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Abstract  
Plant physiology is affected by climate change. Acclimations of photosynthetic processes are 
induced by short-term changes in climatic conditions. Further acclimation can be caused by long-
term adjustments to climate change due to ecosystem-feedbacks. The aim of this PhD was to 
investigate plant physiological responses to climate change in a seasonal and long-term 
perspective.  

The effects of elevated CO2, passive night time warming and periodic summer drought as 
single factor and in combination, on plant physiology were investigated in the long-term multi-
factorial field experiment CLIMAITE in a Danish heathland (www.climaite.dk). The responses of 
plant physiological parameters, such as photosynthetic capacity, stomatal conductance and 
respiration were measured after six years of treatments. 

A small leaf adaptor frame was developed to conduct high precision leaf gas exchange 
measurement in the field (Paper I). The leaf adaptor frame increased the precision of the 
commonly used leaf gas exchange method. It was used to conduct all physiological measurements 
on the two dominated heathland species at the CLIMAITE-site, the grass Deschampsia flexuosa 
and the shrub Calluna vulgaris.   

In Calluna, differences in magnitude of physiological responses to the climate change 
treatment were found between warm and cold season. In the warm season no down-regulation of 
the photosynthetic capacity under elevated CO2 was found. Opposite significantly down-regulated 
photosynthetic capacity was observed during the cold season. However, in both seasons the 
stimulation of photosynthesis was maintained in elevated CO2. No effect of warming was found 
in either of the seasons, but drought was found to counterbalance the CO2-induced stimulation of 
photosynthesis during warm season (Paper II).  

Besides the study of seasonality, long term responses of plant physiology to the climate 
change factors were investigated. In the CLIMAITE-experiment it has been shown that 2 years of 
treatment   altered physiological responses in Deschampsia and Calluna. In the work of this PhD 
similar responses were observed after 6 years of treatment. The magnitudes of physiological 
responses were related to differences in soil water content in the respective years. Elevated CO2 
was the main driver for physiological changes in the two species with different growth strategies. 
The growth strategies of Deschampsia and Calluna defined the physiological responses to 
elevated CO2 and only severe drought was observed to change the magnitude of responses (Paper 
III).   

In conclusion, the leaf adaptor frame greatly improved the measurement precision of leaf 
gas exchange. High precision photosynthetic measurements showed that leaf level responses to 
climate change factors are stable upon a wide range of seasonal and inter-annual variation. Long-
term ecosystem adjustments after 6 years of treatments did not cause further physiological 
acclimation in either Deschampsia or Calluna. The study indicates robustness of the Danish 
heathland ecosystem to moderate climate change.   
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Sammendrag 
Planters fysiologi påvirkes af ændringer i klimaet. Planters fysiologi tilpasses hurtigt til ændringer 

i det miljø de vokser i og tilpasninger over lang tid kan ses som langsomme feedbacks-

mekanismer. Formålet med dette Phd-arbejde har været at undersøge planters fysiologiske 

tilpasninger til klimaforandringer, både over sæson-variation og på lang sigt.  

Plantefysiologiske responser blev undersøgt i fler-faktor eksperimentet CLIMAITE 

(www.climaite.dk) beliggende i et dansk hede-økosystem efter seks års behandlinger med forhøjet 

atmosfærisk CO2, passiv nat-opvarmning og periodisk sommertørke som enkel og fler-faktor. 

Klimafaktorenes indflydelse plantefysiologiske parametre; som f.eks. fotosyntesekapaciteten, 

stomatal konduktans og respiration, blev undersøgt på græssen bølget-bunke (Deschampsia 

flexuosa L.) og dværgbusken, hedelyng (Calluna vulgaris L.).  

For at kunne udføre høj-præcisions målinger på bladenes gas-udveksling i felten 

udvikledes en blad-klemme. Blad-klemmen øgede præcisionen af den eksisterende blad gas-

udvekslings metode (Artikel I). Den udviklede metode blev benyttet til samtlige af de 

fotosyntetiske-målinger i dette Phd-arbejde.  

Det blev observeret at hedelyng tilpassede sig klimabehandlingerne forskelligt under 

den varme og den kolde sæson. I den varme sæson blev ingen ned-regulering fundet i 

fotosyntesekapaciteten under forhøjet CO2 og på trods af en ned-reguleret fotosyntesekapacitet i 

den kolde sæson, var fotosyntesen øget i begge sæsoner. Der blev heller ikke fundet nogen effekt 

af nat-opvarmningen i den kolde sæson. Tørke udlignede den forhøjede fotosyntese i forhøjet CO2 

(Manuskript II) 

Udover sæsoneffekten af klimabehandlingerne blev lang-tidstilpasninger til 

behandlingerne også undersøgt. Et tidligere studie fandt at de to undersøgte arter havde tilpasset 

sig de nye klimatiske forhold efter 2 års klimabehandlinger i CLIMAITE-projektet. I dette studie 

blev de samme tilpasninger observeret efter 6 år med klimabehandlinger.  Forskelle imellem de to 

år menes forklaret ud fra forskellen i jordvandsindholdet de pågældende år. Forhøjet CO2 var den 

klimafaktor der påvirkede planternes fysiologi mest. Tilpasningen til forhøjet CO2 i de to arter, 

hedelyng og bølge-bunke, var forskellige og bestem at deres forskellige vækst strategier. Udover 

effekter af forhøjet CO2 var det kun tørke der påvirkede planterne fysiologi (Manuskript III).  

Det kan konkluderes at blad-klemmerne i høj grad ødede præcisionen af gas-udveksling 

målingerne. De meget præcise fysiologiske målinger viste at planternes tilpasninger til 

klimabehandlingerne forblev det samme på trods af forskelligheder i både årstider og år. 

Økosystem-tilpasninger til 6 års klimabehandlinger ændrede ikke tilpasningsmønstre i enten 

hedelyng eller bølget-bunke. Det udførte studie viser at det danske hede-økosystem er robust 

overfor moderate klimaforandringer.  
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1. Ecophysiology in a world of climate change  

1.1 Climate change  

During the last century increased atmospheric concentrations of greenhouse gasses has been 

observed, primarily caused by human activities. Since the industrial revolution in the middle of 

the 19th century the atmospheric concentration of carbon dioxide (CO2) has increased from ca. 270 

ppm to over 400 ppm in 2013 (http://co2now.org), which has mainly been related to the burning 

of fossil fuel and changes in land use. Atmospheric CO2 concentration is expected to increase 

even further depending on the magnitude of future human CO2 emission and land use changes.  

Models have been used to predict the consequences of the increased greenhouse gas 

emissions on the global climate (e.g. IPCC, 2007). Climate change models provide different 

outputs, but a general prediction is that the increasing atmospheric CO2 concentration will lead to 

a global temperature increase of about 1.4-5.8 °C over the next 100 years, depending on the 

magnitude of the CO2 increase used in the model scenarios. Increased global temperature  

influences precipitation patterns, increasing the frequency of drought periods and more heavy 

rainfall episodes (IPCC, 2007).  

In Denmark, a temperature increase of 2-3 °C is expected for the yearly mean 

temperature around 2100 compared to 1990. The increased temperature is predicted to  be higher 

during nighttime and winter compared to day time and summer, respectively (Danish 

Metrological Institute, http://dmi.dk ; Easterling et al., 1997).  The higher temperature increase in 

winter is expected to be followed by more precipitation (20-40%). In summer, on the other hand, 

the precipitation is expected to decrease by 10-15%. Higher frequency of heavy rainfalls in 

combination with less precipitation is expected to result in longer drought periods in summer time 

(Danish Metrological Institute, http://dmi.dk). 

 

1.2 Ecosystem feedback processes 

Terrestrial ecosystems are affected by climate changes at all levels from single leaf physiology to 

ecosystem species composition (e.g Reich et al., 2006; Walther, 2003). Complicated feedback 

mechanisms are involved in rebalancing the ecosystem after environmental changes (Körner, 

2006). Figure 1 shows the ecosystem feedback to elevated CO2 concentration. Increased 

atmospheric CO2 is known to stimulate ecosystem production via increased photosynthetic 

assimilation, resulting in an increased aboveground and belowground biomass (de Graaff et al., 

2006).  
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Figure 1. Ecosystem carbon and water fluxes. Blue arrows are indicating carbon and water input to the 
system and brown losses from the system. Points of interest in the present thesis are highlighted with red 
boxes and the dotted-line arrows indicate an example of an ecosystem feedback-system. Feedback response 
direction is not described on the figure.  

 

Increased plant biomass potentially increases the overall plant water use and will thus 

decrease soil water availability. Nutrient and water limitations have been shown to mitigate the 

CO2-induced ecosystem production, resulting in more limited ecophysiological responses in 

natural ecosystems than in human impacted systems like agricultural fields (Leakey et al., 2009). 

Ecophysiological responses are rapid (second-minutes), and within a short time (day-month) 

plants can acclimate to new environmental conditions. Direct environmental impact on 

ecophysiology is thus expected to be fast, and long term responses are the result of slower 

ecosystem feedbacks.  

 

1.3 What can we learn from leaf level processes? 

Leaf level physiology can respond rapidly, and changes in CO2, nutrient availability, water supply 

and temperature can affect the responses in contrasting directions. Photosynthetic carbon 

assimilation is the only source of carbon for the terrestrial ecosystem, why responses at this level 
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are of highest interest in understanding the direction of ecosystem responses. Single factor 

experiments have been conducted for decades (e.g. reviewed in Ainsworth & Long 2005; 

Newsham & Robinson, 2009) However, the predicted climate changes do not only influence 

single environmental factors, as many  different factors are simultaneously influenced by the 

climate (e.g. IPCC, 2007). Ecosystem scale and global models predict the impact of multiple 

factors based on the knowledge from single factor experiments. Models are useful as long as 

interactions between climate change factors are additive, but experiments including more than one 

factor have provided insight in how complex the interactions between different single factors can 

be (e.g. Albert et al., 2011a/b/c; Larsen et al., 2011; Crous et al., 2011; Leuzinger et al., 2011).  A 

recent study by Leuzinger et al. (2011)  explains how multifactor experiments and upscaling 

reduce single factor responses. Models can easily overestimate ecosystem responses which  

emphasizes the importance of multifactor experiments.  

 

1.4 Ecophysiological responses to climate change factors 

1.4.1 Elevated atmospheric carbon dioxide  

Large amounts of experiments have been conducted, focusing on elevated atmospheric CO2 

responses on plant physiological processes (e.g. reviewed in Leakey et al., 2009; Ainsworth & 

Rogers, 2007; Ainsworth & Long, 2005; Long et al., 2004). For example, higher partial pressure 

of atmospheric CO2 immediately increases the intercellular concentration of CO2 (ci) and 

increased photosynthesis (A) as a direct effect of an increased ratio of CO2/O2 at the active site of 

the enzyme ribulose-1.5-bisphosphate carboxylase/oxygenase, Rubisco (Von Caemmerer, 2000). 

Thus Long et al. (2004) argued that most physiological responses to elevated CO2 in plants, and 

thereby ecosystems, can be divided into effects on photosynthesis and stomatal conductance (gs). 

Growth under elevated CO2 predominately results in stimulated light-saturated net 

photosynthesis, decreased stomatal conductance and increased water use efficiency (Leakey et al., 

2009; Ainsworth & Rogers, 2007; Ainsworth & Long, 2005; Medlyn et al., 2001).  Acclimation to 

elevated CO2 often results in decreased photosynthetic capacity via down regulation of the 

maximum Rubisco carboxylation rate (Vcmax) and to some degree the rate of electron transport 

(Jmax) (e.g. Leakey et al., 2009; Ainsworth & Rogers, 2007; Ainsworth & Long, 2005). At the 

current level of CO2, photosynthesis is often limited by the Rubisco carboxylation rate, but as the 

atmospheric CO2 concentration increases, photosynthesis becomes more frequently limited by 

electron transport (Rogers & Humphries, 2000;  Long & Ainsworth, 2006). A shift to electron 

transport limited  light saturated photosynthesis in higher CO2 reduces the need for carboxylation 

capacity, making it possible for the plant to redistribute the nitrogen invested in Rubisco (Drake et 

al., 1997). Thus a common finding from elevated CO2 experiments is a reduction of nitrogen in 
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leaves and an increased carbon to nitrogen ratio (e.g. Ainsworth & Rogers 2007; Long et al., 

2004). The magnitude of down regulation of the photosynthetic capacity has been related to the 

availably of nitrogen, with highest responses in ecosystems with low nitrogen availability 

(Ainsworth & Roger, 2007; Nowak et al., 2004). As mentioned above (Leakey et al. 2009), the 

magnitudes of responses are typically smaller in natural ecosystems, where not only nutrients but 

also water can be limiting.  

When the CO2/O2 ratio in leaf tissue increases under elevated CO2, the losses of energy 

due to photorespiration are decreasing, resulting in an increased efficiency of photosynthesis 

(Lambers et al., 1998). Mitochondrial respiration (dark respiration) has been found to be directly 

down regulated by elevated CO2 in some studies but not in others. Tjoelker et al. (2001) found 

little evidence that a doubling in CO2 concentration had any direct effect on dark respiration. 

Hamilton et al. (2001) found no effect of long-term growth in elevated CO2 on maintenance 

respiration rates or the response to changes in temperature (e.g. Q10) and concluded that the 

influence of elevated CO2 on plant respiratory carbon fluxes is primarily related to increased 

biomass.  

Respiration and photosynthesis are closely connected, and photosynthesis is strongly 

dependent on stomatal opening. Thus, environmental change induced effects on stomatal 

conductance cannot be neglected in an ecophysiological perspective (Long et al., 2004). Reduced 

stomatal conductance is a common response to elevated CO2 and can affect water status of plants 

and increase water use efficiency (Ainsworth & Rogers, 2007). Studies have indicated that 

elevated CO2 reduced the water consumption, which results in reduced soil water depletion and 

induces so called “water saving” (Leuzinger & Körner, 2007; Robredo et al., 2007). However, 

studies have also indicated that water saving as a result of reduced stomatal conductivity probably 

only occurs during severe drought periods and is strongly dependent of the species growth 

strategies (e.g. Robredo et al., 2007; Albert et al., 2011a & 2012).   

 

1.4.2 Nighttime warming  

Increased temperature, as predicted for the future, can strongly affect photosynthesis (e.g. Berry 

and Björkmann 1980, Medlyn et al 2002). Photosynthesis involves a lot of biochemical reactions 

and their overall temperature response can be understood in the scene of the temperature 

dependency of  photosynthesis and its interactions with other processes (Farquhar et al. 1980, 

Kirschbaum and Faquhar 1984, Medlyn et al. 2001). According to the temperature impact on 

biochemical reaction rates (the Arrhenius relationship), the activation of the photosynthesis 

bioprocess is increased with increased temperature at low to moderate temperatures. At higher 

temperatures, photosynthesis is decreased due to conformational changes of key enzymes and 

thus reduce the CO2 fixation. Photosynthesis has a temperature optimum and plants are able to 
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acclimate considerably to different growth temperature, changing their CO2-fixation optimum 

(Sage & Kubien, 2007). 

Direct effects on photosynthesis and leaf respiration resulting from increased 

temperature is well documented (e.g. Atkin et al., 2005a/b; Campbell et al., 2007). However, in 

the context of climate change, it is argued that temperature effects on the plant physiology is more 

related to effects at other levels in the ecosystem (Nowak et al., 2004). In Europe, warming during 

the last decades resulted in an overall earlier onset of the spring/summer season of 2.5days/°C 

(Menzel et al., 2006), and warming has been documented to increase soil mineralization and 

ecosystem evaporation (e.g. Rustad et al., 2001; Schmidt et al., 2004). Changed seasonality as 

well as nutrient and water availability, can be of great importance for ecosystem carbon sink 

capacity mediated by photosynthetic CO2 fixation (e.g. Llorens & Penuelas, 2005; Peñuelas et al., 

2007). Warming can stimulate photosynthesis; however, increased daytime respiration or changes 

in the temperature acclimation of respiration can occur and can lead to an overall reduction of 

carbon uptake (e.g. Campbell et al., 2007). Effects of warming are expected to be most 

pronounced during nighttime (Easterling et al., 1997), and studies with increased night 

temperatures have shown that warming increased nighttime respiration, positively influencing the 

carbon sink strength, and then stimulated daytime photosynthesis the following day (e.g. Griffin 

et al., 2002; Turnbull et al. 2002 & 2004). Positive effects of e.g. temperature mediated increased 

mineralization rate can potentially increase the nutrient availability for plants, increasing the 

photosynthetic capacity (Kattge et al., 2009). 

 

1.4.3 Extended spring/summer drought 

Drought is a strong environmental stress factor for most plants (e.g. Schmidt et al., 2004; Pérez-

Ramos et al., 2010). Precipitation patterns are expected to change (IPCC, 2007), and in temperate 

ecosystems it is expected that longer periods of drought and episodic heavy rainfall will become 

more frequent.  Drought has an intensive negative effect when prolonged, but during rewetting, 

photosynthetic physiological processes can be restored (e.g. Albert et al., 2011a). Physiological 

processes are not only affected during dry periods but also in the post-drought period. For 

example, in a study of evergreen oak and broad leaved Phillyrea (Ogaya &Peñuelas, 2003) clear 

carry-over effects of summer-drought were found during the following colder season, decreasing 

photosynthetic capacity in plants previously exposed to drought. Slow growing species as trees 

and shrubs are competitive in their responses to drought, where fast growing opportunistic species 

have been found to show leaf-die back, maintaining high photosynthetic performance in the 

remaining leaves (e.g. Albert et al,. 2012; Versules et al., 2006). 
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Water shortage limits plant growth, mainly as a result of a changed plant carbon 

balance, increasing the rate of respiration more than the reduction in photosynthesis (e.g Flexas et 

al., 2006). Plants exposed to drought show negative responses in most physiological parameters 

such as Asat, gs, Vcmax and electron transport (Jmax). Additionally, drought is also known to delay 

phenological processes related to flowering and germination (e.g. Signarbieux & Feller, 2011; 

Albert et al. 2011 a/b; Jentsch et al., 2009; Prieto et al., 2008; Llorens & Penuelas, 2005).  Single 

factor climate change experiments as described in the above sections have been conducted in a 

large number (e.g. reviewed in Ainsworth & Long, 2005; Ainsworth & Rogers, 2007; Leakey et 

al., 2009; Nowak et al., 2004; Newsham & Robinson, 2009). However, the predicted climate 

change is not only involving single environmental factors and much fewer studies have been 

combining several experimental factors (e.g. Blooret al., 2010; Ellsworth et al., 2012; Nogués & 

Baker, 2000; Schmidt et al., 2004). Therefore there is a continuous interest and need for long-term 

multi factorial experiments (Leuzinger et al., 2011; IPCC, 2007).  

 

1.5 Objective of the thesis 

The main focus of the thesis has been to explore long-term ecophysiological responses to climate 

change in a temperate heath/grassland.  Moreover, the aim has been to provide useful model-

validation data for up-scaling leaf level gas exchange measurements to ecosystem scale. 

Photosynthetic and, particularly, respiration fluxes at leaf level are small, why an additional aim 

has been to improve the current technique of measuring photosynthesis to increase the precision 

of small scale gas exchange measurements. The following major questions were addressed during 

the 3 years of work covered in this thesis:   

• Is it possible to correct leaf gas exchange measurements to increase the precision of small 

CO2 and H2O fluxes at the leaf level? (Paper I) 

• How does climate change affect Calluna vulgaris and are the effects the same in the cold 

and warm seasons? (Paper II) 

• How does long-term climate change affect heathland-ecosystem feedbacks and influence 

Deschampsia flexuosa and Calluna vulgaris physiology? (Paper III) 
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2. Methodological considerations and descriptions 

2.1 Climate change manipulation – field studies 

Climate change experiments have been conducted over a broad range of ecosystems using all 

kinds of different techniques. Changed temperatures, nutrient availability and soil water content 

are relatively easy to manipulate in-situ using shelters, tents, open top chambers or irrigation 

whereas elevated CO2 concentrations  are more complicated to manipulate. The development of 

the Free-Air-CO2-Enrichment (FACE) technique has provided a tool for in-situ manipulation of 

elevated CO2 and similar techniques are used for manipulating ozone and humidity (e.g. 

AspenFACE and FAHM). The FACE technique has been used in all kinds of ecosystems from 

grassland to forest and agricultural fields, and some experiments have been maintained for more 

than ten years. FACE experiments have been employed in combination with other factors such as 

ozone, nutrient additions, warming or manipulation of precipitation. In few cases, FACE 

experiments have been combined with more than one climate change factor; e.g. OzFACE, 

combining three levels of CO2 with defoliation and nutrient addition, and the CLIMAITE 

experiment, which combines FACE with passive nighttime warming and periodic spring/summer 

drought.  

 

2.2 The CLIMAITE experiment 

The long-term ecophysiological responses to climate change manipulations presented in paper I-

III were carried out within the climate change experiment CLIMAITE. In 2005, CLIMAITE was 

establishing to investigate long term climate change effects on biological processes in terrestrial 

ecosystems. The experiment is situated in a temperate heathland close to Jægerspris, North 

Zealand, Denmark (55°53’N, 11°58’E). The vegetation is co-dominated by the evergreen dwarf 

shrub Calluna vulgaris L. (~ 30%) and the grass Deschampsia flexuosa L. (~ 70%), and a minor 

occurrence of other grasses, herbs, mosses and lichens (Kongstad et al., 2012). The soil is nutrient 

poor and sandy with a pHCaCl2
of ~ 4.5 in the top 5 cm of soil. Mean annual temperature is ~10 °C 

and the annual mean precipitation is ~700 mm (Mikkelsen et al., 2008)  

 The CLIMAITE experiment includes the following treatments: Untreated control (A), 

elevated CO2 (CO2), passive nighttime warming (T), periodic summer drought (D) and all 

combinations (TD, TCO2, DCO2, TDCO2), replicated in six blocks within a complete split-plot 

design. Each block includes two octagons of 6.8 m diameter, divided in four plots (Figure 2). The 

FACE technique is used to expose one octagon in each block to 510 ppm CO2 during daylight 

hours. The passive nighttime warming is performed by automated infrared reflective curtains 

covering one half of each octagon. 
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Nighttime warming results in an increased air temperature of 1.4 °C in 20 cm height, on 

average (Mikkelsen et al., 2008). Every year of the experiment, experimental drought has been 

established during two to five weeks in the spring or summer by automated rain-activated curtains 

covering one half of the octagons each. To avoid total die-out, the drought treatment was stopped 

when the soil water content in the top 20 cm was reduced to less than 5 %.  The experimental 

treatments with CO2 and warming were initiated in October 2005, and the first drought was 

imposed in June 2006. In each experimental plot the soil water content over two depths (0-20 cm 

and 0-60 cm) was continuously recorded using time domain reflectometry (TDR). 

Simultaneously, air temperature has been measured in 20 cm height, and soil temperature has 

been monitored in 0 cm and 5 cm depth. Two climate-stations are located in the experimental 

area, where temperature, radiation within the photosynthetic spectrum (PAR) and the precipitation 

have been measured in 2 m height. To follow intensively the seasonality in the photosynthetic 

performance, two additional “High Temporal Resolution” plots (HTR plots) outside the 

treatments were established in January 2011.  Within this PhD project, field work was conducted 

throughout the years 2011 and 2012. In the period from May 2011 to May 2012, the HTR plots 

were measured on every second week and monthly campaigns were conducted in from April 2011 

to February 2012 (Figure 3). 

 

 

Figure 2. Outline of the experimental treatments at the CLIMAITE experimental site.  A) One experimental 
block, containing two separated octagons, the upper panel shows the control ring with ambient CO2 
concentration and the lower panel the ring  with elevated CO2 concentration at 510 ppm (FACE-ring). Each 
octagon is equipped with drought and warming curtains. Each block includes all eight treatment 
combinations of elevated CO2 (CO2), passive nighttime warming (T), extended summer drought (D) and 
non-treated control (A). B) Aerial photo of the CLIMAITE experimental site, where all curtains are out for 
demonstration purpose (Photo: Kim Pilgaard). 
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2.3 Plant ecophysiological performance 

All applied methods are described in details in each manuscript, but in the following section  the 

use of methods are discussed.  

