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SUMMARY 

Enzyme technology provides key strategies 

to green chemistry as many processes have 

undergone re-design to serve increasing 

demands towards being sustainable. While 

the population is rapidly increasing on our 

planet it is leading to accumulative problems 

in terms of production of waste, depletion 

of natural fossil resources and increasing 

demands for food and energy.      

Biorefinery, in particular, deals with related 

challenges, as it is defined to deal with the 

conversion of biomass using enzyme 

technology to produce renewable energy, in 

terms of heat, power and fuel. Furthermore, 

biorefinery intends to extract value-added 

compounds from biomass to avoid down-

cycling effects prior to e.g. biofuel 

production.  Those value-added compounds 

are highly attractive to be utilized as food 

ingredients, bio-chemicals or precursors for 

pharmaceutical products and represent high 

market potentials for related industries.  

However, as biorefinery concepts are 

implemented in many industrial processes 

an increasing demand for Process Analytical 

Technology (PAT) evolves to monitor, 

understand and steer processes optimally. 

Biomasses can be very diverse and are 

usually of complex chemical nature. 

Conventional univariate analytical methods 

therefore require time-consuming sample 

preparation which is mostly cumbersome to 

analyze biomass conversion related 

processes. Throughout this project 

alternative approaches will be presented to 

deal with the individual challenges. As 

outlined it seems obvious that more 

advanced techniques are necessary to 

monitor such difficult reactions as 

enzymatic biomass degradations. Such 

techniques should be of multivariate nature 

to capture and understand complex patterns 

in comparison to univariate techniques 

which can only capture information in a 

highly specific sense which does not allow 

interference of information. Vibrational 

spectroscopy (e.g. infrared) represents such 

multivariate techniques and is mostly used 

throughout the project. Data is analyzed by  

chemometric methods to extract the 

underlying patterns from the complex 

datasets. 

Hence, this project focuses on chemometric 

approaches utilizing mostly Fourier 

Transform Infrared (FTIR) spectroscopic 

data to provide descriptive and predictive 

insights into biomass conversion related 

processes.  

Two main study fields are introduced to the 

reader. First, two-way chemometric 

methods are used to establish Process 

Analytical Technology (PAT) solutions for 

prediction of monosaccharide release 

efficiency of pretreated destarched corn 

bran using Near Infrared (NIR) 

spectroscopy (PAPER 1). Throughout this 

study predictive and descriptive models 

were established to evaluate the pre-

treatment effect without the need to 

perform the subsequent enzymatic 

hydrolysis itself.  Furthermore, the efficiency 

(and quality) of differently extracted pectin 

from lime peel could be predicted from 

measuring FTIR spectra (PAPER 2). The 

prediction models were compared to results 

retrieved from carbohydrate microarray 

analysis which additionally enhanced the 

understanding of the structural properties of 

the extracted pectin.  

Secondly, enzyme kinetics of biomass 

converting enzymes was examined in terms 

of measuring enzyme activity by spectral 

evolution profiling utilizing FTIR. 

Chemometric multiway methods were used 

to analyze the tensor datasets enabling the 

second-order calibration advantage 

(reference Theory of Analytical chemistry). 

As PAPER 3 illustrates the method is 

universally applicable without the need of 

any external standards and was exemplified 

by performing quantitative enzyme activity 

determinations for glucose oxidase, pectin 

lyase and a cellolytic enzyme blend 

(Celluclast 1.5L). In PAPER 4, the concept 

is extended to quantify enzyme activity of 

two simultaneously acting enzymes, namely 

pectin lyase and pectin methyl esterase. By 

doing so the multiway methods PARAFAC, 

TUCKER3 and NPLS were compared and 

evaluated towards accuracy and precision.  
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RESUMÉ 

Enzym teknologi er en af de nøgle strategier, 

der har stor betydning for forskning inden 

for området, ”den grønne kemi”. Mange 

processer i industrien er blevet ændret til at 

imødegå en bæredygtig grøn teknologi. 

Befolknings tilvæksten er meget stor og 

skaber problemer med hensyn til produktion 

af side-strømme (forurening), overudnyttelse 

af de naturlige fosile energi kilder, og et 

forøget krav til fødevarer og energi. Bio-

rafinaderi kan være svaret på disse udfor-

dringer, da denne teknologi fokuserer på 

omdannelse af biomassen ved hjælp af 

enzymer til produktion af grøn energi, der 

kan anvendes i form af varme, energi eller 

brændstof. Endvidere kan biorafinering 

udvinde værdiskabende forbindelser hvis en 

differentiel proces kan anvendes før 

biomassen nedbrydes til bio-brændstof 

produktionen. Disse værdiskabende for-

bindelser kan anvendes som fødevare 

ingredienser (1), og repræsenterer et højt 

markedspotentiale i beslægtede industrier. 

Biorafinerings konceptet er implementeret i 

mange industrielle processer og behovet for 

proces analytisk teknologi (PAT) for at måle, 

forstå og styre processen optimalt er meget 

værdifuld. Biomassen kan være meget 

forskelligt og er sædvanligvis meget 

komplekst opbygget med mange forskellige 

kemiske strukturer. Konventionel univa-

riable analytiske metoder er derfor meget 

tidskrævende både med hensyn til prøve 

forberedelse, og kompleksitet af de kemiske 

målemetoder. I dette PhD projekt er der 

anvendt alternative metoder for at måle 

disse komplekse biomasse processer. Der er 

adskillige udfordringer med at udskifte de 

klassiske teknikker med mere avancerede 

metoder, der kan måle de mange enzym 

reaktioner når biomassen nedbrydes. De 

multivariable metoder, der kan fange og 

forstå komplekse mønstre i modsætning til 

de univariable, som kun kan opfatte simple 

informationer, der ikke involverer inter-

ferens. Vibrations spektroskopi (f. eks. 

infrarød) repræsenterer multivariable teknik-

ker, der er anvendt bredt i dette PhD studie. 

Data er blevet analyseret ved hjælp af  

 

 

kemometriske metoder for at ekstrahere de 

komplekse mønstre fra de forskellige 

dataset.  

Dette PhD projekt har fokuseret på 

kemometriske anvendelser baseret hoved-

sageligt på Fourier Transform Infrared 

(FTIR) spektroskopiske data, der kan 

beskrive og forudsige enzym baserede 

biomasse processer.   

To hovedområder er blevet introduceret til 

læseren. Det første er en to-vejs kemo-

metrisk metode, der er anvendt til at etablere 

Process Analytical Technology (PAT) 

løsninger til at forudsige frigørelse af 

monosaccharider fra forbehandlet ”de-

starched corn bran” ved hjælp af Near 

Infrared (NIR) spektroskopi (artikel 1). I 

dette studie er der etableret modeller til at 

forudsige og beskrive effekter af forbe-

handling uden at udføre en egentlig 

enzymatisk hydrolyse. Endvidere kunne 

ekstraktion af pektin fra citrus skaller udført 

med forskellige processer forudsiges og 

beskrives ved en måling med FTIR 

spektrum (artikel 2). Modellen for forud-

sigelsen blev sammenlignet med data opnået 

fra kulhydrat micro-array analyser, som 

bidrog yderligere med analyser på kulhydra-

ternes strukturelle egenskaber.  

Det andet område er biomasse åbning, hvor 

enzymers aktivitet og kinetik blev målt ved 

”spectral evolution profiling” ved hjælp af 

FTIR. Kemometriske multivariable metoder 

blev anvendt til at analysere tensor datasets, 

der tillader en anden ordens kalibrerings 

fordel. Som artikel 3 illustrerer, er metoden 

universiel anvendelig uden det klassiske 

behov for eksterne standarder og dette er 

bevist ved at anvende kvantitative enzym 

aktivitets målinger for glucose oxidase, 

pektin lyase og cellolytiske blandinger 

(Celluclast 1,5L). I artikel 4, er konceptet 

blevet udvidet til a kvantificere to enzym 

aktiviteter samtidigt, nemlig pektin lyase og 

pektin methylesterase. I dette forsøg blev de 

tre multiveje metoder, PARAFAC, 

TUCKER3 og NPLS sammenlignet og 

vurderet med hensyn til nøjagtighed og 

præsision.�
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1. Introduction 
The beneficial use of enzymes for production of 

foods and beverages like cheese, yoghurt, bread, 

beer, vinegar, wine etc has been known for 

thousands of years. In fact paper and textiles were 

produced with the help of enzymes which were 

present in starting materials as early as 6000 BC in 

China, Sumer and Egypt [1].     

Nonetheless, the industrial application of enzymes 

did not kick off before 1913 when Otto Roehm 

filed a patent on a crude protease mixture isolated 

from pancreases for use in laundry detergents [2]. 

The modern era of industrial enzymology had 

begun. Not least because of evolving recombinant 

biotechnological methods, many enzymes have 

been made commercially available up to today [3, 

4]. Applications of enzymes can be found in 

biorefinery, textile, detergent, starch, paper and 

food industry, including the dairy, juice, brewing, 

wine and baking industries. 

As the development of enzyme technology 

evolves fast, the refurbishment of industrial 

processes to be more environmentally clean and 

sustainable goes hand in hand. For many decades 

production processes were merely designed and 

optimized for cost efficient production using 

classical chemical methods which apply harsh 

chemicals accumulating and emitting a lot of 

waste to our environment. Furthermore those 

classical designed processes are not selective, give 

rise to side-streams of low quality, ask for rather 

extreme reaction conditions and are therefore 

energy inefficient. While many of such processes 

were replaced by more sustainable processes 

implying the concept of green chemistry [5], many 

resources are still down-cycled. To avoid such 

down-cycling effects Braungart and McDonough 

recently proposed a change in production 

philosophy towards a “cradle to cradle” 

perspective [6] which generally states the idea of 

re-designing industrial processes to expand our 

understanding of sustainability. Claiming the 

possibility of utilizing the, terrestrial spoken, 

infinite amount of renewable energy from the sun 

“Cradle to Cradle” processes should not be 

primarily optimized for energy consumption, but 

rather for being intrinsic meaning that all 

resources being used can and should be perfectly 

recycled instead of being lost at the end of a 

products lifetime.  

In fact, enzyme technology presents a key strategy 

to such cradle-to-cradle processes since enzymes 

can bio-catalyze the formation of many industrial 

products. The obvious advantage is that mild 

reaction conditions in aqueous media can be 

applied for direct conversions from substrates to 

the products while conventional approaches often 

involve several reaction steps possibly employing 

environmentally unfriendly organic solvents. 

Adding up to this, enzymes are highly chemo-, 

regio- and stereoselective enabling the possibility 

for design of targeted processes.  

Those advantages are also very important for the 

concept of green chemistry [1]. An example for 

industrial application of green chemistry has been 

the production of penicillin [5]. While the 

conventional production of semi-synthetic 

penicillin requires several steps including a 

chemical hydrolysis using unattractive chemicals 

as CH2CL2 at -40 °C the one step bio-catalytic 

conversion can be performed in water at 37 °C 

using only light amounts of NH3 for pH 

adjustment. 

As by 2002 already more than 130 processes have 

been established using green chemical approaches 

as reported in [7]. The increasing industrial 

interest in green process design gives rise to high 

expectations of many more to come, as by now 

recombinant DNA techniques makes it, in 

principle, possible to produce virtually any 

enzyme for a commercially acceptable price [1]. 

However, it keeps challenging to avoid down-

cycling of valuable resources.  

The present project is part of a larger cross-

European collaboration effort that focuses on 

production of value-added compounds in 

biorefinery relevant processes. As biorefinery is 

concerned about sustainable biomass conversion 

processes to produce fuels, power, and heat from 

biomass, especially the value-added components 

in diverse biomasses can elevate the economy of a 

process, e.g. the specific extraction of nutrition 

relevant biopolymers from biomass prior to 

biofuel refining.  

The hypothesis of the project was that fast and 

non-invasive techniques, such as Fourier 

Transform Infrared (FTIR) and near infrared 

(NIR) spectroscopy, in combination with 

chemometrics create useful analytical solutions for 

qualitative and quantitative assessment of enzyme 

activity and enzyme related processes in 

biorefinery. The methodologies thereby provide 

much better understanding of the complex and 

obtrusive nature of biomass and offer valuable 

analytical alternatives, also with respect to the 

cumbersome reducing sugar analysis.    
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polysaccharides with desired structural properties. 

Additionally, enzymes are employed to break 

down residual and waste-material to release 

monosaccharides which can be used readily in 

bioethanol fermentation. 

Because of their chemical complexity enzymatic 

biomass conversion processes require a 

comprehensive understanding and engineering. 

Enzyme technology helps to understand 

enzymatic catalysis, which involves studies 

concerning discovery and manufacturing of 

enzymes and its optimal working conditions 

(temp, pH, pressure) and immobilization and 

inhibition of enzymes. It also deals with 

investigations towards the mechanisms of 

enzymatic conversions and studies underlying 

kinetic phenomena. 

However, many conventional analytical methods 

employed to investigate biomass conversions are 

of univariate nature and require time-consuming 

sample preparations utilizing diverse chemicals. 

Throughout this project alternative approaches 

will be presented to deal with the individual 

challenges. As outlined it seems obvious that 

more advanced techniques are necessary to 

monitor such difficult reactions as enzymatic 

biomass degradations. Such techniques should be 

of multivariate nature to capture and understand 

complex patterns in comparison to univariate 

techniques which can only capture information in 

a highly specific sense which does not allow 

interference of information. 

3. Infrared spectroscopy 
Infrared (IR) spectroscopy accounts for 

measuring the interactions of electromagnetic 

light from the infrared region with inter-atomic 

covalent bonds and intermolecular bondings of a 

sample. Since all organic molecules have intra- 

and intermolecular bonds that absorb in this 

range the IR spectrum obtained therefore reflects 

the chemical and structural composition of the 

sample being analyzed in a fingerprint sense. 

Further comprehensive introduction on Infrared 

spectroscopy is given by [14-16].  

Hence, a spectral fingerprint measured by IR 

spectroscopy can be related to a certain 

thermodynamic state of a measured sample. In 

addition, the concept can be extended to measure 

time-resolved changes of such fingerprints 

enabling the possibility to study kinetics e.g. of 

enzymatic reactions. However, such analytical 

methods employing IR spectroscopy have been 

proven to be difficult due to high water 

interferences originating from the aqueous 

reaction media and a high degree of overlapping 

information in the spectra. 

During this project Near Infrared (NIR) 

spectroscopy and Fourier Transform Infrared 

(FTIR) Spectroscopy were utilized to study a) 

thermodynamic states of carbohydrate systems to 

extract PAT relevant parameters and b) kinetic 

changes in carbohydrate systems to quantify 

enzyme activity in a more universal fashion. 

3.1 Near Infrared Spectroscopy 

Near infrared (NIR) spectroscopy is concerned 

about IR spectroscopy in the range between 780 

and 2500 nm. It typically contains highly 

overlapped absorption patterns due to overtone 

and combined vibrational modes. As water gives 

rise to very high interferences NIR is often used 

to characterize solid samples using, e.g., diffuse 

reflectance methods. The high degree of 

overlapping information made NIR somewhat 

inaccessible to chemical analysis until 

chemometrics evolved in the 1970s [17] which 

helped to understand the complex patterns in the 

spectra and to build calibration models. One 

advantage of NIR is that it can typically penetrate 

much farther into a sample than mid infrared 

radiation [18]. Near infrared spectroscopy is 

therefore directly applicable for analyzing bulk 

material without the need of complex sample 

preparation. These striking advantages of NIR 

gave rise to many industrial applications, 

especially to be found in routine control analyses 

in agricultural food, petrochemical, 

pharmaceutical, clinical and environmental 

industrial sectors [17, 19].  

3.2 Fourier Transform Infrared Spectroscopy 

Mid-infrared spectroscopy is concerned about IR 

spectroscopy in the range between 2.5 µm and 

25 µm. While diverse NIR instruments are 

commercially available using monochromator and 

Fourier Transform (FT) technology for light 

dispersion, instruments for the mid-infrared 

region are dominantly using FT technology [20]. 

Besides being the cheaper solution the FT 

technology has several advantages, especially in 

the mid infrared region. Typically using a 

Michelson Interferometer, a spectrum is recorded 

for all wavelengths simultaneously resulting in an 

interferogram in contrast to scanning the 

wavelengths consecutively using a dispersive 

device. The interferogram is thereafter de- 
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Table 1. Possible classification of chemometric methods into exploratory methods (descriptive) and methods being 

suitable for calibration modeling (predictive). The individual methods should not be understood as strictly assigned to a 

one group since some methods can be used as descriptive and/or predictive tools. ANN can be used in diverse 

situations. However, ANN requires very large sample sizes to establish robust models. 

 

exploratory calibration modeling 

two-way 
PCA, LDA, PLS-DA, SIMCA, ANN, 

dendrogram analysis 

MLR, CLS, PCR,PLS, ANN 

multi-way 
PARAFAC, PARAFAC2, 

TUCKER3, MPCA 
GRAM, NPLS 

 

convoluted using Fourier Transformation [21]. 

This results in faster spectrum acquisition and 

enables the possibility for replicate measurements 

to encounter interfering noise. Hence, FTIR 

offers better sensitivity and a better signal-to-

noise ratio than NIR spectroscopy.  

FTIR is widely used in diverse kinds of scientific 

and industrial fields, e.g. in quality control analysis 

of milk and wine [22], as a PAT tool in 

bioprocesses [23], for characterization of plant cell 

wall material [24] or as a typical technique for 

sample classification [25]. In contrast to NIR 

spectra, which contain highly overlapped 

information, a mid-IR spectrum often indicates 

more resolved vibration bands which often 

enables the possibility for qualitative analysis of 

univariate kind, i.e. the identification of particular 

bands [26, 27]; although the full potential of FTIR 

is exploited by using multivariate methods to 

understand complete underlying spectral patterns.  

4. Chemometrics 
Chemometrics describes a scientific discipline 

which utilizes mathematical and computational 

tools to understand multi-parametric data in a 

descriptive and predictive way. It evolved as a 

consequence of the introduction of computational 

technology in chemical laboratories [28], which 

enabled acquisition of very big data sets. These 

data sets were difficult to understand with 

common univariate methods as they intend to 

extract correlations between single analytical 

responses and the investigated underlying 

phenomenon. However, those newly available 

data sets consisted of many variables encrypting 

mostly overlapped information, e.g. from 

spectroscopy. To extract the underlying patterns 

in the data which could lead to a comprehensive 

understanding of its underlying (bio)-chemistry 

multivariate methods were necessary. 

As previously mentioned chemometric methods 

could be divided into descriptive and predictive 

methods. However, they could also be 

distinguished in terms of being exploratory or 

being suitable for calibration modeling. A 

proposed overview is presented in table 1. 

Detailed descriptions of the chemometric 

methods used during the individual studies are 

given in the corresponding PAPERS 1-4. 

4.1 Two-way methods 

4.1.1 Descriptive chemometric methods 

Our brain uses millions of receptors gathering 

tons of cues in every second of our life. This 

gathered information is filtered through neural 

networks to achieve very certain (and trained) 

pattern recognitions. Those highly complex (and 

non-linear) recognized patterns lead to every day’s 

abilities as recognizing voices, tastes, scents, looks 

and textures of certain materials and living beings. 

Strikingly, we are able to recognize our friends’ 

faces through billions of people on this planet 

using multivariate approaches, sorted out by our 

brain. 

Similarly descriptive chemometric methods aim to 

extract patterns from chemical and biochemical 

data sets [29]. Due to limited available 

computational power and algorithms the amount 

of parameters to be analyzed simultaneously is 

much lower comparing it to neural networks of a 

human brain, but complexity evolves as 

algorithms and computational power are also 

being developed further [30]. The most principal 

descriptive chemometric method is Principal 

Component Analysis (PCA) which was initially 

described by Hotelling in 1933 and brought to the 

chemometric world by Wold in 1987 [31, 32]. By  
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Figure 2. Sample scores derived from PCA can be used to distinguish between different sample groups using 

classification methods. To discriminate between two groups of samples linear discriminants (a) can be sufficient while 

other situations might demand non-linear discriminants (b). Discriminants are indicated by dashed lines. 

performing a mathematical eigenvector 

decomposition on a data sets covariance matrix it 

finds suitable orthogonal projections to transform 

complex data sets, containing information along 

many variables, into spaces which have less 

significant dimension to represent the variance in 

the data more intuitively [33]. This is referred to 

as feature reduction and is one common property 

of chemometric methods.  

More precisely, PCA decomposes data sets into 

loadings and scores. As loadings can be 

understood as orthogonal projections in space 

which describe the major variance in the data, the 

scores indicate how abundant the mentioned 

loadings are for each sample to be described in 

the feature reduced space. The scores are 

therefore a useful measure to compare samples 

with each other. Considering e.g. FTIR spectra of 

olive oils from two different regions, one can 

expect discrimination ability between the two 

origins, by simply plotting the scores of the major 

Principal Components against each other, 

assuming that the FTIR spectra contain 

discriminating spectral features. Such approaches 

can lead to classification of samples as they can 

form clusters in score plots. Clustering can be 

useful to discriminate between various properties 

in terms of origin, taste, (bio)-chemical properties, 

etc. As illustrated in Figure 2 clusters can form 

different shapes as they are colored in red and 

blue. 

Since PCA is an unsupervised decomposition 

method which simply represents the over-all 

variance in the data it does not intend to separate 

the clusters to the highest extent, neither does it 

know about the group belonging of individual 

samples. 

To establish models which are able to 

discriminate between pre-defined groups 

supervised classification methods are necessary. 

Dependent on the shape of the discriminant as 

shown in Figure 2 linear or non-linear 

classification methods are utilized. The most basic 

methods used for linear discrimination between 

sample groups (Figure 2a) are Linear Discriminant 

Analysis (LDA) and Partial Least Squares 

Discriminant Analysis (PLS-DA). On the other 

hand methods as Support Vector Machines 

(SVM) [34, 35] or Artificial Neural Networks 

(ANN) [36, 37] are used for non-linear cases as 

illustrated in Figure 2b. 

4.1.2 Predictive chemometric methods 

Analytical chemistry often requires quantitative 

estimations of certain properties of (bio)-chemical 

system possibly using fast and non-invasive 

techniques [38].  

Those properties may be any kind of quality 

measure of a final product, intermediate product 

or starting material. During a process, relevant 

parameters as temperature, pH, time, etc. could be 

of high interest while often simply the yield of a 

process is to be predicted; in simple words: any  
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psychometrics [45-47] which led to the 

introduction of multiway analysis in chemometrics 

in the 1980s [48, 49]. As reviews on multi-way 

chemometrics were published in 1995 and 2005 

by Bro et al. the number of publications in the 

field of multi-way analysis increased significantly 

from around 120 to more than 300 with many 

more to come after 2005 [49, 50].  

So far, multiway analysis has been applied using 

diverse data sets derived from fluorescence 

spectroscopy [51, 52], chromatography [53, 54], 

flow injection analysis [55], magnetic resonance 

spectroscopy [56, 57], NIR [58], UV-VIS [59] and 

other types of data. The rising number of 

applications clearly shows the high potential of 

multiway methods in many scientific disciplines.  

To introduce the concept of multiway methods in 

more detail, the difference between two-way and 

multi-way data structures is illustrated in Figure 3.  

