removal of the lid. After cooling
down, 25.0 mL  1 M NH4OOCCH3 pH 2 was added, and extraction
took place for 16 h. (4) Digestion according to DS 259 [17] was made
for identification of the residual fraction (this step is an addition to
the standard). All extractions were performed at room temperature,
and samples in each step were made in triplicate.

2.5. Electrodialytic setup and experimental design

A laboratory cell for electrodialytic remediation is seen in
Fig. 1. In compartment II, is the contaminated soil. Compart-
ment II is separated from the electrolyte compartments I (anolyte)
and III (catholyte) by ion exchange membranes (anion exchange
membrane and cation exchange membrane, respectively). The
electrodialytic cells were made from polymethyl methacrylate.
Each cell had an internal diameter of 8 cm.  The length of each
cell compartment was 5 cm.  The ion exchange membranes were
commercial membranes from Ionics (anion exchange membrane
AR204 SZRA B02249C and cation exchange membrane CR67 HUY
N12116B). Platinum coated electrodes from Permascand were
used. Between the two  working electrodes, four monitoring elec-
trodes (platinum coated electrodes) were used to monitor the
voltage drop of different parts. A power supply (Agilent E3612A)
was used to maintain a constant current. The pulse current was
accomplished by a power supply timer instrument (Joel TE102), and
the program was 1 h “on”, 0.5 h “off”. In each of the electrode com-
partments 500 mL  0.01 M NaNO3 adjusted to pH 2 with HNO3 was
circulated. Due to the electrode processes, pH-changes occurred in
the electrolytes. The pH in the electrolytes was  manually measured
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Fig. 1. Schematic diagram of the laboratory cell for electrodialytic soil remediation (CAT = cation exchange membrane, AN = anion exchange membrane, ME  = monitoring
electrode).

every 12 h and kept between 1 and 2 by addition of 1:1 HNO3 and
5 M NaOH. At the end of the experiments, the contents of heavy
metals in the different parts of the cell (membranes, soil, solutions,
and electrodes) were measured. The soil samples were segmented
to four slices, dried and crushed lightly in a mortar by hand before
the measurement of heavy metal concentrations (three samples)
and pH (three samples). The contents of heavy metals in the mem-
branes were measured after extraction in 1 M HNO3 and rinsing of
the electrodes prior to measurement was done in 5 M HNO3.

Eight electrodialytic experiments were performed as listed in
Table 2. In all experiments, 370 g soil with 18% water content
was in the central compartment. The duration was  designed to
maintain the identical working time between constant and pulse
current experiments under the same current. A constant current
was applied and the voltage was recorded by a multimeter.

The  power consumption (E) was calculated as:

E  =
∫

VI dt

where  E is the power consumption (Wh); V is the voltage between
working electrodes (V); I is the current (A); t is the duration (h).

The  mass balance of an element was defined as the relation
between the sum of mass found in the different parts of the cell
at the end of the experiment and the initial mass calculated on
basis of the mean initial concentration. The removal efficiency for
each element was calculated as mass of the actual heavy metal at
the parts of electrodes, electrolyte, and membranes, divided by the
total mass found in all parts of the cell at the end of the experiment.

3. Results and discussion

3.1.  Characteristics of heavy metals in soil

The experimental soil 1 was polluted by Cu and As, and the soil 2
was polluted by Cu and Cd. Also the Danish limiting values of heavy
metals for sensitive land use are listed in Table 1.

Fig. 2 shows the concentrations of Cu, As and Cd extracted from
soil 1 (A) and soil 2 (B) at different pH values. It is seen that des-
orption of the heavy metals increases with the decrease in pH from
both soil 1 and 2. For Cu, the desorption pattern was quite similar
between soil 1 and soil 2, which started between pH 5 and 6 and
approached 100% at approximately pH 1. As in soil 1 was not des-
orbed before pH was  below about 2. From soil 2, on the other hand,
Cd already desorbed before pH 6 and 7. Below pH 1 complete des-
orption was reached for all heavy metals. A little As was  extracted
at higher pH; this was  not necessarily mobile in the soil before the
sampling. Mobile As is expected to be washed out to deeper soil
layers, and the aeration of the soil sample between sampling and
treatment may  likely have influenced the mobility of As.

The  distribution pattern of heavy metals in the two soils found
from the sequential extraction is shown in Fig. 3. Generally, the
carbonate and exchangeable part of heavy metals in soil is more
removable than other parts, and the exchangeable part could be
considered directly mobile by electromigration according to previ-
ous research [19]. As it was shown in Table 1, the carbonate content
in soil 1 is much lower than that in soil 2. This probably means that
the exchangeable fraction of heavy metals in soil 1 is more than that
in soil 2. Combined with the residual part which is the most diffi-
cult part to remove, the removal order was expected to be Cu > As
in soil 1 and Cd > Cu in soil 2. Moreover, through the comparison
of Cu in soil 1 and soil 2, it can be seen that the residual fraction
of Cu in soil 1 is much lower than that in soil 2, but the carbonate
and exchangeable fraction is much higher. This probably indicates
that a higher removal efficiency of Cu in soil 1 could be expected
compared with soil 2.

3.2.  Acidification process

The  profile of pH in soil at the end of experiments is shown
in Fig. 4. The decreasing pH is an important factor influencing the
mobility of heavy metals by dissolution and desorption. The pH was
lower than the initial value after EDR treatment which means that
acidification occurred in all experiments though the extent was

Table 2
Experimental design.

Experiments Soil type Current density (mA/cm−2) Current type Duration (working hours)

1C Soil 1 0.1 Constant 240
1P  Soil 1 0.1 Pulse 240
2C  Soil 1 0.2 Constant 240
2P  Soil 1 0.2 Pulse 240
3C Soil 2 0.2 Constant 240
3P  Soil 2 0.2 Pulse 240
4C Soil 2 0.8 Constant 240
4P  Soil 2 0.8 Pulse 240
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Fig. 2. pH dependent extraction of Cu, As and Cd from the soil 1 (A) and soil 2 (B).

different. The H+ ions causing the acidification process come from
water splitting near the anion exchange membrane and transports
toward the cathode by electromigration [1,11]. Water splitting can
also take place at the cation exchange membrane, and can hin-
der the remediation process, as it results in an increased soil pH
and the reprecipitation of the heavy metals in this area. Using a
similar experimental setup, Ottosen et al. [11] found the limiting
current density for the cation exchange membrane to be between
0.3 and 0.5 mA/cm2 for the actual soil of their experiments. The soil
in [11] was sampled at the same site as soil 1 in the present work.
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Fig. 3. Sequential extraction of Cu, Cd and As in soil 1 and soil 2.
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A maximum 0.2 mA/cm2 of current density was  applied to the
soil 1, so water splitting near cation exchange membrane was  not
expected. The soil 2 was applied up to 0.8 mA/cm2 of current den-
sity, which was higher than the limiting current density mentioned
above, but no water splitting was detected near the cation exchange
membrane as the soil pH was  not higher than initial value. The
higher limiting current density at the cation exchange membrane
is probably due to the higher conductivity in this soil (Table 1).

The acidic front passed through all soil slices in soil 1, but only
a little in slice 1 in the 0.2 mA/cm2 experiments and partly in slice
2 in the 0.8 mA/cm2 experiments in soil 2. This difference was a
result of different buffering capacity of the two soils. The buffering
capacity of the soil (including the cation exchange capacity, avail-
able organic species and carbonate content) [20] will neutralize the
acidification process during EDR treatment. In the present work,
the carbonate content was chosen as a qualitative indicator of soil
buffering capacity since it is more susceptible than other indica-
tors [21]. The variation of the carbonate content in soil slices after
experiments is shown in Fig. 5. After experiments, the decrease of
carbonate content was more than the decrease of pH, which directly
demonstrated the interaction between H+ ions and the buffering
capacity. Additionally, the original organic matter and clay content
of soil 2 were higher than soil 1, which also supported the higher
buffering capacity in soil 2.

0.00 1.25 2.50 3.75 5.00

0.0

0.2

0.4

0.6

0.8

2

4

6

8

10

C
a

rb
o

n
a

te
 c

o
n

te
n

t 
(%

)

Distan ce from anion  excha nge  membrane /cm

 1C  1 P

 2C  2 P

 Initial in soil  1
 3C  3 P

 4C  4 P

 Initial in soil  2

Fig. 5. Profiles of soil carbonate content developed after application of current.

52



32 T.R. Sun, L.M. Ottosen / Electrochimica Acta 86 (2012) 28– 35

0.00 1.2 5 2.5 0 3.7 5 5.0 0

0

500

1000

1500

2000

2500

3000

3500

Distance  fro m anion  exchan ge membrane /cm

 1C

 1P

 2C

 2P

 Initi al

C
u

 c
o

n
c
e

n
tr

a
ti
o

n
/m

g
 k

g
-1

(A)

0.00 1.25 2.50 3.75 5.00

50

100

150

200

250

300

(B)  1C

 1P

 2C

 2P

 Initial

A
s
 c

o
n

c
e

n
tr

a
ti
o

n
/m

g
 k

g
-1

Distance  from anion  exchange  membrane/ cm

0.00 1.25 2. 50 3.75 5.00

0

500

100 0

150 0

200 0

250 0

300 0

(C)

C
u

 c
o

n
c
e

n
tr

a
ti
o

n
/m

g
 k

g
-1

Distance  from  anion exch ang e memb rane /cm

 3C 

 3P

 4C

 4P

 Initia l

0.00 1.2 5 2.50 3.75 5.00

0

2

4

6

8

10

12

14

16

18

20

22

 

C
d

 c
o

n
c
e

n
tr

a
ti
o

n
/m

g
 k

g
-1

Distance from an ion  exchang e membrane /cm

 3C

 3P

 4C

 4P

 Initial

(D)

Fig. 6. Final profiles of heavy metals in the soil. (A) Cu in soil 1, (B) As in soil 1, (C) Cu in soil 2, and (D) Cd in soil 2.

3.3. Mobility of heavy metals

Fig.  6(A)–(D) shows the residual concentration of heavy met-
als in soil slices after treatment. The release of heavy metals and
the following accumulation process from one slice to another are
determined by pH [1].

In  soil 1, Cu was mobilized as cation, because it was the slice
closest to anion exchange membrane that was remediated first and
the transport direction was toward the cathode. Cu accumulated in
slice 3 in experiments 1C and 1P and in slice 4 in the experiments 2C
and 2P (Fig. 6(A)). Arsenic was mainly found as uncharged species
at the condition of low pH and moderate oxidation state [22], which
means the more acidic the less mobile As for electromigration in
soil with no access to air. At the end of the present experiments, it
was found that As accumulated in the anolyte as a compound with
negative charges (probably H2AsO3

−) not as ionic species precip-
itated on the surface of anode, which was against the direction of
acidic front (Fig. 6(B)).

In  soil 2, the 0.2 mA/cm2 current density was too low and the
duration of the experiments was too short to remove the heavy
metals due to the high buffering capacity as discussed. The soil
pH was more than 7 in all slices by the end of experiments 3C
and 3P and at this pH neither Cu nor Cd were expected mobile in
accordance to (Fig. 2(B)). In the two experiments with 0.8 mA/cm2

current, both Cu and Cd were removed from slice 1 (i.e., at pH below
4.5), and accumulated at pH above 6.7 (slices 2 and 3) (Fig. 6(C)
and (D)). The Cu accumulation was though most steep, which

corresponds well to Cd being mobile at a higher pH (Fig. 2(B)). It can
be concluded that once the adequate acidification process occurs,
heavy metals are desorbed and removed from the soil slice by slice
under the driving force of electric field.

3.4. Energy consumption

In  all experiments current was constant when applied, therefore
the variation of voltage is an indicator of the energy consumption.
Fig. 7 shows the variation of voltage (between working electrodes)
in soil 1 (A) and soil 2 (B), respectively. The pulse pattern was  not
shown in the figures; because the data of voltage was recorded at
the working (current on) time every 24 h in both the constant and
the pulse current experiments. The voltage in the low current den-
sity experiments was  not influenced by the pulse as experiments
1C and 1P as well as 3C and 3P were comparable. This is proba-
bly because the free ions in the soil solution are sufficient for low
current transport. For the higher current density, as 0.2 mA/cm2 in
soil 1 and 0.8 mA/cm2 in soil 2, the difference in voltage between
constant and pulse experiments was  significant. The pulse current
experiments had much lower voltage. Furthermore the voltage in
the pulse current experiments decreased with time, which means
that the pulse current showed effective for energy saving in these
experiments. When considering the comparison between soil 1 and
soil 2 with the same current density (0.2 mA/cm2), the voltage was
much lower in soil 2 than in soil 1 which is because of the higher
conductivity in soil 2 than soil 1 (Table 1).
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Table 3
Overall results of electrodialytic remediation.

Experiments Mass balance (%)
Cu/As/Cd

Removal efficiency (%)
Cu/As/Cd

Energy
consumption (Wh)

Energy consumption per
removed  Cu/As/Cd
(Wh  mg−1)

1C 95/113/– 6/14/– 12 0.4/1/–
1P 100/114/– 6/9/– 9 0.3/1.2/–
2C  85/94/– 13/25/– 128 2.1/7.1/–
2P  112/89/– 54/30/– 42 0.1/2/–
3C  110/–/109 1/–/7 10 2.6/–/22
3P 99/–/113 1/–/8 10 3.2/–/19
4C 117/–/130 1/–/8 382 73/–/588
4P 123/–/102 2/–/17 151 19/–/151

The voltage during experiments in the different parts of cell is
shown in Fig. 8. Fig. 8(A) is the part across the anion exchange
membrane measured between electrodes in the anolyte and in the
soil, (B) is the part in soil compartment between, and (C) is the
part across cation exchange membrane between soil and in the
catholyte.

In the (A) part, the voltage increased first and obtained the
maximum value after a period, then decreased or kept constant
in all experiments. The increasing voltage was  probably caused
by the depletion of ions at the surface of anion exchange mem-
brane due to concentration polarization. Afterward, water splitting
supplied sufficient anions and cations to decrease the voltage drop
and the produced H+ ions initiated desorption and dissolution pro-
cess resulting in increased conductivity. The variation in voltage in
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Fig. 7. Variation of voltage between working electrodes in soil 1 (A) and soil 2 (B).

the (A) part could verify the difference in acidification among the
experiments (Figs. 4 and 5).

The voltage in the (B) part reflected the mass transport of ionic
species in the soil–water system. In the soil–water system, the
soil colloids and clay particles have fully developed diffuse dou-
ble layers (DDL). When the ionic concentration in the pore solution
where the current is passing is high, the ions within DDL  diffuse
and accumulate toward the clay surface, giving rise to concen-
tration polarization. When the current pass through the system,
potential variation in a certain extent can be used to describe the
electrotransport and electrochemical transformation processes of
ionic species in the soil solution and at the particle surfaces. In the
soil solution, the driving force for the transport of ion comes from
electromigration and electroosmosis, while at electrochemical sur-
faces, such as soil colloid or clay particles, double layer charging,
redox reactions, and surface conduction can take place simultane-
ously [23]. Results showed that the voltage in part (B) in the pulse
current experiments was  lower than that in the constant current
experiments. The lower voltage drop of the pulse current exper-
iments at this part could be explained by diffusion that occurred
in the pause time of pulse current experiments which probably
decreased the overpotential caused by concentration polarization
of DDL. Also, the charging and discharging cycles within DDL in the
pulse current experiment could possibly decrease the electrochem-
ical overpotential at the soil colloid surfaces.

Finally, the voltage in the (C) part (Fig. 8(C)) has a highly similar
pattern and value compared to the voltage applied to the work-
ing electrodes (Fig. 7) in all experiments. This means the highest
voltage drop occurred in the part across the cation exchange mem-
brane, and that this part was  the mainly contributor of energy
consumption. However, the voltage in this part in the pulse current
experiments was lower than that in the constant current experi-
ments and decreased during the experiments. This indicated that
the energy saving effect caused by pulse current in the whole EDR
system was  expressed by the energy saving in (C) part. The reason
for this phenomenon was  probably primarily the diffusion of ions at
the pause periods in the pulse current experiments, which dimin-
ished the concentration polarization and increased the conductivity
within and in the vicinity of the cation exchange membrane deter-
mined by Donnan equilibrium.

3.5.  Electrodialytic experiments—overall results

The overall results from the EDR experiments are given in
Table 3. As seen, the mass balances were between 85% and 130%,
which is an acceptable range for inhomogenous industrially pol-
luted soil. The removal efficiency of heavy metals in soil 1 (6–54%)
was much higher than in soil 2 (1–17%) due to the differences in
acidification level and heavy metal mobilization. The pulse cur-
rent showed the possibility of energy saving from the viewpoint of
lower voltage; however the efficacy on the removal of heavy metals
also should be considered. The energy consumption per removed
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Fig. 8. Variation of voltage at different parts of EDR cells. (A) is the part across the anion exchange membrane with two  monitoring electrodes one in anolyte and one in soil,
(B)  is the part in soil compartment with two monitoring electrodes both inside, and (C) is the part across cation exchange membrane with two  monitoring electrodes one in
soil  and one in catholyte.

milligram heavy metals was much lower in soil 1 (0.4–7.1 Wh/mg)
than soil 2 (2.6–588 Wh/mg), which meant the DC field was more
effective in soil 1 compared to soil 2. This phenomenon was  obvi-
ously demonstrated by the direct comparison of soil 1 (2C and
2P) and soil 2 (3C and 3P) with the same charge transfer. The Cu
had higher removal efficiency than As in soil 1 and the Cd had
higher removal efficiency than Cu in soil 2, which corresponds to
their speciation in the soils (Fig. 3). At the lower current density
applied (0.1 mA/cm2 in soil 1 and 0.2 mA/cm2 in soil 2) there was
no difference in energy consumption and removal of heavy metals
between the pulse current and the constant current experiments.
At the experiments with higher current density (0.2 mA/cm2 in soil
1 and 0.8 mA/cm2 in soil 2) the energy consumption was saved
67% and 60% by pulse current in soil 1 and soil 2, respectively. The
removal of Cu and As was increased by 76% and 17% in soil 1 and the
removal of Cu and Cd was increased by 31% and 53% in soil 2 by the
pulse current. The percentages were calculated as the difference
of the energy consumption and removal efficiency value between
the constant and the pulse current experiments divided by the val-
ues of the constant current experiments. The increased removal
was probably because the rate of dissolution caused by H+ ions was
slow compared to the rate of transport of ionic species when the
current was “on”. A period when the current was “off” then allowed

the  system to precede the chemical mechanisms of dissolution, and
the species concentration in solution increased. When the current
started again, there would be more targeted ions instead of H+ to
maintain the mass transport process in soil–water system.

4.  Conclusions

The possibility for application of pulsed electric current for
energy saving during electrodialytic remediation and the effect on
removal of heavy metals were investigated. Comparing the volt-
age drop at different parts of EDR cells, the voltage drop of the
area across cation exchange membrane was  the major contributor
of energy consumption, and the pulse current could decrease the
voltage drop of this part effectively. The removal of heavy metals in
soil 1 (6–54%) was  much higher than soil 2 (1–17%) due to (1) the
difference in acidification caused by a higher buffering capacity in
soil 2, and (2) the different chemical speciation of the heavy met-
als in the two soils reflected by the sequential extraction analysis.
Between the direct comparison of soil 1 and soil 2 with the same
current density, the removal of heavy metals in soil 1 was much
higher but the energy consumption per removed heavy metals was
lower than for soil 2, which means that the DC field was  more effec-
tive in soil 1 compared with soil 2. Among all experiments, the
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highest removal efficiency occurred in the pulse current exper-
iment of soil 1, where 54% of Cu and 30% of As were removed.
Overall, at relatively lower current density there was no differ-
ence on energy consumption and removal of heavy metals between
pulse current and constant current experiments, but at higher cur-
rent density the energy was saved 67% and 60% and the removal of
heavy metals were increased 17–76% and 31–51% by pulse current
in soil 1 and soil 2, respectively.
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Abstract 

The effect of pulse current on the acidification process and the removal of heavy metals during 

suspended electrodialytic soil remediation were investigated in this work. Eight experiments with 

constant and pulse current in two polluted soils were conducted. Soil 1 was sampled from a pile of 

excavated soil at a site with mixed industrial pollution (Cu and Cd), and soil 2 was sampled from 

the top layer of a wood preservation site (Cu and As). Results showed that pulse current improved 

the acidification by supplying more reactive H+ ions (defined as the H+ ions causing release of 

heavy metals from soil particles). The molar ratio of reactive H+ ions to total produced H+ ions 

(RH
+/PH

+) was higher in every pulse current experiment than in the corresponding constant current 

experiment. In addition the removal efficiencies of heavy metals were also improved. The carbonate 

buffering system in a soil is the first mechanism reacting with the produced H+ ions and impeding 

the heavy metal mobilization. It was found that the effect of improvement on both the acidification 

process and the removal of heavy metals were more significant in the soil with highest buffering 

capacity than the soil with low. Energy distribution analysis demonstrated that most energy was 

consumed by the transport of ionic species through the soil suspension, and then followed by 

membranes and electrolytes. The pulse current decreased the energy consumption to different extent 

depending on the pulse frequency. The lowest energy consumption was obtained in the experiment 

with the highest pulse frequency (96 cycles per day) for both soils. 
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1. Introduction 

Electrodialytic soil remediation (EDR) is one of a group of electrochemically based soil 

remediation methods with the purpose of removing heavy metals from polluted soil. EDR was 

originally applied to soil that was moist and consolidated in attempts at in-situ treatment (i.e. 

stationary EDR) [1]. A faster and continuous process was then developed, which can be used ex-

situ [2-4]: the soil is suspended in a solution (most often water) during such treatment (i.e. 

suspended EDR). The overall idea is to combine the method with soil washing and develop a 

continuous process for heavy metal removal from the fine fraction. Larger debris or soil particles 

are separated out by the washing procedure, leaving only a highly contaminated sludge for EDR. In 

the soil matrixes of stationary EDR, the ionic species are not able to move by electromigration 

directly to the opposite pole by the shortest route. Instead, they have to find their way along the 

tortuous pores and around the particles or air filled voids that block the direct path. By contrast, in 

the soil suspension of suspended EDR, the electromigration of released ions is more similar to that 

in aqueous solution. The stirring system in suspended EDR could increase the redox potential in 

soil solution by aeration, but in stationary EDR, slower oxygen transport gives a relatively reductive 

environment, which could influence the speciation of some heavy metals (e.g. As, Cr) susceptible to 

the redox condition and their removal. 

