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Abstract

The absorption of light by molecules can induce ultrafast dynamics of coupled
electronic and nuclear vibrational motion. The ultrafast nature in many cases
rests on the importance of several potential energy surfaces in guiding the nu-
clear dynamics – a concept of central importance in many aspects of chemical
reaction dynamics. In this thesis, we focus on the non-ergodic nature of internal
conversion, i.e. the concept that the nuclear dynamics only sample a reduced
phase space potentially resulting in localization of the dynamics in real space.
In essence, this is a consequence of vibrational energy redistribution simply not
being able to compete with the rate of internal conversion.

The work employ the experimental methods of time-resolved mass spectrom-
etry and photoelectron spectroscopy supplemented by electronic structure cal-
culations and quantum dynamics simulations on seven cycloketones, three cy-
clopentadienes and dithiane. In the case of the cycloketones, the rate of internal
conversion varies by more than an order of magnitude between the molecules.
This non-ergodic process was found to primarily involve ring-puckering motion,
and the different timescales observed could be rationalized on the basis of primar-
ily two parameters: the vibrational frequency and the energy difference between
the Franck-Condon and equilibrium geometries of the upper electronic state.

In the cyclopentadienes, the twisting of a single double bond is essential in
reaching the conical intersection seam connecting the lowest excited state with
the ground state. By methyl substitution, this out-of-plane motion is significantly
slowed down resulting in a slower rate of internal conversion.

In dithiane, the coupling of stretching in the disulfide bond with torsion in
the carbon backbone allows the molecule to repeatedly access the region near
a conical intersection whereby internal conversion to the ground state proceeds
before unfolding of the chain to form a diradical.

A common trait of the three types of molecules investigated is the involvement
of very few degrees of freedom in the process that leads to internal conversion.
By selectively modifying these modes, the rate of internal conversion can be sig-
nificantly affected and the dynamics possibly tuned from non-ergodic to partially
ergodic.
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Resumé

Ultrahurtig, koblet elektronisk og vibrationel dynamik kan induceres i molekyler
ved absorption af lys. Det ultrahurtige aspekt er i mange tilfælde en konsekvens
af at flere potentialenergioverflader er med til at guide kernernes bevægelse – et
koncept som er centralt i mange aspekter af kemisk reaktionsdynamik. I denne
afhandling fokuserer vi på den ikke-ergodiske natur af kernedynamikken i over-
gangen mellem to elektroniske tilstande – altså konceptet om at kernedynamikken
kun udforsker et reduceret faserum, hvilket potentielt medfører lokalisering af dy-
namikken i det fysiske rum. Grundlæggende skyldes dette, at redistributionen
af vibrationel energi ikke kan konkurrere med hastigheden af den kernedynamik,
der fører til den elektroniske overgang.

Resultaterne præsenteret i denne afhandling er baseret på anvendelsen af
de eksperimentelle metoder tidsopløst massespektrometri og fotoelektronspek-
troskopi samt beregninger af elektronisk struktur og kvantedynamiske simule-
ringer på syv cycloketoner, tre cyclopentadiener samt dithian. For cycloketonerne
varierer hastigheden af overgangen mellem to anslåede tilstande med mere end
en faktor 10 for de forskellige molekyler. Det blev konstateret, at denne ikke-
ergodiske proces primært involverer vridning i ringstrukturen, og at de meget
forskellige tidsskalaer kan rationaliseres på baggrund af primært to parame-
tre: den vibrationelle frekvens samt energiforskellen mellem Franck-Condon og
ligevægtsgeometrien i den øvre elektroniske tilstand.

I cyclopentadienerne er drejningen omkring én af de to dobbeltbindinger
essentiel for at nærme sig en søm af koniske krydsninger, der forbinder den
laveste anslåede tilstand med grundtilstanden. Ved methylsubstitution bliver
disse kernebevægelser langsommere, hvorved hastigheden for overgangen til grund-
tilstanden også falder.

I dithian medfører koblingen mellem stræk i disulfidbindingen og torsion i
carbonskelettet, at molekylet gentagne gange befinder sig i nærhenden af en
konisk krydsning, hvorved overgangen tilbage til grundtilstanden forløber inden
carbonskelettet kan folde sig ud og danne diradikalet.

Et gennemgående aspekt i de tre typer af molekyler er, at kun få frihedsgrader
er involveret i den proces, der fører til overgangen til en lavere elektronisk tilstand.
Ved selektivt at modificere disse vibrationelle frihedsgrader kan hastigheden for
overgangen påvirkes i signifikant grad, og dermed er det potentielt muligt at
variere dynamikken fra ikke-ergodisk til delvist ergodisk.
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Chapter 1

Ultrafast Excited-State
Dynamics

This thesis is concerned with the ultrafast dynamics of coupled electronic and
nuclear vibrational motion that unfold when molecules are excited by light.
Herein, ultrafast denote processes taking place on the femtosecond to picosecond
timescale – the fundamental timescale of nuclear vibrational motion – ubiquitous
in chemical reaction dynamics.[1]

Ultrafast photoinduced processes result from the complex charge and en-
ergy flows which are central to chemical reaction dynamics.[2, 3] Dissociation
was among the first of such processes to be followed in real time in the seminal
works on ICN and NaI from the group of Nobel laureate Ahmed Zewail.[4–7] The
interplay between charge and energy can lead to many other processes such as
isomerization, which in retinal initiates the process of vision,[8–10] bond forma-
tion, which in stacked DNA bases causes mutagenic photolesions,[11–13] or inter-
nal conversion, by which electronic energy can be dissipated in e.g. conjugated
molecules.[14–17]

One distinguishing feature of these ultrafast excited-state processes is that
they involve more than one potential energy surface – a concept we will intro-
duce in more detail in the next chapter. By this merit, the work presented inhere
is not only relevant for reactions initiated by short laser pulses but indeed for a
large range of chemical and physical processes.[18] As an example take electron
transfer, where, following the Franck-Condon principle, the transfer of charge
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4 Ultrafast Excited-State Dynamics

takes place near the intersection of the potential energy surface of the reactant
and that of the product, cf. Fig. 1.1(a).[19–21] Similarly, atomic and molecu-
lar reactive scattering[22–24] and reactive scattering off surfaces,[25–27] which is
of central importance in heterogeneous catalysis,[28, 29] often fall in this range,
cf. Fig. 1.1(b). Both electron transfer and reactive scattering are fundamental
to the very notion of chemistry as are the energy transfer processes on which we
will focus.

Reactant
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Nuclear Coordinates

Product

Region of
Electron Transfer

(a) Electron transfer.

Product + 
Metal Surface
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Reactive
Scattering

(b) Surface reactive scattering.

Figure 1.1: Examples of processes involving more than one potential energy
surface. (a) Electron transfer takes place near the intersection of two potential
energy surfaces as the system changes from the potential energy surface of the
reactant to that of the product,[19] and (b) reactive scattering off a metal surface
[28, p. 421].

Another distinguishing feature of ultrafast processes is the very timescale on
which they take place. A relevant question in this context is whether the short
timescale directly reflects a restriction in the scope of the dynamics that unfold,
or more precisely, if the short timescale is an indication that only a restricted
region of phase space is explored before the process takes place? Reduced-space
dynamics is a reflection of ergodicity breaking which will be a central theme in
this thesis. The ergodic hypothesis of thermodynamics states that a system left
to itself will sooner or later pass through every energetically available point in
phase space [30, pp. 100–101, 31, pp. 545–555]. A system is termed ergodic if
it satisfies this hypothesis. Ergodicity breaking occurs if the timescale is too
short for all these points to be visited – i.e. ergodicity is essentially a question
of relative timescales. Herein, we are concerned with processes initiated by a
femtosecond laser pulse. Such activation creates a nuclear wavepacket, or equiv-
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alently a phase space distribution, which is localized in space and energy due to
the coherence of the short laser pulse. If the timescale for a subsequent process
is shorter than the timescale for loss of coherence of the wavepacket, or equiv-
alently for randomization of the initial phase space distribution, the process is
non-ergodic, and the dynamics will be continuously localized, cf. Fig. 1.2(a).[32, 33]

The (non-)ergodicity of a process thus rests on the relative timescales of internal
vibrational energy redistribution (IVR) and that of the process in question. If
the timescale for IVR is relatively fast, energy will be redistributed efficiently
and uniformly before and during the process whereby a microcanonical ensemble
will be maintained, and the process will exhibit ergodic behavior, cf. Fig. 1.2(b).
In contrast, the observation of localized coherent dynamics following preparation
by a short laser pulse entails a given process to be fast on a timescale relative to
that of IVR and thus to exhibit non-ergodic behavior.
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(a) Coherent non-ergodic dynamics.
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Figure 1.2: Illustration of non-ergodic and ergodic dynamics in phase space fol-
lowing initial preparation of a localized phase space distribution by a femtosecond
laser pulse. (a) The initial distribution stays localized as the reaction proceeds,
and (b) fast redistribution of energy to the entire phase space of the reactant
ensures a microcanonical ensemble is maintained during reaction.

The intent of this thesis is to exhibit the non-ergodic nature of ultrafast
excited-state dynamics. In particular, we are interested in the process of internal
conversion where a molecule passes from one potential energy surface to another
such that electronic energy is transformed into nuclear kinetic energy. With the
concept of non-ergodicity at hand, we seek to understand the process and its
timescale from simple structural and energetic properties. Given a molecular
structure, can we determine which degrees of freedom are important in the inter-
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nal conversion process, i.e. where are the dynamics localized? In this respect, how
does a particular substitution affect the rate of internal conversion? In effect, can
we propose rules of thumb as to how structural and energetic parameters affect
the internal conversion process?

To be able to address these questions, we carry out simulations and exper-
iments on a series of molecules. As an example of weak coupling between the
potential energy surfaces involved, we investigate the S2 → S1 transition between
a Rydberg and a valence state in seven cycloketones which differ by ring size as
well as substitution pattern. As examples of strong coupling, we investigate the
S1 → S0 transition in three cyclopentadienes, which indirectly also involves the
S2 state, as well as the S1 → S0 transition in dithiane. These systems touch upon
not only electronic energy dissipation but also isomerization and bond dissocia-
tion.

The thesis is organized as follows: as a starting point, we will in Chapter 2
introduce the Born-Oppenheimer approximation which provides us with the con-
cept of a potential energy surface essential to our mechanistic trajectory-based
picture of molecular dynamics. In Chapter 3, we will detail whereby the methods
of time-resolved mass spectrometry and photoelectron spectroscopy can be used
to investigate the dynamics of coupled electronic and nuclear vibrational motion,
and in Chapter 4, we describe the experimental setup used to perform these ex-
periments. Methods of data analysis are presented in Chapter 5. In Chapter 6,
we provide an introduction to the Multi-Configuration Time-Dependent Hartree
and Ab Initio Multiple Spawning methodologies for simulating molecular dynam-
ics, and in Chapter 7, it is detailed how these simulations can be used to calculate
time-resolved photoelectron spectra. The part of the thesis dealing with the the-
oretical and computational approaches is completed by Chapter 8, in which we
provide a short introduction to the methods of electronic structure calculation
employed. If the reader is familiar with the experimental and/or theoretical
methods, the relevant chapters can be skipped. The results and discussion part
of the thesis is divided into three main chapters detailing the findings relating
to the cycloketones, Chapter 9, the cyclopentadienes, Chapter 10, and dithiane,
Chapter 11. Finally, a summarizing discussion of the findings is presented in
Chapter 12.

We will throughout this thesis employ atomic units in formulas, i.e. the re-
duced Planck’s constant ~ = 1, the elementary charge e = 1, and the electron
mass me = 1.



Chapter 2

The Born-Oppenheimer
Approximation

To describe the time-evolution of a molecular system, we need to solve the time-
dependent Schrödinger equation for the total electronic and nuclear wavefunction

i
∂

∂t
Ψ(r,R, t) = ĤΨ(r,R, t) (2.1)

with electronic and nuclear coordinates denoted by r and R respectively. Through-
out this thesis, we will consider the non-relativistic molecular Hamiltonian for
both nuclei and electrons given by

Ĥ = T̂n + T̂el + V̂ = T̂n + Ĥel (2.2)

T̂n and T̂el are the nuclear and electronic kinetic energy operators respectively,
and V̂ is the potential energy operator for both nuclei and electrons. In the Born
representation, the wavefunction is expanded according to[34–36]

Ψ(r,R, t) =
∑
v

Φ(v)(R, t)ψ(v)(r; R) (2.3)

The electronic functions ψ(v)(r; R) depend parametrically on the nuclear coor-
dinates R. For a given value of R, these functions are solutions to the clamped-
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8 The Born-Oppenheimer Approximation

nuclei eigenvalue equation

Ĥelψ
(v)(r; R) = V (v)(R)ψ(v)(r; R) (2.4)

The functions ψ(v)(r; R) constitute a complete set of electronic functions and de-
fine the electronic energies V (v) from the above equation. Inserting the represen-
tation of the total wavefunction in Eq. (2.3) into the time-dependent Schrödinger
equation yields an equation for the nuclear functions

i
∂

∂t
Φ(v)(R, t) =

(
T̂n + V (v)(R)

)
Φ(v)(R, t)−

∑
w

Λ̂(v,w)Φ(w)(R, t) (2.5)

Here, Λ̂(v,w) are derivative coupling operators. If one makes an adiabatic approxi-
mation and replaces the Born representation of the wavefunction by a single term,
i.e.

Ψ(r,R, t) = Φ(v)(R, t)ψ(v)(r; R) (2.6)

the equation for the nuclear functions reduces to

i
∂

∂t
Φ(v)(R, t) =

(
T̂n + V (v)(R)− Λ̂(v,v)

)
Φ(v)(R, t) (2.7)

Together with Eq. (2.6) for the wavefunction, this equation constitutes the Born-
Huang adiabatic approximation.[37] If the on-diagonal derivative coupling term
is furthermore neglected, one arrives at the Born-Oppenheimer adiabatic approx-
imation[38]

i
∂

∂t
Φ(v)(R, t) =

(
T̂n + V (v)(R)

)
Φ(v)(R, t) (2.8)

The appropriateness of the separation of nuclear and electronic motion in the
Born-Oppenheimer approximation is a consequence of the large difference be-
tween nuclear and electronic masses which usually results in the neglected deriva-
tive coupling terms being very small. However, this is not always the case as we
will see below. The solutions to Eq. (2.4) provide an N -dimensional hypersur-
face of the electronic energy for a given electronic state v where N refers to the
number of internal nuclear degrees of freedom. In the Born-Oppenheimer ap-
proximation, this hypersurface acts as a potential energy surface on which the
nuclei move, and it is thus a central concept for the understanding of molecular
dynamics from a mechanistic point of view.

In rectilinear coordinates, the derivative or non-adiabatic coupling operators
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of Eq. (2.5) for which v 6= w can be given in terms of first- and second-order
couplings

Λ̂(v,w) = 2D̂(v,w) + Ĝ(v,w) (2.9)

with

D̂(v,w) =
N∑
κ

1
2mκ

d̂(v,w)
κ

∂

∂Rκ
(2.10)

Ĝ(v,w) =
N∑
κ

1
2mκ

〈
ψ(v)

∣∣∣ ∂2

∂R2
κ

∣∣∣ψ(w)
〉

(2.11)

Corrections to the single-surface adiabatic approximation of Eq. (2.6) can be in-
troduced by evaluating these mass-dependent operators which couple the adiaba-
tic electronic states giving rise to non-adiabatic nuclear dynamics. The derivative
coupling vector d(v,w), which collects the elements d̂(v,w)

κ from Eq. (2.10), is given
by[36, 39]

d(v,w)(R) = 〈ψ(v)|∇nψ
(w)〉 = 〈ψ

(v)|(∇nĤel)|ψ(w)〉
V (w)(R)− V (v)(R)

(2.12)

where ∇n denotes the nuclear derivative operator. The last form of the deriva-
tive coupling vector exhibits that the non-adiabatic coupling is negligible for
well-separated potential energy surfaces. However, the coupling diverges when
the surfaces come into close proximity and is singular at conical intersections
where two or more surfaces become degenerate.[40–42] Fig. 2.1 depicts a conical
intersection in the so-called branching space of the scaled derivative coupling and
gradient difference vectors given by

h(v,w)(R) = 〈ψ(v)|(∇nĤel)|ψ(w)〉 (2.13)

g(v,w)(R) =∇n

(
V (w)(R)− V (v)(R)

)
(2.14)

From this two-dimensional representation, it is not evident that conical intersec-
tions are indeed extended high-dimensional seams of dimension N − 2 in nuclear
coordinate space. These seams act as effective doorways connecting the adiabatic
potential energy surfaces. Thus, the presence of a conical intersection indicates
the possibility for ultrafast non-adiabatic dynamics – nuclear dynamics involving
more than one adiabatic surface – due to the diverging coupling between the
adiabatic electronic states in their vicinity.[41, 43]
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Figure 2.1: Example of a peaked conical intersection in the branching space of
the gradient difference and scaled derivative coupling vectors. These coordinates
linearly lift the degeneracy of the two potential energy surfaces. The degeneracy
is maintained in the seam or intersection space of nuclear coordinates, which is
orthogonal to the branching space, represented by the dashed line.[40, 44]

Whereas the solutions to Eq. (2.4) for different v’s provide a set of adiabatic
electronic states, a diabatic electronic basis can be defined by a nuclear coordinate
dependent unitary transformation of the adiabatic wavefunctions

ψ̃(v)(r; R) =
∑
w

U (v,w)(R)ψ(w)(r; R) (2.15)

under the requirement that d(v,w) = 0 in the new basis. For triatomic or larger
molecules, this is generally not possible.[45] Instead, one can seek to minimize the
quantity within a finite subspace resulting in quasidiabatic[46, 47] or regularized
diabatic states.[48, 49] The adiabatic to diabatic transformation is only defined
up to a constant which can be fixed by setting the adiabatic basis equal to the
diabatic basis at one specific value of the nuclear coordinates. Thus, the diabatic
basis is not unique. In a rigorous diabatic basis, i.e. a basis in which the derivative
couplings have been completely removed by the transformation in Eq. (2.15), the
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time-dependent Schrödinger equation for the nuclear functions is given by

i
∂

∂t
Φ̃(v)(R, t) = T̂nΦ̃(v)(R, t) +

∑
w

W (v,w)(R)Φ̃(w)(R, t) (2.16)

Here, the couplings between the electronic states are given by the electronic off-
diagonal elements of the diabatic potential coupling W (v,w) which are matrix
elements of Ĥel in the diabatic basis. The couplings between electronic states
in the diabatic representation are thus potential couplings as opposed to the
derivative couplings, which depend on the nuclear kinetic energy operator, found
in the adiabatic representation. Numerically, the potential couplings are easier
to handle why the diabatic representation is often preferred when performing
nuclear wavepacket dynamics, however, the adiabatic representation can also be
used as we will see in Sec. 6.2. The diabatic potential energy surfaces given by
the on-diagonal elements W (v,v) are generally smooth functions of the nuclear
coordinates[50, 51] and can preserve the configurational character of the electronic
states.[52] In contrast, the adiabatic states preserve the energetic state ordering.
To avoid the adiabatic to diabatic transformation, one can also directly construct
potential energy surfaces which are smooth functions of the nuclear coordinates
as done in Sec. 6.3. This diabatization by ansatz is inherently approximate as the
derivative couplings are assumed negligible in the diabatic basis. Nevertheless,
the strategy can be useful in particular because the diabatic to adiabatic transfor-
mation is unique and is obtained by diagonalization of the matrix representation
of the diabatic potential operator to obtain uncoupled states.
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Chapter 3

Pump-Probe

We will in this chapter describe the principle underlying pump-probe experi-
ments as a means to interrogate dynamical processes. In particular, we will
describe techniques involving short laser pulses in the visible and UV regime
where the laser-matter interaction ultimately leads to ionization, and charged
particles are detected. The application of these techniques to the investigation
of non-adiabatic dynamics will be detailed.

3.1 Time-Resolved Photoelectron Spectroscopy
and Mass Spectrometry

In a pump-probe experiment, a system initially in a stationary state will through
interaction with the pump be taken to a non-stationary state and consequently
evolve in time. After a well-defined time-delay, interaction with the probe will
interrogate the system to determine the evolution as a function of the time-delay.
In time-resolved photoelectron spectroscopy (TRPES)[53–58] and mass spectrom-
etry (TRMS),[4, 59–63] the interaction with the pump pulse leads to electronic
excitation of the molecule under investigation. This, in effect, is a projection
of the ground state nuclear probability amplitude distribution onto the excited
state. Due to the temporal coherence and finite spectral bandwidth of the laser
pulse, this results in the formation of a quantum state localized in real space. By
analogy with classical mechanics, this state will start to oscillate on the excited
state potential energy surface. From a different point of view, the pump pulse

15
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populates a coherent superposition of vibrational eigenstates in the excited state
denoted by v

|Φ(v)(t)〉 =
∑
j

C
(v)
j e−iω

(v)
j
t|Φ(v)

j 〉 (3.1)

Due to the differing phase factors of the vibrational eigenstates |Φ(v)
j 〉, this su-

perposition does not constitute a stationary state but will evolve in time. After
a specific time-delay, the interaction with the probe pulse leads to ionization
of the molecule. In this process, the wavepacket created by the pump pulse
is projected onto the ionization continua of cationic and photoelectron states.
TRPES involves measurement of the kinetic energies and angular distributions
of the ejected photoelectrons, i.e. it is a frequency-dispersed technique, whereas
TRMS involves measurement of the complementary cationic fragments, i.e. it is
a frequency-integrated, but mass-dispersed, technique.
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Figure 3.1: Excitation of the vibrational ground state wavefunction by a short
laser pulse leads to a wavepacket in the excited state due to population of a coher-
ent superposition of vibrational eigenstates within the spectral bandwidth of the
pump pulse δωpu. The wavepacket is initially localized to a region δR in nuclear
coordinate space.

3.2 Probing Dynamics by TRPES and TRMS

Under certain assumptions, the time-resolved photoelectron spectrum obtained
by ionization of the wavepacket given in Eq. (3.1) to the cationic state w can be
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given as

σ(Ek,∆t) ∝
∫
|µ(w,v)(Ek; R)|2F(ωpr, Ek; R)|Φ(v)(R,∆t)|2 dR (3.2)

where Ek is the kinetic energy of the ejected photoelectron, ∆t is the time between
pump and probe pulses, ωpr is the center frequency of the probe, and R denote
nuclear coordinates. This expression will be derived in Sec. 7.1. The expression
represents the spectrum as the overlap between three terms: the square of the
electronic transition dipole moment, an energy window function, and the density
of the nuclear wavepacket. From this expression, it will be clear how TRPES is
sensitive to both nuclear and electronic dynamics.

When population transfers from the wavepacket in state v to form a wave-
packet in another state v′, the density of the nuclear wavepacket in state v de-
creases. Thus, population transfer is reflected by a decrease in intensity of bands
in the spectrum as a function of ∆t. The simultaneous formation of a new
wavepacket in state v′ will be reflected by the appearance of bands, the spectral
position and intensity of which will be determined by the window function and by
the transition dipole moment and nuclear density respectively. The intensity of
these new bands will increase with ∆t as more and more population is transferred
from state v to state v′. The situation is exemplified by the schematics in Fig. 3.2
for two distinct cases which also illustrate the sensitivity of TRPES to the elec-
tronic configuration of the states involved. Employing Koopmans’ theorem,[64]

different neutral states can be shown to correlate with different cationic states
as depicted in Fig. 3.2(a) – so-called complementary ionization correlation.[65, 66]

These correlations will be reflected in the magnitude of the electronic transition
dipole moment between the neutral and cationic states with a large magnitude
for pairs of states that correlate and vice versa. Consequently, ionization will
primarily occur from a given neutral state to a specific cationic state and follow-
ing an electronic transition between neutral states, the cationic state to which
ionization occurs can thus change. The case of corresponding ionization correla-
tion, where the neutral excited states correlate with the same cationic state,[16]

is shown in Fig. 3.2(b).
To appreciate the sensitivity of TRPES to nuclear dynamics, consider the

simple single trajectory classical limit where the density of the nuclear wavepacket
is given by a δ-function in nuclear coordinate space. In this limit, the spectrum
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is simply given by

σ(Ek,∆t) ∝
∫
|µ(w,v)(Ek; R)|2F(ωpr, Ek; R)|δ(R −R0(∆t)) dR

= |µ(w,v)(Ek; R0(∆t))|2F(ωpr, Ek; R0(∆t))
(3.3)

Thus, nuclear dynamics is reflected in the spectrum through intensity modu-
lations due to the dependence on the nuclear coordinates, which change as a
function of ∆t, of the electronic transition dipole moment. Furthermore, the dy-
namics can be reflected in spectral shifts in Ek with ∆t due to the energy window
function. In one limit, the window function is simply given by

F(ωpr, Ek; R0(∆t)) = δ(V (v)(R0(∆t))− V (w)(R0(∆t))− Ek + ωpr) (3.4)

where V (v)(R0(∆t)) and V (w)(R0(∆t)) are the potential energies at R0(∆t) of
states v and w respectively. The δ-function form clearly reflects the possibility
for spectral shifts. The window function given in Eq. (3.4) is valid when nuclear
kinetic energy is conserved upon ionization. When kinetic energy is not conserved
upon ionization, the photoelectron spectrum can exhibit indistinct features re-
sulting in both nuclear and electronic dynamics being hard to point out.

In favorable cases, TRMS is also sensitive to both nuclear and electronic
dynamics. TRMS is a frequency-integrated technique, and the total ion yield
is given as the integral of the expression in Eq. (3.2) over photoelectron kinetic
energies. Thus, the nuclear and electronic dynamics described above which give
rise to changes in the total intensity of the spectrum are also directly reflected
in the total ion yield. Furthermore, changes in the fragmentation pattern upon
ionization can also directly reveal nuclear[67–69] or electronic dynamics,[70] but
these correlations are not necessarily easily deducible. A very direct way of
ensuring that an electronic transition is observed by changes in the ion yield is
to chose the probe energy such that ionization out of one but not lower-lying
electronic states lies within the energy window function. However, ionization
by multiple probe photons cannot be distinguished from the one photon case
which can obscure results. On the other hand, ionization by different number of
probe photons is readily distinguished in TRPES due to the frequency-dispersed
detection.
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(a) Complementary ionization.
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(b) Corresponding ionization.

