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Abstract 

 

 The present dissertation describes the research performed at the Technical University of 

Denmark and at the Institute for Glycomics in the period April 2008 – Oct 2011. The thesis 

involves four discrete topics related to organometallic and carbohydrate chemistry. 

 

Project 1: Ultrafast Grignard addition reactions in the presence of protic agents 

The addition of allylmagnesium bromide and benzylmagnesium chloride to carbonyl 

compounds was studied in the presence of protic agents (e.g. water, methanol, ethanol, 

phenol). In a number of cases, especially by the use of allylmagnesium bromide the carbonyl 

addition was found to be faster or comparable to the protonation by the reagent. 

 

Project 1: Competition experiments with the Grignard addition reaction 

 

Project 2: Ruthenium catalyzed synthesis of amides from primary alcohols and amines 

The direct synthesis of amides from alcohols and amines with the simultaneous 

liberation of dihydrogen was previously discovered in the Madsen group. Further 

development of the reaction conditions were investigated, in which stoichiometric additives or 

hydrogen acceptors were not required and the reactions were catalyzed by ruthenium N-

heterocyclic carbene complexes. Two catalyst systems were found to be effective promoters 

for the amidation. These two systems do not show any significant differences in reactivity 

indicating that the same catalytically active species is operating. 
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Project 2: Amide synthesis catalyzed by N-heterocyclic carbene complexes 
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Project 3: Synthesis of a trisaccharide probe as a putative dengue virus receptor 

At the Institute for Glycomics major research has been devoted to identify putative 

receptors for dengue virus (DENV). Based on previous studies the GlcNAcβ1-3Galβ1-

4GlcNAc trisaccharide was considered as a putative virus receptor. The synthesis of the 

trisaccharide probe has been achieved by the coupling of the corresponding D-glucosamine 

donor and the lactosamine acceptor, followed by deprotection. The biological investigation is 

in process. 

 

Project 3: Synthesis of GlcNAcβ1-3Galβ1-4GlcNAc trisaccharide 

 

Project 4: Glycosylation with unprotected acceptors 

Regioselective Koenigs-Knorr glycosylation has been studied with a number of 

unprotected acceptors by means of organoboron derivatives, which can either activate or 

block cis-diols via ester formation. By means of phenylboronic acid high regioselective and 

stereospecific glycosidic bond formations were achieved.  

 

Project 4: Regioselective glycosylation of unprotected acceptors 
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Resumé (abstract in Danish) 

 

Denne afhandling omhandler forskning, som er udført ved Danmarks Tekniske 

Universitet og Institute for Glycomics i perioden april 2008 – oktober 2011. Afhandlingen 

består at fire separate emner, som relaterer til metalorganisk kemi og kulhydratkemi. 

 

Projekt 1: Ultrahurtige Grignard additionsreaktioner i tilstedeværelse af protiske reagenser 

Additionen af allylmagnesiumbromid og benzylmagnesiumchlorid til carbonylfor-

bindelser blev studeret i tilstedeværelse af protiske reagenser (f. eks. vand, methanol, ethanol, 

phenol). I et antal tilfælde og især ved brug af allylmagnesiumbromid blev det observeret, at 

carbonyladditionen var hurtigere eller sammenlignelig med protoneringen via reagenset. 

 

Projekt 1: Konkurrence eksperimenter med Grignard additionsreaktionen 

 

Projekt 2: Rutheniumkatalyseret syntese af amider fra primære alkoholer og aminer 

Den direkte syntese af amider fra alkoholer og aminer med samtidig frigivelse af brint 

er tidligere blevet opdaget i Madsengruppen. Yderligere udvikling af reaktionsbetingelserne 

blev undersøgt, hvorunder støkiometriske additiver og hydrogenacceptorer ikke var 

nødvendige, og reaktionerne blev katalyseret af ruthenium N-heterocykliske 

carbenkomplekser. To katalysatorsystemer blev fundet effektive til at fremme amideringen. 

Disse to systemer viste ingen væsentlige forskelle i reaktivitet, som indikerer at den samme 

katalytisk aktive forbindelse er i spil. 

 

Projekt 2: Amidsyntese katalyseret af N-heterocykliske carbenkomplekser 
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Projekt 3: Syntese af en trisakkaridprobe som formoden denguevirus receptor 

Ved Institute for Glycomics har væsentlig forskning været fokuseret på at identificere 

mulige receptorer for denguevirus (DENV). Baseret på tidligere studier blev GlcNAcβ1-

3Galβ1-4GlcNAc trisakkaridet overvejet som en mulig virus receptor. Syntesen af 

trisakkaridproben er blevet gennemført ved kobling af den tilsvarende D-glucosamindonor og 

lactosaminacceptor efterfulgt af debeskyttelse. De biologiske undersøgelser er på vej. 

 

Projekt 3: Syntese af GlcNAcβ1-3Galβ1-4GlcNAc trisakkarid 

 

Projekt 4: Glykosylering med ubeskyttede acceptorer 

Regioselektiv Koenigs-Knorr glykosylering er blevet studeret med en række 

ubeskyttede acceptorer ved hjælp af organoborforbindelser, som enten kan aktivere eller 

blokere cis-dioler via esterdannelse. Ved hjælp af phenylborsyre er høj regioselektiv og 

stereospecifik dannelse af den glykosidiske binding blevet gennemført.  

 

Projekt 4: Regioselektiv glykosylering af ubeskyttede acceptorer 
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1. Ultrafast Grignard addition reactions in the presence of protic agents 

 

1.1. Literature background 

1.1.1. Grignard reagent and the Grignard addition reaction 

 

In 1899 Barbier reported a one-pot coupling reaction between a carbonyl compound and 

an alkyl halide mediated by magnesium metal.1 His student Victor Grignard turned the 

reaction into a more practical two step protocol by preparing the organometallic reagent prior 

to the addition reaction.2 This discovery changed the course of organic chemistry and earned 

him the Nobel Prize in 1912.  

The Grignard reaction was actually the first practical organometallic transformation to 

be discovered for forming a carbon-carbon bond.3 Today, alkyl- and aryl magnesium halides 

are known as Grignard reagents and are synthesized by the direct reaction of magnesium with 

alkyl- or aryl halides.4 The Grignard reagent does not react with ether type solvents, and as a 

result anhydrous diethyl ether and tetrahydrofuran are widely used as solvents. The 

magnesium center of the Grignard reagent can coordinate typically two molecules of diethyl 

ether or THF, although in high concentrated solution even more than 2 molecules of ether can 

be coordinated.5 The solid-state molecular structure of the ethylmagnesium bromide 

bis(diethyl etherate) (1) was first determined by Guggenberger and Rundle in 1964 by an X-

ray diffraction study (Figure 1).6 The C2H5MgBr·[(C2H5)2O]2 crystals were isolated from a 

diethyl ether solution of an EtBr/Mg reaction mixture by slow cooling with a stream of cold 

nitrogen gas.7 There are further reports in the literature, where the structure of other Grignard 

reagents have  been identified by single crystal X-ray diffraction techniques.8,9  

 

 

Figure 1 Proposed structure of C2H5MgBr·[(C2H5)2O]2 
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But in fact, the structure of Grignard reagents in ether solution are more complicated than this 

simple formula suggests. Wilhelm Schlenk and his son discovered that more than one 

magnesium containing species exist in the diethyl ether solution of a Grignard reagent.10 The 

Schlenk equation describes that a Grignard reagent in solution exists in a dynamic equilibrium 

between the alkylmagnesium halide, dialkylmagnesium and the magnesium halide (Scheme 

1). 

 

Scheme 1 The Schlenk equilibrium 

 

The first direct evidence for the Schlenk equilibrium was reported by Ashby et al. by means 

of 1H-NMR spectroscopic measurements of the solutions of methylmagnesium bromide 

(CH3MgBr) in diethyl ether at -105 ºC, where characteristic signals for both structures were 

measured.11 Comparable evidence was also obtained when tert-butylmagnesium chloride in 

diethyl ether was studied.12 The position of the equilibrium can be influenced by the solvent, 

the temperature, and the nature of the various substituents. For example, by adding dioxane 

the dihalide MgX2 species precipitates from the solution, and the equilibrium is completely 

driven to the right side.13 Moreover, a thorough study of the association factors of various 

Grignard reagents in diethyl ether and THF found that monomeric, dimeric and higher 

oligomeric species are present depending on the solvent, the halogen and the organic 

substituents on the magnesium atom.14  

Consequently, there are many factors that influence the structure of a Grignard reagent in an 

ethereal solution: 

• The Lewis basicity and steric properties of the ether solvent 

• The electronegativity and size of the halogen atom  

• The nature and steric properties of the organic substituent on the magnesium atom 

 

However, in most applications of Grignard reagents in synthetic chemistry it appears coherent 

to use the simple RMgX formula to describe the reaction mechanism. 
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Due to the polarity of the carbon-magnesium bond (Cδ--Mgδ+) the Grignard reagents act 

typically as nucleophiles and attack electrophilic carbon atoms during the Grignard addition 

reaction (e.g. in aldehydes, ketones, esters or nitriles). However, sterically hindered substrates 

may react according to a SET (Single Electron Transfer) mechanism.15 Notably, the reaction 

often proceeds through a concerted nucleophilic addition mechanism (Scheme 2).  

 

Scheme 2 Concerted nucleophilic addition mechanism of the Grignard reaction 

 

In the Grignard addition reaction the absence of water is crucial, since the Grignard 

reagent would otherwise react rapidly to produce the corresponding alkanes. Nevertheless, the 

stepwise protocol became one of the most important methods in organic chemistry to form 

carbon-carbon bonds. 

 

1.1.2. Investigation of Barbier-Grignard type reactions in the presence of water 

 
Recently, the one-pot Barbier procedure has gained renewed interest, especially for the 

coupling of more reactive allyl halides. Contrary to the Grignard addition reaction the Barbier 

procedure does not require strictly anhydrous solvents and can be performed very effectively 

in aqueous media. In fact, the allylation of aldehydes and ketones usually occurs faster under 

the Barbier conditions and gives rise to higher yields when water is used as a (co)solvent.16 

Moreover, a number of metals (e.g. zinc, tin, bismuth, indium, antimony, manganese) have 

been introduced to mediate the Barbier-type reaction.17-20 Among these, the most widely used 

metals are zinc and indium.16,17 

Whitesides et al. reported an efficient tin- and indium-mediated allylation of unprotected 

carbohydrates in aqueous media.21 The Barbier type reaction takes place in aqueous ethanol 

by the use of tin or indium metal. The reaction occurs with 1,2-chelation control to afford the 

1,2-threo isomer as the major product (Scheme 3). 
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Scheme 3 Allylation of unprotected carbohydrates in aqueous media 

 

Lately, Zhang and Li studied the classical Barbier reaction in water with magnesium 

metal.22 The allyl halide was reacted with benzaldehyde in the presence of magnesium in 

different aqueous solvent systems (Scheme 4). Surprisingly, using 0.1 N HCl or 0.1 N NH4Cl 

solutions as the reaction solvent resulted in a quantitative conversion of the aldehyde, 

generating a mixture of the allylation and the pinacol coupling products. Subsequently, a 

variety of aldehydes were tested with this allylation method. Several aromatic aldehydes were 

allylated efficiently by allyl halides and magnesium in aqueous 0.1 N NH4Cl. However, 

aliphatic aldehydes were inert under the same reaction conditions. This result was attributed 

to the difference in reduction potentials between aliphatic and aromatic aldehydes.23 

 

 

Scheme 4 Magnesium-mediated Barbier-type allylation of aldehydes in aqueous media 

 

In spite of many examples for applications of efficient Barbier-type reactions in 

aqueous media, it was not completely understood whether the mechanism follows a radical 

pathway or proceeds via a discrete allylmetal species. To this end, Madsen et al. reported a 

mechanistic study of the Barbier allylation of benzaldehyde derivatives with six different 

metals (Zn, In, Sb, Sn, Bi and Mg) in aqueous media.24 It was found that all metals except 

magnesium form a discrete allylmetal species and the rate-determining step is the polar 

addition to the carbonyl group through a Zimmermann-Traxler transition state, while for 
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magnesium the turnover-limiting step is the generation of the radical anion of the 

benzaldehyde (Scheme 5).  

 

 

Scheme 5 Mechanistic study of the Barbier-type allylation 

 

However, some of the reactive intermediates are difficult to observe by experiments in a 

finite time in aqueous media. Therefore, quantum mechanical calculations have been carried 

out by Chung et al. for the reactions of a series of monomeric allylmetals with water and 

carbonyl compounds in the gas phase.25 Based on the calculated structures of various 

allylmetal complexes these were separated into two major groups (π-allylmetal and σ-

allylmetal complexes) (Figure 2). According to the calculated kinetic preferences, the two 

groups were divided into three subclasses (A, B and C). Class A consists of very reactive π-

allylmetal complexes (M = K, Rb, CaBr, SrBr and BaBr) which are highly ionic and 

hydrolyze much faster than they undergo allylation. Class B is made up of some π-complexes 

(Li, Na, Ga(I), In(I), Tl(I), SnIIBr and PbIIBr) and polarized σ-complexes (BeBr, MgBr, SiIIBr 

and GeIIBr). These allylmetals are less polarized than the class A complexes and they may 

hydrolyze or allylate depending on the experimental conditions. The class C complexes (the 

rest of the σ-allylmetals) preferentially undergo allylation. However, the organometallic 

reaction in aqueous solution is more complicated. The effects of ligands, the explicit water 

solvent and aggregation on the intrinsic kinetic preference must also be considered.  
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LnMM
Ln

-allyl-metal complexes -allyl-metal complexes

(B) Li, Na
(A) K, Rb, Cs
(A) CaBr, SrBr, BaBr
(B) Ga, In, Tl, SnBr, PbBr

(B) BeBr, MgBr, SiBr, GeBr
(C) ZnBr, CdBr, HgBr
(C) BBr2, AlBr2, GaBr2, InBr2, TlBr2

(C) SiBr3, GeBr3, SnBr3, PbBr3

(C) SbBr2, SbBr3Me, BiBr2, BiBr3Me  

Figure 2 Classification of allylmetal complexes 

 

 Torkil Holm has measured the reaction rates of various Grignard reagents with different 

ketones and aldehydes.26 A series of competition experiments was performed using 

allylmagnesium bromide and benzylmagnesium bromide competing for the carbonyl 

compound at very dilute concentration. In all experiments the allylic addition product 

dominated and only trace amounts of the benzylic adduct was observed. Surprisingly, even at 

a ratio of allyl : benzyl = 1 : 128 the allylic product accounted for 97% of the product. The 

competition kinetics also indicated that the allyl Grignard reagent adds 1.5 x 105 times faster 

than the corresponding butyl reagent. Furthermore, the reaction rates for several carbonyl 

compounds (e.g. benzophenone, acetone, benzaldehyde) did not differ significantly. The 

extremely reactive allylmagnesium bromide was suggested to react at a rate which is near the 

diffusion controlled maximum. In fact, the addition of the allylmagnesium bromide does not 

take place via the classical four-membered transition state but via a six-center cyclic 

concerted process (Scheme 6).27  

 

R1 R2

O

+

R1 R2

O

R1

O
MgBr

Mg

Br

R2

BrMg

 

Scheme 6 Addition of allylmagnesium bromide to a carbonyl compound 
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1.2. Aim of the project 

 

 A number of studies have reported that various metals such as zinc, tin, indium and 

magnesium can mediate Barbier-type allylation reactions effectively in aqueous media.16,28-30 

For several metals it is believed that a discrete allylated species is formed and the mechanism 

involves a rate-determing polar addition to the carbonyl moiety.24 However, for magnesium it 

is not completely clear whether the corresponding allylmagnesium halide is actually formed.  

Surprisingly, quantum mechanical calculations suggested similar activation energies towards 

addition and protonation for the reaction of allylmagnesium bromide with acetone and 

water.25 In addition, it has been proven that the addition reaction of allylmagnesium bromide 

is extremely fast26 and it may therefore be able to compete with the protonation by a protic 

(co)solvent such as water. 

However, classical Grignard addition reactions have never been carried out efficiently 

in the presence of water. Based on the observations described above we decided to compare 

the rate of addition to the rate of protonation for several Grignard reagents, especially allyl 

Grignard type reagents. 
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1.3. Results and discussion 

 

1.3.1. Competition experiments by adding allylmagnesium bromide 

 
 Measuring competition kinetics is widely used to estimate reactivities of different 

Grignard reagents.26,31 In this regard two powerful tools are the substrate deficiency (SD) 

experiment and the Grignard deficiency (GD) experiment. The SD experiment is carried out 

by adding a very low concentration of a substrate to a large excess of two competing Grignard 

reagents, while the GD experiment is performed by the addition of a small concentration of 

Grignard reagent to an excess of the competing substrates. Therefore, we decided to apply the 

GD competition experiments to study the reactivity of some Grignard reagents towards 

addition and protonation.  

First, a 0.1 M ethereal solution of allylmagnesium bromide was reacted with an 

equimolar mixture of acetone and water in diethyl ether. Surprisingly, the yield of the addition 

product was found to be around 90% by GC (Table 1, entry 1). A similar observation was 

obtained using a more diluted Grignard solution (Table 1, entry 2). This unexpected result 

indicated that the addition reaction to acetone should be much faster than the reaction with 

water. Thus, the investigation was widened to study allylmagnesium bromide reacting with a 

number of protic reagents (Table 1). Accordingly, allylmagnesium bromide was reacted with 

acetone in the presence of methanol, ethanol and benzoic acid (equimolar to acetone). The 

yield of the addition products were in the 52 - 63% range indicating a higher degree of 

protonation as compared to water (entries 3-5). In another experiment, the allyl Grignard 

reagent showed slightly less reactivity towards benzaldehyde than acetone. The competition 

between benzaldehyde and water resulted in the addition product in 75 % yield (entry 6) 

while using methanol, phenol or benzoic acid gave 42-63 % yields (entries 7-10). Methyl 

benzoate, acetophenone and p-methoxybenzaldehyde furnished moderate yields of the 

addition product in competition with water, methanol and phenol (entries 11-15). With methyl 

benzoate only double addition was observed to afford the tertiary alcohol, while the ketone 

intermediate was not detected. The reaction of allylmagnesium bromide with valerolactone 

and water afforded the double addition product in a very low yield (entry 16). 
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Table 1 Competitive reaction of allylmagnesium bromide with carbonyl compounds and protic 
compounds 

 

Entry 

 

Allylmagnesium bromide 

 

Carbonyl Compound  

(0.6 M) 

Protic 

Compound 

(0.6 M) 

GC Yielda 

[%] 

1 0.1 M  acetone H2O 91 

2 0.01 M  acetone H2O 90 

3 0.1 M  acetone MeOH 56 

4 0.1 M  acetone EtOH 63 

5 0.1 M  acetonec benzoic acidc 52 

6 0.1 M  benzaldehyde H2O 75 (73)b 

7 0.25 M  benzaldehyde MeOH 53 

8 0.1 M  benzaldehydec MeOHc 42 

9 0.16 M  benzaldehyded phenold 43 

10 0.1 M  benzaldehyde benzoic acid 63 

11 0.16 M  methyl benzoate H2O 56 

12 0.16 M  methyl benzoate MeOH 40 

13 0.16 M  methyl benzoate phenol 47 

14 0.16 M  acetophenone phenol 31 

15 0.1 M  p-methoxybenzaldehyde phenol 35 (29)b 

16 0.1 M  valerolactone H2O 12 (8)b 
a Based on Grignard reagent and determined using octane as internal standard   bIsolated yield 
c0.34 M  d 0.5 M  e0.3 M 
 

Due to the unexpected result in the competition between acetone and water, the addition 

of allylmagnesium bromide to acetone was further investigated using excess of the protic 

reagents (Table 2). Now the allylmagnesium bromide solution was added to the pure mixture 

of acetone and water (1:1) and the addition product was detected in 92% yield (entry 1). A 
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similar result was observed with the ratio of acetone : water = 1:2 (entry 2). When the 

Grignard reagent was added to the mixture of acetone : water = 1:4 the addition product 

accounted for 81% yield (entry 3). Surprisingly, the use of 21 equivalents of water still 

resulted in the desired product in 66% yield (entry 4), and even a 1:42 mixture of acetone and 

water afforded the carbonyl addition in 25% yield (entry 5). The mixture of acetone and 

methanol (1:1, 1:2) furnished a slightly higher yield than the ether solution of the two 

substrates (entries 6 and 7). The same effect was noticed by having acetone / ethanol (1:1, 

1:2) mixtures (entries 8 and 9).  

 

Table 2 Competitive reaction of allylmagnesium bromide with a pure mixture of acetone and protic 
compound 

 

Entry 

 

Grignard Reagent  

(0.1 M) 

Mixture of Carbonyl and 

Protic Compounds 

GC Yielda 

[%] 

1 allylmagnesium bromide acetone / H2O (1:1) 92 

2 allylmagnesium bromide acetone / H2O (1:2) 93 

3 allylmagnesium bromide acetone / H2O (1:4) 81 

4 allylmagnesium bromide acetone / H2O (1:21) 66 

5 allylmagnesium bromide acetone / H2O (1:42) 25 

6 allylmagnesium bromide acetone / MeOH (1:1) 74 

7 allylmagnesium bromide acetone / MeOH (1:2) 56 

8 allylmagnesium bromide acetone / EtOH (1:1) 68 

9 allylmagnesium bromide acetone / EtOH (1:2) 46 
a Based on Grignard reagent and determined using octane as internal standard 

 

 From these experiments it can be concluded that the addition of the allylmagnesium 

bromide to acetone or benzaldehyde is faster than the protonation by the protic compound, 

independent of the presence of ether. However, with other types of carbonyl compounds such 

as p-anisaldehyde, methyl benzoate and acetophenone the protonation was found to dominate.  
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1.3.2. Competition experiments with benzylmagnesium chloride and butylmagnesium 

bromide 

 
 It has been shown that the relative reactivity of allyl Grignard reagents towards acetone 

is > 3000 times higher as compared to benzyl Grignard reagents.26 Although the benzyl 

Grignard reagent is less reactive than the allyl Grignard we decided to carry out competition 

experiments with benzylmagnesium chloride in diethyl ether (Table 3).  

We observed that benzylmagnesium chloride also reacted sufficiently fast with acetone in the 

presence of water (entry 1). Surprisingly, under competition with water protonation, the 

benzylmagnesium chloride addition to benzaldehyde was more effective than addition to 

acetone (entry 2). Preferred reactivity towards benzaldehyde was also observed in the 

presence of methanol and ethanol (entries 3 and 4). Competition between benzaldehyde and 

phenol gave the addition product in only 29 % yield (entry 5). Although the allyl Grignard 

reagent is known to add ca. 1.5 x 105 faster than the corresponding butyl reagent26 the reaction 

of butylmagnesium bromide with acetone or benzaldehyde in the competition with water was 

included in the study. The butyl Grignard, as anticipated, yielded only trace amounts of the 

addition products (entries 7 and 8). This indicates that butylmagnesium bromide reacts much 

slower and it undergoes complete protonation in the competition with carbonyl addition. 
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Table 3 Competition reaction between carbonyl compounds and protic compounds for Grignard 
reagents  

 

Entry 

 

Grignard Reagent  

(0.1 M) 

Carbonyl Compound 

(0.6 M) 

Protic 

Compound 

(0.6 M) 

GC Yielda 

[%] 

1 benzylmagnesium chloride acetone H2O 30 

2 benzylmagnesium chloride benzaldehyde H2O 89 

3 benzylmagnesium chloride benzaldehyde MeOH 63 

4 benzylmagnesium chloride benzaldehyde EtOH 46 

5 benzylmagnesium chloride benzaldehyde phenol 29 

6 benzylmagnesium chloride p-methoxybenzaldehydeb phenolb 18 

7 butylmagnesium bromide acetone H2O 2 

8 butylmagnesium bromide benzaldehyde MeOH 0 
aBased on Grignard reagent and determined using octane as internal standard b 0.2 M 

 

The observed reactivities in acetone-water mixtures can be rationalized by the different 

reactivities of the three Grignard reagents: allylmagnesium bromide >> benzylmagnesium 

chloride >> butylmagnesium bromide. For allylmagnesium bromide the halftime for addition 

to acetone has been established to be around one µs.26 Although there is no value reported for 

benzylmagnesium chloride, it can be estimated from the reported rate constant for 

benzylmagnesium bromide. A 10 fold rate increase has been estimated when comparing the 

bromide to the chloride.32 Based on this, the halftime for addition of benzylmagnesium 

bromide is estimated to be around one ms. For butylmagnesium bromide the halftime for the 

addition to acetone is reported to be almost one second.33 In conclusion, there is roughly a 

factor of 1000 for the reactivity between each of the allyl, benzyl and butyl reagents. Thus, in 

the case of the extremely reactive allylmagnesium bromide the addition can compete 
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efficiently with protonation while for the less reactive Grignard reagents the protonation 

becomes the predominant reaction.  

 

1.3.3. Intramolecular competition  

 

 It has been reported that both SD and GD competition experiments can give 

misleading results when using Grignard reagents, even with rather slow reactions.26,31 This 

has been explained by the effect that when the solutions get in contact a “meeting zone” is 

formed where the more reactive competitive agent gets depleted locally.34 Therefore, the less 

reactive competitive agent gets a better chance to react with the substrate. In the case of a 

Grignard reagent meeting a mixture of acetone-water, and assuming that water is the more 

reactive competitive agent, the water molecules can be removed by the Grignard reagent 

leaving a local excess of acetone in a dry diethyl ether zone. Thus, in this zone the less 

reactive acetone can now be attacked by the Grignard reagent. It is practically impossible to 

predict the importance of this local “depletion” or “scavenging effect” since it depends on the 

concentrations, the way of mixing and the nature of the reaction products.  