It has been reported for both electrokinetic remediation (EKR) and stationary EDR that the 

utilization of pulsed electric field instead of constant electric field is a potential way to improve the 

removal of heavy metals and reduce the energy consumption of remediation processes [5-10]. The 

major difference between suspended EDR and stationary EDR is the transport and distribution of 

H+ ions in soil, which is the key factor determining the efficacy of electrochemically based 

remediation techniques by aiding the mobilization of heavy metals, as most heavy metal cations are 

dissolved in acidic conditions [11]. For example, in stationary EDR, the effective mobility of H+ 
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ions in the soil pore fluid is 760×10-6 cm2 V-1 s-1. In suspended EDR, the ionic mobility of H+ ions 

could be approximately estimated as its value in aqueous solution, which is 3625×10-6 cm2 V-1 s-1 

[12]. So the time for the transport of H+ ions from the anion exchange membrane (AN) to the cation 

ion exchange membrane (CAT) in stationary EDR is around 3.7 h under unit electric field strength 

and assuming the distance from AN to CAT is 10 cm, but in suspended EDR it will only take 0.8 h 

for the same transport process. This means that there is a much longer time for the contact between 

H+ ions and soil particles in stationary EDR than that in suspended EDR. Therefore, a different 

pulse mode should be applied in suspended EDR.  

Generally the pulse mode is determined by the ratio of current “ON” time to current “OFF” time. 

In EKR, the most reported time ratio is tON/tOFF≈1 and the applied pulse frequency is high, e.g. 1500 

cycles per hour [5,8]. But the high frequency is expected to impede the acidification process in EDR 

by influencing the water dissociation at AN [13]. Therefore, a relatively low pulse frequency (e.g. 

30 cycles per day) should be applied when the pulsed electric field is introduced to improve the 

EDR process. The pulse mode in stationary EDR can be expressed as tON/tOFF=a/x, with “a” 

indicates the fixed current “ON” time and “x” indicates the “OFF” time is a variable and determines 

the effectiveness of applied pulse mode on remediation. However, the pulse mode in suspended 

EDR is expected to be tON/tOFF=x/a, with the “ON” time as variable based on the different transport 

process of H+ ions between stationary and suspended EDR. The use of x/a mode is not only because 

of the higher ionic mobility of H+ ions in suspended EDR, but also because of the fast reaction rate 

during the “OFF” time since the stirring system highly increases the contact probability between H+ 

ions (produced during the “ON” time) and soil particles thus increases the reaction rate. Therefore, 

the variation of “OFF” time in suspended EDR will hardly influence the efficacy of the pulse 

regime. 
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As depicted in Fig. 1, the H+ ions are produced (PH
+) by water dissociation at AN surface under 

over-limiting current density. The value of PH
+ (mmol H+ g-1 soil) is approximately calculated by 

Eq. (1) according to the Faraday’s law,  

1000
H

ItP
Fm+ = ×                                                             (1) 

where I is current (A), t is working time (s), F is the Faraday constant, and m is the mass of soil 

samples (g). The calculation of PH
+ is based on the assumption that all passage of current over the 

AN was related to water dissociation after transition time when the electrolyte concentration at AN 

surface decreases to zero. Afterwards, part of them will be current carrier (IH
+) since the ionic 

mobility of H+ ions are much higher than other ions and a high transference number could be 

expected. IH
+ is the amount of H+ ions transported into the cathode side from AN, passing through 

soil suspension and CAT. The other part will release the heavy metals from soil particles and is 

defined as reactive H+ ions (RH
+). This part includes (I) the amount of H+ ions conquering the soil 

buffering capacity, (II) desorption (i.e. cation exchange) of non-specific adsorbed heavy metals, (III) 

dissolution of co-precipitated heavy metals, and (IV) mobilization of specific adsorbed heavy 

metals from soil minerals combined with destroy of mineral lattice by H+ ions. Simplified 

expression by equation is PH
+=IH

++RH
+. To improve the efficiency of suspended EDR is actually to 

increase the ratio of RH
+/PH

+. Therefore, the objectives of the present work are to (1) test the effect 

of pulse current on the ratio of RH
+/PH

+, and (2) investigate the energy saving effect caused by pulse 

current in suspended EDR.  

 

2. Experimental 

2.1. Experimental soil 

Two types of soils contaminated by different heavy metals were chosen for this study. Soil 1 was 

sampled from the top layer on an industrial site, and soil 2 was sampled from a wood preservation 
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site. The soils were air-dried and passed through 1 mm mesh sieve. Some characteristics of the soils 

are shown in Table 1. 

2.2. Analysis of soil characteristics 

Concentrations of heavy metals were determined after pretreatment of the soil according to 

Danish Standard method DS259 [14] where 1.0 g of dry soil and 20.0 mL (1:1) HNO3 were heated 

at 200 kPa (120 ºC) for 30 minutes. The liquid was separated from the solid particles by vacuum 

through a 0.45 mm filter and diluted to 100 mL. The Cu and Cd concentrations were measured with 

AAS. The As concentration was measured with ICP. Soil pH was measured by suspending 10.0 g 

dry soil in 25 mL distilled water. After 1 hour of shaking, pH was measured using a Radiometer pH 

electrode. The content of organic matter was found as a loss of ignition after 1 hour at 550 ºC. The 

carbonate content was determined volumetrically by the Scheibler-method when reacting 3 g of soil 

with 20 mL of 10% HCl. The amount was calculated assuming that all carbonate is present as 

calcium-carbonate. Grain-size distribution was determined by wet-sieving approximately 100 g 

natural wet soil with 0.002 M Na4P2O7 through a 0.063 mm sieve followed by separation by dry 

sieving of the larger fractions (>0.063 mm) and sedimentation velocity measured by XRD of the 

smaller fractions (<0.063 mm) on micrometritics® SEDIGRAPH 5100. 

2.3. Desorption of heavy metals as a function of pH 

To examine the pH dependent desorption of Cu, Cd and As from the soils before the EDR 

treatment, the following procedure was used: 5.0 g dry soil (dried at 105 ºC for 24 hours) and 25 

mL HNO3 in various concentrations (from 0.01 M to 1 M) were suspended and put on a shaking 

table for 1 week. Afterwards, the suspensions were filtered (0.45 mm) and the Cu and Cd 

concentrations in the liquid phase were measured with AAS and As with ICP. Extractions in 

distilled water were made as a reference.  

2.4. Electrodialytic setup and experimental design 
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A laboratory cell for electrodialytic remediation is seen in Fig. 1. In compartment II, is the 

suspended soil. Compartment II is separated from the electrolyte compartments I (anolyte) and III 

(catholyte) by ion exchange membranes (anion exchange membrane and cation exchange 

membrane, respectively). The electrodialytic cells were made from polymethyl methacrylate. The 

ion exchange membranes were commercial membranes from Ionics (anion exchange membrane 

AR204 SZRA B02249C and cation exchange membrane CR67 HUY N12116B). Platinum coated 

electrodes (8 cm length, 0.2 cm diameter for each) from Permascand were used as working 

electrode in compartment I and III. Between the two working electrodes, four monitoring electrodes 

(platinum coated electrodes) were used to monitor the potential drop of different parts during the 

experiment. A power supply (Agilent E3612A) was used to maintain a constant current. The applied 

current was 60 and 15 mA for soil 1 and soil 2, respectively; therefore the current density was 1.2 

and 0.3 mA cm-2 orthogonal cross-sectional area of soil suspension (50 cm2). In each of the 

electrode compartments, 500 mL of 0.01 M NaNO3 adjusted to pH 2 with HNO3 was circulated. 

The soil was kept suspended during the experiments by constant stirring with a plastic-flap attached 

to a glass-stick and connected to an overhead stirrer (RW11 basic from IKA). Due to the electrode 

processes, pH-changes occurred in anolyte and catholyte. The pH in these electrolytes was 

manually measured every 12 hours and kept between 1 and 2 by addition of 1:1 HNO3 and 5 M 

NaOH. By the end of the electrodialytic experiments, the contents of Cu and As in the different 

parts of the cell (membranes, soil, solutions, and electrodes) were measured. The suspension from 

the central compartment was filtered. The sediment was dried and crushed lightly in a mortar by 

hand before the heavy metal concentrations and pH were measured. The contents of Cu and As in 

membranes and at the electrodes were measured after extraction in 1 M HNO3 and 5 M HNO3, 

respectively. 
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The pulse current was accomplished by a power supply timer instrument (Joel TE102), and the 

program was 30, 20, or 10 min “ON”, and 5 min “OFF”, so the frequency was approximately 41, 58 

or 96 cycles per day, respectively. The pre-chronopotentiometric measurement of membranes was 

conducted by automatic record of the potential drop between the saturated calomel electrodes 

(SCEs) inserted into both sides of the membranes. The potential drop was recorded by a datalogger 

(Agilent 34970A) with a rate of once per 5 s. In all experiments, the duration was designed to 

maintain the identical total charge transfer between constant and pulse current experiments under 

the same current. As it was shown in Table 2, the total duration was different among the 

experiments, but the working time was kept the same. The liquid to solid ratio (L/S) was designed 

as 5, i.e. 100 g soil suspended in 500 ml distilled water, to be consistent with the desorption 

experiments and previous studies.  

The energy consumption (E) was calculated as: 

E VIdt= ∫                                                                    (2) 

where E is the energy consumption (Wh), V is the potential drop between working or monitoring 

electrodes (V), I is the current (A), and t is the duration (h).  

The mass balance of an element was defined as the relation between the sum of mass found in the 

different parts of the cell at the end of the experiment and the initial mass calculated on basis of the 

mean initial concentration. The removal efficiency for each element was calculated as mass of the 

actual heavy metal at the parts of electrodes, electrolyte, and membranes, divided by the total mass 

found in all parts of the cell at the end of the experiment. 

 

3. Results and discussion 

3.1. Characteristics of heavy metals in soil 
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The experimental soil 1 was polluted by Cu and Cd, and the soil 2 was polluted by Cu and As. 

Large amount of carbonate content, organic matter, and clay content were measured in soil 1, which 

implied a higher buffering capacity than soil 2. The higher conductivity in soil 1 indicated a 

possibility for applying a higher current density for treatment compared to soil 2. 

Fig. 2 shows the concentrations of Cu, Cd and As extracted from soils and pH variation at 

different addition of H+ ions. It is seen that desorption of the heavy metals increases with the 

decrease in pH from both soil 1 and 2. For Cu, the desorption pattern was quite similar between soil 

1 and soil 2, which started between pH 5 and 6 and approached 100% at approximately pH 1. As in 

soil 2 was not desorbed before pH was below about 2. From soil 1, on the other hand, Cd already 

desorbed before pH 6 and 7. Below pH 1 complete desorption was reached for all heavy metals. A 

little As was extracted at higher pH; this was not necessarily mobile in the soil before the sampling. 

Mobile As is expected to be washed out to deeper soil layers, and the aeration of the soil sample 

between sampling and treatment may likely have influenced the mobility of As. The C/C0 was 

higher than 1 in few case. Industrially polluted soils as used in this study are very inhomogeneous. 

In addition due to the destructive measuring method, the measured concentration of heavy metals in 

soil after experiments cannot match the initial value precisely. It also can be seen from Fig. 2 that 

all the heavy metals were mobilized when the pH was low enough, no matter the speciation of 

heavy metals in the soil.  

3.2. Chronopotentiometric analysis of AN and CAT 

The chronopotentiometric curves for anion exchange membranes of soil 1 and soil 2 are shown in 

Fig. 3A and 3B, respectively. The potential drop was measured by two SCEs (1 and 2) between 

anion exchange membranes as shown in Fig. 1. The detailed description of the 

chronopotentiometric curves has been given in previous reports [15-17]. The most important 

parameter obtained from the curves is the transition time indicating the concentration at the vicinity 
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of membrane surface decreases to zero. The transition time (τ) as a function of applied current 

density is derived from Fick’s second law and given by: 

20

2

1
4

i i

i i

C z FD
T t i

πτ
 

=  − 
                                                           (3) 

where D is the diffusion coefficient of the electrolyte in the soil suspension, Ci
0 and zi are the initial 

concentration of the electrolyte in the soil suspension and the charge of the counter-ion, respectively, 

Ti and ti are the transference numbers of the counter-ion in the membrane and soil suspension, 

respectively, i is the current density, and F is the Faraday constant. Eq. (3) is equivalent to the Sand 

equation frequently used in studies of electrode systems [18]. The occurrence of transition time 

indicated that an overlimiting current density has been applied to the anion exchange membrane. 

This results in water dissociation and acidification of the soil suspension as described, and 

subsequent mobilization of heavy metals could be expected [15]. It can be seen that the transition 

time decreased with increase in the applied current density, which is a highly agreement with Eq. (3) 

as the current density is inversely proportional to the transition time. The transition time was lower 

in soil 2 than that of soil 1 under the same current density, which could be due to the lower 

concentration (here simplified by the conductivity data in Table 1) of ionic species in the solution of 

soil 2 compared to soil 1. In principle when applying a constant current, water dissociation will 

occur as long as the experimental time is longer than the transition time, no matter what current 

density is applied. But in the EDR cells with pulse current, the transition time is important since it 

determines the limit for the highest applied pulse frequency. The applied current density was 1.2 

mA cm-2 for soil 1 and 0.3 mA cm-2 for soil 2 in the present work (the reasons to choose these two 

current densities were based on previous studies [2,19]). The applied current density must on one 

hand be high enough to obtain a short transition time, and on the other hand low enough to ensure a 

continuous remediation process and prevent a too fast acidification which results in a low 
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transference number for the heavy metals as most current is carried by H+ ions. The optimal current 

density depends on soil type, composition, and liquid to solid ratio. The transition time of soils 1 

and 2 was 1.4 and 0.9 min respectively at the chosen current density (Fig. 3). Therefore, the current 

“ON” time must not be shorter than these values; otherwise the water dissociation will be 

diminished by diffusion of anionic species towards the anion exchange membrane.  

The transition state was not seen for the cation exchange membrane (measured by SCE 3 and 4, 

data not shown). This means that current density applied was sublimiting for the cation exchange 

membrane, which is the requirement during EDR. The limiting current density of anion exchange 

membrane was lower than that of cation exchange membrane, probably because there were fewer 

anions than cations in the electric double layer of the clay particles. The limiting current density is 

expected to be determined by clay fraction, type of clay mineral in soil solid phase, and ionic 

concentration in soil solution. Further, next to the anion exchange membrane is the negatively 

charged soil surface which forms a bipolar interface depleting ions rapidly [20], even though the 

concentration of anionic species could be increased in bulk soil solution by acidification.  

3.3. Acidification process and removal of heavy metals 

The pH changes in the soil suspensions in soils 1 and 2 during the experiments are shown in Fig. 

4. In general, the pH in suspension of all experiments decreased over time and the decreasing pH is 

an important factor influencing the mobility of heavy metals by dissolution and desorption. The H+ 

ions causing the acidification process come from water dissociation near the anion exchange 

membrane and transports towards the cathode by electromigration as discussed above. Due to the 

different buffering capacity of experimental soils 1 and 2 (Table 1), the acidification pattern 

differed. It can be seen for soil 1, a “lag-period” was observed before a fast decrease in pH, during 

which the acidification overcame the buffering capacity of soil, whereas a continuous drop of the 

pH after applying the current was seen for soil 2. Among the experiments in soil 1 (EXP.1-4), both 
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the lowest pH value and highest acidification rate (expressed by slope) were obtained in EXP.4 

(pulse current, 10 min on and 5 min off) then followed by EXP.3 and 2, the highest pH during and 

after experiments occurred in EXP.1 (constant current). This corresponds to the order in RH
+/PH

+ 

ratios which are listed in Table 3. The value of reactive H+ ions (RH
+, mmol H+ g-1 soil) was 

obtained by polynomial fitting of pH data in Fig. 2 and matched with the pH value after each 

experiment shown in Fig. 4. The consumed H+ ions in Fig. 2 is also the total amount of reactive H+ 

ions (the summation of that in I-IV processes as mentioned in Introduction), so a direct comparison 

between RH
+ and the consumption of H+ ions in pre-desorption experiments is possible. The 

maximum increase of RH
+/PH

+ ratios was 0.14 units from EXP.1 to EXP.4, which indicated that 

pulse current improved the acidification process by supplying more reactive H+ ions (RH
+). Similar 

trend was shown for soil 2 (EXP.5-8) but with a slow decrease in pH after certain time and 

approaching to the same value at the end of experiments probably due to the H+ ions were major 

contributor to the transport of current at this period (IH
+). Therefore, the maximum increase of 

RH
+/PH

+ ratios was lower (0.04 units) in soil 2 than that of soil 1, which means the improvement 

caused by pulse current was more significant in the soil with higher buffering capacity than the soil 

with low. 

In present work, the carbonate content was chosen as a qualitative indicator to estimate the soil 

buffering capacity variation since it is more susceptible than other indicators, like organic matter or 

CEC [21]. The residual carbonate contents in soil after different experiments were shown in Table 3. 

It can be seen that in soil 1 the carbonate content decreased from EXP.1 to EXP.4, corresponding to 

its acidification process. In soil 2, there is no significant difference between experiments, and 

actually the carbonate contents after treatments were below the limit of the test method. This means 

there was almost no buffering capacity left after treatments, which also supplied a possible 

explanation to the decreased acidification rate at the late stage and levelling out the slope. 

69



Fig. 5A and 5B show the distribution of Cu, Cd and As in the EDR cells at the end of the 

experiments. In all experiments the major part of the Cu and Cd were found either at the cathode 

side or in the soil, which means Cu and Cd were mobilized as cations, while for As the major part 

was distributed either in the anode side or in the soil, so the As was removed as anions. The stirring 

process in suspended EDR could increase the redox potential in soil solution by aeration. But in 

stationary EDR, slower oxygen transport gives a relatively reductive environment. Based on the Eh-

pH diagram [22], in stationary EDR, the non-charged AsOH3 is expected in the low pH region near 

anion exchange membrane, which impedes the As removal. This has been demonstrated in study 

[23,24] that As (III) is the dominating species, and by addition of alkaline reagents, the As removal 

could be significantly improved. By contrast, in suspended EDR, due to the aeration, oxidation of 

As (III) to moveable species H2AsO4
- or HAsO4

2- facilitates the removal of As in a large range of 

pH. The removal of Cu, Cd and As were all improved (although with different extent) by pulse 

current since their concentration in the cathode side increased and the residual concentration in soil 

decreased both in soil 1 and soil 2. Combined with the pH profile, it can be concluded that the 

positive effect of pulse current on removal of heavy metals mainly caused by the enhanced 

acidification process. Comparing soil 1 and soil 2, a major difference was the certain concentration 

of residual heavy metals observed in soil 1’s suspension, which probably due to the releasing of 

ionic species during the conquering of buffering capacities. The released ionic species acted as 

supporting electrolyte and decreased the transference number of dissolved heavy metals. The SEM-

EDX mapping of the electrode deposition shown in Fig. 6 confirmed that large amount of Ca 

existed at soil 1’s cathode, whereas only small amount of Ca showed up compared to Cu at soil 2’s 

cathode. The elements Al, Si, and Fe were released from clay minerals. Among the experiments in 

soil 1, it can be seen that the concentration of both Cu and Cd in soil suspension decreased from 

EXP.1 to EXP.4, which implied an increased transference number in pulse current experiments. 
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3.4. Electrodialytic remediation―Overall results 

The overall results from the EDR experiments are given in Table 3. As seen, the mass balances 

were between 88% and 111%, which is an acceptable range for inhomogeneous industrially 

polluted soil. The removal efficiency was increased by pulse current both in soil 1 and soil 2, 

increase in pulse frequency, the removal efficiency improved. However, the increased extent was 

higher in soil 1 (up to 32% for Cu and 20% for Cd) than that in soil 2 (up to 10% for Cu and 5% for 

As), which was probably due to the decreased acidification rate at the late stage of soil 2 (Figure 3). 

At the beginning, the acidification rate was highest in EXP.8 and followed by EXP.7, 6 and 5, 

therefore the same order of heavy metals removal rate could be expected. After the pH dropped to 

around 3.2, the acidification leveled out. The time for this decreased from EXP.5 to 8, so during the 

period from 48 to 72 h, more heavy metals were dissolved in EXP.5 and followed by EXP.6, 7 and 

8. Also the absence of large amount support electrolyte in soil 2’s suspension (compared to soil 1) 

and low buffering capacity lead to a similar transference number of heavy metals among EXP.5-8. 

Further, the removal efficiency of Cd (62-82%) was significantly higher than that of Cu (24-57%) 

in soil 1 and the removal efficiency of Cu (72-82%) was higher than that of As (53-58%), which 

were corresponding to the expectations from the pH desorption pattern (Fig. 2) with different 

desorption characteristics for different heavy metals. 

The positive effect of energy saving caused by pulse current was shown in Table 3 since the total 

energy consumption and the energy consumption per removed milligram heavy metals were lower 

in pulse current experiments than that in constant current experiment both in soil 1 (with lowest 

value in EXP.4 ) and soil 2 (with lowest value in EXP.8). Between soil 1 and soil 2, the decrease 

extent of total energy consumption was higher in soil 1 (up to 33%) than that in soil 2 (up to 11%). 

Based on previous studies [7], the possible mechanism of decreased energy consumption in pulse 

current experiments is the additional proceeding of chemical dissolution at the relaxation period 
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when the current is switched off, which induces increased species concentration in solution. In the 

soil with higher buffering capacity, more ions would be released after a pulse than that in the soil 

with low buffering capacity under a similar condition of acidification; therefore higher extent of 

energy saving was achieved. Compared with stationary EDR (maximum 70% energy saving) [9,25], 

less energy was saved (maximum 33% energy saving in present work) in suspended EDR even with 

higher applied current densities. The possible explanation is the more effective dissolution or 

desorption process (especially when the current is “ON”) caused by continuous stirring in 

suspended EDR, while in stationary EDR this process is dominated by classic Nernst-Planck mass 

transport. Unlike stationary EDR with highest energy consumption occurred at cation exchange 

membrane [9,25], the major energy consumption in suspended EDR occurred at the soil 

compartment as shown in Fig. 7. In soil suspension, both the amount of frees ions and the electric 

mobility of ionic species are higher than that in stationary EDR, so less energy was needed for 

transport of ionic species across the membranes. But at the same time the depletion of free ions 

caused an increase in resistance and gave rise to higher energy consumption in the soil compartment.  

 

4. Conclusions 

This paper focused on the investigation of possible enhancement caused by pulse current during 

suspended EDR. After 180 h experiments, the results demonstrated that the pulse current improved 

the acidification process by supplying more reactive H+ ions since the molar ratio of reactive H+ 

ions to total produced H+ ions (RH
+/PH

+) was higher in the pulse current experiments than in 

constant current experiments. The highest ratio occurred in a pulse current experiment with the 

frequency of 96 cycles per day (the highest pulse frequency in the investigation) for both soils. As a 

result of the enhanced acidification process, the removal efficiencies of heavy metals were also 

improved. The effect of improvement on either acidification process or removal of heavy metals 
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was more significant in the soil with higher buffering capacity than the soil with low, which was 

supported by the higher increase extent in RH
+/PH

+ (0.14 unit) and removal efficiency of heavy 

metals (~32%) in soil1 than that in soil 2 (0.04 unit and ~10%, respectively). Increasing the pulse 

frequency further would probably not improve the efficiency as the highest applicable pulse 

frequency was limited by transition time of anion exchange membrane. The energy distribution 

analysis demonstrated that most energy was consumed for the transport of ionic species through the 

soil suspension, followed by membranes and electrolytes. The pulse current decreased the energy 

consumption to different extent depending on the pulse frequency. 
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                       Table 1 
                       Characteristics of experimental soils. 