Figure 3.2: A non-adiabatic transition of a nuclear wavepacket from S2 → S1 is
reflected in a change of the kinetic energy of the ejected photoelectron Ek. Con-
servation of nuclear kinetic energy upon ionization has been assumed in all cases.
(a) Ionization out of two different neutral excited states v and v′ correlating with
two different cationic states w and w′ respectively. The electronic configurations
are shown on the left. (b) Ionization out of two different neutral excited states v
and v′ correlating with the same cationic state w.





Chapter 4

Experimental Setup

We will in this chapter describe the experimental setup for conducting time-
resolved photoionization experiments such as time-resolved mass spectrometry
(TRMS) and photoelectron spectroscopy (TRPES) on gaseous samples. The
main setup consists of a laser system capable of producing laser pulses of a
femtosecond time duration, a means of preparing a cold gaseous sample, and
a detection apparatus for charged particles. We will in the following sections
describe these components.

4.1 The Laser System and Optical Setup

The laser system and optical setup used in the experiments is schematically illus-
trated in Fig. 4.1. The laser system consists of a Ti:Sapphire oscillator (Spectra
Physics Tsunami, 80 MHz, 800 nm, 80 fs, 700 mW) which is pumped by a Nd:YLF
continuous wave (CW) laser (Spectra Physics Millennia Pro Vs, 532 nm, 5 W).
The oscillator seeds a regenerative Ti:Sapphire amplifier (Spectra Physics Spit-
Fire, 1 kHz, 800 nm, 100 fs, 1.1 W) which is pumped by a Q-switched Nd:YVO4

laser (Spectra Physics Empower-15, 1 kHz, 527 nm, 100 ns, 6.7 W). The out-
put of the amplifier is split and used to pump an optical parametric amplifier
(Light Conversion TOPAS-C, 240–2600 nm) and a harmonic generation setup
which can generate the second (2ω), third (3ω), and fourth harmonic (4ω) of the
fundamental. In addition to the laser system, the setup also consists of a retro-
reflector mounted on a computer-controlled translatable stage on the harmonic
generation arm of the optical setup. The stage allows for changes to the path

21
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length of the harmonic generation arm and can thereby be used to change the
time-delay between pulses from the two arms. The beams from the two arms are
combined using a dichroic mirror, and the collinear beams are focused into the
vacuum chamber using a concave aluminium mirror. Pulses from either arm can
act as the pump pulses in the experiments, and pulses from the other arm will
act as the probes.

800 nm
80 fs

Ti:Sapphire
Regnerative
Amplifier

2ω/3ω/4ω

Ti:Sapphire
Oscillator

Nd:YVO4
Q-Switched

TOPAS

800 nm
100 fs

240-2600 nm
~100 fs

200/267/400 nm
~100 fs

Nd:YLF
CW

Figure 4.1: Schematic overview of the laser system and optical setup including the
stage used for controlling the time-delay between the two laser pulses. Wavelengths
and pulse durations are indicated.

The harmonic generation setup is illustrated schematically in Fig. 4.2. The
fundamental (800 nm) is split 25/75 in a beam splitter, and the larger fraction is
frequency doubled by type 1 second-harmonic generation (SHG) in a thin beta
barium borate (BBO) crystal. In a second BBO crystal, the co-propagating
fundamental and second harmonic (400 nm) create the third harmonic (267 nm)
by type 2 sum-frequency generation (SFG). Two dichroic mirrors (267 nm HR)
reflect the third harmonic towards the third BBO crystal in which it combines
with the smaller fraction of the fundamental split off by the beam splitter to
create the fourth harmonic (200 nm) by type 1 SFG. This third BBO crystal
is uncoated to avoid damage due to the UV radiation. As BBO is hygroscopic,
the crystal is constantly heated to 50 ◦C. The fourth harmonic is reflected by
two dichroic mirrors (200 nm HR) to split off the remaining fundamental and
third harmonic. The third harmonic can easily be extracted from the setup by
removing the beam splitter and the first 267 nm HR whereas the second harmonic
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can be extracted if the second BBO crystal is also removed.

200 nm
HR

25%

Beam
Splitter

200 nm
HR

267 nm
HR

4ω BBO
Type 1

3ω BBO
Type 2

2ω BBO
Type 1

267 nm
HR

75%

267 nm 800 nm

400 nm

200 nm

Figure 4.2: Schematic overview of the 2ω, 3ω, and 4ω generation setup. Polar-
ization vectors are indicated for the different harmonics, and the important optical
elements are labeled.

4.2 Time-of-Flight Spectrometers

The vacuum chamber incorporating the time-of-flight (TOF) spectrometers as
well as the molecular beam generation is illustrated in Fig. 4.3. The setup can
handle both gaseous, liquid, and solid samples. In the case of liquid samples, the
inert helium carrier gas is bubbled through the sample at a backing pressure of
0.3 bar, and a mixture of helium and sample molecules are let into the chamber
through a stainless steel inlet tube. Solid samples can be placed in a small
heatable chamber at the end of the inlet tube and sublimed into the helium
carrier gas.

In the first chamber, the gas mixture continuously expands through a conical
nozzle (� = 100 µm) at the end of the inlet tube. In the course of the ex-
pansion, the sample molecules are first accelerated to the velocity of the carrier
gas whereafter they start transfering energy to the carrier gas molecules through
two-body interactions thereby cooling their rotational and vibrational degrees of
freedom.[71–73] Rotational temperatures down to ∼ 2 K can be obtained with
continuous inlet systems such as the one in our setup whereas high-pressure
pulsed valve systems can obtain temperatures down to ∼ 0.4 K.[73, 74] The ex-
pansion beam is termed a supersonic molecular beam as the speed of the carrier
molecules (∼1750 m/s for He at room temperature[73]) can exceed that of sound.
The expansion of the mixture leads to a low-density sample thereby eliminating
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Figure 4.3: Schematic overview of the vacuum chamber, molecular beam gen-
eration, and TOF spectrometers. The inset shows a close-up of the acceleration
grid with typical voltages employed when the apparatus is operated in ion mode.
Measurements run in electron mode are field free, and all grid connections are
grounded. The typical pressures in the chambers (mbar) are indicated showing
the differential pumping. Dimensions are not to scale.

intermolecular interactions providing an ensemble of molecules in one or a few
well-defined quantum states.[75] Approximately one centimeter from the nozzle
of the inlet tube, a skimmer (� = 200 µm) ensures the formation of a turbulence
free molecular beam in the next chamber. From the middle chamber, the beam
passes through a pinhole (� = 1 mm) into the main interaction chamber where
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it is intersected at a right angle by the laser beams.
The interaction between the laser pulses and the beam molecules leads to

photoionization forming cations and photoelectrons. These charged particles can
be extracted and detected at the top or bottom of the chamber by the respective
detector. Thus, the apparatus operates as either a TOF mass or photoelectron
spectrometer but cannot be operated in coincidence. The mass spectrometer can
also be operated as a reflectron TOF mass spectrometer although this mode of
operation was not employed in this work.

When operated as a mass spectrometer, the apparatus uses a two-field Wiley-
McLaren configuration.[76] The voltage difference VE = VA1 − VA2 creates a
uniform field EE = −VE/lE as shown in the inset of Fig. 4.3. This field extracts
the cations generated by the laser-molecule interaction. The voltage difference
VA = VA2−VL creates another uniform field EA = −VA/lA which accelerates the
cations into the field free flight tube above the accelerator grid. At the top of the
flight tube, the cations are incident upon the ion detector consisting of a set of
chevron-stacked micro-channel plates (MCP) operated at negative potential. A
small DC voltage (∼70 mV) is generated in an anode on the backside of the MCP
stack when an ion impinges on the detector. This voltage signal is subsequently
sent to a time digitizer card (FAST ComTec P7888-2(E)) in a computer. As the
card also receives a trigger signal from the laser system, the computer can register
the TOF for the impinging cations. The total TOF of the cations is given by
the sum of the times spent in the extraction, acceleration, and free flight regions
which are given by[77]

tE =
√
m

z

√
2lEl
VE

(4.1)

tA = lA

√
m

z

[√
2
VA

(
1 + VEl

VAlE

)
−
√

2
VA

VEl

VAlE

]
(4.2)

tF = lF

√
m

z

√
1

2VA + 2VEl/lE
(4.3)

It is assumed that all photoionization events occur at the same distance l from the
acceleration region, and that the initial velocity along the flight tube axis is zero.
The total TOF is dependent on the mass to charge ratio m/z, and the cations are
therefore separated into bunches when they reach the detector with the lightest
first followed by successively heavier masses (assuming identical charges). Taking
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into account that the digitizer card records the TOF with respect to the laser
trigger signal, which is not identical to the time of photoionization, the masses
of the recorded signal are given by

m/z = Kion(tTOF
ion − t0)2 (4.4)

where all the spectrometer dependent parameters are collected into a single con-
stant Kion, and t0 measures the difference between the laser trigger and the
time of photoionization. The mass spectrometer is calibrated by measuring
samples with know mass spectra usually acetone, N,N -dimethylisopropylamine
(DMIPA), and xenon.

When operated as a photoelectron spectrometer, all connections on the accel-
eration grid are grounded. A tube of µ-metal shields the inside of the downward
flight tube from magnetic fields, and the experiments are (ideally) run field free.
Furthermore, the surfaces of the accelerator are made from oxidized molybde-
num which has a high work function such as to reduce background photoelec-
trons. Nonetheless, scattered photons can contribute to the background signal,
and, therefore, an iris is placed in the vacuum chamber before the interaction
region, and a laser-grade CaF2 entrance window is used (CVI PW-1009-CFUV).
The part of the photoelectrons generated by the laser-molecule interaction with
a primarily downward pointing velocity vector will be incident upon the electron
detector. This detector consists of another set of chevron-stacked MCPs operated
at a positive potential. The anode is also operated at a high positive potential,
and the signal from the electrons is thus at a high DC potential. The timing elec-
tronics are protected by a capacitative decoupling of the anode. The decoupled,
negative DC voltage signal (∼10 mV) is passed through a pre-amplifier (Phillips
Scientific 6954B 100), and the amplified signal (∼ 500 mV) is sent to the time
digitizer card. Similar to the case of ions, the TOF is measured which in this
case is given by

tTOF
e = lF

√
1

2(Ek + E0) (4.5)

where Ek is the kinetic energy gained by the photoelectrons in the ionization
process. E0 is a correction term resulting from deviations from field free operation
due to e.g. contact potential terms leading to acceleration/decelleration of the
photoelectrons. The latter term is usually on the order of meV. lF is here the
length of the downward free flight path of the photoelectrons. Inverting the
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expression in Eq. (4.5) yields the kinetic energy as a function of the TOF

Ek = Ke

(tTOF
e − t0)2 + E0 (4.6)

We have again collected parameters and constants into a single coefficientKe, and
the time difference between trigger and photoionization is taken into account via
t0. Eq. (4.6) provides the position of the spectral peaks, however, to determine
the full photoelectron spectrum, the Jacobian has to be taken into account to
establish the correct relative spectral intensities

σ(Ek) = σ(Ek(tTOF
e ))

∣∣∣∣dtTOF
e

dEk

∣∣∣∣ = σ(Ek(tTOF
e ))

(
tTOF
e

)3
2Ke

(4.7)

When determining the mass spectrum, it is not necessary to take the Jacobian
into account as the cationic signals are only spread over a few TOF bins, i.e. the
spectrum consists of almost discrete peaks. Similarly to the case for ions, the
parameters Ke, E0 and t0 are determined from TOF spectra with sharp peaks
of known energy usually xenon and DMIPA.

The above procedures describe how to obtain mass and photoelectron spec-
tra σ(m/z) and σ(Ek) from the appropriate TOF spectra σ(tTOF

ion ) and σ(tTOF
e ).

A LabView program records the data from the time digitizer card and further-
more controls the retroreflector stage. By repeating the above procedures for a
given set of pump-probe time-delays by moving the stage, time-resolved spectra
σ(tTOF

ion ,∆t) and σ(tTOF
e ,∆t) can automatically be recorded by the program from

which the spectra σ(m/z,∆t) and σ(Ek,∆t) can be determined.





Chapter 5

Fitting of Experimental
Data and Cross-Correlation

The time-dependent spectra obtained by the procedures described in the previ-
ous chapter provide a wealth of information on the dynamical processes of the
molecules investigated. To derive manageable data from the spectra, it is often
assumed that the individual dynamical steps investigated follow first-order ki-
netics.[78] In the experiments, the time-resolution is limited by the instrument
response function which is dominated by the temporal cross-correlation (XC) be-
tween the pump and probe pulses. Therefore, the spectra are fitted to functions
of the form

σ(∆t) = ϑxc(∆t)⊗Θ(∆t)
∑
j

Ajϑj(∆t) (5.1)

Here, ϑxc(∆t) is the XC component, Θ(∆t) is the Heaviside step function, ϑj(∆t)
is the solution to a given kinetic model with amplitude Aj , and ⊗ represents
a convolution. When Eq. (5.1) is used for fitting full two-dimensional spectra,
the amplitudes Aj are spectral components whereas when fitting one-dimensional
transients, they are simply scalars. The XC is assumed to be a Gaussian function.
As an example, a single first-order process is described by the form

σ(∆t) = exp
[
−4 ln(2)∆t2/τ2

xc
]
⊗A1 exp [−∆t/τ1] Θ(∆t) (5.2)

where τxc is the full width at half maximum (FWHM) of the XC, and τ1 is the
time constant for the exponential decay also referred to as a lifetime. If τ1 � τxc,
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the signal for times ∆t � τ1 is simply given by a constant amplitude. In this
case, the XC component can be determined from

σ(∆t) = exp

−(2
√

ln(2)
τxc

)2

∆t2
⊗A1Θ(∆t)

= A1
τxc

2
√

ln(2)

√
π

4 erfc
[
−

2
√

ln(2)
τxc

∆t
] (5.3)

where erfc is the complementary error function. This approach is usually em-
ployed when determining the XC by use of N,N -dimethylisopropylamine. If on
the other hand the system investigated does not follow first-order kinetics but
exhibits an impulsive response, i.e. a δ-function response, the signal will fully
be given by the XC component multiplied by the amplitude of the impulsive
response. Such a response can be observed if the multi-photon ionization by the
pump and probe pulses is non-resonant, and such a measurement can thereby
also be used to determine the XC. This approach is employed using xenon. Non-
resonant components can generally occur in experiments even if the pump is
chosen to be resonant with a transition in the sample molecules as contributions
from non-resonant probe-pump ionization, i.e. probe preceding pump, can be
present. This contribution can be added to Eq. (5.1) to obtain

σ(∆t) = Axcϑxc(∆t) + ϑxc(∆t)⊗Θ(∆t)
∑
j

Ajϑj(∆t) (5.4)

More complex solutions than a single exponential decay can also arise from first-
order kinetics. As an example, this can occur if the process investigated follows
sequential first-order kinetics such as M∗1 → M∗2 → M∗3, and the two species M∗1
and M∗2 give rise to the same signal σ(M∗) but with different amplitudes. This
situation is shown in Scheme 5.1. In this case, the signal is given by a sequential
biexponential decay

σ(∆t) = exp
[
−4 ln(2)∆t2/τ2

xc
]
⊗

(A1 exp [−∆t/τ1] +A2 (1− exp [−∆t/τ1]) exp [−∆t/τ2]) Θ(∆t)
(5.5)

As another example, if the decay of a given species follows first-order kinetics, but
the probability of observing the species is modulated by a periodic perturbation,
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M∗1
τ1−→ M∗2

τ2−→ M∗3

↓ ↓ 6 ↓

A1σ(M∗) A2σ(M∗)

Scheme 5.1: Example of sequential first-order processes where the two first
species give rise to the same experimental spectrum but with different amplitudes.

a suitable functional form is

σ(∆t) = exp
[
−4 ln(2)∆t2/τ2

xc
]
⊗

exp [−∆t/τ1] (A1 +A2 cos[2π∆t/T + φ]) Θ(∆t)
(5.6)

where A2 is the amplitude of the perturbation with period T and phase φ. We
will later show how electronic population decay modulated by nuclear motion
can be fitted using such a model. The different functional forms are exhibited in
Fig. 5.1.

Experimental data are fitted to the models described above by non-linear
least-squares analysis, i.e. by minimizing the χ2 measure[79]

χ2 =
∑
i

(
ri
si

)2
≈
∑
i

r2
i

ci
(5.7)

Here, ri is the residual in the ith channel, and si is the standard deviation of
the value in channel i. Time-of-flight mass spectrometry and photoelectron spec-
troscopy result from counting discrete events and follow Poisson statistics. If
the number of counts is large enough, the Poisson distribution can be approxi-
mated by a normal distribution, and the standard deviation is simply given by
the square root of the number of counts in the channel, i.e. si = √ci. The global
optimization of χ2 is performed using either a Levenberg-Marquardt[80, 81] or
simulated annealing algorithm[82, 83] as implemented in Matlab. Generally, sim-
ulated annealing outperforms Levenberg-Marquardt in particular in cases with
many parameters or noisy data.

The χ2 measure can also be used to determine statistical uncertainties in the
fitted parameters. Having obtained the parameters that minimize χ2 to the value
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(a) Exponential decay.
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(b) Modulated exponential decay.
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(c) Biexponential decay.
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(d) Sequential biexponential decay.

Figure 5.1: Examples of models used for fitting experimental data (−) showing
the individual components (−). The time constants τ1 and τ2 have been set to
1.5 and 4.5 ps respectively, and A1/A2 = 2 except for the modulated exponential
decay where A1/A2 = 5. The period of the modulation T = 0.5 ps. The models
have been convoluted by a XC with τxc = 0.2 ps.

of χ2
min, the standard deviation in a given parameter p can be calculated using[79]

sp = ∆p√
χ2 − χ2

min
(5.8)

Thus, the standard deviation is calculated by changing the value of the given
parameter by 1-2% from the optimal value, i.e. by ∆p, and performing a new
minimization of χ2 with the parameter fixed. Inserting the new value of χ2 into
the above equation yields the standard deviation. It should be noted that this
procedure only provides statistical uncertainties whereas systematic uncertainty,
e.g. due to the specific functional form of the fit, is not reflected in the value.
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Chapter 6

Nuclear Dynamics

Many methods exist for simulating nuclear dynamics ranging from classical tra-
jectory to full quantum wavepacket methods. When dealing with dynamics on
several electronic states, some method of describing transfer between states has
to be included. This requirement excludes the use of purely classical methods,
and one has to resort to (approximately) solving the time-dependent Schrödinger
equation

i
∂

∂t
Ψ(r,R, t) = ĤΨ(r,R, t) (6.1)

with r and R representing electronic and nuclear coordinates respectively. In
order to accomplish such a task, a suitable representation of the wavefunction
Ψ(r,R, t) as well as a method to propagate it in time is needed. The total
wavefunction is usually given as a product of an electronic and a vibrational
wavefunction as described in Chapter 2. With a complete set of diabatic or
adiabatic electronic states, what remains is to specify a representation of the
nuclear wavefunction Φ(R, t). Two possible approaches are

Φ(R, t) =
∑
j

Cj(t)φj(R) (6.2)

Φ(R, t) =
∑
j

Cj(t)φj(R, t) (6.3)

In the first approach, the time-dependence is fully contained in the coefficients,
and the wavefunction is expanded in a set of time-independent basis functions.
These functions are usually chosen as an appropriate set such as harmonic oscil-

35
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lator or Morse eigenfunctions for vibrational degrees of freedom. Pseudo-spectral
methods involving a discrete variable representation (DVR)[84] are also of this
form.[84, 85] In methods employing a DVR, a real-space grid, on which the wave-
function can be represented, is defined by means of an orthonormal set of basis
functions. In this way, the first approach also encompasses grid-based methods
such as those of Feit and Fleck[86, 87] and Kosloff.[88, 89] We will generally re-
fer to methods employing time-independent basis functions as numerically exact
grid-based methods.

In the other approach, increased flexibility in the description of the wave-
function is obtained by allowing both coefficients and basis functions to be
time-dependent. In this way, the numerical intractability of grid-based meth-
ods for high-dimensional systems can be somewhat alleviated. Several meth-
ods in this group can be viewed as extensions of Heller’s semi-classical Gaus-
sian wavepackets.[90–93] Such methods include the quasi-classical Full Multiple
Spawning (FMS),[94–97] Ab Initio Multiple Spawning (AIMS),[98, 99] and Coupled
Coherent States[100–103] as well as the full-quantum method of variational Multi-
Configuration Gaussian wavepacket (vMCG).[104,105] vMCG is a derivative of
Multi-Configuration Time-Dependent Hartree (MCTDH).[106–108] Unlike vMCG,
MCTDH uses general, not parameterized, time-dependent basis functions.

In this chapter, we will give a short introduction to the formalism of MCTDH
and that of the Vibronic Coupling Hamiltonian (VCHAM) which were used in
conjunction for the simulations presented in Chapter 9. We will show how com-
plex Gaussian functions can be used in the MCTDH formalism leading to the
vMCG method. This provides a natural transition to a presentation of the for-
malism and applicational aspects of the related Gaussian wavepacket methods of
FMS and AIMS. AIMS was used for the simulations presented in Chapter 10.

6.1 Multi-Configuration Time-Dependent Hartree

6.1.1 The MCTDH Equations of Motion

In multi-state MCTDH, the total nuclear wavefunction is written as a sum over
Ne electronic states according to[109]

Φ(Q, t) =
Ne∑
v

Φ(v)(Q, t) (6.4)
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Here, Φ(v)(Q, t) is the nuclear wavefunction of electronic state v, and Q denotes
general nuclear coordinates. The diabatic representation is usually employed for
the electronic states to avoid having to deal with the possibly diverging derivative
coupling terms present in the adiabatic representation (see Chapter 2). The
ansatz for the nuclear wavefunction takes on the following form[106,107,110]

Φ(v)(Q, t) =
n(v)∑
j

C
(v)
j (t)φ(v)

j (Q, t)

=
n

(v)
1∑
j1

· · ·
n

(v)
N∑
jN

C
(v)
j1···jN (t)

N∏
κ

ϕ
(v)
jκ

(Qκ, t)

(6.5)

Thus, the wavefunction is given as a sum of Hartree products or configurations
φ

(v)
j (Q, t) giving rise to the name of the method. The Hartree products each carry

a complex time-dependent coefficient C(v)
j1···jN (t) in the wavefunction expansion,

and they are themselves products of N single-particle functions ϕ(v)
jκ

(Qκ, t). To
ease notation, the composite index j = j1 · · · jN has been introduced. The equa-
tions of motion for the time-dependent coefficients and single-particle functions
are obtained by use of the Dirac-Frenkel variational principle [111, p. 253]

〈δΦ|Ĥ − i (∂/∂t) |Φ〉 = 0 (6.6)

The reader is referred to Ref. 107 for a full derivation of the equations of motion.
For the coefficients, the equation reads

Ċ = −iHC (6.7)

where we have introduced the vector of coefficients C and its time-derivative Ċ
as well as the Hamiltonian matrix H represented in the basis of Hartree products.
Explicitly for the coefficients of a given electronic state, the equation reads

Ċ(v) = −i
Ne∑
w

H(v,w)C(w) (6.8)

The working equation for the single-particle functions is slightly more involved

iϕ̇(v)
κ = (1− P (v)

κ )
(
ρ(v)
κ

)−1 Ne∑
w

H̃(v,w)
κ ϕ(w)

κ (6.9)



38 Nuclear Dynamics

Here, the vector of single-particle functions ϕ(v)
κ for degree of freedom κ and

electronic state v and its time-derivative ϕ̇(v)
κ have been introduced. We have

also introduced three other objects: the projection operator onto the space of
single-particle functions for the κth degree of freedom P

(v)
κ as well as the density

matrix ρ(v)
κ and the mean-field H̃(v,w)

κ for this degree of freedom. The latter two
have elements given according to

ρ
(v)
κ,jκkκ

= 〈Φ(v)
jκ
|Φ(w)
kκ
〉δvw (6.10)

H̃
(v,w)
κ,jκkκ

= 〈Φ(v)
jκ
|Ĥ(v,w)|Φ(w)

kκ
〉 (6.11)

where we have introduced the single-hole functions Φ(v)
jκ

. The single-hole function
Φ(v)
jκ

is similar to the linear combination of Hartree products of the wavefunction
ansatz in Eq. (6.5) except that it does not contain the single-particle functions
for the κth degree of freedom, and the κth index in the coefficients is set to j.
The mean-fields are thus operators on the κth degree of freedom.

6.1.2 Applicational Aspects of MCTDH

In MCTDH, the completely general and variationally optimized single-particle
functions have to be represented in a time-independent basis which is normally
achieved by the use of a DVR. For a given degree of freedom, such a DVR consists
of a number of grid points. When the number of single-particle functions for a
given degree of freedom equals the number of grid points, the single-particle
function basis is complete. In this case, the single-particle functions become
time-independent as the projection operator in Eq. (6.9) equals the identity, and
one is left with a numerically exact standard grid-based wavepacket propagation
approach.

The MCTDH equations of motion in principle involve N - and (N − 1)-
dimensional integrals in the Hamiltonian and mean-field matrix elements respec-
tively. Evaluation of such integrals severely limits the applicability of MCTDH.
Therefore, the Hamiltonian is usually restricted to a sum of products of functions
only operating on one degree of freedom

Ĥ =
∑
j

cj

N∏
κ

ĥjκ (6.12)

Using this product representation of the Hamiltonian, only one-dimensional in-
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tegrals have to be evaluated. Another option is to use a time-dependent DVR
with corrections, the so-called correlation DVR, but this approach will not be
discussed further, and the reader is referred to Refs. 112 and 113 for further
details.