Leaf physiological processes can be divided into energy production and energy 

consumption processes. Energy production includes light harvesting and processes through the 

photosynthetic apparatus resulting in available energy units (ATP and NADPH). Consumption of 

energy is related to the energy demanding physiological processes, mainly CO2-assimilation in 

the Calvin-cycle. Assimilated carbon is stored as energy rich molecules, such as sugars, which are 

allocated from leaves to other parts of the plant and used for growth and maintenance. The 

assimilation of CO2 is closely connected to the plant water balance and the CO2 and H2O fluxes 

between leaves and atmosphere have been the background for the development of many different 

gas exchange methods to determine photosynthesis and respiration. Since photosynthetic and 

respiratory fluxes are always related to leaf area, biomass or nutrient concentration, gas exchange 

measurements cannot stand alone, but need to be combined with leaf trait characteristics.    

2.3.1 Leaf gas exchange measurements (Paper I) 

Leaf photosynthetic and respiratory fluxes of CO2 and H2O are small, and high precision is 

required to conduct reliable measurements (e.g. Bruhn et al. 2002; Pons et al. 2009). In the 

laboratory under controlled environmental conditions, high precision equipment provides the 

opportunity to measure even the smallest fluxes. However, this type of equipment is often large 

and immobile, and thus not suitable for field work. Smaller portable gas exchange systems have 

been developed using small leaf chambers, where the leaf (or twigs) are sealed between to 

gaskets. Unfortunately, diffusion through the gasket material are unavoidable and has been 

demonstrated and described previous (e.g. Long & Bernacchi, 2003, Rodeghiero et al. 2007, 

Flexas et al. 2007). Most leaf gas exchange manufactures provide methods for correction, and 

methods to minimize the advective leakage through gaps between plant and gasket material have 

been suggested (e.g. Rodeghiero et al. 2007, Flexas et al. 2007). In short, the two common 

approaches are either to seal the leaf chamber in an additional gas tight container (Flexas et al.,  

2007) or correct measurements with dead leaf data (Rodeghiero et al., 2007). However, the 

suggested methods are difficult, if not impossible, to apply under extensive field work, why I 

decided to develop a new approach to increase precision of field conducted leaf gas exchange 

measurements. 
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To minimize the leakage between plant material and the gasket, we developed a gas tight leaf 

adaptor frame, LAF (figure 4), believing that this would increase the precision of the 

measurement. However, early pilot-studies showed that the LAF did not minimize the diffusion 

leakage. The arising question to answer was now: ‘why does exclusion of leaf mediated leakage 

not decrease the diffusion leakage?’ After many experiments including turbulent wind conditions 

and different gasket materials we finally found the answer and concluded that avoiding leaks 

enables precise correction and highly increases the reliability of the measurement (Paper I).  

 

 

Figure 4. Leaf adaptor frame (LAF) used under field conditions, detailed description can be found in 
Boesgaard et al., (2013), Paper I. A) + C) LAF attached to a sample of Deschampsia flexuosa and Calluna 
vulgaris, respectively. B) + D) Licor 6400 attached to samples of Deschampsia and Calluna within LAF, 
respectively. All photos by Kristine Boesgaard. 

 

2.3.3 Measurements on leaf trait characteristics 

As explained above, measurements of photosynthesis and respiration should always be related to 

leaf area, biomass or nutrient concentration. Portable gas exchange systems normally have small 

chambers with an inside area < 6 cm2, however  it would be difficult to fill out an area of that size 

with one or even with more leaves of the plants species investigated in this thesis, Deschampsia 

and Calluna (figure 4). Again, LAF was found to be a great tool for precise area estimates and 
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later for dry weight and nutrient content determinations. After a measurement of a leaf sample 

within the LAF, leaves were cut out and brought to the laboratory. In the laboratory, estimation of 

leaf area were done using photographs and scanned images to present the area as projected leaf 

area, as described in  Smith et al.  (1991).  

Plants are able to re-allocate nutrients such as nitrogen to different part of the plants, 

thus one leaf can have a different nitrogen content than the one next to it. To be able to connect 

carbon and nitrogen concentration directly to the measured photosynthesis or respiration, the 

same sample was used for elemental analysis after dry weight determination. 

 

2.3.4 Photosynthesis parameters – models and fitting procedure 

Evaluation of the impact of climate change factors on ecophysiological processes was conducted 

using the relation between the rate of photosynthetic assimilation (A) and either the intercellular 

CO2 concentration (ci) or the incident light intensity (I). A more simple approach was used to 

evaluate stomatal conductance (gs) and leaf dark respiration (RD). Details on estimation of 

photosynthetic parameters from the A vs. I relation (light-response), gs and RD can be found in 

paper I-III.  

The relation between A and ci was evaluated using the C3-photosynthesis model, the 
Farquhar-von Caemmerer-Berry (FvCB) model, described in 1980 and later modified (Farquhar et 

al., 1980; Harley & Sharkey, 1991; Bernacchi et al., 2001). We adapoted the model-fitting 

approach from Dubois et al. (2007) for data processing A-ci data in SAS (SAS Intsitute Inc.) and 

converted the algorithm to be used in the free-software R (R Develpment Core Team, 2010). The 

FvCB model considers biochemical reactions of photosynthesis to be in one of three steady states 

(Long & Bernacchi, 2003).  At low ci, the rate of photosynthesis can be predicted by the 

properties of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) assuming a saturating 

supply of substrate, Ribulose-1,5-bisphosphate (RuBP). Photosynthesis is here limited by the 

carboxylation rate of Rubisco (Vcmax) and is normally referred to as the Rubisco-limited state. As 

ci increases, the photosynthetic rate becomes limited by the regeneration-rate of the substrate 

RuBP and, assuming that RuBP is used at a constant rate, the electron transport rate (J) is limiting 

the photosynthesis, referred to as the RuBP-limited photosynthesis. The rate of triose-phosphate 

utilization (TPU) can become the limiting step for photosynthesis as ci increases. However, this 

will only occur under both high light  and highCO2 concentrations, which is rarely the case for 

plants under outdoor conditions, and therefore the model improvement provided by Harley and 

Sharkey (1991) is not used with in this thesis. The approach from Dubois et al (2007) is based on 

a model-fitting, where the lowest value of one of the three described photosynthetic limitations 

defines the rate of photosynthesis at a given ci.  To improve the model the temperature correction 
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by Bernacchi et al. (2001) was used to normalize data that were not measured at the standard 

temperature of 25 °C.  

Model fitting is validated by the amount of measurement points. The more points on the 

curve the more unknown variability can be evaluated. Using the minimum detecting approach, 

fitting of photosynthesis to one of the two limitation stages of photosynthesis (Rubisco-limited or 

RuBP-regeneration-limited) was not always an option for our data series. Thus, when no 

minimum could be identified for the photosynthetic limitation, Vcmax was fitted using data with 

ci<500 ppm and J was fitted using data with ci > 550 ppm (example in figure 6).   

 

Figure 5. Example of an A- ci  
curve fitting using the minimum-
seeking model A) and the fixed 
model B). The values in the 
bottom right corner of each of the 
panels are fitted values for Vcmax, 
J, respiration estimated from the 
A- ci -fitting (Rd) and the last 
number is the R2-value for the 
fitted red line. The red line 
connects the two fitted functions.  
The drop seen in B) appears due 
to no overlap between the fitted 
functions.  
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3. Photosynthetic performance to climate change 
In the following ecophysiology chapter, responses of plant ecophysiology to long-term climate 

change manipulations on the heathland species Calluna vulgaris and Deschampsia flexuosa is 

summarized and discussed. A detailed discussion of the results is presented in papers II and III.    

3.1 Seasonality and growth strategy  

Plant physiology is rapidly influenced by environmental changes, i.e. light, temperature and water 

availability. The plants are facing diurnal, seasonal and annual variations in environmental 

conditions. In temperate climate, where environmental conditions is variable throughout the year, 

an evaluation of ecosystem and ecophysiological responses to climate change, and particularly the 

seasonality in the responses, are of high interest. Seasonal variability within single months is of 

great magnitude, thus high temporal resolution in data is needed.  

 Ecosystem carbon exchange can be evaluated with high temporal resolution (seconds – 

hours) using techniques as eddy-covariance or automatic ecosystem gas exchange chambers. 

These kinds of techniques are particularly useful to evaluate ecosystem performance under 

ambient conditions, but cannot be used to evaluate the ecosystem carbon source or sink potential. 

Leaf level C3- photosynthesis and light-relation models (Farquhar et al., 1980; Lambers et al. 

1998) provide information about the plant photosynthetic potential and are important tools for up-

scaling procedures and in evaluating ecosystem carbon source/sink potentials in a climatically 

changed future. Leaf level gas exchange measurements are suitable for these kinds of evaluations 

but are highly time-consuming and difficult to perform under field conditions.  

Covering seasonal variation with a higher temporal resolution than a monthly scale 

within eight treatments replicated six times, as in the CLIMAITE experiment, is costly, time and 

money consuming. Therefore, seasonality investigations with two-week intervals in HTR plots 

outside the treatments were performed from May 2011 to May 2012. Assuming that the 

seasonality under ambient conditions roughly follows the same pattern as in the different 

treatments, data from HTR plots can be used to define the seasonality within treatments and 

provide an important tool for up-scaling carbon and water fluxes to an annual ecosystem scale. In 

paper II, seasonality of the maximum carboxylation rate (Vcmax) at ambient temperatures was used 

to remove the seasonal variability to compare treatment effects in different time a year. In 

combination with the improved gas exchange approach presented in section 2.3 and paper I, 

seasonal variation in leaf dark respiration was also investigated. Leaf respiration is one of the 

most difficult parameter to measure, particularly under field conditions, because the leaf-level 

fluxes are extremely small and high precision equipment is needed. However, information about 
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leaf respiration is valuable for the up-scaling of ecosystem responses to climatic changes (see 

more in Chapter 4).  

The two co-occurring species at the CLIMAITE experimental site, the grass 

Deschampsia and the dwarf shrub Calluna, have different life strategies (Albert et al., 2012). 

Therefore, it is expected that their seasonal pattern in light-saturated net photosynthesis and leaf 

dark respiration is different. Across all time, high temporal data showed that Deschampsia had a 

higher photosynthetic rate and lower respiration rates than Calluna. This finding was in line with 

earlier observations from monthly campaigns at the CLIMAITE experimental site (Albert et al. 

2012). 

The two species are also different in their way to deal with seasonal changes in 

temperatures (Paper II). Where Calluna re-translocates leaf nitrogen in cold seasons, 

Deschampsia does not. This is in line with findings from other studies on evergreen species (e.g. 

Bryant et al., 1983). The opportunistic growth strategy of Deschampsia, such as leaf die-back 

during unfavorable periods with little water and low temperature, maintains higher productivity in 

remaining leaves (Albert et al. 2012). Calluna, on the other hand, is more vulnerable to drought 

and temperature changes by maintaining leaf biomass and surviving unfavorable conditions by 

acclimatizing the photosynthetic apparatus to new conditions (Albert et al. 2012.). Calluna not 

only down regulates Vcmax and leaf nitrogen content, but it also closes stomates in dry periods 

(Albert et al. 2012).  

Unfortunately, the season evaluated in the present thesis cannot be considered as 

normal. An extremely dry winter and daytime temperatures below 0°C without protecting snow 

cover lead to a major dieback of the standing Calluna biomass at the experimental site. In April 

2011, only around 5-10% of all Calluna stands had functioning green shoots. New shoots regrew 

from the dried stands during May-July 2011, with an approximately 75% regrowth. The dieback 

was not observed to be different between treatments. The delayed growing season was seen as a 

slow start-up of Asat of Calluna in the early regrowth phase (May – June), compared to 

Deschampsia which showed a high Asat already during the same period (figure 6).  
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Figure 6. Seasonality in light-saturated net photosynthesis (Asat, ●) and dark respiration (RD, ○) in HTR 
plots in combination with daily mean air temperature in 2 m height (°C, ····). A) Deschampsia flexuosa and 
B) Calluna vulgaris.  

 

 

3.2 Seasonal responses to climate change in Calluna vulgaris   (Paper II) 

Considering the seasonal variation in ecophysiological processes led to a major question: ‘Will 

species respond to climatic changes the same way at the different times of the year?’ To address 

this question the warm season was defined to be between May and October, as the main growing 

season, and the cold season was defined to start in the beginning of October, according to Larsen 

et al. (2007). Most recent studies of impacts of climate change on ecosystems have been carried 

out in the growing season (e.g. Ainsworth et al., 2004; Day et al., 2008; DeLucia & Thomas, 

2000; Llorens & Penuelas, 2005; Robredo et al., 2007). The seasonal data provided knowledge 

about how seasonal changes in particular temperature affect the rates of photosynthesis and 

respiration. In Calluna Asat was reduced by more than 50 % in the cold season compared to the 

warm season, whereas Deschampsia reduced Asat by ca. 40%. As discussed in section 3.1, 

Deschampsia induced leaf dieback under unfavorable conditions, leaving remaining leaves with 
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high fitness and photosynthetic potential. This makes it difficult to distinguish between 

physiological responses and growth-strategy-induced responses. Thus, investigations of 

ecophysiological responses in the cold season were conducted on Calluna only. Studies of 

evergreen scrubs and trees in the temperate climate zone have shown a potential for continued 

carbon uptake during the cold season (e.g. Larsen et al., 2007; Campbell et al., 2007). At the 

CLIMAITE experimental site, Andresen & Michelsen (2005) showed that Calluna sustained 

uptake of nitrogen in December, indicating that photosynthesis is potentially maintained 

throughout the cold season. Larsen et al. (2007) estimated that 22% of the annual ecosystem 

photosynthesis and 30% of the annual ecosystem respiration could be assigned to the cold season, 

between October-Marts, in a Danish heathland ecosystem.  

The FvCB model of C3 photosynthesis is based on leaf gas exchange measurements conducted at 

standard temperature (see section 2.3.4). In controlled environments, such as greenhouses or 

growth chambers, temperature is easy to control. However, under outdoor environmental 

conditions, temperature stabilization and control is highly difficult (e.g. Li-Cor Inc., 2008). To 

improve the FvCB model, Bernacchi et al. (2001) included a temperature correction to the model 

to take temperature fluctuations during measurements into account. Normalization of 

ecophysiological measurements, such as Vcmax are needed for the evaluation of seasonal 

differences between experimental treatments. Therefore, ambient high temporal gas exchange 

measurements were used as normalization background. 

 The effects of the experimental treatments were investigated within the earlier defined 

warm and cold season (paper II). Elevated CO2 stimulated Asat ,which is in line with other findings 

(e.g. reviewed in Drake et al., 1997; Nowak, et al., 2004; Ainsworth & Long, 2005; Leakey et al., 

2009). However, Calluna did not show any down-regulation of the photosynthetic capacity during 

the warm season, which is in contrast to other observations on trees and shrubs (e.g. Nowak et al., 

2004).  CO2-induced stimulation of Asat was found to be related to an increased intercellular CO2 

concentration via an unchanged stomatal conductance (Paper II). Earlier findings from the 

CLIMAITE experimental site in the second year of treatment indicated a photosynthetic down-

regulation under elevated CO2 concentration (Albert et al., 2011a). However, in the 2nd year, soil 

water content was ca. 50 % lower across the growing season than in the presented year, which 

resulted in a lower stomatal conductance Thus, ci/ca in either ambient or elevated CO2 was not 

maintained as high as in the present study. Lower stomatal conductance has been related to 

photosynthetic down-regulation and the absence of response can be related to this (more on this in 

section 3.3 and Paper III).  

The temperature normalized 𝑉𝑐𝑚𝑎𝑥
25  revealed that there was no photosynthetic down-

regulation during the warm season, but Calluna significantly down-regulated 𝑉𝑐𝑚𝑎𝑥
25  during the 

cold season (Paper II).  Despite the down-regulation of 𝑉𝑐𝑚𝑎𝑥
25 , Asat was maintained at higher levels 
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in the elevated CO2 treatment, resulting in a 5 % lower reduction of Asat in the cold season 

compared to the warm season. A smaller difference between warm and cold season in 

combination with a continuous  higher Asat indicates the presence of a higher annual carbon 

uptake under elevated CO2. In line with this, a measured higher soil respiration under elevated 

CO2 at the CLIMAITE site within the first 3 years of treatment was hypothesized  to be induced 

by a higher photosynthetic carbon uptake (Selsted et al., 2012).  Furthermore, leaf nitrogen was 

strongly reduced in our study in the cold season, which is in line with the growth strategy of 

Calluna (Aerts et al., 1990; Gimingham, 1960; Jackson et al., 1999) and was observed to be equal 

among all treatments. The CO2-induced reduction in photosynthetic capacity (𝑉𝑐𝑚𝑎𝑥
25 ) found in the 

cold season is argued to be induced by a natural re-translocation of nitrogen in colder seasons to 

maintain a constant ci/ca. In a meta-analysis by Ainsworth and Roger (2007) it was shown that 

CO2-induced photosynthetic down-regulation was largest when plants were grown with low 

nitrogen supply. The CLIMAITE site has not been found to be particularly nitrogen limited 

(Larsen et al., 2011), and the increase in magnitude of the 𝑉𝑐𝑚𝑎𝑥
25 down regulation  in the cold 

season is argued to be induced by a natural re-translocation of nitrogen from the leaves to other 

plant parts.  

Neither nighttime warming nor extended drought was observed to influence 

ecophysiological processes in Calluna in the cold season, and responses in the warm season were 

similar to earlier findings (Albert et al., 2011a/c).  The absence of a warming effect on 

photosynthetic parameters in the cold season was related to the fact that measurements of full 

ACi-curves were stopped before days with strong nighttime frost, due to the limited time of 

daylight. In Albert et al. (2013, paper IV) the effect of nighttime frost events on the photosystem 

II performance was significantly improved in warmed plots before and after frost events. This 

finding indicates that the passive nighttime warming treatment effectively extends the growth 

period. Warm season responses are discussed in details in the next section and Paper III. 

Summarizing ecophysiological responses in the cold season: A smaller reduction of Asat under 

elevated CO2 was found to increase the potential annual carbon uptake, as in the full-factorial 

treatment (TDCO2). Furthermore, I can conclude that the magnitudes of ecophysiological 

responses to climate change are highly dependent on seasonal and inter-annual variation. 
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Figure 7. Photosynthetic response during warm and cold season. A) + B) Mean ± SE of light saturated net 
photosynthesis at ambient temperature, Asat (µmol CO2 m-2 s-1). C) + D) the maximum carboxylation rate 
normalized to 25 °C, 𝑉𝑐𝑚𝑎𝑥

25 (µmol CO2 m-2 s-1). Seasonal treatment effects are indicated as * p<0.05, ** p< 
0.01, in the respective season. Tends at p<0.1 are noted with †. A) + C) Only responses to ambient CO2 
versus elevated CO2 (-CO2 and +CO2, n=24) and B) + D) the un-manipulated control A versus the full 
combination of warming, drought and elevated CO2, TDCO2 (n=6).The figure is from paper (II). 

 

3.3 Ecophysiological responses to long term climate change (Paper III)  
Long term ecophysiological responses to climate changes are indirect results of ecosystem 

feedbacks originating from short-term plant induced responses (section 1.2.3). The long-term 

exposure of plants to elevated CO2, warming and drought can induce different responses in the 

ecosystem, and since feedback processes can be slow it is difficult to establish how long time is 

needed for the system to reach a new steady state. Within the second year of experimental 

treatments in the CLIMAITE-project, photosynthetic performance was evaluated during the warm 

season (Albert et al., 2011 a/b/c). After this short time (1-2 years) Deschampsia and Calluna 

responded differently to the experimental treatments.  To evaluate the potential long-term 

feedback of the climate change manipulations on photosynthetic performance, a similar 

investigation was conducted during this PhD (Paper III). The two investigated years (2006/2011) 

differed in precipitation and temperatures. Additionally, in the last year, a dry and cold winter 

resulted in a major dieback of Calluna biomass, as described in section 3.2. The ecophysiological 

responses that were observed after two years of manipulation were often found in the presented 

long-term study too (Paper III). Differences in the magnitude of responses and directions were 

mainly related to differences in water availability and to the die-back of Calluna biomass, rather 

than to treatment effects. 
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Table 1. Ecophysiological responses to long-term climate change treatments in 
Deschampsia flexuosa and Calluna vulgaris. 
 

Variable            CO2        T      D TxDxCO2 

Light-saturated photosynthesis (Asat) 
Deschampsia ~ ~ ~ ~ 
Calluna ↑ ~ ↓ ‡‡ 

Dark respiration (RD) 
Deschampsia ~ ~ ~ ‡‡ 
Calluna ~ ~ ~ ~ 

Maximum Rubisco carboxylation rate (Vcmax) 
Deschampsia ↓ ~ ~ ‡‡ 
Calluna ~ ~ ↓ ‡‡ 

Maximum electron transport rate (Jmax) 
Deschampsia ~ ~ ~ ~ 
Calluna ~ ~ ~ ~ 

Light- & CO2-saturated photosynthesis (Amax) 
Deschampsia ↓ ~ ~ ‡‡ 
Calluna ↑ ~ ~ ‡‡ 

Stomatal conductance (gs) 
Deschampsia ~ ~ ~ ~ 
Calluna ~ ~ ~ ↑↓ 

Water use efficentcy (WUE) 
Deschampsia ↑ ~ ~ 

 Calluna ~ ~ ~ ↑↓ 

Intercellular CO2 concentration (ci) 
Deschampsia  ~ ~ ~ ~ 
Calluna ↑ ~ ~ ‡‡ 

Specific leaf area (SLA) 
Deschampsia ~ ~ ~ ↑↓ 
Calluna ↓ ~ ~ ‡‡ 

Nitrogen per. leaf area (mg N cm-2) 
Deschampsia  ~ ~ ~ ~ 
Calluna ~ ~ ~ ~ 

Carbon and nitrogen ratio (C/N) 
Deschampsia ↑ ~ ~ ‡‡ 
Calluna ↑ ~ ~ ‡‡ 

Note: Responses are compared to non-treated ambient conditions across the growing season after 
6 years of treatments. Symbols: No effect (~); significant increase (↑); significant decrease (↓); 
additive response (not significant) of single factor treatments (‡‡); significant antagonistic 
interaction between single factor treatments (↑↓). Responses are considered significant on a level 
of p < 0.05. 
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Grasses are known to be more affected by elevated CO2 concentration than slow 

growing shrubs and trees. Grasses reduce their photosynthetic capacity and maintain similar rate 

of photosynthesis as under ambient CO2 concentration (Ainsworth & Long, 2005; Nowak et al., 

2004). In the 6th year of treatment Deschampsia met the hypothesis that growth under elevated 

CO2 concentration led to a down-regulated photosynthetic capacity that was observed as a 

reduction in the maximum carboxylation rate (Vcmax) and a decline in the maximum light and CO2 

saturated photosynthesis (Amax). This finding was in line with the observed short-term response of 

Deschampsia (Albert et al., 2011b). However, photosynthetic stimulation was no longer 

significant under elevated CO2, and only tended to be increased after 6 years. The opposite 

response was found for Calluna. In the second year, photosynthesis in Calluna was found to be 

significantly stimulated by elevated CO2, despite a down-regulation in photosynthetic capacity 

(Albert et al., 2011a/c). In contrast no down regulation was observed in the present study and 

photosynthetic stimulation under elevated CO2 concentration is argued to be the result of high 

stomatal conductance and high ci/ca (Paper III).  

Despite the different growth strategies of the two species, leaf nitrogen content was 

found to be significantly reduced under elevated CO2 concentration in both species (e.g. Larsen et 

al., 2011, Ellsworth et al., 2012). However, the reduction was caused by different mechanisms: In 

line with the opportunistic growth form of Deschampsia, it was argued that the grass reduces the 

amount of nitrogen via reallocation (Andresen & Michelsen, 2005; Andresen et al. 2009; Nielsen 

et al, 2009). On the other hand, Calluna increased the carbon content to produce thicker leaves, 

which resulted in a reduction of  leaf nitrogen content (%) as a result of tissue dilution, which is in 

line with other studies (e.g. Kongstad et al., 2012; Andresen et al. 2005; Kattge et al., 2009). 

Nitrogen reducing mechanisms were strongly related to whether or not the photosynthetic 

capacity within the two species was down-regulated.  