Items Soil 1  Soil 2  

Cu (mg kg-1) 1064 1196 
As (mg kg-1) - 3334 
Cd (mg kg-1) 16 - 
Organic matter (%) 6.5 3.6 
Carbonate content (%) 7.1 0.6 
pH 7.2 6.7 
Electric conductivity (mS cm-1) 2.6 0.8 
Clay (< 0.002 mm) 15% 8% 
Silt (0.002-0.06 mm) 61% 26% 
Sand (0.06-2 mm) 24% 66% 
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Table 2  
Experimental design. 

 Experiments Current density  

(mA cm-2) Current type Frequency 
(cycles day-1) L/S Total duration 

(h) 
Working time 

(h) 

Soil 1 

EXP.1 1.2 Constant - 5 180 180 

EXP.2 1.2 Pulse 
30minON/5minOFF 41 5 210 180 

EXP.3 1.2 Pulse 
20minON/5minOFF 58 5 225 180 

EXP.4 1.2 Pulse 
10minON/5minOFF 96 5 270 180 

Soil 2 

EXP.5 0.3 Constant - 5 180 180 

EXP.6 0.3 Pulse 
30minON/5minOFF 41 5 210 180 

EXP.7 0.3 Pulse 
20minON/5minOFF 58 5 225 180 

EXP.8 0.3 Pulse 
10minON/5minOFF 96 5 270 180 
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        Table 3  
        Overall results of electrodialytic remediation. 

Experiments Mass balance 
Cu/Cd/As (%) 

Removal 
efficiency 

Cu/Cd/As (%) 
RH

+/PH
+ 

Final 
carbonate 

content (%) 

Energy 
consumption 

(Wh) 

Energy 
consumption per 

removed 
Cu/Cd/As 
(Wh mg-1) 

EXP.1 106/95/- 24/62/- 0.44 1.3±0.04 285 11/303/- 
EXP.2 110/103/- 35/70/- 0.49 0.9±0.03 255 6.1/222/- 
EXP.3 105/100/- 45/77/- 0.53 0.5±0.03 227 4.5/182/- 
EXP.4 111/110/- 57/82/- 0.58 0.3±0.02 192 2.9/133/- 
EXP.5 98/-/91 72/-/53 0.39 0.1±0.01 276 3.3/-/1.7 
EXP.6 96/-/89 75/-/54 0.40 0.1±0.03 268 3.1/-/1.7 
EXP.7 104/-/88 79/-/57 0.42 0.1±0.02 258 2.6/-/1.6 
EXP.8 110/-/88 82/-/58 0.43 0.1±0.01 247 2.3/-/1.4 
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Fig. 1. Schematic diagram of the laboratory cell for electrodialytic soil remediation (AN = anion 

exchange membrane, CAT = cation exchange membrane, and SCE=saturated calomel electrode). 

The four monitoring electrodes were used for measuring the potential drop of different parts during 

the experiment. The SCEs were used for pre-chronopotentiometric measurement of membranes. 
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Fig. 2. pH dependent extraction of Cu, Cd, and As from the soil 1 (A) and soil 2 (B). C0 is the initial 

concentration of Cu, Cd, and As in soil 1 and 2. 
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Fig. 3. Chronopotentiogram of anion exchange membrane with (A) for soil 1and (B) for soil 2. The 

applied current densities were from 0.34 to 1.2 mA cm-2 for soil 1 and from 0.02 to 0.3 mA cm-2 for 

soil 2, respectively. Temperature=25˚C. 
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Fig. 4. pH variation in soil suspension during the electrodialytic remediation process. The current 

densities applied in soil 1 and 2 were 1.2 and 0.3 mA cm-2, respectively. Temperature=25˚C. 
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Fig. 5. Distribution of heavy metals in the different parts of the electrodialytic cell at the end of the 

experiments, with (A) for Cu in both soil 1 and 2, (B) for Cd in soil 1 and As in soil 2. The current 

densities applied in soil 1 and 2 were 1.2 and 0.3 mA cm-2, respectively. Temperature=25˚C. 
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Fig. 6. SEM picture of electrodeposits at cathode and result from EDX mapping, with (A) for soil 

1and (B) for soil 2. Samples were collected from constant current experiments for both soils. The 

current densities applied in soil 1 and 2 were 1.2 and 0.3 mA cm-2, respectively. Temperature=25˚C. 
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Fig. 7. Distribution of energy consumption at different parts of EDR cells (AN=anion exchange 

membrane, SS=soil suspension, and CAT=cation exchange membrane). The data indicate the 

decrease percentage induced by pulse current in soil 1 and 2. The current densities applied in soil 1 

and 2 were 1.2 and 0.3 mA cm-2, respectively. Temperature=25˚C. 
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a  b  s  t  r  a  c  t

Energy  consumption  is an  important  factor  influencing  the  cost  of electrodialytic  soil  remediation  (EDR).
It  has  been  indicated  that  the  pulse  current  (in  low  frequency  range)  could  decrease  the  energy  con-
sumption  during  EDR.  This  work  is  focused  on  the  comparison  of  energy  saving  effect  at different  pulse
frequencies.  Based  on the  restoration  of  equilibrium,  the  relaxation  process  of the  soil–water  system
was  investigated  by  chronopotentiometric  analysis  to find  the  optimal  relaxation  time  for  energy  saving.
Results  showed  that the  pulse  current  decreased  the energy  consumption  with  different  extent  depend-
ing  on  the  pulse  frequency.  The  experiment  with  the  frequency  of  16  cycles  per  day  showed  the  best
restoration  of  equilibrium  and  lowest  energy  consumption.  The  energy  consumption  per  removed  heavy
metals  was  lower  in  pulse  current  experiments  than  constant  current  and  increased  with  the  pulse  fre-
quency.  It  was  found  that  the  transportation  of  cations  through  the cation  exchange  membrane  was  the
rate  controlling  step  both  in  constant  and  pulse  current  experiments,  thus  responsible  for  the  major
energy  consumption.  Substitution  of the  cation  exchange  membrane  with  filter  paper  resulted  in  a dra-
matic  decrease  in energy  consumption,  but  this  change  impeded  the  acidification  process  and  thus  the
removal  of  heavy  metals  decreased  significantly.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Electrodialytic remediation (EDR) is a method developed for
removal of heavy metals from soils, which differs from electroki-
netic remediation (EKR) in the use of ion exchange membranes
for separation of the soil and the solution in the electrode com-
partments. The main purpose of the ion-exchange membranes is
to prevent ions in the electrode compartments from entering the
soil, therefore no current is wasted for carrying ions from one elec-
trode compartment to the other [1]. The EDR technique has been
applied for decontamination of e.g. soil [2], fly ash [3], and harbor
sediment [4]. In previous works including both lab and pilot scale

∗ Corresponding author. Tel.: +45 45255029; fax: +45 45883282.
E-mail  address: tiran@byg.dtu.dk (T.R. Sun).

experiments, this technique has demonstrated effective removal of
heavy metals from the contaminated materials.

The energy consumption of the electrochemically based reme-
diation techniques is an important factor influencing costs and thus
the applicability. In a conventional electrodialytic cell, the applied
electrical potential must be sufficient to overcome the ohmic resis-
tance, the potential drop across the membranes, the dialysate and
concentrate compartments drop due to concentration gradients,
potential drop at working electrodes, and the potential drop at the
membrane–solution interfaces (Donnan potential) [5]. In electro-
dialytic soil remediation, the potential drop at electrodes and in
the anolyte and catholyte can be assumed negligible compared to
the value of other parts especially when the electrolytes are circu-
lated [6]. Further, as most fine grained soils have a negative charged
surface like a cation exchanger, and the positive ions removed
from the soil are in excess of the negative ions, the removal pro-
cess are briefly controlled by two steps: (a) the transport in moist

0304-3894/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jhazmat.2012.08.043
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Table 1
Chemical properties of the soil sample.

Items Values

Concentration of heavy metals
Cu/limiting value 1117/500 mg  kg−1

Cd/limiting value 16/0.5 mg  kg−1

pH 7.6
Conductivity 2.1 mS  cm−1

Carbonate content 7.1%
Organic matter 6.5%

Grain size distribution
Sand 24%
Silt  61%
Clay 15%

pores of the contaminated soil and (b) the transport across the
cation exchange membrane, which are also expected to be the
main energy consuming steps. Concentration polarization occurs
in all membrane separation processes owing to differences in the
transport numbers of ions in the solution and in the ion exchange
membrane [7]. When an electric current is passed through an ion
exchange membrane, ionic concentration on the desalting surface
of the membrane is decreased due to concentration polarization,
and reduced to zero at the limiting current density. At this point,
there are no more ionic species available to carry the current. Thus,
the voltage drop across the boundary layer increases drastically
resulting in a higher energy consumption and generation of water
dissociation.

In pressure-driven membrane processes the application of
pulsed electric fields can give substantial improvements in the per-
formance by reduction of the concentration polarization, control
of membrane fouling and increase in the membrane selectivity
[8,9]. For EKR, researchers have also investigated the effect of a
pulsed electric filed to improve the remediation process. For exam-
ple, Kornilovich et al. [10] indicated that a pulse voltage changes
the distribution of heavy metals in the soil and allows decreas-
ing power inputs during electrokinetic remediation. Ryu et al. [11]
found that pulsed electrokinetics could improve the removal effi-
ciency of heavy metals and decrease the energy consumption. A
high pulse frequency (e.g. 1500 cycles per hour) applied in EKR is
expected to impede the acidification process in EDR by influencing
the water dissociation at anion exchange membrane. Therefore, a
relatively low pulse frequency (e.g. 30 cycles per day) should be
applied when the pulsed electric field is introduced to improve
the EDR process. It has previously been shown by Hansen et al.
[12] that a pulse voltage with low frequencies could enhance the
removal efficiency for copper during EDR of mine tailings. Later,
Sun et al. [13] demonstrated that the energy consumption could
be decreased by low frequency pulse current. However, the effect
of pulse frequency on energy consumption during EDR has not
been clarified before. Therefore, the present work aims at the com-
parison of different pulse frequencies on energy consumption and
developing a possible method to estimate the effect.

2.  Materials and methods

2.1.  Experimental soil

The  experimental soil contaminated by Cu and Cd was a Danish
soil, sampled from a pile of excavated soil. The collected soil was air-
dried at room temperature, and gently crashed and passed through
a 2 mm mesh sieve before experiment. Some characteristics of the
soils are shown in Table 1.

Concentrations of heavy metals were determined after pretreat-
ment of the soil according to Danish Standard 259 [14], where
1.0 g of dry soil and 20.0 mL  (1:1) HNO3 were heated at 200 kPa

 CAT   AN 1 2 3 4
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-
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HCO3
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  Me
2+

II III
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CA

  ME3 Anode ME1 ME2 

Fig. 1. Schematic diagram of the laboratory cell for electrodialytic soil remediation
(CAT,  cation exchange membrane; AN, anion exchange membrane; ME,  monitoring
electrode).

(120 ◦C) for 30 min. The liquid was  separated from the solid par-
ticles by vacuum through a 0.45 mm filter and diluted to 100 mL.
The concentrations of Cu and Cd were measured with AAS. Soil pH
and conductivity were measured by suspending 10.0 g dry soil in
25 mL  distilled water. After 1 h of agitation, pH and conductivity
were measured using Radiometer pH and conductivity electrodes,
respectively. The content of organic matter was found as a loss
of ignition after 1 h at 550 ◦C. The carbonate content was deter-
mined volumetrically by the Scheibler-method, which reacted 3 g
of soil with 20 mL  of 10% HCl. The carbonate content was calcu-
lated assumed that all carbonate was  present as calcium-carbonate.
Grain-size distribution was determined by wet-sieving approxi-
mately 100 g natural wet soils with 0.002 M Na4P2O7 through a
0.063 mm sieve. The particles larger than 0.063 mm were dried and
sieved, while the solution under 0.063 mm was  transferred to an
Andreassen-pipette. The weight of each size was recorded.

2.2.  Desorption of heavy metals as a function of pH

To examine the pH dependent desorption of Cu and Cd from
the soil, the following procedure was  used: 5.0 g dry soil (dried at
105 ◦C for 24 h) and 25 mL  HNO3 in various concentrations (from
0.01 M to 1 M)  were suspended for 1 week. The suspensions were
filtered (0.45 mm)  and the Cu and Cd concentrations in the liquid
phase were measured with AAS. Extractions in distilled water were
made as a reference.

2.3.  Sequential extraction of heavy metals

Sequential extraction was performed according to the method
described in the Standards, Measurements and Testing Program of
the European Union [15]: 0.5 g of dry, crushed soil was  treated in
four steps as follows: (1) extraction with 20.0 mL  0.11 M acetic acid
(pH 3) for 16 h, (2) extraction with 20.0 mL  0.1 M NH2OH·HCl (pH
2) for 16 h, (3) extraction with 5.0 mL  8.8 M H2O2 for 1 h, and (4)
digestion according to DS 259 [14] was  made for identification of
the residual fraction. Samples in each step were taken in triplicate.

2.4. Electrodialytic setup and experimental design

A schematic diagram of the experimental setup is shown in
Fig. 1. The electrodialytic cell was made from polymethyl methacry-
late. The cell had an internal diameter of 8 cm.  The length of each cell
compartment was  5 cm.  The ion exchange membranes were from
Ionics (anion exchange membrane AR204 SZRA B02249C and cation
exchange membrane CR67 HUY N12116B). Platinum coated elec-
trodes (8 cm length, 0.2 cm diameter for each) from Permascand
were used as working electrode in compartments I and III. Between
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Table 2
Experimental design.

Experiments Current density (mA/cm2) Current type Frequency (cycles per day) Membrane use Duration (working hours)

EXP. 1 0.8 Constant – AN and CAT 240
EXP.  2 0.8 Pulse 60 min(on)/5 min(off) 22 AN and CAT 240
EXP.  3 0.8 Pulse 60 min(on)/15 min(off) 19 AN and CAT 240
EXP.  4 0.8 Pulse 60 min(on)/30 min(off) 16 AN and CAT 240
EXP.  5 0.8 Constant – AN and filter 240

the two working electrodes, four monitoring electrodes (platinum
coated electrodes) were used to monitor the voltage drop of dif-
ferent parts. Sieved (passed 2 mm sieve) soil sample (370 g) with
water content adjusted to 23% was packed in compartment II. Five
electrodialytic experiments were performed as listed in Table 2. The
cation exchange membrane was replaced by a filter paper in EXP. 5
for additional comparison. Before switching on the current, in each
of the electrode compartments, 500 mL  0.01 M NaNO3 (adjusted to
pH 2 by HNO3) was injected and circulated by pumps for 24 h to
obtain the equilibrium for the system. Afterwards, a 40 mA con-
stant current (corresponding to 0.8 mA/cm2) instead of voltage in
[12] was applied to maintain a stationary transport of ionic species
for all experiments by a power supply (Agilent E3612A). The voltage
drop between the anode and the monitoring electrodes inserted in
different parts of the EDR cells was recorded automatically by a
datalogger (Agilent 34970A).

The pulse current was accomplished by a power supply timer
instrument (Joel TE102), and the program was 60 min  “on”, and 5,
15, or 30 min  “off”, which means the frequency was approximately
22, 19 or 16 cycles per day. In all experiments, the duration was
designed to maintain the identical total charge transfer between
constant and pulse current experiments under the same cur-
rent density. Due to the electrode processes, pH changed in the
electrolytes. The pH in the electrolytes was therefore manually
maintained between 1 and 2 by addition of HNO3 and NaOH. By
the end of the experiments, the contents of heavy metals in the dif-
ferent parts of the cell (membranes, soil, solutions, and electrodes)
were measured. The soil samples were segmented to four slices
as illustrated in Fig. 1, dried and crushed lightly in a mortar by
hand before the measurement of heavy metal concentrations (three
samples), pH (three samples) and conductivity (three samples).

The  energy consumption (E) was calculated as:

E  =
∫

VIdt (1)

where  E is the energy consumption (Wh), V is the voltage between
working electrodes (V), I is the current (A), and t is the duration (h).

3. Results and discussion

3.1.  Characteristics of heavy metals in soil

The soil was polluted by Cu and Cd which have highly exceeded
the Danish limiting value for sensitive land use (Table 1). Compared
to other polluted soils in Denmark [16,17], large amount of carbon-
ate content, organic matter, and clay content were measured in the
present soil which implied a higher buffering capacity thus high
energy input is required for treatment. The higher conductivity
in soil solution indicated a possibility for applying a higher cur-
rent density for treatment. Based on these characteristics this soil
was chosen as the experimental sample for the present work since
it would be more apparent to compare the energy saving effect
among different pulse frequencies according to previous research
[13]. Fig. 2 shows the concentrations of Cu and Cd desorbed from the
soil by chemical extraction in HNO3 at different pH values. It is seen
that desorption increased with the decrease in pH as expected. The
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Fig. 2. Desorption dependency on pH of Cu and Cd from the soil sample.

Cu desorption started between pH 5 and 6 while the Cd desorption
started from pH 7. Both heavy metals approached 100% desorption
at approximately pH 1.

3.2.  Acidification process and removal of heavy metals

Soil pH changed during the electrodialytic experiments (Fig. 3).
The decreasing pH is an important factor influencing the mobil-
ity of heavy metals by desorption as seen from the desorption
experiments (Fig. 2). The H+ ions acidifying the soil come mainly
from water dissociation near the anion exchange membrane and
transport towards the cathode by electromigration [18]. Differ-
ent acidification process was  expected based on the consideration
of the different H+ ions transportation caused by the relaxation
in the pulse current experiment. But similar acidification pattern
among EXP. 1–4 was  observed and possibly due to the relatively
high buffering capacity (Table 1) of the experimental soil which
covered the difference. Further discussion will be given with the
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Fig. 4. Final profiles of heavy metals in the soil. (A) Cu and (B) Cd.

conductivity results in the following text. In these experiments,
the pH values were below 5 in slice 1, which indicated that the Cu
and Cd started to be mobilized according to Fig. 2. In the pulse cur-
rent experiments, the slight differences in the pH of the soil parts
near cation exchange membrane were possibly caused by the inter-
diffusion of H+ ions from cathode compartments and positive ions
from soil solution, and the extent was dependent on the relaxation
time. In EXP. 5, the relatively high pH was due to the migration
of NO3

− and OH− ions from cathode compartment (since pH was
not strictly kept at 2, it was done manually at every 24 h) which
diminished the water dissociation and increased the pH.

The  final distribution of Cu and Cd in the soil (Fig. 4) was  highly
related to the pH profiles since the release of heavy metal ions
and the following accumulation from one soil slice to another were
determined by pH. It can be seen that Cu and Cd were mobilized
in all experiments, and as cations as expected, because it was the
slices closest to anion exchange membrane that was  remediated
first and the transport direction was towards the cathode. Table 3
is the removal efficiency of Cu and Cd after treatments. The removal
efficiency was calculated as the mass of the actual heavy metal in
the electrode components (membranes, electrolyte, and on elec-
trodes) divided by the total mass found in all parts of the cell at
the end of the experiment. The low removal efficiency is prob-
ably due to the high buffering capacity as discussed above and
the short remediation time operated on the experiments. Further
enhancement is probably necessary to obtain high removal effi-
ciency [19]. The removal efficiency of Cd (1.6–16%) was significantly

Table 3
Overall results of electrodialytic remediation.

Experiments Mass
balance %
Cu/Cd

Removal
efficiency  %
Cu/Cd

Energy
consumption
(Wh)

Energy  consumption
per  removed Cu/Cd
(Wh/mg)

EXP. 1 96/102 1.2/10.5 385 79.8/631
EXP. 2 99/100  1.1/12.0 293 66.9/422
EXP. 3 94/97 1.3/14.5 210 39.2/248
EXP. 4 98/98 1.5/16.3 115 18.9/121
EXP. 5 101/107 0.1/1.6 74 119/797

higher than that of Cu (0.1–1.2%), which was corresponding to the
expectations from the pH desorption pattern (Fig. 2) since at pH
7 the Cd started to mobilize whereas the pH was around 5 for Cu.
Moreover, from the speciation analysis (Fig. 5), it can be seen that
the percentage in the carbonate and exchangeable fraction which is
more removable than other fractions [20–22] of Cd is much higher
than that of Cu. This is probably another reason for the higher
removal efficiency of Cd. For Cu, there was  no significant improve-
ment caused by pulse current (EXP. 2–4) compared with constant
current (EXP. 1) since the removal efficiency was low for all exper-
iments. By contrast, the removal efficiency of Cd in EXP. 2–4 was
higher than that in EXP. 1. The highest removal efficiency of Cd
occurred in the experiment with lowest frequency (EXP. 4), and
decreased with the increase of the frequency. The removal effi-
ciency of Cu and Cd was much higher in EXP. 1–4 than that in EXP.
5, which means the removal was more effective in the experiments
with cation exchange membrane than the experiment with filter
paper.

3.3. Energy consumption

In  all experiments the current was constant (40 mA)  and did not
change over the entire duration, therefore the variation of voltage is
an indicator of the energy consumption. Fig. 6 shows the variation
of voltage (between working electrodes) with the consumption of
electrical energy (Wh). The pulse pattern is not shown in the figures
in order to allow for a direct comparison. The voltage in EXP. 5 was
lower than in the other experiments all through the experiments,
and thus this experiment had the lowest energy consumption. The
only difference between EXP. 5 and 1–4 was  the filter paper instead
of the cation exchange membrane applied in experimental setup.
This on one hand decreased the resistance and on the other hand
allowed more free ions and water to transport into soil compart-
ment, but it was  not beneficial for the removal of heavy metals
as discussed, and most importantly the energy consumption per
removed heavy metals was higher in EXP. 5 than other experiments
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(Table 3). The pulse current showed effective reduction in energy
consumption compared with constant current, as it could be seen
that the voltage was lower in EXP. 2–4 than EXP. 1. Among EXP. 2–4,
the energy consumption decreased with the decrease of frequency.
Similarly, the energy consumption per removed heavy metals is
higher in EXP. 1 than that in EXP. 2–4, and the lowest value was
obtained in EXP. 4 (Table 3).

The voltage drop during experiments in the different parts of cell
is shown in Fig. 7, in which (A), (B), and (C) are the parts between
monitoring electrodes 1–2, 2–3, and 3–4, respectively.