When talking about multiway methods the 

borderline between descriptive vs. predictive 

methods (Table 1) is more blurry than for two-

way methods. An example could be Parallel 

Factor Analysis (PARAFAC) [47, 60]. When 

performing a PARAFAC one obtains a unique 

solution, meaning that the solution has no 

rotational ambiguity [60], but rather characterizes 

common unique underlying profiles for all 

samples. This leads to the so called second-order 

calibration advantage, meaning that the obtained 

calibrations retrieved from PARAFAC are robust 

against unknown interferences when predicting 

future test samples. To benefit from the second-

order advantage the interfering samples must, 

however, indicate loadings in mode 2 and 3 which 

differ from the calibration model [60, 61]. 

In addition, the ability to obtain calibration 

models from unsupervised methods like 

PARAFAC leads to another advantage. While 

supervised regression methods like multiway 

Partial Least Squares regression (NPLS) [62] open 

up possibilities for biasing the results of the 

models, unsupervised tensor decomposition 

methods as PARAFAC and TUCKER3 [46, 63] 

can find prediction models without the need for 

reference analysis. However, since no scaling of 

the scores would be available the results would 

only contain valuable information when 

comparing samples in relation to each other. 

Nonetheless, this can be very valuable when 

relative results are desirable. 

4.3 Preprocessing 

Prior to application of any kind of chemometric 

method the data is usually preprocessed. The 

purpose is to remove any kind of irrelevant 

systematic variation in the data to gain better 

prediction performance and to decrease the 

necessary number of factors for modeling. The 

major two types of preprocessing are centering 

and scaling [64, 65]. Centering typically removes 

offsets in spectral data and therefore reduces the 

rank of the dataset. A PCA applied to non mean-

centered spectroscopic data would therefore 

typically result in an additional Principal 

Component representing the common spectral 

offset in relation to the origin of the coordinate 

system. In addition, all other Principal 

Components indicating spectral features in the 

dataset would therefore be biased by the offset 

since PCA finds Principal Components being 

orthogonal to each other. It is therefore important 

to remove such offsets using appropriate 

centering methods.  

Secondly, scaling methods are concerned about 

leveling the impact of the individual variables 

during modeling since the individual leverages of 

the used variables might be biased due to different 

measurement units (e.g. units of temperature, 

pressure, concentration). To correct for such 

effects auto-scaling is typically used. In 

spectroscopic data such biasing effects are not 

present since all variables are measured using the 

same units. In this case it can be believed that 

variables with a great deal of variation are indeed 

more important to describe a dataset. However, 

other non-linear effects in spectroscopic data, 

such as unwanted light scattering effects, need to 

be considered. Those effects are typically 

corrected for using preprocessing methods as 

Standard Normal Variate (SNV) [66] or Multiple 

Scatter Correction (MSC) [67, 68] on a per-

spectrum basis.  

4.4 Validation 

Chemometric modeling is usually supported by 

strong concepts of validation. These models are 

often established using factors derived from 

principal components and the question arises of 

how many are necessary to describe a data set 

sufficiently without implementing random 

variation as noise in the model (overfitting). Cross 

validation and prediction errors as the root-mean-

square-error of prediction (RMSEP) provide 

useful indications to find the right number of 

factors to be used in a model.  



Two-way chemometric methods for prediction of process relevant parameters (PAT) 

��

�

When using cross-validation the data is usually 

split into equally sized groups and a model is 

calculated several times excluding an alternating 

group at a time. Thereafter the established models 

are used to predict exactly those left-out groups 

and the mean error is calculated accordingly. This 

procedure can be repeated using different 

numbers of factors. The resulting root-mean-

square-errors of cross validation (RMSECV) are 

then plotted against the used number of 

components. Thus, this plot is able to indicate 

overfitting by an increasing RMSECV when an 

increasing number of factors is used.  

On the other hand, the RMSEP derives from test 

set validation, meaning that an established model 

is used to test for prediction ability towards an 

independent set of samples. By doing so the 

RMSEP also indicates additional concerns as poor 

accuracy of a model or the presence of potential 

systematic bias by the test set samples themselves. 

If a systematic bias is present the responsible 

chemometrician should consider that the used 

data for the calibration did not contain variance as 

it was only present in the test set. Hence, the 

RMSEP represents a measure for model accuracy.  

5. Two-way chemometric 
methods for prediction of 
process relevant parameters 
(PAT) 

Prediction of valuable process analytical 

parameters offers high market potentials as 

customers increasingly demand more certified and 

standardized quality measures for industrial 

products. The pharmaceutical industry introduced 

process analytical technology (PAT) in 2003 by 

defining PAT’s as systems for design, analysis, 

and control of manufacturing processes. Those 

systems are utilized to assure high quality through 

timely measurements of critical quality and 

performance attributes of raw materials, in-

process materials, and final products [69, 70].  

Industrial implemented PAT in e.g. industrial 

fermentation of pharmaceutical products are 

exemplified by studies as “Batch-to-batch 

reproducibility of fermentation processes by 

robust process operational design and control” 

[71] or “Chemometrics in bioprocess engineering: 

process analytical technology (PAT) applications” 

[72].  

While in the past cumbersome and highly specific 

univarate chemical methods have been used to 

characterize such chemical systems multivariate 

methods combined with spectroscopy offer fast 

and high through-put capable approaches to 

measure analytes or properties of interest which 

typically indicate no need to interrupt the process. 

By doing so the major aim is to design, develop 

and operate processes consistently to ensure a 

predefined quality at the end of the manufacturing 

process [72]. 

5.1  Near Infrared spectroscopy for 

prediction of enzymatic hydrolysis of 

corn bran after various pretreatments 

5.1.1 Background and hypothesis 

Enzymatic conversion of biomasses is an 

important step in the exploitation of biomass 

residuals in the food and biofuel industry and 

viable processes are dependent on reliable, fast 

and low-cost process conditions. It is of great 

importance to know the basic monosaccharide 

composition and the distribution in 

polysaccharide forms to target and develop 

enzymatic conversion, and this traditionally 

represents a demanding task. In addition, most 

low-priced biomass resources are of a recalcitrant 

nature, which is why various hydrothermal or 

thermo-chemical pretreatment forms are often 

applied to maximize the yields of enzymatic 

conversion [73-75]. Such pretreatments are costly 

and the efficiency of the pre-treatment step in 

generating a substrate which is enzymatically 

degradable needs utmost optimization. 

Evaluations of pretreatment methods are 

commonly done by large experimental setups and 

require time-consuming and advanced analytical 

methods [76, 77]. 

In the present work differently pretreated samples 

(varying time, pH, temp) originating from 

destarched corn bran (DCB), an agro-industrial 

residue from corn starch processing, have been 

evaluated using NIR spectroscopy. Destarched 

Corn bran is a fibrous, heteroxylan rich side-

stream from the starch industry which may be 

used as a feedstock for bioethanol production [78, 

79] or as a source of xylose for other purposes 

(flavors, pharmaceuticals, animal feed) [80]. 

During this study the specific hypothesis was that 

NIR spectroscopy offers a rapid and non-invasive 

technique to predict the saccharification efficiency 

of destarched corn bran after various 

pretreatments, but prior to enzymatic hydrolysis.   

 

�
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Figure 4. NIR spectra of 43 differently pretreated DCB samples. Standard spectra for arabinoxylan soluble (red), 

arabinoxylan insoluble (blue), cellulose (green) and xylan (cyan) have been included with an offset for comparison. 

Various combination, first overtone and second overtone vibration bands have been highlighted for chemical 

interpretation.�

5.1.2 Experimental 

Diffuse reflectance near Infrared spectroscopy 

(NIR) was used as a rapid and non-destructive 

analytical tool for evaluation of the pretreatment 

effects. Spectra were acquired between 1400 and 

2500 nm using a monochromator based XDS 

instrument connected to a Rapid Content 

Analyzer (FOSS ANALYTICAL, Hillerød). The 

43 destarched corn bran samples were measured 

directly as powders with no further physical 

pretreatment using a round quartz cuvette 

(Hellma, Sussex, UK). The 43 samples were 

divided into five groups due to their pretreatment 

conditions (indicated colors refer to Figure 5):  

A) raw destarched corn bran (green color) 

B) elevated temperature pretreatment (red color) 

C) mid-range pH catalyzed pretreatments at   

     intermediate temperatures (blue color) 

D) low pH catalyzed pretreatment at intermediate  

     temperature (light blue color) 

E) pH catalyzed pretreatments with extended    

     incubation time (black) 

5.1.3 Chemometric Analysis 

Prior to any modeling all spectra were pretreated 

by Multiple Scatter Correction (MSC) and mean-

centered to correct for unwanted light scattering 

effects and to remove obstructive background 

signals. 

Multivariate analysis of the 43 acquired spectra 

was performed to identify classification criteria 

between the five pretreatment groups. To do so, 

PCA and hierarchal clustering methods 

(Dendrogram) were used to distinguish between 

the different pretreatment groups and to identify 

outliers clearly. 

Secondly, backwards interval Partial Least Squares 

regression (biPLS) and normal PLS were used to 

establish quantitative multivariate prediction 

models towards the monosaccharide release after 

standardized enzymatic hydrolysis. The three 

monosaccharides which were determined by 

HPLC reference analysis after hydrolysis were 

glucose, arabinose and xylose. Leave-one-out 

cross validation was used during modeling to 

validate the results and to evaluate the necessary 

number of components. By using an interval 

selection algorithm [81, 82] important 

wavelengths could be highlighted for modeling 

the individual monosaccharides. However, the 

small sample size did not leave abilities for further 

validation in terms of prediction test set 

validation.  
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Figure 5. A dendrogram of 43 DCB samples led to clear classification and identified outliers (*). Arrows additionally 

indicated samples which belonged rather to another pretreatment group than expected. They were therefore merged 

into their new groups (PAPER 1). 

5.1.4 Results  

The 43 acquired NIR spectra are shown in Figure 

4 together with relevant spectra of biopolymer 

standards. When looking at the spectra it can be 

seen that the DCB samples are most comparable 

with the blue standard spectrum, indicating 

insoluble arabinoxylan. 

Using descriptive chemometric methods as PCA 

resulted not only in formation of clusters 

according to pretreatment grouping, but also in 

identification of outliers. A score plot is given in 

PAPER 1. Additional evidence to identify certain 

samples as outliers was given by dendrogram 

plotting (marked as stars in Figure 5). To establish 

classification using the dendrogram scores from 

five principal components have been used to 

calculate the Euclidean distances using an average 

linkage algorithm [26]. In fact, some samples 

could be identified to belong to another group 

than originally expected (arrows Figure 5). The 

achieved classification therefore introduced useful 

quality measures of the pretreatment. The sample 

groups in Figure 5 were marked using colors 

according to pretreatment group belonging as 

indicated in the experimental section of the 

chapter.  

PLS and biPLS modeling parameters are given in  

Table 2. As the correlation coefficients and the 

RMSECV values improved significantly for the 

biPLS models calibration performance increased 

by deselecting disturbing spectral ranges. All three 

relative monosaccharide amounts after enzymatic 

hydrolysis could be predicted well. Further 

calibration details are given in PAPER 1. 

 

Table 2. Modeling parameters as RMSECV, RMSEC, correlation coefficients R
2
 and number of latent variables (LV) 

are presented for the PLS/biPLS prediction models using the full spectra and the selected spectral intervals, 

respectively. 

RMSECV (%) 
 

RMSEC (%) 
 

R
2
 

 
number of LVs 

  full spectra biPLS  full spectra biPLS  full spectra biPLS  full spectra biPLS 

arabinose 3.12 1.39  1.07 0.99  0.82 0.96  7 6 

xylose 1.16 0.77  0.90 0.62  0.95 0.98  3 3 

glucose 8.68 5.69  6.37 3.83  0.84 0.93  5 5 
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Figure 6. Main structural domains being present in pectin. The figure was retrieved from [87] and subsequently 

modified�

5.1.5 Conclusion 

As the results show NIR spectroscopy is a useful 

technique to monitor the pretreatment of 

recalcitrant biomass like destarched corn bran to 

elevate monosacchriade release for efficient 

production of biofuels. Using chemometric 

classification outliers could easily be detected. 

Secondly, iPLS and PLS have proven to be useful 

prediction tools in respect to the final 

monosaccharide yield, even without performing 

the enzymatic hydrolysis itself. This in particular 

represents a useful PAT tool to monitor the 

quality of incoming biomass batches at the 

beginning of the process chain and enables 

possibilities to react (e.g. change process 

parameters) when dissatisfying pretreatment has 

undergone.  

5.2 FTIR and carbohydrate microarray 

analysis for prediction and 

characterization of enzymatic versus 

acidic extracted pectin 

5.2.1 Background 

Enzymes are used in many processes to release 

fermentable sugars for production of biofuel, but 

also for refinery of biomass to extract functional 

food ingredients such as pectin and other 

prebiotic oligosaccharides. The complex 

biomasses may, however, require a multitude of 

specific enzymes which enhance the biomass 

opening and help to specifically extract a 

biopolymer of interest. In the present study it was 

demonstrated that FTIR and carbohydrate 

microarray analysis represent useful PAT tools for 

industrial pectin extraction from lime peel, i.e. the 

prediction of pectin yield and characterization of 

its quality. The methods also intend to enable 

continuous process monitoring and feedback 

control, identifying causes of process deviation 

and process failure. This opposes post-process 

product testing which is especially time-

consuming and does not provide any continuous 

process control.  

Pectin, mainly being produced from citrus peel, is 

a valuable resource used as gelling agent in jams 

and jellies, in medicines, sweets, as a stabilizer in 

fruit juices and milk drinks, and as a source of 

dietary fiber [83, 84]. Its efficient industrial 

production relies on acidic or enzymatic 

extraction methods which insist on optimization 

to increase the pectin yield and to obtain desired 

structural properties. Pectin is a complex bio-

polymer which is commonly understood to be 

composed by three main structural domains, 

namely Homogalacturonan I (HGI), Rhamno-

galacturonan I (RGI) and Rhamnogalacturonan II 

(RGII).  While HGI regions are generally de-

scribed as linear backbone regions of α-(1–4)-

linked D-galacturonic acid molecules, RGI and 

RGII regions indicate backbones with high degree 

of side-chains containing neutral sugars as 

arabinose, galactose and xylose. An illustration of 

typical pectic structures is given in Figure 6. 

Comprehensive introduction on carbohydrate 

microarrays can be found in [85, 86]. 

The hypothesis of the particular study was that 

FTIR spectroscopy and carbohydrate microarray 

analysis are suitable techniques for monitoring the 

pectin yield during the extraction process and that 

they are furthermore able to characterize the 
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Table 3. Figures of merit for PLS models which were established using pectin yields ranging from 0.07 to 0.34 g. 

FTIR Microarray 

model 1 model 2 model 3 model 4 

Rcal 0.97 0.93 0.89 0.88 

Rpred 0.99 0.98 0.91 0.73 

RMSEP [g] 0.016 0.023 0.058 0.064 

LVs 2 4 2 5 

�

5.2.3 Chemometric analysis 

The data obtained from both techniques were 

chemometrically analyzed using PCA and PLS. 

Prior to analysis spectra were pretreated using 

SNV and mean centering while the heatmap data 

from the carbohydrate microarray was pretreated 

using auto-scaling and mean centering.  

PCA was used to monitor the FTIR spectral 

changes. Two PCA models were established a) for 

enzymatic extraction I and II; and b) for the acidic 

extraction III.  

Secondly, PLS was used to establish quantitative 

models to predict the pectin yield using data from 

both techniques. To do so, two sets of models 

were established. For FTIR, model 1 and 2 were 

established on extraction I and extraction I+III 

samples, respectively. Both models were validated 

and evaluated by extraction II samples which 

served as prediction test set. Models 3 and 4 were 

established for the carbohydrate microarray data 

in a similar fashion which enabled the possibility 

to compare prediction performance of both 

techniques. The numbers of latent variables were 

determined by leave-one-out cross validation. 

Additionally, FTIR spectra and carbohydrate 

microarray binding patterns of acidic versus 

enzymatic extracted pectin were analyzed towards 

structural properties using spectral PCA loadings 

and bi-plots derived from PLS.   

5.2.4 Results 

The FTIR spectra for extraction I are shown as 

difference spectra in Figure 7 while extraction II 

and III difference spectra are given in PAPER 2. 

Monosaccharide standard spectra for xylose, 

arabinose and galactose are also given in PAPER 

2 for qualitative interpretation of the spectra. 

Main spectral features due to Homogalacturonan 

backbone, degree of esterification and neutral 

sugar content could be identified as indicated in 

Figure 7. While spectra for enzymatic extracted 

pectin (extraction I and II) indicated similar 

characteristics spectra from acidic extracted pectin 

showed lower bands at 1045 and 1076 cm-1 

indicating lower amounts of neutral sugars 

released from the lime peel (see PAPER 2).  

Additionally, FTIR measurement indicated lower 

degree of esterification for acidic extracted pectin. 

However, at this point FTIR could not determine 

the neutral sugars to be part of RGI or RGII 

pectic regions or to be free in solution. In fact, the 

carbohydrate microarray results (Figure 8) 

suggested lower abundances of RGI regions and 

neutral sugar oligosaccharide like arabinan and 

galactan for enzymatic extracted pectin. This lead 

to the conclusion that the high amounts of neutral 

sugars, being enzymatically extracted from lime 

peel, were free in solution and therefore measured 

by FTIR while they were not immobilized on the 

highly specific microarrays. When looking at the 

heatmap in Figure 8 it could also be seen that 

antibody responses regarding RGI pectic regions 

and galactan decreased throughout the enzymatic 

extraction. This indicates the presence of side-

chain cleaving enzymes in the commercially 

preparation Laminex C2K which led to 

degradation of RGI regions during the extraction 

period. Further elaboration is given in PAPER 2. 

Using the FTIR data, one component PCA 

models for a) the enzymatic extraction I and II 

(Figure 7); and b) the acidic extraction III 

(PAPER 2) indicated optimal extraction times at 

120 min in both cases since spectra did not 

change significantly after that time point. This 

finding could be confirmed by pectin yield 

determination (reference analysis).  

PLS prediction models were established using 

data from both techniques as described in the 

previous section. Results towards accuracy 

(RMSEP), precision (correlation coefficients) and 

number of latent variables are given in Table 3.  

PLS modeling of the carbohydrate microarray 

data, i.e. the interpretation of bi-plots, gave a 

comprehensive understanding of the antibody 

binding pattern being related to pectin release. 
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Figure 8. Screening of polysaccharides from lime peel extractions using microarray technology. Extracted pectin

microarrays were probed with a panel of 30 cell wall glycan directed monoclonal antibodies and CBMs. Binding results 

were presented in a heatmap in which colour intensity was correlated to mean spot signal values. The highest mean spot 

signal value was set to 100 and the rest of values were normalized accordingly. At the top of the heatmap the used probes 

can be seen between brackets preceded by a short explanation of the epitope recognized by the particular probe. At the 

right part of the heatmap extraction times are shown. The sub-heatmap at the bottom, “controls”, includes some defined 

pectic samples with various degrees of methylation. At the top, a commercially produced pectin with degree of 

esterification (DE) 81%, in the middle a pectin with DE 31% and at the bottom, rhamnogalacturonan I. (PAPER 2) 
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Those binding patterns were rather difficult to 

identify without multivariate methods since none 

of the 30 used antibodies or CBMs led to 

prediction ability itself.  More information is given 

in PAPER 2. 

When looking at the figures of merit of all four 

PLS models (Table 3) it can be concluded that 

models 2 and 4, which included the acidic 

extraction III samples, decreased in prediction 

performance for both techniques. However, yield 

prediction ability for carbohydrate microarray data 

did decrease more severe when including the 

acidic extraction III as it can be seen from the 

increasing RMSEP for model 4 and the decreasing 

correlation coefficients. Noticeably, the higher 

RMSEP (lower accuracy) did not only result from 

worse precision, as it can be seen when 

comparing the raw data in Figure 7 and Figure 8, 

but also from a bias induced by the prediction 

samples itself. Further elaboration, including 

calibration curves, is given in PAPER 2. 

5.2.5 Conclusion 

Two multivariate techniques, namely FTIR and 

carbohydrate microarray analysis showed 

predictive and descriptive abilities towards the 

extraction of pectin from lime peel. Both methods 

could predict the pectin yield well using PLS 

modeling. However, while FTIR predicted the 

pectin yield better in terms of accuracy and 

precision, the highly specific carbohydrate 

microarray analysis contributed with valuable 

information regarding the structural properties of 

the extracted pectin.  

Thus, both techniques represent rapid (FTIR) and 

high-throughput capable (carbohydrate 

microarray) tools which can help to understand 

the extraction of pectin in different media. Both 

techniques are furthermore recommended to be 

implemented as industrial PAT solutions. 

Especially FTIR has shown to be highly suitable 

for online-monitoring of the pectin extraction 

process which could lead to optimization of 

parameters regarding process routine and product 

quality.  

6. Temporal Evolution 
Profiling and chemometric 
multiway analysis for 
determination of enzyme 
activity 

In the previous chapter 5 spectral fingerprints 

derived from FTIR and NIR have been used to 

characterize certain thermodynamic states of 

carbohydrate systems. A constant thermodynamic 

state was hereby directly linked to the acquired 

spectrum which also reflected qualitative and 

quantitative properties of its underlying chemical 

constituents. Two-way chemometric methods 

have been used to analyze the corresponding data 

sets.  

However, in this chapter multilinear data sets are 

handled which are constructed in a way that they 

contain an additional measurement dimension, 

namely time. This new measurement dimension 

enables the possibility to observe and calibrate for 

changes of thermodynamic states. In this chapter 

we therefore deal with data structures which are 

defined by its dimensions of samples, 

wavenumbers and time points (as described in 

Figure 3). Those multiway data structures can be 

used to study kinetic phenomena, as determining 

the enzyme activity of one or several enzymes.  

An interesting property of such data sets is that 

the underlying enzyme activity can be extracted 

independently from the interfering background as 

illustrated in Figure 9. This means that calibration 

models are still valid, even if a new sample 

indicates a different chemical matrix. The 

interfering background is simply removed by 

chemometric preprocessing as shown in Figure 9.  

To construct multiway data structures, mathe-

matically denoted as tensors, time-resolved 

measurements are necessary. During the two 

studies, which are introduced in chapters 6.1 and 

6.2, these measurements have been carried out by 

continuously monitoring FTIR spectra of various 

samples which differed by the fact that they 

contained different amounts of active enzyme 

during the time-course of the enzymatic reaction.   

6.1 Measuring enzyme activity using FTIR 

and PARAFAC 

6.1.1 Background 

A key point to investigate enzyme related 

processes is the estimation of enzyme activity 

which is a fundamental measurement required for 

determining the amount of active enzyme. 



Temporal Evolution Profi

�

Figure 9. The figure shows simulate

changing grey-scale. Bottom: The ob

independently from the sample matrix

the initial spectrum was subtracted from

Formally, enzyme activity is de

amount of active enzyme which w

transformation of a particular mo

substrate per time unit under optim

Its measurement is decisive for de

dosage, reaction time, substrate us

yields in practical enzyme catalyze

quantitative enzyme activity assa

measured directly as the reaction ra

initial substrate consumption rate –

a fundamental measurement used f

specific enzyme. 