The restriction on the form of the Hamiltonian in Eq. (6.12) implies that one
has to chose an appropriate coordinate system. One choice is rectilinear Carte-
sian coordinates, however, these are often not the most chemically and physically
intuitive set of coordinates. In Cartesian coordinates, the kinetic energy operator
is diagonal in the nuclear degrees of freedom and, thus, of the form of Eq. (6.12).
However, a representation of the potential energy operator which also conforms
to the product form is needed. This can be obtained by use of the Potfit pro-
gram, but for higher dimensional systems this can be a restrictive step.[114–116]

Another choice of coordinate system, which will be explored in Sec. 6.3, is recti-
linear dimensionless normal coordinates where the kinetic energy operator is also
diagonal. These coordinates are employed in the VCHAM in which the potential
is given by a product form as a Taylor series expansion.[117–119] Recently, the
prospect of using general curvilinear polyspherical coordinates[120,121] has been
introduced[122] along with an automatic procedure for generating analytical ki-
netic energy operators of the form given in Eq. (6.12).[123] The construction of
the kinetic energy operator has previously been somewhat of a bottleneck as it
was approached separately for each specific problem.

6.1.3 Parameterized Basis Functions in MCTDH

The MCTDH method as presented above is very flexible due to the description
in terms of general single-particle functions and is able to treat systems much
larger than grid-based wavepacket methods. To treat even larger and more com-
plex systems, approximations can be introduced by restricting the single-particle
functions of some degrees of freedom to parameterized basis functions constrained
to a Gaussian functional form.[104,105,124] This approximation yields the method
termed Gaussian MCTDH (G-MCTDH),[124] and in the limit that all degrees of
freedom use parameterized functions the vMCG method.[104,105] As the wave-
function in the latter is completely described in terms of parameterized functions,
the need for an underlying DVR is obviated. We will briefly present vMCG, and
the reader is referred to Refs. 105 and 124 for an in-depth description. In vMCG,
the form of the wavefunction is similar to that of MCTDH given in Eq. (6.5),
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however, the single-particle functions are now multi-dimensional complex Gaus-
sians

Φ(v)(R, t) =
n(v)∑
j

C
(v)
j (t)φ(v)

j (R; ζj(t), ξj(t), ηj(t))

=
n(v)∑
j

C
(v)
j (t) exp

[
RTζj(t)R + RTξj(t) + ηj(t)

] (6.13)

Here, we have changed from the general coordinates Q to Cartesian coordinates
R. As opposed to MCTDH, j is a single, not a composite, index. Application of
the Dirac-Frenkel variational principle again yields the equations of motion. The
working equation for the coefficients reads

SĊ = −i
(
H− iṠ

)
C (6.14)

in terms of the vector of coefficients C and its time-derivative Ċ. The elements
of the overlap, right-acting time derivative, and Hamiltonian matrices are given
by

S
(v,w)
jk = 〈φ(v)

j |φ
(w)
k 〉δvw (6.15)

Ṡ
(v,w)
jk =

〈
φ

(v)
j

∣∣∣∣ ∂∂tφ(w)
k

〉
δvw (6.16)

H
(v,w)
jk = 〈φ(v)

j |Ĥ
(v,w)|φ(w)

k 〉 (6.17)

The equation for the coefficients is very similar to Eq. (6.7) of MCTDH, but
unlike the single-particle functions of MCTDH, the Gaussians of vMCG are not
orthogonal. This introduces the extra complexity of having to deal with the over-
lap matrix. The working equation for the Gaussian parameters is more involved

Λ̇ = −iA−1Y (6.18)

The complex parameters are collected in a single vector Λj = {ηj , ξj , ζj} with
components labeled by λjα . The index jα refers to the αth parameter of the jth
Gaussian function. The elements of the matrix A and the vector Y are given
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according to

A
(v)
jα,kβ

= C
(v)∗
j C

(v)
k

(
S

(v,v)
αβ,jk −

[
S(v,v)
α0

(
S(v,v)

)−1
S(v,v)

0β

]
jk

)
(6.19)

Y
(v)
jα

=
Ne∑
w

n(w)∑
k

C
(v)∗
j C

(w)
k

(
H

(v,w)
α0,jk −

[
S(v,v)
α0

(
S(v,v)

)−1
H(v,w)

]
jk

)
(6.20)

The indices α and β refer to derivatives with respect to the Gaussian parameters
whereas no derivative is taken when the index is 0

S
(v,w)
αβ,jk =

〈
∂φ

(v)
j

∂λjα

∣∣∣∣∣ ∂φ(w)
k

∂λkβ

〉
δvw (6.21)

S
(v,w)
α0,jk =

〈
∂φ

(v)
j

∂λjα

∣∣∣∣∣φ(w)
k

〉
δvw (6.22)

H
(v,w)
α0,jk =

〈
∂φ

(v)
j

∂λjα

∣∣∣∣∣Ĥ(v,w)

∣∣∣∣∣φ(w)
k

〉
(6.23)

As can be gathered from the above equations, the parameters of the Gaussian
functions are all coupled to each other as well as the wavefunction coefficients.
This is a result of using the Dirac-Frenkel variational principle and entails that
the Gaussian basis functions follow “quantum” trajectories. Therefore, vMCG
can straightforwardly describe quantum effects such as tunneling and electronic
state transfer as opposed to the quasi-classical FMS approach which handles this
through the spawning procedure. FMS will be outlined in the next section.

6.2 Full Multiple Spawning and Ab Initio Mul-
tiple Spawning

The field of Gaussian wavepacket dynamics was pioneered by Heller in a series of
seminal papers[92, 93,125] and has inspired many approximate methods of quantum
dynamics since. FMS and AIMS can be viewed as simple extensions of the
semi-classical Gaussian wavepacket prescription of Heller to include quantum
mechanical aspects such as coupling of the Gaussian amplitudes as well as a
method to describe non-adiabatic effects. FMS and AIMS can also be viewed
as quasi-classical approximations to the full quantum dynamical vMCG method
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(although they preceded vMCG), and the similarities and differences between
these methods will be pointed out in what follows. It should be noted that
the formalisms of FMS and AIMS are identical except for the method used to
evaluate the potential energy, and we will refer to these methods collectively as
FMS unless it is necessary to distinguish between the two. This section is partly
based on Ref. VII.

6.2.1 The FMS Equations of Motion

In FMS, the total wavefunction is expanded in a sum of products of electronic
and nuclear wavefunctions similar to the Born representation of Eq. (2.3) but
truncated to Ne electronic states[94–97]

Ψ(r,R, t) =
Ne∑
v

Φ(v)(R, t)ψ(v)(r; R) (6.24)

Here, Φ(v)(R, t) is the time-dependent nuclear wavefunction associated with elec-
tronic state v, ψ(v)(r; R) is the electronic wavefunction of state v, and the Carte-
sian electronic and nuclear coordinates are referred to as r and R respectively.
Usually, the adiabatic representation is used for the electronic functions in partic-
ular when the method is applied as its on-the-fly counterpart AIMS. However, the
methodology described below is completely general and can be used with either
the diabatic or adiabatic representation depending on convenience. The nuclear
wavefunction is given as a superposition of multi-dimensional frozen Gaussians
so-called trajectory basis functions (TBFs)

Φ(v)(R, t) =
n(v)(t)∑
j

C
(v)
j (t)φ(v)

j (R; Rj(t),Pj(t), γj(t),α) (6.25)

Here, n(v)(t) is the number of TBFs associated with electronic state v, C(v)
j (t)

is the complex amplitude for the jth TBF on electronic state v, and Rj(t),
Pj(t), γj(t), and α is the center position, momentum, semi-classical phase, and
width that parameterize the given TBF. Each multidimensional TBF is given
as a product of one-dimensional frozen Gaussians over the N nuclear degrees of
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freedom labeled by κ

φ
(v)
j (R; Rj(t),Pj(t), γj(t),α) = eiγj(t)

N∏
κ

ϕ
(v)
jκ

(Rκ;Rjκ(t), Pjκ(t), ακ) (6.26)

with

ϕ
(v)
jκ

(Rκ;Rjκ(t), Pjκ(t), ακ) =(
2ακ
π

) 1
4

exp
[
−ακ (Rκ −Rjκ(t))2 + iPjκ(t) (Rκ −Rjκ(t))

] (6.27)

The index jκ refers to the κth degree of freedom of the jth TBF. In a harmonic
potential, the expectation values of the position and momentum of a Gaussian
wavepacket, e.g. a TBF, will undergo classical equations of motion. This led
Heller to the following classical equations of motion for the position and momenta
parameters[92, 125]

∂Rjκ
∂t

= Pjκ
mκ

(6.28)

∂Pjκ
∂t

= − ∂V (R)
∂Rκ

∣∣∣∣
Rj(t)

(6.29)

where mκ is the mass associated with nuclear degree of freedom κ and V (R)
is the potential energy experienced by the nuclei. The phase can be chosen to
evolve according to a semi-classical prescription[94, 95,125]

∂γj
∂t

= −V (Rj(t)) +
N∑
κ

(
(Pjκ(t))2 − 2ακ

)
2mκ

(6.30)

Without loss of generality, γj(t) can be set equal to zero thereby effectively ab-
sorbing the oscillating phase into the complex coefficients C(v)

j (t). Inserting the
anzats for the wavefunction from Eq. (6.24) into the time-dependent Schrödinger
equation yields the equation of motion for the time-dependent complex coeffi-
cients

SĊ = −i
(
H− iṠ

)
C (6.31)

in terms of the vector of coefficients C and its time-derivative Ċ. This equation is
identical to Eq. (6.14) of vMCG with the same definitions for the matrix elements
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as given in Eqs. (6.15)–(6.17).
As observed, the formulation of FMS is closely related to that of vMCG. In

fact, the TBFs of FMS are identical to the Gaussian functions of vMCG except
for a normalization factor, if one makes the identifications

ζjκ = −ακ (6.32)

ξjκ = 2ακRjκ + iPjκ (6.33)

ηj = iγj −
N∑
κ

(
ακR

2
jκ + iPjκRjκ

)
(6.34)

The first equation entails freezing the width parameter of the Gaussian functions
in vMCG similar to FMS. As opposed to vMCG, the parameters of the TBFs
in FMS are uncoupled from those of the other TBFs and from the wavefunction
coefficients. In FMS, each TBF follows a classical trajectory as opposed to the
“quantum” trajectories of vMCG. The propagation of the coupled coefficients sets
FMS (and vMCG) aside from semi-classical frozen Gaussian wavepacket methods
such as those of Heller.[125] What sets FMS aside from both vMCG and the semi-
classical methods is the adaptability of the basis set size, and, thus, the size of
the vectors and matrices of Eq. (6.31), through the spawning procedure.

6.2.2 The Spawning Approach to an Adaptive Basis Set

The spawning procedure is a general method for adapting the size of the nu-
clear basis set to describe inherently quantum mechanical effects and has been
applied to tunneling[126] as well as photoexcitation and non-adiabatic transi-
tions.[94, 95,127] We will present the spawning method in the context of electronic
state transfer as this was employed in the calculations presented in Chapter 10.

In the spawning approach, the effectiveness of the basis set is constantly
monitored, and new basis functions are spawned if needed. This is achieved by
calculating an effective coupling between the electronic states included in the
simulation at the center of the TBFs at each timestep.[99, 128] In an adiabatic
electronic basis, this effective coupling is obtained by evaluating

Λ(v,w)
eff (R) =

∣∣∣d(v,w)(R)
∣∣∣ (6.35)



6.2 Full Multiple Spawning and Ab Initio Multiple Spawning 45

whereas in a diabatic basis, the effective coupling is given according to

W
(v,w)
eff (R) =

∣∣∣∣ W (v,w)(R)
W (w,w)(R)−W (v,v)(R)

∣∣∣∣ (6.36)

By calculating the effective coupling, one is essentially evaluating the probability
of population transfer had TBFs been present on the other states. If the effective
coupling is above a certain pre-specified threshold, a new TBF, the child, is
therefore spawned on the state to which a given TBF, the parent, is coupled.
What remains is to position the child TBF in phase space. We will in the following
restrict the discussion to an adiabatic electronic basis.

The first time at which the effective coupling crosses the threshold is referred
to as tspawn, cf. Fig. 6.1. At this timestep, the wavepacket is frozen and a copy of
the parent is propagated forward in time into the spawning region until the effec-
tive coupling has peaked. The time at which the coupling peaks is referred to as
tmax. With this knowledge at hand, three options have been used for placing the
child TBF: p-jump, standard, and optimal spawning.[128] In the first approach,
the child TBF is placed such that Rchild matches Rparent at tmax, and Pchild is
scaled along the direction of the non-adiabatic coupling vector d to ensure energy
conservation (in the long time limit) very similar to surface hopping.[129] How-
ever, situations where it is not possible to match the energy of the child to that
of the parent by this approach can be encountered. This deficiency is amended
in standard spawning where Rchild is adjusted along the energy gradient of the
child electronic state until the energy of the child matches that of the parent.
In the optimal spawning approach, the child basis function is placed such as to
maximize population transfer thereby minimizing the number of TBFs needed to
describe non-adiabatic transitions. This is achieved by maximizing the norm of
the electronic off-diagonal element of the Hamiltonian matrix coupling the parent
and the child with Rchild and Pchild as parameters while constraining the energy
of the child to match that of the parent.

When the child position and momentum have been determined, the child is
back-propagated from tmax to tspawn and added to the wavepacket by setting its
coefficient Cchild(tspawn) = 0. It should be clear that at this point the child as a
basis function only affords the opportunity to describe population transfer. The
spawning procedure does not govern population transfer – population transfer is
governed by the time-dependent Schrödinger equation for the coefficients given
in Eq. (6.31).
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Figure 6.1: Schematic showing the steps of the spawning procedure as employed
in FMS and AIMS.

6.2.3 Applicational Aspects of FMS and AIMS

A key aspect of Gaussian wavepacket dynamics is that the Gaussian functions are
localized in space. Due to this property, only local information of the potential
energy surfaces around the centers of the TBFs or centroids of overlapping TBFs
is needed. Usually, the potential energy surfaces are expanded in a Taylor series
according to

V (R) = V (R0) + ∂V (R)
∂R

∣∣∣∣
R0

· (R −R0)

+ 1
2(R −R0)T · ∂

2V (R)
∂R2

∣∣∣∣
R0

· (R −R0) + · · ·
(6.37)

Truncating the series at second-order leads to the local harmonic approxima-
tion – a choice which is motivated by Heller’s observation that the center of a
Gaussian wavepacket follows a classical trajectory in a harmonic potential.[125]

With an approximation to the potential in the form of Eq. (6.37), all matrix
elements required for FMS as well as vMCG have analytical expressions in terms
of Gaussian moments. These features of Gaussian wavepacket dynamics allow
for use in direct dynamics methods[130] such as Direct Dynamics vMCG (DD-
vMCG)[116,131–133] and AIMS. In direct dynamics methods, the potential energy
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surfaces are calculated on-the-fly, i.e. simultaneously with the solution of the
equations for the nuclear wavefunction. One advantage of FMS over vMCG is
the direct applicability of the former in the adiabatic representation whereby the
output from electronic structure codes can be used directly. In contrast, vMCG
is only applicable in the diabatic representation necessitating that the adiaba-
tic potential energy surfaces obtained from electronic structure calculations are
transformed to the diabatic representation.

In nuclear dynamics simulations, the electronic structure calculations can
be the limiting factor in terms of computational effort. As a consequence, the
expansion in Eq. (6.37) is often truncated at zeroth-order in FMS leading to the
following matrix elements of the potential energy operator

〈φ(v)
j |V̂ |φ

(v)
k 〉 ≈ S

(v,v)
jk V (Rc) (6.38)

Here, Rc is the centroid of the two TBFs given by Rc = (Rj + Rk)/2 which
for j = k reduces to the center of the TBF. In the case of strongly coupled
TBFs on the same electronic state, i.e. highly overlapping, this approximation
can lead to detrimental results as observed in the example in Fig. 6.2. However,
the independent first generation (IFG) approximation is usually employed.[134]

In IFG, the initial TBFs are uncoupled and only couple to the TBFs that they
spawn onto other electronic states whereby this problem is often circumvented.

Fig. 6.2 also illustrates how FMS can be converged to the exact numerical
result even for non-harmonic potentials. As opposed to the case for MCTDH
where the single-particle functions become time-independent in the complete ba-
sis set limit ensuring the convergence to the exact numerical result obtained from
grid-based methods, this is not the case for FMS. Consequently, a basis set that is
complete at one time is not necessarily complete at a later time, and convergence
to the exact numerical result is, thus, only obtained in the limit of a continu-
ously complete basis set. Although this limit can somewhat easily be reached
in low-dimensional bound systems, a way of approaching this limit for general
high-dimensional cases is not straightforward. Reaching convergence would re-
quire an at times significantly overcomplete basis set to ensure completeness at
all subsequent times.

Many different integrators have been implemented into FMS to integrate the
classical parameters and the coefficient vector. In one scheme, the classical vari-
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Figure 6.2: Autocorrelation function for a wavepacket in a Morse potential. FMS
results using a zeroth- (−), first- (−), and second-order (−) Taylor expansion of
the potential is compared to the exact result from an MCTDH calculation (◦).
The FMS calculations use 24 TBFs distributed on the three lowest classical orbits
in phase space propagated using a fourth-order McLachlan Atela integrator for
the classical parameters combined with a fourth-order Magnus expansion for the
coefficients. A timestep of 5.0 au was used.

ables are integrated from t→ t+ δt using a Velocity-Verlet integrator[135]

Rjκ(t+ δt) = Rjκ(t) + Pjκ(t)
mκ

δt− 1
2mκ

(
∂V (R)
∂Rκ

∣∣∣∣
Rj(t)

)
δt2 (6.39)

Pjκ (t+ δt) = Pjκ(t)− 1
2

(
∂V (R)
∂Rκ

∣∣∣∣
Rj(t)

+ ∂V (R)
∂Rκ

∣∣∣∣
Rj(t+δt)

)
δt (6.40)

and the phase is integrated (if employed) using a simple trapezoidal rule[136]

γj(t+ δt) = γj(t) + 1
2

(
∂γj
∂t

∣∣∣∣
t

+ ∂γj
∂t

∣∣∣∣
t+δt

)
δt (6.41)

To integrate the coefficients, the differential equation for the complex coefficients
is rewritten to

Ċ = −iS−1
(
H− iṠ

)
C = B(t)C (6.42)

The classical timestep is split into two, and for each substep, the integration of
the coefficients is divided into 2n second-order Runge-Kutta integration steps.
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For k = 0, . . . , n− 1, the following equations[136]

k1,k = δt

2nB(t)C
(
t+ k

2nδt
)

(6.43)

k2,k = δt

2nB(t)
(

C
(
t+ k

2nδt
)

+ 1
2k1,k

)
(6.44)

C
(
t+ k + 1

2n δt

)
= C

(
t+ k

2nδt
)

+ k2,k (6.45)

are used to propagate the coefficients from t → t + δt/2. In a similar manner,
the equations

k1,k+n = δt

2nB(t+ δt)C
(
t+ k + n

2n δt

)
(6.46)

k2,k+n = δt

2nB(t+ δt)
(

C
(
t+ k + n

2n δt

)
+ 1

2k1,k+n

)
(6.47)

C
(
t+ k + n+ 1

2n δt

)
= C

(
t+ k + n

2n δt

)
+ k2,k+n (6.48)

are used for propagating the coefficients from t + δt/2 → t + δt. The value of n
is increased until convergence in the norm of the wavefunction is reached.

In another scheme, the classical parameters are propagated from t→ t+ δt/2
and then subsequently from t + δt/2 → t + δt using a fourth-order McLachlan
Atela integrator.[137] The integration is performed for k = 1, . . . , 4 according to
the recursion relations

P
(k)
jκ

= P
(k−1)
jκ

− b(k) δt

2
∂V (R)
∂Rκ

∣∣∣∣
R

(k−1)
jκ

(6.49)

R
(k)
jκ

= R
(k−1)
jκ

+ a(k) δt

2
P

(k)
jκ

mκ
(6.50)

with the parameters for a(k) and b(k) from the si4.b integrator in Ref. 138. In
this way, B(t) can be explicitly constructed at times t, t + δt/2, and t + δt and
used for the integration of the coefficients. Using the Magnus expansion,[139] the
formal solution to equation Eq. (6.42) for the coefficients is

C(t+ δt) = exp [Ω(t+ δt, t)] C(t) (6.51)
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with

Ω(t+ δt, t) =
∞∑
k

Ωk(t+ δt, t) (6.52)

Each term Ωk in the infinite sum is a multiple integral involving linear combi-
nations of nested commutators of B(t). Thus, the formal solution requires the
complete knowledge of the time-dependence of B(t) as well as the evaluation
of an infinite number of integrals in the exponential. In applications, the se-
ries is truncated to some appropriate order. In one approximation scheme, the
integrals in the truncated series are furthermore approximated by quadratures
using derivatives of B(t) around t1/2 = t+ δt/2.[140] This leads to the following
solutions for the Magnus propagator of order 2 and 4 in the timestep respectively

exp [Ω(t+ δt, t)] ≈ exp
[
δtb0 +O(δt3)

]
(6.53)

exp [Ω(t+ δt, t)] ≈ exp
[
δtb0 + δt3

12 (b2 − [b0,b1]) +O(δt5)
]

(6.54)

where bk is the kth derivative of B(t) at time t = t1/2. These derivatives are
evaluated by finite differences

b0 = B(t+ δt/2) ≈ B(t) + B(t+ δt)
2 (6.55)

b1 = B(t+ δt)−B(t)
δt

(6.56)

b2 = B(t+ δt)− 2B(t+ δt/2) + B(t)
(δt/2)2 (6.57)

The fourth-order Magnus propagator is combined with the fourth-order McLach-
lan Atela integrator. The second-order Magnus propagator can be combined with
the Velocity-Verlet integrator for the classical parameters either by approximat-
ing B(t+ δt/2) as indicated in Eq. (6.55) or dividing the classical timestep into
two and explicitly evaluating B(t+ δt/2).

6.3 The Vibronic Coupling Hamiltonian

As mentioned in Sec. 6.1.2, one has to chose an appropriate coordinate system
to ensure that the Hamiltonian for MCTDH is in the product form of Eq. (6.12).
This can be achieved by use of dimensionless, i.e. mass-frequency scaled, normal
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coordinates as employed for the VCHAM.[117–119] The VCHAM has been used
in conjunction with MCTDH several times.[141–148] In the vibronic coupling
scheme, the Hamiltonian is represented in a basis of diabatic electronic states as
an expansion around a point of interest Q0 normally chosen as the ground state
equilibrium geometry. A system of Ne electronic states is described by an Ne×Ne
matrix which is decomposed into a zeroth-order Hamiltonian H0 = V0 + T and
a diabatic potential coupling matrix W

H = V0 + T + W =
N∑
κ

ωκ
2

(
Q2
κ −

∂2

∂Q2
κ

)
I + W (6.58)

Here, ωκ is the ground state normal mode frequency, and I is the Ne×Ne identity
matrix. The electronic on- and off-diagonal terms of W are expanded in Taylor
series according to

W (v,v) = E(v) +
N∑
κ

β(v)
κ Qκ + 1

2

N∑
κ

N∑
κ′

γ
(v)
κκ′QκQκ′ + · · · (6.59)

W (v,w) =
N∑
κ

λ(v,w)
κ Qκ + 1

2

N∑
κ

N∑
κ′

µ
(v,w)
κκ′ QκQκ′ + · · · (6.60)

The coefficients β(v)
κ , µ(v,w)

κκ′ etc. are called vibronic coupling constants. As the
diabatic potential energy surfaces are smooth functions of the nuclear coordi-
nates, even a low-order Taylor expansion should give a reasonable representation
of the system at hand. In cases of large anharmonicity, it can beneficial to em-
ploy a Morse potential as the zeroth-order term instead of the harmonic term in
Eq. (6.58)

V (v)
κ (Qκ) = D(v)

κ

(
exp

[
−α(v)

κ (Qκ −Q(v)
κ0 )
]
− 1
)2

(6.61)

Many of the coupling constants vanish on grounds of point group symmetry. As
an example, take the coupling constant µ(v,w)

κκ′ . Let Γv and Γw be the irreducible
representations of the electronic states v and w in the pertinent point group, and,
similarly, let Γκ and Γκ′ be those of the normal coordinates Qκ and Qκ′ . The
coupling constant can only be non-vanishing if the following is fulfilled

Γv ⊗ Γκ ⊗ Γκ′ ⊗ Γw ⊇ ΓA (6.62)

where ΓA is the totally symmetric, i.e. identity representation, of the point group.
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6.3.1 Applicational Aspects of the VCHAM

The VCHAM provides a convenient representation of the Hamiltonian to be used
in conjunction with MCTDH. However, to be employed, the coupling constants
have to be determined in some manner. As the potential energy surfaces ob-
tained from electronic structure calculations are in the adiabatic representation
they cannot directly be employed as the transformation from an adiabatic to a
diabatic representation is not unique. On the other hand, the transformation
from the diabatic to the adiabatic representation is unique and is achieved by
diagonalization of the full diabatic potential matrix, i.e. V0 + W. This matrix is
in general non-diagonal. Thus, with a suitable guess for the coupling constants,
the potential matrix can be diagonalized, and the obtained adiabatic potential
energy surfaces can be compared to those obtained from electronic structure cal-
culations. This procedure gives a method of fitting the coupling constants. The
general procedure to obtain the VCHAM can be given in four steps

1) Calculate harmonic normal mode frequencies and vectors and transform from
mass-weighted normal coordinates to dimensionless coordinates by Qκ →
Qκ/
√
ωκ

2) Use the transformed normal mode vectors to create displaced geometries and
calculate the energies of the desired electronic states at these geometries

3) Create a database containing the geometries and energies

4) Fit the coupling constants by comparing the energies at the displaced ge-
ometries in the database to those obtained by diagonalization of the diabatic
potential matrix from the VCHAM

From the procedure detailed above, it could appear that one has to calculate the
electronic energies on a full-dimensional grid of points. This would be a severe
restriction when going beyond two or three dimensions. Instead, energies are
calculated along single-mode displacements to fit the on-diagonal constants, i.e.
those for which κ = κ′ = · · · , and along mode-mode diagonals to fit the off-
diagonal constants, i.e. those for which κ 6= κ′ 6= · · · . If terms of higher than
second order are included in the Taylor series of Eqs. (6.59) and (6.60), this
procedure necessitates that these are restricted. For the third order terms, the
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following restrictions are made

1
6

N∑
κ

N∑
κ′

N∑
κ′′

ι
(v)
κκ′κ′′QκQκ′Qκ′′ →

1
6

N∑
κ

ι(v)
κκQ

3
κ + 1

2

N∑
κ6=κ′

ι
(v)
κκ′QκQ

2
κ′ (6.63)

1
6

N∑
κ

N∑
κ′

N∑
κ′′

η
(v,w)
κκ′κ′′QκQκ′Qκ′′ →

1
6

N∑
κ

η(v,w)
κκ Q3

κ + 1
2

N∑
κ6=κ′

η
(v,w)
κκ′ QκQ

2
κ′ (6.64)

If these restrictions were not employed, the constants ι(v)
κκ′κ′′ and η

(v,w)
κκ′κ′′ would in

some cases be underdetermined.
Fitting the coupling constants is a general non-linear optimization problem,

and, whence, suffers from general problems in terms of converging to the global
minimum. Furthermore, since the coupling constants are highly interdependent,
one is only certain of obtaining a set of constants but not necessarily the “correct”
set of constants to describe the system. To alleviate some of these difficulties, the
low-order constants are fitted first and then used as a guess for an optimization
including higher-order terms. This ensures to some extent that the low-order
constants carry the most weight in the fit. Furthermore, the data points can be
exponentially weighted by energy to favor a good fit to the important low-energy
regions of the potential energy surfaces. Nonetheless, even for a modest number
of modes, unacceptable un-balanced fits are often obtained. Examples of this are
first-order inter-state or third-order coupling constants giving rise to potential
energy surfaces with unphysically low barriers to dissociation in one specific mode
while all order modes are fitted well. In this case, it can be necessary to restrict,
fix, or manually adjust parameters to achieve a more balanced fit.