In the (A) part (Fig. 7A), the voltage increased first and reached
a maximum value after a period, and then it decreased in EXP. 1–4.
The increasing voltage was probably caused by the depletion of ions
at the surface of the anion exchange membrane due to concentra-
tion polarization. Afterward, water dissociation supplied sufficient
ions to decrease the voltage drop, and the produced H+ ions initi-
ated desorption and dissolution processes in the soil which resulted
in an increase of conductivity. In EXP. 5, only a slight increase of
the voltage was observed. The concentration polarization near the
anion exchange membrane is determined by the applied current
density and ionic concentration in the soil pore fluid. Since the cur-
rent density was identical in all experiments, the reason for the
lower voltage in EXP. 5 was the higher ionic concentration. This was
probably due to the injection of free ions to the soil compartment
by pump at the initial equilibrium period without current.

It  can be seen from Fig. 7B that the voltage drop across the soil
compartment showed different patterns between the experiments.
The EXP. 5 (without the cation exchange membrane) had the low-
est voltage drop through the entire duration. The cation exchange
membrane is used in order to prevent ions in the cathode compart-
ments from entering the soil, so no current is wasted in carrying
ions from one electrode compartment to the other. Meanwhile,
this causes a depletion of the free ions in the soil solution like in
the desalination compartment in conventional electrodialysis, and
thus increases the voltage drop. In EXP. 5, all ions were allowed
to pass from the catholyte to the soil, which decreased the voltage
drop. However, in this case, the transference number of the heavy
metals decreased as well and subsequently the current efficiency.
The voltage drop in EXP. 2–4 was lower than that of EXP. 1. The
voltage drop between two monitoring electrodes across the soil
compartment in the EDR system under an external electric field
can be expressed as:

Vt = Veq + IR + � (2)
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Fig. 7. Variation of voltage at different parts of EDR cells. (A), (B), and (C) are the
parts  between monitoring electrodes 1–2, 2–3, and 3–4, respectively.

following the expression of the voltage drop in the electrolysis
between anode and cathode [6], where Veq is the voltage drop under
equilibrium state without applied current, which is the summa-
tion of redox potential difference and diffusion potential caused
by the inhomogeneity of the experimental soil, IR is the ohmic
voltage drop induced by the pore fluid, and � is the overpotential
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caused by the polarization of clay particles. The latter is related
to the electrodialysis of the clay particles due to the inherent
negatively charged surface and non-conductive bulk. During appli-
cation of a direct current to the saturated soil system, excess ionic
species will be accumulated on one side of the clay particles and
depleted on the other, giving rise to a concentration polarization
[23,24]. Moreover, an induced space charge will probably occur
with a potential difference across the interface layer (i.e. the elec-
tric double layer) due to the conductivity difference between the
clay particle surface and the surrounding solution, similar to the
charging of the ionic double layer at the electrode-electrolyte solu-
tion interface [6,25]. However, it has been indicated by previous
studies [10,26] that the overpotential caused by the polarization of
clay particles is low (at the magnitude of mV); therefore, the pulse
current enhanced energy saving effect within the soil compartment
is mainly expected as the decreasing of pore fluid resistance.

The  variation in electric conductivity measured in a suspension
of each soil slice at the end of experiment is shown in Fig. 8. The
increased conductivity in EXP. 1–4 was caused by the H+ ions, which
enhanced desorption and dissolution processes. But in EXP. 5, the
high conductivity was mainly maintained by the electromigration
of negative ions and other free ions along with water movement
from the cathode compartment. At slice 4 of EXP. 1, the conduc-
tivity decreased to a value lower than initial which indicated that
there was a barrier impeding the transport of free ions from slices
1–3 to slice 4. This phenomenon was also observed in pulse cur-
rent experiments (EXP. 2–4) expressed by the accumulation of free
ions in slice 3. From the pH profile in Fig. 3, it was  deduced that
the re-precipitation and crystallization at higher pH region in slice
3 led to the barrier in EXP. 1 and accumulation in EXP. 2–4. Due to
the diffusion process from slices 3 to 4 at the relaxation period in
pulse current experiments, the conductivity in slice 4 maintained
the value higher than the initial. Through the comparison of EXP.
1 and EXP. 2–4, the results demonstrated that the conductivity in
the pulse current experiments was higher than that in the constant
current experiment, which explained the lower voltage drop at soil
compartment shown in Fig. 7B. Among the pulse current exper-
iments, the conductivity increased with the relaxation time. The
reason for this is possibly that the rate of dissolution caused by
H+ ions is slow compared to the rate of transport of ionic species
when the current is “on”. A relaxation period when the current is
“off” then allows the system to precede the chemical mechanisms
of dissolution, and the species concentration in solution increased.
The maximum time for the relaxation is the restoration of the equi-
librium state.

0 5 10 15 20 25 30 35

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

P
o
te

n
ti
a
l 
(V

)

Time (min)

 EXP. 2

 EXP. 3

 EXP. 4

(A)

0 5 10 15 20 25 30

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

 EX P.2

 EX P.3

 EX P.4

P
o
te

n
ti
a
l 
(V

)

Time (min)

(B)

0 5 10 15 20 25 30

0.28

0.32

0.36

0.40

0.44

0.48

0.52

0.56

0.60

0.64

 EXP. 2

 EXP. 3

 EXP. 4

P
o
te

n
ti
a
l 
(V

)

Time (min)

(C)

Fig. 9. Selected chronopotentiometric measurements of the relaxation processes
within  the soil compartment. The initial, middle and late stages of the experimental
duration  are represented by (A)–(C), respectively.

The re-equilibrium processes at the relaxation period repre-
sented by the chronopotentiometric analysis were given in Fig. 9
with (A) for the initial stage, (B) for the middle stage, and (C) for the
late stage. At the initial stage (Fig. 9A), it can be seen that the similar
relaxation trend was obtained in different pulse experiments. The
EXP. 4 showed the best condition approaching the equilibrium fol-
lowed by the EXP. 3, and the EXP. 2 was  far from equilibrium. For a
system, the more equilibrium a process approaches the less energy
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it will require from the environment to drive the process, accord-
ing to the thermodynamics [27]. The re-equilibrium process was
determined by (1) the discharging of soil double layers driving by
the electrostatic force, which was indicated by the sharp decrease
of the potential after switching off the current; and (2) the diffu-
sion caused by the concentration gradient build up during the time
with applied current, which was indicated by the slow decrease in
Fig. 9A. At the middle stage (Fig. 9B); the increased potential after
the initial drop in all pulse current experiments was probably due
to the diffusion potential. There is no simplified equation to quan-
titatively express the diffusion potential in the soil–water system.
However, the pH and ionic strength are considered as the most
important factors influencing the diffusion potential by changing
the ionic mobility and the activity coefficient [28]. The H+ ions pro-
duced by water dissociation near the anion exchange membrane
and transported towards the cathode causes acidification resulting
in dissolution process within the soil, which can give rise to huge
difference in pH and ionic strength in the soil compartment, thus
the diffusion potential increases. The different potential value in
EXP. 2–4 was correlated to the voltage drop just before switching
off the current (Fig. 7B). At the late stage (Fig. 9C); the discharg-
ing processes disappeared in all experiments which were possibly
masked by the high diffusion potential. The potential range in this
stage could be an indicator for the deviation of the system from
equilibrium state after the remediation process. From Fig. 9C, it can
be seen that the experiment with 5 min  off time had the highest
deviation from the equilibrium state while the experiment with
30 min  off time was lowest. The experiment with 15 min was  the
medium. Therefore, it can be concluded that the suitable relaxation
time for the present experimental soil was between 15 and 30 min
from the viewpoint of both energy consumption and remediation
time.

Finally, the voltage in the (C) part (Fig. 7C) has a highly similar
pattern and value compared to the voltage applied to the working
electrodes (Fig. 6) in all experiments. This means the highest voltage
drop occurred in the part across the cation exchange membrane,
and that this part was the mainly contributor of energy consump-
tion. However, the voltage drop in this area was highly connected
to the mass transport of ions in the soil pore fluid and the trans-
port of ions within the membrane. The reason for an increasing
voltage drop within the membrane is mainly membrane fouling,
but the fouling phenomenon has not been observed in EDR soil
cells. The transference number of the membranes and permse-
lectivity did not change after being used in electrodialytic soil
remediation experiments [29]. Therefore, the concentration polar-
ization at the soil pore fluid and membrane interface is considered
main responsible to the high voltage drop. The mass transport step
in the interfacial region could be expressed by the well-known
Nernst–Planck–Poisson equation, but due to the high ionic mobility
it is shorten to electromigration [30]:

j = (
∑

ziFCiu
i
)
dV

dx
(3)

where  j is the current density, zi is the valence of the ionic species,
F is the Faraday constant, Ci is the concentration of ions, ui is the
mobility, and dV/dx is the electric field strength. It can be seen from
Fig. 7C that the voltage in this part in the pulse current experi-
ments was lower than that in the constant current experiments.
This indicated that the energy saving effect caused by pulse current
in the whole EDR system was expressed by the energy saving in (C)
part. The reason was probably the diffusion of ions at the relaxation
periods in the pulse current experiments, which diminished the
concentration polarization and increased the conductivity in the
vicinity of the cation exchange membrane. The term in the brack-
ets in Eq. (3) is the expression of conductivity, which is determined
by the concentration with other variables constant since the same

soil samples were used in all experiments. It can be seen from Eq. (3)
that higher concentration leads to a lower electric force to drive the
identical current density. The concentration could be qualitatively
demonstrated by the conductivity in slice 4 of the soil compartment
(Fig. 8), in which the highest value was  obtained in the experiment
with 30 min  off followed by the order of relaxation time. When the
cation exchange membrane was substituted by filter paper (EXP.
5), the energy consumption could be very low, but this impeded
the removal of heavy metals significantly.

4. Conclusions

(1) Pulse current decreased the energy consumption with differ-
ent  extent depending on the pulse frequency. Among the pulse
frequencies, lowest energy consumption (115 Wh)  occurred in
the experiment with 30 min  relaxation time after every 60 min
working  time, followed by 15 min  relaxation (210 Wh)  and
5  min  relaxation (293 Wh). Similar trend was  also observed at
the  energy consumption per removed Cu and Cd.

(2) At different parts of EDR cells, it was found that the voltage
drop  of the area across cation exchange membrane was the
major  contributor of energy consumption, and the pulse cur-
rent  could decrease the voltage drop of this part effectively by
re-distribution of ions.

(3) Substitution of the cation exchange membrane with filter paper
induced  a dramatic decrease of energy consumption (74 Wh),
but  this change hindered the acidification process and thus
removal  of heavy metals significantly.

(4)  The removal efficiency of Cd (1.6–16%) was higher than that of
Cu  (0.1–1.2%). For Cu, there was no significant improvement
caused by pulse current (EXP. 2–4) compared with constant
current (EXP. 1), but the removal efficiency of Cd in EXP. 2–4
was  higher than that in EXP. 1. The highest removal efficiency
of  Cd occurred in the experiment with lowest frequency (EXP.
4),  and decreased with the increase of the frequency.

(5) The suitable relaxation time for the present experimental soil
investigated  on the basis of restoration of equilibrium was
between  15 and 30 min  from the viewpoint of both energy
consumption and remediation time.

Acknowledgment

The  work reported here was supported by the Department of
Civil Engineering at the Technical University of Denmark.

References

[1] L.M. Ottosen, H.K. Hansen, S. Laursen, A. Villumsen, Electrodialytic remediation
of  soil polluted with copper from wood preservation industry, Environ. Sci.
Technol.  31 (1997) 1711–1715.

[2] T.R. Sun, L.M. Ottosen, P.E. Jensen, G.M. Kirkelund, Electrodialytic remediation
of  suspended soil—comparison of two different soil fractions, J. Hazard. Mater.
203–204  (2012) 229–230.

[3] A.J. Pedersen, L.M. Ottosen, A. Villumsen, Electrodialytic removal of heavy met-
als  from municipal solid waste incineration fly ash using ammonium citrate as
assisting  agent, J. Hazard. Mater. 122 (2005) 103–109.

[4] G.M. Kirkelund, L.M. Ottosen, A. Villumsen, Electrodialytic remediation of har-
bour  sediment in suspension—evaluation of effects induced by changes in
stirring  velocity and current density on heavy metal removal and pH, J. Hazard.
Mater.  169 (2009) 685–690.

[5] Y. Tanaka, Mass transport and energy consumption in ion-exchange membrane
electrodialysis of seawater, J. Membr. Sci. 215 (2003) 265–279.

[6] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applica-
tions,  2nd ed., John Wiley & Sons, New York, 2001.

[7]  H. Strathmann, Electrodialysis, a mature technology with a multitude of new
applications,  Desalination 264 (2010) 268–288.

[8] N.A. Mishchuk, L.K. Koopal, F. Gonzalez-Caballero, Intensification of electro-
dialysis  by applying a non-stationary electric field, Colloids Surf. A 176 (2001)
195–212.

93



306 T.R. Sun et al. / Journal of Hazardous Materials 237– 238 (2012) 299– 306

[9] H.J. Lee, S.H. Moon, S.P. Tsai, Effects of pulsed electric fields on membrane foul-
ing  in electrodialysis of NaCl solution containing humate, Sep. Purif. Technol.
27  (2002) 89–95.

[10] B. Kornilovich, N. Mishchuk, K. Abbruzzese, G. Pshinko, R. Klishchenko,
Enhanced electrokinetic remediation of metals-contaminated clay, Colloids
Surf.  A 265 (2005) 114–123.

[11] B.G. Ryu, J.S. Yang, D.H. Kim, K. Baek, Pulsed electrokinetic removal of Cd and
Zn  from fine-grained soil, J. Appl. Electrochem. 40 (2010) 1039–1047.

[12] H.K. Hansen, A. Rojo, Testing pulsed electric fields in electroremediation of
copper  mine tailings, Electrochim. Acta 52 (2007) 3399–3405.

[13] T.R. Sun, L.M. Ottosen, Effects of pulse current on energy consumption and
removal  of heavy metals during electrodialytic soil remediation, Electrochim.
Acta,  in press.

[14] Dansk Standardiseringsråd, Standarder for Vand og Miljø, Fysiske og Kemiske
Metoder,  Del 1, a-offset, Holstebro, 1991.

[15] Z. Mester, C. Cremisini, E. Ghiara, R. Morabito, Comparison of two  sequential
extraction  procedures for metal fractionation in sediment samples, Anal. Chim.
Acta  359 (1998) 133–142.

[16] L.M. Ottosen, H.K. Hansen, P.E. Jensen, Relation between pH and desorption of
Cu,  Cr, Zn, and Pb from industrially polluted soils, Water Air Soil Pollut. 201
(2009)  295–304.

[17] P.E. Jensen, L.M. Ottosen, A.J. Pedersen, Speciation of Pb in industrially polluted
soils,  Water Air Soil Pollut. 170 (2006) 359–382.

[18]  L.M. Ottosen, H.K. Hansen, C. Hansen, Water splitting at ion-exchange mem-
branes  and potential differences in soil during electrodialytic soil remediation,
J.  Appl. Electrochem. 30 (2000) 1199–1207.

[19]  K. Kim, D. Kim, J. Yoo, K. Baek, Electrokinetic extraction of heavy metals from
dredged  marine sediment, Sep. Purif. Technol. 79 (2001) 164–169.

[20]  D.M. Zhou, C.F. Deng, L. Cang, A.N. Alshawabkeh, Electrokinetic remediation
of  a Cu–Zn contaminated red soil by controlling the voltage and conditioning
catholyte pH, Chemosphere 61 (2005) 519–527.

[21]  L.M. Ottosen, I.V. Christensen, I. Rörig-Dalgård, P.E. Jensen, H.K. Hansen, Uti-
lization  of electromigration in civil and environmental engineering—processes,
transport rates and matrix changes, J. Environ. Sci. Health A 43 (2008)
795–809.

[22] K.R.  Reddy, C.Y. Xu, S. Chinthamreddy, Assessment of electrokinetic removal of
heavy  metals from soils by sequential extraction analysis, J. Hazard. Mater. B84
(2001)  279–296.

[23] I. Nischang, U. Reichl, A. Seidel-Morgenstern, U. Tallarek, Concentration polar-
ization  and nonequilibrium electroosmotic slip in dense multiparticle systems,
Langmuir  23 (2007) 9271–9281.

[24] N.A. Mishchuk, Concentration polarization of interface and non-linear elec-
trokinetic  phenomena, Adv. Colloid Interface Sci. 160 (2010) 16–39.

[25] I. Rubinstein, Mechanism for an electrodiffusional instability in concentration
polarization, J. Chem. Soc. Faraday Trans. II 77 (1981) 1595–1609.

[26] S. Pamukcu, A. Weeks, J.K. Wittle, Enhanced reduction of Cr(VI) by direct electric
current  in a contaminated clay, Environ. Sci. Technol. 38 (2004) 1236–1241.

[27] P. Atkins, J. Paula, Physical Chemistry, 8th ed., W.H. Freeman and Company,
New  York, 2006.

[28] T.R. Yu, G.L. Ji, Electrochemical Methods in Soil and Water Research, Pergamon,
Oxford,  1993.

[29] H.K. Hansen, L.M. Ottosen, A. Villumsen, Electrical resistance and transport
numbers  of ion-exchange membranes used in electrodialytic soil remediation,
Sep.  Sci. Technol. 34 (1999) 2223–2233.

[30] Y.B. Acar, A.N. Alshawabkeh, Principles of electrokinetic remediation, Environ.
Sci.  Technol. 27 (1993) 2638–2647.

94

http://dx.doi.org/10.1016/j.electacta.2012.04.033


 

 

 

 

 

 

Appendix IV 

Electrodialytic soil remediation enhanced by low frequency pulse current – 

Overall chronopotentiometric measurement 

(Published in Chemosphere) 

95



Technical Note

Electrodialytic soil remediation enhanced by low frequency pulse current – Overall
chronopotentiometric measurement
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h i g h l i g h t s

" The pulse current could decrease the
energy input during the EDR process.

" The detailed mechanism was given
by chronopotentiometric study.

" The distribution of the energy
consumption in EDR cells was
demonstrated.

" The rate controlling step of EDR
process was determined.

" Polarization of the membranes and
clay particles were characterized.
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a b s t r a c t

The effect of low frequency pulse current on decreasing the polarization and energy consumption during
the process of electrodialytic soil remediation was investigated in the present work. The results indicated
that the transportation of cations through the cation exchange membrane was the rate controlling step
both in constant and pulse current experiments, thus responsible for the major energy consumption.
After 180 h, a decrease in both the initial ohmic resistance in each pulse cycle and the resistance caused
by concentration polarization of the anion exchange membrane were seen in the pulse current
experiment compared to the constant current experiment. At the cation exchange membrane, only the
resistance caused by concentration polarization decreased. In the soil compartment, an average of
+60 mV overpotential caused by the polarization of the electric double layer of the clay particles was
obtained from the Nernstian behavior simulation of the relaxation process, which was significantly
lower than the ohmic voltage drop induced by pore fluid resistance. Therefore, the ohmic polarization
was the major contributor to the energy consumption in the soil compartment and diminished by pulse
current.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The energy consumption of the electrochemically based reme-
diation techniques is an important factor influencing costs and

thus the applicability (Acar and Alshawabkeh, 1996; Reddy and
Saichek, 2004; Kornilovich et al., 2005; Zhou et al., 2006; Ryu
et al., 2010). Polarization, as an inevitable process, is a key issue
as it is responsible for extra and nonproductive energy consump-
tion. In the electrodialytic soil remediation (EDR) system, it mainly
includes the polarization of electrodes, membranes and clay parti-
cles in the soil.
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The electrode polarization could be controlled by electrochem-
ical polarization and/or concentration polarization, depending on
the different rates of the electrode reactions and mass transport
processes (Bard and Faulkner, 2001). However, in EDR the
electrodes are placed in compartments separated from the soil by
ion exchange membranes and electrolytes are circulated in the
electrode compartments (Ottosen et al., 1997), which reduce the
electrode polarization. Concentration polarization occurs in all
membrane separation processes owing to differences in the trans-
port numbers of ions in the solution and in the ion exchange mem-
brane (Strathmann, 2010). Passing an electric current through an
ion exchange membrane, the ionic concentration on the desalting
surface of the membrane is decreased due to concentration polar-
ization, and reduced to zero at the limiting current density. In this
circumstance, there are no more ionic species available to carry the
current and the voltage drop across the boundary layer increases
drastically resulting in a higher energy consumption and genera-
tion of water dissociation. In the water saturated soil system, the
most active part interacting with the external electric field is the
clay particles (Sposito, 1989). The induced polarization is related
to the electrodialytic effects on the electrical double layer of the
clay particles due to the inherent negatively charged surface and
non-conductive bulk (i.e. the solid part of the clay). During applica-
tion of a direct current to the saturated soil system, excess charge
will be accumulated on one side of the clay particles and depleted
on the other, giving rise to a concentration polarization (Nischang
et al., 2007; Mishchuk, 2010). Due to the incompatibility between
the conductivity of the clay particles with low surface conductivity
and the surrounding electrolyte solution (i.e. pore fluid) with high
ionic conductivity, induced space charge will probably occur with a
potential difference across the interface layer, similar to the charg-
ing of the ionic double layer at the electrode–electrolyte solution
interface (Bard and Faulkner, 2001; Pamukcu et al., 2004). Consid-
ering the connection between clay particles and pore fluid as in
series, the total voltage drop between two monitoring electrodes
across the soil compartment in the EDR system under an external
applied electric field can be expressed as:

Vt ¼ ðVeq þ VRÞ þ g ð1Þ

ccording to the expression of the voltage drop in the electrolysis
between anode and cathode (Bard and Faulkner, 2001; Pamukcu,
2009), where Veq is the voltage drop under equilibrium state, VR

the ohmic voltage drop induced by the pore fluid, and g is the
overpotential.

Pulse current as an approach to decrease the energy input in an
electrodialytic desalination process, was investigated by Mishchuk
et al. (2001). The basic principle they applied was to keep the char-
acteristic time of a pulse (at the interval magnitude of s) shorter
than the time required for building up a concentration polarization
layer near the membrane (transition time) in order to avoid water
dissociation and nonproductive energy loss even at a current den-
sity above the limiting value (i.e. overlimiting current density).
However, in EDR, the water dissociation at the anion exchange
membrane at the overlimiting current density is of great impor-
tance and must necessarily be exceeded, since the resulting acidic
front developing in the soil is a key factor for mobilization of the
heavy metals. Therefore, the present work is focused on use of
low frequency pulsed current (at the interval magnitude of h) to
decrease the energy input compared to constant current during
EDR. The detailed mechanism was given by chronopotentiometric
analysis. Chronopotentiometry is an electrochemical characteriza-
tion method measuring the electric potential response of a system
to an imposed current. Usually, it is used to measure the polariza-
tion kinetics of an irreversible electrode process (Pletcher et al.,
2006). The method allows a direct access to the voltage contribu-

tions in the different stages of the EDR process, because the dy-
namic voltage response over time can be analyzed.