However, according to this it is dif

the enzyme activity of enzymes w

catalyze more than one substra

corresponding products are even a

substrates themselves. A particul

given by pectin lyase which cat

polymerization of homogalacturon

pectin which can serve as substrat

and therefore produce a distributio

with different chemical and structu

Hence, the question arises of 

product or substrate to use for the

of the enzyme activity although

reaction is best described by all of t

filing and chemometric multiway analysis for determination of enzy

ed data. Top: A time-resolved change of spectral fing

bserved kinetic phenomenon, e.g., an enzymatic rea

x as the background can be removed by simple data pr

m all spectra of the series yielding similar evolution profi

efined as the 

will catalyze the 

olar amount of 

mal conditions. 

efining enzyme 

se and product 

ed reactions. A 

ay - optimally 

ate defining the 

– is thereby also 

for identifying a 

fficult to define 

which can bio-

ate. Often the 

able to serve as 

lar example is 

alyzes the de-

nan regions in 

te several times 

on of products 

ural properties. 

which unique 

e quantification 

h the catalytic 

them? 

It appears to be equally 

overall enzyme activity of c

since they contain cellula

accompanying enzymes w

break down recalcitrant bio

IUPAC defined a stand

cellulase related enzyme 

using Filter Paper units

employs standardized filter

be degraded by the enzym

reducing sugar assays [88, 8

the enzymatic degradatio

formation of reducing su

course of the catalyzed rea

assays are usually reference

reducing sugar as, e.g., glu

strongly depend on 

monosaccharide itself. He

how well those filter paper

actual overall enzyme activ

dependence of the presen

and the used reduci

Additionally, reducing suga

[88, 89] are very cumber

and often employ tox

unfriendly chemicals.  

yme activity 

�
�

 

gerprints is illustrated by 

action, can be extracted 

reprocessing. In this case, 

files in both cases. 

 difficult to define the 

cellolytic enzyme blends 

ases and several other 

which actively help to 

omasses efficiently. The 

dardized method for 

 activity determination 

s [88]. This method 

r paper as a substrate to 

mes while conventional 

89] are used to monitor 

on by screening the 

ugars during the time-

action. However, those 

ed to only one standard 

ucose and are therefore 

the used reference 

ence, it is questionable 

r units can describe the 

vity as it might vary in 

nt biomass (substrate) 

ing sugar standard. 

ar assays as described in 

rsome, time-consuming 

xic and environment 



Temporal Evolution Profiling and chemometric multiway analysis for determination of enzyme activity 

���

�

 

Figure 10. Each enzymatic reaction results in a specific spectral evolution profile, representing both, substrate depletion 

and product evolution. The enzymes used were glucose oxidase (A, B), pectin lyase (C, D) and Celluclast 1.5L (E, F). 

During this study (PAPER 3) the hypothesis is 

tested, that FTIR and chemometric multiway 

analysis can be used as an universally applicable 

approach for rapid assessment of enzyme activity 

without using any external standards, even on 

genuine, complex substrates as biopolymers 

(which may not be chromogenic). The 

methodology is demonstrated by spectral 

evolution profiling of Fourier Transform Infrared 

(FTIR) spectral fingerprints using parallel factor 

analysis (PARAFAC) for pectin lyase, glucose 

oxidase, and a cellulase preparation. 

6.1.2 Experimental 

All spectral evolution profiles were obtained using 

a MilkoScanTM FT2 (FOSS ANALYTICAL, 

Hillerød, Denmark) and reference enzyme activity 

determinations were carried out by conventional 

enzymatic assays as described in PAPER 3. 

Spectra were acquired in the range between 1000 

cm-1 and 1600 cm-1 while the temperature of the 

cuvette (path length 50 µm) was equilibrated at 42 

°C during all measurements. Sets of evolution 

profiles were acquired using equal substrate 

concentrations and different dosages of enzyme. 

Depending on the nature of the enzymatic 

reaction, measurements have been carried out in 

flow-back mode where the reaction mixture was 

continuously led back to the reaction container to 

ensure access of gases as oxygen which was 

necessary for the reaction of glucose oxidase. The 

other enzymatic reactions have been pumped into 

the cuvette only once for continuous 

measurements (pectin lyase and Celluclast 1.5L). 

In this case the reaction mixture stayed inside the 

cuvette during the whole acquisition period. 

Spectra for each evolution profile were measured 

consecutively using time steps of 16.6 s for pectin 

lyase and Celluclast 1.5L and 31.0 s for glucose 

oxidase, respectively.  
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Table 4. Calibration parameters for the three modeled enzymatic reactions 

 pectin lyase glucose oxidase Celluclast1.5L 

R2 substrate calibration 0.998 / 0.99 

R2 product calibration 0.995 0.97 0.98 

Time of spectral evolution 4.2 min 20.7 min 4.2 min 

Number of spectra in each Evolution Profile 15 40 15 

Calibration range (per ml Substrate) 0-200 mU/ml 0-6 U/ml 0-80 mU/ml 

LOD* 9 mU/ml 277 mU/ml 3.79 mU/ml 

* Limit of Detection (LOD) only valid for used time of spectral evolution. LOD decreased for extended observation 

time. 

The figure shows that each enzymatic reaction 

results in its own specific temporal evolution due 

to the complex IR fingerprints of substrates and 

products. In addition, the intensity of the spectral 

evolution depended on the used enzyme amount. 

Several evolution profiles indicating different 

amounts of pectin lyase which bio-catalyzed the 

degradation of pectin are shown in Figure 12. For 

enzyme activity calibrations the scores retrieved 

from the three PARAFAC decompositions were 

plotted against the determined reference values. 

Since the evolution profiles monitored both, 

substrate depletion and product evolution 

simultaneously, the PARAFAC decomposition 

resulted in two calibrations for each enzymatic 

reaction. Correlation coefficients of the 

calibrations are given in Table 4. However, the 

glucose oxidase calibration showed poorer 

performance than the calibrations of the other 

two enzymatic reactions due to a lower signal-to-

noise ratio in the spectra. It therefore resulted in 

only one calibration. Calibration relevant 

parameters as limit of detection (LOD), spectral 

calibration range, time of spectral evolution and 

number of spectra in the individual evolution 

profiles are given in Table 4. 

In addition, the calibration performance was 

investigated in dependence of observation time 

used in the individual evolution profiles. Further 

information on this and an application example of 

the method to investigate the thermal stability of 

pectin lyase is given in PAPER 3.  

6.1.5 Conclusion 

The method presents a universal and straight 

forward approach to quantify enzyme activity 

without using any external standards. Three 

enzyme activities, namely glucose oxidase, pectin 

lyase and the overall activity of a cellolytic enzyme 

blend, could be determined using spectral 

evolution profiling and PARAFAC analysis. The 

suggested approach enables possibilities to 

monitor and create a better understanding of 

complex biomass degrading enzymatic reactions 

and therefore offers attractive alternatives to the 

cumbersome reducing sugar analysis. Although 

FTIR serves as a very versatile and non-invasive 

technique to monitor both, substrate depletion 

and product evolution, its major drawback can be 

found in the low sensitivity as detection limits are 

relatively high as indicated in Table 4. 

6.2 Simultaneous measurement of two 

enzyme activities: a comparative 

evaluation of PARAFAC, TUCKER3 and 

N-PLS modeling 

6.2.1 Background 

Chapter 6.1 dealt with enzyme activity 

determinations of bio-catalytic systems which 

contained only one enzyme or a blend of enzymes 

whose amounts relative to each other were 

constant in all reactions as if they would represent 

a single “overall enzyme activity”.  

This chapter focuses on extending the concept to 

determine enzyme activity of two co-acting 

enzymes simultaneously, i.e. pectin lyase and 

pectin methyl esterase acting on the same 

substrate, i.e. pectin from citrus peel. Both 

enzymatic reactions are given in Figure 14. While 

assuming that both enzymes do not interact with 

each other in an initial phase of the reaction, a 

superimposed nature of the individual evolution 

profiles can be expected as illustrated in Figure 13 

(simulated data). In addition, substrate depletion 

during spectral acquisition should be avoided by 

choosing high initial concentrations. When mixing 

different amounts of the enzymes the overall 

absorption pattern of the spectral evolution is 

therefore expected to change indicating simple 

superimposition (Figure 13).  

Throughout this study the hypothesis shall be 

tested if mid-infrared spectral evolution profiling 

and chemometric multiway analysis can determine 

two enzyme activities simultaneously. By doing 

so, three multiway methods shall be compared



Temporal Evolution Profiling and chemometric multiway analysis for determination of enzyme activity 

���

�

 

Figure 13. Simulated data for three enzymatic reactions. A) Enzyme 1 catalyzes the conversion of the substrate to 

product P1; B) Enzyme 2 converts the substrate to product P2; C) Enzyme1+Enzyme2 (half dose enzyme1 + half dose 

enzyme2) convert the Substrate to both Products (P1 and P2) at the same time. The spectral changes from Substrate 

fingerprint to product fingerprint are illustrated on the left side, whereas difference spectra using surf plots are shown 

on the right side.  Individual final product fingerprints are given by red and blue dashed lines, respectively.  
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Figure 14. A) Enzymatic reaction of pectin lyase; B) enzymatic reaction of pectin methyl esterase; although both 

enzymes act on the same substrate, namely pectin, they cleave the polymer at different specific sites. 

towards modeling performance, namely 

PARAFAC, TUCKER3 and NPLS.  

6.2.2 Experimental 

All spectral evolution profiles were acquired 

between 1000 cm-1 and 1600 cm-1 using FTIR in a 

similar fashion as described in chapter 6.1. To 

establish calibration models for both enzymes, PL 

and PME, an appropriate experimental design was 

necessary. It should take into account that e.g. 

samples with one particular PL activity can be 

superimposed by PME activities which span from 

zero to a certain maximum value and vice versa. 

To establish robust calibration models all possible 

degrees of superimposition had therefore to be 

considered as shown in Figure 15.  

 

Figure 15. Experimental Design: Red samples 

define calibration ranges, while black samples are 

randomly placed to create a normally distributed 

sampling scenario. 

Thus, a total number of 56 evolution profiles 

were acquired resembling diverse scenarios of 

superimposed PL and PME activities being added 

to 20 ml of 1g/l pectin solution. The spectra were 

acquired consecutively using time steps of 16.6 

seconds which resulted in eleven minutes 

observation time for one evolution profile (40 

spectra). 

The molar enzyme activities of PL and PME for 

reference analysis were determined by 

conventional assays as described in PAPER 4.  

6.2.3 Chemometric analysis 

The acquired 56 evolution profiles were 

transformed into trilinear data structures as shown 

in Figure 11. 37 samples were used for calibration 

modeling and the 19 remaining samples served as 

a prediction test set for validation. Prior to any 

multiway modeling all spectra were normalized 

using SNV for each individual sample slab of the 

three-way array (PAPER 4). The final tensor 

contained data in the format 56 samples x 40 time 

points x 128 spectral variables. The three-way 

array was consecutively double centered using 

multiway centering towards mode 1 and mode 2 

[64]. 

PARAFAC, TUCKER3 and NPLS analysis were 

carried out using PLS toolbox 6.0.1 (Eigenvector 

Research Inc., WA, USA). The mean prediction 

error (RMSEP) and the pooled standard deviation 

(sp) were calculated as described PAPER 4 and 

represent measures for accuracy and precision.  

6.2.4 Results 

The calibration results for PARAFAC, 

TUCKER3 and NPLS modeling are given in 

Table 5 and Figure 16. Individual evolution 

profiles containing different amounts of PL and 

PME are given in PAPER 4.  

Using leave-one-out cross-validation the number 

of factors for the PARAFAC model was 

determined to be 2 while the individual ranks for 

TUCKER3 modeling towards the modes 1 

(sample mode), 2 (kinetic mode) and 3 (spectral 
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Figure 16. PL and PME calibrations derived from PARAFAC, TUCKER3 and NPLS models. Top: PME, bottom: PL; 

The blue points indicate leave-one-out cross validated calibration samples while red triangles indicate predictions for the 

test set samples. 

mode) were found to be 2, 1 and 2, respectively. 

The kinetic mode loadings of the TUCKER3 and 

NPLS models indicated that the rank in this mode 

was indeed 1 since both enzymatic reactions 

evolved identically, i.e. the initial rates changed in 

a similar fashion. The reduction of the rank in the 

kinetic mode (mode 2) was therefore assumed to 

be beneficial for calibration modeling as 

PARAFAC had problems to model the two 

enzymatic systems simultaneously (Figure 16). 

Further elaboration and loadings from all modes 

are presented in PAPER 4. Individual NPLS 

models for PL and PME indicated only one 

significant factor (one underlying evolution 

profile) for each activity calibration because leave-

one-out cross validation indicated no prediction 

improvement for NPLS models when using more 

than one factor, respectively. 

Surprisingly, TUCKER3 calibration performance 

was comparably good with respect to the result 

retrieved from the supervised regression method 

NPLS. This study therefore indicated a useful 

application for TUCKER3, especially in contrast 

to PARAFAC. 

In addition the high calibration accuracy of the 

unsupervised result from TUCKER3 indicated 

that no significant disturbing interaction between 

the enzymes was present since it would have led 

to decrease in calibration performance. 
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Table 5. Regression coefficients for calibration and prediction set samples are given together with pooled standard 

deviation sp and root-mean-square-error of prediction RMSEP 

                        PARAFAC          TUCKER3          N-PLS 

 PL PME PL PME PL PME 

R2
cal 0.67 0.52 0.92 0.88 0.95 0.89 

R2
pred 0.48 0.70 0.96 0.89 0.96 0.89 

Sp 1.10 U 1.62 U 0.26 U 1.19 U 0.24 U 1.10 U 

RMSEP 3.60 U 5.31 U 0.62 U 2.72 U 0.70 U 2.85 U 

 

6.2.5 Conclusion 

FTIR spectroscopy was employed to follow the 

bioconversion of two enzymatic reactions time-

resolved.  All three multiway methods, namely 

PARAFAC, TUCKER3 and NPLS, could predict 

the enzyme activities of the two co-acting 

enzymes, PL and PME, simultaneously. When 

comparing the three multiway models mainly 

TUCKER3 surprised with its outstanding 

performance. As both, accuracy and precision 

were comparable to the regression results from 

N-PLS, although resulting from a non-supervised 

analysis; it shows clearly that TUCKER3 has great 

potential when analyzing kinetic data, especially 

when PARAFAC fails to resolve the underlying 

phenomena as it could be seen during this study. 

Since many enzymatic reactions still rely on 

monitoring only one substrate or product the here 

presented approach enables much better 

observation of the whole reaction pattern. This is 

particularly important when enzyme kinetics is to 

be investigated on genuine substrates where two 

(or more) enzymes act concerted on the same 

substrate. At present those reactions can hardly be 

monitored by univariate measurement principles 

as they result in very complex reaction patterns. 

Time-resolved multivariate analysis and FTIR 

spectroscopy therefore inaugurate new 

possibilities to monitor such reactions to gain a 

better understanding of their complex underlying 

nature. 

7. Conclusion and 
Perspectives 

This thesis dealt with descriptive and predictive 

assessment of enzyme activity and enzyme related 

processes in biorefinery using FTIR and 

chemometrics. Within the project two major 

research fields were dealt with, i.e. the establish-

ment of PAT tools for prediction of relevant 

parameters in biorefinery processes and the 

establishment of universally applicable enzyme

 

 

activity assessment methods. The developed 

methodologies complied with concepts like 

“cradle-to-cradle” [6], meaning that no resources 

are meant to be wasted and toxic chemicals 

should be avoided. The major results are 

summarized in the following:  

 

1. Hydrolysis efficiency of destarched corn 

bran after various pretreatment can be 

predicted by non-invasive NIR spectroscopy 

and chemometric modeling prior to 

enzymatic conversion. Prediction models 

towards the monosaccharide release enable a 

useful PAT to monitor the quality of 

incoming biomass batches and to evaluate 

the effect of pretreatment while outliers are 

easily detected. (PAPER 1) 

2. FTIR, carbohydrate microarray analysis and 

chemometric data analysis are suitable 

techniques for the qualitative and 

quantitative analysis of time-resolved pectin 

extraction. FTIR represents a useful PAT 

tool to monitor the extraction process online 

using predictive models which also leads to 

optimization of extraction time. 

Carbohydrate microarray analysis gives 

strong support to determine the obtained 

pectin structure, i.e. to determine the degree 

of esterification and neutral sugar side-chain 

abundance. (PAPER 2)   

3. FTIR and chemometric multiway analysis, 

i.e. PARAFAC, give better and more 

objective determination abilities towards 

enzyme activity. The method is universally 

applicable to a wide range of enzymes and 

does not require use of any external 

chemicals. (PAPER 3) 

4. FTIR and chemometric multiway 

chemometrics, i.e. PARAFAC, TUCKER3 

and NPLS, can determine the enzyme 

activities of the co-acting enzymes pectin 



References 

���

�

lyase and pectin methyl simultaneously. 

(PAPER 4) 

 

The results of the project were presented in 

chapter 5 and chapter 6. The division of the 

chapters was hereby based on application of two-

way versus multiway chemometric methods. On 

one hand, two-way chemometric methods 

primarily enabled opportunities for analysis of 

thermodynamic states, while on the other hand 

multiway methods were employed to establish 

models towards time-resolved changes of 

thermodynamic states.  

While chemometric two-way methods, in 

combination with rapid and non-invasive 

techniques which required almost no sample 

preparation, showed great benefit when 

characterizing (bio)-chemical systems the study 

indicated some outstanding advantages of 

multiway analysis. Enzyme activity was hereby 

found to form specific spectral evolution profiles, 

being composed of spectral substrate and product 

evolutions, whose intensity varied in dependence 

of the used enzyme amount. Enzyme activities 

could therefore be quantified and identified 

according to the shape of their specific evolutions 

measured by FTIR. 

The inherent uniqueness property of e.g. 

unsupervised PARAFAC models paves the road 

for establishment of enzyme activity calibrations, 

even without reference analysis which is in 

particular interesting as relative enzyme activities 

are desired when characterizing an enzyme in 

terms of its thermal stability. 

Secondly, the second order advantage makes 

models derived from multiway methods robust 

against unknown interferences in future 

prediction samples. This means that enzyme 

activity calibrations can be applied to different 

sample matrices, even containing possible 

additional interfering substrates. However, this 

was not investigated throughout this project and, 

theoretically, only holds when kinetic and 

fingerprint loadings of the interfering spectral 

evolution differ from the loadings of the 

calibrated enzymatic spectral evolution.  

Outlining these striking advantages, hence, 

promises further application areas of the 

proposed multiway methods regarding enzyme 

activity determination. In terms of future 

perspectives, studies could concern investigation 

of more than two enzymes acting simultaneously 

on common substrates to evaluate the limits of 

de-convoluting underlying evolution profiles of 

the individual enzymatic reactions. In addition, 

the interaction between enzymes can be 

investigated as its appearance would be expected 

to disturb calibration performance of the 

unsupervised multiway models. The method also 

enables descriptive possibilities to monitor the 

quality of enzyme production batches in terms of 

side-activity abundance as the specific spectral 

evolution profiles indicate additional spectral 

evolution easily. The major advantage is hereby, 

that the method utilizes the fingerprinting 

technique FTIR which captures information 

concerning literally all changes in (bio)-chemical 

systems making it universally applicable, even 

considering recalcitrant sample matrices as, e.g., 

milk and juice.  

In terms of biorefinery, the proposed 

methodologies offer outstanding opportunities to 

screen enzymatic reactions, also in a qualitative 

sense, and could therefore have significant impact 

on analyzing bio-catalytic processes as they have 

been cumbersome to understand for decades 

because of their obtrusive complexity.  
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Efficient generation of a fermentable hydrolysate is a primary requirement in the utilization of fibrous

plant biomass as feedstocks in bioethanol processes. The first biomass conversion step usually involves a

hydrothermal pretreatment before enzymatic hydrolysis. The purpose of the pretreatment step is to

increase the responsivity of the substrate to enzymatic attack and the type of pretreatment affects the

enzymatic conversion efficiency. Destarched corn bran is a fibrous, heteroxylan-rich side-stream from

the starch industry which may be used as a feedstock for bioethanol production or as a source of xylose

for other purposes. In the present study we demonstrate the use of diffuse reflectance near infrared

spectroscopy (NIR) as a rapid and non-destructive analytical tool for evaluation of pretreatment effects

on destarched corn bran. NIR was used to achieve classification between 43 differently pretreated corn

bran samples using principal component analysis (PCA) and hierarchal clustering algorithms.

Quantification of the enzymatically released monosaccharides by HPLC was used to design multivariate

calibration models (biPLS) on the NIR spectra. The models could predict the enzymatic release of

different levels of arabinose, xylose and glucose from all the differently pretreated destarched corn bran

samples. The present study also demonstrates a generic, non-destructive solution to determine the

enzymatic monosaccharide release from polymers in biomass side-streams, thereby potentially

replacing the cumbersome HPLC analysis.

Introduction
Enzymatic conversion of biomasses is an important step in the

exploitation of biomass residuals in the food and biofuel industry

and viable processes are dependent on reliable, fast and low-cost

process conditions. It is of great importance to know the basic

monosaccharide composition and the distribution in polysacchar-

ide forms to target and develop enzymatic conversion, and this

traditionally represents a demanding task. In addition, most low-

priced biomass resources are of a recalcitrant nature, which is why

various hydrothermal or thermo-chemical pretreatment forms are

often applied in to maximize the yields of enzymatic conversion

[1–3]. Such pretreatments are costly and the efficacy of the pre-

treatment step in generating a substrate which is enzymatically

degradable needs utmost optimization. Evaluations of pretreat-

ment methods are commonly done by large experimental setups

and require time-consuming and advanced analytical methods

[4,5].

Near infrared spectroscopy (NIR) as an analytical tool offers

benefits, such as high-throughput screening, which are highly

valuable to the research field of biomass conversion and various

studies have focused on applying NIR spectroscopy as an alter-

native method for rapid and reliable screening of biomass com-

position and digestibility. Such diverse cases include prediction of

polysaccharide composition of several botanical fractions of
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switchgrass and corn stover [6], wheat straw digestibility [7],

characterization of feedstock and fermentation yields of rye, wheat

and triticale kernels for bioethanol production [8] and character-

ization of starch waxiness in wheat breeding programs [9]. Besides

being rapid it is a low cost, highly versatile analytical technique

and has the special advantage of being capable of analyzing

insoluble, powder samples and suspensions, which are features

particularly relevant for recalcitrant biomasses.

NIR analysis involves acquisition of large numbers of absorben-

cies in a spectral region typically ranging from 1000 to 2500 nm,

where organic matter has distinct spectral fingerprints related to

functional groups [10]. The large amounts of data generated by

such methods are generally combined with multivariate quanti-

tative and qualitative analysis by which predictive models and

interpretations can be made [10]. The combination of NIR spectro-

scopy and multivariate analytical techniques represents an excep-

tionally feasible method for building reliable models to describe

biomasses. Because of the capacity of the multivariate analysis

such models can be based on comprehensive data amounts, which

may include variables like cultivars, harvest time, plant tissues,

storage conditions, growth conditions and locations [6–12].