The entire fitting procedure can be carried out using the VCHFIT program
which is distributed with the Heidelberg MCTDH code.[149] VCHFIT takes ad-
vantage of the symmetry restraints of Eq. (6.62) and furthermore includes sev-
eral different optimization routines from simplex and Powell’s conjugate direction
methods to a genetic algorithm.[150–152] The program was inhere employed in a
locally modified version.





Chapter 7

Time-Resolved
Photoelectron Spectra

Through the time evolution of the wavefunction, dynamics simulations provide
insight into the system under investigation. Often, it can be beneficial to con-
sider partially integrated quantities such as electronic populations or coordinate
expectation values to map out the dynamics. However, if we are interested in
comparing simulations to experiment, it can be necessary to calculate the experi-
mental observable from the dynamics simulations to allow for a direct comparison
between theory and experiment.

In this chapter, we will describe two different methods of calculating time-
resolved photo-electron spectra. Such calculations in principle involve propaga-
tion of the wavefunction in the presence of two fields representing the pump and
probe pulses. In the first method, the initial excitation as well as the subse-
quent ionization are assumed to be impulsive, i.e. the duration of the pulses is
taken to be shorter than that of nuclear dynamics. As the pulses are further-
more assumed non-overlapping, the ionization of the pump-induced wavepacket
is treated by first order perturbation theory. In the second method, the two fields
are explicitly included in the Hamiltonian of the system, however, the ionization
step is approximated as the wavefunction of the photoelectron is not considered
explicitly, and a unit transition strength is assumed.

55
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7.1 Perturbative Trajectory-Based Calculation

The method presented inhere uses first order perturbation theory to calculate
the photoelectron spectrum. As its basis, the method uses results obtained from
trajectory-based dynamics such as Full Multiple Spawning (FMS) and is per-
formed subsequent to the dynamics calculation. It is assumed that a wavepacket,
approximated by a number of trajectories, has been created in a neutral excited
state by the pump pulse, and that there is no overlap in time between the pump
and probe pulses. I.e., the probe pulse strictly follows that of the pump. We will
show how the method reduces to calculating the spectrum resulting from ion-
ization of the pump-induced wavepacket at a specific time t = ∆t following the
pump pulse. Thus, the method is somewhat in the spirit of the Bersohn-Zewail
model[153,154] and follows the methods of Meier, Engel, and Møller.[155–158]

The photoelectron spectrum can be calculated from the probability density
of the electronic ionization continua long after the probe pulse has decayed, i.e.
from the overlap between the state |Ψ(t)〉 for t→∞ with the electronic ionization
continua[147,159]

σ(Ek) =
∑
w

|〈Ψ(t→∞)|ψ(w)(Ek)〉|2 (7.1)

Here, w labels the ionization continua, and Ek is the kinetic energy of the ejected
photoelectron. The final electronic state w is a combination of an (n−1)-electron
cationic state and a continuum photoelectron. In the sudden and strong orthog-
onality approximations, the cation and photoelectron can be assumed indepen-
dent, and the final electronic state reduces to a product of that of the cation and
photoelectron.[160–162] In this case, the spectrum is given by

σ(Ek) =
∑
w

∑
f

|〈Ψ(t→∞)|ψ(el)
f (Ek)ψ(w)〉|2 (7.2)

where f labels the angular momentum of the photoelectron. In what follows,
we will consider a single component corresponding to ionization to the cationic
state w with the ejection of a photoelectron with angular momentum f . To
calculate |Ψ(t → ∞)〉, the initial state is taken to be a wavepacket in state v
at a time after the action of the pump pulse but before the action of the probe
pulse. We will in the end sum over all initial electronic states v to include the
full wavepacket created by the pump pulse. Following first-order perturbation
theory, the component of the initial state ending up in the final state w due to
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the perturbation of the probe field is[158]

|Ψ(t→∞)〉 = −i
∫ ∞
−∞

ei(Ĥ
(w)+Ek)tĤIe

−iĤ(v)t|Ψ(v)(t)〉 dt

= −i
∫ ∞
−∞

ei(Ĥ
(w)+Ek)tĤIe

−iĤ(v)t|ψ(v)〉|Φ(v)(t)〉 dt
(7.3)

where the perturbation is given by the light-matter interaction in the dipole
approximation

ĤI = −µ̂ · E(t) (7.4)

Employing the rotating wave approximation, we represent the probe pulse by the
field

E(t) = 1
2ε(t) exp[−iωt] = 1

2ε0 exp[−4 ln(2)(t−∆t)2/τ2] exp[−iωt] (7.5)

The field consists of a carrier wave of frequency ω multiplied by a Gaussian field
envelope ε(t). The field envelope is centered at the pump-probe delay ∆t with a
full width at half maximum (FWHM) of τ and an amplitude of ε0. Using these
expressions, the overlap in Eq. (7.2) can be given as

〈ψ(el)
f (Ek)ψ(w)|Ψ(t→∞)〉 =

i

2

∫ ∞
−∞

ei(V̂
(w)+T̂n+Ek)t〈ψ(el)

f (Ek)ψ(w)|µ̂|ψ(v)〉ε(t)e−iωte−i(V̂
(v)+T̂n)t|Φ(v)(t)〉 dt

(7.6)

where V̂ (v) is the potential energy operator for state v, and T̂n is the nuclear
kinetic energy operator. Due to the approximations for the electronic state of
the ionization continuum, the energies of the cationic state and the photoelectron
are additive. The electronic matrix element of the dipole operator can explicitly
be written as

µ
(w,v)
f (Ek) ≡ 〈ψ(el)

f (Ek)ψ(w)|µ̂|ψ(v)〉 = 〈ψ(el)
f (Ek)|µ̂|ψ(w,v)

D 〉 (7.7)
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with the so-called Dyson-orbital given by[163–166]

ψ
(w,v)
D (r1) = 〈r1|ψ(w,v)

D 〉 = 〈ψ(w)|〈r1|ψ(v)〉

=
√
n

∫
r2

· · ·
∫

rn
ψ(w)(r2, . . . , rn)ψ(v)(r1, . . . , rn) dr2 · · · drn

(7.8)

Notice that the integration is over the coordinates of all n electrons except for
those of the ejected photoelectron. The Dyson orbital is a one-electron ionization-
channel specific orbital. Using a Coulomb radial function for the continuum
electron, the electronic matrix element over the dipole operator in Eq. (7.7)
can be calculated numerically using ezDyson[167] when the Dyson orbital is
available from electronic structure calculations. In this calculation, rotational
averaging over the angle between the transition dipole moment and the electric
field polarization is carried out.

To proceed with the evaluation of the integral in Eq. (7.6), we make the crit-
ical approximation that the potential energy, kinetic energy and dipole moment
operators commute. Hereby, we can rewrite the integral to

i

2µ
(w,v)
f (Ek)

∫ ∞
−∞

ε(t)e−i(V̂
(v)−V̂ (w)−Ek+ω)t|Φ(v)(t)〉 dt =

i

2
∑
j

µ
(w,v)
f (Ek)

∫ ∞
−∞

ε(t)e−i(V̂
(v)−V̂ (w)−Ek+ω)tC

(v)
j (t)|φ(v)

j (t)〉 dt
(7.9)

In the second line, we have explicitly written the vibrational state as a sum over
coherent states[168] following the prescription of FMS. In the nuclear coordinate
representation, this becomes

i

2
∑
j

µ
(w,v)
f (Ek; R)×

∫ ∞
−∞

ε(t)e−i(V
(v)(R)−V (w)(R)−Ek+ω)tC

(v)
j (t)φ(v)

j (R, t) dt

(7.10)

We have indicated the parametric dependence on the nuclear coordinates of the
transition dipole matrix element which results from the parametric dependence
on the nuclear coordinates of the electronic wavefunctions. To evaluate the ex-
pression in Eq. (7.2), we have to square the expression above and integrate over
nuclear coordinates. As the trajectory basis function (TBF) φ(v)

j (R, t) is highly
localized around R = Rj(t), the coordinate integral can be approximated by
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evaluating the nuclear coordinate dependent functions in Rj(t). If we in ad-
dition assume impulsive ionization, i.e. that the field envelope ε(t) is of much
shorter duration than the timescale for nuclear motion, this reduces to evaluat-
ing the functions in R = Rj(∆t) as the field envelope is centered at t = ∆t.
Thereby, we can also evaluate the coefficient and TBF in t = ∆t and move them
outside the integral over t. Due to the localized nature of the TBFs, cross-terms
between different TBFs in the absolute square, i.e. terms involving φ(v)∗

k φ
(v)
j with

k 6= j, are also omitted as the overlap between φ(v)
k and φ(v)

j is assumed negligible.
Performing these operations, one component of the spectrum is given by

1
4
∑
j

|µ(w,v)
f (Ek; Rj(∆t))|2|C(v)

j (∆t)|2
∣∣∣∣∫ ∞
−∞

ε(t) exp [−iω̃t] dt
∣∣∣∣2 (7.11)

where we have defined the shifted frequency

ω̃ = V (v)(Rj(∆t))− V (w)(Rj(∆t))− Ek + ω

= ω −∆E(v,w)(Rj(∆t))− Ek
(7.12)

The integral over the Gaussian field envelope can be solved analytically by iden-
tifying it as a Fourier transform in the shifted frequency

F(ω,Ek; Rj(∆t)) =
∣∣∣∣∫ ∞
−∞

ε0 exp
[
−4 ln(2)(t−∆t)2/τ2] exp [−iω̃t] dt

∣∣∣∣2
=
∣∣∣∣ε0

τ

2

√
π

ln(2) exp [−iω̃∆t] exp
[
−τ2ω̃2/(16 ln(2))

]∣∣∣∣2
= πε2

0τ
2

4 ln(2) exp
[
−τ2ω̃2/(8 ln(2))

]
(7.13)

With this at hand, the total spectrum at a specific time-delay between pump and
probe pulses ∆t is given by

σ(Ek,∆t) ∝∑
v,w

∑
f

∑
j

|µ(w,v)
f (Ek; Rj(∆t))|2|C(v)

j (∆t)|2F(ω,Ek; Rj(∆t))
(7.14)

Here, we have summed over v to include all electronic components of the initial
wavepacket. The formula for the spectrum in Eq. (7.14) consists of a product of



60 Time-Resolved Photoelectron Spectra

the absolute square of the electronic transition dipole moment, a basis function
population, and the so-called window function. The window function is peaked
around ω = ∆E(v,w)(R) +Ek, i.e. when the probe frequency matches the sum of
the energy difference between the cationic and the neutral state and the kinetic
energy of the photoelectron. The energetic width of the window is determined
by the FWHM of the probe pulse τ – a shorter pulse leads to a wider window in
energy as expected from the time-bandwidth product. As derived, the spectrum is
discrete in the pump-probe delay ∆t. To approximately include the experimental
time resolution given by the cross-correlation (XC) between the pump and probe
pulses, the spectrum is convoluted by a Gaussian function in the time-delay ∆t

σ(Ek,∆t)→ exp[−4 ln(2)∆t2/τ2
xc]⊗ σ(Ek,∆t) (7.15)

Although a high-level correlated electronic structure method is used in the simula-
tion which is the basis for the calculation of the time-resolved photoelectron spec-
trum, inevitably some discrepancy between the energies obtained from calculation
and those from experiment is to be expected. In order to be able to compare cal-
culated spectra to those from experiment, a correction can employed for ∆E(v,w)

to match to the experimental value of the photoelectron kinetic energy at the
Franck-Condon point. The correction is achieved by ∆E(v,w) → ∆E(v,w)−∆(v,w)

with ∆(v,w) given by

∆(v,w) =
(

∆E(v,0)
exp −∆E(v,0)

calc

)
+
(

IP(w,0)
calc − IP(w,0)

exp

)
(7.16)

Here, ∆E(v,0) and IP(w,0) are the vertical excitation energies and ionization po-
tentials at the Franck-Condon geometry, and the subscripts refer to experimental
and calculated values. This correction ensures that the predicted kinetic energy
of the photoelectrons ejected close to time zero from the initially excited state v
by ionization to the state w matches the experimental value.

7.2 Non-Perturbative Wavepacket-Based Calcu-
lation

The approximate perturbative method of calculating the time-resolved photo-
electron spectrum outlined in the previous section lends itself nicely to be used
in conjunction with trajectory-based dynamics simulations. To go beyond the



7.2 Non-Perturbative Wavepacket-Based Calculation 61

perturbative treatment, the field-matter interaction due to the pump and probe
pulses has to be explicitly added to the molecular Hamiltonian, and the system
propagated under the influence of this total Hamiltonian.[159,169] We represent
the pump and probe fields by

Ej(t) = 1
2εj0 exp[−4 ln(2)(t− tj)2/τ2

j ] (exp[iωjt] + exp[−iωjt]) (7.17)

In the dipole approximation, the total Hamiltonian is given by

Ĥtot = Ĥ −
pu,pr∑
j

µ̂ · Ej(t) (7.18)

In contrast to the previous method, the excitation and ionization processes are
not assumed impulsive, and it is not assumed that the pulses are non-overlapping.
The Hamiltonian is represented in the basis of the neutral electronic states as
well as the different ionization continua corresponding to different cationic states.
The state of the system is given according to

|Ψ(t)〉 =
∑
v

|Φ(v)(t)〉|ψ(v)〉+
∑
w

∫ ∞
0
|Φ(w)(t)〉|ψ(w)(Ek)〉 dEk (7.19)

where v labels the neutral states, and w labels the cationic states or equivalently
the ionization continua. The cationic electronic state |ψ(w)(Ek)〉 is a function of
the photoelectron kinetic energy Ek. As previously, the photoelectron spectrum
can be calculated from the probability density of the ionization continua long
after all fields have decayed, i.e. from the overlap between the state |Ψ(t)〉 for
t→∞ and the electronic ionization continua

σ(Ek,∆t) =
∑
w

|〈Ψ(t→∞)|ψ(w)(Ek)〉|2 (7.20)

where ∆t = tpr− tpu is the delay between the center of the field envelopes of the
pump and probe pulses. It should be clear that this approach in principle involves
a number of simulations – one for each value of ∆t – in contrast to the previously
described method. Notice that unlike Eq. (7.2), the state of the photoelectron is
not explicitly considered in the calculation.

To calculate the spectrum as given in Eq. (7.20), the state |Ψ(t)〉 is represented
in the framework of Multi-Configuration Time-Dependent Hartree (MCTDH)
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and propagated following the standard prescription presented briefly in Sec. 6.1.
The ionization continua are discretized such that the integral over kinetic energy
is replaced by a sum. In essence, we include in the MCTDH calculations a number
of discrete neutral states, and for each ionization continuum, we include a large
number of identical cationic states displaced in energy to represent the variable
energy of the photoelectron, cf. Fig. 7.1. Thus, we make the approximation that
the electron is ejected without interacting with the core of the cation such that
the energies of the photoelectron and the cationic states are additive as also
assumed in the previous method.
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Figure 7.1: Ionization of a nuclear wavepacket from two different neutral excited
states v and v′ to two different cationic states w and w′ respectively. The ionization
continua are represented by a set of discrete states displaced in energy to represent
the energy of the ejected photoelectron Ek.

For the excitation and ionization processes, we invoke the Condon approxi-
mation, i.e. the dependence of the transition dipole moment on the nuclear coor-
dinates is neglected. This approximation is somewhat justified as the MCTDH
calculations are performed in the diabatic representation in which the electronic
character of the states is not or only weakly dependent on the nuclear coordi-
nates. In addition, the initial state is taken as the narrow vibrational ground
state of the ground electronic state over the span of which the change in the
transition dipole moment is negligible. Hereby, we neglect among others the
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Herzberg-Teller effect.[170] In contrast to the previously described method, the
transition dipole moment involved in the photoionization process is also assumed
to be independent of nuclear coordinates. Moreover, the transition dipole mo-
ment is assumed to be independent of the photoelectron kinetic energy over the
small energy ranges studied inhere similar to the approach in Ref. 159. This is
in accordance with experimental results on ionization cross-sections [171, pp. 41-
43]. In the simulations, this is achieved by representing the discretized continua
by grids evenly spaced in energy.





Chapter 8

Electronic Structure

The methods for simulating nuclear dynamics presented in the previous chapters
rely on a very fundamental constituent – the potential energy surface. Potential
energy surfaces can be obtained from spectroscopic measurements on the basis
of which analytic potential energy functions can be fitted. Infrared and Raman
spectroscopy can be used to obtain the electronic ground state potential energy
surface. Laser-induced fluorescence and absorption spectroscopy can be used to
determine the potential energy surfaces of the excited states if the ground state
is well characterized.[172,173] However, for all but the smallest molecules, the
determination of full-dimensional potential energy surfaces from spectroscopic
measurements is a monumental task. On the other hand, methods of electronic
structure calculation can readily be applied to this challenge.

8.1 Coupled-Cluster Methods

To be applicable for our interests, a given electronic structure method should be
able to describe the ground state as well as the excited states within the same
framework. Furthermore, it is desirable if the method provides a hierarchy of
approximations where the accuracy can be consistently improved upon by moving
up in the hierarchy. One such approach is the coupled-cluster method[174,175] in
which properties such as excitation energies can be calculated using response
theory.[176–179] In coupled-cluster theory, the ansatz for the electronic state is
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given by [180, pp. 650–654]

|ψCC〉 = exp(T̂ )|ψ0〉 (8.1)

where |ψ0〉 is the reference usually taken as the Hartree-Fock state. T̂ is the
so-called cluster operator, not to be confused with the kinetic energy operator,
given by

T̂ =
∑
j

tj τ̂j (8.2)

The general excitation operator τ̂j exchanges a given number of occupied spin-
orbitals in the reference state with unoccupied spin-orbitals, or, equivalently,
excites a given number of electrons from the reference state. The amplitude
of each excitation is denoted by tj . Truncation of the cluster operator at a
given excitation level leads to a hierarchy of methods: CCS, CC2, CCSD, CC3
etc.[181–183] Furthermore, CCSDR(3), a non-iterative analog of CC3, can be
defined which lies in-between CCSD and CC3 in accuracy.[184] In addition to
response theory, the equation of motion (EOM) formalism can also be used to
obtain excitation energies.[185–187] In the EOM formalism, ionized states can also
be treated by use of EOMIP allowing for calculation of cationic potential energy
surfaces in the same formalism as the neutral excited states.[188] The coupled-
cluster calculations presented in Chapter 9 were performed using Cfour[189] and
Dalton.[190]

8.2 Multi-Reference Methods

In cases of strong interaction between electronic states, it is necessary to use a
method which is capable of describing regions of near degeneracy between poten-
tial energy surfaces in the vicinity of conical intersections. One such method is
Multi-Configuration Self-Consistent Field (MCSCF) which corrects the reference
state for static correlation effects. In MCSCF, the ansatz for the electronic state
is given by

|ψMC〉 =
(

1 +
∑
j

tj τ̂j

)
|ψ0〉 (8.3)

with the same definitions for τ̂j and tj as in coupled-cluster. In MCSCF, both the
amplitudes tj as well as the molecular orbitals making up the reference state |ψ0〉
are optimized simultaneously.[191–193] To select which configurations to include
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in the summation in Eq. (8.3), the Complete-Active Space Self-Consistent Field
(CASSCF) method is often invoked. In CASSCF, an active space consisting of
both occupied and unoccupied orbitals is chosen, and within this subspace all
configurations are included, i.e. full configuration interaction. A CASSCF calcu-
lation with n electrons distributed in m active orbitals is termed CAS(n,m)SCF.
An important development for the simultaneous treatment of several states using
CASSCF is state averaging. Instead of optimizing the orbitals for each state in-
dividually, the optimization is done in an averaged fashion for a specific number
of states to ensure that they are treated on an equal footing. A state-averaged
CASSCF calculation in which the orbitals are optimized simultaneously for Ne
states is termed SA-Ne-CAS(n,m)SCF. The SA-CASSCF calculations presented
in Chapter 11 were performed using Molpro 2010.1.[194]

CASSCF retrieves part of the static correlation. The so-called dynamical
correlation can partly be retrieved by multi-reference perturbation theory us-
ing the CASSCF wavefunction as the reference usually in the form of CASPT2,
i.e. second-order perturbation theory.[195–197] CASPT2 can also be performed for
multiple states yielding Multi-State Multi-Reference CASPT2 (MS-MR-CASPT2)
when all states are treated together.[198,199] One problem encountered in CASPT2
calculations is so-called intruder states, i.e. states which are not included in the
CASSCF calculation but show up due to the subsequent perturbation theory
treatment. This problem can be remedied by use of a level-shift.[200] The on-
the-fly MS-MR-CASPT2 dynamics and time-resolved photoelectron spectra cal-
culations presented in Chapter 10 were performed using the combined Ab Initio
Multiple Spawning and Molpro 2006.2 code.[136,201] These simulations also in-
cluded calculation of MS-MR-CASPT2 analytic non-adiabatic couplings.[202,203]

For the calculation of time-resolved photoelectron spectra, cationic states were
also treated, however, the orbitals from the calculation of the neutral states were
frozen resulting in a CAS configuration interaction treatment of these states.
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Chapter 9

The Cycloketones

The carbonyl chromophore plays a central role in organic photochemistry and
photophysics in particular due to the interplay between two types of excited states
resulting from the promotion of an electron to the anti-bonding π∗ orbital from
either the π or an n orbital.[204] Prominent examples of processes involving these
states is the Norrish Type I α-cleavage,[205–208] the Norrish Type II intramolecular
γ-hydrogen abstraction, and efficient intersystem crossing with a simultaneous
change in the orbital angular momentum as established by El-Sayed’s selection
rule.[209–211]

One group of molecules incorporating the carbonyl chromophore is the cy-
cloketones. In addition to the involvement in the processes described above, we
will show inhere that the cycloketones also represent a very good model system
to exhibit the subtle details of an internal conversion process. By use of time-
resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES)
as well as wavepacket simulations, we investigate the dynamical nature of the
S2 → S1 internal conversion – at the Franck-Condon geometry corresponding to
the (n, 3s) → (n, π∗) transition. This transition from a molecular Rydberg state
to a valence excited state involves two states of significantly different electronic
character and thereby represents an example of weak interaction.

The study involves the seven cycloketones presented in Fig. 9.1. The molecules
cover three ring sizes from four to six carbon atoms as well as methyl and ethyl
substitutions in different positions on the ring. Whereas cyclobutanone and cy-
clohexanone belong to the Cs point group and cyclopentanone belongs to the
C2v point group, the substituted molecules do not posses any symmetry. These
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variations between the molecules allow us to investigate the influence of a range
of structurally, and to some extent electronically, determined parameters on the
rate of internal conversion: the C-CO-C angle and ring strain, the specific nature
and frequency of vibrational motion, the vibrational density of states, and point
group symmetry. In contrast to the variations in structure, the energy of the
(n, π∗) and (n, 3s) states at the Franck-Condon geometry do not differ signifi-
cantly between the seven molecules in particular not for molecules of the same
ring size. The absorption maximum is found at 4.28 ± 0.15 eV for the (n, π∗)
state and at 6.20± 0.10 eV for the (n, 3s) state.[212–216] This similarity allows for
a direct comparison between the molecules. This chapter is closely based on II,
IV, VI, and VIII.

O O
O O O

(a) (b) (c) (d) (e) (f )

O O

(g)

Figure 9.1: The seven cycloketones included in the study. (a) cyclobutanone
(CB), (b) 2-methylcyclobutanone (2-MeCB), (c) cyclopentanone (CP), (d) 2-
methylcyclopentanone (2-MeCP), (e) 3-methylcyclopentanone (3-MeCP), (f) 3-
ethylcyclopentanone (3-EtCP), and (g) cyclohexanone (CH).

9.1 Time-Resolved Experiments

In the time-resolved experiments, the molecules were excited directly by one
pump photon to the (n, 3s) state from which they can be ionized by a single
probe photon. Upon internal conversion to the (n, π∗) state, the energy of one
probe photon is not sufficient to ionize the molecule upon conservation of nuclear
kinetic energy. Tab. 9.1 lists the typical frequencies and energies of the pump and
probe pulses as well as their cross-correlation (XC) determined experimentally.

The temporal evolution of the parent ion currents following excitation to the
(n, 3s) state is presented in Figs. 9.2 and 9.3. In four cases, the time-resolved
photoelectron spectra were also recorded giving rise to the transients of the inte-
grated (n, 3s) photoelectron band presented in Fig. 9.4. The temporal evolution
of the parent ion currents closely resemble those of the (n, 3s) photoelectron band
for these four cases. Consequently, the decay in the ion yield can be used as a
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Table 9.1: Details of the pump and probe pulses used in the time-resolved ex-
periments on the cycloketones.