2. Materials and methods

2.1. Soil sample

The experimental soil was contaminated by copper and cad-
mium, sampled from a pile of excavated soil. The soil was air-dried
at room temperature, and gently crushed by hand in a mortar and
passed through a 2 mm mesh sieve before the experiments.

Some chemical and mineralogical properties of the soil are pre-
sented in Table 1. Soil pH and conductivity were measured using a
Radiometer pH electrode and conductivity electrode, respectively.
The content of organic matter was found as a loss of ignition after
1 h at 550 �C. The carbonate content was determined volumetri-
cally by the Scheibler-method when reacting 3 g of soil with
20 mL of 10% HCl. Grain size distribution was determined by
wet-sieving approximately 100 g natural wet soil with 0.002 M
Na4P2O7 and the mineral composition of the bulk soil as well as
the clay fraction was revealed by the XRD-analysis (Jensen et al.,
2006).

2.2. Preparation of experimental setup

A schematic diagram of the experimental setup is shown in
Fig. 1. The electrodialytic cell was made from polymethyl methac-
rylate. The cell had an internal diameter of 8 cm. The length of each
cell compartment was 5 cm. The ion exchange membranes were
from Ionics (anion exchange membrane AR204 SZRA B02249C
and cation exchange membrane CR67 HUY N12116B). Platinum
coated electrodes from Permascand were used as working elec-
trode in compartments I and III. Between the two working elec-
trodes, four monitoring electrodes (platinum coated electrodes)
were used to monitor the voltage drop of three different parts of
the cell, see Fig. 1. The soil (370 g) with adjusted water content
of 23% was packed in compartment II. After assembly, the entire
setup was placed on a slowly agitating table for 1 h to ensure a
good distribution of soil particles.

2.3. Procedure

One constant current experiment and one pulse current exper-
iment were made. In each of the electrode compartments 500 mL
0.01 M NaNO3 adjusted to pH 2 with HNO3 as electrolyte was cir-
culated by pumps. After 24 h, 40 mA corresponding to a current
density of 0.8 mA cm�2 was applied in both experiments by a
power supply (Agilent E3612A). The voltage drop between anode
and monitoring electrodes inserted in the different parts of the
EDR cells as a function of time was automatically recorded by data-
logger (Agilent 34970A) with a rate of once per 5 s. In the pulse
current experiment, the pulse current was accomplished by a
power supply timer instrument (Joel TE102), and the program

Table 1
Chemical and mineralogical properties of the soil sample.

pH 7.6
Conductivity 2.1 mS cm�1

Carbonate content 7.1%
Organic matter 6.5%
Grain size distribution
Sand 24%
Silt 61%
Clay 15%
Clay mineral composition Kaolinite, Illite and Smectite
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was 60 min ‘‘on’’ and 30 min ‘‘off’’. The total duration for the con-
stant current experiment was 120 h; while for the pulse current
experiment it was 180 h. Although the total duration was different,
the total working time was the same when the ‘‘off’’ time was
taken into account in the pulse current experiment. Thus, the total
charge passed through the cell in the two experiments was identi-
cal. Due to the electrode processes, pH-changes occurred in the
electrolytes and the pH was manually kept between 1 and 2 by
addition of HNO3 and NaOH. The permselectivity of anion ex-
change membrane will decrease significantly if the pH in anolyte
drops to below 1 and the precipitation when the pH in catholyte
rises to above 2 will lead an extra voltage drop across the cation
exchange membrane (Jensen et al., 2007). Therefore, the control
of pH in both anolyte and catholyte was to eliminate the interfer-
ence caused by the damage of the membranes.

3. Results and discussion

3.1. Distribution of voltage drop

The current density was identical in the two experiments and
the voltage variation is thus an indicator of the energy consump-
tion. The distribution of the voltage drop is shown in Fig. 2, (a)
for the constant current experiment and (b) for the pulse current
experiment. The voltage drop is shown after different durations
for a direct comparison of the voltage drop after the same working
time between the constant current and the pulse current experi-
ments. It can be seen from Fig. 2a that the total voltage drop in-
creased over time in the constant current experiment from initial
10.5 V to 66.5 V at the end of the experiment. The increase was
fastest in beginning of the experiment. The voltage drop was at
its lowest in the anolyte and the catholyte compartment during
the whole experiment. This was due to the circulation systems
and that pH was controlled around 2 during the experiment. The
voltage drop in part c was significantly higher than a and b after
12 h working time and increasing, which can be seen from the
slopes of section c, therefore, the part c was the most energy con-
suming part. In other words, when constant voltage was applied,
the step transporting cations through the cation exchange mem-
brane was the rate controlling step, by which the kinetics of the
whole EDR process was determined. The voltage drop of parts a
and b increased in the beginning, and reached a constant value

hereafter, which could be seen from the slopes. Compared to the
constant current experiment, the total voltage drop in the pulse
current experiment (Fig. 2b) was much lower and the voltage drop
was not continuously increasing, but decreasing after about 36 h.
The voltage range was from 10.23 V to 22.33 V and at the end
11.37 V. This demonstrated the positive effect of the pulse current
on energy saving aspect of the EDR cells. The highest voltage drop
also occurred in part c in pulse current experiment. The voltage
drop of the electrolytes was constant in the entire duration and sig-
nificantly lower than other parts, which indicated the low extent of
electrode polarization as expected.

3.2. Overall chronopotentiometric analysis of pulse current experiment

The chronopotentiogram of the membranes is shown in Fig. 3. It
can be seen from the working time (section above the straight lines
on the x-axis) that the voltage drop increased first and obtained the
maximum value after a period, then decreased for both of the
membranes. Fig. 4 is the chronopotentiometric curve for the first
cycle (the square boxes in Fig. 3). In Fig. 4a, the curve consists of
seven parts. At time 0–10 min (Section 1) no current was applied
and the voltage difference was due to the different composition
and concentration between the electrolyte in the anode compart-
ment and soil pore fluid, i.e. the membrane potential. After
10 min, a fixed current density was applied causing an instanta-
neous increase in voltage (Section 2) due to the initial ohmic resis-
tance of the system composed of solution and membrane between
the monitoring electrodes. Section 3 commenced a slow increase in
voltage drop in time due to the depletion of the electrolyte concen-
tration in the pore fluid near the anion exchange membrane gov-
erned mainly by electromigration. At a certain time this was
followed by a strong voltage increase (Section 4). The point at
which this increase occurs is the transition time (s) which can be
determined as the intersection of the tangents to Sections 3 and

Anolyte Catholyte 

CAT AN 

NaNO3NaNO3

c ba 

Soil 
compartment 

Power 
supply 

Datalogger 

Pulse  
control 

Fig. 1. Schematic diagram of the laboratory cell for electrodialytic soil remediation
(AN = anion exchange membrane, CAT = cation exchange membrane. Letter ‘‘a’’
indicates the part across the anion exchange membrane measured between
monitoring electrodes in the anolyte and in the soil, ‘‘b’’ the part in soil compartment
between, and ‘‘c’’ the part across cation exchange membrane between soil and in the
catholyte).
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4 of the curve (Pismenskaia et al., 2004). The transition time is the
time for the concentration at the membrane surface decreases to
zero. The transition time as a function of applied current density
is derived from Fick’s second law and given by:

s ¼ pD
4

C0
i ZiF

Ti � ti

 !2
1

i2 ð2Þ

where D is the diffusion coefficient of the electrolyte in the pore
fluid of soil, C0

i and zi are the concentration in the bulk and the
charge of the counter-ion, respectively, Ti and ti are the transport
numbers of the counter-ion in the membrane and pore fluid,
respectively, i the current density and F is the Faraday constant.
Eq. (2) is equivalent to the Sand equation frequently used in studies
of electrode systems (Bard and Faulkner, 2001). The occurrence of
transition time indicated that the overlimiting current density has
been applied to the anion exchange membrane as well as the water
dissociation could be expected (Krol et al., 1999). This transition
state was not seen for the cation exchange membrane (Fig. 4b),
which means that current density applied was sublimiting. The
measured soil pH after experiment was 3.4–6.6 from the anion ex-
change membrane side to cation exchange membrane side, indicat-
ing that water dissociated at anion exchange membrane but not at
cation exchange membrane, which is the requirement during EDR.
The limiting current density of anion exchange membrane is lower
than that of cation exchange membrane because there are fewer an-
ions than cations in the electric double layer of the soil. Further,
next to the anion exchange membrane is the negatively charged soil
surface which forms a bipolar interface depleting ions rapidly. Fi-
nally, the system reached a steady state (Section 5) where the volt-
age drop levels off. The voltage difference of Section 6 is equal to the
ohmic voltage drop over the polarized membrane system at the mo-
ment of the current switching off. The last Section (7) describes the
relaxation of the system determined by a diffusion process and the
relaxation time is correlated to the reciprocal of the diffusion coef-
ficient (Tanaka, 2007).

A further analysis of the details of the pulses (Fig. 3a) showed
that the transition time decreased sharply and disappeared after
a few cycles. This is probably owing to the decrease in the trans-
port number of negative ions. When the overlimiting current den-
sity was applied over the anion exchange membrane, the H+ ions
from the water dissociation contributed in carrying current. As
the mobility of H+ ions is significantly higher than other ions, the
transport of the negative ions decreased and gave rise to a short
transition time (Eq. (2)). With an increased number of H+ ions pro-
duced, the transition time disappeared. An increased voltage drop
during the working time of each cycle is seen from Fig. 3a (equiv-
alent to Section 4 in Fig. 4a). It was led by the ohmic resistance in-
crease in the diffusion layer because of the applied overlimiting
current density. For the cation exchange membrane which was be-
low the limiting current density (Fig. 3b), the increased resistance
was probably due to the re-precipitation of the mobilized ions in
the higher pH region. Overall, it could be seen from Fig. 3 that
the pulse current decreased the energy consumption across the an-
ion exchange membrane by means of decreasing both the initial
ohmic voltage drop and the resistance within the diffusion layer
at the working time. However, the initial ohmic voltage drop did
not change much at the cation exchange membrane. The energy
was mainly consumed by concentration polarization of the mem-
brane and the pulse current induced resistance decreasing in the
diffusion layer of the membrane was the main reason responsible
to energy saving.

The chronopotentiogram across the soil compartment is shown
in Fig. 5. Before switching on the current, the voltage difference
was �0.12 V, and most probably due to the heterogeneity of the
soil sample. After switching on the current, a large ohmic resis-
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tance induced voltage drop appeared, which could be seen from
the straight lines at the first cycle. Taking this voltage drop into
the differential form of the ohmic’s law given by:

i ¼ rsE ð3Þ

where i is the current density, rs the conductivity of the soil–water
system and E is the electric strength, one can obtain rs = 1.45 mS
cm�1. Attention must be paid here since the linear electric field over
the soil has been assumed in the calculation, but probably it is not.
However, this deviation will not hinder the utilization of Eq. (3) to
estimate the average conductivity variation as a function of time
across the soil compartment. After the initial ohmic voltage drop,
a slight and slow voltage increase over time showed, which indi-
cates the polarization of the clay particles. As it was mentioned in
Eq. (1), the voltage drop of the soil compartment consists of the oh-
mic voltage drop in the pore fluid and the voltage drop across the
clay electric double layer. However, the ohmic resistance in the pore
fluid is not constant. The predominated impact factor is the dissolu-
tion and precipitation equilibriums (Wada and Umegaki, 2001).
When the pH is low near the anion exchange membrane, the equi-
libriums shift to the dissolution side and decrease the local resis-
tance; on the contrary, the equilibriums shift to the precipitation
side in the high pH region near the cation exchange membrane
and increase the local resistance. Therefore, the shift of the equilib-
riums within the soil influenced the change in ohmic voltage drop.
Correspondingly, the polarization arising from the clay-pore fluid
system could be divided into the ohmic polarization followed the
terminology in electrochemistry and the polarization of the electric
double layer of the clay particles. At the very beginning, the pro-
duced H+ ion by water dissociation and its dissolution is small com-
pared with the conductivity of the pore fluid, thus it is reasonable to
consider the slow voltage increase in first cycle as the polarization
of the electric double layer of the clay particles.

Electrochemically, the overpotential of an electrode is the devi-
ation of the electrode potential when electron is passing through

from its equilibrium potential (Bard and Faulkner, 2001). However,
the clay particles are not electrodes and it is not possible to change
their surface potential and measure the overpotential of a single
clay particle by passing electrons. In the present work, the differ-
ence in voltage drop between current and the voltage drop of
equilibrium with no current is utilized to express the overpotential
of the entire soil compartment instead of a single clay particle (Eq.
(1)). Circles 1, 2 and 3 in Fig. 5 are the periods without current rep-
resenting the initial, middle and late stage of the remediation pro-
cess, respectively. It can be seen from circle 1 that after switching
off the current, the potential decreased sharply and reached the
equilibrium state. The potential drop in this figure was more pre-
cise for estimating the polarization of the electric double layer of
the clay particles, since the ohmic resistance disappeared right
after switching off the current. However, due to the limitation of
scan rate (once per 5 s), the overpotential could not be read di-
rectly from the figure. Following, a simulation of the relaxation
period was introduced.

To describe the relaxation process, a simulation of the diffusion
profile was attempted. The diffusion equation (Fick’s second law)
was solved with boundary conditions at the clay surface and in
the infinity from the surface:

dC
dt
¼ D

d2C

dx2 ð4Þ

where D is the diffusion constant, C the concentration, t the time
and x is the one-dimensional distance from the clay surface. The dif-
ferential equation needs two boundary conditions, (1) far from the
clay particles, the concentration is unchanged, and (2) in the vicin-
ity, the concentration is controlled by the applied current density.
The time boundary is zero, when the experiment starts. The simu-
lation was performed using an implicit Crank–Nicholson scheme
with a lambda about 1 (Britz, 2005). The potential as a function of
time is calculated from the Nernst equation:
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E ¼ Const � RT
nF

ln
C1

C2
ð5Þ

where R is the gas constant, T the absolute temperature, F the Far-
aday constant, C1 and C2 are the concentrations at two measuring
points – one is far away from the clay particle and the other is near
the clay particles, respectively. Assuming that C1 does not change,
the relaxation could be simulated to follow the experimental results
(the red line in circle 1). The Nernstian factor in the simulation was
60 mV, which is the overpotential caused by the polarization of the
electric double layer of the clay particles. Compared to the voltage
drop induced by the ohmic resistance, the overpotential was signif-
icantly lower, which means the ohmic voltage drop was the major
contributor to the energy consumption in the soil compartment.
The average conductivity calculated by Eq. (3) was 1.47, 1.32 and
2.13 mS cm�1 for initial, middle and late stage, respectively. After
a minimum value of 60 h, the conductivity increased over time
although fluctuating, this effectively decreased the initial ohmic
voltage drop after each ‘‘switching on’’. A possible reason for this
is that the rate of dissolution caused by H+ ions is slow compared
to the transport rate of ionic species when the current is ‘‘on’’. A
relaxation period when the current is ‘‘off’’ then allows the system
to precede the chemical mechanisms of dissolution and the species
concentration in solution increases. Thus, it can be concluded that
the pulse current demonstrated a decrease in the energy consump-
tion across the soil compartment by means of re-organization of the
ionic concentration distribution.

In Fig. 5 circle 2, the potential decreased first and then increased
and after a period the potential only increased in time (circle 3).
This increased potential drop in the absence of current is probably
due to the diffusion potential. Since the composition and the distri-
bution of the ionic concentration in pore fluid are complicated,
there is no simplified equation to quantitatively express the diffu-
sion potential in the soil–water system. However, the pH and ionic
strength are considered as the most important factors influencing
the diffusion potential by changing the ionic mobility and the
activity coefficient (Yu and Ji, 1993). The H+ ions produced from
the water dissociation near the anion exchange membrane and
transported towards the cathode causes acidification as well as dis-
solution process within the soil, which could give rise to a huge dif-
ference in pH and ionic strength between the anion exchange
membrane region and the cation exchange membrane region, thus
the diffusion potential increased.

Finally, the pulse current did not show enhancement of the hea-
vy metal removal compared to constant current (data not shown).

4. Conclusions

Pulse current (in low frequency) could decrease the energy con-
sumption of EDR. A decrease in both the initial ohmic resistance in
each pulse cycle and the resistance caused by concentration polar-
ization of the anion exchange membrane were seen in the pulse
current experiment compared to the constant current experiment.
At the cation exchange membrane, only the resistance caused by
concentration polarization decreased. The transportation of cations
through the cation exchange membrane was the rate controlling

step both in constant and pulse current experiments, thus respon-
sible for the major energy consumption. In the soil compartment,
the ohmic polarization was determined as the major contributor
to the energy consumption and diminished by pulse current.
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Abstract 

Direct current enhanced reduction of Cr(VI) at clay medium is a technique based on inputting extra 

energy into the clay to drive the favorable redox reaction. Despite the importance of the redox 

reaction, no mechanistic or kinetic information are available, which are needed to determine the rate 

of Cr(VI) reduction and to assess the corresponding energy consumption. In this study, Fe(II), as 

reducing reagent was electrokinetically transported into Cr(VI) spiked kaolinite clay to investigate 

the dependency of reaction rate on energy consumption. Results showed that the reduction rate of 

Cr(VI) was significantly increased by application of current with the pseudo-first-order rate 

constant kpse from 0.002 min-1 at current density of 0 mA/cm2 to 0.016 min-1 at current density of 

0.6 mA/cm2. But the increasing rate decreased at higher current range (0.3-0.6 mA/cm2) compared 

to lower current range (0-0.3 mA/cm2), probably due to the competitive transport of H+ ions 

produced by electrolysis reaction. Mass transport process of Fe(II) in clay pore fluid was the rate 

controlling step and responsible for the major of energy consumption, which was confirmed from 

both aspects of kinetics and energy conversion. Application of pulse current could decrease the non-

productive energy consumption which is due to the resistance increase in pore fluid caused by 

formation of precipitates (Cr,Fe)(OH)3 by decreasing the initial Ohmic drop of each cycle. This 
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effect was more significant in lower pulse frequency due to the better restoration of equilibrium 

state of clay medium during relaxation period. Therefore, a re-equilibrium mechanism at relaxation 

period was proposed to determine the optimal pulse frequency for its application in field 

remediation. 
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1. Introduction 

The Cr(VI) caused soil contamination attracts great concern due to its high toxicity and the broad 

range of industrial processes which are sources of contamination [1-4]. A widely accepted method 

to reduce the impact of chromium in the environment is to convert Cr(VI) to the less toxic and less 

mobile Cr(III) [5-8]. The successful removal of Cr(VI) depends on the formation and stability of 

Cr(III) precipitates. Ferrous iron, Fe(II), is a very strong reducing agent, which will be used to 

reduce Cr(VI) over a wide range of pH[9-12]; hence injection of excess Fe(II) to a Cr(VI) 

contaminated soil can enhance the desired process. However, achieving uniform distribution of a 

reagent by injection in tight clay soils is often difficult owing to the low hydraulic permeability of 

these soils.  

Electrokinetically caused migration of ions in soils is a proven method of transport in tight clay 

soils [13,14]. The ionic migration is most efficient when the clay is water saturated, but it also takes 

place in less than fully saturated states of the clay as long as there is continuity of the water phase 

through the pore structure. More importantly, when electrical energy is supplied to saturated clay, 

as in an electrolytic cell, it is possible to bring about non-spontaneous oxidation-reduction reactions 

that could further enhance the desired results, i.e. to cause the reaction to move forward by 

rendering more products than what the Nernst equation predicts. The laboratory evidence of 

enhanced Cr(VI) reduction to Cr(III) by electrokinetics was given in [15-18]. During the reduction 

of Cr(VI) at clay surface, the energy consumption is highly related to its kinetics like other 

heterogeneous chemical reactions. Similar to an electrode surface exchange, the reduction process 

at the clay surface could be divided into three steps [19] as depicted in supporting information (SI) 

Figure S1a, (1) mass transport of Fe(II) from the pore fluid to clay surface, (2) the electron transfer 

and (3) the formation of new products. The transport of Fe(II) produces a high ionic concentration 

in the pore fluid, thus the Cr(VI) within the electric double layer diffuse and accumulate toward the 
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clay surface. As the electrokinetic potential shifts to lower negative values, the potential difference 

between the inner Helmholtz plane (IHP) and the outer Helmholtz plane (OHP) increases until the 

electron transfers from Fe(II) to Cr(VI). In this case, the clay essentially acts as a barrier with the 

diffused double layer (DDL). The reaction between Fe(II) and Cr(VI) under anoxic conditions and 

acidic environments is as follows: 

Cr2O7
2-+14H++6Fe2+ ↔ 2Cr3++6Fe3++7H2O                                     (1) 

The formation of new product after reaction is known as: 

xCr3+ + (1-x)Fe3+ + 3H2O ↔ (CrxFe1-x)(OH)3(s) + 3H+                          (2) 

where x varies from 0 to 1. For example, it was reported x=0.75 when Cr(VI) was reduced at FeS 

surface [20], whereas x=0.25 when Cr(VI) was reduced by aqueous Fe(II) [21,22]. The formation of 

this new solid phase is desirable for remediation since it had rapid precipitation and dissolution 

kinetics and yielded lower solubility than that of Cr(OH)3. Among these three steps, the step with 

the lowest rate becomes the rate controlling step, in other words, the most energy will be consumed 

at the controlling step if a constant current is applied to the system. The first objective of the present 

work has been to investigate the kinetics of the reduction process at clay surface and determine the 

energy consumption in each step. 

The pulse mode of current has been widely used in analytical electrochemistry and conventional 

electrolysis, e.g. pulse voltammetry and electrodeposition [19,23,24], to examine the kinetics of 

processes on electrode surfaces. The concept of using a pulse current is that after switching on the 

current, it causes a depletion layer to be formed in the immediate vicinity of the electrode. After 

switching off the current (completion of pulse) the concentration of ionic species will be 

replenished by convective diffusion to avoid the nonproductive energy consumption caused by 

Ohmic resistance and polarization. Similar application was reported in soil electro-remediation [25-

28], where it was found that the pulse current could increase the ionic conductivity in soil pore fluid 

106



and decrease the energy consumption for transport. The energy consumption of electrochemically 

based remediation techniques is an important factor influencing costs and thus the applicability, for 

an application of these techniques beyond bench and pilot scale setups, this aspect is very important 

[29,30]. Therefore, the second objective of this study is to investigate the effect of pulse current on 

energy consumption during the Cr(VI) reduction process and discuss its mechanism from the 

viewpoints of interaction between transport and surface reaction and re-equilibrium process at 

relaxation period. 