Significantly higher biomass of Deschampsia in the spring within the 3th year of 

treatment (April-May 2007) and an increased photosynthetic capacity within warmed plots 

support the hypothesis that the warming treatment prolonged the growing season (Kongstad et al., 

2012 and Albert  et al. unpublished). Nevertheless, the earlier start of the growing season  did not 

increase the total biomass later in the season, and the effects on the photosynthetic capacity also 

disappeared (Kongstad et al., 2012; Albert et al., 2011c). On the other hand, Calluna was not 

stimulated to initiate early growth in the warmed plots and in general (Kongstad et al., 2012). In 

the present study, measurements were conducted from May to October 2011 and no stimulation of 

the photosynthetic capacity was found during the warm season. Thus, it can be argued that the  

onset of the growing season of Calluna has been earlier than May, or that an early onset did not 

take place at all due to the dry spring conditions observed in February to May in 2011.  
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The extended drought treatment significantly decreased the photosynthetic capacity via 

stomatal closure, resulting in a lower photosynthetic performance in Deschampsia, in the second 

year of treatments (Albert et al., 2011b/c). The observed drought effect on the photosynthetic 

performance of Deschampsia was absent after 6 years of treatment.   Albert et al. (2012) points 

out that under mild to moderate drought, Deschampsia is able to maintain both stomatal 

conductance and photosynthetic capacity by reducing the aboveground leaf biomass. As water 

availability decreases within a dry period,  osmotic adjustments take place in the remaining 

leaves, and this results in a strongly improved water use efficiency (WUE) and enables the plant 

to maintain photosynthetic performance (Verslues et al., 2006).  In line with this, WUE was 

increased during the experimental drought and in the following lag phase, where soil water was 

still lower than in the non-drought plots (May-June). Calluna is a drought tolerant species and the 

growth strategy does not induce leaf dieback in unfavorable periods (Grime et al., 1988). Thus, it 

was expected that in dry periods photosynthesis will be down-regulated, either due to reduced 

stomatal conductance or Vcmax. In both of the evaluated years, a lower photosynthesis in the 

drought plot was observed within the experimental drought and lag phase where SWC was still 

lower than in non-drought plots.  However, in the 6th year of treatment, the reduced Asat could not 

be explained by a reduced stomatal conductance, as it was found in the second year of treatment 

(Albert et al., 2011a). The experimental drought in 2011was initiated on top of an already natural 

dry period, which resulted in a giant dieback of Calluna. The dieback did, as mentioned earlier, 

not differ in magnitude between treatments and thus, a slightly decreased photosynthetic capacity 

was observed in combination with a decreased photosynthetic activity, indicating a later onset of 

growth after the dieback in July.  

After 6 years of treatment, my leaf physiology data showed the same responses as seen 

in the beginning of the experiment (within 2 years of treatment) for both species at the site. 

Overall, no long-term ecosystem response was observed to influence leaf level physiology.  
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4. Outlook – Ecosystem climate change feedbacks in the 
perspective of leaf level responses.  
Long-term responses on the leaf level are caused by ecosystem feedbacks and a major question to 

answer is: ‘Has 6 years of experimental treatments of a Danish heathland ecosystem led to 

ecosystem changes that are detectable as altered leaf level physiology?’  This question has been 

dealt with in this thesis, particularly in paper III. However, to detect effects on different spatial 

scales, up-scaling from leaf level responses to ecosystem feedbacks are needed.  

 

4.1 Upscaling from leaf to ecosystem scale.  

In addition to papers I-III, it is planned to make a final paper using the mechanistic ecosystem 

model MAESTRA (http://bio.mq.edu.au/maestra) to up-scale leaf level photosynthetic carbon 

input to the carbon balance on ecosystem scale.  Some reflections and considerations about up-

scaling processes from the leaf level to ecosystem carbon exchange evolved during this PhD, and 

are presented in the following section.  

The MAESTRA model combines leaf level photosynthetic parameters, such as 

photosynthetic capacity and leaf water relations, with environmental factors and aboveground 

biomass. It is used to scale up carbon, nitrogen and water fluxes in the ecosystem on an annual 

scale. Models like MAESTRA are limited by the quality of the input data, and thus data validation 

is necessary and high quality defined relations between photosynthetic parameters and 

environmental factors (water, temperature, CO2) for each plant species are highly desirable. One 

goal of this PhD was to provide high quality leaf respiration measurements on Deschampsia and 

Calluna. High temporal resolution measurements (every 2 weeks) in ambient plots (figure 2) will 

provide the backbone for the up-scaling of leaf respiration to the ecosystem scale. Additionally, 

the relationship between leaf dark respiration (RD) and mitochondrial respiration (Rlight) estimated 

from the FvCB-model will be used to improve the MAESTRA model. The default relation 

between RD and Rlight in the MAESTRA model is 0.4 and is used to define Rlight. Estimating Rlight 

as 0.02*Vcmax (after von Caemmerer, 2000) and relating this relationship to the measured values of 

RD , indicated that the relation of RD/Rlight = 0.4 is not a valid assumption  for either of the two 

species. The relationship was ca. 0.2 for Calluna and ca. 0.6 for Deschampsia (figure 8). Over- or 

underestimation of Rlight can strongly influence the modeled carbon balance, and thus a correct 

estimation of RD/Rlight is of high importance to improve up-scaling from leaf to ecosystem level.  

27

http://bio.mq.edu.au/maestra


 
 

Figure 8.  Relationship between leaf 
dark respiration (RD) and respiration in 
light (Rlight) per leaf area. Solid line is 
the fitted relationship and the stippled 
line is the MAESTRA default relation 
of 0.4. A) Deschampsia flexuosa and 
B) Calluna vulgaris.  

 

 

 

 

 

 

 

  

 

 

Stomatal conductance is decreasing when atmospheric CO2 is increased. However, the 

response is slow and therefor associated with technical limitations. Enclosure of leaves in small 

leaf cuvettes for long time (> hours) can lead to undesirable edge-effects, why it is difficult, if not 

impossible, to define ‘true’ stomatal responses to increased CO2 using these techniques. 

Therefore, a part of this PhD was the development and evaluation of a technique to investigate the 

effect of increased atmospheric CO2 on stomatal conductance in Deschampsia and Calluna. Using 

mesocosms, the master-student Andreas Brændholt, in collaboration with me and the supervisors 

Andreas Ibrom and Teis Mikkelsen, developed a gas exchanges system (figure 9) to investigate 

the effect of CO2 concentration on stomatal conductance under controlled environmental 

conditions. He concluded that the stomatal response to CO2 concentration was related to the 

different growth strategies and he observed that none of the species showed linear responses. The 

developed gas exchange system and the first measurements of the CO2 effect on stomatal 

conductance can be used in the validation process of the MAESTRA model.  
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Figure 9. Basic overview of the mesocosm experiment and sampling results. A) Sampling device.  B) 
Sampled mesocosm of Calluna vulgaris. C) Final mesocosm of Deschampsia flexuosa with a gas exchange 
chamber on top. D+E) Final gas-exchange system during measurements of CO2 and H2O exchange. F) CO2 
response of stomatal conductance in four different mesocosms containing Deschampsia (x-axis: ambient 
CO2 reference, ppm, y-axis: stomatal conductance, mol m-2 s-1) Photos: Andreas Brændholt and Kristine 
Boesgaard. 

 

4.2 Conclusions and Perspectives  

High precision leaf gas exchange measurements have frequently been limited to controlled 

environments, such as laboratory or indoor growth-facilities. The improvement of the leaf gas 

exchange measurements using leaf adaptor frames (LAF) showed that it is possible to conduct 

high precision measurements under field conditions. Furthermore, LAFs can be used for plant 

species with small and three-dimensional round leaves like leaves from Deschampsia and 

Calluna, demonstrating that LAFs can be used for high precision leaf level measurements. 

Additionally, LAFs was used to conduct in-situ gas exchange measurements and leaf trait 

analyses on the same leaf sample, improving the relationship between leaf parameters. LAFs were 

used to investigate the effects of climate factor treatments on leaf gas exchange parameters in 

Deschampsia and Calluna under field conditions. 
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Leaf level responses of Calluna vulgaris to the experimental treatments were different 

between the cold and the warm season. Despite a 50 % reduction of the photosynthetic potential 

(Asat) in the cold season, the overall effect of elevated CO2 was an increase of the annual carbon 

uptake with up to 5%. This was caused by a more pronounced difference in photosynthesis 

between the warm and cold season in ambient CO2 plots compared to elevated CO2. In the cold 

season, the reduction in photosynthetic capacity under elevated CO2 seems to be related to a 

translocation of nitrogen. Conversely, nitrogen re-translocation can explain the only marginal 

increase in Asat found during the warm season. Warm season processes differ from the cold season 

and elevated CO2 concentration increases the potential annual carbon uptake in Calluna. 

The leaf level physiological responses to the treatments were the same after 6 as after 2 

years. Different ecophysiological responses, for both Deschampsia and Calluna, could be 

explained by different soil water contents during the two years. In the drier second year, 

photosynthesis in Deschampsia was significantly stimulated by elevated CO2 concentration, and 

this effect combined with either warming or drought was additive (Albert et al. 2011b/c). In the 

wetter sixth year, the CO2-induced stimulation of photosynthesis in Deschampsia was only 

minimal and not significant. Calluna showed strong CO2 stimulated photosynthesis in both the 

dry and the wet year, and responses to multifactor-treatments were additive or antagonistic. In 

conclusion, 6 years of treatment did not change leaf level parameters in the investigated Danish 

heathland plants dramatically.  Physiological acclimations to climate change manipulations seem 

to have taken place within the first year of treatment, and the responses were consistent over 

longer time (6 years). However, to evaluate ecosystem feedbacks at a leaf level scale in such a 

highly resilient ecosystem, longer time is needed. The consistency of the leaf level responses 

during a more than 6 years treatment period would be very useful to investigate to improve the 

knowledge of ecophysiological responses to climate change. 

It was shown that measurements of leaf level parameters are highly important to 

understand ecosystem feedbacks and carbon fluxes, as the main input of carbon to terrestrial 

ecosystems is through photosynthesis. However, effects of climate change induced photosynthetic 

responses on an ecosystem or global scale can be extremely difficult to predict, why models are 

good tools. Unfortunately, models are limited by the quality of input data and require that data are 

precise and relevant. Data from field experiments like CLIMAITE can, to some extent, be used to 

validate ecosystem models and can be used to point out which factors in a climate changed future 

that might determine the ecosystem sink or source capacity. To be able to evaluate treatment 

effects on a seasonal scale, the gas exchange measurements in this PhD work were conducted to 

mimic field temperature conditions and then normalized to a common temperature. Ecosystem 

models like MAESTRA are trying to estimate ecosystem carbon balances based on relationships 

between photosynthetic parameters, leaf traits and environmental factors. The presented work in 
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paper II-III illustrates that there are certain relationships between photosynthetic parameters, leaf 

traits and environmental factors that could be of high importance in an up-scaling process. 

However, these kinds of relationships would need to be investigated under more controlled 

conditions to be validated for model-approaches. Thus, more specific experiments focusing on 

different ecophysiology-related relationships might be of higher importance in future research. 
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Appendix 
The appendix present additionally results collected within this PhD. The presented data are not 

included in either the synopsis or paper I-III, but would be used for upscaling purpose 

Table A1+A2) Physiological parameters collected in HTR- plots in Deschampsia and Calluna, 

respectively.  

Table A3 +A4) Leaf trait from leaf samples in HTR- plots in Deschampsia and Calluna, 

respectively.  
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ABSTRACT

There is an ongoing debate on how to correct leaf gas
exchange measurements for the unavoidable diffusion
leakage that occurs when measurements are done in non-
ambient CO2 concentrations. In this study, we present a
theory on how the CO2 diffusion gradient over the gasket is
affected by leaf-mediated pores (LMP) and how LMP
reduce diffusive exchange across the gaskets. Recent discus-
sions have so far neglected the processes in the quasi-laminar
boundary layer around the gasket. Counter intuitively, LMP
reduce the leakage through gaskets, which can be explained
by assuming that the boundary layer at the exterior of the
cuvette is enriched with air from the inside of the cuvette.
The effect can thus be reduced by reducing the boundary
layer thickness. The theory clarifies conflicting results from
earlier studies. We developed leaf adaptor frames that elimi-
nate LMP during measurements on delicate plant material
such as grass leaves with circular cross section, and the effec-
tiveness is shown with respiration measurements on a harp of
Deschampsia flexuosa leaves. We conclude that the best solu-
tion for measurements with portable photosynthesis systems
is to avoid LMP rather than trying to correct for the effects.

Key-words: CLIMAITE project; CO2 leakage; diffusion
leakage; gasket density; leaf adaptor frame (LAF); leaf res-
piration; portable gas exchange system.

INTRODUCTION

Small leaf chambers are widely used for measurements of
leaf gas exchange. Measurements of small gas fluxes such as
leaf respiration strongly depend on accuracy, and even small
artificial changes of the CO2 flux can be of significant mag-
nitude relative to the correct rate of leaf gas exchange (e.g.
Bruhn, Mikkelsen & Atkin 2002; Pons et al. 2009). Unfortu-
nately, diffusion through the gasket material in modern com-
mercial portable leaf gas exchange systems is unavoidable
and has been demonstrated and described previously (e.g.
Long & Bernacchi 2003; Flexas et al. 2007; Rodeghiero,
Niinemets & Cescatti 2007). Most manufacturers provide
methods to correct for the diffusion, and different methods
to avoid or minimize the advective leakage through gaps
between plant and gasket material, that is, leaf-mediated
pores (LMP), and have been suggested. Rodeghiero et al.

(2007) suggested enclosing the leaf chamber in a bag and let
the gas concentration inside the bag approach that inside
the leaf chamber. Flexas et al. (2007) observed that using
dead or inactive broadleaf material as reference for correc-
tion resulted in more reliable flux estimates than using the
manufacturer’s correction method alone. However, these
methods are difficult, if not impossible, to apply under
extensive field work, and correction with specific dead leaf
material is not useful concerning small leaf structures such
as grasses, where the number of leaves and thereby LMP
between the gaskets cannot be kept constant. Whereas
Flexas et al. (2007) only describe the effects of using dead
leaf material, this study aims at suggesting a theory that can
be used to understand and correct the unintended effects of
LMP in gas exchange equipment. We tested the theory using
the portable photosynthesis system LI6400 (Li-Cor Inc.,
Lincoln, NE, USA). A newly developed leaf adaptor frame
(LAF) for measurements of small but thick leaves, that are
of much smaller width than the cuvette opening area, is
tested for minimizing the effects of LMP. The use of LAF
aims to measure reliable gas exchange rates under field con-
ditions, even at small fluxes such as leaf dark respiration,
and to conduct repeatable and reproducible in situ measure-
ments on exactly the same plant material in a sequence of
measurements.

Further, we investigate the effects of different diffusion
correction methods applied to field measurements on Wavy
hair-grass (Deschampsia flexuosa). Finally, we aim at recom-
mending a procedure that minimizes errors in leaf respira-
tion measurements.

THEORY

The development of LAF aimed at minimizing possible
leakage effects through LMP. However, pilot studies of the
relation between using LAF and the effects of artificial LMP
showed that the opposite was the case: Diffusive losses in gas
exchange measurements were lower in presence of LMP
than without. The following theory describes the influence of
LMP on the accuracy and precision of leaf gas exchange
measurements, and is able to answer the obvious question:
‘How can LMP reduce leakage through the gaskets of gas
exchange cuvettes?’

Direct leakage, caused by leaf structures creating small
pores between the gaskets, will result in a mass flow of air
between the chamber and the surrounding air. To avoid an
inflow of air into the chamber, a small overpressure inside theCorrespondence: K. S. Boesgaard. e-mail: kboe@kt.dtu.dk
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chamber is maintained. In the situation of a completely
sealed chamber, that is, no pores that allow advection of air
between the inside and the outside of the chamber, gasses
will diffuse through the gaskets according to the concentra-
tion gradient across the gasket and the diffusion coefficient of
the sealing material. This situation is the basis for the manu-
facturers’ correction (Li-Cor Inc. 2008).

Gas diffusion through a material can ideally be described
by Fick’s first law,

F
K

S l
D

D o i

g

= − −( )ρ ρ
, (1)

where FD is the flux across the material due to diffusion out of
the cuvette (mol m-2 s-1), ro–ri is the difference in molar
density between the inside (index i) and the outer surface
(index o) of the material (mol m-3), Sg an l are the area and
length of the path through the compressed gasket (m),
respectively, and KD is the diffusion coefficient of the com-
pressed gasket material (m2 s-1) for the gas of interest. The

term
ρ ρo i−

l
can be referred to as the concentration gradient.

In a completely closed chamber, that is, without any open
pore between the gaskets, the total loss or gain of CO2

according to the measurement can be described with Eqn 1,
where the diffusion leakage only varies with the CO2 concen-
tration gradient.

In a situation where leaves or other plant organs create
small pores as a result of their structure, the overpressure
inside the chamber results in a continuous loss of air from
the inside of the cuvette caused by mass flow through the
pores. Such advective loss of air (and thereby a given gas
mass transport) from the interior of the chamber can be
described as,

F vCair i= , (2)

where v is the volumetric flow of air (m3 s-1) and Ci is the
concentration of CO2 (mol m-3) inside the chamber (Fig. 1).
Because of the small overpressure in the chamber, Fair is
outward directed. Therefore, it is assumed that Fair does not
affect Ci and thus the flux measurements. It will, however, be
shown that this is an oversimplification.

The total flux of CO2 across the gasket in the presence of
LMP, that is, Ft = FD + Fair, is depending on the direction and
the magnitude of the CO2 concentration gradient across the
gasket (Fig. 1). Here, it is important to consider the CO2

concentration in the boundary layer surrounding the gasket
and the wind conditions surrounding the leaf cuvette. In
Figure 2, two possible scenarios are shown, where the CO2

concentration inside the chamber are higher than the
ambient CO2 concentration outside the cuvette. With
increased thickness of the boundary layer, the CO2 concen-
tration in the quasi-laminar boundary layer (Cbl1) will be
charged with gas from the inside as a result of the advective
mass flow, and thus, Cbl1 approaches Ci, a situation that nor-
mally would occur under indoor conditions (Fig. 2a). As a
consequence, the concentration gradient decreases, and Ft

decreases as a result of decreased FD through the gasket

material. The thickness of the boundary layer decreases
with increasing wind velocity at the surface (e.g. Nobel
1991). Thus, under windy conditions that are typical for
outdoor measurements, a higher CO2 concentration gradi-
ent will be kept across the gasket, thus increasing FD

(Fig. 2b). In non-windy conditions, the effect of LMP will
thus, counter-intuitively, lead to a smaller diffusive flux
across the gasket as compared to a gasket without plant-
mediated pores. The effect of LMP on the diffusion through
the gasket will be as variable as are the wind conditions in
the field.

With no LMP present, the windy conditions around the
leaf cuvette should, according to the theory, reduce the con-
centration gradient, but because of the lack of additional
mass flow of air from the inside of the cuvette, this effect
would be much smaller if not insignificant. To support the
theory, we tested the following three hypotheses: (H1) the
leakage flux is a problem of diffusion through the gasket,
(H2) LMP reduce the diffusive flux in non-windy conditions
and (H3) in windy conditions, the reducing effect of LMP on
the diffusion leak is approaching the diffusion without LMP.
H1 was tested by sealing the cuvette completely with a gas-
tight material and investigate the leakage at a strong CO2

concentration gradient. If replacing the gasket by gas-tight
material removes the leakage, the leak observed when using
gaskets must be caused by molecular diffusion through the
gasket material. H2 was tested by comparison of empty
cuvette measurements with gaskets and measurements with
LMP caused by leaf artefacts. H3 was tested with the same
approach as for H2 at differing wind speeds outside the
gasket.

Inside chamber

Leaf-mediated
pore

Ci, Pi

Outside chamber

Gasket Co, Po

if Ci > Co

if Ci < Co

Pi > Po ~ v

Fair = v ∗ Ci

FD = –KD ∗ (Co–Ci)

Figure 1. Schematic presentation of the mass flow (black arrow)
and diffusion (dotted, dashed arrow) in different concentration
situations where leaf-mediated pores are present. Sketch
dimensions are not real to improve the illustration of the theory.
Fair is the rate of advective CO2 mass flow out of the chamber
depending on the volumetric flow of air (v) and the CO2

concentration inside the chamber (Ci). Pi and Po are the pressure
inside and outside of the chamber, respectively. FD is the rate of
CO2 loss/increase as a result of diffusion depending on the
diffusion coefficient KD and the difference in CO2 concentration
outside and inside the chamber (Co – Ci).
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MATERIALS AND METHODS

Plant material and locations

Wavy hair-grass (Deschampsia flexuosa (L.) Trin.) was used
for the experiments with living plant material. We used this
plant because accurate gas exchange field measurements on
D. flexuosa and Calluna vulgaris were needed for the multi-
factorial climate manipulation experiment, CLIMAITE,
Brandbjerg, North-Zealand, Denmark (see Mikkelsen et al.
2008). With respect to gas exchange measurements, the plant
species has the disadvantage of having small and thick leaves.
For gas exchange measurements, a bundle of 10–15 parallel
leaves were fixed carefully inside an aluminium frame (LAF,
see below), avoiding overlapping leaves, that is, a similar
procedure as in Albert et al. (2011a).

Regular leakage tests with empty cuvettes were con-
ducted about every second week during 2011 in the experi-
mental area of CLIMAITE. Outdoor measurements were
all done under the specific environmental conditions at
ambient CO2 concentrations. Indoor measurements were
conducted at two different places with differing background
CO2 concentrations. Analyses with gaskets were performed
in a well-ventilated room at ambient CO2 concentrations
around 400 ppm. All other tests were conducted under
controlled CO2 concentrations in a fume cupboard with
continuous ventilation. The CO2 concentration in the
cupboard was continually measured and logged with a
LI-7550 infrared gas analyser (Li-Cor) connected to a
laptop computer. The background CO2 concentration in
the cupboard was 454.5 � 0.3 ppm (n = 12 346) during all
measurements.

LAF description

The LAF consisted of two small aluminium frames
40 ¥ 60 mm (1 mm sheet). Each frame had an opening match-
ing exactly the dimensions of the cuvette opening of
20 ¥ 30 mm. The LAF was infolded with a 4 mm fold
(Fig. 3a,b). The two frames and the plant material were
sealed with blue tack (Lyreco, Marly, France), that is, estab-
lishing similar surface contact conditions to the gaskets as
large flat leaves. The blue tack was proven to be gas tight and
thereby suitable for sealing the LAF (presented under ‘Dif-
fusion tests with and without LAFs’). In each of the folds,
there were eight holes (Ø 1 mm) to establish a harp of
0.3 mm nylon strings, in order to support C. vulgaris shoots
inside LAF and guarantee minimal shoot overlap. The use-
fulness of this feature is not tested here.

Gas exchange measurements

The present study is performed using the LI-6400 open Port-
able Photosynthesis System from Li-Cor Biosciences, a type
of system widely used for leaf level gas exchange measure-
ments. The LI-6400 was connected to a standard 20 ¥ 30 mm
chamber with a LED light source (6400-02B) and a CO2-
mixing device controlling the level of reference CO2. Other
manufactures provide similar systems, and the theory applies
for all portable photosynthesis systems that provide a slight
overpressure inside the chamber and are sealed with non-
gas-tight foam material.