The scavenging effect can be almost completely avoided by presenting the two competing 

functional groups in the same molecule. Thus, in an intramolecular competition the two 

functional groups have the same local concentration and thus have identical chances to react 

with the Grignard reagent. The measured ratio of products depends exclusively on reactivity. 

 Consequently, a series of experiments were carried out in which the Grignard reagent 

was reacted with bifunctional substrates containing both a hydroxyl group and a carbonyl 

group (Table 4). Allylmagnesium bromide was added to m-hydroxybenzaldehyde and the 

addition product was observed in 30% yield (entry 1). When the allyl Grignard was reacted 

with a mixture of p-methoxybenzaldehyde and phenol, the addition/protonation ratio was 

35:65 (Table 1, entry 15), while adding the same reagent to p-hydroxybenzaldehyde the ratio 

was 5:95 (Table 4, entry 3). The intramolecular competition with other hydroxyl-carbonyl 

compounds also resulted in low yields of the addition product (entries 4-6). When 

benzylmagnesium chloride was added to a mixture of p-methoxybenzaldehyde and phenol, 

the addition/protonation ratio was 18:82 (Table 3, entry 6), while with p-

hydroxybenzaldehyde as the substrate no addition product was detected (Table 4, entry 7). 
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The reaction with m-hydroxybenzaldehyde and with p-hydroxyacetophenone did not give any 

addition products either (entries 8 and 9). This indicates that the rate of the protonation of 

benzylmagnesium chloride by the hydroxyl group is more than hundred times faster than the 

addition to the aldehyde.  

 

Table 4 Reaction of Grignard reagents with carbonyl compounds containing a hydroxyl group 

 

Entry 
 

Grignard Reagent 
 

Bifunctional Compound 
 

GC Yielda 
[%] 

 

1 
allylmagnesium bromide 

(0.16 M) 
m-hydroxybenzaldehyde 

(0.3 M) 30 (26)b  

2 
allylmagnesium bromide 

(0.25 M) 
m-hydroxybenzaldehyde 

(0.6 M) 23  

3 
allylmagnesium bromide 

(0.16 M) 
p-hydroxybenzaldehyde 

(0.3 M) 5  

4 
allylmagnesium bromide 

(0.16 M) 
o-hydroxybenzaldehyde 

(0.3 M) 0  

5 
allylmagnesium bromide 

(0.16 M) 
p-hydroxyacetophenone 

(0.3 M) 13  

6 
allylmagnesium bromide 

(0.16 M) 
methyl p-hydroxybenzoate 

(0.3 M) 2  

7 
benzylmagnesium chloride 

(0.1 M) 
p-hydroxybenzaldehyde 

(0.4 M) 0  

8 
benzylmagnesium chloride 

(0.1 M) 
m-hydroxybenzaldehyde 

(0.4 M) 0  

9 
benzylmagnesium chloride 

(0.1 M) 
p-hydroxyacetophenone 

(0.4 M) 0  
aBased on Grignard reagent and determined using octane as internal standard  bIsolated yield 
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Remarkably, in the reaction of allylmagnesium bromide with m-hydroxybenzaldehyde a 

30% yield of the addition product was observed while the reaction with p-

hydroxybenzaldehyde resulted in only 5% yield. This pronounced difference in the reactivity 

of the two benzaldehyde derivatives can be explained by the Hammett equation.35 The 

resonance forms show that the hydroxyl group at the para position has a positive mesomeric 

effect (+M) which decreases the electrophilicity of the carbon atom of the aldehyde group 

(Scheme 7). According to the Hammett equation a p-hydroxyl group is electron donating 

while a m-hydroxyl group is electron withdrawing. Thus, the p-hydroxybenzaldehyde is more 

stable and less reactive in a nucleophilic addition than the meta derivative.  
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Scheme 7 Resonance forms of p- and m-hydroxybenzaldehyde 

 

 Similar results were obtained with benzoic acid and octanoic acid, which can also react 

with the Grignard reagent in two different ways. In this case, we studied not the 

intramolecular completion between two functional groups, but two different reactivities of the 

same functional group. As shown in Table 5 the concentrations of the Grignard reagents and 

the carboxylic acid solution slightly affected the addition/protonation ratio (Table 5). The 

reaction of 0.2 M allylmagnesium bromide with 0.2 M benzoic acid solution resulted in 23% 

yield of the addition product (entry 1), while 0.4 M and 0.6 M solutions afforded 20% and 

14% of the tertiary alcohol (entries 2 and 3). The intramolecular competition with octanoic 

acid gave very low yield (entry 4). When benzylmagnesium chloride was reacted with 

benzoic acid no addition was observed (entry 5). It should be noted that only the double 
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addition was observed to afford the corresponding tertiary alcohol, and the intermediate 

ketone was never detected.  

 

Table 5 Reaction of Grignard reagents with benzoic acid and octanoic acid 

 

Entry 
 

Grignard Reagent 
 

Bifunctional 
Compound 

GC Yielda 
[%] 

 

1 
allylmagnesium bromide 

(0.2 M) benzoic acid (0.2 M) 23 (21)b 

2 
allylmagnesium bromide 

(0.2 M) benzoic acid (0.4 M) 20 

3 
allylmagnesium bromide 

(0.2 M) benzoic acid (0.6 M) 14 

4 
allylmagnesium bromide 

(0.1 M) octanoic acid (0.25 M) 9 

5 
benzylmagnesium chloride 

(0.1 M) benzoic acid (0.2 M) 0 
aBased on Grignard reagent and determined using octane as internal standard bIsolated yield 

 

Notably, a higher ratio towards protonation was obtained for the benzoic acid as compared to 

m-hydroxybenzaldehyde. Using m-hydroxybenzaldehyde the addition/protonation ratio was 

23:77 (Table 4, entry 2), while with benzoic acid the ratio was 14:86 (Table 5, entry 3). This 

observation can be explained by the higher acidity of the proton in benzoic acid or/and the 

higher reactivity of the carbonyl group in benzaldehyde.  

Since an oxygen-hydrogen bond is broken in the protonation reaction a primary 

deuterium isotope effect might be expected. However, experiments with the reaction between 

allylmagnesium bromide and deuterated benzoic acid and octanoic acid showed no significant 

changes in the product distributions from those obtained with the non-deuterated acids. The 

ultrafast reactions most likely have early transition states in which case the kH/kD will be ~ 

1.0. 

Initially, one of the driving forces behind these investigations was the idea to allylate 

unprotected carbohydrates (i.e. gluconolactone) effectively using this chemistry. However, 
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due to the presence of the hydroxyl groups, acting as intramolecular protonation agents, the 

starting material was typically recovered quantitatively.  

 

1.3.4. Interpretation 

 
It is puzzling that the intermolecular competition gives higher degree of addition vs. 

protonation than the intramolecular competition and the reason may lie in the nature of the 

experiment. As already described a Grignard reagent is a combination of an alkylmagnesium 

halide, dialkylmagnesium and a magnesium halide in a Lewis donor solvent (Schlenk 

equilibrium) (Scheme 8).  

 

 

Scheme 8 Schlenk equilibrium 

 

The ligands around magnesium exchange rapidly and the position of the Schlenk equilibrium 

is shifted differently in weakly or strongly donating solvents. A shift in the position of the 

Schlenk equilibrium is a result of the differences in the Lewis acidity of the various 

components which increase in the order: R2Mg << RMgBr < MgBr2. Even though the 

Schlenk equilibrium is fast, it is still measurable. The rate of the ligand exchange around the 

individual magnesium atoms must be assumed to be diffusion controlled. In addition, the 

complexation energy of one water molecule to allylmagnesium bromide has been calculated 

to -23.1 kcal/mol.25 This reflects the strong Lewis acidity of the metal in the Grignard reagent.  

Based on the aforementioned considerations in the reaction of Grignard reagents with a 

mixture of a carbonyl substrate and a protic compound, the addition can be more favored than 

the protonation if the reagent is extremely reactive like allylmagnesium bromide. 

Furthermore, the degree of protonation may decrease by coordinating water to any 

electrophilic magnesium compound including magnesium bromide. Therefore, it was decided 

to repeat some of the competition experiments with extra magnesium bromide added. When 

0.1 M allylmagnesium bromide solution was mixed with one equivalent of MgBr2 and then 

reacted with the mixture of acetone and water in ether solution, the yield of the addition was 
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quantitative. This is a pronounced increase compared to the 91% yield in Table 1, entry 1. In 

addition, when allylmagnesium bromide with one equivalent of MgBr2 was added to the 

solution of benzaldehyde and water 85% yield of the addition product was observed which 

should be compared to the 75% yield in the Table 1, entry 6. This demonstrates that MgBr2 

can influence the yield of the addition. It should be noted that before adding extra MgBr2 the 

concentration of the MgBr2 was already high in the Grignard solution and this can explain the 

slight increase of the yields. Thus, a 0.1 M allylmagnesium bromide solution containing 20% 

excess MgBr2 (compared to RMgX) was prepared and mixed with the mixture of 

acetone/water (1:1) in ether solution to afford 56% addition and 44% protonation, while 

containing 100% extra MgBr2 gave nearly quantitative addition.  

This confirms that magnesium compounds may serve as water scavengers to a great 

extent in fast Grignard addition reactions. In the case of the less reactive Grignard reagents 

like butylmagnesium bromide the protonation is faster than the addition even though water or 

the alcohol is coordinated to magnesium and have reduced reactivity.  
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1.4. Conclusion 

 

In all experiments reported here the Grignard reagents were added to an excess of the 

competing substrates (inverse addition). When carbonyl and protic compounds were 

competing for the added Grignard reagent, rather high yields of the addition products were 

observed (intermolecular competition). Especially allylmagnesium bromide afforded a high 

degree of carbonyl addition, although also benzylmagnesium chloride was competitive to 

some extent. However, butylmagnesium bromide did not undergo carbonyl addition in the 

presence of a protic reagent.  

In intramolecular competitions, in which the substrates contain both a carbonyl and a 

hydroxyl group only allylmagnesium bromide was able to form the addition product in low to 

moderate yield. For benzylmagnesium chloride and butylmagnesium bromide the protonation 

was exceedingly faster than the addition to the carbonyl group.  

These contrasting outcomes can be explained by a scavenging effect. In the 

intermolecular competition the electrophilic magnesium compounds can coordinate with 

water or other protic compounds. Thus, the carbonyl group is left free to react with the 

Grignard reagent. When alcohols are used as competitors the higher degree of protonation can 

be accounted for by less efficient complexation of alcohols to magnesium. Although in the 

intramolecular competition the scavenging effect is nearly absent, it has been shown that the 

rate of the addition to carbonyl groups can still compare with the rate of protonation in the 

addition of the extremely reactive allylmagnesium bromide.  
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2. Ruthenium catalyzed synthesis of amides from primary alcohols and 

amines 

 

2.1. Literature background 

2.1.1. The amide bond 

 

 The amide bond is one of the most important linkages in the organic chemistry of life. It 

is the key functional group in peptides and proteins and the peptide bond is essential for all 

living organisms. Amide formation is also fundamental for several polymers and the linkage 

is also often found in pharmaceuticals and natural products.36-38 Thus, it is not surprising that 

numerous methods have been developed for the generation of amides.39 Most frequently, 

amide synthesis is based on the condensation reaction between a carboxylic acid and an amine 

under formation of one molecule of water. In this case, the carboxylic acid must be activated 

in situ by a coupling reagent. Carbodiimides such as N,N’-dicyclohexylcarbodiimide (DCC) 

are dehydrating agents, and therefore they are often used to activate carboxylic acids toward 

amide formation (Scheme 9, pathway a). Alternatively, the carboxylic acid can be concerted 

into a more reactive derivative (e.g. an acid chloride or an anhydride) (Scheme 9, pathway b). 

 

 

Scheme 9 Amide synthesis by DCC coupling reagent in situ (a) and via acid chloride (b)  

 

There are several other common procedures for the synthesis of amides (Scheme 10). 

The Beckmann rearrangement is an acid-catalyzed rearrangement of an oxime to an 

amide.40,41 The Staudinger ligation also provides a way to form an amide bond between an 
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azide and an appropriately substituted triaryl phosphine.42,43 In addition, nitriles can be 

transformed into amides in the presence of a strong acid by the Ritter reaction.44 Furthermore, 

the coupling of α-ketoacids and hydroxylamines,45 amidation of ketones (Schmidt)46 and 

thioacids with azides47 are also valuable tools for amide formation.  

 

 

Scheme 10 Several well known methods for amide syntheses 
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 Although a number of methods are well known for the synthesis of amides, many of 

these produce stoichiometric amounts of byproducts which may be difficult to separate from 

the desired amide. This illustrates the importance of new and environmentally friendly ways 

for amide synthesis. However, the preparation of amides without generation of waste and the 

use of neutral conditions is a challenging goal. 

 

2.1.2. Amide syntheses catalyzed by metal complexes  

 
Lately, catalytic approaches that do not produce harmful byproducts have found much 

attention. A number of different systems have been developed and all of them are based on a 

variety of transition metal catalysts.  

In 1986, Murahashi et al. reported a ruthenium-catalyzed condensation of nitriles with 

amines.48 The reaction proceeds cleanly and with high efficiency under neutral conditions, 

although the reaction temperature is high and a sealed tube is needed (Scheme 11). 

 

 

Scheme 11 Ru-catalyzed condensation of nitriles with amines 

 

Later, in 2008 the first catalytic oxygenation of primary amines to primary amides was 

reported.49 The reaction is catalyzed by a readily prepared Ru(OH)x/Al2O3 catalyst in the 

presence of molecular oxygen in water. This oxygenation offers significant advantages from 

the standpoint of green chemistry. However, the reaction had to be carried out inside an 

autoclave at 130-160 ºC with 5 atmospheres of molecular oxygen (Scheme 12), which 

diminishes its general usefulness. 
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Scheme 12 Oxygenation of primary amines 

 

Recently, Milstein et al. presented an efficient homogeneous protocol for amide 

synthesis from alcohols and amines with the liberation of H2.
50 This was the first example that 

allowed for the direct amidation of alcohols with amines in an intermolecular fashion. The 

reaction is catalyzed by the ruthenium complex 2 based on a dearomatized PNN-type pincer 

ligand [2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine], and no base or 

acid promoters are required (Scheme 13). A number of different amides were synthesized 

from simple substrates without generating any stoichiometric byproducts, and thus with high 

atom economy. The disadvantages of this method are the relatively limited substrate scope 

and the complexity of the catalyst which must be synthesized via multiple steps. In addition, 

the reactions must be carried out under strict exclusion of oxygen, i.e. in a glove box. 

Although the mechanism of the reaction is not clearly understood, it has been proposed that 

during the catalytic cycle the aromatization of the pincer ligand occurs. 

 

 

Scheme 13 Synthesis of amides catalyzed by a PNN pincer complex 

 

 Since Milstein’s initial report several in situ ruthenium catalysts for intermolecular 

amidation reactions have been developed. Williams et al. reported the formation of secondary 

amides using [Ru(p-cymene)Cl2]2, 1,4-bis(diphenylphosphino)butane (dppb), and Cs2CO3 as 

the catalytic system in refluxing tert-butanol.51 However, a hydrogen acceptor such as 3-
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methyl-2-butanone (2.5 equiv. to the alcohol substrate) was required to promote the reaction 

(Scheme 14). 

 

 

Scheme 14 Synthesis of amides by Williams and co-workers 

 

As a matter of fact, the ruthenium catalyzed amidation project was started by 

coincidence in the Madsen’s group by the postdoctoral research fellow Henning Vogt. His 

actual goal was to develop a new ruthenium based catalyst for the alkylation of amines with 

alcohols. Surprisingly, when 2-phenylethanol and benzylamine were treated with an in situ 

formed Ru-phosphine-NHC complex the major product was the corresponding amide instead 

of the targeted amine (Scheme 15). After this first discovery Lars Ulrik Nordstrøm performed 

optimization studies and investigated the stubstrate scope for the reaction.52  

 

 
Scheme 15 Synthesis of amides catalyzed by an in situ formed Ru-complex  

 

 Inspired by the results of Madsen et al. some different ruthenium catalyzed procedures 

have been developed since. One of the first contributions was from Hong et al. who reported a 

phosphine-free in situ generated ruthenium catalytic system, which consists of [Ru(p-

cymene)Cl2]2 or [Ru(benzene)Cl2]2, an NHC precursor, pyridine or acetonitrile and NaH.53 

The phosphine-free catalyst system showed similar activity as compared to the previous 

phosphine-based catalytic systems (Scheme 16). 
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Scheme 16 Phosphine-free catalyst system for amide synthesis 

 

In addition, the Hong group has developed an in situ generated Ru catalyst (from 

RuH2(PPh3)4, an NHC precursor, NaH and CH3CN) for the synthesis of amides from either 

alcohols or aldehydes with amines (Scheme 17).54 It should be noted that this was the first 

example of a transition-metal-based catalytic system that efficiently transforms either alcohols 

or aldehydes into amides under the same reaction conditions. For the reaction mechanism a 

Ru(0)/Ru(II) cycle has been proposed based on the observation of hydrogen formation during 

the reaction. 
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Scheme 17 In situ Ru catalyst system by Hong for amidation 

 

 Most recently, well-defined 1,2,3-triazolylidene ruthenium complexes have also been 

identified as effective homogeneous catalysts for (1) base-free oxidation of benzylic alcohols 

to benzaldehydes, (2) homocoupling of amines and (3) the oxidative coupling of amines and 

alcohols to form amides (Scheme 18).55 Nevertheless, only sterically unhindered alcohols and 

amines were tested for the amide synthesis. 
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Scheme 18 Formation of amides catalyzed by an isolated 1,2,3-triazolylidene ruthenium complex 

 

 The chemical rationale behind the recent examples of amide syntheses from alcohols 

and amines can be rationalized by considering the general mechanism illustrated in Scheme 

19. An alcohol is initially oxidized to the corresponding aldehyde that reacts with the amine to 

produce a hemiaminal intermediate. Two possible pathways diverge after this: (1) the 

hemiaminal either would form an imine, which could be subsequently hydrogenated to an 

amine, (2) or would be further dehydrogenated to the corresponding amide. It is currently 

unexplored what properties of the catalytic systems affect the outcome of the intermediate 

toward the alkylation or the amidation. 
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Scheme 19 Proposed pathway for direct amide and amine synthesis from alcohols and amines 

 

Interestingly, Eisenstein et al. have reported a ruthenium(II) diamine complex 3 which can 

catalyze the intramolecular cyclization of amino alcohols H2N(CH2)nOH via two pathways: 
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one yields the cyclic secondary amide, while the other gives the corresponding cyclic amine 

(Scheme 20).56  

 

 

Scheme 20 Ruthenium catalyzed intramolecular cyclization 

 

In addition, computational studies have been performed to elucidate the mechanism of this 

transformation and to determine the factors that affect the switch between amide and amine 

formation. The computational investigations suggested that in both the amide and the amine 

formations the initial step is the oxidation of the amino-alcohol to the amino aldehyde, 

followed by the formation of the hemiaminal 4 which is a zwitterion protonated at the 

nitrogen. At this point a proton transfer occurs either between the nitrogen and the hydride to 

form complex 5 (Scheme 21, pathway a) or between the nitrogen and the oxygen in 6 

(Scheme 21, pathway b). For amide formation the proton migrates to the hydride, while for 

the formation of the amine the proton is transfered to the oxygen. Therefore, the neutral 

hemiaminal 7 can be released from the metal, which undergoes dehydration followed by 

hydrogenation to yield the secondary amine. It has been calculated that the energy required 

for the H+ transfer to the oxygen (Scheme 21, pathway b) is higher than that required for the 

H+ migration to the hydride (Scheme 21, pathway a). This means that in the absence of an 

outer-sphere assistance for the proton transfer the energy of the transition state of 6 cannot be 

achieved and therefore the amide formation is favored. 
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Scheme 21 Mechanistic model for the switch between amide and amine formation 

 

 As a matter of fact, not only Ru-based catalyst but also Rh-based homogeneous and Ag-

based heterogeneous catalysts have been developed for the direct amide synthesis (Scheme 

22). Yamaguchi et al. have reported the first Rh-based catalytic system, using [Cp*RhCl2]2 

and K2CO3 in acetone, for lactamization of amino alcohols (Scheme 22, equation 1).57 

Acetone was used as a hydrogen acceptor as well as the solvent. According to the proposed 

mechanism a rhodium hydride species is generated by the β-hydride elimination from an 

alkoxide similar to the Ru catalysts. The Rh-based catalyst can also be exploited for 

intermolecular amide synthesis as was shown by Grützmacher et al. (Scheme 22, equation 

2).58 Like for the Yamaguchi system a hydrogen acceptor such as methyl methacrylate 

(MMA) is required to generate primary and secondary amides in excellent yields. Notably, 

the reaction occurs under much milder conditions than with the Ru-based catalyst systems, 

and can be achieved even at room temperature. Moreover, Shimizu et al. reported the first 

heterogeneously catalyzed amidation from alcohols with amines.59 The catalyst is an alumina-

supported silver cluster with Cs2CO3 as the base (Scheme 22, equation 3). 
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Scheme 22 Amide syntheses catalyzed by Rh-based or Ag-based catalysts 

 

 Although several atom economical procedures are known for the formation of amides, 

there are still many challenges in this area in order for the emerging methodology to be 

widely applied for amide bond formation in organic synthesis.  
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2.2. Aim of the project 

 
 In recent years, a number of environmentally friendly transition metal catalyzed 

methods have been developed for coupling alcohols and amines. In Madsen’s group major 

research has been done to investigate reactions including amide synthesis catalyzed by metal 

complexes. It has been shown that an in situ formed Ru-complex can catalyze the amidation 

reaction from alcohols and amines.52 Since the catalyst was generated in situ, the mechanism 

of the reaction could not be fully elucidated. To better understand the exact role and nature of 

the catalyst, the development of a well-defined pre-catalyst is crucial. 

On the other hand, a number of studies have reported that ruthenium is able to activate a 

C-H bond on a coordinated NHC-ligand.60 In addition, in Milstein’s report the PNN-pincer 

catalyst 2 was participating in the reaction by an aromatization / dearomatization shift.50 

Therefore, it raised the issue whether the NHC-ligand was involved in the catalytic cycle in a 

similar way. 

According to these considerations, we decided to synthesize an effective ruthenium 

complex by installing a proper NHC ligand on the metal center. With a well-defined catalyst 

an actual mechanistic study can be performed and hopefully a more efficient catalyst be 

developed. 
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2.3. Results and discussion 

2.3.1. Synthesis and test of a well-defined pre-catalyst  

 

 A pre-catalyst containing an NHC ligand with the same reactivity as the catalyst 

generated in situ is necessary to better understand the mechanism of the ruthenium-catalyzed 

amidation reaction. The ruthenium source used to generate the catalyst in situ was 

[Ru(COD)Cl2]n. Thus, the simplest way to synthesize an efficient ruthenium complex seemed 

to introduce an NHC ligand on [Ru(COD)Cl2]n. Different methods of carbene-addition or -

transfer61,62 were attemped, however, the ruthenium complex containing both an NHC ligand 

and a COD ligand was too sensitive to be isolated.  

Numerous ruthenium(II)-N-heterocyclic carbene complexes with a p-cymene ligand are 

known to be stable, since these complexes form a saturated 18-electron system.63 They have 

been used for hydrogenation and cyclopropanation of olefins.63 In addition, it is known that 

the p-cymene ligand can be released at elevated temperature (85ºC),64 and since the amidation 

reaction takes place in refluxing toluene, the same catalytically active species can be 

generated.  

In a number of preparations ruthenium(II)-N-heterocyclic carbene complexes are 

synthesized by transferring the free N-heterocyclic carbene ligand to [Ru(p-cymene)Cl2]2.
65-67 

Alternatively, the complexes can also be prepared via silver carbene formation.66 By applying 

this latter method, 1,3-diisopropylimidazolium chloride (IiPrHCl) was treated with silver 

oxide (Ag2O) to form the corresponding silver carbene complex which was transmetallated 

with [Ru(p-cymene)Cl2]2 in a one-pot reaction. The complex 8 was isolated by flash 

chromatography in 96% yield (Scheme 23). 

 

 

Scheme 23 Synthesis of a well-defined pre-catalyst 
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At this point we could test the well-defined Ru complex 8 in the amidation reaction. 

According to the previous study in our group,52 2-phenylethanol and benzylamine were 

chosen as the standard substrates for optimizing the amidation reaction (Table 6). When the 

reaction was performed in the absence of base the imine deriving from the self-condensation 

of the amine was the only product observed (entry 1), while the reactions in the presence of 

10 mol% potassium tert-butoxide (KOtBu) afforded the amide exclusively (entry 2-5). 

Surprisingly, without phosphine ligand a yield below 70% of the amide was observed after 24 

hours (entry 2). Although, in the previous study the PCyp3·HBF4 salt69 was chosen, this 

phosphine ligand was less effective with the complex 8 giving also less than 70% conversion 

(entry 3). On the contrary, the use of tricyclohexylphosphine (PCy3), as well as 

tricyclopentylphosphine (PCyp3), resulted in the amide in high yield (entries 4 and 5). 