Molecules ωpu / eV Epu / nJ ωpr / eV Epr / mJ τxc / fs
CB 6.20 350 3.52 2.0 124
2-MeCB 6.20 230 3.73 1.9 172
CP 6.20 350 3.52 2.0 124
2-MeCP 6.20 230 3.73 1.9 179
3-MeCP 6.20 230 3.73 1.9 172
3-EtCP 6.20 230 3.73 1.9 172
CH 6.33 120 3.52 2.0 126

measure of the lifetime of the (n, 3s) state. This correspondence between ion
and photoelectron signals is a consequence of the chosen pump-probe scheme.
The ion currents reveal a set of timescales for the (n, 3s) → (n, π∗) transition,
i.e. S2 → S1, ranging over more than an order of magnitude from 0.37 ± 0.01
ps for 2-methylcyclobutanone to 9.67 ± 0.43 ps for cyclohexanone, cf. Tab. 9.2.
A similar trend is observed for the (n, 3s) photoelectron decays, cf. Tab. 9.3.
Two clear trends are observed in these timescales: (1) the timescale increases
with increasing ring size, and (2) substitution in the 2-position but not in the
3-position decreases the timescale. According to the standard energy gap law
derived from Fermi’s golden rule for the non-radiative transition rate, the rate
of transition should be an exponential decaying function of the energy gap be-
tween the two states involved.[217,218] As the energy gap between the (n, 3s) and
(n, π∗) states does not differ significantly between the molecules, such a law does
not straightforwardly explain the large timescale differences observed here. We
will inhere disentangle the dynamics of the internal conversion process in the
cycloketones and thereby identify the specific properties which can explain the
inter- and intragroup timescale differences observed.

TRPES provides more information than the timescale for electronic popula-
tion transfer. Fig. 9.5 depicts the transients of the spectrally integrated (n, 3s)
photoelectron band of cyclobutanone and 2-methylcyclopentanone. The integra-
tion has been performed over the low- and high-energy spectral halves of the
band separately. Such an integration scheme reveals spectrally oscillating fea-
tures – an unequivocal sign of coherent nuclear motion affecting the electronic
structure. For cyclobutanone, the period of oscillation is 0.94± 0.03 ps whereas
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Figure 9.2: Temporal evolution of the parent ion currents for six of the seven
cycloketones following excitation to the (n, 3s) state. For cyclopentanone, 3-
methylcyclopentanone, and 3-ethylcyclopentanone, a non-resonant XC component
has been subtracted from the signal and fit.

it is 0.42 ± 0.01 ps in the case of 2-methylcyclopentanone. These periods cor-
respond to frequencies of ∼ 4 meV (∼ 35 cm−1) and ∼ 10 meV (∼ 80 cm−1)
respectively. Due to the very low frequency, in particular in the case of cyclobu-
tanone, the observations reveal exactly which vibrational mode is dominant in
mediating the coupling between the two electronic states. In the ground state,
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Figure 9.3: Temporal evolution of the parent ion current for cyclohexanone fol-
lowing excitation to the (n, 3s) state. A non-resonant XC component has been
subtracted from the signal and fit.
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Figure 9.4: Temporal evolution of the photoelectron currents of the spectrally
integrated (n, 3s) photoelectron band. For cyclopentanone, a non-resonant XC
component has been subtracted from the signal and fit.

this low-frequency ring-puckering mode primarily involves the C-CO-C moiety of
the molecule with the carbonyl group bending out of the molecular plane albeit
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Table 9.2: Timescales for the decay of the parent ion current for the seven
cycloketones following excitation to the (n, 3s) state.

Molecule τ1 / ps τ2 / ps
CB 0.08± 0.01 0.74± 0.01
2-MeCB 0.08± 0.01 0.37± 0.01
CP 5.39± 0.17
2-MeCP 3.05± 0.01
3-MeCP 5.79± 0.16
3-EtCP 5.16± 0.17
CH 9.67± 0.43

Table 9.3: Timescales for the decay of the (n, 3s) photoelectron band for four of
the cycloketones. Also given in two cases is the period of the spectral oscillation
of the band.

Molecule τ1 / ps τ2 / ps T / ps
CB 0.31± 0.06 0.74± 0.02 0.95± 0.03[a]

2-MeCB 0.32± 0.02
CP 5.37± 0.11
2-MeCP 3.47± 0.03 0.42± 0.01[b]

[a]From the fit to the low-energy part of the (n, 3s) photoelectron band.
[b]Average period of oscillation from the fit to the low- and high-energy part of the
(n, 3s) photoelectron band.

with some motion of the last CH2 group in the case of cyclobutanone.[219–221] The
large difference in frequency between the two molecules is an important factor
in explaining the observed differing timescales, however, it is not fully sufficient
on its own. As we will show below, at least two factors have to be taken into
account: the frequency of the specific vibrational mode involved and the differ-
ence in energy of the (n, 3s) state between the Franck-Condon and equilibrium
geometries, i.e. the difference between the vertical and the adiabatic excitation
energy. In addition, the total density of vibrational states on the (n, π∗) surface
plays a small role.
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(a) Cyclobutanone.
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(b) 3-methylcyclopentanone.

Figure 9.5: Transients of the low- (◦) and high-energy (◦) spectral halves of
the (n, 3s) photoelectron band along with fits (−). In both cases, a clear phase
relationship is observed between the oscillatory components of the fits indicated
by the respective colored lines.

9.1.1 A Representative Model

The differences in the timescale of the (n, 3s) → (n, π∗) transition in the seven
cycloketones can be rationalized by considering the model depicted in Fig. 9.6(a).
Once excited to the (n, 3s) state, the molecule will vibrate in some modes, and
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based on the TRPES data, it can be concluded that only one (or a few) of these
plays an important role in the pathway to the lower electronic state. We will
therefore restrict the discussion to a one-dimensional representation. In one di-
mension, the position of the crossing point with the lower electronic surface (or
possibly avoided crossing) is given by two factors (everything else being equal):
the frequency of the vibrational mode in question and the energy difference be-
tween the Franck-Condon and equilibrium geometries of the (n, 3s) state. As in-
dicated in Fig. 9.6(b), a low frequency, i.e. a small curvature, and a large energy
difference will allow the molecule to access a larger configurational space whereby
it can more easily access the region near the very important conical intersection
facilitating a faster non-adiabatic population transfer. Such a transition is illus-
trated by the magenta arrow in Fig. 9.6(a) as opposed to the adiabatic dynamics
indicated by the blue arrow.
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Figure 9.6: (a) Scheme illustrating the possible dynamics following excitation
to the (n, 3s) state in the cycloketones. Depending on the configurational space
sampled, the wavepacket can follow two pathways: 1 an adiabatic pathway indi-
cated by the blue arrow and 2 a non-adiabatic pathway indicated by the magenta
arrow. (b) The vibrational frequency ω and the energy difference ∆E between the
Franck-Condon and equilibrium geometries of the (n, 3s) state determine the inter-
section point between the two excited states and the configurational range available
to the wavepacket ∆Q. Thereby, these two parameters significantly influence the
rate of non-adiabatic transition.

The cause of the intergroup timescale differences, i.e. the differences in timescale
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between molecules of different ring size, is primarily rooted in the energy differ-
ence factor which is apparent by comparison of the unsubstituted cycloketones.
The smaller strained cyclobutanone is able to relieve ring strain in the (n, 3s)
state through vibration in the ring-puckering mode whereas the five-membered
ring of cyclopentanone is less prone to such motion. As calculated by EOM-
CCSD, the energy difference in the (n, 3s) state between the Franck-Condon and
equilibrium geometries is 0.32 eV for cyclobutanone whereas it is only 0.14 eV
for cyclopentanone. The more vibrationally congested (n, 3s) absorption spec-
trum for cyclobutanone compared to cyclopentanone further corroborates this
difference.[215] The even slower transition in cyclohexanone can be understood
in terms of the inverse relationship between ring size and intensity of vibrational
bands and, thus, release of angle strain in the C-CO-C moiety.[213] The frequency
factor, caused by different curvatures of the potential energy surface as illustrated
by the examples in Fig. 9.6(b), also contributes to the intergroup timescale dif-
ferences. The effect is clearly demonstrated by the observed anti-correlation
between the vibrational frequency and the rate of transition for cyclobutanone
and 2-methylcyclopentanone.

The intragroup timescale differences, i.e. the differences in timescale between
molecules of the same ring size, can largely be understood in terms of the fre-
quency factor and to what extent this is affected by substitution. Alkyl sub-
stitution in the 2-position leads to a significantly increased rate of transition
whereas this is not the case for substitution in the 3-position. This is observed
when comparing 2-methylcyclopentanone and 3-methylcyclopentanone. Also in
cyclobutanone, substitution in the 2-position leads to an increased rate of tran-
sition. The vibrational mode central to the internal conversion process primar-
ily involves motion in the C-CO-C moiety, thus, substitution in the 2-position
should have a larger effect on the rate of transition compared to the 3-position
as indeed is the case. This observation in turn cements the conclusion on the
non-ergodicity of the process – i.e. the dynamics are truly localized not only in
phase space, as deduced from the observation of coherent nuclear motion, but
also in real space. The intergroup timescale differences also reflect this locality
as the apparent non-local change of ring size actually has a very large local effect
by significantly affecting the angle of the central C-CO-C moiety.

In identifying the pertinent mode mediating the population transfer, we have
not discussed the role of point group symmetry. In cyclobutanone and cyclohex-
anone, the modes that couple the (n, 3s) and (n, π∗) states are Franck-Condon
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active whereas this is not the case in cyclopentanone. By substitution in cyclopen-
tanone, we break the C2v symmetry of the molecule thereby lifting the symmetry
restrictions on the coupling and Franck-Condon active modes. However, only in
the case of substitution in the 2-position does this lead to a significant change
in the rate of transition. This observation could speak against the importance of
point group symmetry in these cases. The application of point group symmetry
does not allow for an assessment of the size of a given matrix element, it only
allows one to assess whether the matrix element is zero by symmetry. Thus,
breaking of symmetry by substitution in the 2- and 3-position does not necessar-
ily have the same consequence. Group theory only tells us that upon substitution
in either position, certain matrix elements are not necessarily zero by symmetry
anymore, however, they could still be negligible. Therefore, it is difficult to asses
whether the increased rate of transition in cyclopentanone due to substitution in
the 2-position is partly influenced by symmetry breaking in particular because a
similar increase in transition rate is observed upon substitution in cyclobutanone
which does not have the same symmetry restrictions. We will go into more detail
regarding point group symmetry in Sec. 9.2.2.

Although it has been stressed that the dynamics leading to disposal of the
electronic energy are truly localized, an increase in the total density of vibrational
states on the lower surface does slightly speed up the process. This effect is a
consequence of additional vibrational degrees of freedom acting as acceptor modes
in the lower electronic state. Comparison between the rates of transition for the
molecules of different ring size does not immediately reveal this aspect as the
two other effects discussed play a much larger role. It is, however, revealed by
a comparison between the rates of transition for 3-methylcyclopentanone and 3-
ethylcyclopentanone. The addition of an extra CH2-group increases the density
of vibrational states by a factor of ∼ 100 at an energy of 2 eV, approximately
the energy difference between the (n, 3s) and (n, π∗) states, as calculated using a
Beyer-Swinehart algorithm.[222] However, this factor of 100 only leads to a small
decrease in the timescale for transition from 5.79±0.16 ps to 5.16±0.17 ps – very
different than the behavior expected from application of theory in the statistical
limit.[33, 217,218,223]



9.2 Wavepacket Simulations 81

9.2 Wavepacket Simulations

The previous section provided a qualitative model for describing the (n, 3s) →
(n, π∗) internal conversion in the cycloketones based on time-resolved experi-
ments. In the next sections, results from wavepacket simulations on cyclobu-
tanone and cyclopentanone will allow for a more in detail analysis of the process.
By calculation of time-resolved photoelectron spectra, a basis for direct compar-
ison between theory and experiment is provided. We will start out by briefly
presenting the model Hamiltonian employed in the wavepacket calculations.

9.2.1 Model Hamiltonian

The ground and excited state equilibrium geometries of cyclobutanone and cy-
clopentanone are presented in Fig. 9.7. Structural parameters which differ sig-
nificantly between the geometries are indicated. Upon population of the excited
states, we expect nuclear motion towards the respective equilibrium geometry
to take place. Thus, the model Hamiltonian employed in the wavepacket calcu-
lations should be given in terms of coordinates which can describe the changes
between the ground and excited state equilibrium geometries. Model vibronic
coupling Hamiltonians (VCHAM) were therefore parameterized in terms of five
normal modes of vibration. In order of increasing frequency as calculated at the
MP2/cc-pVTZ[224] level of theory, these modes are: ring-puckering, C=O out-of-
plane bend (carbonyl pyramidalization), symmetric C-CO-C stretch, asymmetric
C-CO-C stretch, and C=O stretch. The dimensionless normal coordinates Qκ
corresponding to these modes are labeled in order of increasing frequency as
κ = 1, 2, 7, 12, 21 for cyclobutanone and κ = 1, 3, 8, 16, 28 for cyclopentanone.

The ab initio data used to fit the VCHAMs consisted of 1471 points for cy-
clobutanone and 1589 points for cyclopentanone calculated at the CCSD/EOM-
CCSD level of theory with a cc-pVTZ+1s1p1d basis set. The 1s1p1d set of diffuse
functions is described in Sec. A.1 of Appendix A. The ground, (n, π∗), (n, 3s),
and (n, 3p) states as well as the cationic ground state were included in the cal-
culations. The diabatic electronic states were numbered in order of increasing
energy at the Franck-Condon point as v = 1, 2, 3, 4, 5 respectively. The two
ground states were assumed uncoupled from the excited states except through
the time-dependent fields of the pump and probe pulses. Examples of the fits
obtained to the ab initio adiabatic potential energy surfaces are illustrated in
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Figs. 9.8 and 9.9. All parameters of the VCHAMs as well as the equilibrium
geometries are tabulated in Appendix A.
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(a) Ground state. (b) (n,π*) state. (c) (n,3s) state.
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Figure 9.7: Equilibrium geometries of the ground, (n, π∗), and (n, 3s) states
of cyclobutanone and cyclopentanone as obtained by CCSD/cc-pVTZ and EOM-
CCSD/cc-pVTZ+1s1p1d. Important structural differences are indicated.

9.2.2 Population Transfer Dynamics

We have performed wavepacket calculations using the VCHAMs for cyclobu-
tanone and cyclopentanone in the Multi-Configuration Time-Dependent Hartree
formalism (MCDTH). In one calculation, no time-dependent fields were included.
The initial wavepacket in the (n, 3s) state was taken as the Franck-Condon wave-
packet obtained by operating with a unit dipole operator on the ground state
wavefunction obtained by propagation in imaginary time.[225] In other calcula-
tions, either the pump field or both the pump and the probe fields of the form
given in Eq. (7.17) were included. The Condon approximation was invoked in
all cases, however, the electronic transition dipole moments calculated by linear
response CCSD were used for the transitions to the excited states induced by the
pump. For transitions from the excited states to the ground cationic state in-
duced by the probe field, the electronic transition dipole moment was set to unity.
The details of the basis sets, transition dipole moments, and fields are given in
Tabs. 9.4–9.6. To represent the ionization continuum, a sine discrete variable
representation (DVR) consisting of 151 equally spaced points from Ek = 0.0 to
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Figure 9.8: Examples of CCSD/EOM-CCSD data (◦) for cyclobutanone along
with the VCHAM fits to the ground (−), (n, π∗) (−), (n, 3s) (−), and (n, 3p) (−)
states as well as the cationic ground state (−).

1.5 eV was employed along with five single-particle functions. All calculations
used a timestep of 0.2 fs and employed the variable mean-field integration scheme
with a sixth-order Adams-Bashforth-Moulton predictor-corrector integrator and
an error tolerance of 10−8.

Fig. 9.10 presents the absorption spectra obtained from both the calculations
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Figure 9.9: Examples of CCSD/EOM-CCSD data (◦) for cyclopentanone along
with the VCHAM fits to the ground (−), (n, π∗) (−), (n, 3s) (−), and (n, 3p) (−)
states as well as the cationic ground state (−).

with and without fields. For both molecules, an intense peak is observed at a
detuning from the vertical transition frequency of ∆ω = −0.05 eV. The spectrum
is slightly more vibrationally congested in the case of cyclobutanone which is also
observed experimentally albeit to a much larger extent.[215]

The timescale for the (n, 3s)→ (n, π∗) transition is dependent on the detun-
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Table 9.4: Parameters of the pump and probe fields used in the calculations on
cyclobutanone/cyclopentanone. ∆ω indicates a possible detuning from the vertical
transition frequency (as obtained from the VCHAM).

Field ε0 / au ω / eV t0 / fs τ / fs
Pump 3.462 · 10−3 6.597/6.480 + ∆ω 0 88
Probe 7.555 · 10−3 3.520 ∆t 88

Table 9.5: Length gauge transition dipole moment, oscillator strength and polar-
ization of transitions from the ground state calculated by linear response CCSD/cc-
pVTZ+1s1p1d for cyclobutanone/cyclopentanone.

State µ / au f Pol.[a]

(n, π∗) 6.2 · 10−5/8.7 · 10−4 6.8 · 10−6/9.4 · 10−5 (x, z)/(z)
(n, 3s) 2.6 · 10−1/1.6 · 10−1 4.3 · 10−2/2.5 · 10−2 (x, z)/(x,y)
(n, 3p) 1.0 · 10−2/5.7 · 10−4 1.8 · 10−3/9.8 · 10−4 (x, z)/(z)

[a]x: ⊥ to molecular plane, y: ‖ to plane and ⊥ to C=O, and z: ‖ to plane and ‖
to C=O.

Table 9.6: Number of single-particle functions for each mode and electronic
state as well as the size of the harmonic oscillator DVR grid for cyclobu-
tanone/cyclopentanone for the calculations without fields. The corresponding val-
ues for the calculations including fields are given in parentheses if these differ.

κ Ground (n, π∗) (n, 3s) (n, 3p) Cation DVR grid
1/1 1 (3) 8 4 3 1 (3) 60/60
2/3 1 (3) 8 4 3 1 (3) 55/55
7/8 1 (3) 8 4 3 1 (3) 80/60
12/16 1 (3) 8 4 3 1 (3) 100/100
21/28 1 (3) 8 4 3 1 (3) 170/170

ing as exhibited by the (n, 3s) population decays in Fig. 9.11. A clear increase
in the rate of transition is observed upon increasing the center frequency of the
pump field from the intense peak at ∆ω = −0.05 eV to the higher energy vibra-
tional peaks in the absorption spectra. For both molecules, we observe (at least)
two components in the population decay: an initial prompt component with a
fast decay rate and a delayed component with a slower decay rate. Higher exci-
tation energy shifts the ratio of the two components towards the prompt decay
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(b) Cyclopentanone.

Figure 9.10: Absorption spectra for the (n, 3s) state. The intensity at a given
detuning (∆ω) from the vertical transition energy is given as the population of
the (n, 3s) state at t = 100 fs in a calculation with ωpu = ω + ∆ω. The black
lines indicate spectra obtained by Fourier transformation of the autocorrelation
function following a Franck-Condon excitation to the (n, 3s) state (i.e. no fields
included).

component. The ratio of the prompt to the delayed component is much larger for
cyclobutanone compared to cyclopentanone which, in addition to slower decay
rates for the latter, leads to the longer overall timescale for population decay in
cyclopentanone compared to cyclobutanone. It should be clear from Fig. 9.11(b)
that the timescale for population transfer in the simulations on cyclopentanone
is much longer than what is observed in the experiments.

The large difference in the timescale for population transfer between cyclobu-
tanone and cyclopentanone can be rationalized on the basis of the effective dia-
batic coupling between the (n, 3s) and (n, π∗) states, cf. Fig. 9.12. The following
discussion is based on the simulations excluding all fields. The effective dia-
batic coupling is calculated from Eq. (6.36) at the center of the wavepacket in
the (n, 3s) state. As mentioned previously, the modes that couple the (n, 3s)
and (n, π∗) states in cyclobutanone are Franck-Condon active which is directly
reflected in the non-zero value of the effective coupling at time zero. In cyclopen-
tanone on the other hand, the effective coupling is very small close to time zero
as the coupling modes are not Franck-Condon active. As the system evolves, in-
ternal vibrational energy redistribution (IVR) in the (n, 3s) state induced by the
third-order intra-state coupling terms of the VCHAM will transfer energy to the
coupling modes on a 15–20 ps timescale, cf. Fig. 9.13(b). IVR is thereby respon-
sible for the gradual increase in the effective coupling observed in Fig. 9.12(b).
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(a) Cyclobutanone.

0 25 50 75 100

10
−1

10
0

Time / ps

N
o
rm

a
li
ze
d
(n
,3
s)

P
o
p
u
la
ti
o
n -0.075 eV

-0.050 eV
-0.025 eV
0.000 eV
0.025 eV
0.050 eV
0.075 eV
0.100 eV
0.125 eV
0.150 eV
0.175 eV
0.200 eV
0.225 eV
0.250 eV
0.275 eV
0.300 eV
FC

(b) Cyclopentanone.

Figure 9.11: Population of the (n, 3s) state following excitation by a pump pulse
with center frequency at different detunings (∆ω) from the vertical transition fre-
quency as well as for the Franck-Condon (FC) excitation. The population has been
normalized at t = 100 fs in all cases.

Fourier transformation of the effective coupling reveals which modes are im-
portant in modulating the population transfer, cf. Fig. 9.14. In cyclobutanone,
the dominating contributions are linear in the ring-puckering (peak at ∼0.03 eV)
and C=O out-of-plane bend (∼0.07 eV) modes. The symmetric C-CO-C stretch
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(b) Cyclopentanone.

Figure 9.12: Effective diabatic coupling between the (n, π∗) and (n, 3s) states.
Notice the different scaling of the ordinate axis for cyclobutanone and cyclopen-
tanone.
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Figure 9.13: Amplitudes of the oscillations of the coordinate expectation values
in the (n, 3s) state.

(∼ 0.11 eV) and C=O stretch (∼ 0.19 eV) have a smaller effect on the coupling.
In cyclopentanone, the situation is markedly different. On the short timescale,
the coupling is mostly modulated by the breathing motion of the wavepacket in
the asymmetric C-CO-C stretch mode (∼ 0.25 eV). On a longer timescale, the
coupling is mostly modulated by combined motion in the ring-puckering and the
asymmetric C-CO-C stretch modes (∼ 0.05, ∼ 0.10, and ∼ 0.15 eV). Although
cyclobutanone and cyclopentanone exhibit significantly different behavior, the
involvement of low-frequency modes in modulating the effective coupling is a
common trait as expected from experiment. However, it should be noted that
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the very low vibrational frequencies observed in the experiments are not repro-
duced by the calculations.
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Figure 9.14: Fourier transform of the effective diabatic coupling between the
(n, π∗) and (n, 3s) states. A low-pass filter has been applied to filter out noise
from the spectrum.

The difference of timescales covers two significantly different dynamical pic-
tures which to a large extent hinge on the electronic state symmetries of the
two molecules: one direct and one indirect mechanism of population transfer. In
cyclobutanone, the direct picture is prominent which results from initial motion
in the reactive coupling modes. For cyclopentanone, the reactive coupling modes
are not activated initially, and the indirect picture is most prominent. In this
picture, the energy is initially deposited in non-reactive modes and a bottleneck
in phase space results in a large component of delayed population decay as IVR
is necessary for mediating the transfer of energy to the reactive modes. This
energy transfer occurs on a 15–20 ps timescale, and as the population transfer
occurs on a longer timescale ergodic behavior is approached.

9.2.3 Time-Resolved Photoelectron Spectra

We have calculated the time-resolved photoelectron spectra for cyclobutanone
and cyclopentanone. For cyclobutanone, the calculated spectra at two different
values of the detuning are compared to the experimental spectrum in Fig. 9.15.
The spectra are constructed from separate calculations each employing a different
value of ∆t, i.e. the pump-probe delay, with a 25 fs spacing. The dependence of
the timescale of population transfer on the detuning is reflected in the energy-
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integrated spectra in Fig. 9.16. This figure also exhibits the correlation between
the (n, 3s) population and the intensity of the photoelectron band assumed in
the interpretation of the experimental data. The good correspondence between
calculated and experimental spectra allow us to believe that the essential features
of the dynamics have been captured by the reduced-dimensional model employed.
However, we do not observe the spectral oscillation of the photoelectron band as
was observed in experiment.

(a) Calculated spectrum, ∆ω = −0.05 eV (b) Calculated spectrum, ∆ω = 0.05 eV

(c) Experimental spectrum.
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(d) Time-integrated spectra.

Figure 9.15: (a)–(c) Experimental and calculated, for two different values of the
detuning, time-resolved photoelectron spectra of cyclobutanone. The calculated
spectra have been shifted by -0.28 eV. (d) Time-integrated spectra. The experi-
mental spectrum has been smoothed by a moving average filter with a resolution
of 0.01 eV corresponding to the energy resolution of the calculated spectra.

For cyclopentanone, the spacing in the value of ∆t between the separate
calculations making up the calculated spectrum ranges from 25 to 500 fs.[a] The

[a]For ∆t ≤ 15 ps. For ∆t > 15 ps, the spacing is 5 ps.
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spectral width of the (n, 3s) photoelectron band is reproduced by the calculations,
but due to the significantly slower population decay in the simulations compared
to experiment, the decay of the band is not captured by the calculated spectrum,
cf. Fig. 9.17.
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Figure 9.16: Experimental and calculated, for two different values of the detun-
ing, energy-integrated spectra of the (n, 3s) photoelectron band of cyclobutanone.
The dashed lines indicate the (n, 3s) population from the simulations.