We used the following protocols for CO2 response
curves and light response curves in the field. Leaves were

(a) No wind outside chamber

Inside chamber Outside chamber

Laminar boundary layer

GasketCi

Fair

FD1

Ci
CoCb/1 CoCb/2

Fair

FD2

Inside chamber Outside chamber

(b) Wind outside chamber

Figure 2. Schematic presentation of the diffusion theory under two turbulent regimes on the outer side of the chamber gaskets. Fair is the
rate of advective mass flow of CO2 depending on the velocity of the mass flow of air (v) and the CO2 concentration inside the chamber (Ci).
FD1 and FD2 are the rates of CO2 transport as a result of diffusion depending on the diffusion coefficient KD and the CO2 concentration
gradient across the gaskets, in the two cases (a and b). Cbl1 and Cbl2 are the concentrations of CO2 in the boundary layer directly at the outer
surface of the gasket in the two cases (a and b) and Co is the concentration in the surrounding air outside the chamber.
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acclimated to the chamber condition for 6 min at 390 ppm,
until net photosynthesis and stomatal conductance were sta-
bilized [coefficient of variation (CV) < 1%]. A CO2 response
curve was measured stepping down the CO2 concentration
from 390 to 50 ppm CO2 and then re-establishing it to the
390 ppm level again, for at least 3 min. Then, the concentra-
tion of CO2 was stepped up to complete saturation at
1400 ppm CO2. Measurements were performed at a light
saturating level of 1500 mmol photosynthetically active
photons m-2 s-1, using the Li-6400 auto-program ‘ACi-curves’
with these settings: time between measurements min 45 and
max 55 s, reference CO2 (Cr) [mol mol-1] and intracellular
CO2 concentration (ci) stable in 10 s with CV < 1%. Matching
was performed between every step. Block temperature was
set to 25 °C. Relative humidity was adjusted to 45–60%
during measurements. Non-photochemical respiration
(Rlight), maximum carboxylation (Vcmax) and electron trans-
port (Jmax) rates were calculated from curve fitting to the
Farquhar–von Caemmerer–Berry (FvCB) model equations

(Bernacchi et al. 2001; Dubois et al. 2007). Immediately after
running the ACi-curve protocol, the light response curve was
measured. The auto-program ‘Light curves’ on the Li-6400
was used by stepping down the light from 2000 mmol photo-
synthetic photons m-2 s-1 [photosynthetic active radiation
(PAR)] in nine steps to zero. The photosynthesis saturating
reference CO2 concentration was set to 1400 mmol m-2 s-1.
From the light response curve the maximum dark respiration
(Rdark) and maximum light-saturated rate of photosynthesis
(Amax) was calculated using a non-rectangular hyperbola as
regression model (Lambers, Chapin & Pons 1998). In a last
step, leaf dark respiration (RD) was measured directly in the
dark at 390 ppm, that is, ambient CO2 concentration, and
estimated from 6 min of flux data at 2 s resolution.

All data were recalculated for correct leaf area and cor-
rected for leakage with three different methods (see further
details in the paragraph ‘Data corrections’).

The three different estimates for leaf respiration (Rlight,
Rdark, RD) are compared.

(a) (b)

(c) (d)

Figure 3. (a) The use of leaf adaptor frames (LAF) at the field site. Deschampsia flexuosa leaves are attached in LAF and ready for
measurements. (b) Schematic sketch of LAF, in correct scale. (c) Visual illustration of the occurrence of artificial leaves (AL). The purple
light comes from the RBG (red-blue-green) light source of LI6400. No light can be seen when the AL are sealed with blue tack in the LAF.
(d) The same as (c) but here, the AL are kept inside LAF.
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Diffusion tests with and without LAFs

Tests were conducted to evaluate the influence of the use of
a chamber gasket for sealing (H1). Firstly, the leaf chamber
was completely sealed with blue tack not using gaskets at all.
The differences of the fluxes in a completely sealed versus a
gasket-sealed empty cuvette are thus caused by diffusion
through the gasket. We assumed that the fluxes measured
with a completely sealed empty cuvette are zero mmol
CO2 s-1.

The second test was done by comparing two different
chamber gasket materials, white gaskets (spare part no.
6400-30 and black gaskets (spare part no. 6400-33). Three
different combinations were obtained using either only white
or black or a combination of the two (upper and lower).

Thirdly, the use of an empty LAF was compared to an
empty chamber, in both cases sealed with gaskets.

In a fourth test, the effects of pores across the gasket,
established by using a bundle of seven tin solder wires (Ø
0.8 mm) that mimic the dimensions of grass leaves (hence-
forth artificial leaves, AL), was investigated either with or
without using LAF (H2).

Effects of ALs on the pressure difference
between inside and outside the cuvette

To test whether or not there is a pressure difference across
the gaskets at different regimes, a needle attached to a pres-
sure sensor (Model 278, Setra System Inc., Boxbourgh, MA,
USA) was inserted through the gasket.

Effects of wind on gas exchange measurements

To evaluate the effect of turbulence around the leaf cuvette
(H3), tests with AL with or without LAF in otherwise empty
chambers were conducted under two conditions: with a small
fan (model: embpapst 412 (Embpapst, Brøndby, Denmark)
with an approximate wind speed of 0.35 m s-1 close to the
fan) in front of the chamber, creating turbulence in the air.
This was compared to the same measurements in still air, also
taking care that the Peltier cooler would not generate a wind
field under those measurements.

Area estimations

After the measurements were performed, the LAF contain-
ing the leaves were cut off. The LAF with leaves were placed
in a flatbed scanner with the light-exposed side downward
and scanned. To avoid damaging the scanner, LAFs were
placed inside a gasket attached to a transparency sheet. The
non-light-exposed side was filled with gasket material to
avoid shading effects.Area estimations were quantified using
the image processing program (ImageJ, National Institute of
Health, Bethesda, MA, USA). The inside length of the LAF
(3 cm) was in all cases the reference length, and area was
determined from 8-bit colour pictures with the threshold
approach. The scanned leaf areas are given as projected leaf
areas, after Smith, Schoettle & Cui (1991).

Data correction

The correction for even small leaks is important for the
correct estimation of leaf respiration, because it is itself a
relatively small flux. Two different methods to correct for
diffusion through the gasket are used and compared.

Firstly, the manufacturer provides a flow-dependent nor-
malized diffusion rate k = 0.46 (mol s-1). The CO2 gas
exchange rate can be corrected using the following equation:

A
u C C

S
C E

k
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C CK
r s

s a s= − − + −( )
( ),

100 100
(3)

Where AK is the corrected assimilation rate, u is the flow rate
through the chamber, E is the calculated transpiration rate to
account for the CO2 dilution through water vapour flux from
the leaf, S is the leaf area inside the chamber (cm2). Note that
Cr, Cs and Ca are the mole fractions (mol mol-1) in the refer-
ence cell, sample cell and in the surroundings, respectively,
and not the molar densities as in Eqn 1). The first term of the
Eqn 4) represents the assimilation rate without any diffusion
correction and the last term is the correction term,

k
S

C C
100

( )a s− . The k-value provided by the manufacture is

estimated for the use of one white and one black gasket
(Li-Cor Inc. 2008). Note the differing sign conventions:
Li-Cor provides assimilation rates, which are positive when
the leaf takes up CO2 via photosynthesis. In a physical gas
exchange perspective, positive fluxes are a result of CO2 addi-
tion to the chamber, which in biology refers to the situation
of leaf respiration.

The relationship between k, u, Cr and Cs can be expressed
as

C C
C

k
u

s r

r

− = − . (4)

This relationship is used for estimation of k for the use of two
black gaskets and the use of LAF with AL. These different
k-values will later be used for correction of photosynthesis
rates.

An alternative empirical method to correct the data is
using an empty chamber approach, described by, for example,
Bernacchi et al. (2001).All Cs (sample cell) values on the ACi
curves are corrected with the corresponding DCE = Cs,E - Cr,E,
from a LI6400 machine-dependent mean of empty chamber
measurements for each of the concentration levels.The mean
DCE used in this study is based on a minimum of 35 machine-
dependent, empty chamber measurements done in the field
across the season of 2011. After adding the correct area, the
corrected assimilation rate (AE) is calculated as:
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u C C C
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C C EE

r r E
s E= − − − −( ( ))

*
( )* ,

Δ Δ
100

(5)

where AE is the empty-apparent assimilation rate measured
in an empty cuvette and u is the flow rate through the
chamber. This approach assumes that the atmospheric con-
centration is invariant, which is justified because the meas-
urements were taken at daytime when the atmosphere is well
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mixed. The seasonal variation of the ambient daytime CO2

concentrations is small compared to the range of Cr and the
ACi and light response protocol.

Statistical analysis

Statistical analyses are done using the R software (R Devel-
opment Core Team 2010).The linear dependency of FD to the
concentration gradient across the gasket was tested with
linear regression. We represented FD by the measured con-
centration difference (Cs - Cr), which is proportional to the
flux because the flow rate of air through the cuvette under the
experiment was held constant. The concentration gradient
was represented by the CO2 concentrations in the cuvette,
noting that the ambient concentration was held constant
under the experiment. The reason for doing so is firstly, that
these values are given as data pairs from the analyser, and
further, as the results will show, that the relevant Ca, that is,
the concentration directly at the outer surface of the gaskets
was not possible to measure, anyway. The advantage is that
the results can directly be compared (all concentration units)
and interpreted. The slopes of (Cs - Ci) versus Ci were tested
to be different from zero. If the slope differed from zero, this
was a result of diffusion. Differences between slopes of dif-
ferent experiments were tested using pairwise t-test and
Tukey’s grouping test. The differences between different cor-
rection methods and the three different respiration estimates
were also tested for significance using pairwise t-test and
Tukey’s grouping test.

RESULTS

Effects of LAFs on diffusive leakage

Measurements with completely blue tack-sealed cuvettes did
not show any linear relationship between the flux, repre-
sented by the concentration difference in the air before
entering and after leaving the cuvette (Cs - Cr), and internal
CO2 concentration inside the cuvette (Ci; Fig. 4). Ci in this
case represents the concentration difference across the blue
tack material because the outside concentration was held
constant running the CO2 response protocol (P = 0.88,
R2 = 0.012). The same result was found when testing the
effect of eventually remaining artificial pores introduced in
the blue tack sealing (P = 0.37, R2 = 0.00). The effective
sealing of the LMP was also demonstrated visually compar-
ing Fig. 3c and d (see below). The non-linear patterns that
both treatments showed in Fig. 4 are not significant.They can
be seen in all test measurements and are machine dependent
(see, e.g. Fig. 4).These interesting patterns are not the subject
of this study but we note that there is a small, systematic
under or overestimation of the flux beyond the leakage
through the gasket in this particular cuvette design depend-
ing on the choice of Ci.

Sealing the leaf chamber with gaskets showed a linear
relation of the artificial CO2 flux with the CO2 concentration
inside the chamber (P < 0.001, R2 > 0.5; Fig. 5). There was a
significant difference between the different gasket materials

(P = 0.04). If two white gaskets were used, the regression
lines were significantly different from the regression using
two black gaskets (P = 0.018). Figure 5 shows that the diffu-
sion was highest using the white gaskets. The combination of
a black and white gasket resulted, as expected, in intermedi-
ary diffusion rates, with significantly different slopes com-
pared to the use of white gaskets (P = 0.018). Table 1 shows
the estimated k-values for all cases. The k-value from white/
black gasket accurately confirmed the Li-Cor k-value of
0.46 mol s-1.

Testing the effect of an empty LAF compared to an empty
cuvette did not show any significant difference between the
slopes (P = 0.24). In both cases, there was a clear linear rela-
tionship with increasing CO2 concentration inside the leaf
chamber; both slopes where significantly different from zero
(P < 0.001, R2 > 0.35).

We used a qualitative test to show the existence of LMP, by
illuminating the cuvette from the inside with the instrument
internal red light source. In Fig. 3c, LMP caused by AL are
visualized by the light shining between them towards the
outside of the cuvette. When sealing the AL with blue tack
inside the LAF, no light could be seen from outside (Fig. 3d).
Comparison of the linear relationship between the fluxes and
the CO2 gradient using AL kept between the two black
gaskets and AL kept in the LAF, showed a significant differ-
ence between slopes (P < 0.001). The slope was smaller
for AL alone than AL fitted inside LAF; however, both
were different from zero (P < 0.001, R2 > 0.6). The k-value

1.5
Sealed empty chamber
Sealed chamber with artificial created pores

0.5

–0.5

–1.5

0 500 1000 1500

1.0

0.0

C
s 

– 
C

r (
pp

m
)

Cr (ppm)

–1.0

Figure 4. CO2 concentration differences between the sample (Cs)
and the reference cell (Cr) and the CO2 concentrations inside the
leaf chamber (Ci) for measurements done with blue tack-sealed
chamber (•) and blue tack-sealed chamber with artificial created
pores (�). Solid and dashed lines are the linear regression lines for
sealed and sealed with artificial created pores, respectively. The two
horizontal dotted lines represent the detection limits for the
Li6400 (Li-Cor Inc. 2008) and the vertical dotted line is the CO2

concentration in the surroundings during measurements.
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using two black gaskets were kBB = 0.38 � 0.02 mol s-1 and
kLAF = 0.38 � 0.025 mol s-1 when AL were kept inside LAF
(Table 1).

There was a detectable but very small increase of the
pressure inside of the AL chamber compared to outside
(103.57 kPa outside to 103.59 kPa inside). Artificial pores
created with needles (Ø = 0.8 mm, i.e. much larger than the
LMP caused by AL) did not change this pressure difference.

Disturbance of the boundary layer surrounding the gasket
with a fan reduced the concentration gradient. However, it
was not significant when AL were kept inside LAF
(P = 0.86). Wind had a significant effect when AL were kept
between gaskets (P < 0.01), that is, LMP were established
between the gasket and AL.

Effect of the correction method on the
respiration estimates

Photosynthetic model parameters based on CO2- and light
response data from four individual plants of D. flexuosa were
corrected using two different methods, correction with the
Li-Cor provided correction term using two different diffusion
rates, k = 0.46 and kBB = kLAF = 0.38, and using the mean of 35
empty chamber measurements collected throughout the year
2011 under many different kinds of environmental conditions
(wind: c. 0–15 m s-1, temperature: c. 0–30 °C and humidity:
c. 50–99%; P < 0.001, R2 = 0.35).

The only parameters of the FvCB model (A/Ci) that were
significantly affected by the correction method were the res-
piration parameters (Table 2). Both correction methods, that
is, the k-value approach or subtraction of empty cuvette
measurements from the measurements, resulted in a signifi-
cantly lower respiration rate compared to the non-corrected
respiration rate (P < 0.008). In addition, the result of the light
response fitting only showed a significant influence of the
correction method in the parameterization of respiration
(Table 2). No difference was found between the two correc-
tion methods. Dark respiration measurements were not
affected by any correction, which was expected as they were
performed under ambient concentrations and serve as a
reference.

The three different respiration estimates (Rlight, Rdark and
RD) were significantly different from each other when no
correction of the data was done (P = 0.001). In contrast, no
difference was found when data were corrected by either of
the k-values (P > 0.35) or DCE (P = 048). The only parameter
where the correction method influenced the result was Rlight.
Rlight corrected with kBB = 0.38 was significantly different
from the DCE-corrected Rlight (P = 0.015). When Rlight was cor-
rected by k, it tended to be different from the DCE-corrected
Rlight. No difference was seen between k and kBB corrected
parameters.

DISCUSSION

The influence of LMP on gas exchange
measurements

Above all, to note is that the CO2 leakage from or into the
leaf chamber is a result of diffusion determined by the
gasket material. Sealing the leaf chamber with gas-tight
material stopped any diffusion, as proven by the measure-
ments, that is, the absence of any relationship between the
measured flux in the empty chamber and the CO2 concen-
tration inside the leaf chamber. Even when LMP were arti-
ficially introduced through the gas-tight sealing material, no
effects of the concentration gradient were seen (Fig. 4). This
supports the initial hypothesis of the manufacturer that a
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Figure 5. Influence of sealing an empty chamber with different
gasket combinations, black/black (•), white/black (grey •) and
white/white (�), on the CO2 concentration difference between the
sample (Cs) and reference air in relation to the inlet CO2

concentration (Cr). Solid, dashed and dotted lines are the linear
regression lines for measurements with black/black, white/black
and white/white gaskets, respectively. The two horizontal dotted
lines represent the detection limits for the Li6400 (Li-Cor Inc.
2008) and the vertical dotted line is the CO2 concentration in the
surrounding air during measurements (approximate 400 ppm CO2).

Table 1. Estimates of diffusion coefficients (k) with different
gaskets combinations, with or without AL or inside LAF

Treatment Intercept Slope R2 k-value

WB 0.47 -0.00092 0.98 0.46
WW 0.61 -0.00124 0.96 0.62
BB 0.41 -0.00076 0.93 0.38
LAF + AL 0.40 -0.00077 0.89 0.38
AL 0.33 -0.00064 0.82 0.32

All k-values are calculated using a flow rate (u) at 500 mol s-1 under
indoor conditions in a well-ventilated room.
WB, one white and one black gasket; WW, two white gaskets; BB,
two black gaskets; LAF + AL, artificial leaves attached between two
black gaskets using LAF; AL, artificial leaves attached between two
black gaskets without using LAF; R2, adjusted R-squared.

Reduction of molecular gas diffusion 7

© 2013 Blackwell Publishing Ltd, Plant, Cell and Environment
52



small overpressure in the cuvette will offset any effects of
LMP on the cuvette internal concentrations. The small slope
seen in Fig. 4 with LMP present is due to a mass loss of CO2

across the cuvette gaskets, but it is not significant. In Fig. 5,
the results of testing different gasket materials and their
combination show significant linear relationships between
the flux and the CO2 concentration inside the leaf chamber,
representing the concentration gradient across the gaskets
as the external concentration was held constant. These
slopes differenced significantly using different gasket mate-
rial. In the light of the presented theory on diffusion and the
fact that mass flow is only outward directed from the leaf
chamber because of the small overpressure in the chamber
(Li-Cor Inc. 2008), the observed leakage is purely the result
of molecular diffusion through the gasket material.

The CO2 leakage from a closed, empty chamber has been
found to be constant, independently of the surrounding envi-
ronmental conditions (empty chamber measurements con-
ducted across the season 2011). There were no significant
differences between measurements with an empty LAF and a
LAF with test leaves (AL); consequently, the CO2 leakage
using LAF is only depending on the concentration gradient
and not on wind speed around the cuvette or number and
size of AF. The diffusion rates estimated from indoor meas-
urements of an empty chamber sealed with two black gaskets
and with AL inside the LAF did not change (0.38 mol s-1, in
both cases). This supports our first hypothesis (H1) that tur-
bulence around the cuvette does not affect the gas exchange
measurements in the absence of any LMP.

Measurements with AL without LAF demonstrated a dif-
ferent phenomenon, which can be explained with the theory
described above. Correction of the CO2 concentration inside
the chamber with an empty chamber reference has been
suggested by most manufacturers and described by, for
example, Bernacchi et al. (2001). Attaching leaves inside the
chamber will create small pores or air channels (LMP)
between the gaskets and the sides of leaf veins or grass leaves,

as seen in Fig. 3c. Clearly, the number and sizes of the pores
will vary between all individual leaves and thus the mass flow
of air out of the chamber will vary from sample to sample and
maybe even depend on the pressure applied when pressing the
gaskets against each other (Flexas et al. 2007). The theory
including the boundary layer around the gaskets explains why
LMP lead to a decreased CO2 leakage.It is the consequence of
the reduced CO2 concentration gradient across the gasket,
which results from the dilution of the CO2 concentration in the
boundary layer (Cbl) on the outer side of the gasket with air
from inside the chamber (Ci). The effectiveness of the reduc-
tion of the CO2 concentration gradient depends on three
parameters: (1) the concentration difference Ca - Ci; (2) the
size and amount of LMP; and (3) the development and size of
the boundary layer around the gasket (Fig. 2a). In Fig. 6, this
phenomenon can be seen as a less steep slope when LMP are
present.The fact that none of the two lines in Fig. 6 (AL inside
and without LAF) intercept the x-axis (zero flux), but are
higher,at ambient CO2 concentrations,where no CO2 concen-
tration gradient should be present, supports the theory
further.The concentrations directly at the outer surface of the
gasket and the thickness of the boundary layer at the outside
of the gasket determine the gradient.The consequence of the
lower diffusion coefficient due to LMP is that the manufactur-
er’s correction will overcorrect the diffusion rate across the
gasket because it neglects the change in the CO2 gradient
across the gaskets.The estimated k-value from measurements
with LMP are significantly lower than those given by the
manufacturers (0.32 � 0.02 compared to 0.46 mol s-1) and
even though we used black gaskets as a reference,the diffusion
rate k is still lower when LMP are present (0.32 � 0.02 to
0.38 � 0.02 mol s-1).

Long & Bernacchi (2003) found that the CO2 leakage
varied depending on the type of leaf and suggested to use
dead leaf material of the investigated species as reference for
correction. In contrast, Flexas et al. (2007) showed in labora-
tory experiments that the rate of CO2 leakage decreased

Table 2. Comparison of different correction
methods for the estimation of physiological
parameters from raw gas exchange data

Parameter No correction k = 0.46 kBB = 0.38 DCE

FvBC model
Vcmax 183.83 � 32.0 167.6 � 29.6 170.1 � 29.6 166.4 � 31.1
Jmax 212.9 � 27.2 194.6 � 27.4 197.8 � 27.4 189.6 � 27.8
Rlight 7.8 � 0.2 5.7 � 0.1*** 6.0 � 0.1*** 5.0 � 0.3***

Light response model
Amax 63.3 � 11.3 63.2 � 11.3 63.2 � 11.3 63.1 � 11.3
Rdark 2.9 � 0.3 5.9 � 0.7* 5.4 � 0.7† 5.7 � 0.7*

Dark respiration
RD 5.1 � 0.1 5.1 � 0.1 5.1 � 0.1 5.0 � 0.1

All data are collected using LAF. Data are corrected by the Li-Cor diffusion coefficient
k = 0.46, with the estimated kBB = 0.37 for black gasket or by DCE mean of outdoor empty
chamber measurements (n > 35). Rlight is the respiration in light extracted from the FvBC
model from A/Ci curves, Rdark is the dark respiration extracted from the light response model
and RD is the actual measured rate of respiration under ambient conditions. Vcmax is the
maximum carboxylation rate, Jmax the maximum capacity of electron transport and Amax is
the maximum light and CO2 saturated photosynthesis. Significance levels are given as
†P < 0.10, *P < 0.05, **P > 0.01, ***P < 0.001. In no cases, the three corrected values were
significantly different from each other.
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when attaching a dead boiled leaf inside the chamber,
explaining that most of the leakage from the chamber takes
place in the interface between the gaskets because of differ-
ent structures in leaf surface and not through the gaskets.
Rodeghiero et al. (2007) concluded that the CO2-diffusive
molar flow rate (mmol CO2 s-1) increased with LMP and
thereby increased the CO2 diffusion across the gasket, which
supports Long & Bernacchi (2003) but disagrees with the
interpretations of Flexas et al. (2007). Individually, these
studies (Long & Bernacchi 2003; Flexas et al. 2007; Rodeghi-
ero et al. 2007) support different parts of the theory of the
present study.

The studies by Flexas et al. (2007) and Rodeghiero et al.
(2007) conclude that a dead leaves correction strongly influ-
enced the parameterization of the FvCB model and also
agreed in their conclusion that correction of data using a
constant diffusion coefficient are not useful. The two papers
are both dealing with the hypothesis that minimizing the CO2

concentration gradient can improve the accuracy of measure-
ments and following photosynthetic parameterization.
Testing the influence of enclosure of the leaf chamber in
plastic bags both studies resulted in the reduction of CO2

diffusion across the gaskets (Flexas et al. 2007) or the CO2-
diffusive molar mass flow (Rodeghiero et al. 2007). However,
the studies do only conclude that a decrease in CO2 concen-
tration gradient is resulting in an improved parameterization,
but no explanations of how this is related with LMP have
been suggested.

All mentioned studies of the CO2 leakage problem have
been performed in laboratory environments where wind did
not disturb the air surrounding the leaf chamber. According
to our theory, laboratory experiments like the ones described
above, can lead to misleading conclusions about the diffusion
leakage.

Our result did not show any difference between empty
LAF or LAF + AL measurements with and in windy or still
air conditions at the outer gasket. However, in the absence of
LAF, we found a significant influence of AL both under
windy and not windy conditions. Under calm conditions, the
LMP lead to a decrease in the rate of CO2 leakage, which
supports the findings of Flexas et al. (2007) and can be
explained by the diluted outer surface CO2 concentration
and thus reduced gradient between Ci and Cbl. Results from
bag experiments show a similar reduction of CO2 leakage
and can be explained by the same theory as described above.
When Rodeghiero et al. (2007) found a reduction in the CO2

leakage from LMP after enclosure of the chamber with a bag,
it is due to a drop in the CO2 concentration gradient between
inside of the bag and Ci.

Under windy conditions, the boundary layer thickness is
reduced, and therefore, the CO2 gradient that controls the
CO2 diffusion will approach the difference between the CO2

concentration inside and outside of the chamber. Thus, as
suggested by Long & Bernacchi (2003), there will be an
increased diffusion leakage. This is supported by our results.

Field conditions imply a varying disturbance of the bound-
ary layer, and thus, a correction must take the thickness of the
layer as depending on wind speed into account. This is virtu-
ally impossible because the wind speed close to the gasket is
unknown and variable.We therefore advocate avoiding LMP
and propose to seal irregular shoot and leaf structures with
LAFs fitted to the actual leaf structure, such as the LAF
developed in this study. This will lead to reproducible results
that can be corrected with the methods proposed by the
manufacturers. Our results support the correctness of these
methods in the absence of LMP as will be discussed in the
next section.