 

Table 6 Amidation catalyzed by well-defined Ru NHC complex 8  

 

Entry Phosphine Base GC yield (3 h) GC yield (24 h) 

1a PCyp3·HBF4 - - - 

2 - KOtBu 55% 70% 

3 PCyp3·HBF4 KOtBu 19% 61% 

4 PCy3 KOtBu 65% 95% 

5 PCyp3 KOtBu 53% 100% 
aImine formation from the self-condensation of the amine was observed 

 

2.3.2. Study of other pre-catalysts 

 

Since the new pre-catalyst proved to be efficient in the amide formation other NHC 

ruthenium-cymene complexes were also synthesized to investigate the influence of the 

carbene ligand and the halide. In fact, we decided to replace the isopropyl wing tips in 8 with 

cyclohexyl groups and the chloride to iodide. Therefore, [RuCl2(p-cymene)ICy] (9) and 

[RuI2(p-cymene)ICy] (10) complexes were prepared via silver carbene transfer methodology 
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from 1,3-dicyclohexylimidazolium chloride (ICyHCl) and [Ru(p-cymene)I2]2 (Scheme 24). 

The corresponding ICyHCl is not commercially available, and it was therefore synthesized 

according to Mistryukov’s procedure (Scheme 24, equation 1).70 The reaction between 

ICyHCl and [Ru(p-cymene)I2]2 gave a mixture of the dichloride (9, yellow band on 

preparative TLC) and the diiodide (10, red band on preparative TLC) complexes which were 

easily separated by preparative TLC (Scheme 24, equation 2).  

 

 

a: CaCl2, CH2Cl2 (80%); b: CH2(NMe)2, AcCl, CH2Cl2, (79%); c: Ag2O, CH2Cl2 (43% 9 and 49% 10) 

Scheme 24 Synthesis of 1,3-dicyclohexylimidazolium chloride and (NHC)Ru(p-cymene) complexes 

 

Having the complexes 9 and 10 at hand the standard amidation reaction was tested with 

them using either PCy3 or PCyp3 as the phosphine ligand in the presence of KOtBu (Table 7). 

With added PCy3 and base complex 9 performed very well in the amidation resulting in 61% 

amide formation after 3 hours and 97 % after 24 hours (entry 1). The use of PCyp3 afforded a 

slightly lower yield (entry 2). In contrast, the diiodide complex 10 was much less reactive and 

more byproducts were detected (entries 3 and 4). However, when the catalyst was generated 

in situ by the addition of [Ru(p-cymene)I2]2, ICyHCl, phosphine and KOtBu a similar 

reactivity as of complex 9 was observed (entries 5 and 6). The in situ generated catalyst may 

be a mixture of 9 and 10, but it shows that the influence of the halide is significant. The 

weaker coordinating iodide ligand makes complex 10 less stable than 9 and the reactivity 

difference could be explained by this difference in stability. Regardless of the phosphine 

ligand employed both complexes 8 (Table 6) and 9 (Table 7) performed almost equally well. 
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Due to some practical reasons we decided to select the catalyst system composed of complex 

8, PCy3 and KOtBu for further investigation. 

 

Table 7 Amidation reactions with (NHC)Ru(p-cymene) complexes 

OH H2N Bn+ N
H

O

BnPh Ph

5% complex 9 or 10

5% phosphine

10% KOtBu

toluene, 110 oC  

Entry Complex Phosphine GC yield (3 h) GC yield (24 h) 

1 9 PCy3 61% 97% 

2 9 PCyp3 56% 91% 

3 10 PCy3 22% 50% 

4 10 PCyp3 29% 44% 

5 10
a PCy3 56% 90% 

6 10
a PCyp3 63% 87% 

a In situ generated catalyst from [Ru(p-cymene)I2]2 and 1,3-dicyclohexylimidazolium  
chloride in the presence of 15 mol% KOtBu. 

 

At this point a report from 2001 attracted Dr. Johan Hygum Dam’s attention. Grubbs et 

al. showed that the benzylidene ligand on Grubbs 2nd generation metathesis catalyst71 can be 

removed by hydrogenation without affecting the N-heterocyclic carbene ligand.72 According 

to this observation the liberation of dihydrogen in the amidation reaction may cleave the 

benzylidene ligand and afford an active species for the amide transformation. This fact 

prompted him to investigate the performance of different metathesis catalysts73 in the 

amidation reaction (Table 8). Although no metathesis catalyst by its own brought any 

improvement, applying the Hoveyda-Grubbs 1st generation catalyst74 without the NHC ligand 

resulted in the desired product in moderate yield (entry 1a), while the addition of IiPrHCl or 

ICyHCl considerably improved the yield and after 24 hours almost quantitative amide 

formation was obtained (entries 1b and 1c). Surprisingly, the newer Grubbs 3rd generation 

metathesis catalyst75 containing a saturated NHC ligand had comparable reactivity to the 

complexes 8 and 9 and afforded the desired amides in 92% yield after 24 hours (entry 2). 

Even though the active species of the catalyst is still generated in situ, the catalyst system of 
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Hoveyda-Grubbs 1st generation, IiPrHCl carbene ligand and KOtBu base were chosen for 

further investigation. 

 

Table 8 Amidation reactions with metathesis catalysts 

 

Entry Metathesis catalyst 

GC yield  

(3 h / 24h) 

[%] 

Entry Metathesis catalyst 

GC yield  

(3 h / 24h) 

[%] 

1a 

1b 

1c  

Hoveyda-Grubbs 1st 

41 / 60 

84 / 100a  

72 / 97b 

2 
 

Grubbs 3rd 

63 / 92 

aWith 5 mol% ICyHCl and 15 mol% KOtBu;   bWith 5 mol% IiPrHCl and 15 mol% KOtBu 

 

2.3.4. Substrate scope 

 

 Having two effective catalyst systems at hand the substrate scope and limitation of the 

reaction could now be studied. The first catalyst system (catalyst A) consists of complex 8, 

PCy3 and KOtBu, while the second one (catalyst B) is composed of Hoveyda-Grubbs 1st 

generation catalyst, 1,3-diisopropylimidazolium chloride (IiPrHCl) and KOtBu (Figure 3). 

 

Figure 3 Catalyst systems for the amidation 
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Equimolar amounts of different primary alcohols and amines were reacted with catalyst A and 

B to afford the desired amides (Table 9). In all reactions 5 mol% of the corresponding Ru-

complex, and either 5 mol% of PCy3 (with catalyst A) or 5 mol% of IiPrHCl (with catalyst B) 

were employed besides 10 mol% of base. With both of the catalysts the amidation reactions of 

sterically unhindered alcohols and amines gave excellent yield (entries 1-3), while benzyl 

alcohol with benzyl amine furnished the corresponding benzamide in moderate yield (entry 

4). The p-chlorophenethyl alcohol performed well in the amidation (entry 5). However, the 

aryl bromide analogue and the p-nitro derivative gave very low yield (entries 6 and 7). On the 

other hand, the reaction between hex-5-en-1-ol and benzylamine resulted in the corresponding 

hexanamide in a very good yield, where the olefin was reduced with the liberated dihydrogen 

(entry 8). The reaction of N-benzylethanolamine with benzylamine afforded the 

corresponding amide in high yield, which shows that the amidation is selective for the 

primary amine in the presence of a secondary amine (entry 9). A sterically more hindered and 

optically pure amine also gave the desired amide in excellent yield with no sign of 

racemization (entry 10). Noteworthy, the preparation of the amide with a chiral center in the 

α-position succeeded without racemization (entry 11). The reaction catalyzed by the two 

catalyst systems could also be performed in an intramolecular fashion to generate both five- 

and seven-membered lactams (entries 12 and 13). As shown in entries 14 and 15 with the use 

of aniline as well as a secondary amine the reaction did not take place under the standard 

conditions, however, increasing the temperature to 163 ºC in mesitylene resulted in the 

formation of the desired products in moderate to good yield. 
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Table 9 Substrate scope of the amidation reaction 

R OH H2N R'+ R N
H

O

R'

toluene, 110 oC

5% catalyst A
or

5% catalyst B

KOtBu

 

Entry Alcohol Amine Amide 

Isolated 

yield 

with 

catalyst 

A 

Isolated 

yield with 

catalyst B 

1   
 

95% 88% 

2   
 

90% 95% 

3   
 

94% 86% 

4   
 

78% 67% 

5 
 

 
Cl

H
N

O

Ph

 

71% 73% 

6 
 

 
 

4% - 

7 
 

 
 

3% - 

8   
 

82% 78% 

9 
  

 
93% 87% 
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10    
85% 78% 

11 
 

 
 

53% 44% 

12  
 

68% 60% 

13  
 

53% 48% 

14a   
 

35% 33% 

15a   
 

65% 70% 

aIn mesitylene at 163 ºC 

 

Obviously, the two catalysts (A and B) did not show any major differences in yield and 

reactivity. This indicates that the catalytically active species must be the same in both cases.  

Additional substrates were tested by employing catalyst A and catalyst B (Table 10), 

however, most of them resulted in no conversion or only trace amounts of the amide products 

were observed by GC. These substrates have at least two Lewis basic heteroatoms in close 

proximity. Therefore, they could bind significantly stronger to the metal center and might 

inactivate the catalyst. 
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Table 10 Substrates that did not lead to the corresponding amide formation 

R OH H2N R'+ R N
H

O

R'

toluene, 110 oC

5% catalyst A
or

5% catalyst B

KOtBu

 

Entry Alcohol Amine Amide 

1  
 

No conversion 

2  
 

No conversion 

3   
Low conversion 

Trace product  

4 
 

 
Low conversion 

Trace product 

5 

 

 No conversion 

 

2.3.5. Tandem reaction with olefin cross metathesis and amidation 

 

 As shown by Johan Hygum Dam a few catalytic systems, in which the ruthenium 

complexes are active towards olefin metathesis,76 are also efficient in the synthesis of amides. 

Therefore, we thought to combine the olefin cross metathesis (CM) reaction with the 

amidation in a tandem one-pot transformation (Scheme 25). 
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Scheme 25 Tandem one-pot reaction with olefin cross metathesis and amidation reactions 

 

 Robert H. Grubbs et al. have established general rules for predicting the selectivity in 

CM reactions.77 According to these rules olefins have been categorized into 4 groups based on 

their relative abilities to undergo homodimerization via cross metathesis and the susceptibility 

of their homodimers toward secondary metathesis reactions (Table 11). 

 

Table 11 Olefin categories for selective cross metathesis 

Olefin type Olefins (examples) 

Type I 

(fast homodimerization) 

terminal olefins, allylic alcohols, allylic esters, allyl 

silanes, allyl halides 

Type II 

(slow homodimerization) 

styrenes, acrylates, secondary allylic alcohols, vinyl 

ketones 

Type III 

(no homodimerization) 

1,1-disubstituted olefins, non-bulky trisubstituted 

olefins, vinyl phosphonates, acrylonitrile 

Type IV 

(spectators to CM) 

vinyl nitro olefins, trisubstituted allyl alcohols, 

disubstituted α,β-unsaturated carbonyls 

 

Type I olefins can undergo a rapid homodimerization. The homodimers can be consumed in a 

cross metathesis reaction as well as their terminal olefin counterparts. Type II olefins 

homodimerize more slowly and their homodimers can hardly participate in subsequent 

metathesis reactions. Type III olefins are essentially unable to get homodimerized by the 

catalyst. However, they are still able to undergo CM with Type I and Type II olefins. Type IV 

olefins are not able to participate in CM with Grubbs 1st generation catalyst, but do not inhibit 

the activity of the catalyst toward other olefins.  

Considering these rules, 5-hexen-1-ol (Type I) and 3,3-dimethyl-1-butene (Type III) 

were selected and tested in CM-amidation tandem reaction by the use of Hoveyda-Grubbs 1st 

generation catalyst. Surprisingly, the homodimer of 5-hexen-1-ol was obtained (Scheme 26).  
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a: Hoveyda-Grubbs 1st, toluene (47 %) 

Scheme 26 Homodimerization of 5-hexen-1-ol 

 

This result may be explained by the high steric hinderance of 3,3-dimethyl-1-butene resulting 

from the tert-butyl group in α-position to the double-bond. The terminal olefin undergoes 

homodimerization very easily, thus the Type III olefin may have no chance to react. 

Therefore, the less sterically hindered vinylcyclohexane was chosen instead and reacted with 

5-hexen-1-ol under the same reaction conditions. This time the olefin cross metathesis 

reaction suceeded smoothly and afforded the cross product in 85% yield (Scheme 27).  

 

 

a: Hoveyda-Grubbs 1st, toluene (85 %) 

Scheme 27 Olefin cross metathesis catalyzed by Hoveyda-Grubbs 1st generation catalyst 

 

Accordingly, the tandem CM-amidation reaction was now attempted. First, the two olefins 

were reacted for 24 hours by means of Hoveyda-Grubbs 1st generation catalyst, and then 

benzylamine and KOtBu were added to the mixture. However, after 24 hours only trace 

amount of the desired amide was observed. This indicates that Hoveyda-Grubbs 1st generation 

catalyst is not suitable for the amide formation and the presence of the NHC is essential. 

Therefore, we decided to repeat the reaction using the catalyst B (Hoveyda-Grubbs 1st, 

IiPrHCl and KOtBu). In this case, the amide formation from the cross product was not 

observed, only from the starting alcohol. The inhibition of the CM reaction may be explained 

by considering that the ruthenium in catalyst B bears an unsaturated carbene ligand, while the 

well-known 2nd and 3rd generation metathesis catalysts71,75,78 consist of saturated carbenes. 

Since Grubbs 3rd generation catalyst has already proven to be suitable for the amidation 

reaction, the same experiment catalyzed by Grubbs 3rd generation catalyst was also 

investigated. Interestingly, the olefin cross metathesis reaction, followed by adding 
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benzylamine and KOtBu now resulted in the amidated cross product in moderate yield 

(Scheme 28).  

 

a: Grubbs 3rd, toluene; b: BnNH2, KOtBu 

Scheme 28 Tandem one-pot reaction with olefin cross metathesis and amidation 

 

This result indicates that Grubbs 3rd generation catalyst is efficient for an olefin cross 

metathesis reaction followed by the amidation in a one-pot sequence. It should be noted that 

probably a more efficient method can be developed by substrate selection and optimization of 

the reaction conditions. 

 

2.3.6. Mechanistic studies 

 

 The amidation reaction can be envisioned via different pathways (Scheme 29). We 

hypothesize that the alcohol is first oxidized to the corresponding aldehyde. At this point the 

aldehyde could be attacked by a second molecule of alcohol to form the corresponding ester, 

which can react with the amine to afford the desired amide (Scheme 29, pathway a). 

Alternatively, the amine can react with the aldehyde to give the corresponding hemiaminal. 

The hemiaminal formation can take place either in solution (Scheme 29, pathway b) or in the 

coordination sphere of the metal (Scheme 29, pathway c). 
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Scheme 29 Possible pathways of the amidation reaction 

 

If the aldehyde is released from the metal, the imine deriving from the dehydration of the 

hemiaminal should be obtained as an intermediate. However, neither imine nor ester 

intermediates have been observed by GC. This can indicate that the reaction may go through 

the pathway c, although this suggestion remains to be verified. Previously, the ester 2-

phenylethyl 2-phenylacetate was reacted with benzylamine in the presence of the preformed 

catalyst in refluxing toluene.52 The ester was stable under these conditions and no amide 

formation was observed. This proves that the amide formation does not proceed via the ester 

intermediate. 

In addition, when benzaldehyde and benzylamine were added to catalyst A in the 

presence of KOtBu the corresponding imine was formed and did not react any further. This 

may demonstrate that the aldehyde stays coordinated to the ruthenium catalyst and is not 

released into the solution. Interestingly, in Hong’s report for the same reaction between 

benzaldehyde and benzylamine with the phosphine-free Ru catalyst system generated in situ, 

the corresponding amide (48%) was obtained with the concurrent formation of the imine 

(14%).53 
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In order to further investigate the mechanism of the amidation, a series of experiments 

were performed (Table 12). First, p-methylbenzyl alcohol (1 equiv.) and benzaldehyde (1 

equiv.) were reacted with n-hexylamine (2 equiv.) in the presence of catalyst A. After 24 

hours the aldehyde was completely converted to the imine 11, while the alcohol resulted in 

the unexpected imine 12 formation with about 50% conversion. Only trace amounts of the 

amide 13 deriving from the alcohol were observed (entry 1). 

To get a better picture cross over experiments were carried out with catalyst A under the 

standard reaction conditions. When benzaldehyde (1 equiv.) was added over 3 hours to a 

mixture of p-methylbenzyl alcohol (1 equiv.) and n-hexylamine (2 equiv.), the aldehyde 

reacted immediately with the amine to afford the corresponding imine 11, while the alcohol 

provided a 2:1 mixture of the amide 13 and the imine 12 with 50% conversion after 4 hours 

and with almost complete conversion after 24 hours. However, a small amount of N-benzyl 

benzamide (14) from the aldehyde was also obtained as a byproduct. The ratio between the 

two amides (13 and 14) was 10:1 after 4 hours and it did not change after 24 hours (entry 2). 

Furthermore, when the amine (2 equiv.) was added over 3 hours to the reaction mixture of the 

alcohol (1 equiv.), aldehyde (1 equiv.) and the catalyst, the aldehyde was completely 

converted to the imine 11, while the alcohol gave the corresponding imine 12 with around 

50% conversion. After 24 hours unreacted amine and alcohol still remained, and no amide 

formation was obtained (entry3). 

 

Table 12 Competition and cross over experiments 

 

Entry 
GC Yield of 11 

[%] 
GC Yield of 12 

[%] 
GC Yield of 13 

[%] 
GC Yield of 14 

[%] 

1 100  ~50   Trace  - 
2a ~93  ~33   ~66  ~7 

3b 100  ~50   -  - 
aAdding the aldehyde over 3 hours  bAdding the amine over 3 hours 
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These results confirm that the presence of the imine inhibits the amide reaction. The imine 

may coordinate strongly to the metal and thereby prevent the substrates from reacting 

efficiently. The imine formation from the alcohol indicates that a significant amount of 

alcohol was oxidized to the aldehyde stage but only a small amount was converted to the 

amide. Presumably, the imine may displace the aldehyde from the metal center, but not the 

alcohol. When the substrate at the aldehyde stage is released from the catalyst it can react with 

the amine to result in the imine formation. According to these results we can conclude that the 

entire reaction must take place on the metal (scheme 29, pathway c).  

It should be noted that at the same time well-defined N-heterocyclic carbene based Ru 

complexes, similar to catalyst A, were published by the Hong group for the direct amide 

synthesis from alcohols and amines.79 Interestingly, a Ru(0)/Ru(II) catalytic cycle was 

proposed and a [Ru]H2 species was suggested as the active catalytic intermediate generated 

from [Ru]Cl2 with the help of a base. Further investigation indicated that the presence of the 

primary alcohol and the base is essential to generate the catalytically active [Ru]H2 species, 

but once it is formed, the amidation can take place from either alcohol or aldehyde. Therefore, 

it is not certain whether the generated aldehyde is free or coordinated to the metal. 

In contrast to Hong’s proposal of a Ru(0)/Ru(II) cycle, based on our studies we believe that 

the generated aldehyde and the hemiaminal stay coordinated to the ruthenium. Moreover, all 

the ruthenium species remain in the same oxidation state as the starting complex. 

Accordingly, a tentative mechanism of the amidation reaction is proposed in Scheme 30. The 

transformation is initiated by loss of the p-cymene ligand upon heating. Reaction with an 

alkoxide followed by β-hydride elimination affords aldehyde complex 15. This part is similar 

to what has been established for ruthenium transfer hydrogenation catalysts.80 However, it 

should be noted that (PPh3)3RuCl2 is known to react with alcohols under basic conditions to 

form the dihydride complex (PPh3)3RuH2.
81 Whether complex 8 also reacts twice with the 

alkoxide is not known at this point. In fact, the last ligand on ruthenium in 15 could be 

chloride, hydride or an amine and is therefore denoted X in Scheme 30. A more thorough 

mechanistic study will have to be carried out to differentiate between these three scenarios. 

With formation of the aldehyde complex 15 a catalytic cycle can be proposed where the 

amine adds to the aldehyde to form the hemiaminal which stays coordinated to the metal. 

Release of hydrogen can take place by hydrogen transfer to hydride as previously 
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established.82 This gives rise to complex 16 which upon β-hydride elimination releases the 

amide. Coordination of the alcohol and a second hydrogen transfer to hydride affords the 

alkoxide complex 17 which is ready to reenter the catalytic cycle.  

 

 

Scheme 30 Proposed mechanism of the amide formation 
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2.4. Conclusion 

 

 An efficient method has been developed for the direct synthesis of amides from primary 

alcohols and amines where hydrogen gas is the only byproduct. The reaction can be catalyzed 

by a number of ruthenium N-heterocyclic carbene complexes. 

 Two well-defined catalysts – [RuCl2(p-cymene)IiPr] and [RuCl2(p-cymene)ICy] (8 and 

9) – were synthesized and showed similar reactivity to the previous catalyst system generated 

in situ, although the addition of a phosphine ligand and a base is still required.  

 Furthermore, an array of various metathesis catalysts appeared to catalyze the amidation 

reaction efficiently under certain reaction conditions. Two catalytic systems (catalyst A and 

B) have been selected for further investigation of the amidation with a wide variety of 

alcohols and amines. The substrate scope has showed that the reactions with unhindered 

alcohols and amines afforded the corresponding amides in good to excellent yields. Notably, 

the asymmetric centers were tolerated even in the α-position. However, the amidation could 

not take place in the presence of several functional groups (e.g. N-Boc, nitro, aryl bromide). 

 In addition, Grubbs 3rd generation catalyst has been shown to catalyze a tandem one-pot 

reaction combining the olefin cross metathesis reaction and the amidation reaction.  

 Finally, a reaction mechanism has also been proposed. We believe that ruthenium(II) N-

heterocyclic carbene species are the catalytically active components and the intermediate 

aldehyde and hemiaminal stay coordinated to ruthenium in the catalytic cycle. 
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3. Synthesis of a trisaccharide probe as a putative virus receptor and a D-

glucuronic acid thioglycoside building block 

 

3.1. Literature background 

3.1.1. Dengue virus – epidemiology, infection 

 

Dengue fever is caused by the Dengue virus (DENV), a mosquito-borne flavivirus.83 

Recently, dengue fever has re-emerged worldwide as a result of population growth and 

movement, urbanisation and a lapse of vector control. It has been documented that DENV and 

its numerous forms have spread to the majority of the tropical and subtropical regions of the 

world.84 The virus is now endemic in more than 100 countries spanning Africa, the Americas, 

the Eastern Mediterranean, South East Asia, the Western Pacific, Indonesia and India (Figure 

4). The World Health Organisation (WHO) estimated that 2.5 billion people, or two-fifths of 

the world’s population, is at risk from the dengue virus, which can cause serious illness and in 

some cases death.85  

 

Figure 4 The geographical distribution of the Aedes aegypti mosquito (pink) and recent epidemic 
activity of DENV (red) throughout the world86 

 
DENV is transmitted by Aedes mosquitoes, particularly A. aegypti and A. albopictus.87 

Following inoculation into the skin, DENV replicates in local dendritic cells (DC).88 Systemic 
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infection of macrophages and lymphocytes ensues, followed by entry of the virus into the 

bloodstream and subsequent infection of further cellular targets.89 Not all cases of dengue 

fever cause significant illness due to host determinants, but those that do are characterized by 

an acute febrile illness similar to influenza.90 The WHO has defined classical dengue fever as 

a symptomatic infection that presents after an incubation period of 3 – 14 days, however in 

most cases this period is generally 4 to 7 days.91 Patients typically suffer from a sudden onset 

of fever, headache and pain around the eyes, muscular pain, tenderness, neuralgic joint pain 

and in some cases bleeding complications. Dengue fever patients can expect a slow but full 

recovery.88,91 

DENV occurs in four serotypes (DENV-1, DENV-2, DENV-3, DENV-4)92,93, and 

infection by any of the four serotypes of DENV confers lifelong immunity to that particular 

serotype, as well as serotype cross-reactive immunity early after the primary infection. 

However, this broad protection rapidly decreases after 6 months and patients become again 

susceptible to the other three serotypes of the virus.94 Several forms of dengue fever require 

immediate medical treatment, but unfortunately many of the affected areas lie in 

underdeveloped and/or poor, rural and highly populated regions of the world. 

There are currently no therapeutic agents available against DENV, thus the most 

efficient measure against dengue is still prevention by vector control. The Aedes mosquitoes 

must be controlled in and around the home as this is where most transmission occurs. While 

insecticide surface sprays can kill adult mosquitoes, the most effective vector control occurs 

when the mosquitoes are still larval.95 The risk of infection for travelers to tropical regions of 

the world is greatly reduced through personal protection with clothing and 

diethylmetatoluamide repellent for exposed skin.95 Vaccine development against dengue fever 

has proven difficult, since an ideal vaccine candidate must be free from significant side 

effects, effective against all four serotypes of DENV and provide lifelong immunity.88 An 

economical vaccine should also be favorable for dissemination in developing countries. 