9.3 Conclusion

Using a set of seven cycloketones as model system, we have revealed several salient
features of the complex process of internal conversion. Most conclusions derive
from the observation that the process leading to transition from one electronic
state to another, and, thereby, to the transformation of electronic energy into
vibrational energy, is inherently localized – only one or a few vibrational modes
factor in. As observed experimentally, merely by small structural variations, the
vibrational frequency and the energy available in the upper excited state can be
affected thereby tuning the rate of internal conversion over a range of more than
an order of magnitude. A lower frequency and a larger available energy result
in a faster process as the molecule can reach a configurational space in closer
proximity of the crossing point between the excited states. The total density of
vibrational states plays a smaller secondary role as an increase in this only leads
to a very slight increase in the overall rate. In contrast to the standard energy
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(a) Calculated spectrum, ∆ω = −0.05 eV (b) Experimental spectrum.
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(c) Time-integrated spectra.
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Figure 9.17: (a)–(b) Experimental and calculated time-resolved photoelectron
spectra of cyclopentanone. The calculated spectrum has been shifted by -0.23 eV.
(c) Time-integrated spectra. The experimental spectrum has been smoothed by
a moving average filter with a resolution of 0.01 eV corresponding to the energy
resolution of the calculated spectrum. (d) Energy-integrated spectra of the (n, 3s)
photoelectron band. The dashed lines indicates the (n, 3s) population from the
simulation.

gap laws that neglect the nuclear dependence on the electronic coupling,[217,218]

our results clearly show the effect of coherent nuclear motion on these matrix
elements.

The effect of nuclear motion on the electronic coupling is also exhibited in
the wavepacket simulations on cyclobutanone and cyclopentanone. In these cal-
culations, it is noticeable that low-frequency modes play a central role in both
molecules as also conjectured on the basis of the experimental results. However,
for cyclopentanone the C-CO-C asymmetric stretch mode also factors in to a
significant degree in the simulations. Whereas the time-resolved photoelectron
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spectrum of cyclobutanone can be very well reproduced from the wavepacket
simulations, this is not the case for cyclopentanone. This discrepancy is likely
due to the restriction of the VCHAM to five modes. Other modes not included
could enhance the rate of IVR into one specific or several reactive coupling modes
resulting in a faster rate of population transfer for cyclopentanone in closer agree-
ment with experiment.





Chapter 10

The Cyclopentadienes

Molecules possessing π electrons play a central role in organic photochemistry
and photophysics.[204] In the previous chapter, we encountered examples of such
molecules all containing the carbonyl chromophore. In this chapter, we will focus
on non-aromatic molecules containing carbon-carbon double bonds, i.e. alkenes.
Alkenes participate in a plethora of reactions induced by light such as photo-
isomerization,[226–233] electrocyclic ring opening and closing,[234–245] sigmatropic
rearrangement,[246–248] and cycloaddition.[249,250]

The rich set of photoinduced phenomena exhibited by alkenes is a consequence
of the complex nature of the excited states of π electron systems and conjugated
systems in particular. This is evident even in the simplest case of ethylene where
the lowest excited state can have different character at the Franck-Condon point
and twisted geometries.[251] For polyenes, the picture is even more complicated
due to the presence of a low-lying electronic state with a large doubly excited
character.[252] Due to the optically dark nature of this state it often eludes direct
observation, however, it is well established that it plays a significant role in the
photochemistry of polyenes with more than three conjugated double bonds.[252]

In between the distinct ethylene and the longer polyenes, the role of the dou-
bly excited state in the dienes is more subtle. In the case of molecules with the
two double bonds in a trans-configuration with respect to the connecting single
bond, i.e. s-trans-dienes, cf. Fig. 10.1, numerous studies have investigated the
state ordering of the bright (π, π∗) state and the doubly excited state.[253–259]

Both experimental and theoretical studies suggest that the doubly excited state
plays a significant role in the initial dynamics following excitation to the bright

95
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state giving the s-trans-dienes some of the characteristics of the longer polyenes.
However, the longer time dynamics resemble those of ethylene.[260] In the case of
s-cis-dienes and cyclopentadienes in particular, numerous experimental studies
have investigated the low-lying valence states,[261–264] but only few have alluded
to a discussion of the spectral position of the doubly excited state.[265,266] Despite
the inability to directly locate this dark state by absorption spectroscopy, sev-
eral time-resolved mass spectrometry and photoelectron spectroscopy (TRPES)
studies have invoked the state to explain the dynamics observed upon excitation
to the bright (π, π∗) state.[248,267,268]

(a) (b) (c) (d) (e)

Figure 10.1: Structures of (a) s-trans-butadiene, (b) s-cis-butadiene, (c) cy-
clopentadiene (CPD), (d) 1,2,3,4-tetramethylcyclopentadiene (Me4CPD), and (e)
hexamethylcyclopentadiene (Me6CPD).

In the following, we attempt to unravel the dynamics of three cyclopenta-
dienes, cyclopentadiene (CPD), 1,2,3,4-tetramethylcyclopentadiene (Me4CPD),
and hexamethylcyclopentadiene (Me6CPD), following excitation to the bright
(π, π∗) state by use of Ab Initio Multiple Spawning (AIMS). In all calculations,
the electronic structure is calculated for cyclopentadiene, and the methylated
species are approximately treated in the dynamics simulations by setting the mass
of the substituted hydrogens to that of a methyl group. The observed dynamics
are discussed in light of the dynamics of ethylene and other polyenes in particular
the similar s-trans-butadiene. Finally, we relate the results to experimental data
from TRPES by direct calculation of spectra by use of the perturbative method
described in Sec. 7.1. This chapter is closely based on III and IX.

10.1 Electronic Structure

The two lowest valence excited states in cyclopentadiene are dominated by π →
π∗ and π2 → (π∗)2 promotions at the Franck-Condon geometry. These states
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are termed V1 and V2 in Mulliken notation,[a] and we will retain these labels as
diabatic state labels referring to the electronic character whereas S1 and S2 will
be strictly adiabatic labels.[269] The doubly excited character of V2 can be under-
stood as arising from excitation of each ethylene unit to its lowest triplet state but
spin-coupled to an overall singlet.[270] Our MS-MR-CASPT2/6-31G(d,p)[271,272]

calculations use an active space of four electrons distributed in four orbitals, the
two π and the two π∗ orbitals, with state averaging over the ground and the lowest
two excited states. A level shift of 0.2 Hartrees was employed. Using this method,
the vertical transition energy to the S1 state is 5.46 eV in very good agreement
with the best estimate of 5.43± 0.05 eV found from a combination of high-level
theoretical methods and spectroscopic simulations[273] and in the range 5.19–6.46
eV determined using various high-level electronic structure methods.[274–279] The
calculated vertical value is slightly different from the spectral position of the band
maximum of 5.17–5.33 eV found from experiment.[261–263,265,268] Similarly, we
find the vertical excitation energy to the S2 state to be 6.51 eV, a value which falls
in between previous calculated values of 6.31–7.05 eV[274,275,277–279] and slightly
above the value of 6.2 eV suggested on the basis of experimental results.[265] This
state possesses a large doubly excited character of ∼50%.

Resonance Raman depolarization ratios suggest that the minimum of V2 lies
below that of V1, and a conical intersection connecting these two states is thus
expected.[266] We indeed locate a minimum energy conical intersection (MECI)
between S2 and S1 which furthermore corresponds to the minimum energy con-
figuration on the S2 potential energy surface located in this work. This S2S1

MECI is akin to the crossing of two non-interacting diabatic states – one similar
in character to V2 and one similar to V1. We have also located three MECIs
connecting S1 with the ground state on the same intersection seam. Two of these
MECIs result primarily from twisting of a single double bond and are therefore
termed ethylene-like and referred to as eth1 and eth2. The last MECI results
from a disrotatory mechanism where both double bonds twist to some degree
and is thus termed dis. The eth1 MECI is the lowest energy configuration on
the S1 potential energy surface located in this work. The three S1S0 MECIs
correspond to the crossing between a state somewhat similar in character to V1

and the ground state – the first being ionic in character with charge separation
[a]Strictly, the V labels of Mulliken refer to singly excited configurations, however, the V2

state mixes with a higher lying doubly excited configuration to attain partial doubly excited
character, and we use the V2 label to refer to this state and character.
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between the two carbons of the double bonds (larger charge separation for the
most twisted double bond) and the second being of a more diradicaloid charac-
ter. However, the ∼ 25% doubly excited character of the first state is an order
of magnitude larger than what is found for the S1 state at the Franck-Condon
geometry. The geometries of the four MECIs are depicted in Fig. 10.2.

(a) eth1 MECI (b) eth2 MECI (c) dis MECI (d) S2S1 MECI

-2.064 eV -2.025 eV -2.016 eV -0.636 eV

Figure 10.2: Geometries of the four MECIs viewed from two different angles
along with the relative energy of the S1 state with respect to the energy at the
Franck-Condon point. All four MECIs are energetically accessible after excitation
to the S1 state.

As indicated in Fig. 10.2, all four MECIs are energetically accessible after
excitation to the S1 state, and there are no barriers on the path from the Franck-
Condon geometry to either MECI (cf. Fig. B.1 in Appendix B). Furthermore,
all MECIs have a peaked geometry in the branching space (cf. Fig. B.2 in Ap-
pendix B) which leads us to expect very fast non-adiabatic transitions. On the
other hand, it is not a priori possible to determine whether the molecule visits the
part of the S1 potential energy surface that can be directly associated with the V2

state and what role this latter state plays in the dynamics following excitation.

10.2 Dynamics Simulations

The details of the AIMS simulations are summarized in Tab. 10.1. The final
time was chosen long enough to capture the essential dynamics on the excited
states and to determine the timescales for population transfer. In cases where all
population (>99%) had been transferred to the ground state before the final time
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was reached, the calculation was stopped as our focus inhere is on the excited state
dynamics and timescale of non-adiabatic transfer and not on possible thermal
reactions taking place on the vibrationally hot ground electronic state.

Table 10.1: Details of the AIMS simulations for CPD/Me4CPD/Me6CPD.

Initial conditions 0 K Wigner distribution of the har-
monic ground vibrational state[280]

Initial trajectories 40
Total trajectories 179/212/205
Timestep / fs 0.387 (adaptive)
Total time / fs 190/240/290
Integrator CM Velocity-Verlet
Integrator QM Adaptive second-order Runge-Kutta

10.2.1 Setting the Timescale of Population Transfer

The S1 population decays in Fig. 10.3 reveal that all three molecules undergo full
population transfer from the initially excited S1 state back to S0 on a sub 300 fs
timescale. Very few spawning events from S1 to S2 are observed, and the total
population transfer to S2 is <0.1% for all three molecules.

The onset of population decay is preceded by a delay period tin – the so-called
induction time.[157,281] In the case of CPD, this period is ∼ 25 fs whereas it is
∼ 32 fs for Me4CPD and ∼ 106 fs for Me6CPD. To quantify the timescale of
the subsequent population transfer, we determine the half-life τ1/2 defined as the
time it takes the S1 population to reach 0.5 following the induction period. As
an alternative, we fit an exponential model

P (t) = Θ(t− t0) exp[−(t− t0)/τ ] + Θ(t0 − t) (10.1)

to yield a time t0 similar in nature to the induction period and a time constant
τ for the exponential decay. The sets of two timescales determined by these two
methods are collected in Tab. 10.2. The results are in line with the observation
from experiments of a slow-down of the dynamics upon methylation of CPD.[268]

The following discussion will explore the background for these observed timescales
and their differences.
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Figure 10.3: Population of the S1 state with standard deviations from boot-
strapping indicated by the shaded regions. The fitted exponentials decays are also
given.

Table 10.2: Timescales for the S1 population decay in CPD, Me4CPD, and
Me6CPD (in fs) determined as either the induction time and the half-life or from
a fitted exponential decay model.

Molecule tin τ1/2 t0 τ

CPD 25 28 31± 2 25± 2
Me4CPD 32 88 80± 7 52± 2
Me6CPD 106 43 108± 3 55± 8

10.2.2 Nuclear Dynamics

The initial dynamics following excitation to the S1 state are in all three molecules
characterized by significant in-plane nuclear motion as is common in conjugated
molecules exemplified by s-trans-butadiene.[260] The promotion of an electron
from a bonding π orbital to an antibonding π∗ orbital leads to an elongation
of the double bonds in conjunction with a contraction of the connecting single
bond. This nuclear motion can be quantified by the bond alternation coordinate
defined as the sum of the double bond lengths minus the length of the connecting
single bond. The time evolution of the nuclear wavepacket density in the S1 state
for this coordinate is given in Fig. 10.4(left). A significant in-plane distortion is
observed by the fast increase in the expectation value of the coordinate over the
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first ∼ 15 fs before oscillatory motion around the new equilibrium ensues after
∼25 fs. At this time, the in-plane motion towards the S1S0 MECIs is completed.
The value of the bond alternation coordinate at the eth1 MECI is given by the
dashed lines in Fig. 10.4(left). The value of the coordinate for the other MECIs
can be found in Tab. B.5 in Appendix B. It is evident that the in-plane motion
is not the source of the different timescales observed for the population transfer
between S1 and S0 in the three molecules.

In conjunction with in-plane nuclear motion, out-of-plane motion is also ob-
served although this occurs on a longer timescale due to the low-frequency modes
involved. Although the timescale for torsion in the carbon backbone differs be-
tween CPD and the methylated molecules, it does not distinguish Me4CPD from
Me6CPD, cf. Fig. 10.4(right). In addition to distortion in the ring structure,
the MECI geometries depicted in Fig. 10.2 are also characterized by a significant
twist of one (or both in the case of the dis MECI) of the double bonds leading
to the out-of-plane bend of the CX2 group. X refers to a hydrogen for CPD
and Me4CPD and a methyl group in the case of Me6CPD. The time evolution
of the wavepacket density projected onto the double bond twist and CX2 bend
coordinates are given in Fig. 10.5. These coordinates are observed to be highly
correlated. The timescale for out-of-plane motion in CPD is significantly shorter
than that for the methylated species, and a clear distinction can also be observed
between Me4CPD and Me6CPD. These timescale differences entail that the po-
tential energy surface in the vicinity of the MECIs, where the coupling between
S1 and S0 is large, is visited earlier by a larger part of the S1 population for CPD
compared to Me4CPD and for Me4CPD compared to Me6CPD. This results in
a decreasing rate of non-adiabatic transition in the order CPD > Me4CPD >
Me6CPD.

From the spawning events, we can assign population transfer to one of the
S1S0 MECIs by using the spawning geometries as starting points for optimization
of S1S0 MECIs. This procedure reveals a bifurcation on the S1 state for CPD with
71% of the population transfer being attributable to the eth1 MECI and 27% to
eth2 MECI. A very small part of the population transfer, 2%, can be assigned
to the dis MECI. In the case of the methylated species, 73% and 98% can be
attributed to the eth1 MECI and 27% and 2% to the eth2 MECI for Me4CPD and
Me6CPD respectively. The slowdown of the dynamics in the methylated species
apparently allows for a larger part of the S1 population to reach the vicinity of the
eth1 MECI, the lowest energy S1S0 MECI, before population transfer proceeds.
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Figure 10.4: Left: projection of the nuclear wavepacket density in the S1 state
onto the bond alternation coordinate and right: projection onto the backbone
torsion coordinate. The solid black line indicates the expectation value whereas
the dashed line indicates the value of the coordinate at the eth1 MECI.
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Figure 10.5: Left: projection of the nuclear wavepacket density in the S1 state
onto the C=C twist coordinate and right: projection onto the CX2 bend coordi-
nate. The solid black line indicates the expectation value whereas the dashed line
indicates the value of the coordinate at the eth1 MECI.

10.2.3 Electronic Dynamics

Having discussed the nuclear dynamics, we turn our attention to the electronic
character of the states involved. For the s-trans-dienes, the two lowest excited
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states are close in energy at the Franck-Condon geometry. In the case of s-trans-
butadiene, an ultrafast exchange of electronic character between S1 and S2 takes
place within the first 5 fs subsequent to excitation to the bright state.[260] This
exchange of electronic character is reflected by a change in the transition dipole
moment between S0 and the excited states such that the initially bright S1 state
becomes dark, and the initially dark S2 state becomes bright. The change of
character is unambiguous for s-trans-butadiene. In the case of CPD (and simi-
larly for Me4CPD and Me6CPD), the two lowest excited states are separated to
a larger extent at the Franck-Condon geometry with a calculated energy splitting
of 1.05 eV. At this geometry, the diabatic labels V1 and V2 were unambiguously
assigned to the adiabatic states in Sec. 10.1 based on the electronic configura-
tions. The transition dipole moments to S0, calculated to be 2.81 D in the case of
S1 and 0.29 D in the case of S2, also reflect this character of the states. Fig. 10.6
exhibits the time evolution of the ratio of the squared transition dipole moments.
For all three molecules, the ratio starts out >10 (the value is ∼100 at the Franck-
Condon geometry), however, it drops within the first 10 fs to ∼ 3. Thus, it is
apparent that there is a mixing of the electronic character, and an unambiguous
assignment to bright and dark (or equivalently to V1 and V2) of the two adiabatic
states S1 and S2 is not possible at later times. The change in character of the
adiabatic states is closely related to motion in the backbone torsion coordinate.

It has been observed for s-trans-butadiene that charge-transfer states play
an essential role in the excited state dynamics.[260] In s-trans-butadiene, charge
separation occurs on the S1 state and is preceded by twisting of a single methylene
unit akin to the twist of a single double bond in the cyclopentadienes. However,
in the latter group of molecules, the torsional motion is frustrated due to the ring
structure, and the twist does not reach the extremum corresponding to a complete
90◦ twist as is observed in s-trans-butadiene. As a consequence, a significantly
smaller degree of charge separation across the double bonds is observed in the
cyclopentadienes.

10.3 The Excited State Reaction Mechanism

Having established the nuclear dynamics leading to the non-adiabatic transition
between S1 and S0 and the electronic character of the states involved, a complete
picture of the excited state dynamics emerges. The dynamics are schematically
summarized in Fig. 10.7. At the Franck-Condon geometry, the S1 and S2 states
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Figure 10.6: Histogram of the av-
erage of the squares of the transition
dipole moments between S0 and the
two excited states S1 and S2. The
histograms have been convoluted by a
Gaussian of width 1.0 in the ordinate
for ease of representation. The black
lines indicate the average values.

can clearly be identified as the bright V1 and dark V2 states respectively. Sub-
sequent to excitation, initial nuclear motion primarily along in-plane modes, but
to some extent also along out-of-plane modes, takes the molecules out of the
Franck-Condon region in ∼ 25 fs. As a consequence of this nuclear motion, the
electronic character of the excited states mixes significantly, and an unambigu-
ous assignment of diabatic labels to the adiabatic states S1 and S2 is no longer
possible. After the initial nuclear motion, primarily out-of-plane motion takes
the molecules towards the S1S0 MECI geometries. This motion involves twist-
ing of the double bonds very similar to what is observed for s-trans-butadiene
and the smaller ethylene. Although the two ethylene-like S1S0 MECIs, to which
most population transfer can be assigned, primarily result from twisting of only
one double bond, the spawning geometries reveal a slight disrotatory mechanism
where some twisting also occurs around the other double bond. For the spawn-
ing geometries, the difference in twist of the two double bonds falls somewhere
in between that for the ethylene-like S1S0 MECIs and the dis MECI. The out-
of-plane motion is slowed down in Me4CPD and Me6CPD compared to CPD
due to the inertia of the methyl substituents. This targeted substitution and the
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consequential slowdown in the population transfer truly exhibits the localized
nature of the dynamics – the double bond twist is the primary degree of freedom
of importance.
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Figure 10.7: Schematic summary of the excited state dynamics in the cyclopen-
tadienes following excitation to S1. 1 The initial dynamics taking the molecules
out of the Franck-Condon region primarily involve motion along in-plane modes,
but in particular for CPD, out-of-plane motion also occurs. This motion leads to
a mixing of the electronic state character of S1 and S2. 2 Subsequent motion
primarily along out-of-plane modes takes the molecules to the vicinity of the S1S0
MECIs wherefrom population transfer back to S0 proceeds. A slight bifurcation
between the two ethylene-like MECIs is observed, and in the case of CPD, a very
small part of the population transfer can also be associated with the dis MECI.

10.4 Time-Resolved Photoelectron Spectra

On the basis of the dynamics simulations, two timescales of importance have been
identified – one timescale during which nuclear motion takes place only on the
initially excited state with the molecule moving away from the Franck-Condon re-
gion and one timescale for the non-adiabatic transfer back to the ground state. By
use of TRPES, two timescales have also been identified in experimental data.[268]

To be able to make a direct comparison to experiment, time-resolved photoelec-
tron spectra were calculated on the basis of the simulated dynamics. The two
lowest cationic states were included in the calculations, and a Gaussian window
function of width 0.10 eV was used in conjunction with τxc = 160 fs and a probe
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energy of ωpr = 3.87 eV unless otherwise specified. The shifts employed were
∆(S1,D0)

CPD = −0.46 eV and ∆(S1,D0)
Me4CPD = 0.39.

Fig. 10.8 shows a comparison between the calculated and the experimental
spectrum of CPD. The calculated spectrum is a sum of the spectrum calculated
for ionization by one probe photon and that for ionization by a photon of twice
the frequency of the probe photon to approximately treat two-probe-photon ion-
ization. For the calculation of the latter spectrum, the Condon approximation
was invoked. The relative maximum intensities of the one-photon and two-photon
spectra were fixed at 20 following experimental findings.[268] Both the calculated
and the experimental spectrum exhibit a band < 0.5 eV centered near time zero
due to one-photon ionization and a broad delayed band due to two-photon ion-
ization. Thus, it is evident that the present simulation is able to qualitatively
reproduce the experimental spectrum, however, the timescales from the simula-
tion are shorter than those obtained from the experimental spectrum of 39 and
51 fs.[268]

Both bands of the calculated spectrum are observed to originate from ioniza-
tion out of the S1 state. The disappearance of the low-energy one-photon band
is a consequence of a fast increase in ionization potential from S1 to D0, the
ground state of the cation, when the molecule leaves the Franck-Condon region
and slides down the potential energy surface. It is thus the energetic factor of
Eq. (7.14) that leads to the decay of the low-energy band by effectively closing
the one-photon probe window. Through two-photon ionization, another probe
window is open further down the potential energy surface resulting in the band
centered at a kinetic energy of 1.9 eV. This window stays open longer than the
one-photon window until population decay back to the ground state finally leads
to the decay of the band.

To better follow the dynamics, an ideal experiment could be constructed by
using shorter pulses and a higher frequency probe. One possibility is to use
ωpr = 6.10 eV as the absorption coefficient for CPD at this energy is relatively
low such as to avoid probe-induced dynamics in an experiment.[265] The calcu-
lated spectrum of CPD using this probe energy with τxc = 20 fs is exhibited
in Fig. 10.9. The appearance of the spectrum can be rationalized using the
schematic in Fig. 10.10. The relatively narrow wavepacket formed in the S1 state
by the excitation process gives rise to an intense band between 2.0 and 2.5 eV. On
its way down the S1 potential energy surface, the wavepacket spreads somewhat
giving rise to a more diffuse band between 1.0 and 2.0 eV the center of which red-
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(a) Calculated spectrum.

(b) Experimental spectrum.

Figure 10.8: Time-resolved photoelectron spectra of CPD. The experimental
spectrum is based on data published in Ref. 268 which were obtained using ωpu =
5.19 eV, ωpr = 3.87 eV, and τxc = 160 fs. The spectra have been multiplied by a
factor of 20 in the region above 1.0 eV.

shifts with time. At the bottom of the S1 potential energy surface near the S1S0

MECIs, recurrences of the wavepacket give rise to an intense band between 0.0
and 1.0 eV. In this band, reminiscence of vibrational structure can be observed
reflecting the coherent out-of-plane motion of the molecule.

Fig. 10.11 shows a comparison between the calculated and experimental spec-
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Figure 10.9: Time-resolved photoelectron spectrum of CPD. The spectrum was
calculated using τxc = 20 fs and ωpr = 6.10 eV.

trum of Me4CPD. The features of the calculated spectrum can qualitatively be
explained by the model in Fig. 10.10 similar to the previous spectrum for CPD.
The correspondence between the calculated and experimental spectrum is not as
good as in the case of CPD which could be expected as the calculated spectrum
is based on the electronic structure of CPD and not Me4CPD. In particular, the
initial peak at the onset of excitation is less intense in the experimental spectrum.
The discrepancy between the spectra at energies < 0.15 eV is most likely due to
the insensitivity of the experiment to very low-energy electrons. Similar to the
case of CPD, the combined timescales from the simulation are slightly shorter
than those obtained from the experimental spectrum of 68 and 76 fs.[268]

10.5 Conclusion

The dynamics of the cyclopentadienes are truly in between those of ethylene and
the poylenes. The initial dynamics following excitation to the S1 state are similar
to the polyenes with a large chance in the bond alternation coordinate in the di-
rection of the gradient at the Franck-Condon geometry. At longer times, symme-
try breaking due to out-of-plane motion leads to localization of the dynamics on
primarily one of the ethylene units as the molecule moves towards the ethylene-
like conical intersections connecting S1 with S0. This out-of-plane motion is
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Figure 10.10: Final scheme for qualitatively explaining the appearance of the
time-resolved photoelectron spectra. 1 The narrow wavepacket subsequent to
excitation gives rise to an intense band at high energy, 2 the spreading wave-
packet on its way down the potential energy surface gives rise to a diffuse band
at intermediate energies, and 3 recurrences of the wavepacket near the bottom
of the S1 potential energy surface gives rise to an intense band at low energies.
Depending on the probe energy and the ionization potential of the molecule, the
ionization process can be cut-off as the wavepacket moves down the S1 potential
energy surface.

induced by a negative curvature along out-of-plane modes at the Franck-Condon
geometry. The non-ergodicity of the dynamics is exhibited by the significant slow-
down of the non-adiabatic population transfer upon methyl substitution which
primarily affects the out-of-plane motion. As the methyl groups are only approx-
imately treated by changing the mass of the pertinent hydrogens, the slowdown
observed in the dynamics is truly a kinematic effect and cannot be explained by
a statistical theory or a change in the electronic structure.

Although dynamics on the doubly excited V2 state are not directly observed
in the simulations, this state does play a role in the dynamics. The mixing of the
electronic character of the V1 and V2 states in the adiabatic S1 and S2 states, i.e.
due to the coupling between the S1 and S2 states, results in a low-energy seam
of conical intersections between the S1 and S0 states where the former state has
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(a) Calculated spectrum.