The use of LAF and the influence on
respiration estimations

Gas exchange measurements on small leaves like grasses are
challenging because of the small CO2 fluxes that enhance the
demand of accuracy, especially concerning respiration meas-
urements. Our study has proven that LAF seal LMP in a way
that only the diffusion across the gasket needs to be consid-
ered as a source of error. Li-Cor provides a flow-dependent
diffusion rate k of 0.46 (Li-Cor Inc. 2008). Licor’s k-value was
found to be reproducible in our study, which has also been
the case in earlier studies (e.g. Flexas et al. 2007; Rodeghiero
et al. 2007). From this, the correction term provided by Li-Cor
seems to be a good approach for correction of gas exchange
data. Using LAF necessitates the use of two black gaskets
since the white material is too sensitive to the shape folds of
the LAF. We found different diffusion coefficients (k) using
different gaskets or using LAF; which shows the importance
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Figure 6. Effects of chamber reference CO2 concentrations (Cr)
on Cs - Cr, the difference between the sample and reference air
CO2 concentration, using artificial leaves (AL) either inside a leaf
adaptor frame (LAF) (•) or without (�).The solid and the
dashed lines are the linear regressions in the case where AL are
attached inside a LAF or not, respectively. The two horizontal
dotted lines represent the detection limits for the Li6400 (Li-Cor
Inc. 2008) and the vertical dotted line is the CO2 concentration in
the surroundings during measurements.
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to choose an appropriate k-value for correction. We did not
find any difference in k-values using LAF or only an empty
chamber with two black gaskets. This is why we only pre-
sented the difference in correction with the LiCor provided k
and our kBB value.

The earlier mentioned correction using an empty chamber
reference of a given CO2 concentration inside the chamber
has been suggested and used several times (e.g. Bernacchi
et al. 2001; Albert et al. 2011b). Since no LMP are present
when using LAF, this correction seems reasonable as long as
the empty chamber measurements are performed under the
same CO2 regime as the measurements. Contrary to the study
by, for example, Flexas et al. (2007), our parameterization of
parameter estimates from the FvCB model only showed
effects of the correction on the respiration value (Rlight). Like
the photosynthesis estimates from the FvCB model, results
from the light response data only showed effects of the cor-
rection on the respiration parameter (Rdark), too. However,
measured dark respiration (RD) taken under ambient CO2

concentrations was not changed by any of the correction
methods. We conclude that such RD measurements can serve
as a true reference.

Unexpectedly, there was no difference between the influ-
ences of the two k-values (k and kBB). The only difference
between the correction methods on the parameterized esti-
mates was between the Rlight corrected with kBB or DCE

(P = 0.015). A trend was also seen comparing Rlight corrected
with k and DCE (P = 0.15). The Rlight was estimated from the
ACi curves where the Cr changed. Other parameters were
obtained at stable Cr (1400 or 390 ppm), where the small
changes in DCE over Cr caused by the machine have a larger
influence (clearly shown in, e.g. Fig. 5).

No significant differences between the three respiration
estimates (Rlight, Rdark, RD) were found, when data was cor-
rected with either of the k-values (P > 0.35) or DCE

(P = 0.48), proving that avoidance of LMP clearly improves
leaf gas exchange measurements.

Beyond the problem of direct CO2 leakage through LMP,
a study by Pons & Welschen (2002) challenged the assump-
tion that photosynthesis and respiration measured in the
chamber are only related to leaf area between the inner
boundaries of the gaskets, that is, the cuvette opening. Pons
& Welschen (2002) argued that the leaf tissue between the
gaskets is continuously contributing with a respiratory CO2

flux transported through the gasket to the inside of the
chamber. In addition here, LAF can be argued to improve
the accuracy of measurement. Leaves inside LAF are sealed
with blue tack, which eliminates the space around the leaf
surface and the sealing material since the blue tack has been
shown to be strongly gas tight. The only path for a small flux
from the respiring leaf area will then be through the leaf
tissue during measurements. The effect of lateral CO2 diffu-
sion inside leaves on the rate of photosynthesis has been
shown to be very small and only over less than 0.3 mm
(Morison & Lawson 2005). Thus, it can be neglected using
LAF.

Several studies showed that leaf respiration rates are not
sensitive to elevated CO2 concentrations (e.g. Jahnke 2001;

Bruhn et al. 2002; Jahnke & Krewitt 2002).Any CO2 response
analysis requires proper correction of the CO2-diffusive
leackage because this does also depend on the cuvette inter-
nal concentration via the concentration gradient compared
to the ambient air concentration. If the correction overcor-
rects the diffusion, the corrected values might in fact falsely
indicate even an increase of leaf respiration with increasing
CO2 concentration instead of a possibly expected but appar-
ently non-existing product inhibition. The LAF technique
can provide new insight by eliminating a major error regard-
ing the accuray of leaf gas exchange measurements of small
fluxes in small leaf chambers. The advantage of the empty
chamber correction is, however, that it also corrects for the so
far unexplained machine-dependent systematic deviations
that have been shown in Fig. 4 and can also be seen as sys-
tematic patterns of residuals in the other experiments (Figs 5
& 6). The origin of these sytematic errors still remains to be
investiaged.

CONCLUSIONS

Certain leaf structures cause small holes or LMP across the
contact zone of the upper and lower gaskets of gas exchange
leaf cuvettes. Including the effects of such pores on the con-
centration in the boundary layer outside the cuvette and
thereby reducing the concentration difference across the
gasket, we were able to explain, at first glance, the counter-
intuitive reduction of CO2 diffusion rates through the pres-
ence of LMP. The involvement of the boundary layer makes
the effects of LMP on diffusion across the gasket wind speed
dependent. Because the wind speed in field gas exchange
measurements cannot be controlled, LMP need to be
avoided. We showed that this can successfully be done with
LAF, which we developed for this purpose. When avoiding
LMP, the usual correction methods that describe diffusion
through the gasket can be applied with large confidence.
However, if possible, correction by means of empty chamber
measurements done at same environmental conditions is the
best correction resulting in most reliable results because it
also corrects for measuring system-dependent biases that are
unrelated to diffusion through the gaskets.
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Abstract: 

Photosynthetic responses to elevated CO2 (Free-Air-CO2-Enrichment, CO2), passive night time 

warming (Infrared reflective curtains, T) and prolonged summer drought (rain excluding curtains, D) 

and all combinations were investigated in the temperate heathland after six years of manipulation.   In 

elevated CO2 the net photosynthesis of the evergreen shrub, Calluna vulgaris, was stimulated across 

the warm and the cold seasons via increased intercellular CO2 concentration despite a down-regulated 

photosynthetic capacity in the cold season. Elevated CO2 induced leaf nitrogen dilution and together 

with the autumn re-translocation of leaf nitrogen, these combined responses were found to explain the 

strong down-regulation of the photosynthetic capacity in cold season.  

The responses in the full-factorial combination (TDCO2) were mainly explained by additive 

and some antagonistic dampening effects. In the TDCO2 treatment, Calluna grew thicker leaves and 

had less nitrogen, similar to single factor treatment with elevated CO2. In warm season the drought 

counterbalanced photosynthetic stimulation of elevated CO2 and the photosynthetic capacity was 

unchanged in the TDCO2.   

In conclusion, the responses to the combination of climate change factors seem to be 

dominated by the responses of elevated CO2 in both the warm and the cold season. However, a 

changed precipitation pattern with more intense periods of drought can strongly reduce the 

stimulation of carbon uptake. Considering up-scaling carbon budgets to an ecosystem scale, N re-

translocation and thereby seasonal changes in photosynthetic responses need to be taken into account 

and maintained carbon uptake during cold season cannot be excluded. 

Introduction 

Climate is changing and factors such as increased atmospheric CO2 concentration, temperature and 

precipitation  are primary drivers of biological processes and influence all levels of ecosystems (e.g. 

Walther, 2003; Kirschbaum, 2004). Experiments have shown strong impacts of the single climate 

factors on eco-physiological processes; however studies of single climate factors conclude that the 

responses to different climate factors are contradicting (e.g, Luo et al., 2008; Crous et al., 2011). 

Thus, multifactor-experiments with two or more factors are of great importance (e.g. reviewed in 

Nowak et al., 2004; Leuzinger et al., 2011).  

Climate change impact studies on plant eco-physiology have to our knowledge mainly been 

conducted during the warm season (growing season), while only few studies have been conducted 

across all seasons (e.g. Crous et al., 2011, Gorsuch et al., 2010).  Evergreen plants have evolved 

strategy including processes maintaining rate of photosynthesis at a sustainable level, even within 
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periods of low temperature and low light intensity (Oquist and Huner, 2003) . However Miller (1979) 

argued that the temperate evergreen heathland species Calluna vulgaris is dormant from October to 

February. However, Andresen and Michelsen (2005) showed that Calluna sustains  uptake of nitrogen 

in December indicating photosynthesis potential throughout the winter time. Larsen et al. (2007) 

estimated that 22% of the annual photosynthesis and 30% of annual ecosystem respiration could be 

assigned to the cold season, between October-Marts in a Danish heathland ecosystem. The relatively 

high contribution of the cold season to the annual C-budget indicates that climate change effects on 

photosynthetic processes can have profound effects during cold season.  

Plants respond to the strong seasonal temperature variation in temperate climates by 

regulating the temperature sensitivity of physiological processes according to the seasonal 

temperature level.  Photosynthesis are strongly affected by temperature, and the overall temperature 

response can be understood as the combined temperature dependency of its component processes and 

their interactions (Farquhar et al, 1980; Medlyn, et al., 2002a /b; Kattge and Knorr, 2007; Bernacchi 

et al., 2009). Following an Arrhenius type relationship, the activation of the carboxylation process in 

controlled by the enzyme ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) is increased 

with increasing leaf temperature at low to moderate temperatures. At higher temperatures 

photosynthesis is decreased due to conformational changes in e.g. key enzymes (e.g. Sage, 2002).  

Down-regulation of photosynthetic capacity during cold-season in response to the lower 

temperatures are reducing rates of photosynthesis (Vogg et al. 1998;  Bigras and Bertrand, 2006). 

Therefore it can be difficult to separate responses to particular climate factors within the cold season. 

In the warm season, elevated CO2 concentrations have been shown to stimulate light-saturated net 

photosynthesis (Asat) as a result of increased intercellular CO2 concentration, despite reduced stomatal 

conductance (gs) and down-regulation of the carboxylation velocity (Vcmax ) and dilution of leaf 

nitrogen concentration in the leaves (e.g.  Long et al., 2004;  Ainsworth and Long , 2005; Leakey et 

al., 2009). At longer time scales, stimulation of Asat by elevated CO2 can be diminished. For example 

can an increase plant carbon uptake lead to increased biomass accumulation and high leaf area index, 

moving the ecosystem to a new steady state, where limitation of the essential elements as nitrogen can 

induce progressive nitrogen limitation or other limitations as water shortage (PNL, Luo et al., 2004; 

Reich et al., 2006; Körner 2006;  Morgen et al., 2004).  

To our knowledge no studies have investigated leaf level responses to growth in elevated CO2 

during colder seasons, within a multifactorial climate manipulation experiment.  Low growth 
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temperatures will as mentioned above reduce the photosynthetic capacity; also Vcmax; thus an additive 

response of both the elevated CO2 and the seasonal induced down-regulation of Vcmax can be expected.  

Increased air temperatures are one of the consequences of elevated atmospheric CO2 

concentrations  and growth in a warmer environment has e.g. been found to induce earlier onset of the 

growing season (e.g. Menzel et al., 2006; Hovenden et al., 2008; Prieto et al., 2009). Menzel et al. 

(2006) reported due to increased temperatures in the last decades, an overall advancement of leafing 

and flowering of 2.5days/°C, on average throughout Europe. Increased seasonal temperature is 

closely coupled to the reduction of the freezing-period in most mid- to high-latitude regions (G. 

Walther et al., 2002) which can have consequences for the acclimation of overwintering plants in 

these regions (e.g. Greer et al., 2000).  Additionally higher temperature is expected to be coupled not 

only to increasing the minimum temperature on an annual scale, but also on daily scale, especially at 

nighttime (Walther, 2003). Night time warming increases the minimum temperatures; e.g. reducing 

the days of frost events in the outer growing seasons, which can influence the processes related to the 

seasonal acclimation (Oquist and Huner, 2003). Therefore night-time warming may prolong 

photosynthetic capacity in late growing season. A recent study on Calluna showed that night time 

warming increased photosynthetic performance measures as PI and Fv/Fm before and after frost 

events in early winter (Albert et al., 2013), thus it is reasonable to a higher photosynthetic 

performance in the early state of the cold season.   

Drought is a strong environmental stress factor for most plants (e.g. Schmidt et al., 2004; 

Pérez-Ramos et al., 2010). Precipitation patterns are expected to change and in temperate ecosystems 

it is expected that longer periods of drought and episodic heavy rain will become more frequent 

(Boberg et al., 2010; Christensen et al., 2010).  Drought has an intensive negative effect when 

prolonged, but during rewetting, photosynthetic physiological processes can be expected to be 

restored (e.g. Albert et al., 2011a). However, studies on evergreen oak and broad leaved Phillyrea 

(Ogaya andPeñuelas, 2003) have shown a clear carry-over effect of summer drought during the cold 

season, decreasing photosynthetic capacity in plants previously exposed to drought. Calluna had also 

been shown to have a lower physiological performance (PI) in late season beyond the drought and 

rewetting periods, indicating a carry-over effect (Albert et al., 2011a). Plants exposed to drought 

shows negative responses in the case of most physiological parameters; reducing Asat, gs, Vcmax and 

electron transport (Jmax) and to delay phenological process related to flowering and germination  (e.g. 

Signarbieux and Feller, 2011; Albert et al. 2011 a/b; Jentsch et al., 2009; Prieto et al., 2008; Llorens 

and Penuelas, 2005).  
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Effects of elevated CO2 concentrations, temperature and prolonged summer drought on the 

seasonality of plant eco-physiological parameters, were investigated in a long-term multi-factorial 

experiment, designed according to a scenario for climate conditions in Denmark 2075 (Mikkelsen et 

al., 2008). Cold season effects of climate change on the dominating evergreen shrub, Calluna vulgaris 

were investigated. Additional to treatment responses, the seasonal acclimatization were investigated, 

in order to clarify if cold season responses to the treatments were still be present despite the strong 

physiological seasonal acclimatization. We here report the impact on plant eco-physiology and leaf 

characteristics. To simplify the potentially complex interactive responses (i.e. additive, antagonistic or 

synergistic effects) related to the multifactorial design have concentrated on the following hypotheses. 

 

I. Elevated CO2 will increase plant carbon uptake both in the warm and cold seasons, despite 

seasonal difference in down-regulation of Vcmax.  

II. Nighttime warming will increase plant carbon uptake in the cold seasons (spring and autumn) 

by increasing Vcmax.   

III. Drought will reduce plant carbon uptake during and just after the drought-period via lower 

stomatal conductance and down-regulated Vcmax. 

IV. Combined single factor treatments will lead to different responses; either additive or 

interactive, i.e.  antagonistic or synergistic.  

  

Method and Material 

Site Description 

The study was performed in the experimental site of the long-term climate change experiment 

CLIMAITE  situated in a dry heathland in North Zealand, Denmark (55°53’N, 11°58’E). The 

vegetation is dominated by the evergreen dwarf scrub Heather (Calluna vulgaris L.) and Wavy 

hairgrass (Deschampsia flexuosa L.). The soil is nutrient poor and sandy with a pH of 4.5 in the 

topsoil. Mean annual temperature is 9.8 °C and the annual mean precipitation is 697 mm (Mikkelsen 

et al., 2008).  

The experiment included the following treatments: Un-manipulated control (A), elevated CO2 

(CO2), passive nighttime warming (T), periodic summer drought (D) and all combinations (TD, 

TCO2, DCO2, TDCO2), replicated in six blocks in a complete split-plot design (n=6). Each block 

includes two octagons of 6.8 m diameter, divided in four plots. With the Free-Air-CO2-Enrichement 

(FACE) technique one octagon in each block are exposed to 510 ppm CO2 during daylight hours 

(Miglietta et al., 2001). The passive nighttime warming is performed by automated infrared reflective 
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curtains covering one half of each octagon. Nighttime warming results in an increased air temperature 

(20 cm)  by 1.4 °C on average (Mikkelsen et al., 2008). Experimental drought is established, during a 

period of between two and five weeks in the spring or summer in each year of the experiments, by 

automated rain-excluding curtains covering each one half of the octagons. In order not to kill the 

plants drought treatment was stopped when the soil water in the top 20 cm was reduced to 5 %. 

Together with the nighttime warming curtains the rain-excluding curtains create the split-plot design. 

The experimental treatment of CO2 and warming was started in October 2005. In each experimental 

plot the soil water content over two depths (0-20 cm and 0-60 cm) was continuously recorded using 

time domain reflectometry (TDR). Simultaneously, air temperature was measured in 20 cm height, 

and soil temperature in 0 cm and 5 cm depth. Two climate-stations are located in the experimental 

area, where temperature, radiation within the photosynthetic spectrum (PAR) and the precipitation 

were measured in 2 m height.   For further technical detail of the setup, see Mikkelsen et al. (2008).  

To measure the seasonality in photosynthetic performance of Calluna, with high temporal 

resolution, two additional high temporal resolution plots (HTR plots) outside the treatments were 

established in January 2011 and sampled every second week from mid-May 2011 to mid-May 2012.   

 

Leaf Gas exchange 

Leaf level CO2 and H2O fluxes were measured in situ using open, portable leaf gas exchange analysis 

systems (LI-6400, LI-COR Biosciences, Lincoln, Nebraska, USA)). Three LI-6400s  with 2*3cm 

chamber and LED light sources (6400-02B) were used stomatal conductance (gs), light-saturated 

photosynthesis (Asat) and light and CO2-satuarated photosynthesis (Amax) (full campaign) were 

measured within the experimental treatments during 13-21 July, 16-18 August, 19-22 September, 25-

27 October and 22-23 November 2011. Short campaigns measuring gs, Asat and Amax were carried out 

10-11 January and 27-28 February 2012.   

Healthy top-shoots of Calluna vulgaris, from the upper part of the canopy, were selected for 

every measurement. To minimize gas diffusion and leaking problems using leaf cuvettes,  shoots 

were placed in leaf adaptor frames (LAF) as described in Boesgaard et al. (2013).  

We used two different protocols, a long (full campaign) and a short one (snapshot campaign). 

In the long protocol both a CO2-response-curve and a light-response-curve were measured. For both 

protocols, leaves were acclimated to the chamber condition for 6 min at 390 ppm CO2 (510 ppm in 

FACE plots), until net photosynthesis and stomatal conductance were stabilized (CV < 1%). In the 
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snapshot protocol a small CO2 response curve containing 4 steps at 4 CO2 levels were preformed 

(390, 510 1200 1400 ppm, starting at the level of CO2 in the measured treatment, 390/ 510 ppm). In 

the long protocol a CO2 response-curve was measured stepping down the CO2 concentration from 390 

ppm (510 ppm) to 50 ppm CO2 and then brought back to the 390/510 ppm level again, for at least 3 

min. After the reestablishment of the CO2 level the concentration of CO2 was stepped up to complete 

saturation at 1400 ppm CO2. All measurements (both protocols) in the period of April through 

October were performed at a light saturating level of 1500 µmol photosynthetically active photons m-

2 s-1  (PAR) using the Li-6400 auto-program “A/Ci-curves” (operating system Open 6.2). From 

October to April the light level was set to 800 ppm (saturating). Settings: time between 

measurements-log min 45 and max 55 seconds, reference CO2 [mol mol-1] and intercellular CO2 

concentration stable in 10 seconds with CV<1%. Matching was performed between every step of 

CO2. To reflect the true ambient temperature of the day, block temperature was set to the expected 

mean temperature of the measuring day (with ± 5 °C fluctuations around the target value, due to 

limitation of the equipment).  Relative humidity was manually adjusted to 45-55% during 

measurements. Maximum carboxylation (Vcmax) and electron transport (Jmax) rates were calculated 

from curve-fitting to the Farquhar-von Caemmerer-Berry (FvCB) model equations (Dubois et al. 

2007 and Bernacchi et al., 2001) When no minimum between the Rubisco-limited and RuBP-

regeneration-limited phases could be found by the fitting procedure, Vcmax was fitted using data with 

Ci<500 ppm and Jmax was fitted using data with Ci > 550 ppm. . Non-photochemical respiration (Rlight) 

was calculated as 0.02*Vcmax (after von Caemmerer, 2000). Within full campaign protocol (described 

above) the A/Ci-curve protocol was followed by a light-response curve.  

For comparison of the fitted Vcmax and Jmax value they were normalized to 25°C. Data 

normalization of fitted values of 𝑉𝑐𝑚𝑎𝑥
25  and  𝐽𝑚𝑎𝑥

25  to 25°C was done in relation to leaf temperature, as 

explained under ‘Estimation of photosynthetic capacity and temperature normalization. 

The light-saturated net photosynthesis (Asat), intercellular CO2 concentration (Ci) and 

transpiration (E) were extracted from the first point in the CO2 response-curves from both protocols at 

CO2 reference = 390 ppm CO2 in non-FACE plots and at 510 ppm in FACE plots. The water use 

efficiency (WUE) was calculated as WUE = Asat/E. All data were corrected for diffusion leakage 

following the protocol by Boesgaard et al. (2013).  
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Leaf characteristics, area, weight, nitrogen, carbon and δ13C 

After each measurement the leaf adaptor frame (LAF) containing the leaves was cut off the plant and 

the plant material inside the frame was brought to the laboratory. Leaves and stems were detached 

from each other and placed on a paper together with a square of the fixed dimension of 3x3 cm, and a 

photo was taken placing the paper with leaves and stems on top of a light table. Area estimations were 

quantified using the image processing program ImageJ (National Institute of Health, USA). The side 

of the square (3 cm) was in all cases the reference length, and area was determined from 8-bit colour 

pictures with the threshold approach. The photographed leaf area are given as projected leaf area, as 

described in   Smith et al.  (1991).  

The dry weight of the plant material was measured after drying 48 hours at 60°C. The 

specific leaf area, SLA (cm2/g) and specific leaf weight, SLW (g/ cm2) were determined from the dry 

weight and the projected leaf area. The dried leaf material was analyzed for carbon and nitrogen 

concentrations and for 13C natural abundance (δ13C)  with an elemental analyzer (CE 1110, Thermo 

Electron, Milan, Italy) coupled to a Finnigan MAT Delta PLUS isotope ratio mass spectrometer 

(Thermo Scientific, Bremen, Germany). The 13C/12C isotope ratios are given as delta notation (δ13C) 

i.e. relative measurement against the 13C/12C ratio in an international standard (Vienna Pee Dee 

Belemnite): δ13C = 𝑅𝑠𝑎𝑚𝑝𝑙𝑒−𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

∗ 1000‰ . 

 

Estimation of photosynthetic capacity and temperature normalization  

In the C3-photosynthesis model, first presented by Farquhar, von Caemmerer and Berry (1980)  

(FvCB-model), photosynthesis is at all conditions limited by one out of three processes: 1) the 

maximum rate of Rubisco-catalyzed carboxylation (Rubisco-limited), 2) the regeneration of RuBP 

controlled by the electron transport rate (RuBP-limited) or 3) triose-phosphate utilization controlled 

regeneration of RuBP (TPU-limited). The original model was parameterized at a standardized leaf 

temperature of 25 °C, but the uncertainty of the model increased when the temperatures differed from 

25°C. Under ambient CO2 concentration Rubisco-limited photosynthesis is common (Rogers and 

Humphries, 2000). Thus, light saturated photosynthesis can be expressed by (Farquhar et al., 1980): 

 𝐴𝑐 = 𝑉𝑐𝑚𝑎𝑥(25)(𝐶𝑖−𝛤∗)

𝐶𝑖+𝐾𝑐(1+ 𝑂
𝐾𝑜

)
−  𝑅𝑙𝑖𝑔ℎ𝑡 ,      (1) 
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where Ac is the light-saturated Rubisco-limited photosynthesis, 𝑉𝑐𝑚𝑎𝑥
25  the maximum Rubisco-

catalyzed carboxylation rate at 25°C, Ci  the intercellular CO2 concentration, Γ* the CO2 

compensation point in the absence of mitochondrial respiration (Rlight), and Kc and Ko are Michaelis-

Menten constants for Rubisco activity for CO2 and O2, respectively. According to Bernacchi et al. 