 

3.1.2 Molecular mechanism of infection 

 
Similar to other viruses the infection with DENV is initiated by the interaction of viral 

adhesive proteins with specific receptors expressed on the host cell surface.96 DENV has a 

relatively simple structure, the envelope glycoprotein (EGP) is the major structural protein 
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exposed on the surface. In fact, mammalian host cell infection by the virus is mediated by 

EGP, which is known to be involved in the attachment of the virus to the host cell surface and 

engagement of fusion between the viral and the host cell membranes.97,98 The crystal structure 

of DENV EGP was solved in 2003 revealing that EGP consists of three functional domains 

(DI, DII and DIII), which form a dimer on the surface of the virus particle and a 

transmembrane anchor.99 In the crystal structure a ligand binding pocket at the interface of DI 

and DII was identified, which opens through a conformational shift in EGP and accepts 

hydrophobic moieties. Furthermore, it has been established that DIII mediates host cell 

surface receptor binding and therefore infection.100  

Many viruses use carbohydrates as a first point of interaction during host invasion. The 

highly sulfated and negatively charged glycosaminoglycan (GAG) heparan sulfate (HS) 

expressed on mammalian cell surfaces has been implicated as a major determinant in DENV 

infection of mammalian cells.101-104 It has been suggested that GAGs function to aggregate 

virus particles to the cell surface.105 According to this, heparan sulfate enhances the 

interaction of the virus with the receptor rather than to bind the virus particles directly. 

Heparan sulfate (HS) is very closely related in structure to heparin (H). Both of them are 

heterogeneous, anionic polysaccharides (Figure 5). The linear carbohydrate chain in H/HS 

consists of alternating hexuronic acid and D-glucosamine units. The hexuronic acid is either 

D-glucuronic acid (D-GlcA) or its C-5 epimer, L-iduronic acid (L-IdoA). D-Glucuronic acid is 

linked by a β-(1→4) linkage, while L-iduronic acid is linked by a α-(1→4) linkage to the D-

glucosamine unit. The linkage between D-glucosamine and the uronic acid is α-(1→4).106 The 

heterogeneity results mostly from the substitution pattern of the carbohydrate backbone: O-3 

and O-6 of D-glucosamine, as well as the O-2 of the uronic acids may be sulfated. The amino 

group of D-glucosamine may be free, N-acetylated or N-sulfated.  
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Figure 5 Structure of H/HS 

 

In the HS approximately half of the glucosamine units are sulfated. The N-sulfated 

disaccharides are usually located side by side in a 3-9 disaccharide residue domain (S-

domain).107 The structure of the S-domain is similar to heparin, however, less O-sulfated 

groups can be found. The S-domain usually alternates with non-sulfated GlcpA-GlcpNAc 

units. The heparan sulfate consists of one sulfate group in a disaccharide residue and the 

average molecule weight is 30 kDa.108 In the non-sulfated region of HS the D-glucuronic acid 

dominates. 

However, flaviviral research has suggested that an alternative and less abundant host 

cell receptor also exists. Previous studies have identified a range of protein species in addition 

to HS as proposed mammalian cell surface receptor molecules.109 Kazuya Hidari et al. 

identified an association between all four serotypes of DENV and the mammalian cell surface 

glycolipid Paragloboside.110 This glycoconjugate consists of the neutral tetrasaccharide 

Galβ(1-4)GlcNAcβ(1-3)Galβ(1−4)Glcβ (Lacto-N-neotetraose, nLc4, LNnT) and a hydrophilic 

ceramide (Cer) moiety that anchors it to the cell membrane (Figure 6). Interestingly, this 

tetrasaccharide glycan occurs in its free form as an important component of the 

oligosaccharide fraction of human milk.111 There is strong evidence that the oligosaccharides 

of human milk exhibit anti-adhesive properties and thereby contribute to the protection of an 

infant from infectious pathogens,112 a role that has also directly been attributed to the 

Paragloboside glycan LNnT.113 Moreover, Paragloboside plays a role in some additional 

biological recognition events.114,115  
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Figure 6 Structure of nLc4Cer 

 

Some preliminary studies on elucidating the minimal determinant for nLc4 binding to DENV-

2 EGP suggested that the non-reducing terminal Galβ(1-4)GlcNAcβ- disaccharide may be a 

critical determinant for the binding of DENV-2. However, this study was limited by the 

available structures.110 Most recently, Kazuya Hidari et al. reported that the β-GlcNAc residue 

may play an important role in dengue virus binding to the host cell surface.116  

Apparantly, chemical synthesis of oligosaccharides is an essential and valuable tool to 

study carbohydrate-virus interactions in detail. Not only does chemical synthesis allow for 

elucidating the structural binding motifs, but it may contribute directly to the development of 

effective inhibitory ligands, that may find therapeutic applications. 

 

3.1.3. Synthesis of oligosaccharides 

 

Oligosaccharide synthesis is a challenge in carbohydrate chemistry due to the wide variety 

of complex structures that occur in nature and derive from the huge number of possible 

combinations and linkages between the different carbohydrate building blocks. In contrast to 

linear peptide and oligonucleotide synthesis, where automatization was developed many years 

ago, synthetic parameters for oligosaccharide synthesis typically have to be tailored and tuned 

to each targeted oligosaccharide structure. Principally, the chemical synthesis of 

oligosaccharides consists of the following steps:117 

• Synthesis of a glycosyl acceptor: a glycosyl acceptor needs to be partially protected in 

order to have free hydroxyl (OH) group(s) at the desired position(s) for the attachment 

of the donor. 

• Synthesis of a glycosyl donor: a glycosyl donor needs to contain a leaving group (LG) 

at the anomeric position which can be activated. 

• Regio- and stereoselective glycosylation with a glycosyl donor and a glycosyl 

acceptor. 
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• Selective removal of the protecting groups in the presence of the glycosidic linkage 

and other functional groups. 

To cite Hans Paulsen, one of the pioneers of oligosaccharide synthesis: “Each oligosaccharide 

synthesis remains an independent problem, whose resolution requires considerable systematic 

research and a good deal of know-how. There are no universal reaction conditions for 

oligosaccharide syntheses.”118  

The key step in oligosaccharide synthesis is the formation of the glycosidic bond. A 

number of molecular factors can influence the course of the glycosylation reaction: 

• Configurational nature of the glycosyl donor 

• Nature of the protecting groups of the donor 

• Type of selected leaving group 

• Type of the promoter used for activation of the donor 

• Solvent 

• Nature of the glycosyl acceptor 

Several functional groups employed for glycosyl donors are widely known, which 

require different promoters. Nowadays the most common glycosyl donors are the glycosyl 

halides, thioglycosides, imidates (i.e. Schmidt’s trichloroacetimidates), 4-pentenyl glycosides 

and phosphates. In the following, thioglycosides and glycosyl bromides are described as 

glycosyl donors since they are employed in the research described in this chapter. 

 

3.1.4. Thioglycosides 

 

Thioglycosides are some of the most commonly used glycosyl donors in the synthesis of 

oligosaccharides. In general, thioglycosides have several advantages over other types of 

glycosyl donors: they are cheap to prepare, stable when stored and can be activated by 

thiofilic reagents under mild conditions. 

The first thioglycosides were prepared from acetobromosugars with thiolate anions.119 

According to the most recent method, 1,2-trans acetylated aldoses are reacted with a small 

excess of the thiol in the presence of hard Lewis acids (e.g. BF3·Et2O or SnCl4).
120 Owing to 
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the participating acetyl group at C-2, the configuration of the product is predominantly 1,2-

trans, while using a less reactive precursor the product can undergo anomerization due to the 

longer reaction time. However, the resulting 1,2-cis impurity can often be removed by 

crystallization. Thioglycosides can also be synthesized from trichloroacetimidates,121 1,2-

anhydro sugars122 and hemiacetals.123  

Importantly, the thioglycoside function is stable under the conditions of most protecting 

group manipulations, and this strongly supports the use of thioglycosides in several synthetic 

strategies. In addition, thioglycosides are not only used as glycosyl donors but also as 

glycosyl acceptors because the thioglycosidic linkage tolerates several conditions of 

alternative glycosylation methods. All these features make thioglycosides important in the 

chemical synthesis of complex oligosaccharides. 

Thioglycoside glycosyl donors can be activated by soft electrofilic reagents (Scheme 

31). These reagents react with the soft nucleofilic sulfur generating a sulfonium ion, which is 

an excellent leaving group. The departure of the sulfonium ion gives rise to an oxocarbonium 

ion intermediate, from which the O-glycoside is formed. 

 

 

Scheme 31 Activation of thioglycosides 

 

The first method for thioglycoside activation was introduced by Ferrier by means of the 

HgSO4 promoter.124 Later, other heavy metal salts have also been employed, but due to their 

limited effect only low yields could be achieved. The first glycosylation with a viable yield 

was achieved by Lönn using methyl trifluoromethanesulfonate (MeOTf) as the promoter.125 

Thioglycosides can also be activated by electrofiles containing sulfur by forming a sulfur-

sulfur bond. Fügedi introduced dimethyl-(methylthio)-sulfonium triflate (DMTST) as an 

effective promoter, which can be synthesized in the reaction of dimethyl disulfide and methyl 

triflate.126,127 Moreover, thioglycosides can be efficiently activated by halides as well as N-

bromosuccinimide (NBS) or N-iodosuccinimide (NIS).128 Lately, the use of NBS/NIS in the 
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presence of a Lewis acid has been the most common way for thiodonor activation, since they 

are convenient to handle. 

 

3.1.5. Glycosyl bromides 

 

In 1901 Koenigs and Knorr published a synthesis of glycosides with glycosyl bromides 

and alcohols in the presence of Ag2CO3 promoter (Scheme 32).129  

 

 

Scheme 32 Koenigs Knorr reaction 

 

In accordance with the participating acetyl group at C-2 the peracetylated glucopyranosyl 

bromide provides the 1,2-trans glycoside. Due to the involvement of the neighbouring group, 

an acyloxonium ion is formed which shields one side of the anomeric center, so the anomeric 

carbon can only be attacked by the nucleofile from the other side to afford the 1,2-trans 

glycoside. However, during the Koenigs-Knorr glycosylation orthoester formation can also 

occur.130 Later, Ag2O as a promoter was introduced. During the glycosylation reaction 

promoted by Ag2O or Ag2CO3 water is generated resulting in low yield. However, addition of 

drying agents such as molecular sieves or CaSO4 (Drierite)131 to the reaction mixture can 

improve the yield.  

Moreover, Zemplén applied Hg(OAc)2 as a promoter,132 while Helferich introduced the 

Hg(CN)2 and HgBr2/Hg(CN)2 promoters.130,133 Of further significant importance was the 

introduction of silver triflate (AgOTf).134  

For the synthesis of α-1,2-cis glycosides an in situ anomerisation method has been 

developed.135 α-Glycosyl bromides with a non-participating group at C-2 can be transformed 
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to β-glycosyl bromides. The reaction is catalyzed by halide ions from tetrabutyl-ammonium 

bromide. Although the concentration of the β-glycosyl bromide is low due to the anomeric 

effect, it reacts very fast with alcohols to form α-glycosides via inversion of configuration 

(Scheme 33). 

 

 

Scheme 33 In situ anomerisation 

 

Non-soluble silver salts (e.g. Ag-silica) are used to synthesize β-mannosides (Scheme 

34).136 The α-side is shielded by the non-soluble promoter, enabling the nucleofile to attack 

the anomeric center from the other side, affording a β-1,2-cis glycoside. However, the 

reaction can only be carried out with reactive glycosyl bromides and reactive glycosyl 

acceptors, and this method is not completely stereoselective. 
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Scheme 34 Synthesis of β-mannosides 
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3.2. Aim of the project 

 

DENV infection of mammalian cells appears to be a complex multi-step process and 

research has identified a role for several mammalian cell surface structures, including some 

glycans. As outlined in Chapter 3.1.2, both GAG heparan sulfate and the nLc4 tetrasaccharide 

have been shown to inhibit DENV infection, however these studies were limited by the 

available structures. Furthermore, it should be noted that the sub-domain of EGP that interacts 

with nLc4 is still unidentified and therefore its precise mode of action still remains undefined.  

At the Institute for Glycomics directed by Mark von Itzstein in Australia intensive 

research has been performed to investigate the DENV-2 EGP DIII ligand specificity and 

characterization of the DIII domain involved in mammalian cell infection. In fact, applying 

modern functional glycomics tools previous studies have confirmed that the nLc4 

tetrasaccharide binds to the DIII domain. Moreover, epitope mapping revealed that the N-

acetyl-D-glucosamine (GlcNAc) unit makes the closest contact with the DIII domain via its N-

acetyl group. Several EGP-ligand interactions were observed by screening available 

carbohydrate libraries that share the GlcNAc moiety at the first or the second position of their 

non-reducing end.  

The identification of putative receptors for DENV requires the synthesis of a range of 

nLc4-related glycan structures. Based on the facts mentioned above, the GlcNAcβ(1-

3)Galβ(1-4)GlcNAc trisaccharide raised our particular interest. Therefore, we decided to 

synthesize the GlcNAcβ(1-3)Galβ(1-4)GlcNAc trisaccharide 18 for further biological studies 

(Figure 7).  

 

 

Figure 7 Structure of GlcNAcβ(1-3)Galβ(1-4)GlcNAc trisaccharide 

 

Furthermore, a library of H/HS oligosaccharide fragments may also be a useful tool to 

study DENV inhibition and it may determinate the minimum structure in the polysaccharide 

chain which is responsible for the biological activation. Therefore, we decided to prepare a 
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series of target HS fragments for further biological investigation. For this reason the aim of 

the second project was to develop an efficient method for the synthesis of a D-glucuronic acid 

thioglycoside, which can be employed as a glycosyl donor for the synthesis of HS 

oligosaccharides. 
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3.3. Results and discussion 

 

3.3.1. Retrosynthetic plan for the GlcNAcβ(1-3)Galβ(1-4)GlcNAc trisaccharide 

 

The preceding chapters highlight the growing interest in the identification of putative 

DENV receptors that require the synthesis of a range of nLc4-related glycan structures 

believed to be of particular interest for further biological studies. In the context of the 

aforementioned studies especially the GlcNAcβ(1-3)Galβ(1-4)GlcNAc trisaccharide occurred 

to be an ideal starting point to develop potential virus receptor mimics. 

Several strategies can be designed for the synthesis of the target trisaccharide 18. In the 

literature only one procedure is described, in which the condensation of 19 with 20 in boiling 

benzene and in the presence of mercuric cyanide (Hg(CN)2) afforded the trisaccharide 21, 

followed by deprotection to result in the trisaccharide 18 (Scheme 35).137 

 

 

Scheme 35 Synthesis of GlcNAcβ(1-3)Galβ(1-4)GlcNAc trisaccharide according to Kushi et al. 

 

The disaccharide at the reducing end is known as lactosamine consisting of D-galactose 

(Gal) and D-glucosamine (GlcNAc) linked by a β(1→4) bond. In fact, the lactosamine unit is 

essential for the synthesis of nLc4 and other related compounds, hence a number of 

lactosamine derivatives have already been a prepared in the von Itzstein’s research group. 

Thus, it appeared of strategic advantage to assemble the desired trisaccharide 18 by coupling a 
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D-glucosamine donor with a set of lactosamine acceptors, followed by easy deprotection. 

However, N-acetyl glycosyl donors are not suited for the synthesis of 1,2-trans glycosides. 

During the glycosylation these compounds can be transformed into oxazoline intermediates, 

which can only react with highly reactive glycosyl acceptors due to their low reactivity 

(Scheme 36).  

 

 

Scheme 36 Formation of 1,2-oxazoline  

 

Therefore, the amino groups need to be protected by another amide type protecting group, 

which is less stable and can still act as a participating group at C-2. In this way, a more 

reactive oxazoline intermediate is generated, from which the desired 1,2-trans glycoside can 

be formed. Based on this consideration we decided to synthesize the protected trisaccharide 

22 or 23 by the coupling of the glycosyl donor 24 and the glycosyl acceptor 25 or 26 (Scheme 

37).  
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Scheme 37 Retro synthetic plan for the GlcNAcβ(1-3)Galβ(1-4)GlcNAc trisaccharide 

 

According to our retro synthetic plan, the amino groups are protected by trichloroacetyl 

(TCA) groups. The anomeric center of the acceptor is masked with a thiophenyl (SPh) group, 

while the anomeric position of the donor is halogenated. Thus, the protected trisaccharide can 

also be used as a donor for the synthesis of other nLc4-related derivatives. In fact, the 

equatorial O-3’ position of the acceptor is significantly more reactive than the axial O-4’ 

position, and diol 25 is therefore a conceivable candidate as an acceptor in the glycosylation 

reaction. Otherwise, the O-4’ position can be selectively protected via orthoester formation to 

afford the corresponding glycosyl acceptor 26. Moreover, the hydroxyl groups on the donor 

are acetylated (Ac), while the hydroxyl groups of the acceptor are protected by benzoyl (Bz) 

groups. 
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3.3.2. Synthesis of the glycosyl donor 

 

 In fact, the tetraacetate 31 can be prepared in two steps: protection of the amino group 

in 27 by the trichloroacetyl group, followed by acetylation of the hydroxyl groups.138 

However, when this method was attempted for the synthesis of 31, trichloroacetyl chloride 

reacted with methanol (used as a solvent) much faster than with the carbohydrate. Thus, the 

resulting yield was rather poor, and therefore these conditions were not suited for the first 

step. In addition, the obtained N-trichloroacetylglucosamine was difficult to purify. Therefore, 

we decided to prepare 24 by using a five-step method (Scheme 38).139  

 

 

a: 4-methoxybenzaldehyde, 1 M NaOH (81%); b: Ac2O, pyridine (85%); c: aq. HCl, acetone (90%); 
d: trichloroacetyl chloride, Et3N, CH2Cl2 (79%), e: TMSBr, CH2Cl2 (98%)  

Scheme 38 Synthesis of the glycosyl donor 

 

The starting material for the preparation of the donor was commercially available D-

glucosamine hydrochloride (27). First, the amino group was selectively protected with the 4-

methoxybenzylidene group using 4-methoxybenzaldehyde in aqueous sodium hydroxide 

solution. Then the hydroxyl groups were acetylated, followed by cleavage of the benzylidene 

group with aq. HCl in acetone. At this point 30 was reacted with trichloroacetyl chloride in 

the presence of triethylamine to afford the N-trichloroacetylglucosamine derivative 31. 

Glycosyl bromides are usually not very stable and can decompose easily during the work up. 
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To avoid this, 31 was treated with trimethylsilyl bromide (TMSBr) in CH2Cl2, the reaction 

mixture was then evaporated in vacuo to afford the desired compound 24 as a white foam.  

 

3.3.3. Synthesis of the glycosyl acceptor 

 

A lactosamine derivative was chosen as glycosyl acceptor since a number of 

lactosamine derivatives have been already prepared in the von Itzstein’s group. The selected 

starting material 32 has been previously synthesized in large scale from lactulose by the 

Heyns rearrangement140, followed by various protecting group manipulations (Scheme 39).  

 

 

a: BnNH2, AcOH, MeOH (65 – 70 %) 

Scheme 39 Heyns rearrangement 

 

The first step of our synthesis was the cleavage of the acetyl groups on 32 by Zemplén 

deacetylation. To selectively protect the O-3’ and O-4’ positions of 33 the isopropylidene 

group was introduced using 2,2-dimethoxypropane in N,N-dimethylformamide (DMF) at 

room temperature in the presence of camphorsulfonic acid (CSA). However, a mixture of the 

3’,4’-O- (thermodynamically controlled product) and 4’,6’-O-isopropylidene derivatives 

(kinetically controlled product) was obtained. To favor the thermodynamic product the 

temperature was increased to 80 ºC, but the reaction still gave a mixture of the two 

lactosamine acetal derivatives, from which the desired 3’,4’-O-isopropylidene derivative 34 

could be separated in 46% yield by column chromatography. 

Joachim Thiem et al. reported an efficient and simple method for the 3’,4’-O-isopropylidation 

of β-lactosides by the use of trimethylsilylchloride (TMSCl) and acetone at room 

temperature.141 According to the reported procedure a suspension of 33 in a mixture of 

acetone and 10 equivalents of TMSCl was stirred at room temperature for 3 hours and 
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concentrated to afford product 34 exclusively. It should be noted that the same result was 

obtained using only 0.5 equiv. TMSCl instead of 10 equivalents.  

It is known that benzoyl groups show a lower tendency for migration than acetyl groups. 

Thus, without isolation or purification, compound 34 was subjected to benzoylation by means 

of benzoyl chloride in pyridine to afford 35. The isopropylidene group was then removed by 

90% aqueous trifluoroacetic acid (TFA) to furnish the desired compound 25 (Scheme 40). 
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a: NaOMe, MeOH (~100%); b: acetone, TMSCl; c: BzCl, pyridine (78%); d: aq. TFA, CH2Cl2 (91%) 

Scheme 40 Synthesis of the diol glycosyl acceptor 

 

Based on the known reactivity difference between the O-3’ and the O-4’ position of the 

galactose unit, diol 25 was expected to be eligible for regioselective glycosylation. However, 

in our case selective protection of the O-4’ position turned out to be required for successful 

coupling, as will be described in the next chapter (chapter 3.3.4).  

A well-known process for regioselective protection of the O-4 position of D-galactose 

derivatives (leaving the O-3 position free) is orthoester formation followed by selective 

opening. The orthoester ring is not stable under acidic condition, thus it can be easily opened 

to the axial O-4 position in the reaction mixture (in situ). Therefore, the diol 25 was 

transformed into the 3’,4’-O-orthoester intermediate 36 by means of trimethyl orthobenzoate 
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in the presence of p-toluenesulfonic acid (pTsOH). Then 36 was treated with acetic acid 

(AcOH) to afford the corresponding 4’-O-benzoyl derivative 26 (Scheme 41). 

 

a: C6H5C(OCH3)3, pTsOH, DMF; b: AcOH (62%) 

Scheme 41 Orthoester formation and selective ring opening 

 

3.3.4. Glycosylation 

 

Having the desired donor and acceptor at hand we turned our attention to the crucial 

glycosylation reaction. The coupling of the diol acceptor 25 with an excess of the donor 24 

promoted by silver triflate (AgOTf) at -20 ºC resulted in a mixture of the two trisaccharides 

22 and 37 and the tetrasaccharide 38. (Scheme 42, pathway a). Surprisingly, employing an 

excess of the acceptor 25 the glycosylation reaction still afforded the mixture of the two 

corresponding trisaccharides (22 and 37), from which the desired compound 22 could not be 

separated in pure form by column chromatography (Scheme 42, pathway b).  
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a: 1.5 equiv. donor, AgOTf, CH2Cl2, -20°C; b: 0.8 equiv. donor, AgOTf, CH2Cl2, -30°C 

Scheme 42 Glycosylation with the diol acceptor 

 

This indicates that, in spite of the reactivity difference between the O-3’ and the O-4’ 

position of the glycosyl acceptor, the regioselective glycosylation could not be achieved, 

presumably due to high reactivity of the donor. Therefore, the protection of the O-4’ position 

is required and the acceptor 26 was introduced for the crucial glycosylation reaction. The 

reaction of the acceptor 26 and the donor 24 (1.5 equiv.) promoted by AgOTf at -30 ºC in 

CH2Cl2 proceeded smoothly and the desired trisaccharide 23 was isolated in 71% yield 

(Scheme 43). 
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a: AgOTf, CH2Cl2, -30°C (71%) 

Scheme 43 Glycosylation reaction 

3.3.5. Deprotection 

 

 To obtain the final disaccharide 18, the protecting groups have to be removed and the 

amino groups needs to be acetylated. According to the literature142 all acyl groups can be 

removed in a one-pot reaction, followed by the regioselective N-acetylation of the free amino 

groups. To this end 23 was treated with 20% aqueous NaOH at 40 ºC, then Ac2O was added 

at 0 ºC to afford the corresponding N-acetylated derivative 39. By means of a mild and 

general method143 the thiophenyl group was removed in wet acetone with N-

bromosuccinimide (NBS) to result in the final deprotected trisaccharide 18 as an anomeric 

mixture (Scheme 44). The synthesized deprotected trisaccharide is currently under further 

investigation for biological activity and binding properties. 

 

 

a: (i) NaOH, MeOH/H2O, 40 ºC; (ii) Ac2O (76%); b: NBS, acetone/H2O (63%) 

Scheme 44 Synthesis of the deprotected GlcNAcβ(1-3)Galβ(1-4)GlcNAc trisaccharide 
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3.3.6. Strategy for the synthesis of heparan sulfate oligosaccharides 

 

 In the literature several methods are well known for the synthesis of H/HS 

oligosaccharides.144-148 The first strategy was reported by Sinaÿ and co-workers.149,150 The 

hydroxyl groups of the protected derivative to be sulfated were protected by acetyl groups, 

while the rest of the hydroxyl groups were blocked by benzyl groups. The limitations of this 

strategy are the large number of synthetic steps and the lack of flexibility, only one final 

product can be synthesized from one single precursor. 

 Fügedi and Tatai have reported a strategy based on orthogonal protection of the 

positions for which sulfation is optional in the target compounds.151 This strategy allows the 

synthesis of a series of sulfated final compounds from a common protected intermediate 

(Scheme 45). 

 

 

Scheme 45 Orthogonal protecting strategy by Fügedi 

 

Inspired by Fügedi’s work we intended to prepare an orthogonally protected HS fragment, 

from which multiple target compounds could be synthesized, and that could be used for 

further syntheses of HS oligosaccharides (Scheme 46). 