 

Materials and Methods 

Preparation of clay samples. High-purity (china grade, Ward’s Earth Science) kaolinite clay 

with nominal particle size of 2 μm was used as the test clay medium in all experiments. Kaolinite 

was selected due to its low swelling property and low impurity content to minimize possible 

influence of background iron and other ions on double-layer interactions. The spiked clay samples 

were prepared by adding 20 mL freshly mixed potassium dichromate (1200 mg/L K2Cr2O7) stock 

solution to 10 g dry kaolinite clay. The mixture was allowed to equilibrate under agitation for 24 h. 

Afterwards the mixture was dried at 30 ºC avoiding the loss of lattice water in kaolinite and 

damaging its structure. The dry clay sample was saturated by distilled water before experiment. The 

consistency of the resulting moist clay was a soft, smooth paste, allowing for full liquid saturation 

and uniform distribution of chromium. The measured initial concentration of Cr(VI) after spike was 

800 mg/kg dry clay. The initial pH of the mixture was 4.9.  

Experimental setup. A schematic diagram of the experimental setup is shown in SI Figure S1b. 

The setup was modified from a commercially available electrophoresis (EP) cell supplied by C.B.S 

Scientific (San Diego, CA). The cell is a rectangular transparent box with a sample tray. The 

standard EP cell was equipped with internal working electrodes. The modified EP cell allowed 

107



direct measurement of the redox potential in the clay by use of 0.25 mm diameter platinum wire 

electrodes embedded in the base plate of the sample tray. Three wires were stretched transversely 

along the length of the base plate. These electrodes were labeled as E1-E3 starting from the anode 

end, as shown in Fig. 1. The conductive glue was used to hold these platinum wires without contact 

to the insulated base plate. All platinum wires were purchased from Alfa Aesar (Ward Hill, MA). 

There are two liquid chambers on each side of the sample tray and a lid which covers the whole 

apparatus. The liquid chambers were used to hold the stock solutions of FeSO4 (90 mg/L) as anolyte 

and Na2SO4 (0.01M) as catholyte in all experiments. The pH of Na2SO4 solution was kept at 3 by 

addition of HCl to prevent the extra precipitation of iron or chromium caused by OH- ions produced 

from the electrolysis reaction. The FeSO4 solution was deoxygenated with 99.999% ultra purified 

grade nitrogen gas (N2) for a minimum of 1 h prior to testing. All stock solutions were made from 

ACS reagent grade materials.  

A thin (5 mm) uniform clay paste containing the reacting agent, Cr(VI), was placed in the middle 

of the tray separated from the liquid by filter paper. The thickness of the clay paste was kept small 

to achieve as uniform distribution of charges and current on the clay cross section as possible. An 

Ag-AgCl reference electrode (electrode potential = +0.200 V vs. SHE, Fisher Scientific) was 

located in the anode chamber, close to the working electrode. The redox potentials were measured 

at platinum wire electrode E2 with reference to the Ag-AgCl electrode when the current was 

switched off. The levels of the liquids in the anode and cathode chambers were kept slightly below 

that of the clay in the sample tray to avoid flooding of the clay cell with excess liquid. Setting the 

liquid levels as such required an approximate volume of 66.5 mL of electrolyte in each chamber.  

Procedures and analysis. A series of constant current levels were applied across the working 

electrodes for 1 h duration each time in all tests. The applied current densities which were 

calculated for the orthogonal cross-sectional area of clay were from 0.1 to 0.6 mA/cm2. This range 
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of current density was selected to remain within the linear range of the power supply used and also 

prevent excessive gas generation by electrode reactions. The potential drop between platinum wire 

electrodes E1 through E3 was automatically recorded by a data logger (Agilent 34970A) using a 

scan rate of 1 s-1. In the pulse current experiments, the pulse current was accomplished by a power 

supply timer switch device. The pulse program followed the sequence of 10 s, 1 min, and 5 min “off” 

sessions of current with 5 min “on” sessions in between every “off” session. So the frequency of 

pulse was approximately 12, 10, and 6 cycles per hour, respectively. At the end of each test, the 

clay and electrolyte samples were analyzed for total chromium, hexavalent chromium, total and 

ferrous iron concentrations, and pH. The trivalent chromium and ferric iron concentration were 

calculated by subtracting the hexavalent chromium and ferrous iron from their total concentration. 

All clay and liquid samples were collected, preserved, extracted, and diluted in accordance with the 

approved, standardized U.S. EPA guidelines (Method 3050B and 3060A). The iron and chromium 

analysis was conducted using a Perkin-Elmer AAnalyst 100 flame atomic absorption spectroscopy 

(AA) and a Hach DR/4000U spectrophotometer (UV). 

 

Results and Discussion 

Post-test Distribution of Chromium and Iron. The normalized concentration of chromium and 

iron after treatment as a function of applied current density was shown in Figure 1. The experiment 

without current (0 mA/cm2) is a control test conducted to assess the spontaneous reduction of 

chromium in the absence of an applied electric field. It can be seen that the reduction of Cr(VI) was 

significantly improved by current since in clay the residual concentration of Cr(VI) decreased with 

the increase of applied current density. Similar trend was found for Fe(II) in anolyte indicating that 

the improvement of Cr(VI) reduction was caused by the enhanced transport of Fe(II) from anolyte 

to clay. The transport of Fe(II) was governed by electromigration and diffusion. However, the 
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electric mobility of Fe(II) (470×10-6 cm2 V-1 s-1) is much higher than its diffusion coefficient 

(7.2×10-6 cm2 s-1), therefore, electromigration becomes the major contributor to the total flux. 

Moreover, only slight amount of Fe(II) were found in clay which accounted for less than 1.6% of 

total mass, and there was no Fe(II) detected in catholyte. This suggested that the reaction rate 

between Fe(II) and Cr(VI) at clay surface was faster than the transport rate of Fe(II) in clay pore 

fluid, thus the transport of Fe(II) was the rate controlling step in reaction kinetics. The Cr(III) and 

Fe(III) in clay were mainly found in precipitates (Cr,Fe)(OH)3. Formation of the precipitates 

(Cr,Fe)(OH)3 was seen in all experiments and evident by its brownish color. Dissolving the 

precipitates by acid revealed the increased concentration of Cr(III) and Fe(III) with the increased 

current density.  

The electromigration and diffusion of Cr2O7
2- were observed in anolyte and catholyte, 

respectively. The chromium was found as Cr(III) in anolyte due to the reduction by Fe(II), while in 

catholyte as Cr(VI). In anolyte, the concentration of Cr(III) increased with the applied current, 

whereas the reverse trend was demonstrated in catholyte since the diffusion of Cr2O7
2- to catholyte 

was diminished by electromigration which has an opposite direction to diffusion when applying the 

current. But due to the adsorption of chromium on clay, both transport processes were retarded. As 

it is shown that the highest concentration percentage of chromium obtained in anolyte and catholyte 

were 3.5 and 1.8%, respectively. The pH profile after treatment was shown in SI Figure S2. Since 

the pH in catholyte was kept constant at 3, the pH in clay was expected to be mainly determined by 

anode reaction. In anolyte, the pH decreased with the increase of current density, which followed 

the prediction from anode reaction. But in clay, the pH was lower than that in anolyte indicating 

other mechanism rather than anode reaction determined the pH variation. The hydrolysis reaction 

(eq 2) was probably the explanation to this phenomenon. Nevertheless, the decreased pH in the 

present work implied an increased adsorption capacity of Cr(VI) on clay according to previous 
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study that the adsorption of Cr(VI) on kaolinite increased with the decrease of pH [31]. The Fe(III) 

found in anolyte (less than 5.3%) was due to the oxidation of Fe(II) by Cr2O7
2- migrated from clay 

and oxygen produced from the anode reaction, despite the nitrogen gas purging conducted. 

Kinetics as a Function of Applied Current Density. It is well-known that reduction of Cr(VI) 

by Fe(II) involves three one-electron-transfer steps (i.e. Cr(VI)→Cr(V)→Cr(IV)→Cr(III)), so it is 

not possible to simply give the rate law and reaction order of eq 1 by its stoichiometric number [32]. 

It is seen that the rate of the reaction can depend on three different species: Cr2O7
2-, Fe2+ and H+. 

Accordingly, the rate law for the reduction reaction may be expressed by eq 3, where k is the rate 

constant and the exponents (m, n, and p) are the reaction orders with respect to each reactant: 

𝑅 =  𝑘[Cr2O7
2−]𝑚[Fe2+]𝑛[H+]𝑝                                                  (3) 

However, it has been shown that the concentration of Fe(II) was low in clay and its transport was 

the rate controlling step, indicating Fe(II) was the rate limiting reactant. Therefore, the rate law of 

overall reaction (eq 1) could be approximately reduced to eq 4 by monitoring the concentration loss 

of Fe(II) in anolyte: 

−
3d[Cr(VI)]clay

dt
= −

d[Fe(II)]anolyte
dt

 = 𝑘𝑝𝑠𝑒[Fe(II)]anolyte                              (4) 

where kpse represents a pseudo-first-order rate constant. Similar method on rate law approximation 

was reported in [32] where the Cr(VI) was reduced at polyaniline film surface.  

Representative kinetic plots under different current densities were shown in Figure 2 to fit the 

first order reaction kinetics. The goodness of fit (R2>0.99) indicated that the pseudo first order 

reaction was suitable to simulate the reduction kinetics for the duration of 60 min measurement 

period. The kpse in the experiment without current (i.e. spontaneous reaction) was 0.002 min-1, 

which is lower than previous reported rate constant of first order behavior, for example the Cr(VI) 

was reduced at a polypyrrole-coated carbon substrate [33,34], reduced by hydrogen peroxide [35], 

reduced by iron [36], and reduced by hydrogen sulfide [37]. With the increase of applied current 
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density, the rate constant increased and the highest value (0.016 min-1) was obtained in experiment 

with current density of 0.6 mA/cm2. However, a two-stage increase of kpse as a function of applied 

current density is shown in the inset diagram that the increasing rate was lower in higher current 

range (0.3-0.6 mA/cm2) than that in lower current range (0-0.3 mA/cm2). This might be due to the 

excess produce of H+ ions (with high electric mobility, 3240·10-6 cm2 V-1 s-1) at higher current 

density, which led to a lower ionic transport number of Fe(II) compared to lower current density 

and diminished the transport of Fe(II).  

Energy Consumption of Cr(VI) Reduction. The potential drop measured across the clay by E1 

and E3 was shown in Figure 3a. Generally, the potential drop increased with the applied current 

density. The potential drop curve could be divided into three stages―initial Ohmic drop, 

polarization potential drop and stationary state. The initial Ohmic drop (the instantaneous increase 

in potential drop) was determined by applied current density since the initial ionic condition was 

uniform, therefore increased with the increase of applied current density. The initial resistance 

calculated based on Ohm’s law with measured initial Ohmic drop and applied current was 2.1±0.1 

kΩ (the deviation was based on experiments with current), which confirmed the uniform initial 

ionic condition before applying current. The polarization process (the slow increase in potential 

drop after initial Ohmic drop) included concentration polarization which was correlated to the 

concentration loss (compared to initial value) of ionic species caused by reduction of Cr(VI), and 

Ohmic polarization due to the retarded transport of Fe(II) in pore fluid by formation of precipitates 

(Cr,Fe)(OH)3. The total polarization extent was possible to be used as a prediction of Cr(VI) 

reduction since it was the inducement of polarization. Therefore, corresponding to the rate constant 

of Cr(VI) reduction, the polarization potential drop increased with the applied current density. 

When the transport rate of Fe(II) in pore fluid equals to the reaction rate at clay surface, the system 

reached stationary state (indicated by the stable potential drop in time after polarization). The 
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decrease in the potential drop at around 35 min for the highest current density of 0.6 mA/cm2 

applied was probably due the dissolution of the precipitates caused by the excess H+ ions produced 

at anode reaction. 

Corresponding to the three stages of potential drop, the respective energy consumption at 

different current densities is shown in Figure 3b. The total energy consumption (WT) was calculated 

based on the total potential values given in Figure 3a. The formula for the calculation is WT =

∫VIdt, where the W is energy consumption (mWh), V is the potential difference (V), I is the 

current (mA), and t is the duration (h). The energy consumption of initial resistance (WR) was 

calculated by WR = I2Rt with R=2.1 kΩ as discussed earlier. The increased current density on one 

hand transported more Fe(II) into the clay raising the reactant concentration and on the other hand 

overcame the activation energy (i.e. maintaining the compressed DDL) of the reduction of Cr(VI) 

and increased the reaction rate. Therefore, WT is the sum of that due to the mass transport of Fe(II) 

in clay pore fluid (Wt) and that due to the reduction of Cr(VI) at clay surface (Wr). In ideally non-

polarized process, WT = WR = Wt + Wr represents the productive energy consumption. It can be 

seen that with the increased reduction of Cr(VI), more productive energy was consumed as 

expected. However, in this study the existence of polarization process required additional energy 

input (WP) to sustain the reduction process. As discussed, the WP was due to the resistance rise 

caused by concentration loss of ionic species and formation of precipitates in clay pore, therefore 

represented non-productive energy consumption. The increased WP in current indicated that more 

non-productive energy was also consumed with the increased reduction of Cr(VI) and accounted up 

to 40% of total energy consumption (see inset diagram). 

ORP Measurement. The oxidation-reduction potential (ORP) variation in clay measured by E2 

and reference electrode was shown in Figure 4a. It can be seen that the ORP decreased in time and 

the decrease extent increased with the applied current density. If setting the ORP value in the 
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experiment without current as reference, then the overpotential η could be obtained and equals to 

the ORP difference between experiment with current and without current after 60 min experimental 

time. Numerically, the ORP differences are negative, but the absolute values of the difference are 

plotted in Figure 4b for convenience of comparison. For example, the measured ORP at the end of 

the experiment with the current of 0.6 mA/cm2 was 642 mV, so the ORP difference between this 

experiment and experiment without current (ORP=713 mV) was -71 mV, and the absolute value 

was 71 mV. The overpotential here was used to estimate the electric energy (Wr) on accelerating 

conversion of the system’s chemical energy (i.e. the decrease of Fe(II) and Cr(VI) concentration), 

and written in thermodynamic form as below: 

|Δ(ΔrGm)| = nF|ΔE| = Wr                                                                (5) 

where ΔrGm is the free (or chemical) energy of molar reaction (J/mol), ΔE=η (V), and n is the 

electron transfer number of molar reaction according to eq. 1, in this case n=6. Detailed 

explanations of eq 5 is given in SI Figure S3. Therefore it has the same physical meaning as that in 

electrode process [19], also represents the extra energy applied to accelerate a redox reaction. The 

eq 5 is not strictly applicable in thermodynamics because the system was not at equilibrium state 

when measuring the ORP, but due to the slow rate of spontaneous reduction of Cr(VI) with respect 

to the measuring time it is practically applicable [19]. The ORP variation in clay was determined by 

the reduction rate of Cr(VI) since a similar two-stage increase of overpotential in applied current 

density was observed in Figure 4b. Moreover, it can be seen from the inset diagram that the Wr was 

much lower than WR (less than 1.6% of WR) and decreased with the increase of current density, 

which indicated that the transport of Fe(II) in pore fluid was the major contributor to energy 

consumption, corresponding to the kinetic data (Figure 1). 

Effect of Pulse Current. The pulse program followed the sequence of 10 s, 1 min, and 5 min 

“OFF” sessions of current with 5 min “ON” sessions in between every “OFF” session. So the 
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frequency of pulse was approximately 12, 10, and 6 cycles per hour, respectively. Although the 

pulse program was different in each experiment, the total working time was kept identical to ensure 

the same charge transfer in the pulse and constant current experiments. Therefore, the direct 

comparison of the energy consumption and removal efficiency could be made.  

After the experiments, pulse current did not show enhancing effect on the reduction of Cr(VI) as 

there was no significant difference in residual concentration of Cr(VI) among experiments with 

pulse current (see Figure 5a). The aim of applying a pulse current is to precede more chemical 

reactions at clay surface than transport in pore fluid at the relaxation period when the current is 

switched off. A simulation of the relationship between the residual concentration of Fe(II) in clay 

and the reaction rate constant at clay surface shown in Figure 6 was used for qualitatively analysis 

of the pulse mechanism. The accumulation rate of Fe(II) in clay was simulated by one-dimensional 

mass transport-reaction equation [38] as: 

∂Cc
∂t

=
it
zF

+ D(
∂Ca
∂x

)t − 𝑘𝑝𝑠𝑒Cc                                                       (6) 

where i is the current density, t and z is the transport number and charge of Fe(II), respectively. DFe 

is diffusion coefficient, Ca and Cc is the concentration of Fe(II) in anolyte and clay, respectively. 

The calculation of diffusion flux was simplified by three initial and boundary conditions: t=0, Ca= 

C0, t>0, in anolyte, Ca= C0, and t>0, in clay, Cc=0. C0 is the initial added concentration of Fe(II). It 

can be seen that if the transport rate is faster than the reaction rate under certain applied current 

density, there will be accumulation of Fe(II) in clay pore fluid. For example, with applied current 

density of 0.6 mA/cm2, if the rate constant is lower than around 0.0043 min-1, the concentration of 

Fe(II) increases. In this case, the reaction will probably be improved by the application of pulse 

current due to the additional proceeding of chemical mechanism at the relaxation period. Otherwise, 

no improvement will be given by pulse current. As it has been shown in Figure 1 that the reaction 
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between Fe(II) and Cr(VI) was faster than the transport of Fe(II) in all current level, therefore there 

was no effect induced by pulse current in this study. 

In aspect of energy consumption, the positive effect of pulse current was shown in Figure 5a. The 

total energy consumption was lower in pulse current experiments than that with constant current 

and it decreased with the frequency. The lowest energy consumption (16.8 mWh) was obtained in 

the experiment with the frequency of 6 cycles per hour. The lower energy consumption in pulse 

current experiments is probably due to the compensation of ionic species by convective diffusion 

and self-scattering of (Cr,Fe)(OH)3 which released more pore space for current transport at 

relaxation period. As it is shown in Figure 5b that the pulse current effectively decreased the initial 

Ohmic drop of each cycle. The entire potential drop curve across the clay in pulse current 

experiments are given in SI Figure S4. The select of relaxation time is important since it determines 

both of the efficiency of pulse current on energy consumption and the duration of treatment. It 

should be on one hand long enough to complete a relaxation and on the other hand short enough to 

save the treatment time. The maximum time for relaxation is the restoration of equilibrium state. 

The ORP measurement as a function of time could be used to estimate the re-equilibrium processes 

in the present system since the platinum wire E2 was inserted into clay and variation was 

determined by ionic conditions. The re-equilibrium processes in clay at the relaxation period of 

initial, middle and late stage estimated by ORP variation were given in Figure 5c. It can be seen that 

the experiment with pulse frequency of 6 cycles per hour showed the best condition approaching the 

equilibrium followed by 10 cycles per hour, and the experiment with 12 cycles per hour was far 

from equilibrium, which was in the same order as their demonstrated energy saving effect.  

Implications for Field Remediation. This study evaluated the effect of direct current on 

enhancement of chromium reduction in contaminated clay from the aspects of kinetics and energy 

consumption. The application of current simultaneously improved the transport of Fe(II) in clay 
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pore fluid and the reduction of Cr(VI) at clay surface. Therefore, the reduction rate significantly 

increased with the increase of applied current density. Correspondingly, the increased reduction rate 

required more energy input to drive the reduction process. However, it was found that not only the 

productive energy consumption increased in current, but the non-productive energy consumption 

which is due to the resistance increase in pore fluid caused by formation of precipitates 

(Cr,Fe)(OH)3 also increased in current and accounted for up to 40% of total energy consumption. 

Application of pulse current could decrease the non-productive energy consumption by decreasing 

the initial Ohmic drop of each cycle. This effect was more significant in lower pulse frequency due 

to the better restoration of equilibrium during relaxation period. Therefore in practical application, 

the determination of optimal pulse frequency could be done by identifying the proper current “OFF” 

time for re-equilibrium of a system with respect to different applied current “ON” time which 

determines the deviation of a system from equilibrium.  

There was no enhancing effect observed on reduction of Cr(VI) in pulse current experiments 

compared to constant current experiment which was probably due to the faster reaction rate between 

Fe(II) and Cr(VI) than the transport of Fe(II). But faster transport of Fe(II) than surface reaction is 

expected in real contaminated soil where both pore size and conductivity in pore fluid are higher 

than that in kaolinite clay used in this study. In this case, the reduction will probably be improved 

by the application of pulse current due to the additional proceeding of chemical mechanism at the 

relaxation period. The passivation effect of (Cr,Fe)(OH)3 has been widely reported [22,39]. By 

covering the surface reaction site of either aqueous Fe(II) or solid iron, further reduction of Cr(VI) 

is stopped after a certain time. Similar effect was expected but not seen in this study probably due to 

the short experimental time, therefore long-term interaction between transport and surface reactions 

as well as the effect of competitive electron acceptors existed in contaminated soil (manganese 
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oxide and sulfur oxides, etc) on surface reactions still need to be evaluated in future research to 

optimize the balance between remediation efficiency and energy consumption. 
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Figure 1. Normalized concentration of Cr(VI), Cr(III) (a) and Fe(II), Fe(III) (b) in each part of 

electrophoresis cell after experiment. The total mass indicates the mass balance after experiment to 

initial added concentration of Cr and Fe. Error bars represent the standard deviation of duplicate 

measurements. 
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Figure 2. Pseudo-first-order kinetics plot as a function of time for Cr(VI) reduction at applied 

current density from 0 to 0.6 mA/cm2. Symbols are observed concentration data and lines represent 

the first order model fit. Inset: The variation of rate constant as a function of applied current density. 
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Figure 3. (a) Potential drop measured between platinum wire E1 and E3 at applied current density 

from 0.1 to 0.6 mA/cm2. (b) Energy consumption at different applied current density. WT is the total 

energy consumption. WR is the energy consumption of initial resistance. WP is the energy 

consumption of polarization process and equals to WT − WR. Inset: Percentage ratio of WP to WT at 

different current density. 
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Figure 4. (a) ORP decay measured between the reference electrode and platinum wire E2 inserted 

into clay. The ORP in experiment without current (0 mA/cm2) was automatically recorded by a data 

logger using a scan rate of 5 s-1. In other experiments, the ORP was measured manually at every 15 

min. (b) Two-stage increase of overpotential η as a function of current density. The overpotential is 

the absolute value of the ORP difference between experiment with current and without current after 

60 min. Inset: Percentage ratio of Wr to WR, in which Wr = 6Fη and WR is from Figure 3b. Solid 

lines are linear fit. 
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Figure 5. (a) Normalized concentration of Cr(VI) in clay and total energy consumption after 

experiment at different frequencies of pulse current. The applied current density is 0.5 mA/cm2 for 

all experiments with pulse current. Error bars represent the standard deviation of duplicate 

measurements. (b) Selected potential drop measured between platinum wire E1 and E3 at pulse 

current experiments. The potential drop of 0 cycle/hour is given in Figure 3a. (c) The re-equilibrium 

processes in clay at the relaxation period of initial, middle and late experimental stages estimated by 

ORP variation. 