(2001), the constants for Γ*, Kc and Ko can be assumed to be 42.8 µmol mol-1, 405 µmol mol-1 and 

278 mmol mol-1  at 25°C, respectively.  

 Hikosaka et al. (2006) explain that light saturated net photosynthesis at ambient CO2 

concentrations (Asat) at any given temperature is mainly limited by the carboxylation rate for Rubiso, 

irrespectively of growth temperature. Therefor Asat can be expressed as Ac (Eq. 1). Under ambient 

outdoor temperature it is difficult, if not technically impossible (Li-Cor Inc., 2008), to collect A/Ci-

curve-data in situ at a strictly standardized temperature of 25°C. Because Vcmax is strongly sensitive to 

temperature (e.g. Bernacchi et al., 2001) normalization to temperature is necessary for a comparison 

of data collected at ambient temperature in the field, when seasonal changes in temperature highly 

affect Vcmax.  

Plants response respond to environmental changes (e.g. temperature and light) at several time 

scales, from daily to seasonal. Acclimation to changed temperature is  known especially to influence 

enzymatic driven processes and with  low temperatures many  photosynthesis related processes have 

been found to decrease (Kattge and Knorr, 2007; Leuning, 2002).To evaluate the treatment effects in 

the present study photosynthetic capacity,  Vcmax and Jmax were measured across the whole period at 

ambient temperatures. The data from the ambient and the HTR plots   were used to fit the seasonal 

temperature response of the photosynthetic capacity. The seasonal temperature response combines the 

instantaneous temperature responses and that part of their seasonal variation that is related to the 

seasonal course of the temperatures.  

The  Vcmax  and leaf temperature values were  fitted to the model of the instantaneous 

temperature response (de Pury and Farquhar, 1997): 

𝑉𝑐𝑚𝑎𝑥 = 𝑉𝑐𝑚𝑎𝑥
25  𝑒𝑥𝑝

�
�𝑇𝑙𝑒𝑎𝑓−25°𝐶� 𝐸𝑎𝑐

(𝑅∗�𝑇𝑙𝑒𝑎𝑓+273𝐾�(25+273𝐾)
�
    (2) 

where R is the molar gas constant, Tleaf is the leaf temperature and Eac is the activation energy of the 

Rubisco carboxylation reaction. Assuming that the temperature response of Vcmax is constant, equation 

(2) can be used to calculate 𝑉𝑐𝑚𝑎𝑥
25  from any measured Vcmax value at given ambient temperature.  The 

same approach and the same assumptions were used for normalize Jmax to 25°C (𝐽𝑚𝑎𝑥
25 ).  
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The temperature normalization makes it easier to compare photosynthetic capacity that is 

measured in different seasons and at different temperatures. The differences in normalized 

photosynthetic capacity between differently treated plots describe here the treatment effects and their 

variability in time.  

 

Statistical Analysis 

Treatment effects were analyzed with a linear mixed effect model using the lmer function in the 

lme4-package of the free statistical software R (R Develpment Core Team, 2010). The lmer function 

provides the option to incorporate both fixed-effect parameters (main factors) and random effects 

(random factors).  Main effect factors of the model were elevated CO2 (CO2), warming (T), drought 

(D) and their interactions (T×CO2, T×D, D×CO2, T×D×CO2), while block, including the group of 

two adjacent octagons, was set as a random factor to exclude systematic site heterogeneity from the 

analysis of treatment effects. Testing the seasonal patterns across warm (April-September) and cold 

(October-Marts) seasons, Time was used as a random factor, too. F-values and p-values were 

extracted with the MixMod-package using the SAS-algorithm. The data was tested for normal 

distribution with Levene’s test and the data was either log(x) or 1/x transformed, if necessary. 

Homogeneity of variance was visually inspected from residual plots.  

The significance level was set to p-values < 0.05 and trends were noted if p-values < 0.1. An 

additive effect is when effects of two or three factors are simply added to each other. Statistically, an 

additive effect will not be shown as significant due to the lack of single factor significance. Looking 

at interaction plots produced by the MixMod-package, significant interactions were categorized as 

synergistic if the combined effects of single factors have a stronger impact than the expected additive 

effect, or as antagonistic if the combined response is lower than the additive response.   

 

Results 

Climate and experimental control measurements 

During winter 2010-2011 the site experienced a long period with snow cover from November 2010 to 

mid-January 2011, followed by 1-2 weeks of warm sunny weather with daytime air temperature 

between 2-8 °C. From end of January to end of February 2011 there was no snow, sun and repeatedly 

hard frost events (below zero during day-time). This caused a major die-back of the standing 

population of Calluna vulgaris. In April 2011 we estimated that only around 5-10% of all Calluna 
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stands had functioning green shoots. New shoots regrew from the dried stands during May-July 2011, 

with an approximate 75% regrowth of Calluna (personal observation, Kristine S. Boesgaard and Nina 

W. Thomsen). The die-back was not observed to differ between treatments (personal observation, 

Johannes Ransjin).  Due to slow regrowth in spring, homogenous canopy structures across the entire 

experimental area were first established in early July (personal observation, Kristine S. Boesgaard and 

Nina W. Thomsen). Measurements at the HTR plots started already in mid-May.  

The late winter and early spring 2010-11 was drier compared to the Danish average climate 

during the period from 1960 to 1999 (http://www.dmi.dk) and was combined with higher than 

average temperatures in the early to the late spring (March-end May). The summer of 2011 was 

generally warmer and wetter than the 40 year average ensemble values. The autumn was still warmer 

but with very little precipitation. The experimental drought was performed during one month starting 

on May 2nd and excluded 57.8 mm of rain, corresponding to 8.3% of the annual precipitation in 2011.  

The soil water contents (SWC%) in 0-20cm in the experimental plots did not change much 

during the evaluated period (July to February). In May and June 2011 SWC was significantly lower in 

all drought treated plots (May p=0.017, June p= 0.007). In the non-drought treated plots SWC varied 

between 13.6 – 16.5% as compared to the drought treated plots with only 9.9-15.2%,. The two highest 

SWC values were found in the treatments combined with elevated CO2. This effect was, however not 

significant. SWC values in 0-60 showed the same effects of treatments that 0-20 cm and were in 

general c. 4% lower than in 0-20cm.  

Soil temperature in 5 cm depth was significantly higher in treatments with nighttime warming 

across almost the whole measurement period of January 2011 – June 2012, except for the periods 

where the treatments have stopped due to snow and frost, damaging the technical system (generally in 

periods between December-February).  Daily mean temperature in 2 m height reached the maximum 

during summer, and in winter 2010-2011 it reached a minimum of -8.7 °C (22  December 2010), here 

in combination with complete snow cover. In a snow free period in February 2011 daily mean 

temperature in 2 m height reached a minimum of – 5.5°C (20 February 2011). Night time minimum 

temperatures in vegetation height (20 cm) were significantly higher in warmed plots during all time 

(except for the period  indicated on figure 1 with dotted lines, where warming-treatment, due to 

technical problems with snow, were turned off), with a mean increase of  1.00 ± 0.05 °C. Highest 

impact of warming was found in springtime in both of the years 2011 and 2012 with mean 

temperature increases above + 4oC.   
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Figure 1. Climatic data and treatments effects: A) Median of CO2 concentration (ppm) in none-FACE plots (-
CO2) and in FACE plot (+CO2) across the whole experimental period and during daytime (D) and nighttime 
(N). Boxes show 25-75% of values, vertical lines indicate the median, whiskers length are 1.5×IQR. B) 
Photograph showing the  effect of nighttime warming after a night with rime frost (the white material on the 
none-warmed part of the octagon is rime).  C) 7-days running means in soil water content in 0-20 cm (SWC %) 
in all non- drought and all drought plots (n=24). The drought period is marked with a line on the graph and the 
treatment resulted in an exclusion of 57.8 mm of rain. D) 7-days running means of the observed minimum 
temperature in 20 cm height in all non-warmed (-T) and all warmed plots (+T) (n=24).Solid line in panels C) 
and D) marks the experimental drought period, split line indicates the lack period where SWC is still influenced 
of experimental drought. Small dotted line indicates the period where treatments were not functional due to 
snow cover.  

 

Leaf gas-exchange 

The photosynthetic parameters varied substantially across the year. Parameters referring to 

photosynthesis process (ex. Asat, gs, Vcmax,  𝑉𝑐𝑚𝑎𝑥
25 , Jmax and 𝐽𝑚𝑎𝑥

25 )  all followed the same general 

seasonal pattern (Figure 2) with high rates during summer and lowest through winter. Fitted values of 

the maximum carboxylation rate (Vcmax, 𝑉𝑐𝑚𝑎𝑥
25 ) and the maximum rate of electron transport (Jmax, 

𝐽𝑚𝑎𝑥
25 ) were all highest  from June- September 2011, with the absolute highest rates in September. 

Vcmax ranged from 65.0±7.9 to 50.1±3.0 µmol m2 s-1 in the period June- September 2011, where the 

temperature normalized 𝑉𝑐𝑚𝑎𝑥
25  was overall ca. 30 % higher during the whole year. In the same time-

period Jmax ranged from 118.4±11.2 to 138.3±9.4 µmol m2 s-1; the 𝐽𝑚𝑎𝑥
25  values were ca. 25% higher 

than this level. The Asat and Amax, however, had highest rates in the period from August to October 
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2011(Asat: 18.0±1.7 to 18.7±1.5 µmol CO2 m2 s-1, Amax: 31.1±7.8 to 31.1±7.8 µmol CO2 m2 s-1) (data 

in supplementary material).  Stomatal conductance (gs) was high during the period from July-October, 

highest during measurements in August (0.84±0.02 mmol H2O m2 s-1).   

 

  

Figure 2. Seasonality of different photosynthetic parameters and leaf traits. A) The maximum carboxylation rate 
at ambient temperature, Vcmax (µmol CO2 m-2 s-1) at ambient temperature across the year 2011-2012. B) Light 
saturated photosynthesis at ambient temperature, Asat (µmol CO2 m-2 s-1). C) Stomatal conductance at ambient 
temperature under light saturated conditions and ambient temperature, gs (mmol H2O m-2 s-1). D and E) leaf 
nitrogen expressed per weight and area, N% and mg N cm-2, respectively.   
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Within treatments, monthly campaigns were performed during the warm (July-September) 

and the cold (October-February) season. Means across the seasons are presented in Table 1. Light-

saturated photosynthesis (Asat) was significantly higher in all CO2 plot across both the warm and the 

cold season (p < 0.05) and showed the same seasonal pattern as observed in the HTR plots (not 

shown). The highest rates were found in September and the lowest were seen after snowmelt in end 

February (not shown). In the warm season the experimental drought was found to reduce Asat 

significantly across all drought-treated plots (p<0.05). Although the drought treatment was already 

completed at the end of May 2011, the soil water contents were still lower in the drought treated plot 

until August and affected the photosynthesis parameters. No carry over effect was seen during the 

cold season. No other than additive responses were found in either of the seasons (Table 2).  

 

 

Figure 3. Photosynthetic response during warm and cold season. A) + B) Mean ± SE of light saturated net 
photosynthesis at ambient temperature, Asat (µmol CO2 m-2 s-1). C) + D) the maximum carboxylation rate 
normalized to 25 °C, 𝑉𝑐𝑚𝑎𝑥

25 (µmol CO2 m-2 s-1). Seasonal treatment effects are indicated as * p<0.05, ** p< 0.01, 
in the respective season. Tends at p<0.1 are noted with †. A) + C) Only responses to ambient CO2 versus 
elevated CO2 (-CO2 and +CO2, n=24) and B) + D) the un-manipulated control A versus the full combination of 
warming, drought and elevated CO2, TDCO2 (n=6). 
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The patterns seen in the HRT plots were also found for light- and CO2-saturated 

photosynthesis (Amax) (not shown). However, no significant treatment effects were found in either of 

the two seasons. Drought tended to influence Amax negatively but the effect was smaller in 

combination with elevated CO2, and night time warming (p<0.1).   

  Across all seasons the intercellular CO2 concentration (ci) was found to be significantly 

higher (p<0.001) across all CO2-treatments (CO2). ci at ambient CO2 conditions ranged between 

308.2±4.3 to 376.5±6.3 ppm for A and 400.7±9.3 to 488.6±5.0 ppm for CO2. The relation between Ci 

and the ambient CO2 concentration (ci/ca) was increased in all CO2-treatment across all time (p<0.01).  

Antagonistic interactions between elevated CO2 and drought (CO2×D) were found for 

stomatal conductance (gs) across the warm season (p<0.05), compensating for the negative tendency 

of the drought treatment. Additional antagonistic interactions between all three treatments 

(T×D×CO2) were found across the warm season (p<0.05), even though no single factor effect was 

found (Table 2). No effect was found on gs during the cold season.  

The water use efficiency (WUE) varied between 1.0-8.8 µmol CO2 mmol-1 H2O, with lowest 

seasonal values in July and August 2011, high values in November 2011 and low values again in 

February 2012. Across seasons WUE was not significantly affected by single factors, however 

drought tended to decrease WUE in the warm season (p=0.06). Additionally a significant antagonistic 

interaction between all factors (T×D×CO2) was observed in warm season. No effect on WUE was 

seen in cold season.  
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Figure 4. Relations between Vcmax and Jmax to ambient leaf temperature from all ambient plots collected in 
monthly campagins and from the HTR plots,in the period from July 2011 to May 2012.  These relations are the 
basis for the temperature normalization. Data from May to July 2011 was excluded to avoid problems with 
different physiological performace in the regrow phase after die-back (furter discribed in ‘Climate and 
experimental control measurements’). The relationship was fitted using equation 2. A)  𝑉𝑐𝑚𝑎𝑥

25   = 78.1±4.4 µmol 
m-2 s-1, Eac = 54.6±6.6 KJ mol -1, p<0.01.  B) 𝐽𝑚𝑎𝑥25

  = 159.8±8.5 µmol m-2 s-1, Eac = 34.4±4.8 KJ mol -1, p<0.01.   

 

Normalization to 25°C was done using the relationship between seasonal measurements in 

none-treated plants of Vcmax and Jmax to the actual leaf temperature. HTR plots were followed from 

May 2011to May 2012, but as a result of the big die-back with regrow phase of Calluna from May to 

July 2011 data from this period was exclude from the fitting. Thus leaves in early developmental 

phase have a different physiological performance than fully develop leaves (e.g Reich et al., 1991). 

Figure 4 shows the fittings and residual analysis for both Vcmax and Jmax showed no pattern of concern. 

The relationship between Jmax and Vcmax was found to be:  Jmax=49.5+1.66* Vcmax with a significant 
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correlation-factor R2=0.88. Similar response was found for temperature normalized values   𝐽𝑚𝑎𝑥
25  = 

36.2+1.83*𝑉𝑐𝑚𝑎𝑥
25 .  

In cold season 𝑉𝑐𝑚𝑎𝑥
25

  was found to be significantly lower in elevated CO2 where no effect 

was seen in warm season (p<0.05). Drought tended to decrease 𝑉𝑐𝑚𝑎𝑥25
  in the warm season and in both 

cold and warm season there was found a trend of an antagonistic interaction between drought and 

elevated CO2. No effect was found on temperature normalized values for 𝐽𝑚𝑎𝑥
25 .  

Relationships between N% and Vcmax was found significant (R2=0.23, p<0.001) for non-

temperature normalized data while no relation was found between N% and 𝑉𝑐𝑚𝑎𝑥
25 . However N per 

leaf area (mg cm2) was significantly correlated to 𝑉𝑐𝑚𝑎𝑥
25  (R2=0.11, p<0.001). There was no relation 

between leaf nitrogen and Jmax or 𝐽𝑚𝑎𝑥
25  (not shown). 

 

Leaf chemistry and structure 

From May- July, across all treatments, Calluna shoots changed from being small, thin and light green 

to thicker and dark-green. Fully grown shoots showed an increased specific leaf weight (SLW) during 

the whole year May 2011-May 2012 (from 0.17±0.02 g cm-2 in May 2011 to 0.26±0.01 g cm-2 in May 

2012) in untreated seasonality-plots. Within treatments the same was observed (A:  0.18±0.01 g cm-2 

in July 2011 to 0.25±0.01 g cm-2 in February 2012). Across both, cold and warm seasons SLW was 

significantly increased by elevated CO2 (p<0.01). SLW did on average increase ca. 4% more in all 

elevated CO2-plots compared to ambient CO2-plots. The experimental drought or night time warming 

influenced SLW individually and no interactions were found.  

The C/N ratio in the leaves increased significantly from May 2011 until July 2011, followed 

by a significant decrease in August 2011. In August 2011 the low C/N ratio was a result of a 

significantly lower N% in the leaves. From August the ratio increased to an even higher value than 

before until decreasing to the same level in May 2012 as in August 2011. Within treatments a 

significantly higher C/N ratio was found across all CO2 treated plots (p<0.01) in both, warm and cold 

seasons (Table 2).  Across the cold season an overall D×CO2 interaction was found (p<0.05). The 

CO2 treatment did in general deplete the leaf δ13C due to the lower δ13C signature of the added CO2 

gas (p<0.0001). The leaf δ13C was similar in new grown shoots compared to two samples from 

September and November 2010 (data not shown) and did not change across cold or warm season.  
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Discussion: 

Seasonal temperature acclimation hides the down-regulation on Vcmax in elevated CO2  

Calluna showed strong seasonality in most of the evaluated photosynthetic parameters and leaf traits 

across the year. The seasonal cause was not only seen in the high temporal resolution (HTR) plots, 

but also within experimental plots, confirming the general feature that growing at lower air 

temperature in colder seasons reduces the maximum carboxylation rate of (Vcmax) and consequently 

lower light-saturated photosynthesis (Asat), as also found by other studies (e.g. Vogg et al., 1998). 

Normalization of Vcmax to a common reference temperature at 25°C, using non-treated seasonal data, 

removes most of the systematic variation that is caused by seasonal temperature variation. The 

significant differences between the normalized photosynthesis parameters are interpreted as treatment 

effects. The effects of Vcmax down-regulation in the warm and the cold season can be compared better 

because of  the normalization, Treatment effects on Vcmax can, without the normalizarion, be 

overlooked due to the strong natural, seasonal down-regulation (figure 2). To evaluate such seasonal 

changes in temperature responses, temperature response curve for each sample time and treatments 

would be required.  

During the warm season (July-September) regrown Calluna leaves increased the light-

saturated photosynthesis (Asat)  significantly in elevated CO2  due to increased intercellular CO2 

concentration (ci) (figure 2, p < 0.01). This finding was in line with a previous study from the 

CLIMAITE experiment, where Calluna has been exposed to two years of treatment (Albert et al., 

2011a/b). However in the 6th year, as it was seen after two years of treatment, Calluna did not show 

any down-regulation in either Vcmax or Jmax. Neither in the previous nor in the present study treatment 

effect on stomatal conductance (gs) or water use efficiency (WUE) was found during warm season. 

However,  in the previous study Albert et al. (2012) showed  how natural drought periods reduce gs 

and WUE  resulting in lower ci, Asat and lower Vcmax. In the present study drought strongly reduced Asat 

and in some degree Vcmax (not significant). In combination with a ca. 50% higher soil water 

availability across the growing season after six years of experimentation compared to the second 

season of the CLIMAITE experiment. Thus, the lack of CO2-induced down-regulation can be seen as 

the result of overall higher gs, WUE and Vcmax in the measurements during the sixth  year. In line with 

that, when drought was combined with elevated CO2 𝑉𝑐𝑚𝑎𝑥
25 was lower than in plants only exposed to 

drought. Thus it can be assumed that down-regulation of Vcmax/𝑉𝑐𝑚𝑎𝑥
25  in the warm season strongly 

depends of water status of the system, where in wet years no down-regulation is present. During the 

cold season (October- March) Calluna goes through an acclimation process reducing Asat, Vcmax and 
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leaf N %. The  𝑉𝑐𝑚𝑎𝑥
25  values were found to be significantly down-regulated in elevated CO2, where 

the non-temperature normalized Vcmax only tended to be down-regulated during the cold season. 

Despite the down-regulation of 𝑉𝑐𝑚𝑎𝑥
25   in elevated CO2 in the cold season, Asat is significantly 

increased indicating that a potential higher carbon uptake is maintained. The maximal rate of electron 

transport (Jmax or 𝐽𝑚𝑎𝑥
25 ) did not show any response to elevated CO2 in either of the seasons, which is in 

line with earlier findings (e.g. Ainsworth and Long, 2005; Ainsworth and Rogers, 2007; Leakey et al., 

2009).  The stronger signal in cold season on down-regulation of 𝑉𝑐𝑚𝑎𝑥
25  is consistent with our 

hypothesis, that the dual impact of lower temperature and elevated CO2 both reduce photosynthetic 

capacity.  

The N-content in leaves is naturally decreased during the cold season due to nitrogen re-

translocation  (e.g. Bryant et al., 1983). Additionally the N % in the leaves in elevated CO2 treated 

plots is further decreased. The N-content per unit leaf area does however not differ between the 

elevated and ambient CO2 plots. The leaves in the CO2 treated plots are thicker, demonstrated by their 

higher SLW, but do not contain the proportional, additional amount of N. Looking at the mass ratios 

(N%) this can be interpreted as a dilution of nitrogen by carbon and other elements that constitute the 

additional tissue. The phenomenon that neither the N content per unit leaf area nor the photosynthetic 

capacity (Vcmax/𝑉𝑐𝑚𝑎𝑥
25 ) differed between the CO2 treated and non CO2 treated plots in warm season, 

indicates the functional relationship between these two parameters rather than Asat with N%. N 

dilution in leaves grown at elevated CO2 has been described earlier at the site,  within the same 

magnitude (e.g. Albert et al., 2011a/b; Andresen and Michelsen, 2005) and also in other studies (e.g. 

Ainsworth et al., 2003 ). Up to 25 % of leaf nitrogen have been shown to be incorporated in Rubisco, 

thus several studies relate the degree of down-regulation of 𝑉𝑐𝑚𝑎𝑥25  in elevated CO2 the reduction in N 

%  (e.g. reviewed in Nowak et al., 2004; Leakey et al., 2009). After 2 years no indication of N-

limitation or changes in N availability was found at the experimental site (Larsen et al., 2011). In the 

cold season Calluna re-translocate leaf nitrogen and other nutrients from the leaves to other organs, 

thus the response on the 𝑉𝑐𝑚𝑎𝑥
25  partly can be explained by the decreased available N in the leaves, or 

vice versa that the reduction of the N content is a consequence of the breakdown of the enzymes that 

drive photosynthetic capacity and the transport, e.g. as amides such as asparagine and glutamine into 

the plant corpus such as shown for trees (Cantón et al. 2005).  

Independently of season the relationship between ci and the atmospheric CO2 (ca) was 

increased in all CO2 treated plots and this relation was constant over time, as the background CO2 

concentrations were higher at all time. Despite the higher CO2/O2 sensitivity for Rubisco at  low 
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temperature and the down-regulated Vcmax the higher ci in elevated CO2 enabled Calluna to maintain a 

ca. 15 %  higher Asat in cold season.  

 

Photosynthetic performance in a climate change future 

Recent findings at the experimental site showed that Calluna increased photosynthetic performance in 

response to nighttime warming before and after smaller frost-events in late season (Albert et al.2013). 

However, in this study conducted before the frost took hold, then night-time warming did not  

influence any of the investigated photosynthetic parameters or leaf traits. This is partly in line with 

hypothesis II, that nighttime warming increases carbon uptake in cold seasons. In years where 

Calluna did not experience die-back, the significantly higher soil temperature (0 and 5 cm depth) in 

early-spring can have resulted in an earlier onset of the growing season, as indicated at the 

CLIMAITE experimental site in the year 2007 (Albert et al., 2011a; Kongstad et al., 2012). Albert et 

al. (2011a) found significantly increased photosynthetic performance in Calluna in the early summer 

directly related to the nighttime warming, however the effect disappeared later in the warm season. In 

summer, when air temperature is high the nighttime warming can  course increased evaporation in 

warmed plots as a result of higher night time temperatures. Within most of the time during the 

CLIMAITE experiment the soil water content was significantly lower in plots with nighttime 

warming (data not shown), which in periods with low precipitation can  lead to water shortage 

limiting Asat, Vcmax via gs. However an overall high soil water content (more than 10 vol. %) in the 

experimental period did not lead to any water shortage effects on photosynthesis. Single factor 

experiments with increased temperature have shown a strong stimulation of photosynthesis and 

biomass, especially during cold season and with sufficient water availability (e.g. Schmidt et al., 

2004; Beier et al., 2004; Peñuelas et al., 2007). Thus, in the present study we expected a positive 

effect on Asat in the autumn and early winter, however the expected stimulation was not found in our 

study. Passive nighttime warming increases the nighttime temperature and thus minimizes the periods 

of sub-zero temperatures in cold periods. The temperature regime in the period where measurements 

were conducted had only to a limited degree  such sub-zero periods, and therefore  the influence of 

the temperature treatment was modest. However, in late season where freeze events occurred, a 

higher photosynthetic performance was observed in response to warming (Albert et al., 2013).  