(b) Experimental spectrum.

Figure 10.11: Time-resolved photoelectron spectra of Me4CPD. The experimen-
tal spectrum is based on data published in Ref. 268 which were obtained using
ωpu = 5.19 eV, ωpr = 3.87 eV, and τxc = 160 fs.

partially doubly excited character. V2 is thus implicitly involved in the ultrafast
dynamics observed in the cyclopentadienes.

The coupled electronic and nuclear dynamics in the cyclopentadienes is ex-
hibited in the time-resolved photoelectron spectra. However, it is also clear that
features in the spectra which at first glance are attributed to non-adiabatic dy-
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namics are indeed due to a closing probe window. By using a higher frequency
probe, one should be able to follow the full dynamics on the S1 potential energy
surface and more directly determine a timescale for the S1 → S0 transition from
experiment.



Chapter 11

Dithiane

The disulfide bond seemingly represents a case where photochemistry efficiently
competes with energy dissipation by internal conversion. It is well-recognized
that upon the absorption of light a disulfide bond will cleave leaving two free
radicals.[282] This process has been observed to occur on a sub ps timescale.[283]

Despite this photolability, the disulfide bond formed by the oxidation of two
cysteine amino acids is an important factor in determining the tertiary structure
of proteins along with hydrogen bonding and hydrophobic interactions.[284] For
the disulfide bond to prevail, the radicals formed by the bond cleavage must
be confined such as to allow for recombination and thereby reformation of the
disulfide bond. In solution, the solvent shell surrounding radicals formed by the
photocleavage of a disulfide bond has been argued to provide such confinement,
but a quantum yield of 30% is still observed in some cases.[283,285–287] In the case
of proteins, this raises the question whether other parameters such as intrinsic
cyclic structural motifs in the tertiary structure could play a decisive role in
funneling the disulfide back to the ground state by internal conversion. We have
inhere focused on the cyclic molecule dithiane as a model compound for such
a structural motif, and we will focus on the dynamics unfolding subsequent to
excitation to the S1 state. This chapter is based on V.

S
S

S
S

S
S

Scheme 11.1: Photolytic cleavage of the S-S bond in dithiane.
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11.1 Electronic Structure

The lowest two singlet excited states of dithiane derive from promotion of an
electron from a lonepair at either one of the two sulphur atoms to an antibonding
orbital of the S-S bond. Due to the interaction between the two sulphur atoms,
these states are not degenerate but are split at the Franck-Condon geometry
by 1.0 eV according to our SA-3-CAS(10,8)SCF/6-31G(d,p) calculations. These
calculations employ an active space of the eight orbitals shown in Fig. 11.1 which
includes σ∗ orbitals to describe possible S-C and S-S bond breakage.

(a) σSC (b) σSC (c) σSS (d) n

(e) n (f) σ *SS (g) σ *SC (h) σ *SC

Figure 11.1: The eight orbitals included in the SA-3-CAS(10,8)SCF calculations
in order of increasing energy.

The linearly interpolated S1 potential energy surface connecting the Franck-
Condon geometry with the S1 minimum reveals no barriers on the very steep
surface. At the S1 minimum, the S-S bond is extended by 1.5 Å to 3.6 Å, cf.
Fig. 11.2. Thus, without any opposing force due to confinement, the bond would
readily dissociate forming the diradical species. As the S-S bond elongates, the
interaction between the two sulphur atoms decreases, and the S1 and S2 states
become almost degenerate. Near the minimum of the S1 potential energy surface,
we have located a minimum energy conical intersection (MECI) connecting S1

with the ground state. The geometries of the S1 minimum and the S1S0 MECI are
closely related as only a slight torsion of the -CH2S• moieties can take one into the
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Figure 11.2: Adiabatic potential energy surfaces for the three lowest singlet states
of dithiane. The structures have been linearly interpolated in internal coordinates
from the S0 minimum to the S1S0 MECI and from the latter to the S1 minimum.

other, cf. Fig. 11.3. This proximity of the two points on the S1 potential energy
surface gives rise to the sloped geometry of the MECI illustrated in Fig. 11.4.
Thus, once the molecule starts moving towards the S1 minimum, the region
near the conical intersection will also be visited. If nuclear motion restricts the
molecule to the vicinity of this region of large coupling, the molecule should be
able to return to the ground state and reform the S-S bond avoiding diradical
formation. Such nuclear motion is exactly revealed by the data obtained from
time-resolved mass spectrometry (TRMS).

11.2 Time-Resolved Mass Spectrometry

The time in the vicinity of the MECI necessary for efficient transfer back to the
ground state is provided by the cyclic structure of the molecule. The timescale for
activating modes that lead to the unfolding of the carbon chain and thereby di-
radical formation follows that of internal vibrational energy redistribution. This
timescale is generally on the order of several ps and longer giving the molecule
amble time to return to the ground state and reform the S-S bond. Upon exci-
tation to the S1 state, the elongation of the S-S bond is accompanied by torsion
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(a) S1 minimum.
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(b) S1S0 conical intersection.

Figure 11.3: Geometries of dithiane with important structural parameters indi-
cated. (a) The normal mode displacement vector for the lowest frequency vibra-
tional mode is indicated by arrows on the lower structure.
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Figure 11.4: MECI between the S1 and S0 states in the branching space of
the scaled derivative coupling and gradient difference vectors. The intersection is
observed to be sloped with an adjacent local minimum on the S1 surface.
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in the carbon backbone which leads to a scissoring motion of the sulphur atoms.
This motion is directly observed in the temporal evolution of the ion current
of the m/z = 55 fragment of dithiane presented in Fig. 11.5. In the TRMS
experiments, dithiane was excited to the S1 state by a 110 fs pulse at 284 nm
and probed at a later time by a 400 nm pulse of similar time duration.[a] When
the sulphur atoms are in close proximity, the ionization of dithiane is enhanced
giving rise to a peak in the ion current as a positive charge on one of the sulphur
atoms can be stabilized by the lone pair on the other. When the sulphur atoms
are far a part, this stabilization is absent, and ionization is suppressed given rise
to a trough in the ion current.
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Figure 11.5: Temporal evolution of the ion current for the m/z = 55 fragment
of dithiane (◦) along with the modulated sequential biexponential fit (−). Also
shown is the individual components of the fit: first exponential decay (−), second
exponential decay (−), and oscillatory component (−).

The fit to the temporal evolution of the ion current reveals that the S1 min-
imum is reached within < 200 fs as given by the initial 177 ± 17 fs decay cor-
responding to the S-S bond stretch. The oscillatory component of the signal
has a period of 411 ± 27 fs which is nearly identical to the period of the lowest
vibrational mode in the S1 minimum as calculated by a harmonic normal mode
analysis to be 416 fs. This mode involves torsion in the carbon backbone which
results in the -CH2S• moieties moving relative to one another as indicated in
Fig. 11.3(a). This is exactly the motion that connects the S1 minimum with

[a]The author did not take part in conducting the experiments.
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the MECI, and it can thereby induce the transition back to the ground state.
This transition is also reflected in the experimental signal by the second decay
component with a fitted lifetime of 2.75± 0.23 ps.

11.3 Conclusion

The reformation of the S-S bond in excited dithiane is the result of a non-ergodic
process. Only two degrees of freedom actively take part in the process: the S-S
bond stretch and torsion in the carbon backbone giving rise to a scissoring motion
of the -CH2S• moieties. The bond reformation prevails as motion in these two
degrees of freedom actively takes the molecule to a region of large interaction be-
tween S1 and S0. Hereby, the internal conversion process can effectively compete
with internal vibrational energy redistribution to degrees of freedom which could
lead to unfolding of the ring and ultimately result in diradical formation. The
cyclic structural motif of dithiane ultimately protects the molecule from bond
breakage, and a similar effect is expected to be at play in proteins.
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Chapter 12

Summarizing Discussion

The work presented in this thesis exhibit the complexity of the interplay between
nuclear dynamics and electronic transitions. The main lesson is that internal
conversion in small polyatomic molecules is truly a dynamical process. Specific
nuclear motion is instrumental in directing the system towards configurations
where coupling to other electronic states is large and wherefrom population trans-
fer can proceed. This in turn encompasses the concept of the dynamics being
non-ergodic or non-statistical – the observation of coherent dynamics entails that
the timescale of internal conversion is shorter than that of internal vibrational
energy redistribution. This direct observation of non-ergodic behavior is an im-
mediate consequence of the preparation of the system by a femtosecond laser
pulse resulting in an initial localization in space and energy. It should be em-
phasized that the non-ergodicity is a function of the molecule and not of the
activation process – the excited state dynamics of the molecules under investi-
gation are inherently non-ergodic irrespective of the preparation process. We
observed different effects of the non-ergodic behavior in the different molecular
systems under investigation.

From the experimental study on the cycloketones, we observed that the
timescale for the (n, 3s) → (n, π∗) internal conversion ranges over more than an
order of magnitude from 0.37 ps in 2-methylcyclobutanone to 9.67 ps in cyclo-
hexanone. It was revealed from the experimental data that the nuclear dynamics
leading to this internal conversion are localized in real space in proximity of the
carbonyl chromophore. Alkyl substitution and change of the size of the ring,
which locally affects the structure in vicinity of the carbonyl chromophore, both

121
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have strong effects on the rate due to this locality. Effectively, these structural
changes affect the magnitude of the coupling between the electronic states by
determining the region of configuration space available to the molecule on the
(n, 3s) state. A larger available configuration space allows the molecule to visit
regions of larger coupling resulting in a faster rate of internal conversion. The ef-
fects of the structural differences can be quantified by primarily two parameters:
the frequency of the central ring-puckering vibration and the energy difference
between the Franck-Condon and equilibrium geometries in the (n, 3s) state. A
lower frequency and a larger energy difference result in a faster rate of transition.
On the other hand, an increase in the size of phase space and the density of vi-
brational states as obtained by alkyl substitution away from the carbonyl group
does not significantly affect the rate of internal conversion. This cements the
non-ergodicity of the internal conversion process revealed by the observation of
coherent vibrational motion – the molecule does not explore the full phase space
in the excited state before population transfer proceeds. Had this been the case,
these substitutions would have had a much larger effect on the rate of transition.

The importance of low-frequency modes was to some extent confirmed by
the wavepacket simulations on cyclobutanone and cyclopentanone. More impor-
tantly, the simulations revealed the importance of point group symmetry. For
cyclobutanone, internal conversion is a direct process where motion in Franck-
Condon active coordinates mediates a prompt population transfer. In cyclopen-
tanone, the point group symmetry dictates that internal conversion is an indirect
process where internal vibrational energy redistribution is a bottleneck for ac-
tivating coupling modes. Consequently, the component of prompt population
transfer in cyclopentanone is very small compared to the component of delayed
population transfer. However, as the experimental timescale for population trans-
fer in cyclopentanone is not reproduced by the simulations, it is very conceivable
that the five mode model is not sufficient in this case to fully describe the internal
conversion process.

Similar to the case of the cycloketones, coherent dynamics were also observed
in the cyclopentadienes on the timescale of the internal conversion process which
ranges by a factor of approximately 3 from ∼50 fs in cyclopentadiene to ∼150 fs
in hexamethylcyclopentadiene. Whereas the timescale differences in the cycloke-
tones in essence is a consequence of a difference in the magnitude of the coupling
between the electronic states, the timescale differences for the cyclopentadienes
result from differences in the timescale for reaching the configuration where the
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coupling is large. As also observed for the cycloketones, the nuclear dynamics
leading to internal conversion in the cyclopentadienes are localized in real space
in this case in the bond alternation and double bond twist coordinates. The lat-
ter motion takes the molecules from a planar configuration, where the coupling
to the ground state is very low, to the vicinity of the conical intersection seam,
where the coupling is very large. The calculations do not include the extra de-
grees of freedom of the methyl groups in Me4CPD and Me6CPD and the differing
timescales are truly a result of a kinematic effect and not a result of a change
in the size of phase space. Once again, phase space is open to the molecule but
only a small region is accessed leading to the internal conversion exhibiting a
non-ergodic nature.

The ultrafast internal conversion in the cyclopentadienes results from the in-
teraction between the dark doubly excited state and the bright singly excited
state. As the molecule leaves the Franck-Condon region on the steep poten-
tial energy surface along out-of-plane modes, it enters a region on the surface
where mixing of singly and doubly excited character in the two lowest excited
valence states occurs. The nuclear motion is reflected by a decaying band in the
time-resolved photoelectron spectra which resembles the appearance of a band
decaying due to a non-adiabatic transition. However, the decay is indeed a conse-
quence of the closing of the probe window due to the rapidly increasing ionization
potential. The full extent of the coherent dynamics are revealed in the spectrum
if a higher frequency probe is employed as the wavepacket can then be followed
on the entire excited-state potential energy surface.

In dithiane, the reduced-space dynamics are reflected in the conservation of
the disulfide bond following light absorption. The significant stretching of the
disulfide bond upon excitation leads the molecule straight towards the minimum
of the excited-state potential energy surface in the region of the conical intersec-
tion. Whereas the stretching motion initially induces the coupling to the ground
state, it is the accompanying coherent backbone torsion which ensures recurrent
motion between the minimum and the conical intersection allowing amble time
for population transfer to proceed. Had a larger region of phase space been sam-
pled during the process, the unfolding of the carbon chain would have led to the
formation of the diradical. In addition, had the coupling between the excited
and ground states been significantly smaller, a prolonged lifetime in the excited
state could have allowed for internal vibrational energy redistribution to proceed.
Thereby, the vibrational modes which lead to unfolding of the chain would have
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been activated and diradical formation would again prevail. That this is not
observed is a testament to the non-ergodic nature of the process.

In the introduction, we reflected on the possibility of identifying the main pa-
rameters that determine the timescale for a given internal conversion process. In
the Born-Oppenheimer approximation, it is ultimately the electronic structure
that determines the potential energy surfaces on which the nuclear dynamics
take place, and one could therefore argue that this is the main parameter. On
the other hand, the non-adiabatic couplings leading to the breakdown of the
approximation are due to the nuclear kinetic energy operator highlighting the
central role of nuclear dynamics in their own right. From one perspective, the
electronic structure defines the potential energy surfaces, but it is the nuclear
dynamics that determine which parts of these surfaces are visited and thus of
importance for electronic state-transfer processes. A common trait of the three
types of molecules investigated in our work is the involvement of very few degrees
of freedom in the nuclear dynamics that lead to internal conversion. The activa-
tion and frequency of as well as energy release into these ultimately determine
on what timescale and to what extent the region of the potential energy surface
with large coupling to other states is visited and thereby the timescale for inter-
nal conversion. This connection is evidenced by the significant effect of selective
modification of these degrees of freedom on the rate of internal conversion ob-
served in our work. The localization of the dynamics furthermore allows for a
connection between nuclear dynamics and structural elements. In the cycloke-
tones, the main structural element of importance is the C-CO-C moiety, in the
cyclopentadienes it is the double bonds, and in dithiane it is the disulfide bond.
In essence, simply from a consideration of molecular structure, the relative rates
of internal conversion in related molecules can to some extent be predicted. We
hope that these concepts will provide a useful basis on which to undertake and
discuss future work.
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Appendix A

Supporting Information for
Chapter 9

A.1 Diffuse Basis Functions

The exponents of the diffuse functions are given in Tab. A.1.[288] Tabs. A.2
and A.3 collect the contraction coefficients for three sets of diffuse functions
for cyclobutanone and cyclopentanone determined following the prescription in
Ref. 196.

Table A.1: Exponents of the primitive basis functions for three values of angular
momentum l and eight values of the principal quantum number n.

n l = 0 (s) l = 1 (p) l = 2 (d)
2.0 0.02462393 0.04233528 0.06054020
2.5 0.01125334 0.01925421 0.02744569
3.0 0.00585838 0.00998821 0.01420440
3.5 0.00334597 0.00568936 0.00807659
4.0 0.00204842 0.00347568 0.00492719
4.5 0.00132364 0.00224206 0.00317481
5.0 0.00089310 0.00151064 0.00213712
5.5 0.00062431 0.00105475 0.00149102

127



128 Appendix A. Supporting Information for Chapter 9

Table A.2: Contraction coefficients for three sets of diffuse functions for cyclobu-
tanone.

n l = 0 (s)
2.0 0.18757690 -0.66901176 0.84247489
2.5 1.02138077 -0.78473105 0.22173456
3.0 -0.43425367 1.16965432 -2.06764134
3.5 0.36093788 0.54692212 -0.48159425
4.0 -0.02660994 -0.06342005 1.66260101
4.5 -0.28561643 0.02697933 0.84767931
5.0 0.29491969 0.02931525 -0.64237097
5.5 -0.10167962 -0.01953191 0.24267274
n l = 1 (p)
2.0 0.28733454 -0.51482697 0.51694331
2.5 0.59336328 -0.44690850 0.16166798
3.0 0.01309852 0.66233366 -1.02008576
3.5 0.43319267 -0.28557390 0.52617583
4.0 -0.52217482 1.71767160 -2.19954435
4.5 0.49010121 -1.54212007 3.90540389
5.0 -0.28532868 0.97402587 -1.77209367
5.5 0.07604473 -0.26767560 0.57951653
n l = 2 (d)
2.0 0.13417940 -0.21298673 0.23409036
2.5 0.26292179 -0.24606889 0.19986112
3.0 0.36090055 -0.23334084 0.05457146
3.5 0.32203482 -0.06405318 0.00085129
4.0 0.07999795 0.47688100 -0.96575675
4.5 -0.00353851 0.50476530 0.07905963
5.0 0.02622863 0.02637718 0.11480124
5.5 -0.01171333 0.07072576 1.02575722
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Table A.3: Contraction coefficients for three sets of diffuse functions for cyclopen-
tanone.

n l = 0 (s)
2.0 0.00418467 -0.38848697 0.55908927
2.5 1.18993678 -1.26254802 0.90072528
3.0 -0.46431864 1.24271128 -2.21416585
3.5 0.41221310 0.59751973 -0.98671842
4.0 -0.02661507 -0.01247047 1.70203509
4.5 -0.33434677 0.09202366 1.06594946
5.0 0.34380467 -0.04535688 -0.64214518
5.5 -0.11840101 0.00656561 0.24234048
n l = 1 (p)
2.0 0.27725230 -0.61352243 0.65451483
2.5 0.53090715 -0.27833537 -0.10891805
3.0 0.12051661 0.42258781 -0.73894617
3.5 0.35196052 0.00376434 0.12462769
4.0 -0.41598528 1.34057797 -1.44956674
4.5 0.39835946 -1.18216962 3.11862406
5.0 -0.23366103 0.75511770 -1.31887282
5.5 0.06236085 -0.20643878 0.43609035
n l = 2 (d)
2.0 0.16439619 -0.32105070 0.35040189
2.5 0.27597911 -0.27560551 0.19803434
3.0 0.33584271 -0.14156831 -0.09950192
3.5 0.31715460 0.01710969 -0.16583083
4.0 0.08042406 0.47698256 -0.78001504
4.5 -0.00479743 0.43481886 0.20066895
5.0 0.02559397 -0.01114904 0.44671880
5.5 -0.01121493 0.06198461 0.62692971
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A.2 Equilibrium Geometries

The ground, (n, π∗), and (n, 3s) equilibrium geometries of cyclobutanone and
cyclopentanone are given in Tabs. A.4–A.11. The ground state geometries were
obtained by MP2 and CCSD with the cc-pVTZ basis set in Gaussian 03 and
Gaussian 09.[289,290] The excited state geometries were obtained by EOM-
CCSD using the extended cc-pVTZ+1s1p1d basis set in Cfour.[189] In the
tables, X indicates the position of the ghost atom onto which the diffuse func-
tions were placed. The position of the ghost atom was initially taken as the
charge centroid of the lowest cationic state determined from atom-centered Lo-
Prop charges[291] calculated in Molcas.[292] Due to the very extended nature
of these basis functions, the exact placement is not critical. Another choice is
to place the functions on the carbon atom of the carbonyl group which was em-
ployed when calculating the harmonic frequencies at the equilibrium geometries
of the excited states.

Table A.4: Ground state equilibrium geometry of cyclobutanone (in Å) obtained
at the MP2/cc-pVTZ level of theory.

Atom x y z

C -0.239133 -1.425773 0.000000
C -0.239133 -0.334089 1.095225
C 0.150868 0.650486 0.000000
C -0.239133 -0.334089 -1.095225
H 0.686707 -1.987113 0.000000
H -1.076181 -2.109987 0.000000
H 0.434302 -0.426955 1.937860
H -1.241142 -0.114128 1.452686
H 0.434302 -0.426955 -1.937860
H -1.241142 -0.114128 -1.452686
O 0.675294 1.730007 0.000000
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Table A.5: Ground state equilibrium geometry of cyclobutanone (in Å) obtained
at the CCSD/cc-pVTZ level of theory.

Atom x y z

C 0.143957 -1.456543 0.000000
C -0.091246 -0.386572 1.104995
C -0.034336 0.674327 0.000000
C -0.091246 -0.386572 -1.104995
H 1.164767 -1.831344 0.000000
H -0.544168 -2.296732 0.000000
H 0.648899 -0.291705 1.896418
H -1.086189 -0.436035 1.548271
H 0.648899 -0.291705 -1.896418
H -1.086189 -0.436035 -1.548271
O 0.086389 1.864433 0.000000

Table A.6: (n, π∗) state equilibrium geometry of cyclobutanone (in Å) obtained
at the EOM-CCSD/cc-pVTZ+1s1p1d level of theory.

Atom x y z

C -1.496048 -0.012062 0.009687
C -0.401706 -1.099674 0.102231
C 0.640057 -0.009234 -0.259848
C -0.404282 1.077982 0.104441
H -1.993152 -0.011982 -0.956738
H -2.240936 -0.013703 0.799987
H -0.444319 -1.945041 -0.580421
H -0.235500 -1.449477 1.125215
H -0.448620 1.924920 -0.576164
H -0.238979 1.425844 1.128234
O 1.868130 -0.008113 0.099919
X -0.042915 0.007156 -0.020238
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Table A.7: (n, 3s) state equilibrium geometry of cyclobutanone (in Å) obtained
at the EOM-CCSD/cc-pVTZ+1s1p1d level of theory.

Atom x y z

C -1.575325 -0.015080 -0.105112
C -0.492191 -1.096422 -0.094997
C 0.690366 -0.014060 -0.098159
C -0.493084 1.067216 -0.105908
H -2.181066 -0.019842 -1.003957
H -2.188393 -0.010861 0.788803
H -0.347224 -1.668302 -1.015431
H -0.352799 -1.654193 0.835027
H -0.348704 1.629701 -1.032218
H -0.354196 1.634555 0.818391
O 1.850375 -0.013500 -0.096769
X -0.013362 0.010057 0.070121

Table A.8: Ground state equilibrium geometry of cyclopentanone (in Å) obtained
at the MP2/cc-pVTZ level of theory.

Atom x y z

C 0.000000 0.764737 -1.362297
C 0.000000 -0.764737 -1.362297
C 0.524110 -1.111679 0.022999
C 0.000000 0.000000 0.911689
C -0.524110 1.111679 0.022999
H 1.021254 1.123931 -1.469389
H -0.587587 1.190079 -2.167216
H 0.587587 -1.190079 -2.167216
H -1.021254 -1.123931 -1.469389
H 0.242093 -2.084007 0.407610
H 1.611593 -1.047251 0.047856
H -1.611593 1.047251 0.047856
H -0.242093 2.084007 0.407610
O 0.000000 0.000000 2.120465
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Table A.9: Ground state equilibrium geometry of cyclopentanone (in Å) obtained
at the CCSD/cc-pVTZ level of theory.

Atom x y z

C -0.011438 0.769497 -1.369003
C 0.011438 -0.769497 -1.369003
C 0.524246 -1.122169 0.030365
C 0.000000 0.000000 0.922887
C -0.524246 1.122169 0.030365
H 1.004602 1.149409 -1.498593
H -0.623485 1.183657 -2.167885
H 0.623485 -1.183657 -2.167885
H -1.004602 -1.149409 -1.498593
H 0.219765 -2.095056 0.409259
H 1.616322 -1.078547 0.066445
H -1.616322 1.078547 0.066445
H -0.219765 2.095056 0.409259
O 0.000000 0.000000 2.127219
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Table A.10: (n, π∗) state equilibrium geometry of cyclopentanone (in Å) obtained
at the EOM-CCSD/cc-pVTZ+1s1p1d level of theory.

Atom x y z

C -0.800227 -0.021668 0.001795
C 0.104574 -1.280585 0.128683
C 1.491776 -0.744107 -0.231496
C 1.489495 0.709750 0.232505
C 0.099336 1.241072 -0.124127
H -0.307791 -2.080639 -0.486044
H -0.002155 -1.524864 1.192974
H 2.248377 -1.349248 0.270790
H 1.646790 -0.811074 -1.306170
H 2.242618 1.317694 -0.271574
H 1.646839 0.777162 1.306818
H -0.010451 1.487949 -1.187468
H -0.315304 2.037658 0.493653
O -1.982671 -0.024376 0.000544
X -0.041116 0.016828 -0.001101
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Table A.11: (n, 3s) state equilibrium geometry of cyclopentanone (in Å) obtained
at the EOM-CCSD/cc-pVTZ+1s1p1d level of theory.

Atom x y z

C -0.757421 -0.060563 -0.009309
C 0.103972 -1.267442 0.327197
C 1.504280 -0.745617 -0.014206
C 1.473168 0.710578 0.461005
C 0.062690 1.224607 0.109635
H -0.191038 -2.154263 -0.231781
H 0.016117 -1.497068 1.398130
H 2.288573 -1.330190 0.465368
H 1.658561 -0.790574 -1.093230
H 2.257397 1.321469 0.015196
H 1.605373 0.738898 1.543802
H 0.037973 1.772128 -0.834340
H -0.350965 1.880399 0.879873
O -2.013939 -0.046432 0.330740
X -0.038068 0.024636 -0.179418



136 Appendix A. Supporting Information for Chapter 9

A.3 Parameters of the Vibronic Coupling Hamil-
tonian

The parameters of the vibronic coupling Hamiltonian obtained from fitting to
potential energy surfaces calculated at the EOM-CCSD/cc-pVTZ+1s1p1d level
of theory are given in Tabs. A.12–A.21 for cyclobutanone and Tabs. A.22–A.31
for cyclopentanone. The electronic labels v, w = 1, 2, 3, 4, 5 correspond to the
ground, (n, π∗), (n, 3s), (n, 3p), and ground cationic states respectively. The la-
bels for the nuclear degrees of freedom κ, κ′ = 1, 2, 7, 12, 21 for cyclobutanone and
1, 3, 8, 16, 28 for cyclopentanone. These labels correspond to the ring-puckering,
C=O out-of-plane bend (carbonyl pyramidalization), symmetric C-CO-C stretch,
asymmetric C-CO-C stretch, and C=O stretch respectively.