 

 

 

 

128



0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

 0 mA/cm2

 0.2  0.4
 0.6  0.8
 1.0  1.2

 

 

[F
e(

II)
] C

/C
0

kpse ∗ 103 (min-1)
 

Figure 6. Effect of reaction rate between Cr(VI) and Fe(II) at clay surface on accumulation of Fe(II) 

in clay pore fluid. 
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Supporting Information 

 

 
Figure S1. (a) Hypothesized electron transfer steps from electromigrated Fe(II) to Cr(VI) at clay 

surface. (b) Schematic diagram of the experimental setup. The length and width of the used 

electrophoresis cell is 18 and 5 cm, respectively. The clay sample in the middle of the cell is 0.5 cm 

thick. 
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Figure S2. Final pH profile in each part of the electrophoresis cell at different applied current 

density. The pH in catholyte was kept at 3 by adding HCl. 
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Figure S3. (a) Description of ORP measurement in this study. (b) Schematic diagram of electrolysis 

of galvanic cell. 

 

The measured ORP (when switching off the current) in this study is the potential difference 

between the platinum wire (E2) and reference electrode (EAg/AgCl) as shown in Figure S3a: 

ORP = E2 − EAg/AgCl                                                            (S1) 

Since EAg/AgCl is constant, so the ORP difference between experiments with current E2′  and without 

current E2′′ is caused by the potential change of E2 and written in absolute value as: 

|ΔORP| = |ΔE2| = |E2′ − E2′′| = |η|                                            (S2) 

In reversible process, the maximum work a system could do equals to the loss of its free energy: 

|ΔrGm| = 6F|E2|                                                             (S3) 

where ΔrGm =  ΔrGm
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Although there is no work but heat produced by Fe(II) and Cr(VI) in the present system, eq S3 

gives the maximum capability of a system (in this case, Fe(II)/Cr(VI) system) to do work. 

Rewriting eq S3 by substitution of eq S2 gives: 

|Δ(ΔrGm)| = 6F|ΔE2|                                                      (S4) 

Eq S4 indicates the loss of the capability of doing work due to the increase of Q by passing the 

current which is equivalent to the electrolysis of a galvanic cell (Figure S3b) and the inputted 

energy equals to the loss and gives to: 

|Δ(ΔrGm)| = 6F|ΔE2| = 6F|η| = Wr                                         (S5) 
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Figure S4. The potential drop measured between platinum wire E1 and E3 in experiments with 

different pulse frequency: (a) 0 cycles/hour, (b) 12 cycles/hour, (c) 10 cycles/hour, and (d) 6 

cycles/hour. The applied current density was 0.5 mA/cm2. 
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a  b  s  t  r  a  c  t

Electrodialytic  remediation  (EDR)  can  be used  for removal  of  heavy  metals  from  suspended  soil,  which
allows  for the  soil  remediation  to be a continuous  process.  The  present  paper  focused  on  the  processing
parameters  for remediation  of  a  soil polluted  with  Cu  and  As from  wood  preservation.  Six electrodialytic
treatments  lasting  from  5  to 22  days  with  different  liquid  to  solid  ratio  (L/S)  and  current  intensity  were
conducted.  Among  treatments,  the  highest  removal  was  obtained  from  the  soil  fines  with  5 mA  current
at  L/S  3.5  after  22  days  where  96%  of  Cu  and  64%  of As were  removed.  Comparing  the  removal  from
the  original  soil  and  the  soil  fines  in  experiments  with  identical  charge  transportation,  higher  removal
efficiency  was  observed  from  the  soil fines.  Constant  current  with  5  mA  could  be  maintained  at  L/S 3.5
for  the  soil  fines  while  not  for the  original  soil.  Doubling  current  to  10 mA  could  not  be  maintained  for
the  soil  fines  either,  and  doubling  L/S to 7 at  5 mA  entailed  a very  fast  acidification  which  impeded  the
removal.  The  results  showed  that  a  very  delicate  balancing  of  current  density  and  L/S  must  be  maintained
to  obtain  the  most  efficient  removal.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Electrodialytic soil remediation (EDR) is one of a group of elec-
trochemically based soil remediation methods whose purpose is to
remove heavy metals from polluted soil. EDR was originally applied
to soil that was moist and consolidated in attempts at in situ treat-
ment [1]. A faster and continuous process was  then developed,
which can be used ex situ [2–4]: the soil is suspended in a solu-
tion (most often water) during such treatment. The overall idea is
to combine the method with soil washing and develop a continu-
ous process for heavy metal removal from the fine fraction. Larger
debris or soil particles are separated out by the washing procedure,
leaving only a highly contaminated sludge for EDR. The soil por-
tion containing sand needs only initial rinsing treatment because
contaminants do not strongly adhere to the sand particles. While
for the fine fractions like silt and clay, need more extensive reme-
dial treatment because contaminants are easily adsorbed by this
fine-grained fraction [5]. The adsorption is either specific or non-
specific, or both of them, which depends on the clay mineralogy
and the composition of soil organic matter.

In a reported study, remediation of soil fines (<63 �m)  in suspen-
sion in distilled water was shown to be efficient for the removal of
Pb, and a maximum of 96% of Pb was removed [2]. The method was

∗ Corresponding author. Tel.: +45 45255029; fax: +45 45883282.
E-mail  address: tiran@byg.dtu.dk (T.R. Sun).

also used for the remediation of soil polluted by the wood preserva-
tion industry, but the pollutants in this soil were not concentrated
in the fine fraction as had been expected. As the pollutants were
also found in the larger soil particles, soil washing as pretreatment
was not possible [6]. In this case the major soil body (<4 mm)  was
treated in suspension using EDR.

In the present paper, electrodialytic remediation of the origi-
nal soil (<2 mm)  is compared to the remediation of the soil fines
(<63 �m).  No such comparison appears to have been made. The
hypothesis is that remediation of suspended soil fines is more effi-
cient than remediation of suspended original soil, not only because
a large fraction of the material is left for simpler and cheaper soil
washing, or because the material is kept suspended, thereby reduc-
ing the concentration polarisation and resistance [7], but also due
to the higher conductivity of the soil fines, which is expected to
allow a higher current density and thus faster remediation. Further,
as the influence of L/S and current are considered to be important
basic parameters, this work focuses on elucidating their role in the
remediation process.

2.  Materials and methods

2.1.  Experimental soil

The  soil was  sampled from the top layer on an industrial site
in Denmark, which had been highly polluted by a wood preser-
vation plant. This investigation only considered Cu and As since

0304-3894/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jhazmat.2011.12.006

137

dx.doi.org/10.1016/j.jhazmat.2011.12.006
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:tiran@byg.dtu.dk
dx.doi.org/10.1016/j.jhazmat.2011.12.006


230 T.R. Sun et al. / Journal of Hazardous Materials 203– 204 (2012) 229– 235

the Cr is well below the limiting value. The soil was air dried and
sieved, and only the particles with size <2 mm were used. The
term “original soil” was used for <2 mm soil particles. The “soil
fines” were obtained by wet-sieving the original soil with distilled
water through a 0.063 mm  sieve. Concentrated dry soil fines were
obtained by evaporating water on a heating plate under non-boiling
condition.

2.2. Analysis of soil characteristics

The  original soil and the soil fines were analysed for the follow-
ing parameters. The concentrations of Cu and As were determined
after pretreatment of the soil according to Danish Standard 259,
where 1.0 g of dry soil and 20.0 mL  (1:1) HNO3 were heated at
200 kPa (120 ◦C) for 30 min. The liquid was separated from the solid
particles by vacuum through a 0.45 mm filter and diluted to 100 mL.
The concentrations of Cu and As were measured with AAS and ICP,
respectively. Soil pH was measured in two ways: by suspending
10.0 g dry soil in either 25 mL  1.0 M KCl or 25 mL  distilled water.
After 1 h of agitation, pH was measured using a Radiometer pH elec-
trode. The content of organic matter was found as a loss of ignition
after 1 h at 550 ◦C. Carbonate content was determined volumetri-
cally by the Scheibler method, which reacted 3 g of soil with 20 mL
of 10% HCl. The amount was calculated and assumed that all car-
bonate was present as calcium carbonate. SEM-EDX analysis was
performed on the original soil and the soil fines. The accelerating
voltage of the SEM was 15 kV with a large field detector (and X-ray
cone). Different areas of the sample were investigated by SEM and
the element distribution was examined by element mapping using
EDX.

2.3. Desorption of heavy metals as a function of pH

To examine the pH dependent desorption of Cu and As from
the original soil and the soil fines, the following procedure was
used: 5.0 g dry soil (dried at 105 ◦C for 24 h) and 25 mL  HNO3 in
various concentrations (from 0.01 M to 0.9 M)  were suspended for
48 h. The suspensions were filtered (0.45 mm)  and the Cu and As
concentrations were measured in the liquid phase with AAS and
ICP respectively. Extractions in distilled water were made as a ref-
erence.

2.4. Sequential extraction of heavy metals

Sequential extraction was performed according to the method
described in the Standards, Measurements and Testing Program of
the European Union including (1) carbonate and exchangeable, (2)
reducible, (3) oxidiseable, and (4) residual fractions, respectively,
0.5 g of dry and crushed soil was treated in four steps as follows:
(1) extraction with 20.0 mL  of 0.11 M acetic acid (pH 3) for 16 h,
(2) extraction with 20.0 mL  of 0.1 M NH2OH·HCl (pH 2) for 16 h, (3)
extraction with 5.0 mL  of 8.8 M H2O2 for 1 h and heating to 85 ◦C for
1 h with a lid followed by evaporation of the liquid at 85 ◦C until it
had been reduced to less than 1 mL  by removal of the lid. The addi-
tion of 5.0 mL  of 8.8 M H2O2 was repeated, followed by resumed
heating to 85 ◦C for 1 h and removal of the lid for evaporation until
almost dry. After cooling, 25.0 mL  of 1 M NH4OOCCH3 (pH 2) was
added, and extraction lasted for 16 h, and (4) digestion according to
DS 259 with 20.0 mL  (1:1) HNO3 under the condition of 200 kPa and
120 ◦C was made for identification of the residual fraction. Between
each step the sample was centrifuged at 3000 rpm for 15 min, and
the supernatant was decanted and stored for AAS analysis. Before
addition of each new reagent, the sample was washed for 15 min
with 10.0 mL  of distilled water and centrifuged at 3000 rpm for
15 min, and the supernatant was then decanted. All extractions

8 cm 

5 cm 5 cm 10 cm 

CATAN 

III III

Fig. 1. Principle of electrodialytic remediation of suspended soil. (AN = anion
exchange  membrane, CAT = cation exchange membrane.)

were performed at room temperature, and samples in each step
were taken in triplicate.

2.5.  Experimental setup and experiments conducted

The electrodialytic experiments were conducted in cylindrical
cells, as shown in Fig. 1. The cells were made from polymethyl
methacrylate. Each cell had an internal diameter of 8 cm.  The length
of the central cell compartment was  10 cm and the length of the
electrode compartments was  5 cm.  The ion exchange membranes
separating the central compartment from the electrode compart-
ments were commercial membranes from Ionics (anion exchange
membrane AR204 SZRA B02249C and cation exchange membrane
CR67 HUY N12116B). Platinum coated electrodes from Permascand
were used. A power supply (Agilent E3612A) was  used to maintain
a constant current. In each of the electrode compartments, 500 mL
of 0.01 M NaNO3 adjusted to pH 2 with HNO3 was  circulated. The
soil was kept suspended in distilled water during the experiments
by continuous stirring with a plastic-flap attached to a glass-stick
and connected to an overhead stirrer (RW11 basic from IKA). The
stirring was  maintained identical conditions in all experiments.

Conductivity and pH in the soil suspension and the voltage
between working electrodes were measured once every 24 h. Due
to the electrode processes, pH changed in the electrolytes. The pH
in the electrolytes was therefore manually maintained between 1
and 2 by addition of HNO3 and NaOH. By the end of the electrodi-
alytic experiments, the contents of Cu and As in the different parts
of the cell (membranes, soil, solutions, and electrodes) were mea-
sured. The suspension from the central compartment was filtered.
The sediment was dried and crushed lightly in a mortar by hand
before the heavy metal concentrations and pH were measured. The
contents of Cu and As in membranes and at the electrodes were
measured after extraction in 1 M HNO3 and 5 M HNO3, respectively.
The energy consumption after treatment can be calculated by equa-
tion E = ʃVIdt/W, where E is the power consumption per gram soil
(Wh/g); V, voltage between working electrodes (V); I, current (A);
t, duration (h); W, the mass of soil (g).

To investigate the comparison between the original soil and the
soil fines and the influence of current intensity and liquid to solid
ratio (L/S) on the remediation efficacy of the soil fines, six elec-
trodialytic remediation experiments were performed (Table 1). In
Table 1, the L/S 3.5 corresponded to 100 g soil suspended in 350 mL
distilled water and L/S 7.0 corresponded to 50 g soil suspended in
350 mL  distilled water.

3. Results and discussion

3.1.  Soil characteristics

The  characteristics of the original soil and the soil fines are listed
in Table 2 together with the Danish limiting values for Cu and As for
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Fig. 2. SEM picture of original soil (a) and soil fines (b) and result from EDX mapping.
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Table 1
Experimental design.

Treatments Soil type L/S Current (mA) Days

T1 Original soil 3.5 2.5 10
T2 Original soil 3.5 5 10
T3 Soil fines 3.5 5 5
T4 Soil fines 3.5 5 22
T5 Soil fines 3.5 10 10
T6 Soil fines 7.0 5 15

the most sensitive land use. The fine fraction accounted for about
35% of the soil per weight, and more than 90% Cu and 90% As were
bound in this fraction, so the soil was suitable for a size fractionation
prior to the electrodialytic treatment. Searching the soil samples by
SEM-EDX investigation, there was no single particle with high con-
centrations observed, which might have led to the pollutants being
concentrated in the sand fraction rather than in the fine fraction,
as was found in [6]. It was found that Cu and As were distributed
over the surfaces of the original soil and soil fines (Fig. 2). The low
carbonate content in the original soil and the soil fines revealed a
low buffering capacity. The pH measured when both the original
soil and the soil fines were suspended in KCl was lower than the
pH measured in distilled water (0.6–0.8 pH units). This showed that
H+ ions were present in the exchangeable sites at the surface of the
original soil and soil fines, since more H+ ions were released to the
liquid in KCl (exchanged with K+) than in distilled water.

3.2.  Desorption of Cu and As as a function of pH

Fig. 3 shows the concentrations of Cu and As extracted from the
original soil and soil fines at different pH values. It was  found that
the extractions of both Cu and As increased with the decrease in pH.
In the original soil, Cu and As extractions started at pH values below
about 4.5 and approached 90% and 103% respectively at approxi-
mately pH 1. The Cu and As extracted from the soil fines did not
reach such high percentages, being 81% for Cu and 74% for As at the
same pH level. At neutral pH of the suspension (in distilled water)
no measurable amount of Cu was extracted from either the original
soil or the soil fines, whereas about 100 mg/kg for the original soil
and 200 mg/kg for the soil fines of As were extracted. This does not
necessarily indicate that such concentration was present in the soil
before the sampling. Mobile As would be expected to have been
washed out to deeper soil layers in the 25 years (at least) since
the spill occurred. Aeration of the soil sample during sampling and
treatment is likely to have influenced the mobility of As.

3.3.  Sequential extraction of Cu and As

Fig. 4 shows the result of the sequential extractions of Cu and As
from the original soil and the soil fines. For both Cu and As, which
showed a similar pattern, the carbonate and exchangeable fraction
decreased from the original soil to the soil fines, while in contrast,
the residual and oxidisable fractions increased. Cu was adsorbed
less strongly in the original soil compared to the soil fines and As
showed the same tendency even though not so clearly. The fine
fraction was a part of the original soil and thus this result indicates
that the small fraction of the two pollutants bound to the coarse
fraction in the original soil was bound weakly to the soil particles in
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Fig. 4. Sequential extraction of Cu and As in original soil and soil fines.

comparison to the adsorption in the soil fines. This was consistent
with what would be expected when there were no insoluble or
poorly soluble precipitates containing the pollutants in the soil (as
seen in the SEM-EDX investigation).

3.4. Electrodialytic experiments. Overall results

An overview of the results obtained in the electrodialytic reme-
diation experiments is given in Table 3. The mass balance of an
element was defined as the relation between the sum of the mass
found in the different parts of the cell at the end of the experi-
ment and the initial mass, calculated on the basis of the measured
mean initial concentration. The range of the mass balances was
from 94% to 138%, which was  an acceptable range for an inhomo-
geneous industrially polluted soil. The removal efficiency for each
element was  calculated as the mass of the actual heavy metal in the

Table 2
Characterisation of experimental soil and Danish limiting values for most sensitive land use.

Cu (mg/kg) As (mg/kg) Carbonate content (%) Organic matter (%) pHH2O pHKCl

Original soil 573 ± 33 1181 ± 29 0.6 ± 0.2 3.7 ± 1.0 7.4 6.6
Soil  fines 2054 ± 62 4598 ± 167 0.2 ± 0.2 3.2 ± 0.8 6.4 5.5
Limiting  values 500 20
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Fig. 5. (a) pH and (b) conductivity in the soil suspension and (c) voltage over the cells during the electrodialytic treatment.

electrode components (membranes, solutions in electrode com-
partments and on electrodes) divided by the total mass found in all
parts of the cell at the end of the experiment. Among the treatments,
the highest removal percentage was observed in experiment T4 for
both Cu (96%) and As (64%). The lowest efficiency for both pollutants
was obtained in experiment T6: 13% for Cu and 0.7% for As. The pH
measured in KCl was 0.8 to 1.1 pH units lower than the pH measured
in distilled water and this was in general a slightly larger difference
than was found initially. The difference showed that H+ ions were
present in the exchangeable sites to a higher extent than before
eletrodialytic treatment, due to acidification during the treatment.
All exchangeable sites were thus not occupied by H+ ions at the
time of sampling.

The  pH and conductivity of the soil suspension and the voltage
across the cell during the experiments are shown in Fig. 5(a)–(c),
respectively. The pH in suspension of all treatments decreased over
time (Fig. 5(a)). During the first two days, a considerable drop in
the pH of the suspension in the central compartment was  seen,

followed  by a moderate decrease. In other soils a “lag-period” had
been observed before pH decreased in the soil suspension [2]. Dur-
ing the lag-period the H+ ions overcame the buffering capacity of
soil. In the soil of this investigation, the carbonate content was low
(both in the original soil and the soil fines) (Table 2), indicating
that the soil had a low buffering capacity. The fact that there was
a fast drop in the pH of the suspension and that the lag-phase was
missing in the present experiments indicates that the lag-phase
is dependent on the buffering capacity of the soil. At the end of
the experiments, the pH in the soil suspension varied significantly
between the different treatments. The rapid acidification of the
soil suspension could be due to the water splitting caused by the
anion exchange membrane [8,9] and the exchange between H+ ions
from the acidic catholyte and other ions in the suspension over
the cation exchange membrane. The pH in the catholyte was  main-
tained between 1 and 2, so this exchange was  likely to have a major
influence. Moreover there was only 50 g of soil fines in experiment
T6, which most probably means the buffering capacity in this soil

Table 3
Overall results of electrodialytic soil remediation.

Treatments Cu (mg/kg) As (mg/kg) pH H2O/KCl Mass balance (%) Cu/As Removal efficiency (%) Cu/As Energy consumption (Wh/g soil)

T1 279 ± 12 600 ± 14 4.6/3.8 112/109 59/56 0.4
T2 367 ± 23 979 ± 30 4.6/3.7 94/138 36/44 1.2
T3 1426 ± 29 3036 ± 42 4.5/3.7 98/97 32/35 0.1
T4 107 ± 6 1715 ± 22 3.3/2.4 118/98 96/64 1.0
T5 1309 ± 35 2534 ± 37 4.5/3.7 105/98 43/47 2.5
T6 2078 ± 92 5529 ± 188 2.7/1.6 113/120 13/0.7 1.0
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suspension was even lower than in experiment T4, which had 100 g
of soil fines, so that fewer ions were available to exchange with H+

ions from the catholyte (Table 1).
At the beginning, the conductivity of the soil suspension

decreased in all treatments. This could be ascribed to the deple-
tion of free ions in the soil by the applied current (Fig. 5(b)). During
the 5–10 day experimental periods, the pH in these treatments did
not decrease to below 4.5 (Fig. 5(a)), which suggested that Cu and
As had not been desorbed and thus mobilised for electromigration
in accordance to the desorption pattern in Fig. 3. In general, the des-
orption and dissolution processes were expected to be limited at pH
4.5 compared to lower pH values, so the higher pH value in the sus-
pension was one major reason for the lower conductivity, due to a
smaller H+ ion concentration. Further, this might also be the reason
for the limited acidification, because a limited amount of cations
were available for exchange with H+ ions from the catholyte. How-
ever, in experiments T4 and T6, enough free ions were present in
the suspension to overcome this limitation, so the pH decreased to
levels where desorption started and was followed by an increase in
conductivity.

At the beginning of all the experiments the voltage increased
(Fig. 5(c)). In experiments T1 and T3, the voltage increased and did
not reach the maximum for the power supply (around 135 V) during
the experiments. In experiments T2 and T5 the voltage increased
to the maximum of the power supply value and the experiments
were stopped on the tenth day. In experiments T4 and T6, the volt-
age dropped from a maximum on the sixth day and continued to
decrease during the remaining time of the experiment. Since the
overpotential at the electrodes was low, because the electrolyte
was continuously stirred, the voltage increase corresponded to an
increase in electrical resistance across the cell. The electrical resis-
tance in the electrolyte compartments was low, due to high ionic
strength, so the increased resistance must be across the middle
compartment or across the membranes. Initially, when the soil
was suspended in distilled water, dissolved ions were removed by
the current, resulting in a decrease in electrical conductivity. How-
ever, as the acidification started and proceeded, more ions were
released and the electrical resistance decreased. This could explain
the increase in voltage and also the decrease in voltage in exper-
iments T4 and T6, and the voltage pattern also followed the pH
pattern in the soil suspension.

Fig.  6(a) and (b) shows the distribution of Cu and As in the cell at
the end of the experiments. Overall the distribution pattern of the
two elements differed significantly. In all treatments the major part
of the Cu was found either at the cathode or in the soil, whereas for
As the major part was distributed either in the anolyte or in the soil.
These different patterns indicate the different chemical behaviour
of the two elements.