The dry winter-spring transition in 2011 combined with the die-back of Calluna led to an 

overall delay of the onset of the growth, seen as a reduced NEE in the spring period compared to the 

following more normal year 2012 (personal communication, Klaus S. Larsen).  The combination of a 
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dry spring and exclusion of 57.8 mm rainfall during the experimental drought was expected to have a 

strong negative effect in the period following the drought (also see SWC % in figure 1).  This was 

confirmed with a significant reduction of Asat during the warm season, when the soil water contents 

were still lower in the drought exposed plots (Table 2), although the treatment was ended before these 

photosynthesis campaigns began. However analyzing single campaigns separately revealed that the 

negative effect on photosynthesis, mainly was driven by the response in July, all other campaigns 

showed no drought treatment effects. The SWC% (0-20 cm)  was significantly lower during the 

drought in May and also in the following months (June- August) leading not only to a significantly 

lower Asat, but also to the trend of decreased water use efficiency (WUE) which confirms single factor 

experiments (e.g. Ogaya and Peñuelas, 2003; Prieto et al. 2009a,b). The lower Asat in the warm season 

was not a result of decreased stomatal conductance (gs) or changed ci, but 𝑉𝑐𝑚𝑎𝑥25
 tended to be lower 

(p=0.07). In the cold season the drought treated plots did not show any responses, however in a 

previous study at the site showed carry over effect in relation to drought in Calluna (Albert  et al., 

2011b).  In both the previous and the present study Calluna reestablished the photosynthetic capacity 

after rewetting, thus a carry-over effect is more likely  related to the reduced vitality caused by the 

negative influence of drought and the frost induced dieback in early season that caused a slow 

regeneration.  In the present study the experimental drought was performed during the phase of 

Calluna regrowth and the time after the drought was wet and regrown Calluna within drought treated 

plots did not suffer more, thus no delayed onset of growing season was found.  

The tree-factor treatment  of elevated CO2, nighttime warming and drought (TDCO2) is more 

realistic  in relation to future climate change than the two-factor treatments (TD, TCO2, DCO2) or the 

single factor treatments, because these represent the full future climate scenario (Mikkelsen et al., 

2008). The responses of the full TDCO2 treatment were in general due to additive effects of single 

factors responses. No synergistic effects were found and only a few antagonistic interactions resulting 

in dampening effects were observed in the full combination. Defining additive response only to be 

present if both single factors are significant, the result is in line with earlier findings from the 

CLIMAITE project (e.g. Kongstad et al., 2011; Larsen et al., 2011; Albert et al., 2011a,b), where 

antagonistic effects were more frequent in multifactor treatments than  synergistic and additive.  

In combination with nighttime warming, elevated CO2 showed an increase in Asat on 6% in 

warm and 15% in cold season. However the additive response in combination with drought and 

elevated CO2 led to a decrease in Asat of -8% during the warm season, but in cold season Asat was still 

found to be increased by 15%. The 6% stimulation of Asat in TCO2 during the warm season was 

counterbalanced of drought in TDCO2 resulting in an overall reduction in Asat. In the cold season no 
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effects of drought were found to influence TDCO2, in line with other treatments including drought 

(D, TD and DCO2). Across the whole measurement period (July – February) Asat was only increased 

with 1% in TDCO2 compared to the none-treated control, related to the additive response of drought 

in the summer.  The effects in warm season are in line with responses detected during the 2th year of 

treatment (Albert et a., 2011b), where the positive stimulation of elevated CO2 and in this year also 

warming on Asat, was counterbalanced by the experimental drought treatment (that year July) in the 

month after. Here Asat was found to be lower in DCO2 and TDCO2 compared to CO2 and TCO2 

treatment, respectively (Albert et al., 2011a).  

Despite the counterbalancing effects of drought on the elevated CO2 stimulation on Asat the 

increased SLW and diluted N across all times in elevated CO2 indicated that the overall C-uptake is 

still stimulated in TDCO2and also DCO2. The stimulation of Asat are maintained in cold season 

despite the strong down-regulation in 𝑉𝑐𝑚𝑎𝑥25 .  In the warm season 𝑉𝑐𝑚𝑎𝑥
25  is not significantly down-

regulated by elevated CO2, explained as a result of no N-limitation, thus N reduction in leaves during 

cold season leads to a significant down-regulation in Vcmax. This pattern is in  line with  Ainsworth 

and Long (2005), who reviewed that elevated CO2 is more pronounced to reduce Vcmax in plants under 

N-limiting conditions.   
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Abstract  

Plant physiological responses to climate change drivers; elevated CO2, warming and periodic drought 

and in full combinations were investigated in an in-situ multi-factorial experiment on a Danish 

heathland after 6 years of treatment. The two dominated plants at the experimental site are the grass 

Deschampsia flexuosa and the dwarf scrub Calluna vulgaris. In earlier studies, the species responded 

differently to climatic treatments. We compare short term physiological responses to climate change 

manipulations on physiological parameters to long term responses.  
Elevated CO2 was the main driver for plant physiological changes in both Deschampsia and 

Calluna. Different growth strategies defined the physiological response to elevated CO2 and to 

drought of the two species. Deschampsia induced leaf-dieback when exposed to low soil water 

content and leaves the remaining leaves with high photosynthetic capacity and stomatal conductance. 

In contrast, Calluna maintained leaf biomass significantly by decreasing photosynthesis via reduced 

photosynthetic capacity. Combined treatments resulted in additive responses, thus prolonged drought 

counterbalanced the stimulation of photosynthesis in Calluna under elevated CO2. After 6 years of 

treatments, similar physiological responses were found but the magnitudes of responses were 

different. 

The differences in soil water controlled the magnitude of physiological responses to the 

climate treatments. This study demonstrates that leaf level responses are stable upon a wide range of 

seasonal and inter-annual variation. Long term ecosystem feedback after 6 years of treatments was not 

detected at the leaf level, indicating a strong robustness in Danish heathland ecosystems to moderate 

climate change. 
 

Introduction: 

Climate change affects all levels of ecosystems (e.g. Walther, 2003; Kirschbaum, 2004). Plant 

physiological responses to rapid (seconds- minutes) and short term (days-month) changes in 

environmental conditions, such as elevated CO2, temperature, precipitation and UV-B radiation and 

have been studied for decades (e.g. reviewed in Ainsworth & Long, 2005; Ainsworth & Rogers, 2007; 

Newsham & Robinson, 2009). Responses to environmental changes at one level of an ecosystem can 

have excessive indirect impact in other levels as the result of complicated feedback mechanisms (e.g. 

illustrated for carbon fate in Körner, 2006).  Physiological adjustment to environmental changes 

enables plants to grow in all kind of habitats and even under high disturbance. Long term plant 

physiological response to climate change factors are indirect the result of ecosystem feedbacks. Long 

term studies of the impact of single environmental changes, such as elevated CO2 are available (e.g. 

Ainsworth et al., 2003;  Ellsworth et al., 2012). However, as predicted climate change do not only 

influencing single environmental parameters (e.g. IPCC, 2007). Ecosystem and global models 
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provides sufficient tools to predict the impact of multiple factors based on knowledge from single 

factor experiments (e.g. Norby & Luo, 2004). So far the responses to climate change factors are 

additive, models are useful to predict future carbon balance combining more than on climate factor, 

(Leuzinger et al., 2011). However, experiment including more than one factor have pointed to the 

complexity  in the interactions to different single factors (e.g. Larsen et al., 2011).   Leuzinger et al. 

(2011) explained how upscaling and multifactor experiments reduces single factor responses, thus 

models easily can overestimate the magnitude of responses. But it also emphasizes the importance of 

multifactor experiments.   

Changes in atmospheric CO2 concentration is  a major climate change driver and in short 

time scale higher partial pressure of CO2 increasing photosynthesis  directly as an effect of increased 

CO2/O2 at the active site Rubisco (von Caemmerer, 2000). Growth in elevated CO2 have been found 

to stimulated photosynthesis, despite a  reduced stomatal conductance (gs), down-regulated 

photosynthetic capacity,  mainly the maximal velocity of  Rubisco carboxylase (Vcmax) and a nitrogen 

dilution in the leaf tissue (e.g. Long et al., 2004;  Ainsworth & Long , 2005; Leakey et al., 2009, 

Albert, 2011 a/b/c). Reduced stomatal conductance can affect the water status of the plants and studies 

have indicated that elevated CO2 reduced the water consumption reducing soil water depletion, so 

called water saving (Leuzinger & Körner, 2007; Robredo et al., 2007). However, studies have also 

indicated that water saving as a result of reduced stomatal conduction, probably only occurs in severe 

drought periods and is strongly depended of species growth-strategies (e.g. Robredo et al., 2007; 

Albert et al., 2011a & 2012).  In contrast to photosynthetic stimulation to elevated CO2 leaf 

respiration has only been found to be influence marginal to elevated CO2 (e.g. Tjoelker et al, 2001). 

Thus, in a longer perspective elevated CO2 may sustain increased carbon uptake, as reported from 

long term studies (e.g. Ainsworth et al., 2003; Ellsworth et al., 2012). However, a potential larger leaf 

biomass as a result of increased plant carbon uptake can potential increases the overall ecosystem 

respiration. Feedback process of increase biomass with elevated CO2 potential moves the ecosystem 

toward a new equilibrium, where essential elements and water shortage may insensitive the 

photosynthetic down-regulation resulting in an overall reduction in plant carbon uptake (e.g. Reich et 

al., 2006).  

Temperature is controlling most enzymatic processes and plants are capable to acclimate 

rapid to new growth temperatures within seasons (e.g. Sage & Kubien, 2007). Direct effect of 

photosynthesis and leaf respiration of increased temperature is well documented. However in the light 

of climate change; it is argued that effects of warming on the plant physiology are more related to 

effects on other levels of the ecosystem (Kirschbaum, 2004). In Europe  increased mean temperatures 

during the last decades has resulted in an overall earlier onset of the spring and summer of ca. 

2.5days/°C (Menzel et al., 2006). Furthermore temperature increase are documented to increase soil 

mineralization and ecosystem evaporation (e.g. Rustad et al., 2001; Schmidt et al., 2004, Kattge et al., 
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2009). Indirectly, changed length of the growing season, nutrient and water availability can be of 

great importance for ecosystem carbon sink capacity (e.g.  Llorens & Penuelas, 2005; Peñuelas et al., 

2007). Increased temperature can stimulate plant productivity directly by increasing photosynthesis. 

But daytime respiration or changes in the temperature responses of respiration can occur, resulting in 

an overall reduction in carbon uptake (e.g. Campbell et al., 2007). Climate change warming is 

expected to be diurnal asymmetric and most pronounce during nighttime (Easterling et al., 1997). 

Studies with  nighttime warming have showed that increased nighttime respiration resultin stimulated 

daytime photosynthesis the following day, increasing the carbon sink strength(e.g. Griffin et al., 2002; 

Turnbull et al. 2002 & 2004). Further increased soil  mineralization and thereby increase the nitrogen 

availability for plants resulting in an increasing photosynthetic capacity (Kattge et al., 2009). Thus, 

positive responses of warming in combination with elevated CO2 can be expected.  

Additionally to elevated CO2 and warming, precipitation patterns are expected to change 

dramatically (IPCC, 2007). In temperate ecosystems no changes in the amount of precipitation are 

expected, however heavier rainfall is expected to be more frequent increasing the amount of longer 

drought periods (Boberg, 2010; Christensenet al., 2010) By definition water limitation are one of the 

strongest stress factors at all levels of terrestrial ecosystem. Drought reduces most physiological 

processes, such as  gs, Vcmax, electron transport (Jmax)  and maximal light- and CO2- saturated 

photosynthesis (Amax); negatively influencing the plant carbon uptake (e.g. Nogués & Baker, 2000; 

Wilson et al., 2000; Midgley et al., 2004). Reduced functionality due to water shortage have be shown 

to delay phenological process related to growth and germination  (e.g. Signarbieux & Feller, 2011; 

Albert et al. 2011 a/b; Jentsch et al., 2009; Prieto et al., 2008; Llorens & Penuelas, 2005). Additional 

plants growth strategies have been shown strongly to influence the physiological processes, both 

during drought and especially in reestablishment after rewetting (Albert et al., 2012). Carry over 

effects of strong water shortage in later seasons have been shown in different species minimizing 

photosynthetic capacity (e.g. Ogaya & Peñuelas, 2003; Albert et al., 2013).  In combination with 

elevated CO2 severe drought in the drought-tolerant dwarf scrub Calluna vulgaris, have been shown 

to synergistic degreasing gs, but carbon uptake are maintained by   higher partial pressure of CO2 

(Albert et al., 2011a). 

Long term ecophysiological responses on temperate heathland ecosystem to elevated CO2, 

passive night-time warming and periodic summer drought and the full combinations were investigated 

in a multi-factorial setup, CLIMAITE. The experiment was designed according to the climate change 

scenario  in Denmark 2075 (Mikkelsen et al., 2008). Different physiological responses to treatments 

in the two dominated plants at the site, the grass Deschampsia flexuosa and the evergreen dwarf scrub 

Calluna vulgaris were found after 2 years of treatment (Albert, 2011 a/b/c). Natural environmental 

fluctuations forces plants to adjust physiological in relative short term, thus direct effect of treatment 

after 6 year are expected to be the same as in the second year. We suggest that long term ecosystem 
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acclimation can influence the physiological process indirectly e.g. via feedback from changed soil 

properties or by a structural change in the plants. Thus, 6 years of treatment can have moved the 

ecosystem against a new equilibrium causing further plant physiological acclimation.  Here we report 

long term responses on plant physiology, water relation and leaf trait in the Deschampsia and Calluna 

to 6 years of climate change manipulations.  

 
Method and Material 

Experimental site and metrological observation  

The data was collected in the period from May - October 2011 at the experimental study site of the 

long-term climate change experiment CLIMAITE (www.climaite.dk) situated in North Zealand, 

Denmark (55°53’N, 11°58’E). The ecosystem is a temperate heathland on a nutrient poor and sandy 

soil, with a pH of 4.5 in the topsoil. The vegetation is dominated by a grass, Wavy- hairgrass 

(Deschampsia flexuosa L.) and the evergreen dwarf scrub Heather (Calluna vulgaris L.). The annual 

precipitation sum was 692.9 and the annual mean temperature was 10.0 °C in 2011. Further 

information of the study site can be found in Mikkelsen et al. (2008). 

The climate change experiment are including treatments of un-treated control (A), elevated 

CO2 (CO2), passive nighttime heating (T), periodic summer drought (D) and all combination (TD, 

TCO2, DCO2, TDCO2) replicated in six blocks in a complete split-plot design. Each block includes 

two octagons of 6.8 m diameter, divided in four plots. With the technique of Free-Air-CO2-

Enrichement (FACE) one octagon in each block are exposed to 510 ppm CO2 during daylight hours. 

The passive nighttime heating is performed by automated infrared reflective curtains covering one 

half of each octagon. Experimental drought is performed, during a period of two-five weeks in the 

spring or summer each year of the experiments, by automated rain-excluding curtains, activated by 

rain, covered one half of each octagon. Drought treatment is stopped if the soil water in the top 20 cm 

is reduced to 5 %. Together with the nighttime curtains the rain-excluding curtains creates the split-

plot design. The experimental treatment of CO2 and warming was started in October 2005. In each 

experimental plot soil water content over two depths (0-20cm and 0-60 cm) has been continually 

recorded using time domain reflectometry (TDR). Simultaneous temperature where measured in 20 

cm height, 0 and 5 cm depth. For further technical detail of the setup, see Mikkelsen et al. (2008).  
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Table 1. Precipitation and minimum daily mean SWC (in %) in 0-20 and 0-60 cm soil depths during the employed 
extended drought periods between 2006 and 2011. 

 

    
0-20 cm (vol %)  0-60 cm  (vol %) 

Year 
Experimental 
drought period 

Annual 
precipitation 

Precipitation 
excluded  D  DCO2 TD  TDCO2 

 
D  DCO2 TD  TDCO2 

2006 3/7-4/8 676.4 mm 11 % 4.7 5 4.6 5.1 
 

4.5 7.5 4.7 6.5 

2007 21/5-21/6 894.1 mm 8 % 5.4 5.2 4.6 4.4 
 

5.5 6.8 5 5.3 

2008 
5/5-26/5 + 
16/9-1/10 665.8 mm 5 % 5.4 5.7 4.8 5.2 

 

5.8 7 5 5.4 

2009 
18/5-24/5 + 
26/6-12/7 732 mm 5 % 7.7 6.8 6.3 6.6 

 

8.4 8 5.8 6.6 

2010 4/5-2/6 882.2 mm 8 % 8.7 9.4 9.1 8 
 

9.6 10.4 8.5 8.7 

2011 2/5-31/5 692.9 mm 8 % 8.4 16.7 8.2 7.3 
 

8.8 10.2 7.4 7.8 

 

Leaf Gas exchange 

Leaf level gas-exchange of CO2 and H2O were measured in situ using an open portable photosynthetic 

system using leaf adaptor frames (Boesgaard et al., 2013). Three identical instruments (LI-6400LI-

COR Biosciences, Lincoln, Nebraska, USA connected to a standard 2*3cm chamber/cuvette with a 

LED light source (6400-02B)) were used for measurements in campaigns during May – October 2011. 

Monthly campaigns within treatments were performed on Deschampsia in 18-19 May, 20-22 June, 

11-12 July, 8-14 August, 12-14 September and 5-7 October and on Calluna 13-21 July, 16-18 August, 

19-22 September, 25-27 October 2011.  

Healthy shoots of Calluna with similar structures, from the upper part of the canopy and a 

small bundle of 10 – 15 green leaves of Deschampsia were selected for every measurement. To 

improve the precision of measurements such as leaf dark respiration, shoots or leaves were placed in 

leaf adaptor frames (LAF) as recommended in Boesgaard et al. (2013) and sealed using blue tack 

(Lyreco, 59770 Marly, France).  

Leaves were acclimatized to cuvette conditions for 6 min at 390 ppm CO2 under ambient 

CO2  and 510 ppm in FACE plots, before net photosynthesis and stomatal conductance were 

stabilized (CV < 1%). Using the Li-6400 auto-program ‘ACi-curves’ (Open 6.2) CO2 response-curve 

was measured stepping down the CO2 concentration from 390 ppm (510 ppm) to 50 ppm CO2 and 

then brought back to the 390/510 ppm level again, for at least 3 min. After the reestablishment of the 

CO2 level the concentration of CO2 was stepped up to complete saturation at 1400 ppm CO2. Light in 

the cuvette was set at 1500 µmol photosynthetically active photons m-2 s-1 (PAR). To reflect the true 

ambient temperature of the day, block temperature was set to the expected mean temperature of the 

measuring day (controlled to be ± 5 °C the target value, due to limitation of the equipment). Relative 

humidity was adjusted to 45-55% during measurements. Maximum carboxylation (Vcmax) and electron 

transport (Jmax) rates were calculated from curve-fitting to the Farquhar-von Caemmerer-Berry 

(FvCB) model equations (Dubois et al., 2007 and Bernacchi et al., 2001). When no minimum between 
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the Rubisco-limited and RuBP-regeneration-limited phases could be found by the fitting procedure, 

Vcmax was fitted using data with Ci<500 ppm and Jmax was fitted using data with ci > 550 ppm. 

Following the measurements of ACi-curve the auto program “Light-curves” on the Li-6400 was used 

to detect the light response. The light response was done stepping down the light from 2000 µmol 

photosynthetic photons m-2 s-1 (PAR) in 9 steps to zero. The photosynthesis saturating reference CO2 

concentration was set to 1400 µmol m-2 s-1. From the light-response curve the potential maximum 

light-saturated rate of photosynthesis (Amax) and apparent quantum yield (ɸ) was estimated using a 

non-rectangular hyperbola as regression model (Lambers et al., 1998). In a last step, leaf dark 

respiration (RD) was measured directly in the dark at 390/510 ppm in none-FACE and FACE plot, 

respectively. RD was estimated from the 2 sec data during 6 minutes.  

The light-saturated net photosynthesis (Asat), intercellular CO2 concentration (ci), stomatal 

conductance (gs) and transpiration (E) were extracted from the first point in the CO2 response-curves 

at CO2 reference = 390 ppm CO2 in non-FACE plots and at 510 ppm in FACE plots. The water use 

efficiency (WUE) was calculated as WUE = Asat/E. All data was corrected with empty-chamber 

measurements as recommended, for data collected with leaf adaptor frames (for detailed protocol see 

Boesgaard et al., 2013). 

 

 

Leaf characteristics, area, weight, nitrogen and carbon  

After each measurement the leaf adaptor frame containing the leaves were cut off and plant material 

inside the frame is cut out in the laboratory. Leaf adaptor frames containing Deschampsia leaves were 

scanned with the frames against a known distance of 3 cm. Calluna leaves and stems were detached 

from each other and placed on a paper, with a square of the fixed dimension of 3x3 cm, a photo was 

taken placing the paper with leaves and stems on top of a light table. Area estimations were quantified 

using the image processing program (ImageJ, National Institute of Health, USA). The side of the 

square (3 cm) was in all cases the reference length, and area was determined from 8-bit colour 

pictures with the threshold approach. The scanned Deschampsia leaf area  and the photographed 

Calluna leaf areas are given as projected leaf areas, after Smith et al.  (1991). Dry weight of the plant 

material was measured after drying in 48 hours at 60°C. The specific leaf area (SLA) was determinate 

from the weight and area as SLA= weight (g) /area (cm2). The dried leaf material was analyzed for 

carbon, nitrogen concentration and 13C natural abundance (δ13C) on an elemental analyzer (CE 1110, 

Thermo Electron, Milan, Italy) coupled to a Finnigan MAT Delta PLUS isotope ratio mass 

spectrometer (Thermo Scientific, Bremen, Germany). Expression of the 13C/12C isotope ratios as delta 

notation (δ13C) is the relative measurement against the 13C/12C ratio in an international standard 

(Vienna Pee Dee Belemnite): δ13C = 𝑅𝑠𝑎𝑚𝑝𝑙𝑒−𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

∗ 1000‰ . 
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Data analysis and Statistics 

Treatments effects per monthly campaign were analyzed with a linear mixed effect model using the 

lmer function in the lme4-package of the statistical free-software R (R Develpment Core Team, 

2010). The lmer function provides the option to incorporate both fixed-effect parameters (main 

factors) and random effects (random factors).  Main effect factors of the model were the treatments 

elevated CO2 (CO2), warming (T) and drought (D) and their full factorial interactions (T x CO2, T x 

D, D x CO2, T x D x CO2), while block were set as a random factor.  F-values and p-values were 

extracted with the MixMod-package using the SAS-algorithm. Normal distribution of data was tested 

with Levene’s test and was either log(x) or 1/x transformed if necessary. Homogeneity of variance 

was inspected visual with residual plot. Differences between regressions were tested using pairwise t-

test and Tukey’s grouping test.  

Level of significance were set to be p-values < 0.05 and trends were notes if p-value < 0.1. 

The simplest interaction that can occur between two or more single factors are additive. An additive 

effect is when two or three factors effects are simply added to each other. Statistically additive effect 

will not always be shown as significant due to lack of single factor significance. Watching interaction 

plots produced by the MixMod-package significant interactions were categorized as synergistic if 

effects of single factors have a stronger impact together, bigger than the expected additive effect, or as 

antagonistic if the combined interaction is dampening the expected additive effect.  