 

 

Scheme 46 Orthogonally protected HS fragment 

 

Accordingly, the target disaccharide 42 was orthogonally protected by means of a benzoyl 

(Bz) group at the O-2 position of the glucuronic acid and a p-methoxyphenyl (MPh) at the O-
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6 position of the glucosamine residue. The reducing end of the disaccharide is protected with 

a 4-pentenyl (Pent) group which can be selectively activated to become an excellent leaving 

group, thus, the disaccharide 42 can be used as a glycosyl donor for further synthesis of 

heparin oligosaccharides. For the synthesis of the desired orthogonally protected disaccharide 

a glucuronic acid donor 40 and a glucosamine acceptor 41 are required. Based on the 

aforementioned advantages of thioglycosides, we decided to develop an efficient procedure 

for the synthesis of β-D-glucuronic acid thioglycoside glycosyl donor 40. 

 

3.3.7. Synthesis of D-glucuronic acid glycosyl donor 

 

Several chemical syntheses are reported in the literature for the synthesis of D-

glucuronic acid derivatives.152-154 An efficient synthetic method requires limited steps with 

viable yields. Wang et al. described a combinatorial, and highly regioselective method that 

can be used to protect individual hydroxyl groups of a monosaccharide.155 This approach can 

be employed to install an orthogonal protecting group pattern in a single reaction vessel (a 

‘one-pot’ reaction). Although this method eliminates the need to carry out the time-

consuming isolation and purification of intermediates, it comes at the disadvantage that the 

reactions must be carried out at -86 ºC.  

Another method for a one-pot regioselective protection of carbohydrates was published in 

2007, which has been optimized on D-glucopyranosides under mild reaction conditions by 

using a single catalyst in a single reaction vessel (Scheme 47).156 In both publications the key 

intermediates are the corresponding per-O-trimethylsilylated derivatives which can be easily 

prepared. This latter method seemed to be a useful tool for the synthesis of the D-glucuronic 

acid glycosyl donor. 

 



70 

 

a: PhCHO, Et3SiH, Cu(OTf)2, CH2Cl2/CH3CN (4:1); b: PhCHO, Et3SiH, Cu(OTf)2, CH2Cl2/CH3CN 
(4:1), then (RCO)2O, CH2Cl2; c: PhCHO, Et3SiH, Cu(OTf)2, CH2Cl2/CH3CN (4:1), then BH3·THF, 
Cu(OTf)2; d: PhCHO, Et3SiH, Cu(OTf)2, CH2Cl2/CH3CN (4:1), then Et3SiH, Cu(OTf)2 

Scheme 47 Copper(II) triflate catalyzed one-pot regioselective reaction 

 

For the preparation of the glucuronic acid thioglycoside 40 the starting material was the 

commercially available 1,2,3,4,6-penta-O-acetyl-β-D-glucopyranose (43) (Scheme 48). It was 

converted to the thioglycoside by using EtSH in the presence of BF3·Et2O as a Lewis acid and 

the thioglycoside 44 was isolated in 76% yield. Next, the acetyl groups were removed by the 

Zemplén reaction and the compound 45 was reacted with TMSCl in pyridine (Pyr) in the 

presence of 4-(dimethylamino)pyridine (DMAP) to afford the corresponding per-O-

trimethylsilylated thioglycoside 46.  

 
a: EtSH, BF3·Et2O, CH2Cl2 (76 %); b: NaOMe, MeOH (~100%); c: TMSCl, DMAP, Pyr (80%) 

Scheme 48 Synthesis of the persilylated thioglycoside 
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Having the desired key intermediate at hand the crucial regioselective one-pot reaction 

was carried out next (Scheme 49). According to the literature156 benzaldehyde and 

triethylsilane (Et3SiH) were added to the solution of 46 in CH2Cl2/CH3CN (4:1) in the 

presence of 1 mol% copper(II) trifluoromethanesulfonate (Cu(OTf)2) as a catalyst at 0ºC. The 

reaction mixture was concentrated to dryness and the residue was subjected to benzoylation 

without purification to afford the corresponding protected compound 47 in 62% yield.  

 

 

a: PhCHO, Et3SiH, Cu(OTf)2, CH2Cl2 / CH3CN (4:1); Bz2O, CH2Cl2, 40ºC (62%) 

Scheme 49 Regioselective one-pot reaction 

 

The 4,6-O-benzylidene acetal ring of 47 was reductively opened with 1 M borane 

tetrahydrofuran (BH3·THF) and trimethylsilyl trifluoromethanesulfonate (TMSOTf) to result 

in the 4-O-benzyl derivative 48 exclusively. Corey-Samuelsson oxidation157 of 48 with 

pyridinium dichromate and acetic anhydride in the presence of tert-butanol gave the desired 

D-glucuronic acid thioglycoside 40 directly (Scheme 50). In the oxidation the intermediate 

aldehyde reacts with tert-butanol to give the hemiacetal which is then oxidized directly to the 

tert-butyl ester. It should be noted that during the oxidation step partial oxidation of sulfur to 

the corresponding sulfoxide and sulfone was not obtained.  

 

 

a: 1M BH3·THF, TMSOTf, CH2Cl2 (89%); b: PDC, tBuOH, Ac2O, CH2Cl2 (70%) 

Scheme 50 Synthesis of D-glucuronic acid glycosyl donor 

 

Thus, an efficient synthetic method has been developed for the preparation of the D-

glucuronic acid thioglycoside 40. This donor is an essential building block for the synthesis of 
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an orthogonally protected disaccharide, which can provide efficient access to numerous H/HS 

oligosaccharides.  
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3.4. Conclusion 

 

 Dengue virus is one of several flaviviruses that have re-emerged in the last century and 

has become one of the most important in regard of morbidity. Despite its medical 

significance, there are currently no therapeutic agents available against DENV. The EGP 

covers the entire exposed surface of DENV and its DIII region is the major site of host cell 

surface receptor binding that initiates infection.  

Numerous studies have reported inhibition of DENV infection by the 

glycosaminoglycan (GAG) heparan sulfate (HS). It is assumed that this and other negatively 

charged carbohydrates may act to aggregate virus particles on the cell surface and therefore 

facilitate EGP binding to its primary receptor for infection. However, the structure of this 

primary DENV receptor is still not known. 

On the other hand, a recent study of mammalian cell surface glycans involved in DENV 

infection identified DENV inhibition by the glycolipid Paragloboside, which bears as glycans 

structure the tetrasaccharide Galβ(1-4)GlcNAcβ(1-3)Galβ(1−4)Glcβ  (Lacto-N-neotetraose, 

nLc4, LNnT).110  Further studies have concluded that disaccharide Galβ(1-4)GlcNAcβ 

(lactosamine) is the minimum unit and β-GlcNAc may be a key determinant for nLc4 binding 

to the surface of DENV-2.  

Therefore, we aimed to synthesize a range of nLc4-related glycans as well as a number 

of HS fragments for biological investigation. In this chapter the synthesis of a GlcNAcβ(1-

3)Galβ(1-4)GlcNAc trisaccharide probe has been discussed. Several approaches have been 

investigated towards the synthesis of this trisaccharide probe involving various protecting 

group manipulations. Finally, suitable conditions were established which led to the successful 

coupling of glycosyl donor 24 and glycosyl acceptor 26. The protected trisaccharide 23 has 

been efficiently synthesized, and the desired final compound 18 was obtained in high yields 

after deprotection (Scheme 51). The unprotected trisaccharide 18 is now under biological 

investigation. 
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Scheme 51 Synthesis of GlcNAcβ(1-3)Galβ(1-4)GlcNAc trisaccharide probe 

 

 Moreover, the synthesis of D-glucuronic acid thioglycoside 40 has also been performed 

efficiently to provide a building block for the synthesis of HS oligosaccharides. In fact, 40 can 

be employed as a donor for the synthesis of an orthogonally protected HS disaccharide, from 

which multiple target compounds can be synthesized (Scheme 52). Furthermore, the protected 

disaccharide 42 can also be used as an efficient building block for further HS oligosaccharide 

syntheses.  

 

 
Scheme 52 Strategy for HS oligosaccharide synthesis 



75 

4. Glycosylation with unprotected acceptors 

 

4.1. Methods for glycosylation with unprotected carbohydrates 

 
In the last two to three decades the biological importance of carbohydrates has been 

reassessed. In the past these compounds were considered predominantly as energy sources or 

as main components of cell walls (e.g. cellulose, chitin). Nowadays, it is well-established that 

carbohydrates and oligosaccharides play important roles in many biological processes such as 

cellular communication, cell adhesion, recognition of bacteria and viruses, often in the form 

of their glycoconjugates (glycoproteins, proteoglycans, glycolipids).158-160 Typically, the 

binding motifs for these specific interactions (also called epitopes or antigens) is not the full 

complex glycoconjugate, but a smaller oligosaccharide unit or sub-unit.161-164 For example, as 

it was outlined in Chapter 3.1.2, inhibition of mammalian host cell infection by the dengue 

virus was mediated by the tetrasaccharide Lacto-N-neotetraose (nLc4), which is the glycan 

sub-structure of the glycolipid Paragloboside.110 

Studying and understanding these biological interactions require access to complex 

carbohydrates such as oligosaccharides. Isolation of complex saccharides from natural 

sources is often difficult to be achieved in sufficient quantity and purity for biological 

investigation. In many cases enzymatic syntheses cannot be applied due to the same reasons 

and its limitations for certain glycosidic linkages. Therefore, the most comprehensive method 

is the chemical synthesis of oligosaccharide fragments. However, as it was pointed out in 

Chapter 3.1.3, due to the wide diversity and complexity of carbohydrates, chemical synthesis 

of oligosaccharides is challenging and it cannot be automated like oligopeptide and -

nucleotide synthesis. The multifunctional monosaccharide units often need selective 

protection via several chemical steps, and next, conditions of glycosylation need to be tuned 

to the specific glycosyl donor and glycosyl acceptor, where an effective promoter needs to be 

identified to activate the donor to react efficiently with the acceptor. Thus, typically many 

protecting group manipulations are required on both the glycosyl donor and the acceptor to 

achieve a regio- and stereoselective glycosylation.  

So far little research has been done to develop glycosylation methods with unprotected 

glycosyl donors or/and acceptors. Unprotected trichloroacetimidate donors have been reported 
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for glycosylation of primary alcohols including the OH-6 in hexoses.165 In fact, the 

unprotected trichloroacetimidate could not even be prepared, instead it formed the more stable 

1,2-orthoamide, which could be used as a glycosyl donor activated with TMSOTf (Scheme 

53). 
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Scheme 53 Glycosylation with unprotected glycosyl imidate 

 

Furthermore, it is known that stannylene-activation of a hydroxyl group increases the 

nucleophility of the oxygen atom to react with various electrophiles, and therefore tin-

mediated regioselective acylation,166 alkylation166 as well as glycosylation167,168 have been 

investigated. The tin species lead to selective activation and glycosylation at the O-6 position 

of the unprotected methyl galacto- and glucopyranosides,167 while the methyl α-L-

rhamnopyranoside gives selective reaction at the O-3 position.168 This result can be explained 

by the reaction of tin with the cis-vicinal glycol systems to form stannylene acetals. 

Therefore, the transformation can be performed selectively at the stannylene-activated 

position (Scheme 54).  

 

 

 

Scheme 54 Stannylene activation method in glycosylation 
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Interestingly, using the stannylene activation method a regioselective shift from β-(1→6) to 

β-(1→3)-glycosylation of non-protected methyl β-D-galactopyranoside was achieved by the 

addition of Bu4NF.169 This observation can presumably be explained by generation of the 

pentacoordinated tin-complex by the means of the fluoride ion. This resulting complex has a 

greater nucleophilicity than the original stannylene acetal and reacts preferably with the 

glycosyl donor to afford the β-(1→3)-disaccharide (Scheme 55). 

 

 

 

Scheme 55 Proposed mechanism of the Bu2SnO/F- ion-mediated glycosylation 

 

Notably, the stannylene mediated method generally requires an additional synthetic step to 

install the activating stannylene group. Furthermore, the use of stoichiometric quantities of 

toxic and lipophilic organotin species constitutes a limitation. 

 

 On the other hand, the use of arylboronic acids is an alternative procedure that does not 

work by activating, but by masking the corresponding hydroxyl groups.170 Boronic acid 

derivatives can form easily cyclic boronates from cis-1,2-diol moieties as well as 4,6-position 

in carbohydrates. In this way, they can function as a temporary protecting group and the 

glycosyl donor can attack the most reactive free hydroxyl group giving rise to a regioselective 

glycosylation (Scheme 56).171  

 

 
Scheme 56 Boronate masking method for regioselective glycosylation 

 

In addition, a diarylborinic acid-derived catalyst has recently been reported to be 

capable of regioselective activation of glycosyl acceptors.172 It was demonstrated that a 
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diphenylborinic acid derivative can catalyze regioselective acylation173 and alkylation174 of 

carbohydrate derivatives as well as regioselective glycosylation of unprotected glycosyl 

acceptors.172 Mechanistic studies suggested that the borinate ester serves as a precatalyst, 

from which the ethanolamine ligand is displaced under the reaction conditions. In contrast to 

the boronic acid derivatives, which mask cis-hydroxyl groups, the borinic acid catalyst 

activates cis-diol groups toward electrophilic attack (Scheme 57). 

 

 

 

Scheme 57 Borinic acid-catalyzed regioselective glycosylation 

 

Most recently, an alternative methology has been reported by Thiem and Matwiejuk.175 

Oxyanions obtained from partially protected acceptors were glycosylated by employing 

glycosyl halides without the use of a promoter (Scheme 58). Besides the high regioselectivity, 

stereospecific glycosidic bond formation was also achieved even in the absence of the 

participating group at C-2. However, it should be noted, that the scope of the method needs to 

be extended to different glycosyl acceptors since only methyl α-D-glucopyranoside 

derivatives have been employed so far. 

 

 

 

Scheme 58 Regioselective glycosylation employing saccharide oxyanions 
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 Obviously, these results are highly interesting and it is evident that this area is 

underdeveloped and new methods, as well as more systematic studies are necessary to 

facilitate glycosylations with unprotected carbohydrates. 
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4.2. Aim of the project 

 

Regioselective glycosylation represents a key challenge for oligosaccharide synthesis, 

since an acceptor bears multiple hydroxyl groups, which can undergo glycosylation. The 

problem of regioselectivity has generally been addressed through the use of protecting groups 

to suppress glycosylation at undesired positions. Thus, additional operations are required to 

install and remove a number of protecting groups. In certain cases, inherent differences in the 

steric and/or electronic properties of the hydroxyl groups may be exploited to achieve 

selective glycosylation.  

Some organometallic compounds are known to coordinate to cis-diols and therefore 

these can either activate specific OH groups or act as a temporary masking group. In 

particular, organotin and diarylborinic acid derivatives can activate certain hydroxyl groups of 

the acceptor monosaccharides and in this way direct selective glycosylations to take place. On 

the other hand, phenylboronic acid derivatives act in a different way and serve as an in situ 

generated acetal type protecting group.  

Nevertheless, the procedures known until now are generally optimized on a case-by-

case basis, and the regiochemical outcome may depend on the structure of the glycosyl donor. 

Therefore, we wished to study the regioselective glycosylation more thoroughly by the means 

of organoboron derivatives and find a more general method that can be applied to target-

oriented synthesis.  



81 

4.3. Results and discussion 

 

4.3.1. Investigating the use of diphenylborinic acid as a catalyst 

 

This project has been started recently in Robert Madsen’s group with the aim to develop 

new and efficient procedures for coupling of unprotected monosaccharides. Couplings can be 

performed either by employing unprotected glycosyl donors or with unprotected glycosyl 

acceptors. Glycosylation with unprotected glycosyl donors can be restricted due to the 

instability of some unprotected donors (e.g. glycosyl halides). In addition, the hydroxyl 

groups of the donor have similar reactivity to the hydroxyl groups of the acceptor leading to 

the self-condensation of the donor. Therefore, glycosylation with unprotected acceptors may 

result in a more successful strategy, even though it presents also a number of challenges: 

• The glycosyl acceptor should be soluble in organic solvents 

• The glycosyl donor should react regioselectively only with one of the hydroxyl groups 

of the acceptor 

• Preferrably, the glycosylation reaction should be efficient for a variety of glycosyl 

acceptors 

• The formation of the glycosidic linkage should be reasonably stereoselective 

Regioselective glycosylation with an unprotected acceptor can be achieved either by selective 

activation or by selective deactivation of one of the hydroxyl groups. 

Borinic acid catalyzed regioselective acylation of carbohydrates was reported by Mark 

Taylor et al. at the beginning of 2011.173 It was identified that the commercially available and 

inexpensive diphenyl borinic acid acts as a pre-catalyst and can activate cis-1,2-diol groups 

toward electrophilic attack. The broad scope demonstrated that this method enables selective 

acylation of the secondary hydroxyl groups of a wide range of monosaccharide substrates. 

Furthermore, regioselective alkylation of carbohydrate derivatives has also been performed 

using the same borinic acid precatalyst.174 Therefore, it raised the question whether this 

organoboron derivative can also catalyze glycosylation reactions in a regioselective way.  

 In this context it occurred of high interest to study the ability of the diphenyl borinic 

acid to promote regioselective Koenigs-Knorr glycosylations. Glycosyl bromide derivatives 
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were selected as donors and unprotected thioglycosides as acceptors. In this way, the coupled 

disaccharides could be used as donors for a further glycosylation reaction. 

To avoid incidental acetyl migration the stable and crystalline 2,3,4,6-tetra-O-benzoyl-α-D-

glucopyranosyl bromide (50) was chosen as a standard glycosyl donor, which was prepared 

efficiently in 2 steps (Scheme 59). 

  

 
a: BzCl, pyridine (95%); b: 33% HBr in AcOH, CH2Cl2 (89%) 

Scheme 59 Synthesis of 2,3,4,6-tetra-O-benzoyl-α-D-glucopyranosyl bromide 

 

Even though it is known that acceptors with unprotected primary hydroxyl groups are 

only poorly soluble in the organic solvents mostly used for glycosylation reactions (e.g. 

acetonitrile, DCM, THF etc), we did not wish to introduce additional protecting groups. Thus, 

in the first experiment unprotected galactose thioglycoside 51 was coupled with the donor 50 

in presence of 10 mol% of diphenyl borinic acid in acetonitrile, using silver triflate (AgOTf) 

as a promoter (Table 13, entry 1). However, the reaction led to the formation of a mixture of 

three compounds, which were not isolated. Changing the solvent to CH2Cl2/DMF (4:1) or 

nitromethane did not improve the efficiency of the reaction significantly (Table 13, entries 2 

and 3). 
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Table 13 Diphenyl borinic acid catalyzed glycosylation with phenyl 1-thio-β-D-galactopyranoside 

 

Entry Solvent Product 

1 CH3CN 3 products 

2 CH2Cl2/DMF (4 :1) - 

3 CH3NO2 - 
 

These results could be explained considering the poor solubility of the acceptor that gives rise 

to a highly diluted reaction mixture disabling the donor to react with the coupling partner. To 

avoid this problem the more soluble unprotected 6-deoxy sugar derivatives were introduced. 

The silver triflate promoted coupling reaction between 50 and methyl α-L-rhamnopyranoside 

(52) in the presence of the organoboron catalyst in CH2Cl2/CH3CN (4:1) delivered the 

β(1→3)-linked disaccharide 53 in 42 % yield (Table 14, entry 1). Interestingly, in the absence 

of the catalyst the same product was formed in 33% yield (Table 14, entry 2). Notably, the 

glycosylation was much slower in CH3CN and the disaccharide was obtained only in 19% 

yield after 24 hours (Table 14, entry 3). This indicates that dichloromethane accelerates the 

glycosylation reaction, and therefore, we decided to apply the mixture of CH2Cl2/CH3CN as a 

solvent for further investigations. It should be noted that the structure of the product was 

elucidated by means of NMR, which indicated the β-glycosidic linkage with the J1’,2’ = 7.8 Hz 

coupling constant. Based on HSQC spectra the peak of C-3 was significantly shifted down-

field, which clearly confirms the (1→3)-bond formation. 
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Table 14 Diphenyl borinic acid catalyzed glycosylation with methyl α-L-rhamnoside 

 

Entry Solvent Borinic acid Temp [ºC] Time [h] Yield [%] 

1 DCM/MeCN (4:1) 10 mol% -30 3 42 
2 DCM/MeCN (4:1) — -30 3 33 
3 MeCN 10 mol% -30-rt 24 19 

 

Under the same reaction conditions as in Table 14, entry 1 the glycosylation reaction 

with the unprotected fucose derivative 54 resulted in the desired β(1→3) disaccharide 55 in 

46% yield. Notably, significant hydrolysis of the donor followed by benzoyl group migration 

from the O-2 to the O-1 position of 56 was also observed (Scheme 60).  

 

 
a: 10 mol% 2-Aminoethyl diphenylborinate, AgOTf, CH2Cl2 / CH3CN (4:1), -30 ºC (46%) 

Scheme 60 Diphenyl borinic acid catalyzed glycosylation with phenyl 1-thio-β-L-fucoside 

 

These aforementioned results did not convince us whether the diphenylborinic acid can 

actually promote the regioselective glycosylation or the products observed are actually 

formed due to the steric and/or electronic properties of the hydroxyl groups. It should be 

noted that the moderate yields can be explained by the high degree of donor hydrolysis. To 

avoid this we decided to introduce the glycosyl acetate 31 as a donor for the glycosylation 

under different conditions. Surprisingly, the coupling reaction between the unprotected 

rhamnose derivative 52 and 31 promoted by BF3·Et2O in the presence of 10 mol% borinic 

acid catalyst afforded the unexpected trisaccharide 57 in 34% yield (Scheme 61, eq. 1). 
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In addition, the same coupling was obtained by the use of peracetylated β-D-glucose 

derivative (Scheme 61, eq. 2). 

 

a: 10 mol% 2-Aminoethyl diphenylborinate, BF3·Et2O, CH2Cl2 / CH3CN (4:1) 

Scheme 61 Diphenyl borinic acid catalyzed glycosylation of glycosyl acetates  
 

These results may indicate that the diphenylborinic acid does not affect a regioselective 

glycosylation. Presumably, due to sterical hindrance the glycosyl donor 50 could not afford 

the corresponding trisaccharide but in fact, the glycosylation reactions gave the same result 

without active participation of the catalyst. However, in contrast to our results, most recently 

and during the course of this work Mark Taylor’s group reported that the diphenylborinic acid 

can catalyze Koenigs-Knorr glycosylation reactions (as illustrated in Chapter 4.1, Scheme 

57).172 In fact, glycosyl halides were activated by Ag2O and coupled with a number of 

glycosyl acceptors efficiently with high yield and with high regioselectivity (see Scheme 57).   

 

4.3.2. Investigating the use of phenylboronic acid as a masking group 

 

After studying the influence of the diphenylborinic acid catalyst in glycosylation 

reactions we sought to test the possibility to form glycosyl borate esters and use them for 

regioselective glycosylations.  
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Although the phenylboronic esters of glycosides are usually prepared by azeotropic 

distillation in the presence of benzene or toluene to remove the generated water,176 we wished 

to apply a one-pot method to prepare the cyclic boronate followed by glyosylation.  

In fact, the formation of the boronic esters is reversible and the equilibrium can be 

shifted by removing the generated water from the reaction mixture. Thus, the glycosyl 

acceptor 54 was first reacted with phenylboronic acid in CH2Cl2 at room temperature in the 

presence of 4 Å molecular sieves, followed by the addition of the glycosyl donor 50 promoted 

by Ag2O. After 30 hours 27% of β(1→2)-linked disaccharide 59 and 54% of the unreacted 

donor 50 were isolated. Complete conversion could not be achieved by applying more 

promoter or extending the reaction time (Table 15, entry 1). Presumably, the insoluble Ag2O 

is not reactive enough to activate the stable benzoylated glycosyl bromide. Thus, the soluble 

and more reactive AgOTf was introduced which afforded complete conversion of the donor in 

3 hours. However, 57% of the donor hydrolyzed and the desired disaccharide 59 was isolated 

in only 35% yield (Table 15, entry 2). The low yields can be explained by the hydrolysis of 

the glycosyl bromide, which could not be avoided even by thorough attention to dry reaction 

conditions (solvent, reagents, inert atmosphere). 

 

Table 15 Phenyl boronate mediated glycosylation with phenyl 1-thio-β-L-fucoside  

 

Entry Promotera Solvent Temp [ºC] Time [h] Product Yield [%] 

1 Ag2O CH2Cl2 rt 30 59 + 50 27 + 54 

2 AgOTf CH2Cl2 -30-0 ºC 3 59 + 60 35 + 57 

a1.5 equiv. promoter compared to the donor 

 

To prove the effective role of the phenylboronic acid we decided to study the glycosylation 

reaction with an acceptor in which the primary hydroxyl group is present and not protected 
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(Table 16). However, with the unprotected galactose thioglycoside 51 the Ag2O promoted 

glycosylation reaction did not give any coupling product, and only the starting materials were 

recovered after 30 hours (Table 16, entry 1). Using AgOTf as promoter the expected β(1→3)-

disaccharide was isolated in 49% yield (Table 16, entry 2), while the absence of the 

phenylboronic acid resulted in the mixture of several compounds (Table 16, entry 3). 

Noteworthy, the stannylene mediated regioselective glycosylation afforded selective 

glycosylation in good yield. The corresponding tin acetal formation was performed in 

refluxing methanol, followed by the glycosylation reaction which afforded the β(1→6)-

disaccharide exclusively in 75% yield (Table 16, entry 4).  