3.5.  Comparison of remediation efficacy between original soil and
soil fines

The results of experiments T2 and T4, which were performed
with the original soil and the soil fines, respectively, with the same
L/S and current but different duration, demonstrated a significant
difference in remediation efficiency between them. The removal
efficiency of Cu and As was 36% and 44% in the original soil against
96% and 64% in the soil fines. In fact, in the experiment with the
original soil (T1) it was not possible to maintain the current at 5 mA
for more than 10 days, as the resistivity increased until the maxi-
mum voltage of the power supply was reached, at which point this
experiment was terminated. This means that 5 mA  current was too
high for this original soil at the actual L/S. However, large amounts
of Cu and As were still removed under these conditions. This was
possibly due to the large amount of exchangeable species of Cu and
As (Fig. 4), which were directly mobile by electromigration [10]. A
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Fig. 6. Distribution of (a) Cu and (b) As in the different parts of the electrodialytic
cell  at the end of the experiments.

similar experiment performed by Ottosen et al. [6] indicated that
constant current could be obtained at the current intensity 2.5 mA
in the original soil, although the removal of Cu and As was less than
that from the soil fines with 5 mA.

Experiments T1 and T3 were direct comparisons between orig-
inal soil and soil fines where they had the same mass of charge
migration and L/S. In experiment T1 2.5 mA was applied to the orig-
inal soil to avoid charge overload. In this comparison, the removal
efficiency in experiment T1 was  much higher than in experiment
T3, but the mass of Cu and As removed was reversed: 38 mg  Cu
and 72 mg  As were removed from the original soil and 64 mg
Cu and 157 mg  As were removed from the soil fines. Moreover,
from the viewpoint of energy intensity, the treatment with the soil
fines commenced lower energy consumption than the original soil,
which was  0.1 Wh/g and 0.4 Wh/g soil, respectively (Table 3).

3.6. Comparison of different conditions for electrodialytic
remediation of soil fines

Based  on experiences from the work of Jensen et al. [2], two
ratios of liquid to solid (3.5 and 7.0), and two values of cur-
rent intensity (5 and 10 mA, the corresponding current densities
were approximately 0.1 and 0.2 mA/cm2) were investigated. The
best conditions in the present investigation were experiment T4
where the L/S ratio was 3.5 and the current intensity was 5 mA.  In
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experiment T4, an interesting finding was that almost all the Cu and
most of the As had been removed from the soil fines even though
the pH did not decrease to below 1. In fact, the lowest pH value
reached in the soil fines in experiment T4 was 3.5 (Fig. 5(a)). The
pH is very important for the desorption and dissolution of heavy
metals from soil, because H+ can destroy the binding forces, induce
the change of redox conditions between heavy metals and soil par-
ticles and release the heavy metals to solution. These reactions are
equilibrium reactions, and they will move to the desorption side
with the addition of more H+ ions. On the other hand, if the prod-
ucts are consumed continuously by other materials or factors (i.e.
current), the reactions will also move to the desorption side with
the same H+ concentrations. The constant current enabled con-
tinuous desorption due to continuous removal compared to the
case where the acidification was performed in a single step (as
in the pH desorption experiment). In experiment T4, 96% removal
efficiency indicates that the majority of the different adsorbed Cu
phases could be removed by the electrodialytic process, including
the residual phase, which was expected to be the strongest bound
and thus the most difficult to remove (Table 3). This could be mainly
attributed to the transformation of heavy metals from the higher
fractions of sequential extraction to the first fraction, caused by the
combination of acidification and the applied electric field [11]. Not
all of the heavy metals in the residual part are bound to the mineral
lattice structure, because some of them exist in the form of precipi-
tation and complex compounds, and fortunately they can easily be
removed from soil. In general arsenic may  be present as As (III) or As
(V) in soil as well as in the solution. Which form prevails is depen-
dent on the pH and the redox potential. It may  be seen in Fig. 6(b)
that a large amount of As was removed towards the anode in this
treatment, probably as H2AsO4

−. Unlike the stationary EKR/EDR,
oxygen and carbon dioxide concentrations in suspended EDR can
be assumed to be in equilibrium with the atmosphere, which allows
for oxidation of As (III) to As (V) during remediation. Further, under
the moderately acidic and oxidising conditions created during the
process of experiment T4, H2AsO4

− should be the prevailing species
of arsenic, which would be transferred to the anode side [12].

In  experiment T5, the current intensity was increased to 10 mA
compared with the 5 mA  in experiment T4. However, it was obvious
that the free ions in the soil fines were not sufficient to maintain
the 10 mA  constant current, and induced a higher energy consump-
tion (2.5 Wh/g soil) than T4 (1.0 Wh/g soil). This experiment was
an example of the ultimate consequence of forcing too much cur-
rent through the system: the lack of ions became pronounced (seen
from the conductivity of the suspension Fig. 5(b)). As a result, the
resistance increased dramatically, and constant current could not
be maintained. At the initial stage of the electrodialytic treatment,
the current was mainly carried by the soluble and mobile ions from
the soil itself. If the conductivity was low but the current was high,
the current could not be maintained until desorption and dissolu-
tion of ions caused by acidification had taken place, so the process
stopped.

The L/S ratio was increased to 7.0 in experiment T6, compared
to 3.5 in experiment T4. In experiment T6, the lowest removal effi-
ciency both for Cu and As was observed, while the pH declined to
the lowest value and the conductivity attained its highest value at
the end of the experiment (Fig. 5(a) and (b)). For Cu, this could
be attributed to an expected effect of acidification, which was
competition between H+ ions and Cu2+ ions for electromigration.
The experiment with the longer acidification time (T4) therefore
showed better remediation efficacy than that with very fast acidi-
fication (T6), and in the search for optimal remediation conditions,
it indicates that the fastest rate of acidification was  not optimal. By
contrast, the removal efficacy of As was even worse than Cu, which
was related to the chemical behaviour of As. This might be because
uncharged As species were present and this could very likely be

H3AsO4 (which was prevailing at high oxidation states and pH val-
ues less than about 3 [12]). Another report found that As was  only
slightly mobile at low pH value, and as a result, it was  difficult to
remove except in the presence of an enhancement agent [13]. Also
due to the fast acidification, the energy consumption in T6 was  the
same with T4 even under the condition of much less heavy metals
removed since the mobility of H+ ions is high.

4.  Conclusions

This paper reports a comparison of Cu and As removal from an
original industrially polluted soil and from soil fines from the same
soil. The results show that the range of removal efficiency in the
original soil and soil fines were from 13% to 96% Cu and 0.7% to
64% As, the highest percentage of removal being from the soil fines
in both cases. Among treatments, the highest removal efficiency
occurred in soil fines with 5 mA current and with an L/S ratio of 3.5
in a treatment lasting 22 days. In a direct comparison between the
original soil and the soil fines with exactly the same charge transfer,
38 mg  Cu and 72 mg As were removed from the original soil and
64 mg  Cu and 157 mg  As were removed from the soil fines. In the
suspension of soil fines, a constant current of 10 mA  could not be
maintained and in the original soil even a current of 5 mA  could not
be maintained. In treatment with a high L/S of 7.0, acidification took
place too rapidly and the pH was  very low in the suspension during
the whole process, which impeded the transport of Cu and As. The
conclusion is that the remediation current and the L/S ratio must
both be optimised, as these two parameters are highly dependent
on each other.
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1 INTRODUCTION 

The electrokinetic remediation technology has been 
wildly utilized on various porous materials. The pos-
sibility of removing chlorides from concrete by us-
ing an electric current has been shown in previous 
investigations (Polder 1996, Toumi et al. 2007, Sán-
chez & Alonso 2011). The principle of ECE is to 
pass a DC current through the concrete, using the 
reinforcement as cathode and as anode a net is 
placed temporary on the concrete surface. Chlorides, 
as negatively charged ions, will be transported to-
ward the anode by electromigration; thereby chlo-
rides can be removed from the concrete in a relative-
ly short time. 

As result of electrode reactions, the electrolyte 
close to the anode will turn acidic during the ECE 
treatment. The concrete is not an acid resistant ma-
terial, and thereby, the exposed concrete surface will 
be etched and weakened during the ECE. This issue 
can be avoided by adding a buffer such as lithium 
borate or calcium hydroxide to the electrolyte, but at 
same time, this will reduce the efficiency of extrac-
tion due to distributing the charge over more ions 
than in case of using electrolyte (Siegwart et al. 
2002). Ion exchange membrane, as an approach hin-
dering selected ions passing, could be introduced to 

the ECE process. Membrane enhanced electrokinetic 
remediation technique has been investigated with 
soil, fly ash, and harbor sediment (Ottosen et al. 
2009, Kirkelund et al. 2009, Pedersen 2003). In pre-
vious works including both lab and pilot scale expe-
riments, this technique has demonstrated positive ef-
fect on removal of contaminants from materials and 
inhibition of extra ions injection. Thus, one objective 
of the present paper focus on the effect of an anion 
exchange membrane on protecting the concrete from 
the acid. 

Due to the introduction of external electric field, 
the energy consumption becomes a factor influen-
cing the application of ECE. It has been reported 
that the application of pulsed electric field could im-
prove the electrochemical remediation and decrease 
the energy input during the process. For example, 
Mishchuk et al. (2001) reported that the pulsed elec-
tric field could intensify the electrodialytic desalina-
tion through diminishing concentration polarization 
and increasing the working current or voltage value. 
Kornilovich et al. (2005) indicated that pulse voltage 
changes the distribution of contaminations in soil 
and allows decreasing power inputs during electro-
kinetic remediation. Elsener & Angst (2007) found 
that a pulsed current could improve the removal ef-
ficiency of chloride from concrete by releasing the 

The effect of pulse current on energy saving during electrochemical chlo-
ride extraction (ECE) in concrete 
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ABSTRACT: Energy consumption is a factor influencing the cost of electrochemical chloride extraction 
(ECE) in concrete. The aims of this work were to investigate the possibility for energy saving when using a 
pulsed electric field during ECE and the effect of the pulsed current on removal of chloride. Four experiments 
with artificially polluted concrete under same charge transfer were conducted. Results showed that the energy 
consumption was decreased 15% by pulse current in experiments with 0.2 mA/cm2 current density, which 
was higher than that of 0.1 mA/cm2 experiments with a decrease of 9.6%. When comparing the voltage drop 
at different parts of the experimental cells, it was found that the voltage drop of the area across the concrete 
was the major contributor to energy consumption, and results indicated that the pulse current could decrease 
the voltage drop of this part by re-distribution of ions in pore fluid during the relaxation period. However, 
probably due to the observed re-adsorption of chloride by concrete in pulse current, there was no significant 
difference between constant and pulse current experiments in relation to removal of chloride. Use of an anion 
exchange membrane impeded the H+ ions from the anodic reaction entering the concrete, and the pulse cur-
rent also demonstrated a positive effect on the energy consumption across the membrane by diminishing the 
concentration polarization. 
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bonding chloride at current off period. But no clear 
investigation about the effect of pulsed electric field 
on the energy consumption has been given. There-
fore, the other objective of this work is to investigate 
the possibility of a pulsed electric field for energy 
saving during ECE and the effect on the removal of 
chloride. The theoretical considerations in the use 
pulse current are: (i) diminishing the polarization 
process and (ii) restoring the equilibrium condition 
at the cement-electrolyte interfaces. 

2 MATERIALS AND METHODS 

2.1 Concrete sample preparation 
The concrete cylinders used in this study were pre-
pared with Rapid Cement from Aalborg Portland, 
which is a CEM I cement. Aggregates were from sea 
materials with deionized water. Water to cement ra-
tio and aggregates to cement ratio of the concrete 
were 0.4 and 4.9, respectively. Specimens with 
deionized water were cast in cylindrical mould (di-
ameter = 8 cm, length = 10 cm) and stored sealed 
horizontally at 20ºC for 24 hours at which time they 
were demoulded and placed in a curing bath for 7 
days. Afterwards, the cylindrical surfaces were 
sealed and the samples were subsequently placed 
standing in a container with 3% NaCl solution for 6 
months to allow one-dimensional ingress of chlo-
ride. 

2.2 Experimental setup and design 
A laboratory cell for ECE is seen in Figure 1. The 
cells were made from polymethyl methacrylate. 
Each cell had an internal diameter of 8 cm. The 
length of compartment I and III were 5 cm, and 
compartment II was 3 cm. The compartment I and II 
was separated by an anion exchange membrane 
(AR204 SZRA B02249C) from Ionics. The concrete 
sample was between compartment II and III. Plati-
num coated electrodes from Permascand were used 
as working electrodes. Between the two working 
electrodes, three monitoring electrodes (platinum 
coated electrodes) were used to monitor the voltage 
drop of different parts (recorded by a multimeter). 
Before switching on the current, in each of the elec-
trode compartments 500 mL 0.01 M NaNO3 as elec-
trolyte was injected and circulated by pumps, while 
in compartment II tap water was circulated. After 24 
hours, a constant current was applied for all experi-
ments by a power supply (Agilent E3612A). The 
pulse current was accomplished by a power supply 
timer instrument (Joel TE102), and the program was 
1 hour “on”, 0.5 hour “off”. The total duration for 
constant current experiment was 240 hours; while 
for pulse current experiment was 360 hours. Al-
though the total duration was different, the total 
working time was the same when the “off” time was 
considered in the pulse current experiment. In this 

way, the quantity of total charge passing through the 
experiments was maintained identical. The pH varia-
tion in compartment II was measured using a Radi-
ometer pH electrode every 24 hours. At the end of 
the experiments, the concrete samples were seg-
mented to four slices by a water cooling saw, dried 
and crushed before the measurement of chloride 
concentrations. Four experiments were performed as 
listed in Table 1. 
 
 
  

 
 
 
 
 
 

 
Figure 1. Schematic diagram of the laboratory cell for ECE. 
(AN = anion exchange membrane, WE= working electrode, 
ME = monitoring electrode). 
 
Table 1. Experimental design. 

Experiments 
Current 
density 

(mA/cm2) 
Current type Duration (h) 

1C 0.1 Constant 240 
1P 0.1 Pulse 360 
2C 0.2 Constant 240 
2P 0.2 Pulse 360 

 
The energy consumption was calculated as: 

E VIdt= ∫                             (1) 

where, E, is the energy consumption (Wh); V, vol-
tage between working electrodes (V); I, current (A); 
t, duration (h).  

3 RESULTS AND DISCUSSION 

3.1 Energy consumption 
In all experiments the current was constant when 
applied; therefore the variation in voltage is an indi-
cator of the energy consumption. Figure 2 shows the 
variation of voltage (between working electrodes) as 
a function of experimental time. The pulse pattern 
was not shown in the figures because the data of vol-
tage was recorded at the working (current on) time 
every 24 hours in both the constant and the pulse 
current experiments. In general it can be seen that 
the voltage increased with the increasing of current 
density since 1C, 1P and 2C, 2P were comparable. 
For each experiment, after a period of initial increas-
ing, the voltage decreased with time. This is proba-
bly due to the transport of OH- ions from the cathod-
ic reaction into the concrete. OH- ions have a much 

 AN 
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higher mobility than other negative ions. A compari-
son of constant and pulse current experiments 
showed that the voltage of pulse current experiments 
were lower than that of constant current experiments 
although with different extents, which means that 
the pulse current showed positive effect for energy 
saving in these experiments. The decreasing extent 
between 2C and 2P was higher than that between 1C 
and 1P. This was probably because the free ions in 
the pore fluid of the concrete were almost sufficient 
for low current transport. For the higher current den-
sity experiments, the pulse current experiment had 
much lower voltage compared with the constant cur-
rent experiment. 
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   Figure 2. Voltage variation between working electrodes. 
 

The voltage drop at different parts of the cell dur-
ing experiments is shown in Figure 3 and 4. Figure 3 
is the part across the anion exchange membrane 
measured between measuring electrodes ME1 and 
ME2, and Figure 4 is the part across the concrete 
measured between measuring electrodes ME2 and 
ME3. The voltage dropped in the electrolyte com-
partments was negligibly small compared to other 
parts, thus it is excluded in the following discussion. 
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   Figure 3. Voltage drop across the anion exchange membrane. 
 

In Figure 3, it can be seen that the voltage in-
creased at the initial stage in all experiment, which 
was probably caused by the depletion of ions at the 
surface of anion exchange membrane due to concen-
tration polarization. The concentration polarization 
is correlated to the applied current density, thus the 
voltage drop of 2C and 2P was higher than that of 
1C and 1P. Then after the initial increase, the vol-
tage was relatively constant in the constant current 
experiment which means a stationary state reached. 
However, in the pulse current experiments the vol-
tage decreased with time, which is probably due to 
the relaxation of the membrane surface diminishing 
the concentration gradient by diffusion. In this way, 
the pulse current effectively decreased the voltage 
drop and thus the energy consumption across the 
anion exchange membrane.  

The voltage drop across the concrete (Fig. 4) had 
a similar pattern and value compared to the total vol-
tage applied to the working electrodes (Fig. 2) in all 
experiments. This means the highest voltage drop 
was across the concrete, and that the concrete was 
the main contributor to the overall energy consump-
tion. The voltage in this part in the pulse current ex-
periments was lower than that in the constant current 
experiments. This showed that the energy saving ef-
fect caused by the pulse current in the whole system 
was due to the energy saving over the concrete. 
When a direct current is applied, excess charge will 
be accumulated at one end of the sample and dep-
leted on the other due to the different conductivity 
between the pore wall surface and the pore solution. 
A non-equilibrium state and potential difference 
across the interface layer (i.e. diffused double layer, 
DDL) could arise. This is similar to the charging of 
the ionic double layer at the electrode-electrolyte so-
lution interface (Bard & Faulkner 2001). 
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   Figure 4. Voltage drop across the concrete. 
 
Thus a resistance-capacitance model could be in-

troduced to describe the voltage drop across the con-
crete,  
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/DDL
s DDLV IR q C= +                       (2) 

where V is the voltage across the concrete, I is the 
current, Rs is the resistance, qDDL is the surface 
charge density, and CDDL is the capacitance of the 
double layer. The energy saving caused by charging 
and discharging of the double layer (the second term 
of right hand side of Equation 2) induced by pulse 
current is low, at the magnitude of mV, since the 
surface charge of the concrete is low compared to 
the electrode surface. Loche et al. (2005) has dem-
onstrated by electrochemical impedance spectrosco-
py that during the migration of chloride ions, the ca-
pacitance of mortar paste remains roughly constant. 
Therefore, the pulse current enhanced energy saving 
effect within the concrete is mainly expected as de-
crease in pore fluid resistance. The reason for this is 
possibly that the rate of release of bound chloride is 
slow compared to the rate of chloride removal in the 
electric field and the process is inefficient as soon as 
the free chloride content in the pore solution is low. 
A relaxation period then allows the system to re-
establish the equilibrium between bound and free 
chlorides. If then the current is switched on again, 
the treatment can proceed at a higher efficiency. 

3.2 Removal of chloride 
The pH variation in compartment II during the expe-
riment is shown in Figure 5. In all experiments, a 
sharp increase of pH at initial stage was observed 
due to the electromigration of OH- ions from the 
concrete. Afterward a moderately stationary state 
was obtained, which means the migration rate of 
OH- ions equals to the consumption rate in the anode 
chamber. 
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   Figure 5. pH change in compartment II. 
 
The high pH value indicated that the anion ex-

change membrane effectively prevented the H+ ions 
from entering this compartment and most important-
ly the concrete. It is worth to note here water dissoc-
iation could happen at the membrane surface direct-

ing to the concrete if the applied current density 
reaches the limiting value of the anion exchange 
membrane. The limiting value is determined by the 
concentration of electrolyte reduce to zero; as a re-
sult, acidification appears. But in the present work, 
the decreasing of pH caused by acidification was not 
observed for any of the current densities applied; 
this was also supported by Figure 3. In Figure 3, the 
voltage drop of constant current experiments would 
be decreasing with time not constant if the water dis-
sociation occurred. 

The residual concentration of chloride in the con-
crete slices after treatment is shown in Figure 6. It 
can be seen that the chloride concentration in each 
slice was lower than initial value and the chloride 

was transported as negative ions, as it was the slices 
closest to cathode that was remediated first and the 
highest chloride concentrations were in slice 1. 
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Figure 6. Chloride concentration of each slice in concrete after 
the treatments. The superimposed graph is the chloride concen-
tration in compartment II of each experiment. 

 
The removal of chloride from the concrete was 

highly related to the applied current density, the re-
moval efficiency (defined as the decrease in chloride 
mass divided by the initial chloride mass) in 2C 
(59%) and 2P (59%) was higher than that in 1C 
(43%) and 1P (45%). However, there was no signifi-
cant difference of chloride removal between con-
stant and pulse current experiments for any of the 
current densities. The energy consumption was 1.7, 
1.5 and 4.7, 4.0 Wh per percent removed chloride in 
1C, 1P and 2C, 2P, respectively. In slice 2-4, the 
chloride concentration in the pulse current experi-
ments were lower than that those of the constant cur-
rent experiments, which supported the interpretation 
of the lower voltage drop of pulse current experi-
ment across the concrete (Fig. 4). Re-equilibrium be-
tween bound and free chlorides gave rise to a high 
conductivity at the pore fluid during the relaxation 
period. However, in slice 1, a reverse phenomenon 
was observed in which the chloride concentration in 
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the pulse current experiments was higher. This could 
be explained by the transport by diffusion and re-
adsorption of chloride from compartment II when 
the current was switched off. The superimposed fig-
ure in Figure 6 is the chloride concentration in com-
partment II, and it shows that the chloride concentra-
tion in the pulse current experiments was higher than 
that of constant current experiments. This is proba-
bly due to the interdiffusion between Cl- ions from 
the anolyte and OH- ions from compartment II, since 
the diffusion of Cl- ions from the anolyte will be re-
stricted by the diffusion potential. 

4 CONCLUSIONS 

The possibility for application of pulsed electric cur-
rent for energy saving during electrochemical chlo-
ride extraction and the effect on removal of chloride 
were investigated. It was found that the voltage drop 
across the concrete was the major contributor of 
energy consumption and that the pulse current could 
decrease the voltage drop of this part effectively by 
re-distribution of ions in the pore fluid between 
bound and free form. The energy consumption was 
decreased by 15% by the pulse current in the expe-
riments with 0.2 mA/cm2 current density, which was 
higher than that of 0.1 mA/cm2 experiments with a 
decrease of 9.6%. The removal efficiency increased 
with the applied current density, which were 59% 
and 59% in 2C and 2P, and 43% and 45% in 1C and 
1P. Due to re-adsorption of chloride by the concrete 
in the pulse current experiments during the relaxa-
tion period, there was no significant difference be-
tween constant and pulse current experiments in re-
lation to the overall removal of chloride. The use of 
an anion exchange membrane hindered the H+ ions 
from the anodic reaction entering the concrete, and 
the pulse current also demonstrated a positive effect 
at decreasing energy consumption across the mem-
brane by diminishing the concentration polarization. 
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