In the present work, NIR spectroscopy has been applied to

evaluate differently pretreated samples originating from corn

bran, an agro-industrial residue from corn starch processing

[4,11]. The aim of the study was to examine the potential for

employing NIR spectroscopy and chemometrics to predict the

efficiency of different pretreatments on enzymatic degradation

of corn bran. Corn bran represents a complex and recalcitrant

biomass stream particularly rich in C-5 carbohydrates mainly

present as the structural polysaccharide arabinoxylan, which con-

stitutes approximately 56% of the dry matter (DM) [11]. Corn bran

also contains significant amounts of cellulose and is therefore an

interesting substrate for enzymatic biomass conversion into read-

ily available monosaccharides.

The spectral data originating from corn bran samples after

various pretreatments were compared to results of enzymatic

hydrolysis obtained by HPLC analysis of enzymatically released

monosaccharides. It was hypothesized that: (i) NIR spectroscopy

can hierarchically distinguish insoluble corn bran according to

pretreatment conditions and (ii) the extent of enzymatic hydro-

lysis of corn bran after a particular set of pretreatment condi-

tions can be predicted from the insoluble corn bran’s NIR

spectra.

Materials and methods
Experimental setup

The experiment was designed as illustrated in Fig. 1. Destarched

corn bran was subjected to different pretreatments with varying

temperature, pH and time as outlined in ‘Biomass’ section. Freeze

dried samples from each pretreatment experiment were used in

powder form for NIR measurements. Concomitantly the pre-

treated DCB samples were enzymatically hydrolyzed to release

monosaccharides, which were quantified by HPLC techniques as

described in ‘Enzymatic hydrolysis and monosaccharide analysis’

section.

First NIR spectroscopy was used to achieve classification among

the different pretreatment conditions in relation to carbohydrate

composition and to detect outliers in the sample sets by using

hierarchal clustering algorithms in connection with PCA Analysis.

Secondly, the determined quantities of glucose, xylose and arabi-

nose from HPLC were employed to establish multivariate calibra-

tions using Partial Least Squares modeling (Fig. 1a). The

established models could then be used for prediction of mono-

saccharide release (Fig. 1b) by just measuring the NIR spectrum of

the pretreated DCB samples (validation).

Biomass

Destarched corn bran after various pretreatments was used as

substrate in all enzymatically catalyzed conversions and all NIR

spectroscopy measurements. Raw corn bran was obtained from

Archer Daniel Midlands Company, Decatur Illinois, USA. The

material was milled and enzymatically destarched with a-amylase

and amyloglucosidase as previously described [11] before all pre-

treatments, measurements and hydrolysis experiments.

Pretreatment conditions were categorized into five different

setups (A–E) as follows:

A: Raw destarched corn bran, sorted according to particle sizes. This

substrate was identical to group B substrate except that no

pretreatment other than destarching had occurred. After

destarching, the material was freeze dried, milled and sorted

into four particle size fractions based on size by sieving,

namely from [1000;710], [710;355], [355;250], [250;150] mm

[4]. These four particle size fractions were analyzed by NIR and

enzymatically hydrolyzed.

B: Elevated temperature pretreatment, sorted according to particle

sizes. Destarched corn bran in an aqueous non-buffered 6%

DM weight/volume (w/v) slurry was pretreated in a loop

autoclave at Risø DTU, National Laboratory for Sustainable

Energy, Roskilde, Denmark as described previously [4,12]. The

pretreatment consisted of heating to 1908C for 10 min. No

chemicals were added. After pretreatment the pH was 4.2 in

the total slurry. Hereafter the material was separated into a

soluble and an insoluble fraction by filtration and the

RESEARCH PAPER New Biotechnology �Volume 29, Number 3 � February 2012

FIGURE 1

Principle of multivariate calibration. HPLC and NIR spectroscopy were used to

determine carbohydrate composition of pretreated DCB samples: (a) HPLC

data from enzymatic hydrolyzed samples were used to establish multivariate

calibration on the NIR spectra; (b) The prediction model established from (a)

can then be used to predict the outcome of the enzymatic hydrolysis directly

from NIR spectra without need for hydrolysis.

294 www.elsevier.com/locate/nbt
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insoluble residue was washed in Milli-Q water and freeze

dried. Finally, the freeze dried insolubles were milled and

sorted into four fractions of different particle size as described

for group A. These four particle size fractions were analyzed by

NIR and enzymatically hydrolyzed.

C: Mid-range pH catalyzed pretreatments at intermediate tempera-

tures. In these experiments destarched corn bran was

suspended in a 2% DM (w/v) aqueous non-buffered slurry

before heat incubation in a custom-built pretreatment reactor

as described in [4]. Before incubation pH was adjusted by

either HCl or NaOH to meet initial pH conditions of either 2, 7

or 12 in the pretreatment. The pre-pH adjusted corn bran

slurry was incubated at temperatures ranging from 100 to

1508C for 10–120 min. The pretreated slurries were enzyma-

tically hydrolyzed and an aliquot of the material was then

filtered and the insoluble residues were washed in Milli-Q

water before freeze drying for NIR measurements.

D: Low pH catalyzed pretreatment at intermediate temperature. This

material was pretreated at conditions similar to those applied

for group C as the pretreatment reactor, DM loadings and

handling after pretreatment were the same. In contrast to

group C the pH was adjusted between 1 and 2, all experiments

were performed at 1508C and the pretreatment time was

narrowed down to be between 10 and 65 min [4].

E: pH catalyzed pretreatments with extended incubation time. The

last pretreatment group included destarched corn bran

samples which had been pretreated similarly as the samples

in group C and D, but either pre-adjusted to pH 2 or 12 and

then incubated for extended time intervals (from 120 to

240 min) as described in [4].

Enzymatic hydrolysis and monosaccharide analysis

All enzymatic hydrolysis experiments were conducted according

to the same scheme. For dry samples a 2% DM (w/v) suspension

was made in 0.1 M succinate buffer pH 5. Slurry samples were pH

adjusted to 5 before hydrolysis. A basic set of enzymes was applied

to all samples, one endo-(1,4)-b-xylanase (GH10, Humicola inso-

lens), one b-xylosidase (GH3, Trichoderma reesei), two a-L-arabi-

nofuranosidases (GH43 from H. insolens and GH51 from Meripilus

giganteus) all described in [13,14]. These four enzymes were dosed

at 0.25 mg enzyme protein (EP)/g DM each as mono component

preparations and the blend was further supplemented by acetyl

xylan esterase from Flavolaschia sp. [11] and feruloyl esterase type

A from Aspergillus niger [15] each dosed at 0.5 mg EP/g DM. Finally,

a commercially available cellulase preparation was added, named

CellicTM CTec which is based on the well-known T. reesei cellulase

enzyme complex, supplemented by b-glucosidase  and hydrolysis-

boosting proteins GH61 [16,17]. The cellulase preparation was

dosed at 4 mg EP/g DM. Samples were incubated at 508C for

24 hours and enzymatic reactions stopped by heating to 1008C

for 10 min. All enzymatic hydrolysis experiments were performed

in triplicate. Hereafter, all samples were analyzed for free mono-

saccharides arabinose, glucose and xylose by HPAEC-PAD on a

BioLC Dionex system, equipped with a CarboPac PA1 column

(analytical 4 mm � 250 mm) also from Dionex, according to the

method given in [18]. Before pretreatment experiments the basic

monosaccharide composition of raw destarched corn bran was

established by methods described in [11]. This composition

was generally applied for calculating yields after enzymatic

hydrolysis.

Diffuse reflectance near infrared spectroscopy (NIR)

Diffuse reflectance NIR spectra were obtained using a monochro-

mator-based XDS instrument connected to a Rapid Content Ana-

lyzer (FOSS ANALYTICAL, Hillerød). The instrument scans the full-

visible and near infrared range spanning from 400 nm to 2500 nm

using a Dual detector (silicon 400–1100 nm; lead sulfite 1100–

2500 nm) and at a resolution of 2 nm�1. Wavelength accuracy and

acquisition rate were specified as <0.05 nm and 2 scans per second,

respectively.

The destarched corn bran samples were measured directly as

powders with no further physical pretreatment using a round

quartz cuvette (Hellma, Sussex, UK) specified by a 1.8 cm diameter.

The sample amount was 150 mg and the measurement window

(spot-size) for spectra acquisition reduced to 10 mm. Thirty-two

scans were performed for each spectrum acquisition.

Four Polysaccharide Standards were used for comparison of

spectral features. Cellulose (Avicel) and Xylan (Birchwood) were

purchased from Sigma–Aldrich (Steinheim, Germany) and water

soluble and insoluble wheat arabinoxylan from Megazyme (Bray,

Ireland), respectively. Each polysaccharide standard was simply

measured directly by NIR as the powder.

Chemometrics

Spectra were acquired by the Software VISION (Version 3.4.0.0,

Foss Analytical, Hillerød, Denmark) and thereafter exported for

examination using Matlab 2010 (MathWorks, Natick, MA, USA)

concerning the following chemometric methods.

All spectra were pretreated using Multiplicative Signal Correc-

tion (MSC) and mean-centering. MSC [19,20] removes scatter

components in spectra which can arise when measuring directly

on powders. The technique calculates an average spectrum of all

samples followed by a univariate regression between the average

spectrum and all others. The estimated offset and slope were

finally subtracted from and divided by each individual spectrum,

thereby yielding a corrected spectrum. Individual scatter effects

are therefore corrected.

Further on principal component analysis (PCA) [21], partial least

squares [22] and backwards interval partial least squares models

(biPLS) [23] were performed using PLS TOOLBOX (Version 6.0.1,

Eigenvector Research). Dendrograms [24,25] were calculated and

drawn by a MATLAB program using average linkage algorithm [26].

Short descriptions of these methods are given in the following.

Principal component analysis

PCA is a mathematical method which decomposes a set of obser-

vations (set of spectra) into a set of principal components (PCs)

whose number is less or equal to the number of original variables.

Concerning spectroscopy a set of spectra can therefore be

expressed by several orthogonal ‘factor spectra’ called loadings.

Furthermore each spectrum can be recombined by a linear com-

bination of those loadings using individual scores. Usually the

application of PCA implies a remarkable reduction of necessary

variables (PCs) to describe a spectral system. If only few PCs are

necessary to characterize a spectral system it is therefore possible to

visualize differences between spectra by plotting the scores of
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those PCs against each other. Thus the position of a sample in a

score plot describes the characteristics of the measured sample.

Dendrogram

Dendrograms are used for hierarchal clustering analysis to achieve

classification. Usually it is very difficult to visualize clusters along

PCA scores using more than three PCs. Dendrogram plotting

overcomes that disadvantage because it can handle visualization

of samples with more than three independent variables using a

hierarchal family tree like structure.

The algorithm performs n � 1 steps where n is the sample size.

In all the steps it calculates the Euclidean distance of the two

closest samples. Thereafter it combines those two closest samples

to a new one with, for example, average coordinates (average

linkage algorithm). After n � 1 steps a dendrogram can be drawn

to visualize hierarchically in which samples are most probably

comparable even considering many independent variables. This

tool is very useful if classification using PCA along a sample set

needs to consider more than three factors.

Partial least squares regression

Partial least squares regression functions are comparable to PCA. In

contrast to PCA such a regression calculates loadings which max-

imize variance using supervising information concerning, for

example, analyte concentration. It finds projections of scores

which maximize spreading of the scores due to different under-

lying analyte concentrations and therefore enables multivariate

calibration modeling.

Interval partial least squares and backwards interval partial least

squares regression

In comparison to usual PLS interval partial least squares regression

(iPLS) optimizes model performance by selecting spectral regions

which contain highly significant information about the analyte.

Spectral intervals with high degree of interference from the matrix

will be ignored because they deteriorate the model performance.

Backwards interval partial least squares regression is working in the

same manner as iPLS, but instead of adding spectral intervals with

significant information it subtracts regions which deteriorate the

model performance. Both iPLS and biPLS are usually combined

with interval selection algorithms to optimize computing time.

Genetic algorithms have been reported [27,28] to be very efficient

in that sense. Besides improvement of modeling performance

interval selection methods as iPLS and biPLS lead to highlight

spectral regions and identification of specific bands in the spectra

concerning the modeled analyte.

Results and discussions
NIR spectra

The sample set consisted of 43 powder samples, which were

organized in groups according to the different pretreatment

conditions they had undergone (Table 1). All spectra showed

different absorbencies concerning different NIR vibration

regions (Fig. 2). In addition the figure also shows the spectra

of four polysaccharide standards namely, for example, water-

insoluble arabinoxylan (blue), water-soluble arabinoxylan (red),

xylan (cyan) and cellulose (green). Several polysaccharide NIR

absorbencies could be identified due to either combination

vibration bands at 2000–2500 nm, first overtone at 1600–

2000 nm or second overtone vibration bands at 1400–1600 nm

(Fig. 2). Strong absorbencies due to moisture appeared at

1950 nm, 2450 nm and less intensely around 1450 nm (Fig. 2).

Carbohydrate bands could be identified for CH2 and CH between

2300 and 2400 nm due to combination bands, at 1700–1800 nm

due to first overtone and around 1400–1500 nm due to second

overtone bands, respectively [10]. ROH combination bands

appeared around 2100 nm (Fig. 2). The spectral features of the

carbohydrates and the subtle differences among the samples

could be recognized in all the 43 spectra. Noticeably all 43 corn

bran spectra were most comparable to the insoluble arabinox-

ylan standard spectrum (blue spectrum in Fig. 2). Additionally

some samples showed stronger absorbencies related to cellulose

features (green spectrum in Fig. 2) than others. Regardless that

there are spectral features of the carbohydrates being visible in

the spectra many were strongly overlapped with spectroscopic

responses from the sample matrix. This emphasizes the need of

chemometric tools for multivariate analysis to prove the under-

lying carbohydrate chemistry.

PCA and hierarchal cluster analysis

The spectra were MSC pretreated followed by mean-centering. All

43 samples were considered for PCA Analysis and hierarchal

classification based on the PCA scores.

The PCA decomposition showed that 11 PCs were necessary to

explain the significant variance in the spectra. The number of

components could be reduced to 5 by excluding the spectra of

group D (harsh acidic, Table 1) thus indicating that those samples

were least comparable to the rest of the groups. This finding was
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TABLE 1

Group assignment of samples according to pretreatment conditions

pH Temperature (8C) Time (min)

Average Interval Average Interval Average Interval

Aa,b – – – – – –

Ba 4.2 4.2–4.2 190.0 190–190 10.0 10–10

C 5.8 1.7–9.8 125.0 100–150 65.0 10–120

D 1.5 0.9–2.1 150.0 150–150 32.0 5–65

E 3.8 1.8–9.1 143.8 125–150 187.5 120–240

a Powders with different particle size due to milling.
b No pretreatment.
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also evident from the scores plot in which group D clustered with

the highest distance to the others (Fig. 3).

It was also evident from the PCA scores plot that noticeably the

scores of group A, which belonged to samples with different

particle sizes, spread more than scores from other groups. This

is in contrast to scores from group B, which were also measured on

different particle sizes (Fig. 3). Particle size influences NIR spectra

remarkably due to scattering effects which have been proven in

several studies for determination of particle size itself [20]. How-

ever, in this particular case the application of MSC pretreatment

removed those effects and the spread of group A scores was there-

fore not explained by different particle sizes, but rather by other

features, notably the water content of the samples.

As water has a high impact on NIR spectra the scores especially

along PC1 were highly affected by the water content of the samples

as illustrated in Fig. 3. The interpretation of the first PCA loading

showed that different amounts of moisture in the powder samples

imply high leverage on the PC1 scores. Thus the spreading of

group A samples, which occurred mainly along PC1, can be

explained by large variations of moisture content of the samples.

This can also be directly observed from the MSC pretreated spectra

regarding different intensities of the first overtone vibration band

due to H2O at 1950 nm. Group B showed no significant shift on

PC1 scores thus indicating comparable amounts of moisture in

these samples. Differences between the two groups probably arose

from different storage conditions which might have affected the

uptake of moisture from the surroundings.

Two samples from group A (marked with stars in Fig. 3) were

excluded from the cluster as outliers. Group D samples revealed

the highest amount of moisture. In group C there was also one

sample which indicated a very high amount of moisture, but this

sample has not been identified as an outlier due to the following

interpretation using a dendrogram.

When including the discriminative power of the second PC a

classification not only due to moisture was possible. Nonetheless

11 PCs were needed in the PCA decomposition to describe the 43

spectra completely in relation to their full underlying chemical

composition as mentioned before.
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NIR spectra. Information from the visible range has been cut off and each spectrum has been MSC pretreated (black). Standard spectra for arabinoxylan soluble

(red), arabinoxylan insoluble (blue), cellulose (green) and xylan (cyan) have been included with an offset for comparison. Various combination, first overtone and

second overtone vibration bands have been highlighted for chemical interpretation.
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Four samples (marked with arrows) rather clustered to a foreign group.
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As it was difficult to visualize the data in more than two

dimensions all 43 scores from five PCs were used to draw a

dendrogram (Fig. 4). The Euclidean distances were calculated by

average linkage algorithm as described in [26]. The outlier samples

26 and 27 due to much higher amount of moisture could be clearly

detected and were therefore removed (marked with * in Figs 3,4).

Additionally it can be concluded that group D was the most

outlying group because its averaged Euclidean distance to the rest

of the samples was very high. That result was already indicated

above by the remarkably increasing number of necessary PCs to

describe the system including that group. Thus, the result of the

Euclidean distance calculation justified the decision to not con-

sider those samples for the calibration of multivariate prediction

models for the enzymatic hydrolysis.

Finally it was noted that hierarchal clustering enabled strong

classification power along the different sample sets. Especially by

interpreting the dendrogram in Fig. 4 it was found that four

samples were rather clustered to a foreign group. Those samples

6, 9, 10 and 40 have been highlighted with arrows in Fig. 3 and

recolored according to the groups which they rather belong to in

Fig. 4. Those reassignments could be confirmed by examining the

pretreatment parameters of those samples. Sample 40 was pre-

treated at a pH comparable to that from group C. Thus it can be

seen that pH has a strong influence on the NIR spectra and

therefore on the carbohydrate composition as described pre-

viously in [4].

The findings show that PCA in combination with hierarchal

analysis is perfectly suitable for discriminating between the dif-

ferent kinds of pretreatment. Further discriminant analysis meth-

ods such as linear discriminant analysis (LDA) [29] or partial least

squares discriminant analysis (PLSDA) [30] can be used to establish

intelligent instrumentation devices with implemented pattern

recognition. At this point such kind of study was beyond the

scope of the present work.
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TABLE 2

Relative monosaccharide release after enzymatic hydrolysis for the groups representing different pretreatment conditions

Arabinose (%) Xylose (%) Glucose (%)

Average Interval Average Interval Average Interval

Aa,b,c 9.2 2.5–16.5 3.7 0.9–7.5 15.2 5.5–30.2

Ba 25.1 22.1–28.4 17.3 14.7–21.2 65.5 51.0–86.4

C 16.7 1.4–26.3 9.5 4.2–25.3 24.7 10.4–63.7

D 13.2 5.7–18.3 n.d. n.d. 57.1 41.3–66.7

E 6.3 0.0–25.4 11.7 10.2–14.4 59.5 51.5–69.1

a Powders with different particle size due to milling.
b No pretreatment.
c Outliers have been excluded from multivariate calibration.
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Multivariate prediction models for enzymatic hydrolysis using

biPLS

PLS models were calibrated for prediction of enzymatic release of

glucose, xylose and arabinose using HPLC data from the hydro-

lyzed samples on the MSC and mean centered NIR spectra of the

pretreated material before hydrolysis (as illustrated in Fig. 1). Only

samples from groups A, B, C and E were considered for the PLS

calibration (Table 2) due to outlying characteristics of groups D as

discussed earlier. To highlight the most informative spectral

regions iPLS and biPLS regression were applied, respectively. BiPLS

generated better model performances and is therefore the only

method considered in the following. The associated modeling

performance of biPLS in comparison to PLS on the whole NIR

spectra is illustrated in Table 3, where additional important para-

meters such as RMSEC, RMSECV and regression coefficients R2 are

also stated. To emphasize the actual underlying chemistry due to

the monosaccharide content selected spectral regions have been

cut out and pretreated separately.

As an example, Figure 5d, presents the spectral region from 2172

to 2272 nm which was highly significant for total arabinose con-

tent. Looking at this selected interval it was clearly visible that

there were trends in spectra in relation to the total amount of

New Biotechnology �Volume 29, Number 3 � February 2012 RESEARCH PAPER

TABLE 3

Modeling parameters as leave-one-out cross-validated RMSECV, RMSEC, regression coefficients R
2 and number of latent variables (LV)

are presented for the PLS/biPLS prediction models using the full spectra and the selected spectral intervals, respectively

RMSECV (%) RMSEC (%) R2 Number of LVs

Full spectra biPLS Full spectra biPLS Full spectra biPLS Full spectra biPLS

Arabinose 3.12 1.39 1.07 0.99 0.82 0.96 7 6

Xylose 1.16 0.77 0.90 0.62 0.95 0.98 3 3

Glucose 8.68 5.69 6.37 3.83 0.84 0.93 5 5
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Selected spectral intervals using biPLS highlighted in grey. Xylose (a), glucose (b) and arabinose (c). Spectra are colored according to analyte concentration (black

– low conc.; light blue – high conc.) Spectral range from 2172 to 2272 nm is cut out to emphasize underlying arabinose bands (d).
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arabinose being present in the pretreated DCB samples. Addition-

ally it is remarkable that samples with high glucose amounts

showed exceptionally strong absorbencies in the second overtone

regions around 1600 nm, which are highly influenced by cellulose

bands, as it can be seen from the cellulose standard spectrum in

Fig. 2. The spectral regions have been selected by biPLS. Finally one

can state that the spectral regions selected for multivariate cali-

bration can be interpreted in agreement with earlier discussed

spectral features of the measured commercial polysaccharide stan-

dards. This result emphasizes that interval selection in combina-

tion with PLS is suitable for highlighting chemical information

about arabinose, glucose and xylose in the NIR spectra. Accord-

ingly strong support for multivariate modeling of monosaccharide

content can be ascertained.

All spectral intervals which were selected for the calibration of

PLS prediction models are shown in Fig. 5. Spectrum color

indicated the extent of enzymatic release concerning each

monomer (black indicates low releases, light blue, high releases)

measured by HPLC. Out of the three monomers in question

xylose was modeled with the best performance because it had

the highest abundance in DCB as reported in [11]. Meanwhile

biPLS also showed that xylose modeling performance could not

be improved by leaving rather many segments out as it could for

arabinose and glucose. All three models could be improved by

leaving out spectral segments with strong water absorbencies

due to moisture.

The leave-one-out cross-validated result of the biPLS calibration

models for arabinose, xylose and glucose are shown in Fig. 6.