 

Table 16 Glycosylation with phenyl 1-thio-β-D-galactoside 
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Entry Promotera Additiveb Temp [ºC] Time [h] Product Yield [%] 

1 Ag2O PhB(OH)2 rt 30 - - 

2 AgOTf PhB(OH)2 -30-0 ºC 3 61 49 

3 AgOTf - -30-0 ºC 3 several - 

4c AgOTf Bu2SnO -30-0 ºC 3 62 75 

aPromoter (1.5 equiv. donor) bAdditive (1 equiv. acceptor) c(i)1 equiv. Bu2SnO to the acceptor, reflux in 

MeOH for 3 h, (ii) donor, 4Å M.S., AgOTf (1.5 equiv. donor), CH2Cl2, -30-0 ºC 

 

It should be noted that all the glycosylation reactions performed in the presence of 

phenylboronic acid provided one coupling product exclusively. The low yield can derive from 

the donor hydrolysis, which is presumably promoted by water released during the reaction.  

In fact, AgOTf paired with collidine is a useful combination often used to promote 

Koenigs-Knorr glycosylation reactions,177 because the pair acts as a base and as proton 

scavenger and thus may improve the yields. Accordingly, the glycosylation reaction with the 

fucose thioglycoside 54 employing collidine and AgOTf provided the β(1→2)-linked 



88 

disaccharide 59 in good yield (66%) and only trace amounts of the donor was hydrolyzed 

(Scheme 62, eq. 1). In addition, a similar improvement was observed in the case of the 

unprotected galactose derivative 51, which afforded the disaccharide 61 in 74% yield 

(Scheme 62, eq. 2). Noteworthy, high regioselectivity as well as stereospecific glycosidic 

bond formation were achieved as can be concluded from the value of the J1’,2’ coupling 

constant (7.8 Hz) and the HSQC, HMBC spectra. 

 

 

a: (i) PhB(OH)2, 4 Å M.S.,CH2Cl2; (ii) AgOTf, collidine, -30-0 ºC 

Scheme 62 Regioselective glycosylation in the presence of collidine 

 

Although this method still offers room for optimization, it can be affirmed that the 

presence of collidine seems to be crucial. Further important parameters for future 

investigation are variation of the structures of the glycosyl acceptor and donor. Hence, this 

project will be continued in the Madsen group and may lead to the development of an 

efficient procedure for regioselective glycosylation with unprotected acceptors. 
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4.4. Conclusion 

 

The role of organoboron derivatives has been studied for a regioselective Koenigs-

Knorr glycosylation. Diphenyl borinic acid has been reported to coordinate to cis-vicinal diol 

moieties and thereby catalyze regioselective alkylation174 and acylation173. Thus, it raised the 

question whether the borinic acid catalyst could also activate glycosyl acceptors via the 

formation of tetracoordinated adducts of the cis-1,2-diol motifs leading to regioselective 

glycosylation.  

To avoid competing acetyl migration the stable perbenzoylated α-D-glucopyranosyl 

bromide has been prepared and used as a glycosyl donor for all the experiments. Due to the 

poor solubility of the unprotected acceptors with primary hydroxyl group the 6-deoxy 

hexopyranosides have been employed. Diphenylborinic acid catalyzed glycosylation with 

methyl α-L-rhamnoside as well as with phenyl 1-thio-β-D-fucoside afforded one coupled 

disaccharide in moderate yield. However, the same result was also observed in the absence of 

the catalyst. Interestingly, the glycosylation reaction of a glycosyl acetate promoted by 

BF3·Et2O in the presence of the same catalyst afforded an unexpected trisaccharide. These 

results indicated that diphenyl borinic acid has no influence on the coupling reaction. Very 

recently borinic acid-catalyzed regioselective Koenigs-Knorr glycosylation has been 

reported172, but time did not allow us to consider or investigate these results in further detail. 

 On the other hand, arylboronic acids are also known to coordinate to cis-diols and in 

this case act as a masking group.171 In case of the phenylboronic acid, regioselective 

glycosylation of the glycosyl bromide 50 promoted by AgOTf has been carried out 

selectively. Although due to the high degree of hydrolysis of the donor the corresponding 

disaccharides were isolated in moderate yield. By employing collidine as a base and proton 

scavenger significant improvement was obtained and resulted in the desired product 

exclusively and in high yield. This method needs to be optimized and various acceptors and 

donors have to be studied. In addition, the procedure tolerates the thiophenyl group. 

Therefore, by applying thioglycosides as acceptors the products can be used for further 

glycosylation reactions.  

 By a more thorough investigation of the organoboron mediated glycosylation reaction 

this ongoing project may provide an efficient method for coupling of unprotected acceptors 
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and may lead to the development of a new procedure for glycosylation with unprotected 

carbohydrates. 
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5. Summary 

 
The work described herein has been conducted at the Department of Chemistry, DTU 

and, during an eight months external stay in Mark von Itzstein’s group, at the Institute for 

Glycomics at the Griffith University in Australia. The thesis is divided into four main 

chapters (not counting experimental section and appendices) detailing subjects related to 

orgonometallic and carbohydrate chemistry. The work on the projects reported in Chapters 1, 

2 and 4 was conducted at DTU, while chapter 3 describes the work carried out at the Institute 

for Glycomics in Australia. The four different topics are not interlinked and can be read 

independently of each other. 

 In the first project the rate of addition and protonation for a number of Grignard 

reagents were studied by means of competition experiments. It has been shown that the rate of 

carbonyl addition may compare with the rate of protonation for highly reactive Grignard 

reagents such as allylmagnesium bromide and benzylmagnesium chloride. The obtained 

results have been published in Organic & Biomolecular Chemistry.  

The next project has involved the further development of the conditions previously 

discovered in the Madsen group for the direct coupling of alcohols and amines with 

dihydrogen liberation. An isolated ruthenium N-heterocyclic carbene complex and a 

metathesis catalyst based system were found to be effective promoters for the amidation and 

the results have been summarized in a full paper in Chemistry - A European Journal. The 

project has been continued in the group and a more thorough mechanistic investigation has 

been performed.178 Furthermore, the well-defined ruthenium complex has been employed for 

the formation of both imines179 and esters.180 

During the external stay a trisaccharide probe as a putative DENV receptor has been 

efficiently synthesized. The trisaccharide is now under biological investigation and may 

provide valuable information for a successful structure-based drug design against DENV. In 

addition, a D-glucuronic acid thioglycoside building block has been prepared successfully for 

the synthesis of H/HS oligosaccharides, which can also inhibit DENV infection. 

In the last project the role of organoboron derivatives has been studied in glycosylation 

reactions of glycosyl bromides with unprotected acceptors. This project has just been started 

in the group and the main goal is to develop new procedures for coupling unprotected 
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monosaccharides by activating and/or blocking certain OH groups. In this way, regioselective 

glycosylations can take place and a number of protecting group manipulations can be avoided.  

 



93 

6. Experimental Section 

 

6.1. Grignard addition reactions in the presence of protic agents 

 

General experimental methods 

All chemicals were obtained from Aldrich. Diethyl ether was distilled from sodium and 

benzophenone under an argon atmosphere. GC yields were obtained on a Shimadzu GC2010 

instrument equipped with an Equity™ 1 column (15 m x 0.10 mm x 0.10 µm) using octane as 

the internal standard. During the GC-analysis the injector temperature was 250 ºC, the GC-

program used was the following: 40 ºC hold 5 min, 20 ºC/min to 250 ºC, hold 5 min. 1H NMR 

and 13C NMR spectra of the isolated compounds were recorded on a Varian Mercury 300 

spectrometer with residual solvent signals as reference.181 Chemical shifts are reported as δ 

values (ppm) and the coupling constants (J) are given in Hz.  

 

General procedure for the synthesis of the Grignard reagents 

The Grignard reagents were prepared under an argon atmosphere by the slow addition (6 

hours) of the distilled halide to the magnesium (turnings form) in diethyl ether. Into the 

Grignard solution 1 mol of octane per mol of Grignard reagent was added as an internal 

standard.  

The concentrations of the Grignard reagents were determined through titration: 1 mL of 

Grignard was hydrolyzed with water and the hydroxide produced was titrated with 1 M HCl 

using phenolphtalein as an indicator.  

 

 

 

General procedure for competition experiments 

The competition experiments were carried out in a very simple way. To obtain complete 

conversion the Grignard reagent was reacted with an excess of carbonyl and protic substrate 

mixture. The solution of the Grignard reagent (10 mL) and the competing compounds in 
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diethyl ether (10 mL) were prepared separately in 20 mL disposable syringes. The two 

syringes were connected with a short polyethylene capillary tube. The Grignard reagent was 

pressed into the syringe with the substrate solution within 2-3 s. The reaction mixture was 

washed with saturated ammonium chloride solution, then with water. The organic phase was 

dried over MgSO4 and filtered. The solution was analyzed by quantitative GC and the peaks 

for the products were measured relative to the peak for octane (internal standard). To obtain 

complete conversion the Grignard solution was reacted with an excess of the substrates 

dissolved in dry diethyl ether.  

 

General procedure for isolated competition experiments 

Allyl magnesium bromide in ether (0.1 M, 100 mL) was added slowly to the mixture of the 

carbonyl compound in ether saturated with water (0.6 M, 100 mL). The mixture was stirred at 

room temperature for 30 minutes. Then, the mixture was diluted with ether, washed with 

saturated aq. NH4Cl solution and water. The organic layer was dried over MgSO4, filtered, 

and purified by distillation.  

 

1-Phenyl-but-3-en-1-ol 

Colorless oil 

Chemical formula: C10H12O 

Molecular weight: 148.20 g/mol 

Yield: 73% 

 

1H NMR (CDCl3): δ 2.50 (m, 2H, CH2-CH=CH2), 3.15 (s, 1H, OH), 4.67 (t, 1H, J = 6.6 Hz, 

CH-OH), 5.15 (m, 2H, CH=CH2), 5.79 (m, 1H, CH=CH2), 7.24-7.38 (m, 5H, aromatic) 
13C NMR (CDCl3): δ 43.4 (-CH2-), 73.1 (CH-OH), 117.7 (CH=CH2), 125.7, 127.1, 128.0, 

143.7 (aromatic), 134.3 (CH=CH2). NMR data are in accordance with literature values.182 

 

1-(4-Methoxyphenyl)but-3-en-1-ol 

Colorless oil 

Chemical formula: C11H14O2 

Molecular weight: 178.23 g/mol 

Yield: 29% 
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1H NMR (CDCl3): δ 2.45 (m, 2H, CH2-CH=CH2), 3.19 (s, 1H, OH), 3.74 (s, 3H, OCH3), 4.61 

(t, 1H, J = 6.5 Hz, CH-OH), 5.10 (m, 2H, CH=CH2), 5.75 (m, 1H, CH=CH2), 6.77-6.88 (m, 

2H, aromatic), 7.19-7.25 (m, 2H, aromatic) 
13C NMR (CDCl3): δ 43.3 (-CH2-), 54.8 (OCH3), 73.0 (CH-OH), 111.1, 112.6, 129.0, 159.2 

(aromatic) 118.0 (CH=CH2), 134.3, (CH=CH2). NMR data are in accordance with literature 

values.183 

 

1-(3-Hydroxyphenyl)-3-buten-1-ol 

Pale yellow oil 

Chemical formula: C10H12O2 

Molecular weight: 164.20 g/mol 

Yield: 26% 
 

1H NMR (CD3OD): δ 2.45 (m, 2H, CH2-CH=CH2), 4.58 (t, 1H, J = 6.3 Hz, CH-OH), 5.02 (m, 

2H, CH=CH2), 5.78 (m, 1H, CH=CH2), 6.70-6.71 (m, 1H, aromatic), 6.79-6.82 (m, 2H, 

aromatic), 7.11-7.16 (m, 1H, aromatic) 
13C NMR (CD3OD): δ 44.6 (-CH2-), 74.8 (CH-OH), 113.8, 115.1, 117.5, 130.3, 147.4, 158.3 

(aromatic), 136.1 (CH=CH2), 118.4 (CH=CH2). NMR data are in accordance with literature 

values.184 

 

4-Phenyl-hepta-1,6-dien-4-ol 

Yellow oil 

Chemical formula: C13H16O 

Molecular weight: 188.27 g/mol 

Yield: 21% 

 

1H NMR (CDCl3): δ 2.20 (s, 1H, OH), 2.41 (m, 2H, CH2-CH=CH2), 2.56 (m, 2H, CH2-

CH=CH2), 4.97 (m, 4H, 2 x CH=CH2), 5.54 (m, 2H, 2 x CH=CH2), 7.08-7.29 (m, 5H, 

aromatic).  
13C NMR (CDCl3): δ 43.4, 46.7 (2 x -CH2-), 75.0 (C-OH), 118.7, 119.1 (2 x CH=CH2), 125.2, 

125.4, 128.0, 128.2, 128.5, 145.6 (aromatic), 133.1, 133.3 (2 x CH=CH2). NMR data are in 

accordance with literature values.185 
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5-(2'-Propenyl)-7-octen-1,5-diol 

Yellow oil 

Chemical formula: C11H20O2 

Molecular weight: 184.28 g/mol 

Yield: 8% 

 

1H NMR (CDCl3): δ 1.45 (m, 6H, 3 x -CH2-), 2.14 (d, 4H, J = 7.2 Hz, CH2-CH=CH2), 2.83 (s, 

1H, OH), 3.51 (t, 2H, J = 6.0 Hz, CH2-OH), 3.82 (s, 1H, OH), 5.02 (m, 4H, 2 x CH=CH2), 

5.78 (m, 2H, 2 x CH=CH2) CH2-CH=CH2) 
13C NMR (CDCl3): δ 19.5 (C-CH2-), 32.9, 38.7 (2 x -CH2-) 43.7 (CH2-CH=CH2), 62.1 (CH2-

OH), 73.8 (C-OH), 118.4 (CH=CH2), 134.1 (CH=CH2). NMR data are in accordance with 

literature values.186 
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6.2. Ruthenium catalyzed synthesis of amides from primary alcohols and amines 

 

General experimental methods 

All chemicals were obtained from Aldrich and used without further purification, except for 

PCyp3·HBF4 (prepared according to a known procedure69). Toluene was distilled from 

sodium and benzophenone under a nitrogen atmosphere. Column chromatography separations 

were carried out on silica gel (220-440 mesh). 1H NMR and 13C NMR spectra were recorded 

on a Varian Mercury 300 spectrometer with residual solvent signals as reference.181 Chemical 

shifts are reported as δ values (ppm) and the coupling constants (J) are given in Hz. IR spectra 

were obtained on a Bruker alpha-P spectrometer. Mass spectrometry was performed by direct 

inlet on a Shimadzu GCMS-QP5000 instrument. GC yields were obtained on a Shimadzu 

GC2010 instrument equipped with an Equity™ 1 column (15 m x 0.10 mm x 0.10 µm) using 

dodecane as the internal standard. During the GC-analysis the injector temperature was 300 

ºC, the GC-program used was the following: 50 ºC hold 2 min, 40 ºC/min to 300 ºC, hold 5 

min. Optical rotation was measured on a Perkin-Elmer 241 polarimeter. Microanalyses were 

obtained at the Microanalytical Laboratory, University of Vienna while high resolution mass 

spectra were recorded at the Department of Physics and Chemistry, University of Southern 

Denmark.  

 

Preparation of RuCl2(p-cymene)I
i
Pr (8)  

1,3-Diisopropylimidazolium chloride (124.1 mg, 0.77 mmol) 

and Ag2O (75.3 mg, 0.33 mmol) were suspended in dry, 

degassed CH2Cl2 (7 mL) under argon and refluxed for 1 h in a 

Schlenk flask with a reflux condenser. [Ru(p-cymene)Cl2]2 

(201.0 mg, 0.33 mmol) in anhydrous, degassed CH2Cl2 (3 mL) 

was then added and the solution was refluxed for 2 h and 

concentrated in vacuo.  

 

Ru

NN

Cl
Cl

 

The residue was purified on a short silica gel column (CH2Cl2/
iPrOH 9:1) to give 8 (96%) as a 

red-orange solid. 

IR (neat): 3152, 3099, 3077, 2958, 2930, 2870, 1473, 1412, 1391, 1369, 1297, 1265, 1213, 

1133, 856, 770, 700 cm-1.  
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1H NMR (300 MHz, CDCl3): δ 1.30 (d, 12H, J = 6.9 Hz, iPr CH(CH3)2), 1.42 (d, 3H, J = 6.6 

Hz, p-cymene CH(CH3)2), 1.54 (d, 3H, J = 6.6 Hz, p-cymene CH(CH3)2), 2.07 (s, 3H, p-

cymene CH3), 2.92 (m, 1H, p-cymene CH(CH3)2), 4.91 (m, 1H, NCHN), 5.14 (d, J = 6.0 Hz, 

2H), 5.29 (m, 2H), 5.47 (d, J = 6.0 Hz, 2H), 7.09 (s, 2H). 1NMR data are in accordance with 

literature values.65 
13C NMR (75 MHz, CDCl3): δ 18.6, 22.7, 23.1, 25.0, 30.8, 52.0, 83.1, 85.2, 97.2, 106.4, 

118.9, 171.2. MS [M-Cl]+: calcd 423.11, found 423.07. Anal. Calcd for C19H30Cl2N2Ru: C, 

49.78; H, 6.60; N, 6.11. Found: C, 49.84; H, 6.44; N, 6.05. 

 

Preparation of 1,3-dicyclohexylimidazolium chloride  

1,4 Diazadiene: Glyoxal (5.47 mL of 40 % aqueous solution, 

48 mmol) was gradually mixed with a solution of 

cyclohexylamine (11 mL, 96 mmol) in CH2Cl2 (15 mL). 

Anhydrous CaCl2 (4.44 g, 4 mmol) was added to this solution 

with stirring and cooling (ice bath).  

 

 

After 30 min, the mixture was warmed close to boiling and an organic layer was separated by 

decantation. The layer was concentrated in vacuo. 

The desired diaziene was used in the next step without any purification. 

Acetyl chloride (3.75 mL, 53 mmol) was added with stirring and cooling below 15 ºC to a 

solution of CH2(NMe)2 (7.5 mL, 53 mmol) in CH2Cl2 (25 mL). A white suspension of a salt 

was formed. The solution of the corresponding diazadiene in CH2Cl2 (20 mL) was added in 

one portion to this suspension. The cooling bath was removed and after a spontaneous 

exothermal stage (ca. 15 min) the solution was evaporated in vacuo at 75 ºC leaving an oily 

mixture. The residue was crystallized from CH2Cl2 and EtOAc after cooling to 10 ºC. The 

crystals were separated and washed with cold EtOAc and Et2O. 
1H NMR (CDCl3): δ 1.15-2.32 (m, 20H, 4.52 (tt, 2H, J = 3.9 Hz, 11.9 Hz), 7.37 (s, 1H), 7.38 

(s, 1H), 10.88 (s, 1H). 
13C NMR (CDCl3): δ 24.5, 24.8, 33.5, 59.7, 119.3, 136.1. 

 

Preparation of RuCl2(p-cymene)ICy (9) and RuI2(p-cymene)ICy (10) 

1,3-Dicyclohexylimidazolium chloride (56 mg, 0.21 mmol) and Ag2O (25 mg, 0.11 mmol) 

were suspended in dry, degassed CH2Cl2 (5 mL) under argon and refluxed for 1.5 h in a 
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Schlenk flask with a reflux condenser. [Ru(p-cymene)I2]2 (101 mg, 0.10 mmol) in anhydrous, 

degassed CH2Cl2 (1 mL) was then added and the solution was refluxed for 45 min and 

concentrated in vacuo. The residue was purified by preparative TLC (CH2Cl2/acetone 9:1) to 

give 48 mg (43%) of complex 9 and 70.8 mg of complex 10 (49%).  

For 9: 

IR (neat): 3091, 2957, 2921, 2848, 1466, 1455, 1446, 1418, 

1380, 1290, 1276, 1232, 1190, 897, 747, 697 cm-1.  
1H NMR (300 MHz, CDCl3): δ 1.14-2.44 (m, 20H, cyclohexyl), 

1.36 (d, 6H, J = 6.9 Hz, CH(CH3)2), 2.13 (s, 3H, p-cymene CH3), 

2.84 (m, 1H), 4.84 (m, 2H), 5.14 (d, 2H, J = 6.0 Hz), 5.46 (d, 

2H, J = 6.0 Hz), 7.04 (s, 2H).  

 

 

13C NMR (50 MHz, CDCl3): δ 18.8, 23.1, 25.3, 25.4, 26.0, 31.2, 35.4, 35.8, 59.3, 83.6, 85.3, 

97.3, 105.1, 119.3, 171.4. 1H NMR data are in accordance with literature values.67 

MS [M-Cl]+: calcd 503.18, found 503.15. Anal. Calcd for C25H38Cl2N2Ru: C, 55.75; H, 7.11; 

N, 5.20. Found: C, 55.14; H, 6.84; N, 5.16.  

For 10: 

IR (neat): 2924, 2853, 1439, 1371 1284, 1224, 1189, 995, 908, 

725 cm-1.  
1H NMR (CDCl3): δ 1.20-2.46 (m, 20H, cyclohexyl), 1.35 (d, 

6H, J = 6.9 Hz, CH(CH3)2), 1.97 (s, 3H, p-cymene CH3), 3.31 

(m, 1H), 5.03 (d, J = 5.9 Hz, 2H), 5.14 (m, 2H), 5.80 (d, J = 5.9 

Hz, 2H), 7.10 (s, 2H).  

 

 

13C NMR (CDCl3): δ 20.0, 23.4, 24.7, 25.3, 26.1, 31.4, 35.3, 35.8, 61.8, 80.5, 88.1, 100.4, 

107.3, 119.9, 167.7. Anal. Calcd for C25H38I2N2Ru: C, 42.41; H, 5.51; N, 3.73. Found: C, 

42.50; H, 5.67; N, 3.78. 

 

General procedure for amidation with complex 8 (catalyst A)  

RuCl2(p-cymene)IiPr (8) (11.5 mg, 0.025 mmol), PCy3 (7.0 mg, 0.025 mmol) and KOtBu (5.6 

mg, 0.05 mmol) were placed in an oven-dried Schlenk tube. Vacuum was applied and the tube 

was then filled with argon (repeated twice). Freshly distilled toluene (1 mL) was added and 

the mixture was heated to reflux under an argon atmosphere for 20 min. The alcohol (0.5 

mmol) and the amine (0.5 mmol) were added and the mixture was heated to reflux under an 
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argon atmosphere for 24 hours. After cooling to room temperature the solvent was removed in 

vacuo and the residue was purified by column chromatography to give the corresponding 

amide. 

 

General procedure for amidation with metathesis catalyst (catalyst B) 

Hoveyda-Grubbs 1st generation catalyst (15 mg, 0.025 mmol), 1,3-diisopropylimidazolium 

chloride (4.7 mg, 0.025 mmol) and KOtBu (8.4 mg, 0.075 mmol) were placed in an oven-

dried Schlenk tube. Vacuum was applied and the tube was then filled with argon (repeated 

twice). Freshly distilled toluene (1 mL) was added and the mixture was heated to reflux under 

an argon atmosphere for 20 min. The alcohol (0.5 mmol) and the amine (0.5 mmol) were 

added and the mixture was heated to reflux under an argon atmosphere for 24 hours and then 

worked up as described above.  

 

N-Benzyl-2-phenylacetamide  

White solid 

Chemical formula: C15H15NO 

Molecular weight: 225.29 g/mol 

Melting point: 118-119 ºC 

Literature melting point187: 118-119 ºC 

 

IR (KBr): 3288, 3063, 3030, 1637, 1551, 1454, 1431, 1029, 693, 602 cm-1. 
1H NMR (CDCl3): δ 7.38-7.15 (m, 10H, aromatic), 5.88 (bs, 1H, CONH), 4.40 (d, 2H, J = 5.8 

Hz, NHCH2Ph), 3.61 (s, 2H, PhCH2C(O)).  
13C NMR (CDCl3): δ 171.0 (C=O), 138.2, 134.9, 129.5, 129.1, 128.7, 127.6, 127.5, 127.5 

(aromatic), 43.9, 43.6 (2 × -CH2-). NMR data are in accordance with literature values.188 

MS: m/z 226 [M+H]. 

 

N-Hexyl-2-phenylacetamide  

White solid  

Chemical formula: C14H21NO 

Molecular weight: 219.32 g/mol 

Melting point: 55-57 ºC  
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Literature melting point189: 53-54 ºC  

IR (KBr): 3254, 3066, 2937, 1628, 1552, 1477, 1156, 692, 544 cm-1. 
1H NMR (CDCl3): δ 7.33-7.18 (m, 5H, aromatic), 6.13 (bs, 1H, -CONH-), 3.48 (s, 2H, Ph-

CH2-N), 3.18-3.09 (m, 2H, NH-CH2-CH2), 1.38 (p, 2H, J = 7.0 Hz, N-CH2-CH2-), 1.26-1.13 

(m, 6H, 3 × -CH2-), 0.82 (t, 1H, J = 6.7 Hz, CH3).  
13C NMR (CDCl3): δ 171.0 (C=O), 135.3, 129.2, 128.7, 127.0 (aromatic), 43.6 (PhCH2NH), 

39.6 (N-CH2-CH2-), 31.3, 29.3, 26.4, 22.4 (4 × -CH2-), 13.9 (CH3). NMR data are in 

accordance with literature values.190 

MS: m/z 219 [M]. 