A.3.1 Cyclobutanone

Table A.12: Vibrational frequencies ωκ (in eV) for the normal modes of cyclobu-
tanone.

κ 1 2 7 12 21
ωκ 0.0141 0.0501 0.1102 0.1373 0.2300

Table A.13: On-diagonal constants E(v) (in eV) for the five states of cyclobu-
tanone.

v 1 2 3 4 5
E(v) 0.0000 4.4654 6.5970 7.1847 9.5254

Table A.14: Parameters for the Morse potential of the C=O stretch mode for
the five states of cyclobutanone.

v 1 2 3 4 5
D

(v)
21 / eV 28.1696 19.4099 7.0043 4.5790 17.7349

α
(v)
21 -0.0651 -0.0657 -0.1029 -0.1167 -0.0753
Q

(v)
21,0 -0.1140 -1.6670 0.3191 -0.0009 0.2736

E
(v)
0 / eV -0.0016 -0.2598 -0.0073 0.0000 -0.0074
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Table A.15: On-diagonal linear coupling constants β(v)
κ (in eV) for the normal

modes of cyclobutanone.

κ β
(1)
κ β

(2)
κ β

(3)
κ β

(4)
κ β

(5)
κ

1 0.0052 0.0653 0.0169 -0.0179 0.0075
2 -0.0027 -0.0074 -0.0453 -0.0096 -0.0016
7 -0.0090 -0.0024 0.0189 0.0092 0.0106
12 · · · · · · · · · · · · · · ·
21 · · · · · · · · · · · · · · ·

Table A.16: On-diagonal bilinear coupling constants γ(v)
κκ′ (in eV) for the normal

modes of cyclobutanone.

γ
(1)
κκ′ 1 2 7 12 21
1 0.0744 -0.0094 -0.0057 · · · -0.0471
2 -0.0094 0.0451 -0.0169 · · · -0.0493
7 -0.0057 -0.0169 0.0092 · · · 0.0134
12 · · · · · · · · · 0.0076 · · ·
21 -0.0470 -0.0493 0.0134 · · · · · ·
γ

(2)
κκ′ 1 2 7 12 21
1 0.0948 -0.0336 -0.0124 · · · -0.0639
2 -0.0336 0.0115 -0.0203 · · · -0.0532
7 -0.0124 -0.0203 0.0070 · · · 0.0264
12 · · · · · · · · · -0.0462 · · ·
21 -0.0639 -0.0532 0.0264 · · · · · ·
γ

(3)
κκ′ 1 2 7 12 21
1 0.0900 -0.0391 -0.0161 · · · -0.0308
2 -0.0391 0.0478 -0.0192 · · · -0.0323
7 -0.0161 -0.0192 0.0084 · · · 0.0369
12 · · · · · · · · · -0.0462 · · ·
21 -0.0308 -0.0323 0.0369 · · · · · ·
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Table A.16 continued: On-diagonal bilinear coupling constants γ(v)
κκ′ (in eV) for

the normal modes of cyclobutanone.

γ
(4)
κκ′ 1 2 7 12 21
1 0.0429 -0.0499 0.0081 · · · -0.0497
2 -0.0499 0.0401 -0.0265 · · · -0.0467
7 0.0081 -0.0265 -0.0264 · · · 0.0253
12 · · · · · · · · · -0.0492 · · ·
21 -0.0497 -0.0467 0.0253 · · · · · ·
γ

(5)
κκ′ 1 2 7 12 21
1 0.0851 -0.0159 -0.0110 · · · -0.0491
2 -0.0159 0.0525 -0.0210 · · · -0.0425
7 -0.0110 -0.0210 0.0018 · · · 0.0191
12 · · · · · · · · · -0.0479 · · ·
21 -0.0491 -0.0425 0.0191 · · · -0.0288

Table A.17: On-diagonal linear-quadratic coupling constants ι(v)
κκ′ (in eV) for the

normal modes of cyclobutanone.

ι
(1)
κκ′ 12 22 72 122 212

1 0.0085 · · · · · · · · · · · ·
2 -0.0047 -0.0038 · · · 0.0024 · · ·
7 -0.0037 -0.0028 -0.0027 -0.0069 · · ·
12 · · · · · · · · · · · · · · ·
21 -0.0192 -0.0181 -0.0016 -0.0177 · · ·
ι
(2)
κκ′ 12 22 72 122 212

1 0.0004 0.0128 0.0082 -0.0011 0.0007
2 -0.0126 0.0032 · · · 0.0033 -0.0052
7 -0.0108 -0.0001 -0.0031 -0.0079 -0.0007
12 · · · · · · · · · · · · · · ·
21 -0.0198 -0.0140 · · · -0.0220 -0.0016
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Table A.17 continued: On-diagonal linear-quadratic coupling constants ι(v)
κκ′ (in

eV) for the normal modes of cyclobutanone.

ι
(3)
κκ′ 12 22 72 122 212

1 0.0095 0.0010 -0.0003 0.0001 0.0123
2 -0.0062 0.0039 -0.0025 0.0020 -0.0025
7 -0.0060 · · · -0.0029 -0.0076 -0.0009
12 · · · · · · · · · · · · · · ·
21 -0.0240 -0.0058 0.0012 -0.0174 -0.0025
ι
(4)
κκ′ 12 22 72 122 212

1 0.0039 0.0003 -0.0012 0.0019 0.0008
2 -0.0016 -0.0008 · · · 0.0003 -0.0116
7 0.0024 0.0004 -0.0055 -0.0039 0.0001
12 · · · · · · · · · · · · · · ·
21 -0.0113 0.0022 0.0021 -0.0176 -0.0025
ι
(5)
κκ′ 12 22 72 122 212

1 0.0075 · · · · · · 0.0002 · · ·
2 -0.0046 -0.0051 · · · 0.0019 · · ·
7 -0.0057 -0.0037 -0.0008 -0.0084 · · ·
12 · · · · · · · · · · · · · · ·
21 -0.0164 -0.0165 -0.0007 -0.0199 · · ·

Table A.18: On-diagonal quartic coupling constants ε(v)
κ (in eV) for the normal

modes of cyclobutanone.

κ ε
(1)
κ ε

(2)
κ ε

(3)
κ ε

(4)
κ ε

(5)
κ

1 0.0344 0.0308 0.0219 0.0315 0.0324
2 0.0082 0.0070 0.0018 0.0034 0.0079
7 0.0003 · · · -0.0015 0.0004 0.0006
12 0.0005 0.0017 0.0017 -0.0001 0.0029
21 · · · · · · · · · · · · · · ·
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Table A.19: Off-diagonal linear coupling constants λ(v,w)
κ (in eV) for the normal

modes of cyclobutanone.

κ λ
(2,3)
κ λ

(2,4)
κ λ

(3,4)
κ

1 0.0693 0.2284 0.0024
2 0.2251 0.1194 -0.0183
7 -0.0287 -0.0678 -0.0448
12 · · · · · · · · ·
21 -0.0663 -0.0316 -0.0025

Table A.20: Off-diagonal bilinear coupling constants µ(v,w)
κκ′ (in eV) for the normal

modes of cyclobutanone.

µ
(2,3)
κκ′ 1 2 7 12 21
1 -0.0375 0.0342 0.0344 · · · 0.0271
2 0.0342 -0.0043 -0.0085 · · · 0.0143
7 0.0344 -0.0085 0.0025 · · · 0.0148
12 · · · · · · · · · -0.0007 · · ·
21 0.0271 0.0143 0.0148 · · · -0.0154

µ
(2,4)
κκ′ 1 2 7 12 21
1 0.0116 -0.0019 -0.0090 · · · 0.0009
2 -0.0019 -0.0042 0.0051 · · · 0.0092
7 -0.0090 0.0051 0.0002 · · · -0.0010
12 · · · · · · · · · -0.0023 · · ·
21 0.0009 0.0092 -0.0010 · · · 0.0038

µ
(3,4)
κκ′ 1 2 7 12 21
1 -0.0011 -0.0072 -0.0013 · · · -0.0056
2 -0.0072 -0.0059 0.0033 · · · 0.0082
7 -0.0013 0.0033 -0.0008 · · · -0.0093
12 · · · · · · · · · 0.0008 · · ·
21 -0.0056 0.0082 -0.0093 · · · 0.0093
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Table A.21: Off-diagonal linear-quadratic coupling constants η(v,w)
κκ′ (in eV) for

the normal modes of cyclobutanone.

η
(2,3)
κκ′ 12 22 72 122 212

1 -0.0033 · · · · · · -0.0005 0.0001
2 -0.0022 -0.0109 0.0021 -0.0007 · · ·
7 -0.0018 -0.0025 0.0003 · · · 0.0014
12 · · · · · · · · · · · · · · ·
21 0.0003 -0.0002 0.0025 0.0050 -0.0019
η

(2,4)
κκ′ 12 22 72 122 212

1 -0.0113 · · · · · · -0.0014 · · ·
2 -0.0072 -0.0081 · · · -0.0011 · · ·
7 0.0026 0.0012 0.0027 -0.0005 · · ·
21 · · · · · · · · · · · · · · ·
21 -0.0073 -0.0023 0.0015 0.0002 0.0003
η

(3,4)
κκ′ 12 22 72 122 212

1 0.0057 · · · · · · -0.0007 · · ·
2 -0.0034 0.0033 · · · -0.0013 · · ·
7 -0.0016 0.0009 0.0017 0.0001
12 · · · · · · · · · · · · · · ·
21 -0.0044 -0.0024 -0.0016 -0.0003 0.0008
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A.3.2 Cyclopentanone

Table A.22: Vibrational frequencies ωκ (in eV) for the normal modes of cyclopen-
tanone.

κ 1 3 8 16 28
ωκ 0.0121 0.0561 0.1038 0.1473 0.2241

Table A.23: On-diagonal constants E(v) (in eV) for the five states of cyclopen-
tanone.

v 1 2 3 4 5
E(v) 0.0000 4.3500 6.4804 7.0063 9.2977

Table A.24: Parameters for the Morse potential of the C=O stretch mode for
the five states of cyclopentanone.

v 1 2 3 4 5
D

(v)
28 / eV 40.8297 31.0856 6.7409 5.1947 18.3302

α
(v)
28 -0.0478 -0.0468 -0.0988 -0.1038 -0.0673
Q

(v)
28,0 -0.1677 -1.9098 0.3899 0.4137 0.3126

E
(v)
0 / eV -0.0026 -0.2718 -0.0096 -0.0092 -0.0079

Table A.25: On-diagonal linear coupling constants β(v)
κ (in eV) for the normal

modes of cyclopentanone.

κ β
(1)
κ β

(2)
κ β

(3)
κ β

(4)
κ β

(5)
κ

1 · · · · · · · · · · · · · · ·
3 · · · · · · · · · · · · · · ·
8 -0.0288 -0.0445 -0.0543 -0.0543 -0.0644
16 · · · · · · · · · · · · · · ·
28 · · · · · · · · · · · · · · ·
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Table A.26: On-diagonal bilinear coupling constants γ(v)
κκ′ (in eV) for the normal

modes of cyclopentanone.

γ
(1)
κκ′ 1 3 8 16 28
1 0.0350 0.0119 · · · 0.0074 · · ·
3 0.0119 0.0183 · · · -0.0108 · · ·
8 · · · · · · 0.0175 · · · 0.0067
16 0.0074 -0.0109 · · · 0.0103 · · ·
28 · · · · · · 0.0067 · · · · · ·
γ

(2)
κκ′ 1 3 8 16 28
1 0.0049 -0.0214 · · · -0.0247 · · ·
3 -0.0214 -0.0372 · · · 0.0196 · · ·
8 · · · · · · 0.0196 · · · 0.0034
16 -0.0247 0.0196 · · · 0.0242 · · ·
28 · · · · · · 0.0034 · · · · · ·
γ

(3)
κκ′ 1 3 8 16 28
1 0.0447 0.0109 · · · 0.0185 · · ·
3 0.0109 0.0139 · · · -0.0107 · · ·
8 · · · · · · 0.0046 · · · -0.0054
16 0.0185 -0.0107 · · · -0.0713 · · ·
28 · · · · · · -0.0054 · · · · · ·
γ

(4)
κκ′ 1 3 8 16 28
1 0.0101 0.0135 · · · 0.0189 · · ·
3 0.0135 0.0123 · · · -0.0053 · · ·
8 · · · · · · -0.0012 · · · -0.0047
16 0.0189 -0.0053 · · · -0.0358 · · ·
28 · · · · · · -0.0047 · · · · · ·
γ

(5)
κκ′ 1 3 8 16 28
1 0.0220 0.0194 · · · 0.0077 · · ·
3 0.0194 0.0055 · · · 0.0018 · · ·
8 · · · · · · 0.0085 · · · 0.0010
16 0.0077 0.0018 · · · -0.0323 · · ·
28 · · · · · · 0.0010 · · · -0.0581
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Table A.27: On-diagonal linear-quadratic coupling constants ι(v)
κκ′ (in eV) for the

normal modes of cyclopentanone.

ι
(1)
κκ′ 12 32 82 162 282

1 · · · · · · · · · · · · · · ·
3 · · · · · · · · · · · · · · ·
8 0.0056 0.0021 -0.0096 -0.0073 -0.0012
16 · · · · · · · · · · · · · · ·
28 -0.0230 -0.0048 -0.0020 -0.0079 · · ·
ι
(2)
κκ′ 12 32 82 162 282

1 · · · · · · · · · · · · · · ·
3 · · · · · · · · · · · · · · ·
8 0.0077 0.0045 -0.0082 -0.0018 · · ·
16 · · · · · · · · · · · · · · ·
28 -0.0169 -0.0044 · · · -0.0109 · · ·
ι
(3)
κκ′ 12 32 82 162 282

1 · · · · · · · · · · · · · · ·
3 · · · · · · · · · · · · · · ·
8 0.0100 0.0028 -0.0089 -0.0077 · · ·
16 · · · · · · · · · · · · · · ·
28 -0.0122 -0.0010 · · · · · · · · ·
ι
(4)
κκ′ 12 32 82 162 282

1 · · · · · · · · · · · · · · ·
3 · · · · · · · · · · · · · · ·
8 0.0049 0.0042 -0.0101 -0.0074 · · ·
16 · · · · · · · · · · · · · · ·
28 -0.0087 0.0022 · · · -0.0086 · · ·
ι
(5)
κκ′ 12 32 82 162 282

1 · · · · · · · · · · · · · · ·
3 · · · · · · · · · · · · · · ·
8 0.0071 0.0030 -0.0081 · · · 0.0015
16 · · · · · · · · · · · · · · ·
28 -0.0230 -0.0036 0.0003 -0.0088 · · ·
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Table A.28: On-diagonal quartic coupling constants ε(v)
κ (in eV) for the normal

modes of cyclopentanone.

κ ε
(1)
κ ε

(2)
κ ε

(3)
κ ε

(4)
κ ε

(5)
κ

1 0.0237 0.0370 0.0159 0.0223 0.0316
3 0.0049 0.0100 0.0018 0.0019 0.0072
8 0.0006 0.0005 0.0002 0.0013 0.0001
16 -0.0001 -0.0029 0.0052 0.0003 0.0019
28 · · · · · · · · · · · · · · ·

Table A.29: Off-diagonal linear coupling constants λ(v,w)
κ (in eV) for the normal

modes of cyclopentanone.

κ λ
(2,3)
κ λ

(2,4)
κ λ

(3,4)
κ

1 0.1572 · · · 0.0821
3 -0.0838 · · · -0.0156
8 · · · -0.1206 · · ·
16 -0.2237 · · · -0.0497
28 · · · 0.0620 · · ·

Table A.30: Off-diagonal bilinear coupling constants µ(v,w)
κκ′ (in eV) for the normal

modes of cyclopentanone.

µ
(2,3)
κκ′ 1 3 8 16 28
1 · · · · · · -0.0024 · · · -0.0203
3 · · · · · · -0.0011 · · · -0.0057
8 -0.0024 -0.0011 · · · · · · · · ·
16 · · · · · · · · · · · · 0.0063
28 -0.0203 -0.0057 · · · 0.0063 · · ·

µ
(2,4)
κκ′ 1 3 8 16 28
1 -0.0052 · · · · · · 0.0150 · · ·
3 · · · 0.0042 · · · -0.0082 · · ·
8 · · · · · · 0.0037 · · · -0.0221
16 0.0150 -0.0082 · · · -0.0081 · · ·
28 · · · · · · -0.0221 · · · · · ·



146 Appendix A. Supporting Information for Chapter 9

Table A.30 continued: Off-diagonal bilinear coupling constants µ(v,w)
κκ′ (in eV)

for the normal modes of cyclopentanone.

µ
(3,4)
κκ′ 1 3 8 16 28
1 · · · · · · 0.0085 · · · · · ·
3 · · · · · · -0.0022 · · · 0.0105
8 0.0085 -0.0022 · · · · · · · · ·
16 · · · · · · · · · · · · · · ·
28 · · · 0.0105 · · · · · · · · ·

Table A.31: Off-diagonal linear-quadratic coupling constants η(v,w)
κκ′ (in eV) for

the normal modes of cyclopentanone.

η
(2,3)
κκ′ 12 32 82 162 282

1 · · · -0.0007 -0.0028 -0.0007 -0.0037
3 · · · -0.0049 0.0006 0.0029 0.0049
8 · · · · · · · · · · · · · · ·
16 -0.0012 0.0005 0.0118 0.0004
28 · · · · · · · · · · · · · · ·
η

(2,4)
κκ′ 12 32 82 162 282

1 · · · · · · · · · · · · · · ·
3 · · · · · · · · · · · · · · ·
8 0.0049 0.0021 0.0071 0.0002 · · ·
16 · · · · · · · · · · · · · · ·
28 -0.0087 -0.0010 · · · · · · · · ·
η

(3,4)
κκ′ 12 32 82 162 282

1 -0.0062 · · · -0.0003 0.0006 -0.0012
3 -0.0086 0.0041 0.0007 0.0017 -0.0009
8 · · · · · · · · · · · · · · ·
16 0.0007 -0.0045 -0.0003 0.0005 · · ·
28 · · · · · · · · · · · · · · ·
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B.1 Conical Intersections

The geometries of the four minimum energy conical intersections (MECI) of
cyclopentadiene (CPD) are depicted in Tabs. B.1–B.4. The values of the de-
scriptive coordinates discussed in Chapter 10 for all the MECIs are given in
Tab. B.5. Fig. B.1 depicts the linearly interpolated (in Cartesian coordinates)
and relaxed potential energy surfaces from the Franck-Condon geometry to the
MECIs. The relaxed surfaces were obtained by use of a Nudged Elastic Band
algorithm (NEB)[293,294] interfaced to Molpro 2006.2.[201] The NEB method
is conventionally used for finding the minimum energy path between a pair of
local minima or stable states, however, inhere it is used where at least one of the
endpoints is not such a configuration. This use of NEB can lead to ambiguity for
the path around the endpoint. However, the method is only invoked to demon-
strate that barriers present on interpolated potential energy surfaces might not
be present if the surfaces are relaxed, and as such whether the NEB method con-
verges to the actual minimum energy path is not of importance here. Fig. B.2
shows the potential energy surfaces of the MECIs in the branching space.

147
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Table B.1: Geometry of the eth1 MECI (in Å).

Atom x y z

C -0.237305 -0.045771 1.333271
C 0.138831 1.076571 0.356015
C 0.163163 -1.083575 0.351376
C -0.489140 -0.749858 -0.974490
C -0.095690 0.601737 -0.976102
H -1.313034 -0.065797 1.536982
H 0.339337 -0.036818 2.255284
H 0.756636 1.917868 0.634213
H 1.201292 -1.430628 0.375283
H -0.508682 -1.398627 -1.836017
H 0.044593 1.214900 -1.860533

Table B.2: Geometry of the eth2 MECI (in Å).

Atom x y z

C -0.236206 -0.032080 1.291252
C 0.215824 1.011314 0.362281
C 0.116410 -1.325582 0.406327
C -0.234085 -0.755477 -0.972845
C -0.048608 0.632833 -1.006990
H -1.323021 -0.020961 1.404294
H 0.240820 -0.010103 2.270001
H 0.818225 1.873797 0.644010
H 1.219464 -1.336168 0.427286
H -0.622274 -1.355418 -1.790937
H -0.146550 1.317845 -1.839398
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Table B.3: Geometry of the dis MECI (in Å).

Atom x y z

C 0.257136 -0.014429 1.318018
C -0.039247 1.209763 0.385995
C -0.197883 -1.031573 0.362890
C 0.336413 -0.706479 -0.999024
C 0.147293 0.655824 -0.995520
H -0.282847 0.008378 2.261221
H 1.335113 -0.086087 1.491612
H -1.017542 1.652186 0.577767
H -1.121552 -1.596069 0.499694
H 0.425101 -1.383974 -1.832478
H 0.158015 1.292460 -1.874892

Table B.4: Geometry of the S2S1 MECI (in Å).

Atom x y z

C -0.222312 0.000055 1.295210
C 0.173705 1.094371 0.345488
C 0.173641 -1.094866 0.345542
C -0.179011 -0.698783 -1.007255
C -0.178394 0.698547 -1.007401
H -1.302930 -0.001162 1.504808
H 0.331448 0.001044 2.231690
H 0.908564 1.853016 0.594770
H 0.910036 -1.852080 0.594095
H -0.309099 -1.362005 -1.850634
H -0.305647 1.361864 -1.851033
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Table B.5: Values of the bond alternation, backbone torsion, C=C twist and
CH2 bend for the four MECIs of CPD.

Coordinate eth1 eth2 dis S2S1

Bond alternation / Å 1.54 1.58 1.62 1.62
Backbone torsion / deg 24.5 8.5 18.3 0.0
C=C twist / deg 50.5 58.9 43.4 31.7
CH2 bend / deg 40.1 36.9 37.0 37.2
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Figure B.1: Potential energy surfaces for CPD connecting the Franck-Condon
geometry with the four MECIs as a function of mass-weighted displacement. Lin-
early interpolated (in Cartesian coordinates) potential energy surfaces (−), along
with the S0 (−) and S1 (−) potential energy surfaces resulting from relaxation on
the S1 state.
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(d) S2S1 MECI.

Figure B.2: MECIs of CPD in the branching space of the scaled derivative
coupling and gradient difference vectors. All MECI exhibit a peaked geometry





Abbreviations

2-MeCB 2-Methylcyclobutanone

2-MeCP 2-Methylcyclopentanone

3-EtCP 3-Ethylcyclopentanone

3-MeCP 3-Methylcyclopentanone

AIMS Ab Initio Multiple Spawning

au Atomic Unit(s)

BBO Beta Barium Borate

CASPT2 Complete Active Space Second Order Perturbation The-
ory

CASSCF Complete Active Space Self-Consistent Field

CB Cyclobutanone

CC2 Coupled-Cluster Singles and Approximate Doubles

CC3 Coupled-Cluster Singles, Doubles and Approximate Triples

CCS Coupled-Cluster Singles

CCSD Coupled-Cluster Singles and Doubles

CCSDR(3) Coupled-Cluster Singles, Doubles and Approximate (non-
iterative) Triples

CH Cyclohexanone
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CM Classical Mechanics

CP Cyclopentanone

CPD Cyclopentadiene

CW Continuous Wave

DC Direct Current

DD-vMCG Direct Dynamics Variational Multi-Configuration Gaus-
sian Wavepacket

DMIPA N,N -Dimethylisopropylamine

DVR Discrete Variable Representation

EOM Equation of Motion

EOM-CCSD Equation of Motion Coupled-Cluster Singles and Doubles

EOMIP Equation of Motion Ionization Potential

FC Franck-Condon

FMS Full Multiple Spawning

FWHM Full Width at Half Maximum

G-MCTDH Gaussian Multi-Configuration Time-Dependent Hartree

IFG Independent First Generation

IP Ionization Potential

IVR Internal Vibrational Energy Redistribution

MCP Micro-Channel Plate

MCSCF Multi-Configuration Self-Consistent Field

MCTDH Multi-Configuration Time-Dependent Hartree

Me4CPD 1,2,3,4-Tetramethylcyclopentadiene

Me6CPD Hexamethylcyclopentadiene
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MECI Minimum Energy Conical Intersection

MS-MR-CASPT2 Multi-State Multi-Reference Complete Active Space Sec-
ond Order Perturbation Theory

Nd:YLF Neodymium-doped Yttrium Lithium Fluoride (LiYF4)

Nd:YVO4 Neodymium-doped Yttrium Orthovanadate (YVO4)

NEB Nudged Elastic Band

QM Quantum Mechanics

SA-Ne-CAS(n,m)SCF State-Averaged Complete Active Space Self-Consistent
Field for which the orbitals are optimized simultaneously
for Ne states using an active space of n electrons in m

orbitals

SFG Sum-Frequency Generation

SHG Second-Harmonic Generation

TBF Trajectory Basis Function

Ti:Sapphire Titanium-doped Sapphire (Al2O3)

TOF Time-of-Flight

TOPAS Collinear (Travelling Wave) Optical Parametric Ampli-
fier of White-Light (Super)Continuum

TRMS Time-Resolved Mass Spectrometry

TRPES Time-Resolved Photoelectron Spectroscopy

UV Ultraviolet

VCHAM Vibronic Coupling Hamiltonian

VCHFIT Program for fitting the parameters of the vibronic cou-
pling Hamiltonian to adiabatic potential energy surfaces

vMCG Variational Multi-Configuration Gaussian Wavepacket

XC Cross-Correlation
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