Results have also been validated by leaving out subgroups while

calibrating the models which did not decrease model performance

significantly. Poorest performance was reported for the model of

glucose release after hydrolysis. This might be influenced by two

factors. First, the content of total glucose monomers is lower

compared to that of arabinose and xylose [11]. As mentioned

earlier the spectra were generally best described by the standard

spectrum of insoluble arabinoxylan and therefore the crucial

information about the glucose monomers in the biomass may

be hidden behind the higher content of arabinoxylan constitu-

ents. Secondly, differences in glucose origin from either crystalline

or amorphous cellulose might also be speculated to interfere with

the modeling as crystalline cellulose is more difficult to hydrolyze

than amorphous. However previous studies on crystalline lactose

[31] have shown that NIR is capable of differentiating between

both species.
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Cross-validated prediction of enzymatic release of xylose (a), glucose (b) and arabinose (c) from NIR versus measured Monomer Release by HPLC after hydrolysis.
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Conclusion
Two major hypotheses were tested and confirmed in this study. First

it was possible to enable classification between the different pre-

treatments of the DCB samples. It was shown that NIR spectroscopy

is a powerful non-destructive tool for rapid evaluation of the pre-

treatment process. Hence, both of the hypotheses set up for the

study were found to be valid, and this offers remarkable potentials

for fast screening and evaluation of the effects of biomass pretreat-

ment. As NIR can also be used to measure suspensions further studies

can be carried out measuring NIR spectra even during the pretreat-

ment process and therefore examine the effect of pretreatment time-

resolved. This will give valuable information about optimization

parameters and thereby enhance monosaccharide release and

reduce the process cost. In addition the method is highly suitable

for detection of outliers, can be utilized using discriminant analysis

and implemented within intelligent instrumentation.

Furthermore, by means of sophisticated chemometric methods

it has been demonstrated that the monosaccharide release of the

pretreated material can be predicted quantitatively from the solid

pretreated DCB samples directly without need for the enzymatic

hydrolysis itself. Thus once having a quantitative calibration

model established there is no demand for the reducing sugar

and HPLC analysis to determine the monosaccharide release or

composition of the biomass polymer. The explicit effects of the

different pretreatments can be assessed rapidly and reliable.

Industry has not recognized the great potential of NIR spectro-

scopy yet as a fast and reliable method eminently suitable for high-

throughput screening and on-line monitoring tasks in carbohy-

drate analytics. The exploitation of this generic method could be

extended to a range of biomass feedstocks, using both high-

throughput and/or on-line analyses of the pretreatments as well

as the enzymatic hydrolysis data. With proper multivariate cali-

bration NIR methodology can be developed further to directly

predict enzymatic susceptibility of pretreated biomasses.
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Abstract Pectin production is complex, and final product
quality assessment is generally accomplished at the end of
the process using time-consuming off-line laboratory analysis.
In this study, pectin was extracted from lime peel either by
acid or by enzymes. Fourier transform infrared spectroscopy
and carbohydrate microarray analysis were performed directly
on the crude lime peel extracts during the time course of the
extractions.Multivariate analysis of the data was carried out to
predict final pectin yields. Fourier transform infrared spectros-
copy (FTIR) was found applicable for determining the optimal
extraction time for the enzymatic and acidic extraction pro-
cesses, respectively. The combined results of FTIR and carbo-
hydrate microarray analysis suggested major differences in the
crude pectin extracts obtained by enzymatic and acid

extraction, respectively. Enzymatically extracted pectin, thus,
showed a higher degree of esterification (DE 82 %) than pec-
tin extracted by acid (DE 67%) and was moreover found to be
more heterogeneously esterified when probed with the mono-
clonal antibodies JIM5, JIM7, and LM20. The data infer that
enzymatic pectin extraction allows for extraction of complex,
high DE pectin, and that FTIR and carbohydrate microarray
analysis have potential to be developed into online process
analysis tools for prediction of pectin extraction yields and
pectin features from measurements on crude pectin extracts.

Keywords Enzymatic extraction .Multivariate analysis .

PLS . Antibodies . Onlinemonitoring . Chemometrics

Introduction

Comprehensive monitoring of pectin yield and quality during
extraction, as opposed to quality check after extraction, is
needed in the industry to achieve optimal extraction condi-
tions and to enhance process control. Pectin designates a fam-
ily of plant cell wall polysaccharides, which is principally
made up of four structural units: homogalacturonan (HG),
xylogalacturonan, rhamnogalacturonan type I (RGI), and
rhamnogalacturonan type II (RGII). HG consists of an un-
branched chain of α-1,4-linked galacturonic acid residues,
which may be methyl esterified and/or acetylated and which
may be intervened by rhamnose residues (Voragen et al.
2008). Quantitatively, HG (of different degrees of esterifica-
tion) is the most dominant component in commercial
Bpectin,^ which in fact designates a series of hydrocolloids
used as thickening and gelation agents in foods and in other
products such as pharmaceuticals, personal care, and cos-
metics (Ciriminna et al. 2015). Pectin is approved for food
use in the European Union (E440 (i) and E440 (ii)) and is
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usually produced by extraction from apple pomace or citrus
peels (lemon, lime, and orange). Recently, significant efforts
have been made to develop pectin extraction methods that are
more sustainable than the classical acid-assisted extraction,
e.g., using enzymes instead of acid (Lim et al. 2012; Wikiera
et al. 2015; Zykwinska et al. 2008), by ultrasound and micro-
wave assisted methods (Boukroufa et al. 2015; Grassino et al.
2016) or by employing new heating strategies in order to
lower the energy expenditure (Rudolph and Petersen 2011).
Nevertheless, current industrial practice for large-scale pectin
production involves extended acid extraction of the raw ma-
terial, usually involving HNO3 treatment for 3–12 h at 50–
90 °C (Rolin et al. 1998). The final product quality assessment
of the pectin is based on data obtained from a number of
classical laboratory methods, such as size exclusion chroma-
tography for determination of molecular weight, high-
performance liquid chromatography analysis for determina-
tion of the monosaccharide composition, and intrinsic viscos-
ity and calcium sensitivity measurements. These methods are
carried out in an off-line fashion, are time consuming, and
therefore unsuitable for process control. In this paper, two
advanced analytical techniques, namely FTIR and carbohy-
drate microarrays, are assessed with regard to their ability to
monitor extractions of pectin by either acid or enzymes.

Fourier transform infrared spectroscopy (FTIR) is based on
measurement of absorption in the mid-infrared frequency
range. Since organic molecules have intramolecular and inter-
molecular bonds that absorb in this frequency range, each spec-
trum obtained will reflect the chemical (structural) composition
of the sample being analyzed. Hence, FTIR, in combination
with appropriate chemometric methodology required to extract
patterns in the spectra obtained, is a rapid, non-destructive an-
alytical method (Kuligowski et al. 2012) that can be employed
for a number of complex, analytical applications including
quality assessment. FTIR has proven useful for detecting, e.g.,
the authenticity and adulteration of milk (Nicolaou et al. 2010)
and virgin olive oil samples (Rohman and Man 2010) and has
more recently shown applicability within more advanced appli-
cations to determine enzyme activity by spectral evolution pro-
filing and multiway analysis (Baum et al. 2013a, b).

Carbohydrate microarrays are chip-based tools to study in-
teractions of biomolecules with carbohydrates and thus repre-
sent an alternative methodology for carbohydrate analyses (de
Paz and Seeberger 2012). Thousands of binding events can be
assessed in parallel on a single slide with very small amounts of
samples, making this analysis high-throughput capable (Fangel
et al. 2012). Carbohydrate microarrays are not only applied in
medical, animal, and prokaryote research (de Paz and Seeberger
2012; Fangel et al. 2012) but have also been found to be a
valuable tool in pectin research. HG-directed monoclonal anti-
bodies, differing in relation to pattern and degree of esterifica-
tion, have been developed and applied for analysis of plant cell
walls (Clausen et al. 2003; Sørensen and Willats 2011).

The hypothesis of this study is that FTIR and carbohydrate
microarrays represent advanced tools for quantitative predic-
tion of pectin yield from measurements on crude extracts dur-
ing the extraction. The two methods either are high-throughput
capable or can enable rapid measurements, therefore having
the potential to move pectin quality control closer to the ex-
traction process. In addition, the crude pectin extracts, obtained
by acidic and enzymatic treatment of lime peels, can be struc-
turally characterized using the two analytical techniques.

Materials and Methods

Three pectin extractions were carried out. Crude pectin ex-
tracts were taken at different time points during the time
course of the extractions (Table 1). Pectin extractions I and
II were conducted enzymatically using Laminex C2K, while
extraction III was conducted using HNO3. Aliquots of all
crude extracts were measured using FTIR spectroscopy and
carbohydrate microarray analysis. Pectin yields, used as

Table 1 Pectin yields (%), obtained by propan-2-ol precipitation, at
specific time points during enzymatic (extractions I and II) and acidic
(extraction III) extraction

Pectin yield (%)

Extraction time (min) Extraction I Extraction II Extraction III

0 6.67 6.67 8.15

2.5 9.63

5 10.4 8.89 14.1

7.5 11.1

10 11.1 11.1 14.8

12.5 11.9

15 12.6

17.5 13.3

20 13.3

35 14.8

30 15.6 16.3 19.3

35 17.0

40 17.0

45 17.0

50 17.0

55 17.0

60 18.5 18.5 21.5

70 19.3

80 20.0

90 20.7

100 21.5

110 20.7

120 24.5 22.2 23.0

240 23.0 24.4
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reference values for the multivariate regression models, were
determined by propan-2-ol precipitation. In addition, the mo-
nomeric composition of the final products was determined
using high-performance anion exchange chromatography
with pulsed amperometric detection (HPAEC-PAD).
Detailed protocols of the applied methods are given below.

Materials

Dry lime peel was obtained from DuPont’s pectin plant in
Mexico (Dupont Nutrition and Biosciences Mexicana S.R.L,
Tecomán, Colima, Mexico). The pre-treatment involved milling
of the peel to pass a 35-mesh size screen (centrifugal mill Retsch
ZM 200, Haan, Germany). Several standard polysaccharides
were used as benchmarks in the final analytical evaluation,
namely pectin E81 from lime peel, with a degree of esterification
(DE) of 81 %; pectin F31 (DE 31 %) derived from E81 treated
with Aspergillus niger’s pectin methyl esterase (both from
DuPont Nutrition Biosciences, Brabrand, Denmark), prepared
as described in Limberg et al. (2000); and RGI from soy bean
(Megazyme, Bray, Ireland). The enzyme preparation, Laminex
C2K, derived from Penicillium funiculosum (obtained from
DuPont Industrial Biosciences, Leiden, the Netherlands), was
a commercial preparation containing cellulase, xylanase and
arabinoxylanase activities and a low level of pectinase activity.
The enzyme preparation was chosen as a suitable candidate for
pectin extraction in a previous study (Dominiak et al. 2014).

Enzymatic Extraction

For each sample, 1.35 g of milled lime peel was mixed with
40 mL of 50 mM citric acid buffer pH 3.5. The mixture was
heated to 50 °C before addition of 75 μL of the enzyme
Laminex C2K, equivalent to 235 carboxymethylcellulose-
dinitrosalicylic acid activity units. After addition, each sample
was incubated in a water bath at 190 rpm for 0–240 min (exact
incubation times for extractions I and II are presented in
Table 1). The reaction was terminated by heating at 100 °C
for 5 min to inactivate the enzyme. The crude extract was
separated from the residual biomass by centrifugation for
10 min at 3500 rpm and stored at −20 °C until further
analyses.

Acidic Extraction

For each sample, 1.35 g lime peel was mixed with 40 mL de-
ionized water and the mixture was heated to 70 °C. The pH was
adjusted to 1.7 with 42 % nitric acid, and the mixture was then
incubated in a water bath at 190 rpm (more details about the
incubation times in Table 1). The crude extract was separated
from the residual biomass by centrifugation for 10 min at
3500 rpm. The pH of the crude extracts was increased to 3.5,
and the extracts were then stored at −20 °C until further analyses.

Determination of Pectin Yield

Pectin crude extracts (two replicates) were precipitated by
mixing with a double volume of propan-2-ol, followed by
agitation for 1 h. The precipitated pectin samples were sepa-
rated by filtration through a cotton canvas and dried overnight
in a 40 °C ventilated oven. Dried pectin samples were
weighed and ground to <0.5 mm in an Ultra Centrifugal
Mill ZM 200 (Retsch, Haan, Germany).

High-Performance Liquid Chromatography
and Colorimetry

To verify and compare the structural information obtained by
FTIR and carbohydrate microarray analyses, the chemical
composition of the propan-2-ol precipitated pectin samples
was determined by HPAEC-PAD and colorimetric measure-
ments. Each pectin sample was washed three times in 80 %
ethanol followed by washing one time in 96 % ethanol to
remove sugars. After hydrolysis in 1 M sulfuric acid (6 h,
100 °C), the samples were diluted; filtered through a
0.45-μm filter; and the quantitative content of D-fucose, L-
rhamnose, D-arabinose, D-galactose, D-glucose, and D-xylose
was determined. The separation and quantification were per-
formed using an ICS-3000 system (Dionex Corp., Sunnyvale,
CA) utilizing a CarboPac™ PA1 (4 mm × 250 mm) analytical
column and a CarboPac™ PA1 guard column. Eluent A
consisted of deionized water and eluent B of 150 mM
NaOH. Twenty-minute isocratic elution with 15 mM NaOH
was followed by 10-min washing with 150 mM NaOH. The
flow was kept at 1 mL min−1. Before injection of each sample
(50 μL), the column was re-equilibrated with 15 mM NaOH
for 8 min. Data analysis was carried out using Chromeleon
6.80 (Dionex Corp., Sunnyvale, CA).

The galacturonic acid content was determined colorimetri-
cally by the m-hydroxybiphenyl method in a microtiterplate
format reaction (van den Hoogen et al. 1998) after hydrolysis
for 1 h at 80 °C in concentrated sulfuric acid with 0.0125 M
tetraborate (Blumenkrantz and Asboe-Hansen 1973).

The degree of esterification was determined by alkaline
saponification followed by quantification of methanol by
HPLC as described in Voragen et al. (1986).

Fourier Transform Infrared Spectroscopy

An aliquot of each crude extract was used to acquire the mid-
infrared spectrum between 950 and 1550 cm−1. All spectra
were measured at 42 °C using a MilkoScan™ FT2 (FOSS
Analytical, Hillerød, Denmark). The instrument consisted of
an interferometer which scanned the IR spectrum using a cu-
vette with a path length of 50 μm. Acquisition was carried out
according to the method described by Andersen et al. (2002)
with an optical resolution of 14 cm−1. All spectra were
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measured against an aqueous blank using an automatic flow-
through system (FOSS Analytical, Hillerød, Denmark).

Carbohydrate Microarray Analysis

Extracted Pectin Microarray Printing

The crude extracts were diluted twofold with printing buffer
(55.2 % glycerol, 44 % water, 0.8 % Triton X-100) and then
two further fivefold dilutions were made. Each of these dilu-
tions was printed in triplicate employing six drops per spot. A
piezoelectric microarray robot, Arrayjet Sprint (Arrayjet,
Roslin, UK), equipped with a 12-sample high-capacity
JetSpyder sample pickup device was used to deposit the crude
extracts onto a nitrocellulose membrane with a pore size of
0.45 μm (Whatman, Maidstone, UK) at 22.5 °C and 50 %
humidity. As positive controls, the three pectin standard sam-
ples E81, F31, and RGI were also deposited on the nitrocel-
lulose membrane.

Extracted Pectin Microarray Probing

Microarrays were blocked for 1 h in PBS (140 mM NaCl,
2.7 mM KCl, 10 mM Na2HPO4, 1.7 mM KH2PO4,
pH 7.5) containing 5 % w/v low fat milk powder (5%M-
PBS). Thereafter, microarrays were probed for 2 h with a
panel of 30 anti-rat antibodies, anti-mouse antibodies, and
carbohydrate-binding modules (CBMs) diluted in 5%M-
PBS to 1/10, 1/1000, and 10 μg mL−1, respectively. The
antibodies and CBMs were obtained from PlantProbes
(Leeds, UK), INRA (Nantes, France), BioSupplies
(Bundoora, Australia), and NZYTech (Lisboa, Portugal),
respectively. Afterward, arrays were washed with PBS
and incubated for 2 h in either anti-rat, anti-mouse, or
anti-His tag secondary antibodies conjugated to alkaline
phosphatase (Sigma, Poole, UK) diluted 1/5000 (for anti-
rat and anti-mouse) or 1/1500 (for anti-His tag) in 5 % M-
PBS. After the incubation, arrays were washed with PBS
and developed with a solution of 5-bromo-4-chloro-3-
indolylphosphate and nitro blue tetrazolium in alkaline
phosphatase buffer (100 mM NaCl, 5 mM MgCl2,
100 mM diethanolamine, pH 9.5). Development was
stopped by washing the arrays in deionized water.

Quantification of the Data

Developed microarrays were scanned at 2400 dpi (CanoScan
8800F, Canon, Søborg, Denmark), converted to TIFF files,
and antibody and CBM signals were quantified using Array-
Pro Analyzer 6.3 (Media Cybernetics, Rockville, USA).
Results were presented in a heatmap, where the maximal
mean spot signal was set to 100 and the rest of values

normalized accordingly. A cutoff of 5 was implemented, and
color intensity was correlated to mean spot signals.

Chemometrics

Chemometric modeling was performed using MATLAB (ver-
sion 2012b, The Mathworks Inc., MA, USA) and PLS
Toolbox (version 6.0.1, Eigenvector Research Inc., WA,
USA).

Principal Component Analysis

Principal component analysis (PCA) is a descriptive che-
mometric method which decomposes multivariate datasets
into principal components (PCs) using loadings and
scores (Hotelling 1933; Wold et al. 1987). Principal com-
ponents represent orthogonal projections in the original
multidimensional variable space which ideally character-
ize the main features of a data set. Normally, a low num-
ber of principal components is sufficient to express the
measured variance of a (chemical) system, e.g., the IR
spectral changes recorded during a time-resolved chem-
ical extraction. The established PCA models were used
for exploratory purposes only and were not validated
(no test set).

Partial Least Squares Regression

In contrast to PCA, Partial Least Squares regression is a
supervised decomposition method wherein a Y-block, typ-
ically containing reference analysis data, is used to find
projections in the original multidimensional variable
space which is suitable for prediction of desired parame-
ters (Beebe and Kowalski 1987). Illustratively spoken, it
rotates principal components, e.g., retrieved from PCA, in
space to find maximal covariance between the X-block
(multivariate dataset containing independent variables)
and the Y-block (containing known reference values)
while minimizing the residuals in a least squares sense.
The resulting projections lead to latent variables which
allow prediction of one or more parameters from a newly
measured sample. PLS calibrations can be employed to
reveal data patterns from complex data, such as FTIR
spectra or carbohydrate microarray heat maps.

To obtain robust models using PLS, a number of deci-
sion criteria was required to find out about how many
latent variables were necessary to describe the dataset suf-
ficiently (Geladi et al. 1985). Leave-one-out cross valida-
tion was used to choose the appropriate amount of latent
variables for PLS. In addition, extraction II samples were
used as a prediction test set during the study. Thus, vali-
dation of the PLS models was achieved by calculating the
root mean square error of prediction (RMSEP) for the test
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set samples. The RMSEP was calculated using Eq. 1,
where yi and yi denote actual and model predicted pectin
yield, respectively.

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X n

i¼1
yi−yi

� �2

n

v

u

u

t

ð1Þ

Pre-Processing

Pre-processing of the data was necessary to remove irrelevant
systematic variation to gain better model prediction perfor-
mance and to decrease the required number of components
necessary for the analysis (due to removal of undesirable off-
sets) (Barnes et al. 1989; Berg et al. 2006; Bro and Smilde
2003). The FTIR data were normalized using standard normal
variate (SNV) and mean centered. The carbohydrate microar-
ray data were auto-scaled and mean centered. While SNV is
typically used for spectroscopic techniques to remove light
scattering effects, auto-scaling is used when variables indicate
different units.

Results

Results for FTIR and carbohydrate microarrays are reported in
separate sections. The results are thereafter compared in rela-
tion to the HPAEC results in the BDiscussion^ section.

Pectin Yield, High-Performance Liquid Chromatography,
and Colorimetric Results

Pectin yields (%) determined by propan-2-ol precipitation are
presented in Table 1. As expected, the pectin yield increased
with extraction time in all three extraction cases. The HPAEC-
PAD and colorimetric results of the final pectins (Table 2)
showed that both extraction methods delivered a pectin

product very rich in galacturonic acid—and since both meth-
odologies gave a higher than 65 % by weight of galacturonic
acid in the precipitate, both methods were in essence valid
pectin extraction methods. The results will be utilized for
comparison in the following sections.

Fourier transform infrared spectroscopy

All spectra of extractions I, II, and III are shown in Fig. 1 as
difference spectra. To calculate difference spectra, the initial
spectrum (first sample) was subtracted from the entire series to
remove constant background signals. Therefore, the spectrum
of sample 1 resulted in a zero line, while spectra at later stages
evolved according to the continuous release of soluble pectin
and oligosaccharides during extraction. The elapsing time was
illustrated by gray scale shifting from dark to light. For com-
parison, benchmark spectra of arabinose, xylose, and galac-
tose are included in Fig. 1b, c.

When investigating the spectra of the three extractions, it
appeared that the spectral changes of extractions I and II were
similar (Fig. 1a, b). These two extractions were performed
using enzymatic hydrolysis, while the spectra of extraction
III (acid) evolved differently (Fig. 1c). Hence, different mo-
lecular properties of the extracted pectin/oligosaccharides in
the two types of crude extract were expected.

Individual spectral bands for pectin, including the back-
bone and side group vibration bands, are identified in
Fig. 1a. The strong evolving peaks at 1022, 1106, and less
abundant at 1149 cm−1 (a) were due to the high HG content
(specifically due to C-C, C-O, CCH, OCH vibrations) as re-
ported previously (Coimbra et al. 1999; Fellah et al. 2009;
Kacurakova et al. 2000; Wellner et al. 1998). The band at
1149 cm−1 is characteristic for C-O-C vibrations of glycosidic
linkages (+glycosidic ring) (Wellner et al. 1998) and is there-
fore also characteristic for pectin backbone structures. Bands
at 1045 and 1076 cm−1 (b) were interpreted to be mainly
caused by neutral sugars, such as arabinose, xylose, and

Table 2 Chemical composition of enzyme (extraction II) and acid (extraction III) extracted pectin samples after 240 min incubation

Galacturonic acid
(%DM)

Arabinose
(%DM)

Fucose
(%DM)

Galactose
(%DM)

Glucose
(%DM)

Rhamnose
(%DM)

Xylose
(%DM)

DE
(%)

Enzyme extracted
pectin

81.3 9.3 0.1 1.7 1.6 0.8 0.7 82

Acid extracted
pectin

90.1 3.3 0.1 3.9 0.4 1.4 0.2 67

F31 74.5a 0.2 0.1 3.3 0.1 1.0 0.1 31

E81 78.7a 0.2 0.1 4.0 0.2 1.3 0.1 81

RGI from soybean 51b 3.4b 10.3b 12.3b n.d. 6.4b 13.7b n.d.