 

N-Benzylundecanamide  

White solid 

Chemical formula: C18H29NO 

Molecular weight: 275.43 g/mol 

Melting point: 84-86 ºC (recryst. from heptane) 

 

IR (neat): 3298, 3064, 2916, 2848, 1638, 1550, 1454, 1225, 695 cm-1.  
1H NMR (CDCl3): δ 7.23-7.16 (m, 5 H, aromatic), 6.01 (bs, 1H, C(O)NH), 4.32 (d, 2H, J = 

5.7 Hz, -NH-CH2-Ph), 2.10 (t, 2H, J = 7.4 Hz, CH2-C=O), 1.55 (p, 2H, J = 7.3 Hz, -CH2-CH2-

C=O ), 1.26-1.14 (m, 14 H, 7 x -CH2-), 0.80 (t, 3H, J = 6.6 Hz, CH3).  
13C NMR (CDCl3): δ 173.4 (C=O), 138.7, 128.9, 128.0, 127.6 (aromatic), 43.7 (NHCH2Ph), 

37.0 (CH2C(O)), 32.1 (-CH2-), 29.8 (-CH2-), 29.7 (-CH2-), 29.6 (-CH2-), 29.6 (-CH2-), 29.5 (-

CH2-), 26.0 (-CH2-), 22.9 (-CH2-CH3), 14.4 (CH3). 

MS: m/z 275 [M]. 

 

N-Benzylbenzamide  

White solid 

Chemical formula: C14H13NO 

Molecular weight: 211.26 g/mol 

Melting point: 98-100 ºC (recryst. from H2O/EtOH) 

Literature melting point191: 104 ºC  

 

 

IR (neat): 3322, 1642, 1543, 1418, 1313, 1260, 728, 693 cm-1. 
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1H NMR (CDCl3): δ 7.82-7.77 (m, 2H, aromatic), 7.55-7.25 (m, 8H, aromatic), 6.54 (bs, 1H, 

C(O)NH), 4.64 (d, 2H, J = 5.7 Hz, NCH2Ph).  
13C NMR (CDCl3): δ 167.5 (C=O), 138.3, 134.5, 131.7, 128.9, 128.7, 128.0, 127.7, 127.1, 

(aromatic), 44.2 (NHCH2Ph). NMR data in accordance with literature values.191 

MS: m/z 211 [M]. 

 

N-Benzyl-2-(4-chlorophenyl)acetamide  

Colorless crystals 

Chemical formula: C15H14ClNO 

Molecular weight: 259.73 g/mol 

Melting point: 151-153 ºC 

Literature melting point192: 155-156 ºC 

Cl

H
N

O

Ph

 

IR (neat/solid): 3277, 3026, 2917, 1642, 1539, 1491, 1246, 690 cm-1. 
1H NMR (DMSO-d6): δ 8.58 (t, 1H, J = 5.7 Hz, C(O)NH), 7.39-7.20 (m, 9H, aromatic), 4.27 

(d, 2H, J = 5.9 Hz, NHCH2Ph), 3.49 (s, 2H, Ar-CH2-CO).  
13C NMR (DMSO-d6): δ 169.7 (C=O), 139.3, 135.3, 131.0, 130.8, 128.2, 128.1, 127.2, 126.7 

(aromatic), 42.2, 41.4 (2 × -CH2-). 
1H NMR data are in accordance with literature values.192 

MS: m/z 259 [M]. 

 

N-Benzyl-2-(4-bromophenyl)acetamide 

White solid 

Chemical formula: C15H14BrNO 

Molecular weight: 304.18 g/mol 
 

1H NMR (CDCl3): δ 3.56 (s, 2H, PhCH2), 4.42 (d, 2H, J = 5.8 Hz, CH2NH), 5.67 (bs, 1H, 

NH), 7.50-7.13 (m. 9H, aromatic). 

13C NMR (CDCl3): δ 50.4 and 54.0 (2 x PhCH2), 120.0, 127.1, 128.2, 128.5, 130.6, 131.6, 

139.1, 140.2 (aromatic), 171.9 (C=O). 

MS: m/z 303 [M]. 
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N-Benzyl-2-(4-nitrophenyl)acetamide 

Red solid 

Chemical formula: C15H14N2O3 

Molecular weight: 270.28 g/mol  

1H NMR (CDCl3): δ 8.19 (d, 2H, J = 8.6 Hz, aromatic), 7.46 (d, 2H, J = 8.8 Hz, aromatic), 

7.36-7.20 (m. 5H, aromatic), 5.89 (bs, 1H, NH), 4.43 (d, 2H, J = 5.7 Hz, CH2NH), 3.67 (s, 

2H, PhCH2C=O). 

13C NMR (CDCl3): δ 159.0 (C=O), 137.8, 130.3, 128.9, 127.9, 127.8, 124.1 (aromatic), 44.1, 

43.4 (2 x PhCH2). 

MS: m/z 270 [M]. 

 

N-Benzylhexanamide  

Colorless crystals 

Chemical formula: C13H19NO 

Molecular weight: 205.3 g/mol 

Melting point: 50-52 ºC (recryst. from pentane) 

Literature melting point193: 52-53.5 ºC. 

 

IR (CHCl3): 3291, 3085, 2957, 2928, 1639, 1552, 1454, 697 cm-1. 
1H NMR (CDCl3): δ 7.37-7.25 (m, 5H, aromatic), 5.69 (bs, 1H, CON-H), 4.45 (d, 2H, J = 5.7 

Hz, N-CH2-Ph), 2.21 (t, 2H, J = 7.4 Hz, CH2-C=O), 1.66 (p, 2H, J = 7.5 Hz, CH2-CH2-C=O), 

1.37-1.24 (m, 4H, CH3-CH2-CH2-), 0.89 (t, 3H, J = 6.8 Hz, CH3-).  
13C NMR (CDCl3): δ 173.2 (C=O), 138.5, 128.8, 127.9, 127.6 (aromatic), 43.6 (NCH2Ph), 

36.9 (CH2-C=O), 31.6 (-CH2-), 25.6 (-CH2-), 22.5 (CH2-CH3), 14.1 (CH3). 

MS: m/z 205 [M]. 

 

N-Benzyl-2-(benzylamino)acetamide  

Clear oil 

Chemical formula: C16H18N2O 

Molecular weight: 254.33 g/mol 
 

IR (neat): 3319, 3029, 1654, 1522, 1453, 1261, 1029, 737, 699 cm-1. 
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1H NMR (CDCl3): δ 7.53 (bs, 1H, C(O)NH), 7.40-7.20 (m, 10H, aromatic), 4.47 (d, 2H, J = 

6.0 Hz, PhCH2NC(=O)), 3.76 (s, 2H, Ph-CH2-NH), 3.36 (s, 2H, Ph-CH2-NH-CH2), 1.80 (bs, 

1H, CH2-NH-CH2).  
13C NMR (CDCl3): δ 171.5 (C=O), 139.4, 138.5, 128.8, 128.7, 128.2, 127.8, 127.6, 127.5 

(aromatic), 54.1, 52.1 (2 × -CH2-), 43.1 (Ph-CH2-NC(=O)). 

MS: m/z 255 [M+H]. 

 

2-Phenyl-N-((R)-1-phenylethyl)acetamide  

Chemical formula: C16H17NO 

Molecular weight: 239.31 g/mol 

Melting point: 115-116 ºC (recryst. from H2O/EtOH) 

Literature melting point194: 117-118 ºC. 

Optical rotation: [α]D +3.4 (c = 1.0, CHCl3) 

Lit. optical rotation195: [α]D +3.3 (c = 1.0, CHCl3) 

 

 

IR (KBr): 3307, 3063, 3028, 2974, 1649, 1541, 1494, 1445, 1356, 1246, 1208, 761, 697 cm-1. 
1H NMR (CDCl3): δ 7.39-7.61 (m, 10H, aromatic), 5.72 (d, 1H, J = 7.1 Hz, C(O)NH), 5.12 

(p, 1H, J = 7.0 Hz, PhCH(Me)NH), 3.57 (s, 2H, Ph-CH2-), 1.40 (d, 3H, J = 6.9 Hz, CH3).  
13C NMR (CDCl3): δ 170.1 (C=O), 143.2, 135.0, 129.5, 129.1, 128.7, 127.4, 127.4, 126.0 

(aromatic), 48.8 (PhCH(Me)NH), 44.0 (Ph-CH2-), 21.9 (CH3). 

MS: m/z 239 [M]. 

 

N,N’-Dibenzyl-L-prolinamide  

Clear oil 

Chemical formula: C19H22N2O 

Molecular weight: 294.39 g/mol 

Optical rotation: [α]D -48.2 (c = 1.0, CHCl3).  

Ref. optical rotation196: [α]D -46.3 (c = 1.0, CHCl3). 

 

 

IR (neat): 3346, 3061, 2968, 2806, 1670, 1514, 1454, 1028, 748, 700 cm-1. 
1H NMR (CDCl3): δ 7.74 (bs, 1H, -CONH-), 7.22-7.37 (m, 8H, aromatic), 7.17-7.11 (m, 2H, 

aromatic), 4.41 (d, 2H, J = 5.7 Hz, Ph-CH2-NC(O)), 3.85 (d, 1H, J = 12.8 Hz, Ph-CHaHb-N), 

3.48 (d, 1H, J = 12.8 Hz, Ph-CHaHb-N), 3.29 (dd, 1H, J = 4.9 Hz, J = 10.2 Hz, H-2), 3.00 
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(ddd, 1H, J = 2.2 Hz, J = 6.6 Hz, J = 8.9 Hz, H-5a), 2.20-2.41 (m, 2H, H-3a, H-5b), 1.95 

(ddd, 1H, J = 4.0 Hz, J = 8.2 Hz, J = 13.0 Hz, H-3b), 1.84-1.61 (m, 2H, H-4a, H-4b).  
13C NMR (CDCl3): δ 174.5 (C=O), 138.5, 138.5, 128.7, 128.7, 128.4, 127.6, 127.4, 127.3 

(aromatic), 67.3 (C-2), 60.0, 53.9 (C-5, Ph-CH2-NH), 42.9 (Ph-CH2-NC(O)), 30.7 (C-3), 24.2 

(C-4). NMR data are in accordance with literature values.197 

MS: m/z 295 [M+H]. 

 

2-Pyrrolidinone  

Colorless crystals 

Chemical formula: C4H7NO 

Molecular weight: 85.1 g/mol 

Melting point: 26-27 ºC 

Literature melting point198: 25 ºC  

 

IR (neat): 3247, 3198, 2921, 2867, 1679, 1462, 1283, 419 cm-1. 
1H NMR (CDCl3): δ 6.50 (bs, 1H, C(O)NH), 3.39 (t, 2H, J = 7.0 Hz, NH-CH2-CH2-), 2.35-

2.25 (m, 2H, C(O)-CH2-CH2-), 2.20-2.05 (m, 2H, NH-CH2-CH2-).  
13C NMR (CDCl3): δ 179.3 (C=O), 42.4 (NH-CH2-CH2-), 30.1 (CO-CH2-CH2-), 20.9 (NH-

CH2-CH2-). 

MS: m/z 85 [M]. 

 

εεεε-Caprolactam  

Colorless crystals 

Chemical formula: C6H11NO 

Molecular weight: 113.16 g/mol 

Melting point: 66-68 ºC (recryst. from heptane) 

Literature melting point199: 70-71 ºC 

 

IR (neat): 3294, 3197, 2927, 1651, 1416, 1197, 802, 504 cm-1. 
1H NMR (CDCl3): δ 7.58 (bs, 1H, C(O)NH), 3.00 (q, 2H, J = 5.8 Hz, NH-CH2-CH2-), 2.27-

2.23 (m, 2H, CO-CH2-CH2-), 1.59-1.40 (m, 6H, 3 × -CH2-).  
13C NMR (CDCl3): δ 179.8 (C=O), 42.7 (NH-CH2-CH2), 36.9 (C(O)-CH2-CH2), 30.7 (-CH2-), 

29.8 (-CH2-), 23.3 (-CH2-). 
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MS: m/z 113 [M]. 

 

N,2-Diphenylacetamide  

Colorless crystals  

Chemical formula: C14H13NO 

Molecular weight: 211.26 g/mol 

Melting point: 114-115 ºC (recryst. from heptane) 

Literature melting point200: 115-116 ºC. 

 

IR (CHCl3): 3286, 3257, 3060, 1655, 1599, 1547, 1495, 1442, 1166, 751, 723, 692 cm-1. 
1H NMR (CDCl3): δ 7.46-7.20 (m, 10H, aromatic, C(O)NH), 7.12-7.05 (m, 1H, aromatic), 

3.73 (s, 2H, PhCH2C(O)).  
13C NMR (CDCl3): δ 169.3 (C=O), 137.7, 134.5, 129.6, 129.3, 129.0, 127.8, 124.6, 119.9 

(aromatic), 44.9 (PhCH2C=O). NMR data in accordance with literature values.201 

MS: m/z 211 [M]. 

 

N-Benzyl-N-methyl-2-phenylacetamide 

Yellow oil 

Chemical formula: C16H17NO 

Molecular weight: 239.31 g/mol 

1:1.4 mixture of rotamers. Major rotamer:  

 

IR (CHCl3): 3061, 3029, 1644, 1495, 1453, 1399, 1111, 731, 697 cm-1. 
1H NMR (CDCl3): δ 7.39-7.20 (m, 9H, aromatic), 7.12-7.09 (m, 1H, aromatic), 4.61 (s, 2H, 

NCH2Ph), 3.78 (s, 2H, PhCH2C(O)), 2.89 (s, 3H, NCH3).  
13C NMR (CDCl3): δ 171.2 (C=O), 137.4, 135.0, 128.9, 128.8, 128.6, 128.1, 126.9, 126.4 

(aromatic), 51.0 (NCH2Ph), 41.3 (PhCH2C(O)), 35.3 (NCH3). 

Minor rotamer: 
1H NMR (CDCl3): δ 7.39-7.20 (m, 9H, aromatic), 7.09-7.07 (m, 1H, aromatic), 4.52 (s, 2H, 

NCH2Ph), 3.75 (s, 2H, PhCH2C(O)), 2.95 (s, 3H, NCH3).  
13C NMR (CDCl3): δ 171.6 (C=O), 136.5, 135.2, 129.0, 128.9, 128.8, 127.7, 127.4, 126.9 

(aromatic), 53.7 (NCH2Ph), 41.0 (PhCH2C(O)), 34.1 (NCH3). NMR data for both rotamers 

are in accordance with literature values.53 
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MS: m/z 239 [M]. 

 

N-Hexyl-p-methylbenzamide  

Yellow oil 

Chemical formula: C14H21NO 

Molecular weight: 219.32 g/mol  

1H NMR (CDCl3): δ 7.60 (bd, 2H, J = 8.2 Hz, aromatic), 7.14 (bd, 2H, J = 8.1 Hz, aromatic), 

6.26 (bs, 1H, C(O)NH), 3.33 (q, 2H, J = 6.4 Hz, NH-CH2-CH2), 2.30 (s, 3H, CH3Ph), 1.51 (p, 

2H, J = 7.0 Hz, NH-CH2-CH2-), 1.32-1.22 (m, 6H, 3 × -CH2-), 0.81 (t, 1H, J = 6.6 Hz, CH2-

CH3).  
13C NMR (CDCl3): δ 167.4 (C=O), 141.5, 131.9, 129.1, 126.8 (aromatic), 40.0 (NH-CH2-

CH2) 31.5, 29.6, 26.6, 22.5, 21.3, (4 × -CH2-, CH3Ph), 14.0 (CH3). NMR data are in 

accordance with literature values.202 

MS: m/z 219 [M]. 

 

N-Hexylbenzamide  

Colorless solid 

Chemical formula: C13H19NO 

Molecular weight: 205.3 g/mol  

1H NMR (CDCl3): δ 7.66-7.20 (m, 5H, aromatic), 6.68 (bs, 1H, CONH), 3.27 (q, 2H, J = 6.5 

Hz, NHCH2CH2), 1.45 (p, 2H, J = 7.0 Hz, NCH2CH2), 1.26-1.10 (m, 6H, 3 × CH2), 0.76 (t, 

3H, J = 6.3 Hz, CH3).
 

13C NMR (CDCl3): δ 167.5 (C=O), 134.6, 131.0, 128.3, 126.8 (aromatic), 40.0 (NCH2), 31.4, 

29.4, 26.5, 22.4 (4 × -CH2-), 13.9 (CH3). NMR data are in accordance with literature 

values.203 

MS: m/z 205 [M]. 

 

(E)-1,10-Dihydroxy-5-decene  

Hoveyda–Grubbs 1st generation catalyst (15 mg, 0.025 mmol) was weighted into a Schlenk-

flask. Vacuum was applied and the flask was filled with argon. Then toluene (1 mL) was 

added and followed by the addition of 5-hexen-1-ol (60 µL, 0.5 mmol) and 3,3-dimethyl-1-



108 

butene (258 µL, 2 mmol). The mixture was stirred for 24 hours at 40 ºC. The mixture was 

concentrated in vacuo and the residue purified by column chromatography. 

Colorless oil 

Chemical formula: C10H20O2 

Molecular weight: 172.26 g/mol 

Yield: 47% 

 

 

 

1H NMR (CDCl3): δ 1.41 (m, 4H, 2 x -CH2-), 1.62 (m, 4H, 2 x -CH2-), 2.04 (m, 4 H, 2 x CH2-

CH=CH), 2.34 (s, 2H, 2 x OH), 3.62 (m, 4H, 2 x CH2-OH), 5.40 (m, 2H, CH=CH). 
13C NMR (CDCl3): δ 25.6 (2 x –CH2-CH2-CH2-), 32.1 (2 x -CH2-CH2-OH), 32.2 (2 x CH2-

CH=CH), 62.8 (2 x CH2-OH), 130.3 (CH=CH). NMR data are in accordance with literature 

values.204 

 

6-Cyclohexyl-5-hexen-1-ol  

Hoveyda–Grubbs 1st generation catalyst (15 mg, 0.025 mmol) was weighted into a Schlenk-

flask. Vacuum was applied and the flask was filled with argon. Then toluene (1 mL) was 

added and followed by the addition of 5-hexen-1-ol (60 µL, 0.5 mmol) and vinylcyclohexane 

(68 µL, 0.5 mmol). The mixture was stirred for 24 hours at 40 ºC. The mixture was 

concentrated in vacuo and the residue was purified by column chromatography. 

Colorless oil 

Chemical formula: C12H22O 

Molecular weight: 469.74 g/mol 

Yield: 85 % 

 

 

1H NMR (CDCl3): δ 1.04-1.98 (m, 17H, 8 x -CH2-, -CH-CH=CH), 2.23 (s, 1H, OH), 3.61 (m, 

2H, CH2-OH), 5.34 (m, 2H, CH=CH). 
13C NMR (CDCl3): δ 25.6 (-CH2-), 26.0 (2 x -CH2-), 26.2 (-CH2-), 32.1 (-CH2-), 32.3 (-CH2-), 

33.2 (2 x -CH2-), 40.6 (-CH-CH=CH), 62.8 (CH2-OH), 127.1(CH2-CH=CH), 136.8 (CH-

CH=CH). NMR data are in accordance with literature values.205 

 

N-Benzyl-6-cyclohexylhexanamide  

Grubbs 3rd generation catalyst (19.8 mg, 0.025 mmol) was weighted into a Schlenk-flask. 

Vacuum was applied and the flask was filled with argon. Then toluene (1 mL) was added and 
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followed by the addition of 5-hexen-1-ol (60 µL, 0.5 mmol) and vinylcyclohexane (68 µL, 0.5 

mmol). The mixture was stirred for 24 hours at 40 ºC. Then benzylamine (55 µL, 0.5 mmol) 

and KOtBu (8.4 mg, 0.075 mmol) were added and the reaction mixture was stirred at reflux 

for 24 hours. After cooling to room temperature the solvent was removed in vacuo and the 

residue was purified by column chromatography.  

White solid 

Chemical formula: C19H29NO 

Molecular weight: 287.44 g/mol 

Yield: 33% 

 

 

1H NMR (CDCl3): δ 1.09-1.87 (m, 19H, 9 x -CH2-, -CH-CH=CH), 2.19 (m, 2H, CH2C(O)), 

4.76 (s, 2H, CH2Ph), 6.56 (s, 1H, NH), 7.08-7.42 (m, 5H, aromatic). 
13C NMR (CDCl3): δ 25.9, 26.1, 26.2, 26.3, 26.5, 32.9, 33.1, 33.3 (10 x -CH2-), 40.5 (-CH-), 

53.9 (CH2Ph), 127.7, 127.9, 128.1, 128.2, 128.4, 130.6 (aromatic), 161.8 (C=O). 
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6.3. Synthesis of a trisaccharide probe as a putative virus receptor and a D-glucuronic 

acid thioglycoside building block 

 

General experimental methods 

All reactions were preformed in oven dried glassware under an argon atmosphere. Solvents 

and chemicals used were purchased from commercial suppliers. All materials were employed 

without further purification. Thin layer chromatography (TLC) was carried out on silica gel 

plates (Silica gel 60, F254, Merck) with detection by UV and visualized by dipping in a 20% 

solution of sulfuric acid in ethanol followed by heating. Purification by column 

chromatography was performed using normal-phase silica gel (Silica gel, 230-240 mesh, 

Merck). 1H NMR and 13C NMR were recorded on a 300 MHz Bruker instrument, and the 

spectra are referenced to solvent residual signals according to literature values.181 Chemical 

shifts are reported as δ values (ppm) and the coupling constants (J) are given in Hz. 

Assignments of 1H and 13C resonances were based on COSY and HSQC experiments. Melting 

point was measured on a Stuart SMP30 apparatus, while optical rotation was measured on a 

Perkin-Elmer 241 polarimeter. Mass spectrometry was performed on a Waters Aquity UPLC 

System equipped with PDA and SQD electrospray MS detector. 

 

2-Deoxy-2-(4-methoxybenzylideneamino)-αααα/ββββ-D-glucopyranose (28) 

D-Glucosamine hydrochloride (27) (50.0 g, 0.232 mol) was dissolved in 1 M aqueous sodium 

hydroxide (240 mL), forming a colorless solution. Anisaldehyde (28.5 mL, 0.235 mol) was 

added during 5 min while stirring the mixture intensely. The reaction mixture was stirred for 

30 min at room temperature. During this time, a thick white suspension was obtained. The 

suspension was stirred for 2 hours in ice bath. The solid was then collected by filtration and 

washed with water and with a 1:1 mixture of methanol and ether. The precipitate was dried 

under vacuum affording 28 (56 g) as a white solid. 
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Chemical formula: C14H19NO6 

 

Molecular weight: 297.3 g/mol 

Yield: 81% 

Melting point: 159-160 ºC 

Literature melting point139: 165-166 ºC 

Optical rotation [α]D = +29 (c = 0.84, DMSO) 
1H NMR (DMSO-d6): δ 2.81 (t, 1H , J = 8.5 Hz), 3.10-3.30 (m, 2H), 3.38-3.55 (m, 2H), 3.71 

(dd, 1H, J = 5.6 Hz, 11.1 Hz), 3.79 (s, 3H, OCH3), 4.59 (t, 1H, J = 5.7 Hz), 4.71 (t, 1H, J = 

7.2 Hz), 4.84 (d, 1H, J = 5.6 Hz), 4.95 (d, 1H, J = 5.1 Hz), 6.56 (d, 1H, J = 6.7 Hz), 6.98 (d, 

2H, J = 8.7 Hz, aromatic), 7.69 (d, 2H, J = 8.7 Hz, aromatic), 8.12 (s, 1H, N=CH). 
13C NMR (DMSO-d6): δ 55.2 (OCH3), 61.2 (C-6), 70.3, 74.6, 76.8, 78.1(C-2, C-3, C-4, C-5), 

95.6 (C-1), 113.9, 129.0, 129.6, 161.0 (aromatic), 161.3 (N=CH). NMR data are in 

accordance with literature values.206 

 

1,3,4,6-Tetra-O-acetyl-2-(4-methoxybenzylideneamino)-2-deoxy-ββββ-D-glucopyranose (29) 

The solution of 28 (56 g, 0.188 mol) in pyridine (230 mL) was cooled to 0 ºC in an ice bath 

and acetic anhydride (90 mL) was added drop-wise. The mixture was stirred at 0 ºC for 4 

hours then left at room temperature overnight. The solution was poured into 1.5 L ice, 

forming a white crystalline solid. The crystals were collected by filtration, washed with water 

and ether and dried under vacuum to give 29 (74.4 g) as a white solid. 