 

Results 

Climate and experimental control measurements 

A major dieback of the standing population of Calluna vulgaris was seen after the following weather 

situation: A period with snow cover from November 2010 to mid-January 2011 was followed by 1-2 

weeks of warm sunny weather and in end January to end February 2011 there was snow free 

conditions, many clear sky days and repeatedly hard frost events (below zero during day-time).. In 

April 2011 only around 5-10% of all Calluna stands had functioning green shoots. New shoots regrew 

from the dried stands during May-July 2011, with an approximate 75% regrowth (personal 

observation, Kristine S. Boesgaard & Nina W. Thomsen). The dieback was not quantified but 

observations indicated no differences between treatments (personal observation, Johannes….) and 

Deschampsia flexuosa was not directly affected by the of weather situation. Slow regrowth in spring, 

homogenous leaf structures across the whole experimental area was first established in early July 

(personal observation, Kristine S. Boesgaard & Nina W. Thomsen). 

The dry winter/spring, causing the dieback of Calluna, was followed by, to the Danish 

normal from 1960-1999 (http://www.dmi.dk), a comparable warmer and wetter summer.  In 2011 the 
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experimental drought was performed during one month starting on May 2nd and excluded 57.8 mm of 

rain, corresponding to 8.3% of the annual precipitation in 2011. The minimum daily mean soil water 

content (SWC %) reached in drought plots were within the period found to be 8.8 vol % in 0-20 cm 

depth and 8.4 vol % in 0-60 cm depth. Compared to earlier years in the experiment the minimum 

SWC% reached with drought was high, ex. in 2006 the lowest value was below the critical threshold 

of 5 vol % (4.7 vol % in 0-20 cm and 4.5 vol % in 0-60 cm) and can be explored in Table 1. During 

the present study daily mean air temperature was varying between 5.0-21.0 C with highest mean 

temperatures in June - August.  

Within treatments SWC % in 0-20 cm depth was significantly reduced by drought during the period 

and did never meet the ambient level either before or after (figure 1). Warming (T) have as the 

experimental drought (D) resulted in a significantly lower SWC % in 0-20 cm depth across the entire 

experiment (2005 -2011, data not shown) and the full-factorial combination (TDCO2) follows a 

similar pattern, where DCO2 and TCO2 is significantly increased compared to D and T, respectively. 

A similar pattern is seen in 0-60 cm depth (not shown).  Soil temperature within treatments was 

significantly increased in 5 cm depth across the period, with strongest increase in early summer 

(May).  
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Figure 1. Air temperature, precipitation and soil water content. A) Daily mean (black), minimum (blue) and 
maximum (red) temperature in 2 m height at the CLIMAITE experimental site. B) Daily mean soil water 
content (SWC %) in 0-20 (―) and 0-60 cm depth (- - -). Bars are daily precipitation in mm.  C) % change in 
SWC (0-20 cm) from non-treated control (A). The treatments are; extended drought (D, ―), passive nighttime 
warming (T, - - -), elevated CO2 (CO2, ····), combination between drought and elevated CO2 (DCO2, ·―·―) and 
the full combination (TDCO2, - - -). Experimental drought period are indicated on each panel by vertical black 
lines and lack-phase where soil water is still lower in 0-60 cm depth after drought is stated by a vertical dotted 
black line. Triangles (∆) in C) indicated state date for campaigns measuring leaf gas exchange on Deschampsia 
flexuosa and closed circle (●) Calluna vulgaris.   

 

Photosynthetic performance in Deschampsia flexuosa and Calluna vulgaris  

Across the study period light-saturated photosynthesis (Asat) was higher in Deschampsia than Calluna, 

only during September campaign Calluna in generally had an overall higher Asat (figure 2), and varied 

between 12.8± 3.1– 29.6±5.0 µmol CO2 m-2 s-1.  Deschampsia had a continuous lower dark respiration 

(RD), from highest in May and lowest in October (5.0 ±0.8 and 1.5±0.4 µmol CO2 m-2 s-1, 

respectively). Calluna RD varied between 2.5± 0.5– 8.7±0.4 µmol CO2 m-2 s-1.  Deschampsia 

maintained higher water use efficiency (WUE) (figure 3) and stomatal conductance (gs) across the 

period compared to Calluna. The two species had different significant responses to treatments, e.g. 

elevated CO2 significantly stimulated Asat in Calluna (p<0.001), while this could only be seen as a 

trend in Deschampsia (p=0.09) as seen in figure 2.  Warming did not influence Asat in either of the 

species, drought significantly reduced Asat in Calluna (p<0.04), mainly driven by the strong impact in 
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July (single campaign statistic p<0.001). Multi-factor treatment overall followed responses found in 

single-factor treatments, with an increased Asat for Calluna and no change for Deschampsia. RD 

responses correlate with Asat for both species, resulting in a significantly increased RD in Calluna 

within elevated CO2, where no responses was seen on Deschampsia.  

 Elevated CO2 in Deschampsia was found to be related to a significantly lower Vcmax and Amax 

(p<0.05), where either seasonality or treatment effect was found on Jmax (table 2). Deschampsia did 

not have significantly higher ci or gs, but significantly increased WUE in the plants (p<0.001). Calluna 

did increase ci in elevated CO2 and also increased Amax (p<0.001 and p<0.05, respectively). Neither 

Vcmax, Jmax nor WUE was affected by elevated CO2 (figure 3), but Vcmax trended to be reduced in 

drought plots (p=0.08). No other single factor effect was found and interactions different from 

additive, was all found to be antagonistic, and was only seen for Calluna in gs (DxCO2 and 

TxDxCO2, p<0.05) and WUE (TxDxCO2, p<0.01).  Campaigns means ± SE of Asat, RD, Vcmax, Jmax, 

Amax, gs, WUE and ci can found in table 3. 
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Figure2. Mean Asat ±SE across the measuring period. A-C) and E-G)  mean of all ambient CO2 (dashed line) and 
elevated CO2 plot (solid line), all warming (dashed line)  and none warmed (solid line) and all drought treated 
(dashed line) and none drought plot (solid line), for Deschampsia and Calluna respectively (n=24). D) and H) 
ambient plot (solid line) and the multi-factor treatment (dashed line), for Deschampsia and Calluna, respectively 
(n=6). Single factor differences are denoted on directly above the measurement, where interactions are denoted 
in top left corner of each graph. Difference is indicated as significant with * p< 0.05 and **p<0.01, trends on 
p<0.1 is noted †.    
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Leaf chemistry and structure 

The species differed also in leaf chemistry and structure responses to treatments (table 2). 

Deschampsia did not change in leaf thickness (SLA) but significantly reduced both leaf nitrogen and 

increased the C to N ratio (p<0.001) to growth in elevated CO2. Calluna in elevated CO2 not only 

reduced N and increased C/N in the leaves (p<0.01), but also increased leaf thickness (reduced SLA, 

p<0.05).  δ13C in the leaves was more depleted in the elevated CO2 treatment (p<0.001) for both 

species due to another isotopic signature in the added CO2. No other treatments effect was found. 

Campaign means and standard errors can be found in table 4.  

 

 

 

Figure 3. Seasonal responses to elevated CO2 treatment on water use efficiency (WUE) and δ13C in both 
Deschampsia flexuosa and Calluna vulgaris. A) Mean ± SE of all elevated CO2 (solid line) and ambient CO2 
plot (dotted line) in Deschampsia (circles) and Calluna (triangles), n=24. B) Means of all δ13C in elevated CO2 
and ambient CO2 plot, in Deschampsia and Calluna, respectively.  
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Discussion 

Experimental and methodological considerations 

Outdoor experiments running over long period demands a high level of maintaining and therefore 

treatment functionality should always be questioned. At the time where the present study was carried 

out the CO2 enrichment (FACE) had been running for more than six years with only few unintended 

and planned down-periods. CO2 enrichment was shot off during nighttime and in period with high 

wind and snow cover (Miglietta et al., 2001). During the present study plants within CO2 enrichment 

experienced the target CO2 concentration of 510 ppm as hourly median during daytime (data not 

shown).  

 Passive nighttime warming performed indeed increased the average nighttime temperature, 

however less than expected. Across the entire experiment the warming on average increased the 

temperature with +1.2°C with highest increases during spring and summer. When solar input are high 

and minimum temperature during nighttime go just below 0°C the warming treatment increased the 

nighttime air temperature with up to 4 °C and reduced the amount of night-frost events. Under certain 

conditions air temperature was increased 3-5 hours after sunrise, however often less (Mikkelsen et al., 

2008) and a possible stimulating of photosynthesis could happen in such periods (Sage & Kubien, 

2007). Methods for improving the performance of nighttime warming systems are given in Bruhn et 

al., (2013). 

The warming treatment increased the amount of growing degree days (GDD) due to a 

reduction of nights with frost (Mikkelsen et al. 2008). In the spring of the third year of treatment 

(April-May 2007), significantly higher biomass of Deschampsia in combination with an increased 

photosynthetic capacity within warmed plot, support that warming treatment influenced the onset of 

growing season. Nevertheless, the earlier growing onset did not increased the total biomass later in the 

season and the effects on photosynthetic capacity also disappeared (Kongstad et al., 2011; Albert et 

al., 2011c).  Calluna was on the other hand not stimulated to initiate early growth in the warmed plots 

and in general nighttime warming did only influence Deschampsia minimally (Kongstad et al., 2012). 

In the present study measurement were conducted from May – October 2011 and none stimulation of 

the photosynthetic capacity was found, thus it can be argued that the early onset of the growing season 

have been present earlier or lacked due to dry spring condition observed in February- May 2011 

(discussed later). 

Beside direct effect of warming increased night-time temperature has been reported to 

increase night-time leaf respiration and even decreasing the net photosynthesis in the hours after 

sunrise (e.g. Griffin et al., 2002; Turnbull et al. 2002 & 2004). In the present study all measurement 

were conducted in the timespan two hours after sunrise and two hours before sunset, thus neither 
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negative nor positive stimulation on respiration or photosynthesis was expected or found.  Only in 

combination with elevated CO2 or/and experimental drought warming was found to influence the 

response. Thus, single factor effects of warming will not be discussed further.  

 The third treatment within the CLIMAITE experiment is exclusion of precipitation in 

selected periods. The first experimental drought was performed in July - August within the second 

year and resulted in an exclusion of c.11% of the total annual precipitation. Following year’s 

precipitation exclusion was mainly performed in spring and the soil water content never went down to 

minimum as within the first period (Table 1). Natural heavy rain events with in the experimental 

drought (2008 and 2009) forced treatments to be stopped in risk of material destruction of the setup. 

In these years drought periods performed twice in the season and both time treatment resulted in an 

exclusion of c. 5% of annual precipitation. Summarizing, drought treatment was successful in all 

years of the experiment.   

 At a shorter time scale (day – months) plant reallocation of nutrients can occur to 

longer environmental changes; like the experimental treatment in the present study, resulting in a 

physiological acclimation (Albert et al., 2011a/b/c; Ainsworth & Long, 2005; Ainsworth & Rogers, 

2007). At a longer time scale (months- years) ecosystem feedbacks (as described by Körner, 2006) to 

long term environmental changes can   reduce soil water and nutrient availably causing further plant 

physiological acclimating. . Ecosystem responses are slow and even though they in many cases are 

induced by faster plant physiological processes,  feedback process from the ecosystem back to the leaf 

can be expected to be slow and first be seen in long term perspective (e.g. Körner, 2006: Ainsworth et 

al., 2003).  

Long term responses on the plant physiology to climate change experiment, CLIMAITE, 

was in general found to be similar to findings within the second year of treatments. However, inter-

annual variation within the two study periods influences the magnitude of the leaf level responses on 

both Deschampsia and Calluna.  

 

Physiological performance of Deschampsia   

The two co-occurring species at the experimental site,  Deschampsia and Calluna belong to two 

different function types and respond differently to  environmental changes (Albert et al., 2012). 

Deschampsia is an opportunistic grass, with a variable number of leaves per shoot and a maximal leaf 

lifespan less than a year (Gimingham, 1960; Aerts et al., 1990; Jackson et al., 1999). Deschampsia 

can adjust leaf nitrogen and redistribute nitrogen between leaves and rhizomes (Andresen & 

Michelsen, 2005; Andresen et al. 2009; Nielsen et al, 2009). The opportunistic life strategy includes 

the capability fast to reallocate importance nutrient and water resource  (Jackson et al., 1999).  
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Effects of elevated CO2 

Growth in elevated CO2 is known to effect grass physiology more and aboveground biomass less 

compared to slow growing scrubs and trees (Ainsworth & Long, 2005; Nowak et al., 2004). After six 

years of treatment Deschampsia still meet the hypothesis that growth in elevated CO2 led to down 

regulated photosynthetic capacity; as a reduction in the maximum carboxylation rate (Vcmax) and in the 

maximum light and CO2 saturated photosynthesis (Amax). However, as it was found within the second 

year (Albert et al., 2011b) photosynthetic stimulation was no longer significant in elevated CO2, but 

only tended to be higher. Stomatal conductance was not found to be reduced in the second year 

(Albert et al., 2011b), but  in the present study we saw a tend towards lower stomatal conductance. 

Reduced stomatal conduction can lead to homeostasis, where plants grown at elevated CO2 has 

similar intercellular CO2 concentration (ci), as plants growth at ambient atmospheric CO2 (Campbell 

et al., 2007).  During the study conducted in the second year soil water content was ca. 50% lower 

across the growing season compared to the year of the present study. In low soil water content, 

stomatal conductance is decreased in all treatments and the differences to the treatment of elevated 

CO2 becomes smaller (Albert et al., 2011b). This might explains the absence of response on stomatal 

conductance in elevated CO2 within the second year. Water use efficiency was significantly improved 

in elevated CO2 across the sixth growing season of the experiment. The improvement of WUE was 

not the result of a slightly higher photosynthesis (n.s., p=0.09) and   reduced stomatal conductance 

(n.s., p=0.07), conflicting with the results from the second year (Albert et al., 2011b),.WUE 

continually increased across the growing season and can partly be explained by a higher stimulation 

of photosynthesis in late season and new emerging leaves from the second leaf flush after flowering 

and increased soil water in July (see Albert et al., 2012).  

Reduced amount of leaf nitrogen is in line with other studies and was also found with in the 

second year (e.g. Albert et al., 2011 a/b/c; Larsen et al., 2011). However as pointed in Albert et al. 

(2011b) the reduced N was not found per leaf area indicating a reallocation more than a dilution, 

consistent with the opportunistic growth form (Andresen & Michelsen, 2005; Andresen et al. 2009; 

Nielsen et al, 2009).  Leaves in elevated CO2 were thicker after six years of treatments contradicting 

finding from the second year (Albert et al., 2011b), which we suggest can be explained by the long 

term extra carbon available and buildup of energy over the extra treatment years. 

Effects of prolonged drought 

It is a general opinion that water shortage induces down-regulation of photosynthesis, stomatal 

conductance and photosynthetic capacity and Deschampsia shows the responses in the second year of 

treatment (Albert et al 2011b). However, in the 6 year of treatment Deschampsia did not down-

regulate the photosynthetic capacity in relation to the experimental drought. Albert et al. (2012) points 

out that under mild to modern drought, Deschampsia, are able to remain both stomatal conductance 
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and photosynthetic capacity, reducing the aboveground leaf biomass. As water shortage increases 

within a dry period, leaf dieback induces osmotic adjustment in remaining leaves and strongly 

improving WUE (Verslues et al., 2006). In line, WUE is increased within experimental drought 

period, causing the higher WUE seen in May and June (figure 3). On the other hand, the magnitude of 

photosynthesis was higher than the decrease in stomatal conductance increasing the WUE in later 

season.   Under severe drought as the first experimental period, the reduced leaf biomass was 

sufficient enough to main photosynthesis, thus photosynthetic capacity were reduced via decreased 

stomatal conductance (Albert et al 2011b). In the sixth year the experimental drought was not as 

severe as in the second year. Thus leaf biomass reductions caused maintain photosynthetic capacity, 

stomatal conduction and net carbon uptake during the drought.  

Interactive effects of warming, drought and elevated CO2 

In the second treatment year different interaction between the single treatments has been reported for 

several ecophysiological parameters and the interactive response have mainly been found to be in 

relation to water shortage and other environmental variables (Albert et al., 2011b/c). However in the 

present study mainly additive responses to treatments was found. Looking at none significant additive 

responses it is important to have in mind, that the magnitude of the additive response is not the true 

additive mean and often the effect of responses is dampened when added to each other (Leuzinger 

etal., 2011).  As explained above warming treatment did not influence the physiological responses 

reported here. Only in combination with experimental drought warming synergistically decreased 

Deschampsia leaf thickness, explained by the overall lower soil water content in warmed plots and as 

drought as a factor decreased leaf thickness. In general, within multifactor treatments including 

elevated CO2 (TCO2, DCO2 and TDCO2) Deschampsia responded similar as to single factor 

treatment of elevated CO2. 

 

Physiological performance of Calluna  

Where Deschampsia is a grass with opportunistic life strategy, Calluna is considered of be a stress 

tolerant competitor, with traits adapted to periodically drought and nutrient poor habitats (Grime et al., 

1988).  Calluna are characterized having small xeromorphic leaves with a long life-span and low 

nitrogen. Additional Calluna are known to have high nutrient reabsorption and low photosynthesis 

(Aerts et al., 1990; Gimingham, 1960; Jackson et al., 1999). Evergreens are often stress tolerance and 

are likely to constrain the ability to maximize photosynthetic capacity in relation to stimulating 

environmental variables (Warren & Adams, 2004) .  
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Effects of elevated CO2 

Shrubs and trees are less responsive in optimizing their photosynthetic machinery in relation to 

environmental changes, thus adjustment to growth in elevated CO2 is less pronounced in these 

functional types (Nowak et al., 2004). Both within the presented year and the second year of the 

CLIMAITE experiment Calluna showed increases photosynthesis in elevated CO2  (Albert et al., 

2011a). However, as observed in the certain periods within the second year (Albert et al 2011c), no 

significant down-regulation of the photosynthetic capacity was found during the present study period. 

Only in single campaigns in end of the growing season photosynthetic capacity tended to be down-

regulated. In the sixth year a dry and sunny winter/spring caused a giant dieback of Calluna. New 

shoots were morphological different from the old ones e.g. they were smaller, with a ca. 10% higher 

SLA, than leaves analyzed in the second year (Albert et al. 2011a). More over leavesprobably 

contained less lignin and lower shoot root ration (more root biomass available per above ground 

biomass). This difference might have stimulated a demand for extra carbon and energy in the new 

shoots and partly explaining why no down regulation was seen here compared to the second year.       

Calluna leaves in elevated CO2 grew significantly thicker and N per area leaf was 

unchanged. Evaluated in combination with an increased C/N ratio the reduced N is not reallocated in 

the system but simply diluted within thicker leaves, in line with other findings (e.g. Kongstad et al., 

2012; Andresen et al. 2005; Kattge et al., 2009). The maintained N per leaf area can also explain part 

of the absent of down regulation of photosynthetic capacity in elevated CO2.  

Water use efficiency is often found to be increased in elevated CO2 (e.g. Ainsworth & Long, 

2005; Nowak et al., 2004) and in line Calluna had an improved WUE in the second year of  treatment, 

mainly due to increased photosynthesis but also in minor degree degreased stomatal conductance 

(Albert et al. 2011a).  Integrated soil water status as δ13C were as described for Calluna, significantly 

related to WUE, which was not the case for Deschampsia (Albert et al., 2012). As mention earlier the 

soil water content in the campaigns in the second year was only half of the content in the present’s 

year. At high soil water content stomatal conduction are high and despite stimulation in 

photosynthesis WUE is not significantly improved in elevated CO2, within the present study (figure 

3). However, as it was argued for Deschampsia increased WUE in late season is related to a smaller 

increase in stomatal conductance compared to the decrease in photosynthesis.  

Effects of prolonged drought 

The significantly reduced photosynthesis in Calluna in the campaign closest to the experimental 

drought was in accordance to the expectation from drought tolerant species. The lower photosynthesis 

in drought plot could not only be explained by reduced stomatal conductance as it was found in the 

second year of treatment (Albert et al., 2011a). The experimental drought in the present study year 
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was started on top of an already natural dry period, which caused a giant dieback of the Calluna. The 

dieback was not observed to differ between the different treatments, but a significantly lower green 

fraction of Calluna biomass was observed post-drought, increasing to the same level late summer 

(personal communication with J. Ransjin et al., unpublished). Thus a slightly decreased 

photosynthetic capacity observed in combination with decreased photosynthesis in July indicated a 

later onset of growth after the dieback.  

Interactive effects of warming, drought and elevated CO2  

Combination of single factors ecophysiological responses on Calluna was, as for Deschampsia, 

explained by various different interactive ways in the second year of treatments. In single campaigns 

across the experimental period significantly interactions was found, mainly antagonistic and in line 

with findings explained in Albert et al. (2011a). However across season interactions was found mainly 

to be additive (no significant in statistic) and similar to responses to thoughts in elevated CO2. Only 

during in single campaign of July photosynthetic of both DCO2 and TDCO2 was related to an 

additive effect of both D and CO2 counterbalance the reduced photosynthesis ending at a level close 

to none-treated control. Mainly driven from the response of the single campaign in July antagonistic 

effects of DxCO2 and TxDxCO2 were found on the stomatal conductance. The lower, not significant, 

stomatal conductance in elevated CO2 and in drought neutralizes each other resulting in the same 

stomatal conductance as in none-treated plots. Warming treatment did in general not influence the 

responses we have detected during this study, and the full combinations are acting like the 

combination of only D and CO2.  

 

Conclusions 

After 6 years of treatment the leaf physiology data showed the same reactions as seen in the beginning 

of the experiment (within second year) for both of the two co-occurring species at the site. This 

suggests that none long term ecosystem responses were acting on leaf level physiology and this 

confirm our hypothesis. The investigated heathland ecosystem can be considered to be fully 

developed and the dieback of Calluna in the sixth winter of the experiment only influences 

aboveground biomass. Thus, long -term belowground responses was not canceled. Feedbacks from 

ecosystem changes that strongly can affect plant physiology are related mainly to changes in nutrient 

and soil water availability. Increased biomass production as a result of photosynthetic stimulation of 

elevated CO2 and warming can in long term change the resource supply in the system, e.g. leading to 

progressive nitrogen limitation (PNL, Reich et al., 2006) or severe water shortage. Moreover, within 

the first three years no changes in the aboveground biomass were found in elevated CO2 (Kongstad et 

al., 2012), only belowground biomass was significantly increased (M. Arndal et al. not published). 
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Thus, elevated CO2 within the first years of the experiment did not induce biomass expansion much. 

In line Larsen et al. (2011) did not see any changes in the nitrogen cycle in elevated CO2 and within 

the first years CO2-induced stimulation of photosynthesis did not induce strong ecosystem changes. 

Nor or less it can be expected that after longer time the stimulated root growth in elevated CO2 can 

have result in an aboveground biomass increase. Within the sixth year normalized difference 

vegetation index (NDVI) showed a higher green biomass of Calluna in elevated CO2 plots, indicating 

a higher above ground biomass of Calluna (J. Ransjin et al, not published). In line, Calluna was found 

to be significantly stimulated in elevated CO2 and since leaf respiration was not changed their 

indicating a potential higher carbon uptake.  Deschampsia did also not show any respiratory change 

nor a stimulation of photosynthesis in elevated CO2, thus no increases biomass was expected here, in 

line NDVI over Deschampsia was not found be changed (J. Ransjin et al, not published).  

Climatic manipulative treatments in the CLIMAITE experiment showed that on top of 

seasonal and inter-annual variability elevated CO2 were the most effective treatment influencing leaf 

level physiology. Extended drought strongly reduced the CO2-induced stimulation of Calluna 

photosynthesis and caused strong leaf dieback in Deschampsia. Thus species growth strategies are 

strongly important for ecosystem responses (also evaluated in Albert et al., 2012). Warming at c. 1°C 

was in the present study not found to influence ecophysiology, however in the beginning of the 

experimental manipulation observations for an earlier on set of growing season was done (e.g. Albert 

et al. 2011a/b/c; Kongstad et al., 2012). Ecophysiological responses in both the second and sixth year, 

to combinations of treatments were mainly found to be additive and antagonistic interactions was 

dominating over synergistic (also in line with Larsen et al., 2011).  

Leaf physiology respond rapid to environmental changes and this enable plants to acclimate 

fast to new environmental conditions. Daily, seasonal and inter-annual variability control the 

ecophysiological responses more than the climate change manipulations increases the robustness of 

response. In long term ecosystem feedbacks of climate change induced responses can lead to changed 

ecophysiology. However, six years of in-situ climate change manipulation have not changed a Danish 

heathland ecosystem strong enough to be evaluated at a leaf level scale.  
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