Samples E81, F31, and RGI were added for comparison
a Data from Limberg et al. (2000)
b Data from the manufacturer specification sheet

̂

̂
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galactose (Coimbra et al. 1998). Higher amounts of neutral
sugars were detected in the enzymatic crude extracts. This
was especially evident when looking at the intensity ratios of

the two band groups (a) vs. (b) as shown in Fig. 1a–c. The
intensities of the bands (b) were relatively high for enzymatic
extracted samples, which suggested higher amounts of neutral
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Fig. 1 FTIR spectra of crude pectin extracts: a enzymatic extraction I, b
enzymatic extraction II, and c acidic extraction III. Changing gray scale
from dark to light indicates elapsing extraction time. Spectra are
displayed as difference spectra to highlight changes during extraction

and to eliminate background signals. Monosaccharide standard spectra
are included in b and c for comparison (dotted—xylose; dashed—
arabinose; dashed dot—galactose)
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sugars in the extracts (Fig. 1a, b), as compared to acidic ex-
tracts (Fig. 1c). As neutral sugars are mainly found in side
chains of pectin rhamnogalacturonan I (RGI) structural do-
mains, these bands indicated Bhairy regions^ in the pectin
molecules. Alternatively, the bands could have been a re-
sponse caused by free neutral sugars or shorter oligomers,
which could have independently coexisted in the crude
extract.

An additional band at 970 cm−1 (c) indicated the degree of
esterification. Accordingly, at 1460 cm−1 (d), one can observe
a carboxylate band which tends to be weaker, when highly
esterified pectin is present (Coimbra et al. 1998, 1999; Fellah
et al. 2009; Kačuráková et al. 1999; Wellner et al. 1998). It
could be concluded that the degree of esterification (DE) of
the enzymatic extracted pectin was higher than that of acidic
extracted pectin.

Principal Component Analysis

PCA was used to analyze the spectral changes of the crude
pectin samples, extractions I and II in one common model
(Fig. 2a) and extraction III in a separate model (Fig. 2b).

Both PCA models required only one principal component
to describe 97.3 and 98.6 % of the variance in the spectra,
respectively. This was not surprising since the extraction pat-
tern was expected to stay constant over the entire time period
of the extraction. The spectral loadings for both PCA models

are given in Fig. 2c, d and appear as expected for neutral sugar
rich and less neutral sugar rich extracted material.

As shown in Fig. 1, the spectra converged for all three
extractions with elapsing time. This trend was also described
by the PC 1 scores which also converged as shown in Fig. 2a,
b. In addition, the PC 1 scores of both PCA models correlated
to a high extend (R2 > 0.92) with the estimated pectin yields
determined by propan-2-ol precipitation (Table 2), therefore
indicating potential of PCA analysis to assist the optimization
of the pectin extraction time. As it can be seen from Fig. 2a, b,
the three extractions indicated no additional release of pectin
after 120 min.

Partial Least Squares Modeling

Multivariate calibrations were established to predict the pectin
yield whenmeasuring the crude extract at different time points
during the extraction. PLS models were prepared for extrac-
tion I (model 1) and extractions I and III (model 2). In both
cases, the extraction II samples were used as a prediction test
set for validation of the model acknowledging the fact that
they did not contain extraction III samples due to the limited
sample size. The calibrations of models 1 and 2 are presented
in Fig. 3a, b. Calibration and test set samples are indicated as
circles and triangles, respectively. Leave-one-out cross valida-
tion indicated the necessity of two and four latent variables for
model 1 and model 2, respectively. In the previous section, it

a b

c d

Fig. 2 PC1 scores derived from
PCA models plotted against
extraction time for a enzymatic
extractions I (circles) and II
(triangles) and for b, acidic
extraction III. PC1 loadings
describing the main spectral
features of the enzymatic and
acidic crude extracts are presented
in c and d. Characteristic band
regions for neutral sugars are
marked in both loadings with
arrows
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was discussed that PCA models could be established using
only one principal component to represent the spectral vari-
ances well. However, minor spectral shifts were present, i.e.,
for bands around 1160 and 1450 cm−1 (Fig. 1). A second
latent variable of model 1 compensated for these shifts and
resulted in a lower RMSECV. Model 2 required four latent
variables as additional spectral variance related to extraction
III samples was present. Both models could predict the yield
of the extracted pectin with high confidence. Furthermore, the
test set samples (validation) correlated with the reference
values to a high extend. All figures of merit, including R2

and RMSEP, are given in Table 3.

Carbohydrate Microarray Analysis

In carbohydrate microarray analysis, antibodies with well-
defined sugar-binding epitopes were utilized to obtain infor-
mation about the sample deposited on the array. The specific
binding of the antibody is detected by the use of a fluorescent-
ly tagged or enzyme-linked secondary antibody. Within a cer-
tain range, the concentration of the deposited epitope covaries
with the spot signal produced by the antibody or CBM bind-
ing. Such arrays therefore provide direct information about the
relative abundance of specific epitopes across the sample set
being tested. From the heatmap data displaying the binding
responses of 30 different antibodies and CBMs, it was evident
that predominantly pectin-related epitopes were detected in

the crude pectin samples, and many of the non-pectin related
probes thus produced no signal in the microarray analysis
(entire heatmap not shown). A size reduced heatmap of the
carbohydrate microarray analysis of the three pectin extrac-
tions is shown in Fig. 4. To evaluate the performance of the
microarray, three pectin samples were included as positive
controls, namely E81 (a), F31 (b), and RGI (c). Further infor-
mation on structure and composition of these samples is given
in Table 2.

Assessment of the responses on the antibodies for pectin in
the microarray revealed clear differences in the profiles of the
enzymatic extractions I and II and the acidic extraction III
(Fig. 4). All crude extracts obtained during the acidic extrac-
tion III thus showed interactions with monoclonal antibody
(mAb) JIM5 (Clausen et al. 2003). JIM5 binds to unesterified
and partially methyl-esterified HG having preference in bind-
ing low methylated pectins. In addition, JIM5 also recognized
the epitopes of the control pectin (b, F31) with high affinity,
confirming the presence of a HG structure with lower degree
of esterification in the acidic extracted pectin. In contrast, no
JIM5 signal was detected for any of the enzymatically extract-
ed samples. Instead, relatively strong signals from mAb JIM7
(Clausen et al. 2003) and LM20 (Verhertbruggen et al. 2009)
were found. JIM7 and LM20 are binders of methyl-esterified
HG binding preferably to high methylated pectins. This sug-
gests that the enzymatic crude extracts contained pectin with a
relatively high DE. Data also indicated that the acid extracted
pectin contained both low and high DE pectin and that it was
much more heterogeneous in terms of DE than that of the
enzymatic extracted pectin. The high DE (82 %) of enzymat-
ically extracted pectin and the low DE (67 %) of the acidic
extracted pectin (Table 2) corroborated the microarray data.
The heatmap results also confirmed that acidic extraction and
low pH are not a preferable combination for achieving homo-
geneous pectin with high DE values.

Moreover, the carbohydrate microarray results suggest that
acidic extracted pectin contained additional regions with lower
degree of esterification, which could not be detected in the

Table 3 Figures of merit for PLS models

FTIR Microarray

Model 1 Model 2 Model 3 Model 4

R2
cal 0.97 0.93 0.89 0.88

R2
pred 0.99 0.98 0.91 0.73

RMSEP [%] 1.19 1.70 4.30 4.74

RMSEP root mean square error of prediction
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a bFig. 3 FTIR pectin yield models:
a PLS model 1 calibrated on
enzymatic extraction I (circles)
and tested/validated on enzymatic
extraction II (triangles). b PLS
model 2 calibrated on extractions
I and III (enzymatic and acidic
extractions, circles) and tested/
validated on enzymatic extraction
II (triangles)
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enzymatically extracted pectin. The lower degree of esterification
of acid extracted pectin was not surprising as low pH enhances
the hydrolysis of ester bonds and can, therefore, reduce the de-
gree of esterification in acidically extracted pectin (Rolin et al.
1998). Another explanation might be that a low level of
polygalacturonase activity, present in the Laminex C2K prepara-
tion (unpublished data), induced degradation of the non-
esterified HG stretches, thereby leaving highly esterified HG
available for binding to the nitrocellulose membrane.

Partial Least Squares Modeling

When analyzing the obtained heatmap signals column-wise for
each of the 30 antibodies/CBMs (Supplementary Fig. S1), none
could be directly identified to correlate with the extracted amount
of pectin. However, when combining all 30 antibody and CBM
responses using multivariate PLS regression, a correlation did
occur. As performed for FTIR, two models were established.
Model 3 (Fig. 5a) was calibrated on extraction I samples, while
model 4 (Fig. 5b) was calibrated on extractions I and III samples.
In both cases, the extraction II samples served as the prediction
test set. High R2 values of both models indicated strong correla-
tions in the data sets. All figures of merit are summarized in
Table 3. While only two latent variables were used for modeling
the enzymatic extraction (model 3), five were necessary to estab-
lish a combinedmodel for acidic and enzymatic extraction (mod-
el 4). This was not surprising when looking at the microarray
heatmap (Fig. 4), showing that the signal pattern was very dif-
ferent for the enzymatic and the acidic extractions. Especially
since JIM5 and antibodies recognizing RG I regions gave strong
responses mainly for samples from the acidic extraction, which
led to a higher rank in the data.

Discussion

Multivariate Analysis

FTIR and carbohydrate microarray analysis could predict the
pectin yield well using PLS modeling. PLS models 2 and 4,
which included the crude acidic extraction III samples, had

�Fig. 4 Crude pectin extracts from extractions I to III were printed as
microarrays and probed with a panel of cell wall glycan directed
monoclonal antibodies (mAbs) and carbohydrate binding modules
(CBMs). Binding results of a selection of pectin-related monoclonal
antibodies are presented in this heatmap in which color intensity was
correlated to mean spot signal values. Antibody names and their
corresponding epitopes (recognized by a particular antibody) are
depicted at the top of the heatmap. Each sample extraction time is
shown on the right side of the heatmap. Controls include a a
commercially produced pectin with degree of esterification (DE) 81 %
extracted from lime peel (E81), b a pectin with DE 31 % derived from
E81 by treatment with Aspergillus niger’s pectin methylesterase, and c
RGI from soy bean
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lower prediction performance for both FTIR and microarray
analysis. In particular, the yield prediction ability for carbohy-
drate microarray data decreased, when including the crude
acidic extraction III. The higher RMSEP did result not only
from a worse precision but also from a bias induced by the
prediction samples itself. This bias was evident by the fact that
both carbohydrate microarray models (3 and 4) predicted all
test set samples (extraction II) with an intercept offset (Fig. 5).
This bias was not recognizable for predictions using the FTIR
models 1 and 2 (Fig. 3). It should be pointed out at this point
that the sample size was limited and further efforts will, there-
fore, be necessary to validate and consolidate the results.
Nonetheless, the study showed in principle that both tech-
niques could be used to establish quantitative calibration
models to predict the final pectin yield from crude samples
measured during the extractions.

Structural Characterization

FTIR and carbohydrate microarrays provided comprehensive
understanding of structural properties of the crude pectin ex-
tracts even prior to precipitation. However, certain contempla-
tions in the results were present. While FTIR detected high
amounts of neutral sugars in the enzymatic extracted samples,
which was in agreement with compositional analysis of pre-
cipitated pectins (Table 2) and literature data (Nielsen 1996;
Zykwinska et al. 2008), carbohydrate microarray analysis sug-
gested lower amounts of RGI and neutral sugars in those ex-
tracts. In fact, carbohydrate microarray analysis detected a low
level of arabinan by LM6 (Willats et al. 1998) and neither RGI
backbone by INRA-RU1 and INRA-RU2 (Ralet et al. 2010)
nor galactan by LM5 (Jones et al. 1997) in the final enzymat-
ically extracted pectin sample (240 min extraction). However,
the crude extracts investigated in this study probably
contained oligomers with a sufficient degree of polymeriza-
tion (DP) to be precipitated by propan-2-ol. On the other hand,
the oligomers must have been too short to bind to the nitro-
cellulose membrane and, hence, were not detected by

microarray analysis. The results, furthermore, suggested that
the enzymatic cocktail decreased the amount of neutral sugars
in the enzymatically extracted pectin over time, as the anti-
body responses of the monoclonal antibodies INRA-RU1
(RGI backbone) and LM5 (galactan) decreased with increas-
ing extraction time. The presence of pectinase activity in the
used Laminex C2K preparation would explain the hydrolysis
of the pectin, yielding more oligomers as extraction time
elapsed.

Conclusion

The present study illustrated the potential analytical power of
FTIR spectroscopy and carbohydrate microarray analysis in a
new application namely for direct assessment of crude pectin
extracts during enzymatic and acidic extraction. Two aspects
have been investigated and compared with respect to the two
techniques, namely the ability to predict final pectin yield (and
optimal extraction time) from crude samples taken during the
extraction and the ability to predict the structural quality and
complexity of final pectin product.

While both techniques were able to predict the respec-
tive pectin yield during the extractions, especially FTIR
showed high accuracy and precision. Furthermore, simple
PCA on FTIR data indicated possibilities to determine the
optimal extraction time, even without the need of
interrupting the process. Rapid and non-invasive FTIR
spectroscopy, therefore, enables possibilities for online
monitoring of pectin extraction processes and has great
potential to replace cumbersome and time consuming quan-
titative chemical analysis.

Secondly, both techniques gave insight into structural fea-
tures of the extracted pectins. The results confirmed major
differences between the enzymatically and the acidically ex-
tracted products with respect to degree of esterification and
abundance of RGI pectin regions. Due to its high-throughput
capability, carbohydrate microarray analysis has proven to be
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a bFig. 5 Carbohydrate microarray
pectin yield models: a PLS model
3 calibrated on enzymatic
extraction I (circles) and tested/
validated on enzymatic extraction
II (triangles). b PLS model 4
calibrated on extractions I and III
(enzymatic and acidic extractions,
circles) and tested/validated on
enzymatic extraction II (triangles)
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a remarkable tool to assess structural features of the extracts
that in turn can be used for pectin quality prediction.

Hence, both FTIR and carbohydrate microarray analysis
have potential to move pectin analysis closer to pectin produc-
tion, which is particularly important in industrial process and
quality control.
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without the  need  of any  external
standards.
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a  b  s  t  r  a  c  t

The  recent  advances  in  multi-way  analysis  provide  new  solutions  to  traditional  enzyme  activity  assess-
ment.  In  the  present  study  enzyme  activity  has been  determined  by monitoring  spectral  changes  of
substrates  and  products  in real time.  The  method  relies  on measurement  of  distinct  spectral  fingerprints
of  the  reaction  mixture  at specific  time  points  during  the  course  of  the  whole  enzyme  catalyzed  reac-
tion  and employs  multi-way  analysis  to detect  the  spectral  changes.  The  methodology  is  demonstrated
by  spectral  evolution  profiling  of  Fourier  Transform  Infrared  (FTIR)  spectral  fingerprints  using  parallel
factor analysis  (PARAFAC)  for pectin  lyase,  glucose  oxidase,  and  a cellulase  preparation.
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1. Introduction

Quantitative assessment of enzyme activity is a fundamen-
tal measurement required for determining the amount of an
enzyme. The enzyme activity is defined as the amount of active
enzyme which will catalyze the transformation of a particular
molar amount of substrate per time unit under standard conditions.
Its measurement is decisive for defining enzyme dosage, reaction

∗ Corresponding author. Tel.: +45 60856300.
E-mail address: jdm@kt.dtu.dk (J.D. Mikkelsen).

time, substrate use and product yields in practical enzyme cat-
alyzed reactions. A quantitative enzyme activity assay – optimally
measured directly as the reaction rate defining the initial substrate
consumption rate – is also the fundamental measurement used for
studying enzyme action, specificity, kinetics, possible inhibition,
and for identifying a specific enzyme.

Existing large scale industrial enzyme based processes range
from specific conversions of crude penicillins to defined �-lactam
antibiotics [1] to multi-enzymatic degradation of cellulose and
other biomass materials for novel bio-based fuel production
and biorefinery products [2]. Current activity assay methods for
biomass and polysaccharide degrading enzymes are particularly
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cumbersome because of the complexity of the substrates. The cur-
rently used enzyme assays therefore rely on the use of artificial
substrates and assessment of their conversion by laborious spec-
trophotometric techniques, which may  only measure the reaction
indirectly, or are based on crude measurements such as reducing
end analyses, or employ advanced chromatography-based analy-
ses of changes in the substrate or product levels [3–5]. A main
disadvantage of all existing enzyme assays is that they rely on
measurement of either the product formation or the substrate con-
sumption, not both at the same time.

FTIR (Fourier transform infrared) spectroscopy is based on
measurement of absorption in the mid-infrared frequency range.
All organic molecules have intra- and intermolecular bonds that
absorb in this range, and the spectrum obtained therefore reflects
the chemical (structural) composition of the sample being ana-
lyzed. The absorption pattern of the chemical bonds having an
electric dipole moment that changes during vibration will in
turn produce a unique fingerprint signature for the biomolecules
present in the sample [6]. Although FTIR is a rapid and easy to
use method, two major challenges are (a) it is difficult to iden-
tify distinct peaks and (b) interference of an inherent strong water
background at the mid  infrared wavelength range.

FTIR spectroscopy is used commercially to quantify constituents
in, e.g. milk and wine utilizing multivariate and advanced statistical
approaches to help identify the relevant information in the spec-
tra [7]. FTIR spectroscopy has also been employed previously to
determine enzyme activity [8]. In this particular case deuterated
water – which exhibits a much lower absorption in the infrared
range – was used to eliminate the water interference in the enzyme
activity measurements. Alternatively, the enzyme activity for each
individual enzyme was determined by monitoring the rate of the
decrease in intensity of a specific band: for amidase (EC 3.5.1.4.)
and urease (EC 3.5.1.5) the drop in the amide band at 1635 cm−1 or
1605 cm−1, respectively, was thus measured as a function of time
[8,9]. FTIR spectroscopy has also been used to assess the influence of
enzymatic treatment of a complex substrate, in particular the enzy-
matic degradation of sea buckthorn berries [10]. However, in order
to monitor the enzymatic reaction, only the intensity of single, spe-
cific peaks were used to quantify a certain product or substrate [10].
Hence, the available methods have not exploited the full potential
of monitoring the full spectral fingerprint. When relying on assess-
ment of only one band, each method becomes highly specific in
a classical univariate sense and moreover not applicable to multi-
component enzymatic systems with more complex distributions of
various substrates and products.

The work presented in this paper was undertaken to test the
hypothesis that FTIR and chemometric multiway analysis can be
used as a universally applicable approach for rapid assessment
of enzyme activity without using any external standards, even
on genuine, complex substrates as biopolymers (which may  not
be chromogenic). A more comprehensive introduction to FTIR in
microbiology and examples of chemical applications of multi way
chemometrics are given in [11,12], respectively.

2. Theory

Based on the assumption that different substrate(s) and prod-
uct(s) have distinguishable spectral fingerprints (when measured
by FTIR spectroscopy), enzyme kinetics can principally be observed
directly in aqueous solutions by monitoring the evolution of the
full spectral fingerprint, i.e. by assessing the time resolved changes
over the bandwidth from 1000 to 1600 cm−1. During this continu-
ous measurement, as the substrate is consumed, the FTIR spectrum
will change simultaneously with the development of the product
molecules and as the conversion of substrate to product progresses
the spectral profile will thus shape a “landscape” in relation to

enzyme activity Those spectral landscapes, each identifying the full
enzyme catalyzed reaction accomplished at one particular enzyme
level, i.e. one particular enzyme activity, are referred to as Evolu-
tion Profiles and are illustrated for three different enzyme catalyzed
reactions with glucose oxidase (EC 1.1.3.4), pectin lyase (EC 4.2.2.1),
and a mixed cellulase preparation, respectively (Fig. 1B, D, F and
Supplementary Fig. A).

This spectral evolution profiling in real time, combined with
chemometric multi-way methodology, i.e. parallel factor analy-
sis (PARAFAC), allows for the quantitative detection of spectral
changes of both the substrate and the product during the enzyme
catalyzed reaction.

2.1. PARAFAC

PARAFAC [13–15] is a numerical decomposition method suit-
able for decomposing multilinear datasets into loadings or scores
using an alternating least squares algorithm [12]. By doing so
PARAFAC finds common profiles/patterns which are present in all
samples and therefore enables the advantage of fitting those com-
mon  profiles to all samples simultaneously. In order to generate
a calibration which correlates enzymatic activity with the spec-
tral evolution data a multilinear data structure (tensor) must be
formed:

Each Evolution Profile is represented by a data matrix where
vectors are spectra at consecutive time points. Since all Evolution
Profiles are recorded at the same consecutive time points those
matrices can be stacked to form a tensor which is defined by its
three dimensions, namely wave number (K), time (J) and activity (I).
The tensor connecting those three measurement dimensions fulfills
trilinearity and is a starting point for multi-way analysis (Fig. 2).

The tensor X was mathematically decomposed into three matri-
ces A, B and C (Eq. (1) and Fig. 3) using the PARAFAC algorithm [14]:

xi,j,k =
F∑

f =1

aif bjf ckf + ei,j,k (1)

2.2. Data pre-processing

The spectra have been scaled using standard normal variate
(SNV). To do so the tensor was  unfolded and scaled slab wise across
the sample mode as described below [14,16].

x̄ik =
∑J

j=1xijk

J
(2)

wi =

√∑K
k=1

∑J
j=1(xijk − x̄ik)

KJ − 1
(3)

xSNV
ijk = xijk

wi
(4)

Additionally the three-way array was  consecutively double cen-
tered across mode 1 and mode 2. Multi-way centering, e.g. for mode
1 can be understood as unfolding the tensor to a I × JK matrix and
proceeding as in usual two-way analysis [16]:

xcent
ijk = xijk −

∑I
i=1xijk

I
(5)

2.3. Evolution Profiles

All Evolution Profiles from FTIR data have been visualized using
surf plots. To display the time-resolved spectra of an enzymatic
reaction in this paper all spectra have been SNV scaled slabwise
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Fig. 1. (A) Enzymatic reaction of glucose oxidase; (B) Spectral Evolution Profile of glucose oxidase visualized using a surf plot. Spectra are displayed as difference spectra
to  emphasize temporal changes and to disable the visualization of background signals. The observation time was 20.7 min  as the signal to noise ratio was low. Substrate
consumption (decreasing bands) did not exhibit efficient spectral change; (C) enzymatic reaction of pectin lyase; (D) Spectral Evolution Profile of pectin lyase using 1% apple
pectin apple as substrate. Observation time was  4.2 min; (E) enzymatic reaction of a cellulolytic enzyme blend (Celluclast 1.5L); (F) spectral Evolution Profile of Celluclast
1.5L  using 1% CMC  as substrate. The observation time was  4.2 min.

as described above and difference spectra have been calculated by
subtracting the first spectrum from all remaining spectra including
the first one. Constant background signals were therefore elimi-
nated as the first difference spectrum results in a vector of zeros
(zero absorption over the whole spectral range). Concluding, the
following spectra contain signal changes due to the enzymatic
reaction.

3. Materials and methods

3.1. Materials

Glucose oxidase from Aspergillus niger (TypeX-S), apple pectin
and sodium carboxymethylcellulose were purchased from Sigma
Aldrich (St. Louis, USA). The pectin lyase gene from Emericella nidu-
lans was expressed in Pichia pastoris and produced in-house by
Center for Bioengineering, DTU, Lyngby, Denmark. The Celluclast
1.5L was donated by Novozymes, Bagsværd, Denmark.

3.2. Experimental

All spectra were obtained using a MilkoScanTM FT2 (FOSS ANA-
LYTICAL, Hillerød, Denmark). The instrument consisted of a FTIR

which scanned the IR spectrum in the range of 1000–1600 cm−1.
Acquisition was  carried out according to the method described
in [17] with an optical resolution of 14 cm−1. The instrument
was equipped with an automatic flow-through system apparatus
and worked semi-automated. The optical system was  hermetically
sealed and pressure and humidity controlled. The path length of
the cuvette was  50 �m.  The temperature was  equilibrated at 42 ◦C.

For measurements the sample was placed underneath the
automatic sample intake which was supported by peristaltic
pumps. All spectra have been measured against an aqueous blank
(FOSS Analytical, Hillerød, Denmark). After each measurement the
flow-through system was  cleaned automatically. Furthermore the
samples possibly were recycled back to the main reaction con-
tainer in-between time-resolved measurements to avoid oxygen
depletion in the cuvette.

3.3. Calibration procedure

To obtain enzyme activity calibrations several steps were per-
formed.

(1) Evolution Profiles of two control mixtures have been acquired.
One control contained only the substrate without enzyme.
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Fig. 2. Conversion from two-way to a three-way data structure. All data matrices containing time-resolved spectra for a certain enzyme activity are stacked behind each
other  to form a tensor. The cubic data structure fulfills trilinearity since all Evolution Profiles are recorded in the same consecutive time steps.

Buffer was added instead of the enzyme solution. The second
control contained only enzyme and no substrate. Instead of
substrate solution only buffer was added. The Evolution Pro-
files of both controls showed no significant change in time. That
step is especially important to assure that the observed spec-
tral evolution in spectra was due to enzyme activity and not

Fig. 3. Schematic illustration of a PARAFAC decomposition of time-resolved enzy-
matic FTIR data. The matrices contain the following information: (A) this matrix
contains the true spectra (fingerprints) of the enzymatic system. Here spectral fin-
gerprints representing both the substrate and the product are illustrated by green
and blue color. (B) This matrix contains the kinetic (i.e. time resolved) behavior of
substrate(s) and product(s). (C) This matrix contains the information about how
abundant the change in spectra in (B) is considering the pure spectra from (A).
Those values of that matrix therefore correlate with the used enzyme activity (hav-
ing  opposite slopes for substrate(s) and product(s) if non-negativity constraints are
applied to the analysis).

due to altering circumstances like temperature, precipitation,
denaturation, mutarotation etc.

(2) Various Evolution Profiles were acquired using equal substrate
concentrations and different dosages of enzyme (activities).
Depending on the nature of the enzymatic reaction, measure-
ments have been carried out in flow-back mode where the
reaction mixture was  continuously led back to the reaction
container to ensure access of gases as oxygen which was nec-
essary for the reaction of glucose oxidase. The other enzymatic
reactions have been pumped into the cuvette only once for
continuous measurements (Pectin Lyase and Celluclast 1.5L).
In this case the reaction mixture stayed inside the cuvette dur-
ing the whole acquisition period. Three replicates have been
measured for each calibration point. Spectra for each Evolu-
tion Profile were measured consecutively using time steps of
16.6 s for Pectin Lyase and Celluclast 1.5L and 31.0 s for glucose
oxidase, respectively. Acquisition of the Evolution Profiles was
carried out in random order to prevent systematic biases.

(3) The acquired spectral data was  exported to MATLAB (The Math-
works Inc., MA,  USA) where it was treated using designated
scripts. PARAFAC analysis was performed using PLS Toolbox
6.0.1 (Eigenvector Research Inc., WA,  USA).

(4) The obtained scores from the PARAFAC decomposition were
plotted against the added enzyme activities, respectively. The
absolute activities have been determined by conventional col-
orimetric assays as described below.

3.4. Colorimetric assays

3.4.1. Pectin lyase
Pectin lyase activity was measured on 1 g L−1 pectin from apple

by incubating in 50 mM sodium phosphate Buffer at pH 7.0 and
42 ◦C. The increase in absorbance was  determined at 235 nm during
4 min  in an Infinite200 microplate reader (Tecan, Salzburg, Austria);
the data collection was controlled by the program Tecan i-control
version 1.5.14.0. The extinction coefficient used was 5.5 mM−1 L−1

[18,19].
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3.4.2. Glucose oxidase
Incubation conditions were set to pH 6.9 and 42 ◦C. Samples

were taken at relevant time points during a 30 min  reaction and
the extent of the reaction was determined by the described assay
below.

20 �L of each sample were mixed with 10 �L o-dianisidine
solution (30 mg  mL−1), 160 �L 0.1 M glucose solution and 10 �L
peroxidase solution (1 mg  mL−1) to form a yellow-orange dye. The
samples were measured photometrically at 420 nm using an Infi-
nite200 microplate reader (Tecan, Salzburg, Austria). 1 unit was
defined as the amount of enzyme which catalyzed the formation of
1 �mol  H2O2 per minute in 50 mM  sodium phosphate buffer at pH
6.9 and 42 ◦C [20].

3.4.3. Celluclast 1.5L
Incubation conditions were set to pH 5.0 and 42 ◦C. Samples

were taken at relevant time points during a 30 min  reaction and
the extent of the reaction was determined by reducing sugars.

The procedure for the determination of reducing sugars based
on alkaline p-hydroxybenzoic acid hydrazide (PAHBAH) is a poten-
tially valuable assay because of its apparent selectivity for reducing
sugars, and the limited number of reported interfering substances.
The method utilizes the instability of sugars in hot alkaline
solution to produce the yellow anionic species of the bis(4-
hydroxybenzoylhydrazones) of glyoxal and methylglyoxal in the
presence of HBAH [21–23] The reaction was catalyzed and therefore
amplified for small analyte concentrations using bismuth [24].

1 M bismuth, 1 M potassium sodium tartrate, and 3 M sodium
hydroxide were mixed with 0.5 M sodium hydroxide and 5% (w/v)
4-hydroxybenzoic acid hydrazide in 0.5 M hydrochloric acid in the
ratio 1:899:100. The reagent was mixed with the samples and incu-
bated at 70 ◦C for 10 min, cooled down to 42 ◦C, and the absorbance
was measured at 410 nm in an Infinte200 microplate reader (Tecan,
Salzburg, Austria).

1  U was defined as the amount of enzyme which catalyzed the
conversion of 1 �mol  glucose per minute in 50 mM sodium acetate
buffer at pH 5.0 and 42 ◦C.

4. Results and discussion

4.1. Enzyme activity calibrations

For each enzyme calibration several spectral Evolution Pro-
files were acquired using three replicate measurements. The total
amounts of Evolution Profiles used for the calibrations of glucose
oxidase, pectin lyase and Celluclast 1.5L were 29, 32 and 33, respec-
tively.

The Evolution Profiles, each measuring a certain enzyme activity
(i.e. the specific amount of an enzyme), have been visualized using
difference spectra, implying that the first spectrum, and therefore
all constant background signals including the water signals, were
subtracted from the spectra series. The absorption of certain bands
decreased over time due to substrate consumption whereas other
bands grew over time due to product formation (Fig. 1B, D, F).
Except for glucose oxidase, the products being formed cannot be
explicitly identified as a single product, but rather a distribution
of products. Nonetheless the various products lead to a combined
fingerprint which was measurable by FTIR.

When examining the Evolution Profiles it is noticeable that
the spectral change depends on the used enzyme dosage (enzyme
activity) and the differences are evident for pectin lyase Evolution
Profiles (Fig. 4). This enzyme dosage dependence was quantified
using PARAFAC.

The multi way scores were obtained by decomposing the ten-
sors of each of the three enzymatic systems (Fig. 3) and the

Table 1
Calibration parameters for the three modeled enzymatic systems.

Pectin lyase Glucose oxidase Celluclast 1.5L

Time of spectral
evolution

4.2 min  20.7 min  4.2 min

Number of spectra in
each Evolution Profile

15 40 15

Calibration range (per mL
substrate)

0–200 mU mL−1 0–6 U mL−1 0–80 mU mL−1

LODa 9 mU  mL−1 277 mU mL−1 3.79 mU mL−1

a Limit of detection (LOD) only valid for used time of spectral evolution. LOD
decreased for extended observation time.

corresponding enzyme activities were determined by conventional
colorimetric and photometric assays.

The plotting against classical units determined by conventional
assays (Fig. 5) gives the calibrations an absolute character and at the
same time described goodness of fit. Various calibration parameters
for the three enzymatic assays are stated in Table 1. The sign of
the calibration slope of each individual calibration is not linked to
substrate or product character as it can result as positive or negative
when repeating the PARAFAC analysis. This results from an existing
sign ambiguity in Component analysis and is further described in
[25].

The unique solution derived from PARAFAC highly correlated
with the enzyme activity in each case (Fig. 5). Since the PARAFAC
scores were retrieved to encompass one score result for the spectral
evolution of the substrate(s) and another one for the product(s), per
definition two  calibrations should result from the PARAFAC analysis
for each enzyme (Fig. 3). Overlap of strong fingerprint abundances
from the PARAFAC derived solution with substrate depletion bands,
e.g. gave evidence to identify this PARAFAC Component as a sub-
strate depletion calibration and vice versa. Hence, for pectin lyase
and Celluclast 1.5L a set of two  calibrations, one for the substrate
consumption and one for the product formation could be estab-
lished, respectively (Fig. 5A–D). However, glucose oxidase showed
poorer performance than the other enzyme reactions due to lower
signal/noise ratio and resulted in only one calibration (product cal-
ibration) (Fig. 5E). Even increasing observation time to 20.7 min  for
glucose oxidase did not improve substrate calibration performance
as the spectral evolution of the substrate consumption (bands with
decreasing abundance) did not exhibit efficient spectral change in
the observed time period as can be seen from Fig. 1B. Addition-
ally the product calibration indicated poorer precision and a lower
linear correlation coefficient R2 = 0.97 (Fig. 5E). Underlying linear
correlation was validated by modeling several PARAFAC calibra-
tions using different observation times. Assuming each calibration
to be linear the correlation coefficient R2 increased with observa-
tion time as shown in Fig. 6. Further details are given in Section
4.2.

4.2. Calibration robustness

In general calibration robustness depends on each enzymatic
system itself since the Spectral Evolution Profiles appear to look dif-
ferent for various enzymatic reactions. The nature of each Evolution
Profile is therefore specific for each investigated enzyme/substrate
system. Concluding, the spectral bands of substrates and products
can overlap each other to a different extent which can hide valuable
information concerning the reaction kinetics.

As mentioned previously calibration robustness secondly
depends on the observation time of the Evolution Profile.  For a com-
mercially useful method it is valuable to optimize the acquisition
time for an Evolution Profile.  Considering glucose oxidase Fig. 6
shows how the calibration performance declines as the observa-
tion time of the enzymatic reaction is shortened. Yet, following
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Fig. 4. Spectral Evolution Profiles for the enzymatic reaction of pectin lyase using different activities. Spectral evolution clearly depends on added enzyme activity. The
observation time was  extended for illustrational purposes.

the reaction for 10 min  resulted in a calibration with a regression
coefficient R2 > 0.90. Calibration performances of pectin lyase and
Celluclast 1.5L have been much more robust as observation times
were much shorter (Table 1).

4.3. PCA versus PARAFAC

The PARAFAC approach has been compared to chemomet-
ric two-way methods as Principal Component Analysis (PCA).
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Fig. 5. PARAFAC scores from both Components were plotted against determined enzyme activities (derived from conventional assays) to build calibrations. PARAFAC is
an  unsupervised multi-way decomposition method and identified the scores without any knowledge about the added enzyme activity. (A) Pectin lyase product calibration
(R2 = 0.995); (B) pectin lyase substrate calibration (R2 = 0.998); (C) Celluclast 1.5L product calibration (R2 = 0.98); (D) Celluclast 1.5L substrate calibration (R2 = 0.99); E: glucose
oxidase product calibration (R2 = 0.97). The sign of the slope of each individual calibration is not linked to substrate or product character (sign ambiguity in Component
analysis [25]).

Chemometric algorithms as Principal Component Analysis (PCA)
[26] are commonly used to visualize the characteristics of differ-
ent spectra in a feature reduced subspace defined by its Principal
Components.

To analyze the kinetics of a certain enzymatic reaction (for one
Evolution Profile)  the scores of each spectrum, derived from PCA,
need to be plotted against the time. However, since PCA finds Prin-
cipal Components only due to maximal variance in the spectra the
outcome strongly depends on the nature of the Evolution Profile
itself (e.g. signal-to-noise ratio). It was therefore impossible to use
PCA to find reproducible kinetic profiles for the same enzymatic
reaction using different amounts of enzyme, simply because the
variance in spectra was distributed in a different manner, e.g. in low

activity cases noise was  so abundant that the first and/or second
Principal Component were highly biased. PCA was therefore not
useful for enzyme activity calibrations since it did not necessarily
identify the right variance in spectra being related to the enzymatic
reaction.

Due to many interfering background signals (mainly water and
buffer as shown in Supplementary Fig. A1) the sensitivity of FTIR is
somewhat lower in comparison to other techniques as it can be seen
from Fig. 5E (considerably small calibration slope). In that regard
the signal-to-noise-ratios of the Evolution Profiles for glucose oxi-
dase were especially low as shown in Fig. 1B. This reaction requires
oxygen as a second substrate. Its measurement was  therefore cum-
bersome since the reaction had to be pumped out of the instrument

Fig. 6. Illustration of how the product calibration performance increases with observation time. The Evolution Profile shows the Difference spectra of a glucose oxidase
reaction  for an extended observation time.
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activity using spectral evolution profiling”. All three inactivation experiments have
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legend, the reader is referred to the web version of this article.)

after each measurement to ensure constant oxygen supply. How-
ever, the PARAFAC analysis overcomes possible constraints which
may arise from low signal-to-noise ratio since the multi-linearity
of the dataset interconnects all the Evolution Profiles (Fig. 2). A com-
mon  kinetic pattern can therefore be found by PARAFAC and fitted
to all Evolution Profiles simultaneously (Fig. 3), unlike fitting sepa-
rate parameters to the unfolded data using PCA. PARAFAC therefore
even recognizes the kinetics for enzymatic reactions with very
small changes in spectra over time and high amounts of noise. Noisy
Evolution Profiles due to low activity therefore benefit from strong
spectral evolutions due to high enzyme activity.

4.4. Application example: thermal inactivation of pectin lyase

The proposed method was used to study the thermal inactiva-
tion of pectin lyase at three different temperatures, namely 70, 75
and 80 ◦C. To do so, enzymatic samples have been incubated accord-
ingly for different time intervals using three replicates. Thereafter
the precipitated protein was separated using centrifugation and
the supernatant was used for the acquisition of a spectral Evolution
Profile, respectively. The obtained scores from using a pectin lyase
PARAFAC model (as in Fig. 5) were used to determine the activity
of the sample after thermal treatment. All three thermal inactiva-
tion experiments at 70, 75 and 80 ◦C could be fitted to Eq. (6). The
regression constants R2 were 0.96, 0.93 and 0.95, respectively.

[Et] = [E0]e−kDt (6)

ln([Et]) = ln([E0]) − kDt (7)

A linearized form (Eq. (7)) was used to determine the inacti-

vation rate constants expecting a first order denaturation: N
kD→D

where N was the enzymes native and D the enzymes denat-
urated form. The determined inactivation rate constants were
0.0567 min−1, 0.1399 min−1 and 0.2296 min−1, respectively (Fig. 7).
With reference to the Arrhenius equation (Eq. (8)) temperature
correlated with inactivation rate. The regression constant R2 was

calculated to be 0.98 when using the linearized plot in Eq. (8).

kD = k0 · e−(EA/RT) → ln kD = ln k0 − EA

R

1
T

(8)

5. Conclusion

The presented study demonstrates a new approach to moni-
tor enzymatic reactions continuously by taking all substrate(s) and
product(s) into account. By observing temporal spectral evolution
using FTIR the method inaugurates possibilities to also character-
ize multi component enzymatic systems. The approach does not
require any chemical standards or biomarkers, but instead util-
izes multivariate analysis to continuously monitor the enzymatic
reaction in real time. Thus the method is directly applicable to a
wide range of enzymes, even considering complex sample matrices,
and may  furthermore be highly suitable for automation imply-
ing intelligent instrumentation. Replacing cumbersome univariate
enzyme activity assays with universal and direct spectroscopic
assays promise a better and direct observation of the big picture
regarding ongoing enzymatic reactions. The recent advances in
multivariate analysis allow substantial alternatives to question the
reasonability of traditional enzyme activity assessment.
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a  b  s  t  r  a  c  t

Enzymes  are  used  in  many  processes  to  release  fermentable  sugars  for  green  production  of  biofuel,  or  the
refinery  of  biomass  for extraction  of  functional  food  ingredients  such  as  pectin  or  prebiotic  oligosaccha-
rides.  The  complex  biomasses  may,  however,  require  a  multitude  of specific  enzymes  which  are  active  on
specific  substrates  generating  a  multitude  of  products.  In  this  paper  we use  the  plant  polymer,  pectin,  to
present  a  method  to  quantify  enzyme  activity  of two  pectolytic  enzymes  by  monitoring  their  superim-
posed  spectral  evolutions  simultaneously.  The  data  is  analyzed  by three  chemometric  multiway  methods,
namely PARAFAC,  TUCKER3  and  N-PLS,  to establish  simultaneous  enzyme  activity  assays  for  pectin  lyase
and pectin  methyl  esterase.  Correlation  coefficients  R2

pred for  prediction  test  sets  are  0.48,  0.96  and  0.96
for pectin  lyase  and  0.70,  0.89  and  0.89  for  pectin  methyl  esterase,  respectively.  The  retrieved  models  are
compared  and  prediction  test  sets  show  that  especially  TUCKER3  performs  well,  even  in comparison  to
the  supervised  regression  method  N-PLS.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Comprehensive understanding of enzymatic reactions has
become increasingly important as trends in biotechnological
research have led to a higher industrial demand concerning diverse
production of enzymes. To understand the mechanism of an

∗ Corresponding author. Tel.: +45 60856300.
E-mail address: jdm@kt.dtu.dk (J.D. Mikkelsen).

enzymatic reaction enzyme activity, as defined of how much sub-
strate is converted into product per time unit, is of major interest.

Previously reported enzyme activity assays rely on univari-
ate measurement principles being applied to data discontinuously
obtained from Colorimetry [1] and HPLC [2–4]. Alternatively,
spectroscopic measurements are used utilizing univariate peak
integration methods or comparable analytical methods as
described in [5–7]. Hence, each enzyme activity assay is designed
to be specifically bound to a certain enzymatic system. Besides
being rather cumbersome, time-consuming and not suitable for
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high-throughput measurements these assays rely on measuring
the enzyme activity by either following the substrate depletion
or the product formation, but not both simultaneously. Addition-
ally, no enzymatic assay has been reported which can continuously
quantify enzyme activities of two co-acting enzymes in one sam-
ple simultaneously. Such measurements are particularly relevant
in relation to processing of complex substrates, e.g., plant biomass,
since in this case efficient degradation requires the concerted action
of several enzymes.

Thus, it would be beneficial to develop a feasible and univer-
sal methodology to directly observe the kinetics of an enzymatic
reaction, without any need to apply chemical markers. Addition-
ally, such a method should be universally applicable to all kinds of
enzymes and independent from its surrounding sample matrix.

One solution is to use a multivariate measurement technique
which is able to capture information considering all reaction
parameters, as to observe all products and all substrates of an enzy-
matic system. Such great amount of information usually overlaps
within a certain measurement (e.g., spectral) range and therefore
leads to fingerprints which are interrelated with the underlying
chemical nature. Fourier infrared spectroscopy (FTIR) is such a fin-
gerprinting technique. It analyses the absorption pattern of infrared
light due to vibrational modes of covalent bonds and enables the
possibility to monitor the overall pattern of an ongoing enzymatic
reaction continuously if spectra are acquired consecutively.

However, applying such multivariate measurement principles
to, e.g., time-resolved FTIR data requires the use of (multiway)
chemometric tools. A method utilizing chemometric multi-
way methodologies for enzyme activity determination has been
reported recently [8]. In this particular study spectral evolution
profiling in connection with FTIR has been used to quantify the
enzyme activity of one enzyme, e.g., glucose oxidase, pectin lyase,
or a composition of enzymes, e.g., a cellulolytic enzyme blend. The
study also discussed critical detection limits and major drawbacks
of FTIR, which are related to its comparable low sensitivity, and fur-
thermore described how chemometric multiway analysis can help
to overcome these challenges.

On the other hand, this paper extends the concept consequently
to distinguish and quantify the enzyme activity of two  enzymes,
i.e. pectin lyase and pectin methyl esterase, simultaneously [9,10].
Such a multi-enzyme analysis could be of high interest to deter-
mine side activities in enzyme production and to provide a tool to
control the quality of fermentation processes. Monitoring of several
activities could therefore be of potential interest in both, industrial
processes and scientific research.

The present study is carried out by continuously monitoring
the combined spectral evolution of the enzymatic reactions using
FTIR. Thereafter the underlying spectral patterns related to the two
enzyme activities are deconvoluted to build individual enzyme
activity calibrations using three different chemometric multiway
methods on the same data. The retrieved models, derived from Par-
allel Factor Analysis (PARAFAC), TUCKER3 and multilinear Partial
Least Squares regression (N-PLS), are compared toward feasibility
and calibration performance.

Further comprehensive introduction and overview on different
applications of multiway chemometrics is given by Bro [11,12].

2. Theory

2.1. Spectral evolution profiling

In this chapter a simulated dataset is used for illustrational pur-
pose.

If we consider an enzymatic reaction which converts a sub-
strate S into a product P1, following first order or pseudo first order

kinetics, the hypothesis can be stated that (taking mid-infrared
spectroscopic measurements into account) substrate and product
have distinguishable fingerprints which should evolve from one to
another. This spectral evolution is linked to the enzymatic reaction
and its kinetics and is presented in Fig. 1A.

A second enzymatic reaction from substrate S to product P2 is
exemplified as in Fig. 1B. If we combine both enzymatic reactions
and let them occur simultaneously we  can imagine the time-
resolved spectra to appear as illustrated in Fig. 1C, assuming that
both enzymes are present in equal amounts. In all scenarios the
reaction is stopped before reaching a total conversion, where the
final product fingerprints are illustrated as red and blue dashed
lines (Fig. 1A–C).

All enzymatic reactions are monitored using very high ini-
tial substrate concentrations to assure that there is no significant
(competing) interaction between the enzymes. This is of particu-
lar importance because interaction of the enzymes would disturb
independent assessment of individual enzyme activities. Fig. 1A–C
also shows the spectral changes using difference spectra visualized
utilizing surf plots. These plots have advantages visualizing small
changes in spectra and furthermore enhance visibility of spectral
convergence since the dimension of time is resolved in space [8].
When no significant interaction between the enzymes during the
observation time can be assured a perfect superimposition of the
individual “enzymatic landscapes” as illustrated in Fig. 1C can be
expected.

In the present study pectin lyase (PL) and pectin methyl esterase
(PME) have been used simultaneously to degrade the same sub-
strate, namely pectin from citrus peel. Biopolymers as pectin can
serve as substrates for several enzymatic reactions at the same
time. While pectin lyase catalyzes the de-polymerization of homo-
galacturonan regions in pectin, pectin methyl esterase catalyzes
the de-esterification of the methyl ester groups of the pectin. The
chemical equations of both reactions are shown in Fig. 2.

2.2. Chemometrics

Each acquired spectrum can be represented by a vector of mid
infrared absorption values. Hence, a time-resolved evolution profile
forms a matrix with n vectors at n consecutive time points.

In order to quantify the enzyme activity of both enzymes simul-
taneously all evolution profiles, represented by data matrices, were
stacked on top of each other to form a tri-linear data structure
as illustrated in Fig. 3A and B. Since all evolution profiles have
been acquired using the same consecutive time steps this data
structure transformation adds up one more measurement dimen-
sion, namely activity. Instead of working with unfolded matrices
of the single evolution profiles one three-way array, mathemati-
cally spoken tensor, is therefore obtained. This tensor is thereafter
decomposed by multiway methods as PARAFAC, TUCKER3 (Fig. 3A)
or NPLS (Fig. 3B) into three mode loadings A, B and C which in this
particular paper refer to sample mode, kinetic mode and finger-
print mode. The loadings of the sample mode are also referred to
as scores.

2.2.1. PARAFAC
PARAFAC [13] is a mathematical tensor decomposition method

which results in a unique solution meaning that the solution has
no rotational freedom as in ambiguous models derived from e.g.,
PCA [14]. The three-way array X is decomposed into three matrices
A, B and C by minimizing the sum of squares of the residuals in E
according to Eq. (1), where a, b and c are elements of those matri-
ces while R represents the number of components. A schematic
illustration is given in Fig. 3. Ideally the core tensor G is super-
diagonal meaning that all positions along the dashed line contain
ones while the remaining positions contain zeros, respectively.
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Fig. 1. Simulated data for three enzymatic reactions. (A) Enzyme 1 catalyzes the conversion of the substrate to product P1; (B) Enzyme 2 converts the substrate to product
P2;  (C) Enzyme 1 + Enzyme 2 (half dose enzyme 1 + half dose enzyme 2) convert the Substrate to both products (P1 and P2) at the same time. The spectral changes from
Substrate fingerprint to product fingerprint are illustrated on the left side, whereas difference spectra using surf plots are shown on the right side. Individual final product
fingerprints are given by red and blue dashed lines, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of  this article.)
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Fig. 2. Enzymatic reactions for (A) pectin lyase and (B) pectin methyl esterase.

According to the here present models the loadings in mode C
(fingerprint mode) identify spectral bands which change during
the course of the enzymatic reactions, while the components in
B (kinetic mode) represent the time-resolved shape of those fin-
gerprint changes. As a consequence the scores in mode A (sample
mode) describe the abundance of the underlying spectral evolu-
tions, derived from mode B and C. This was described in more detail
in [8]

Xijk =
R∑

r=1

airbjrckr + eijk (1)

2.2.2. TUCKER3
TUCKER3 is a multiway tensor decomposition method [15]

which decomposes a three way array, e.g., X (I × J × K) into three
loading matrices, A (I × P), B (J × Q) and C (K × R) and a core ten-
sor, G [16,17]. The model does not result in a mathematical unique
solution and has therefore rotational freedom. TUCKER3 can be
expressed as given in Eq. (2), where aip, bjq and ckr are elements
of the loading matrices, gpqr are elements of the core array and eijk
are the individual residuals.

xijk =
P∑

p=1

Q∑
q=1

R∑
r=1

aipbjqckrgpqr + eijk (2)

Unlike in PARAFAC analysis, the core tensor G, is not super-
diagonal and enables possibilities to analyze interaction between
the different modes. Decomposition of multiway arrays into load-
ing matrices which may  have different individual ranks can

Fig. 3. The data cube X is decomposed into A (sample mode), B (kinetic mode) and C
(fingerprint mode). E refers to the residuals. (A) Schematic illustration of PARAFAC
and TUCKER3 decomposition. While in PARAFAC the core tensor G is superdiagonal
(containing ones along the dashed diagonal and zeros in the other positions) in
TUCKER3 the core tensor G can contain values deviating from zero in the positions
outside the dashed diagonal. (B) Schematic illustration of N-PLS (multiway PLS)
regression. The major difference to unsupervised tensor decomposition methods as
PARAFAC or TUCKER3 is that N-PLS is guided by information of accepted known
values (Y) to find suitable projections for calibration.

therefore be analyzed. Alternatively, the TUCKER3 decomposition
can be written as in Eq. (3), where ⊗ denotes the Kronecker prod-
uct. A, B and C are linked to sample, kinetic and fingerprint mode
as described for PARAFAC.

X = AG(C ⊗ B)T + E (3)

2.2.3. N-PLS [18]
Multilinear Partial Least Squares regression can be described

quite similarly to bilinear PLS, where both matrices X and Y are
simultaneously decomposed while finding maximal covariance of
the scores of both decompositions [19]. Detailed elaboration on
the mathematical description of N-PLS and its algorithms were
described by Bro in [20]. Unlike in PARAFAC and TUCKER3 N-PLS
uses accepted known reference values (Y) to find suitable projec-
tions for calibration modeling and therefore comprises a risk of over
fitting. PLS models are usually validated by cross validation [21] and
tested on prediction sets.

3. Materials and methods

3.1. Reagents

Pectin lyase EC 4.2.2.10 family PL1 was a cloned enzyme from
Aspergillus aculeatus and expressed as a recombinant enzyme in
Saccharomyces cerevisiae; the enzyme was a gift from Novozymes
A/S (Bagsværd, Denmark) [22]. Pectin methyl esterase EC 3.1.1.11
family CE8 was also cloned from A. aculeatus as described in
[23]. The monocomponent, recombinant enzyme was  a gift from
Novozymes A/S (Bagsværd, Denmark). Pectin from citrus peel with
a degree of esterification around 80% was  donated from Dupont,
Brabrand, Denmark.

3.2. FTIR

All spectra were obtained using a MilkoScanTM FT2 (FOSS
ANALYTICAL, Hillerød, Denmark). The instrument consists of a
FTIR interferometer that scanned the full infrared spectrum, was
equipped with an automatic flow-through system apparatus and
worked semi-automated. The optical system was hermetically
sealed and pressure and humidity controlled. The path length of
the cuvette was 50 �m.  The temperature was  equilibrated at 42 ◦C
using heat exchangers.

All spectra have been measured against an aqueous blank. After
each measurement the flow-through system was  cleaned automat-
ically (with water). The time required to measure one spectrum
accounted 16.6 s resulting in 11 min  acquisition time for one evo-
lution profile containing 40 spectra.
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3.3. Conventional enzymatic assays

The accepted known enzyme activities of PL and PME  have been
determined by conventional assays as described below.

3.3.1. Pectin lyase
Pectin lyase activity was measured on 10 g L−1 pectin by incu-

bating in 50 mM  sodium acetate Buffer at pH 5.0 and 42 ◦C. The
increase in absorbance was determined at 235 nm during 4 min
in an Infinite200 microplate reader (Tecan, Salzburg, Austria); the
data collection was controlled by the program Tecan i-control ver-
sion 1.5.14.0. The extinction coefficient used was 5.5 mM−1 L−1. The
activity of PL was defined as the amount of enzyme releasing 1 �mol
of product per minute calculated using the molar absorption coef-
ficient 5500 M−1 L−1 [9,24,25].

3.3.2. Pectin methyl esterase
PME  cleaves esters into alcohols and its corresponding acid

(Fig. 2). The PME  activity was measured using an autotitrator. A
10 g L−1 pectin solution was prepared in 50 mM sodium acetate
buffer at pH 5.0 and 42 ◦C and 0.1 M sodium hydroxide was added
continuously to maintain pH 5.0 during the enzymatic reactions.
The activity of PME was defined as the amount of enzyme necessary
to release 1 �mol  of methanol per minute as estimated from the
consumed sodium hydroxide equivalents during the autotitration
[10,26].

3.4. Chemometric methods

After calibration data acquisition the data were exported to Mat-
lab (The Mathworks Inc., MA,  USA) where they were treated using
designated scripts. PARAFAC, TUCKER3 and N-PLS analysis were
performed using PLS Toolbox 6.0.1 (Eigenvector Research Inc., WA,
USA)

3.4.1. Data structure
The three-way array, X, indicated the dimensions of 56

samples × 131 wavenumbers × 40 time points (I × J × K). Before
decomposition of the tensor the data were preprocessed.

3.4.2. Data preprocessing
Variables selected for the analysis throughout the paper have

been wavenumbers ranging from 1018 to 1507 cm−1. The spec-
tra have been scaled using Standard Normal Variate (SNV) along
the spectral axis. To do so the tensor was unfolded and normal-
ized slabwise across the sample mode as described in Eqs. (4)–(6)
[13,27]

X̄ik =
∑J

j=1xijk

J
(4)

Wi =

√∑K
k=1

∑J
j=1(xijk − x̄ik)2

KJ − 1
(5)

xSNV
ijk = xijk

wi
(6)

Additionally the data cube was consecutively double centered
across the sample and the kinetic mode [27]. Multiway centering,
e.g., for the sample mode can be understood as unfolding the tensor
to a I × JK matrix and proceeding as in usual two-way analysis (Eq.
(7)):

xcent
ijk = xijk −

∑I
i=1xijk

I
(7)

3.4.3. Validation
In this paper the data were split into two  sets. Random two thirds

of the samples were used to generate models using leave-one-out
(loo) cross validation and the remaining set of one third of the
samples was  used as a test set to check for goodness of prediction.

Strategies for evaluation of prediction errors are usually given
by figures of merit in multivariate analysis. In this paper the root
mean square error of prediction (RMSEP) was  used to describe the
degree of agreement between predicted values yi and the accepted
known values ŷi of the test set using a total model derived from the
calibration set. Those values are calculated as shown in Eq. (8).

RMSEP =

√∑n
i=1(yi − ŷi)

2

n
(8)

3.4.4. Calibration accuracy and precision
Besides evaluation of the RMSEP calibration accuracy was deter-

mined by calculating the linear regression coefficient R2 of model
predicted enzyme activity against accepted known enzyme activity
as described in Eq. (9).

R2 =
∑

(ŷ − ȳ)2∑
(yi − ȳ)2

(9)

The variables ŷ and ȳ represent the predicted value using deter-
mined slope and intercept of the linear regression and the mean of
y, respectively, while yi represents the actual observed value.

The precision is a measure of repeatability and can be under-
stood as of how much replicates of the same accepted known
enzyme activity differ in prediction. This span defines the precision
of the individual calibration and is usually expressed using standard
deviation. However, if several calibration points indicate different
numbers of replicates the pooled standard deviation sp gives an
improved estimate of the experimental precision as described in Eq.
(10). Hereby, s1, s2,. . .,  sk represent the standard deviations of the
individual calibration points while n1, n2,. . .,  nk denote the amount
of replicates at every calibration point.

sp =
√

(n1 − 1)s2
1 + (n2 − 1)s2

2 + · · · + (nk − 1)s2
k

n1 + n2 + · · · + nk − k
(10)
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Fig. 4. Experimental design: red samples define calibration ranges, while black sam-
ples are randomly placed to create a normally distributed sampling scenario. (For
interpretation of the references to color in this figure legend, the reader is referred
to  the web version of this article.)
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Fig. 5. Spectral evolutions (11 min  each) for the two  simultaneously profiled enzymatic reactions of pectin lyase and pectin methyl esterase. A shows a substrate blank (no
significant spectral change) while B and C show spectral evolutions for PL (8.07 U) and PME  (25.53 U), respectively. D shows a mixed spectral evolution of both enzymes
(4.04  U PL and 12.77 U PME) while E shows spectral evolution for an enzyme mixture of 8.07 U PL and 25.53 U PME. Spectra are displayed as difference spectra, meaning that
the  initial spectrum has been subtracted from the whole series to eliminate constant background signals.
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Fig. 6. Fingerprint mode loadings for (A) PARAFAC, (B) TUCKER3 and (C) N-PLS. The PARAFAC fingerprint mode loadings highly deviate from the other two model loadings in
the  spectral range between 1400 and 1500 cm−1. Final difference spectra of PL and PME  reactions are displayed in dashed style to highlight PL and PME  reaction character.

In the present study replicates did not indicate constant enzyme
activity ratios (Fig. 4). However, the experimental acquisition of
evolution profiles toward the same enzymatic reaction has been
found to be highly reproducible as it was published previously in a
related study [8].

3.4.5. Experimental design
To build two calibration models, one for each enzyme, PL and

PME, an appropriate experimental design was necessary [28]. Each
sample represents spectral information which results from overlap
of the two individual enzymatic evolution profiles. A superimposed
“spectral landscape” which contains information related to both
enzyme amounts can therefore be expected (as in Fig. 1C). Samples
with one particular PL activity can be superimposed by PME  activ-
ities which span from zero to a certain maximum value and vice
versa. To guaranty robust calibration models all possible degrees of
interference had to be considered.

To achieve exactly this goal nine samples have been defined by
mixing enzyme activities (with 20 mL  of 10 g L−1 substrate solution)
as illustrated in Fig. 4 by red points. Those samples define the cal-
ibration range wherein additional 47 samples (black points) were
randomly placed.

4. Results

Evolution profiles of two control mixtures have been acquired.
One control contained only the substrate without enzyme(s)
(Fig. 5A). Buffer was added instead of the enzyme solution. The
second control contained only enzyme(s) and no substrate (not
shown). Instead of substrate solution only buffer was  added. The
evolution profiles of both controls did not show significant spectral
change in time. That step is especially important to ensure that the
observed spectral evolution is due to enzyme activity and not due
to altering circumstances like temperature changes, precipitation,
denaturation, mutarotation, etc.

Various evolution profiles were acquired using equal substrate
concentrations and different enzyme activities. Measurements
were carried out in random order to prevent from systematic biases.
Replicates have been measured according to the described experi-
mental design (Fig. 4).

Some selected evolution profiles using different enzyme activi-
ties of PL and PME  are displayed in Fig. 5. Fig. 5A shows no significant
spectral change due to absent enzymes, while Fig. 5B and C shows
evolution profiles concerning pure added enzyme amounts of PL

and PME, respectively. Fig. 5D and E shows combined evolution pro-
files using mixed activities of both enzymes. An additive character
of both individual evolution profiles can be recognized, although
being difficult to observe clearly. To achieve a better understand-
ing of the underlying spectral patterns the multiway models were
approached. The tensor was decomposed using three multiway
methods, namely PARAFAC, TUCKER3 and N-PLS. The obtained data
were then compared in order to identify the best multiway method
for the purpose.

4.1. PARAFAC

A two component model using PARAFAC was  obtained. The rank
of the tensor was validated to be two after appropriate chemomet-
ric preprocessing. Without the used multiway preprocessing a rank
three system would have been expected. This can be explained by
the fact that three spectral changes occurred, namely one for the
substrate consumption and one for each of the product formations
for the enzymatic reactions of PL and PME, in total three. Since the
substrate depletion can be expressed as linear dependent of the
two  spectral changes of product formation the overall rank shall be
two  after multiway centering the tensor across the kinetic mode
(removes the offset due to constant background signals).

The fingerprint mode loadings are presented in Fig. 6A, where
the blue fingerprint indicates the PL reaction and the green fin-
gerprint the PME  reaction, respectively. Noticeably both spectral
fingerprints indicated signals in the spectral range between 1400
and 1550 cm−1, although the PL reaction did not show any signifi-
cant spectral changes in this range. This will be a reason for poorer
calibration performance of PARAFAC as it will be discussed later.

The sample mode scores were correlated against the accepted
known enzyme activities and the retrieved calibrations have been
used to predict individual enzyme activities using leave-one-out
cross validation as the result is presented in Fig. 7. Accepted known
enzyme activities have been determined by conventional enzyme
activity assays as described in Section 3.3.

Both PARAFAC calibrations in Fig. 7 showed poor linear cor-
relation according to the regression coefficients R2

PL = 0.67 and
R2

PME = 0.52 for calibration and R2
PL = 0.48 and R2

PME = 0.70 for the
prediction test set samples, respectively. Precision of both calibra-
tions was  rather dissatisfying as it can be seen from the relatively
large pooled standard deviations (Table 1) or prediction deviations
in Fig. 7.
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Fig. 7. PL and PME calibrations using multiway scores derived from PARAFAC, TUCKER3 and N-PLS models. Top: PME, bottom: PL; the blue points indicate leave-one-out
cross  validated calibration samples while red triangles indicate predictions for the test set samples. (For interpretation of the references to color in this figure legend, the
reader  is referred to the web  version of this article.)

4.2. Tucker

As shown in Fig. 8 the PARAFAC loadings for the kinetic mode
are not very different from each other. That can be explained by
the fact that both reaction rates were changing similarly (close to

initial reaction rate) and therefore had comparable shape. In fact
this suggested that the rank of the tensor in the second mode
could be reduced to one. The N-PLS kinetic mode indicated that
both loading shapes should indeed be very similar. A tucker model
with the rank [212] was therefore calculated. TUCKER3 kinetic and

Table 1
Regression coefficients for calibration and prediction set samples are given together with pooled standard deviation sp and root mean square error of prediction RMSEP.

PARAFAC TUCKER3 N-PLS

PL PME PL PME  PL PME

R2
cal

0.67 0.52 0.92 0.88 0.95 0.89
R2

pred
0.48 0.70 0.96 0.89 0.96 0.89

Sp 1.10 U 1.62 U 0.26 U 1.19 U 0.24 U 1.10 U
RMSEP 3.60 U 5.31 U 0.62 U 2.72 U 0.70 U 2.85 U
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Fig. 8. (A) PARAFAC kinetic mode loadings for both, PL (blue) and PME  (green), (B) TUCKER3 kinetic mode loading. The rank in the TUCKER3 kinetic mode was  one as only
one  loading resulted from the analysis. (C) N-PLS kinetic mode loadings for both, PL (blue) and PME  (green). (For interpretation of the references to color in this figure legend,
the  reader is referred to the web version of this article.)

fingerprint mode loadings are shown in Figs. 8B and 6B, respec-
tively. The enzyme activity calibrations resulting from the sample
scores are shown in Fig. 7B.

The TUCKER3 model showed much better accuracy than the
PARAFAC model, as the regression coefficients were R2

PL = 0.92 and
R2

PME = 0.88 for calibration samples and R2
PL = 0.96 and R2

PME = 0.89
for the prediction test set samples, respectively. Interestingly the
fingerprint mode loading for the second component did not show
any significant peaks in the range between 1400 and 1500 cm−1 as
it was expected for PL.

4.3. N-PLS

N-PLS modeling has been done using leave-one-out cross vali-
dation. The results are presented in Fig. 7C. Regression coefficients
of the linear correlations between the accepted known enzyme
activity and the predicted values were R2

PL = 0.95 and R2
PME = 0.89

for calibration samples and R2
PL = 0.96 and R2

PME = 0.89 for the pre-
diction test set samples, respectively. Kinetic mode and fingerprint
mode loadings are presented in Figs. 8C and 6C. They are similar to
the TUCKER3 loadings in both cases.

The cross validation showed that only one latent variable was
needed to calibrate the system for each enzyme, as one expects
only one underlying evolution profile for each enzyme. This could
be verified by the RMSECV value which did not decrease for more
than one latent variable. The calibration performances of the N-PLS

calibrations were comparable to the TUCKER3 model calibration
performances (Fig. 7) in accuracy and precision as it can be seen
from RMSEP values and pooled standard deviations in Table 1 and
Fig. 9. The N-PLS fingerprint mode loadings were also more com-
parable to the TUCKER3 loadings (Fig. 6). PARAFAC showed quite
some deviations in that case.

5. Discussion

Three multiway models have been investigated to determine
enzyme activities of PL and PME  simultaneously, namely PARAFAC,
TUCKER3 and N-PLS. Kinetic mode loadings as well as spectral fin-
gerprint loadings have been presented in Figs. 8 and 6. While it was
possible to establish enzyme activity assays using all three multi-
way  methods deviations between the models occurred, especially
in the spectral fingerprint mode. In particular the PARAFAC fin-
gerprint loading of PL indicated spectral changes which were not
present in the actual spectral evolution. This led to decrease of cal-
ibration performance in terms of accuracy and precision as it can
be seen in Table 1 and Fig. 9. In Fig. 9 the pooled standard deviation
sp of the calibration samples and the RMSEP (prediction samples)
have been normalized over the activity calibration ranges of PL and
PME, respectively, to make them comparable. When comparing
accuracy and precision of the PARAFAC model with TUCKER3 and
N-PLS performance, PL clearly performed worse than PME  due to
the given reasons. Overall, precision and accuracy of the TUCKER3

Fig. 9. Pooled standard deviation sp (experimental precision) and root mean square error of prediction RMSEP (accuracy) are given for (a) pectin lyase and (b) pectin
methyl  esterase comparing the three multiway models. Both parameters have been normalized over calibration range. Accuracy and precision have been worst for PARAFAC
considering both enzymes. TUCKER3 and N-PLS performance was comparable.
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model were comparable to the N-PLS models which are generally
more acceptable since they result from supervised regression.

While N-PLS performed slightly better for cross validated cali-
bration set, TUCKER3 was even a bit superior when predicting the
test set (RMSEP). However, the deviations are not likely to be sig-
nificant since the sample size was not big enough to draw evident
conclusions from it.

Nonetheless, it is surprising that TUCKER3 performed so well,
even in comparison to N-PLS since it is a non-supervised regression
method. This has clear advantages since PLS methods may  cause
over fitting under certain conditions. This cannot occur when using
TUCKER3 (or PARAFAC).

6. Conclusion

The present study has shown that spectral evolution profiling
using FTIR in combination with chemometric multiway analysis
provides a useful and feasible approach to quantify enzyme activ-
ity of two co-acting enzymes simultaneously. When comparing the
three multiway models, i.e. PARAFAC, TUCKER3 and N-PLS, mainly
TUCKER3 surprises with its outstanding performance. As both,
accuracy and precision were comparable to the regression results
from N-PLS, although resulting from an unsupervised analysis; it
shows clearly that TUCKER3 has great potential when analyzing
kinetic data. This is especially valuable when PARAFAC, as an alter-
native unsupervised analysis, struggles to resolve the underlying
phenomena as it could be seen during this study.

The methodology shows major advantages due to its uni-
versal applicability which shall be tested further in the near
future. In addition, it offers the possibility to be implemented in
high-throughput instrumentation which paves the road to indus-
trial implemented solutions. Since many enzymatic reactions still
rely on monitoring only one substrate or product the here pre-
sented approach enables much better observation of the whole
reaction pattern. This is particularly important when enzyme kinet-
ics is to be investigated on genuine substrates where two  (or
more) enzymes act concerted on the same substrate. At present
those reactions can hardly be monitored by univariate measure-
ment principles as they result in very complex reaction patterns.
Time-resolved multivariate analysis as well as FTIR spectroscopy
therefore inaugurates new possibilities to monitor such reactions
to gain a better understanding of their complex underlying nature.
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