Chemical formula: C22H27NO10 
O

OAc

AcO
AcO

N

OMe

OAc

 

Molecular weight: 465.46 g/mol 

Yield: 85% 

Melting point: 175-177 ºC 

Literature melting point139: 180-182 ºC 

Optical rotation [α]D = +103.4 (c = 1, CHCl3) 

Literature optical rotation139 [α]D = +95 (c = 1, CHCl3) 

1H NMR (CDCl3): δ 1.89 (s, 3H, C(O)CH3), 2.03 (s, 3H, C(O)CH3), 2.04 (s, 3H, C(O)CH3), 

2.10 (s, 3H, C(O)CH3), 3.45 (dd, 1H, J1,2 = 8.4 Hz, J2,3 = 9.7 Hz, H-2), 3.84 (s, 3H, OCH3), 

3.98 (ddd, 1H, J5,6a = 2.1 Hz, J5,6b = 4.6 Hz, J4,5 = 10.1 Hz, H-5), 4.13 (dd, 1H, J5,6a = 2.1 Hz, 

J6a,6b = 12.5 Hz, H-6b), 4.39 (dd, 1H, J5,6a = 4.5 Hz, J6a,6b = 12.4 Hz, H-6a), 5.15 (t, 1H, J = 
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9.8 Hz, H-4), 5.44 (t, 1H, J = 9.6 Hz, H-3), 5.95 (d, 1H, J1,2 = 8.3 Hz, H-1), 6.92 (d, 2H, J = 

8.7 Hz, aromatic), 7.66 (d, 2H, J = 8.7 Hz, aromatic), 8.16 (s, 1H, N=CH). 
13C NMR (CDCl3): δ 20.7, 20.8, 20.9, 21.0 (4 x C(O)CH3), 55.6 (OCH3), 62.0 (C-6), 68.2, 

72.9, 73.1, 73.4 (C-2, C-3, C-4, C-5), 93.3 (C-1), 114.2, 128.4, 130.4, 162.5 (aromatic), 164.5 

(N=CH), 169.0, 169.8, 170.1, 170.9 (4 x C(O)CH3). NMR data are in accordance with 

literature values.206 

 

1,3,4,6-Tetra-O-acetyl-2-amino-2-deoxy-ββββ-D-glucopyranose (30) 

To the hot solution of 29 (70 g, 0.15 mol) in refluxing acetone (70 mL) 5 M HCl (35 mL) was 

added drop-wise. The mixture was slowly cooled to room temperature resulting in a thick 

suspension. The suspension was filtered, the solid was washed with acetone and ether. The 

crude product was dried under vacuum to afford 30 (51.8 g) as a white solid. 

Chemical formula: C14H21NO9·HCl  

O

OAc

AcO
AcO

NH2

OAc

HCl  

Molecular weight: 383.78 g/mol 

Yield: 90% 

Literature melting point139: 235 ºC (decomposition) 

Optical rotation [α]D = +52.3 (c = 1.01, DMSO) 

Literature optical rotation139 [α]D = +32 (c = 1, MeOH) 
1H NMR (DMSO-d6): δ 1.97 (s, 3H, C(O)CH3), 1.99 (s, 3H, C(O)CH3), 2.02 (s, 3H, 

C(O)CH3), 2.17 (s, 3H, C(O)CH3), 3.55 (t, 1H, J1,2 = 8.9 Hz, J2,3 = 9.9 Hz, H-2), 3.94-4.08 

(m, 2H, H-5, H-6b), 4.19 (dd, 1H, J5,6a  = 4.8 Hz, J6a,6b = 12.9 Hz, H-6a), 4.98 (dd, 1H, J3,4 = 

9.2 Hz, J4,5 = 10.0 Hz, H-4), 5.37 (dd, 1H, J3,4  = 9.1 Hz, J2,3 = 10.4 Hz, H-3), 5.93 (d, 1H, J1,2 

= 8.3 Hz, H-1), 8.93 (s, br, 3H, NH3
+). 

13C NMR (DMSO-d6): δ 20.4, 20.5, 20.9, 21.0 (4 x C(O)CH3), 52.1 (C-2), 61.3 (C-6), 67.8, 

70.3, 71.6 (C-3, C-4, C-5), 90.1 (C-1), 168.7, 169.3, 169.8, 170.0 (4 x C(O)CH3). NMR data 

are in accordance with literature values.206 

 

1,3,4,6-Tetra-O-acetyl-2-deoxy-2-trichloroacetamido-ββββ-D-glucopyranose (31) 

To the suspension of 30 (51.8 g, 0.135 mol) in CH2Cl2 (300 mL) Et3N (43 mL) was added. 

The suspension was cooled to 0 ºC and trichloroacetyl chloride (17 mL) was added from a 

dropping funnel keeping the temperature between 5-10 ºC. After the mixture was stirred for 
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30 min, it was diluted with CH2Cl2 (200 mL), washed with water, saturated NaHCO3 solution, 

then with water again, dried over MgSO4, filtered and evaporated in vacuo. The crude product 

was purified by recrystallization from hexane/EtOAc to afford 31 (52.5 g) as a white solid. 

Chemical formula: C16H20Cl3NO10  

 

 

Molecular weight: 492.7 g/mol 

Yield: 79% 

Melting point: 159-160 ºC 

Literature melting point207: 167.5-168.5 ºC 

Optical rotation [α]D = +3.1 (c = 1.08, CHCl3) 

Literature optical rotation208 [α]D = +3.5 (c = 1, CHCl3) 
1H NMR (CDCl3): δ 2.04 (s, 3H, C(O)CH3), 2.06 (s, 3H, C(O)CH3), 2.08 (s, 3H, C(O)CH3), 

2.10 (s, 3H, C(O)CH3), 3.88-3.94 (m, 1H, H-5), 4.16 (dd, 1H, J5,6b = 2.4 Hz, J6a,6b = 12.6 Hz, 

H-6b), 4.28 (dd, 1H, J5,6a = 5.1 Hz, J6a,6b = 12.6 Hz, H-6a), 4.34 (m, 1H, H-2), 5.14 (t, 1H, J = 

9.6 Hz, H-4), 5.44 (dd, 1H, J = 9.3 Hz, J = 10.8 Hz, H-3), 5.80 (d, 1H, J1,2 = 8.7 Hz, H-1) 

8.93 (d, 1H, J = 9.6 Hz, NH). 1NMR data are in accordance with literature values.208 
13C NMR (CDCl3): δ 20.4, 20.5, 20.6, 20.7 (4 x C(O)CH3), 54.2 (C-2), 61.7 (C-6), 68.0, 71.0, 

73.0 (C-3, C-4, C-5), 91.8 (C-1), 92.2 (CCl3), 162.3 (C(O)CCl3), 169.2, 169.3, 170.6, 171.6 (4 

x C(O)CH3). 

MS: m/z 493 [M] 

 

3,4,6-Tri-O-acetyl-2-deoxy-2-trichloroacetamido-αααα-D-glucopyranosyl bromide (24) 

Trimethylsilyl bromide (1 mL) was added to the ice cold solution of 31 (1 g, 2.03 mmol) in 

CH2Cl2 (10 mL). The reaction mixture was stirred at room temperature under an argon 

atmosphere. After 5 hours the reaction mixture was evaporated and the residue was dried at 

high vacuo resulting in 24 (1.02 g) as a white foam. The compound was transferred into the 

glycosylation reaction without any purification. 

Chemical formula: C14H17BrCl3NO8 

 

Molecular weight: 513.55 g/mol 

Yield: 98 % 

Optical rotation [α]D = +119 (c = 0.87, CHCl3) 

Literature optical rotation208 [α]D = +129 (c = 1, CHCl3) 
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1H NMR (CDCl3): δ 2.04 (s, 3H, C(O)CH3), 2.06 (s, 3H, C(O)CH3), 2.10 (s, 3H, C(O)CH3), 

4.13 (dd, 1H, J5,6b = 2 Hz, H-6b), 4.25 (m, 1H, H-2), 4.28 (m, 1H, H-5), 4.34 (dd, 1H, J5,6a = 

4.0 Hz, J6a,6b = 12.5 Hz, H-6a), 5.28 (dd, 1H, J4,5 = 10.5 Hz, H-4), 5.43 (dd, 1H, J2,3 = 10.5 

Hz, H-3), 6.58 (d, 1H, J1,2 = 4 Hz, H-1), 7.02 (d, 1H, J = 8.5 Hz, NHC(O)). 1NMR data are in 

accordance with literature values.208 
13C NMR (CDCl3): δ 20.4, 20.6, 20.8 (3 x C(O)CH3), 55.4 (C-2), 60.9 (C-6), 66.2, 70.4, 72.6 

(C-3, C-4, C-5), 89.2 (C-1), 91.5 (CCl3) 161.9 (C(O)CCl3), 169.1, 170.2, 171.2 (3 x 

C(O)CH3). 

 

Phenyl ββββ-D-galactopyranosyl-(1→4)-2-deoxy-1-thio-2-trichloroacetamido-ββββ-D-

glucopyranoside (33) 

Solid sodium methoxide was added to the mixture of 32 (20 g, 24 mmol) in MeOH (250 mL) 

until the pH of the mixture became around 9. The reaction mixture was stirred for 24 hours at 

room temperature. Then the mixture was neutralized by treatment with Amberlite IR 120[H+] 

ion-exchange resin, the resin was filtered off and washed with methanol. The filtrate was 

combined and concentrated in vacuo. The residue was purified by crystallization to give 33 

(15 g) as a white solid. 

Chemical formula: C20H26Cl3NO10S 

Molecular weight: 578.85 g/mol 

Yield: quantitative  

Melting point: 160-162 ºC 

Optical rotation [α]D = -2.2 (c = 1.1, MeOH) 

 

1H NMR (D2O): δ 3.51 (m, 2H, H-5, H-2’), 3.56 (dd, 1H, J3,4 = 8.2 Hz, J4,5 = 10 Hz, H-4), 

3.65 (m, 2H, H-3’, H-5’), 3.77 (dd, 1H, J5,6a = 5.2 Hz, J6a,6b = 12.3 Hz, H-6a), 3.81 (dd, 1H, 

J3,4 = 8.2 Hz, J2,3 = 10.2 Hz, H-3), 3.91 (m, 3H, H-2, H-6b, H-4’), 4.41 (d, 1H, J1’,2’ = 7.8 Hz, 

H-1’), 4.93 (d, 1H, J1,2 = 10.5 Hz, H-1), 7.47-7.49 (m, 3H, aromatic), 7.63-7.65 (m, 2H, 

aromatic). 
13C NMR (D2O): δ 53.8 (C-2), 63.3, 63.5 (C-6 and C-6’), 71.2, (C-4), 71.3 (C-4’), 75.2, 78.0 

(C-3’, C-5’), 82.3 (C-5), 86.3 (C-3), 88.8 (C-1), 94.2 (CCl3), 104.3 (C-1’), 130.9, 132.2, 

134.3, 135.5 (aromatic), 162.4 ((C(O)CCl3). 

MS: m/z 578 [M] 
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Phenyl 2,6-di-O-benzoyl-3,4-O-isopropylidene-ββββ-D-galactopyranosyl-(1→4)-3,6-di-O-

benzoyl-2-deoxy-1-thio-2-trichloroacetamido-ββββ-D-glucopyranoside (35) 

A mixture of 33 (15 g, 26 mmol), acetone (150 mL) and trimethylsilyl chloride (1.7 mL) was 

stirred at room temperature under an argon atmosphere. After 3 hours the mixture was 

suspended with Et2O and evaporated in vacuo. The residue 34 was used for the next step 

without any purification.  

Benzoyl chloride (25 mL, 208 mmol) was added dropwise to the ice-cold solution of 34 (26 

mmol) in pyridine (200 mL). The reaction mixture was stirred at room temperature under an 

argon atmosphere. After 1 day a little water was added and the mixture was stirred for an 

additional 30 minutes, then concentrated in vacuo. The residue was dissolved in CH2Cl2, 

washed with 2 M HCl solution, sat. NaHCO3 solution, three times with water, dried over 

MgSO4, filtered and evaporated in vacuo. Purification by column chromatography afforded 

35 as a white solid. 

Chemical formula: C51H46Cl3NO14S 

 

Molecular weight: 1035.36 g/mol 

Yield: 78% 

Melting point: 141-143 ºC 

Optical rotation [α]D = +12 (c = 1, CHCl3) 
1H NMR (CDCl3): δ 1.25 (s, 3H, CCH3), 1.49 (s, 3H, CCH3), 3.82 (m, 3H, H-5’, H-5, H-6b), 

4.11 (m, 2H, H-4’, H-4), 4.21-4.40 (m, 4H, H-3’, H-2, H-6a’, H-6b), 4.6 (m, 2H, H-1’and H-

6a’), 4.86 (d, 1H, J1,2 = 10.2 Hz, H-1), 5.12 (t, 1H, J = 7.2 Hz, H-2’), 5.58 (t, 1H, J = 9.6 Hz, 

H-3), 7.11 (d, 1H, J = 7.5 Hz, NH), 7.20-7.59 (m, 15H, aromatic), 7.89-8.04 (m, 10H, 

aromatic). 
13C NMR (CDCl3): δ 26.1 (CCH3), 27.4 (CCH3), 54.5 (C-2), 62.6 and 62.7 (C-6 and C-6’), 

71.4 (C-5 or C-5’), 73.0, 73.5, 73.6 75.2, 76.9, 77.2 (C-3, C-2’, C-3’, C-4, C-4’, C-5 or C-5’), 

86.2 (C-1), 92.1 (CCl3), 100.5 (C-1’), 110.9 (C(CH3)2), 128.3, 128.4, 128.7, 128.8, 129.07, 

129.3, 129.4, 129.5, 129.7, 129.9, 131.5, 133.1, 133.3, 133.4, 133.5 (aromatic), 161.8 

(C(O)CCl3), 164.9, 165.8, 166.0, 166.8 (4 x C(O)Ph). 

MS: m/z 1036 [M+H] 
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Phenyl 2,3-di-O-benzoyl-4,6-O-isopropylidene-ββββ-D-galactopyranosyl-(1→4)-3,6-di-O-

benzoyl-2-deoxy-1-thio-2-trichloroacetamido-ββββ-D-glucopyranoside  

Chemical formula: C51H46Cl3NO14S 

 

Molecular weight: 1035.36 g/mol 

Melting point: 152-154 ºC 

Optical rotation [α]D = +47.8 (c = 0.7, CHCl3) 

1H NMR (acetone-d6): δ 1.22 (s, 3H, CCH3), 1.23 (s, 3H, CCH3), 3.33 (m, 2H, H-5’, H-6a’), 

3.71 (dd, 1H, J5,6b = 2.1 Hz, J6a,6b = 12.6 Hz, H-6b’), 4.01 (m, 1H, H-5), 4.20 (dd, 1H, J1,2 = 

10.2 Hz, J2,3 = 9.9 Hz, H-2) 4.34-4.46 (m, 3H, H-4, H-4’, H-6a), 4.78 (dd, 1H, J5’,6b’ = 2.1 Hz, 

J6a’,6b’ = 12.0 Hz, H-6b), 5.23 (d, 1H, J1’,2’ = 7.8 Hz, H-1’), 5.36 (m, 2H, H-1, H-3’), 5.69 (dd, 

1H, J1’,2’ = 8.1 Hz, J2’,3’ = 10.5 Hz, H-2’), 5.81 (dd, 1H, J3,4 = 9.0 Hz, J2,3 = 9.9 Hz, H-3), 7.06-

7.65 (m, 17H, aromatic), 7.87-8.16 (m, 8H, aromatic), 8.44 (d, 1H, J = 9.6 Hz, NH). 
13C NMR (acetone-d6): δ 20.1, 20.2 (2 x CCH3), 56.8 (C-2), 63.2 and 64.5 (C-6 and C-6’), 

68.2, 68.3, 71.8, 74.6, 76.5, 78.5 78.7 (C-3, C-4, C-5, C-2’, C-3’, C-4’, C-5’), 87.3 (C-1), 94.4 

(CCl3), 100.1 (C-1’), 103.0 (C(CH3)2), 129.4, 130.1, 130.2, 130.3, 130.5, 131.0, 131.1, 131.2, 

131.3, 131.5, 131.6, 131.8, 133.7, 134.5, 134.8, 135.1 (aromatic), 163.1 (C(O)CCl3), 166.8, 

166.9, 167.0, 167.1 (4 x C(O)Ph). 

 

Phenyl 2,6-di-O-benzoyl-ββββ-D-galactopyranosyl-(1→4)-3,6-di-O-benzoyl-2-deoxy-1-thio-2-

trichloroacetamido-ββββ-D-glucopyranoside (25) 

The solution of 35 (10 g, 9.6 mmol) in CH2Cl2 (120 mL) was cooled to 0 ºC and 90 % TFA 

(30 mL) was added dropwise. The reaction mixture was stirred at 0 ºC for 30 minutes, then at 

room temperature. After 3 hours the mixture was neutralized with solid NaHCO3 and 

evaporated in vacuo. The residue was dissolved in CH2Cl2 (500 mL), washed with sat. 

NaHCO3 solution, water, dried over MgSO4, filtered and concentrated in vacuo. The residue 

was purified by column chromatography to give 25 (8.7 g) as a white solid. 

Chemical formula: C48H42Cl3NO14S 

 

Molecular weight: 995.27 g/mol 

Yield: 91 % 

Melting point: 158-160 ºC 
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Optical rotation [α]D = +10.5 (c = 1, CHCl3) 
1H NMR (acetone-d6): δ 2.88 (s, 2H, 2 x OH), 3.85 (m, 1H, H-5), 3.90-3.97 (m, 3H, H-3’, H-

5’, H-6b), 4.21-4.33 (m, 4H, H-2, H-4, H-6a, H-4’), 4.55 (dd, 1H, J5’,6a’ = 6.5 Hz, J6a’,6b’ = 12.0 

Hz, H-6a’), 4.70 (dd, 1H, J5’,6b’ = 1.5 Hz, J6a’,6b’ = 12.0 Hz, H-6b’), 4.91 (d, 1H, J1’,2’ = 8 Hz, 

H-1’), 5.32 (dd, 1H, J1’,2’ = 8 Hz, J2’,3’ = 9.5 Hz, H-2’), 5.35 (d, 1H, J1,2 = 10.5 Hz, H-1), 5.72 

(t, 1H, J = 9.5 Hz, H-3), 7.11-7.23 (m, 3H, aromatic), 7.35-7.56 (m, 12 H, aromatic), 7.62-

7.68 (m, 2H, aromatic), 7.92-7.81 (m, 8H, aromatic). 
13C NMR (acetone-d6): δ 56.8 (C-2), 64.7, 64.8 (C-6, C-6’), 70.6, 73.6, 74.8, 75.1, 75.6, 77.7, 

79.0 (C-3, C-4, C-5, C-2’, C-3’, C-4’, C-5’), 87.2 (C-1), 94.5 (CCl3), 103.1 (C-1’), 129.4, 

130.0, 130.2, 130.4, 130.5, 130.7, 131.2, 131.4, 131.6, 131.7, 131.9, 132.1, 132.2, 133.6, 

134.8, 135.0 (aromatic), 163.3 (NHCO), 166.8, 167.2, 167.3, 167.4 (4 x COCH3). 

MS: m/z 995 [M] 

 

Phenyl O-(2,4,6-tri-O-benzoyl-ββββ-D-galactopyranosyl)-(1→4)-3,6-di-O-benzoyl-2-deoxy-1-

thio-2-trichloroacetamido-ββββ-D-glucopyranoside (26) 

Trimethyl orthobenzoate (0.7 mL) and pTsOH (115 mg) were added to the solution of 25 (2 g, 

2 mmol) in acetonitrile (20 mL). The reaction mixture was stirred at room temperature under 

argon atmosphere. After 3 hours the mixture was evaporated in vacuo. The residue was 

dissolved in 20 mL acetic acid/water (4/1) and stirred for 2 hours at room temperature. Then, 

the mixture was concentrated in vacuo, the residue was dissolved in CH2Cl2, washed with 

saturated NaHCO3 solution, water, dried over MgSO4, filtered and evaporated in vacuo. 

Purification by column chromatography afforded 26 (1.36 g) as a white solid. 

Chemical formula: C55H46Cl3NO15S 

 

Molecular weight: 1099.38 g/mol 

Yield: 62 % 

Melting point:149-151 ºC 

Optical rotation [α]D = +29 (c = 0.4, CHCl3) 

1H NMR (CDCl3): δ 3.0 (s, 1H, OH), 3.57 (dd, 1H, J5,6a’ = 6.6 Hz, J6a’, 6b’ = 10.5 Hz, H-6a’), 

3.78 (m, 2H, H-6a’, H-5), 4.02 (m, 2H, H-3’, H-4), 4.14 (m, 1H, H-5’), 4.21 (dd, 1H, J1,2 = 

10.2 Hz, J2,3 = 9.6 Hz, H-2), 4.42 (dd, 1H, J5,6a = 5.6 Hz, J6a,6b = 12.3 Hz, H-6a), 4.57 (dd, 1H, 

J5,6b = 1.8 Hz, J6a,6b = 12.3 Hz, H-6b), 4.72 (d, 1H, J1’,2’ = 8.1 Hz, H-1’), 4.84 (d, 1H, J1,2 = 
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10.2 Hz, H-1), 5.25 (t, 1H, J = 7.8 Hz, H-2’), 5.54 (m, 2H, H-3, H-4’), 7.05-7.90 (m, 30H, 

aromatic). 
13C NMR (CDCl3): δ 54.4 (C-2), 61.5 (C-6’), 62.8 (C-6), 70.0, 71.4, 71.6, 73.5, 73.7, 75.6, 

77.2 (C-2’, C-3, C-3’, C-4, C-4’, C-5, C-5’), 86.3 (C-1), 92.1 (CCl3), 100.8 (C-1’), 128.2, 

128.4, 128.5, 128.6, 128.8, 129.0, 129.3, 129.4, 129.6, 129.7, 129.8, 129.9, 131.7, 132.9, 

133.4, 133.5 (aromatic), 161.8 (C(O)CCl3), 165.7, 165.9, 166.1, 166.6 (4 x C(O)Ph).  

 

Phenyl 3,4,6-tri-O-acetyl-2-deoxy-2-trichloroacetamido-ββββ-D-glucopyranosyl-(1→3)-2,4,6-

tri-O-benzoyl-ββββ-D-galactopyranosyl-(1→4)-3,6-di-O-benzoyl-2-deoxy-1-thio-2-

trichloroacetamido-ββββ-D-glucopyranoside (23) 

The solution of the donor 24 (0.7g, 1.35 mmol), the acceptor 26 (1 g, 0.9 mmol) and freshly 

activated 4Å molecular sieves in CH2Cl2 (15 mL) was stirred for 30 minutes under an argon 

atmosphere, then cooled to -45 ºC. Silver triflate (520 mg, 2 mmol) was added at that 

temperature, and then the reaction mixture was stirred at -30 ºC under argon atmosphere. 

After 4 hours the mixture was neutralized with saturated NaHCO3 solution and filtered 

through Celite. The mixture was diluted with CH2Cl2, washed with sat. NaHCO3 solution and 

water, dried over MgSO4, filtered and evaporated in vacuo. The residue was purified by 

column chromatography to give 23 (978 mg) as a white solid. 

Chemical formula: C69H62Cl6N2O23S 
O
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Molecular weight: 1532.01 g/mol  

Yield: 71% 

Melting point: 180-182 ºC 

Optical rotation [α]D = +5.8 (c = 1, CHCl3) 
1H NMR (CDCl3): δ 1.85 (s, 3H, C(O)CH3), 1.90 (s, 3H, C(O)CH3), 1.92 (s, 3H, C(O)CH3), 

3.30 (dd, 1H, J5’,6a’ = 4.8 Hz, J 6a’,6b’= 6.9 Hz, H-6a’), 3.55 (m, 2H, H-2’’, H-5’’), 3.74 (m, 2H, 

H-5, H-5’), 4.03-4.08 (m, 4H, H-4, H-3’, H-6b’, H-6a’’), 4.12 (dd, 1H, J5’’,6b’’ = 1.2 Hz, J 

6a’’,6b’’= 7.5 Hz, H-6b’’), 4.23 (q, 1H, J2,3 = 3 Hz, J1,2 = 7.2 Hz, H-2), 4.34 (dd, 1H, J5,6b = 3 Hz, 

J 6a,6b= 7.5 Hz, H-6b), 4.48 (d, 1H, J = 6.3 Hz, H-6a), 4.63 (d, 1H, J = 5.8 Hz, H-1’), 4.92 (m, 

3 H, H-1, H-1’’, H-4’’), 5.25 (t, 1H, J = 5.7 Hz, H-3), 5.47 (dd, 1H, J1’,2’ = 5.7 Hz, J2’,3’ = 4.5 

Hz, H-2’), 5.58 (m, 2H, H-4’, H-3’’), 6.57 (d, 1H, J = 5.1 Hz, NH’’), 6.94 (d, 1H, J = 4.8 Hz, 

NH), 7.10-7.59 (m, 20H, aromatic), 7.80-8.05 (m, 10 H, aromatic). 
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13C NMR (CDCl3): δ 20.4, 20.5, 20.6 (3 x C(O)CH3), 54.1 (C-2), 56.4(C-2’’), 61.2, 61.8, 62.5 

(C-6, C-6’, C-6’’), 68.1 (C-4’’), 69.3 (C-4’), 70.5 (C-3’’), 71.5 (C-2’), 71.8, 71.9 (C-5’, C-

5’’), 73.6 (C-3), 75.3, 76.7, 76.9 (C-4, C-5, C-3’), 85.9 (C-1), 91.5, 92.1 (2 x CCl3), 99.2 (C-

1’’), 100.8 (C-1’), 128.0, 128.5, 128.7, 128.9, 129.0, 129.1, 129.3, 129.4, 129.5, 129.7, 129.8, 

130.0, 131.3, 133.2, 133.3, 133.4, 133.7 (aromatic), 161.6, 161.8 (2 x C(O)CCl3), 164.7, 

165.1, 165.8, 165.9, 166.6, 169.2, 170.3, 170.6 (8 x C=O). 

MS: m/z 1532 [M] 

 

Phenyl 3,4,6-tri-O-acetyl-2-deoxy-2-trichloroacetamido-ββββ-D-glucopyranosyl-(1→3)-[4-O-

(3,4,6-tri-O-acetyl-2-deoxy-2-trichloroacetamido-ββββ-D-glucopyranosyl)-2,6-di-O-benzoyl-

ββββ-D-galactopyranosyl]-(1→4)-3,6-di-O-benzoyl-2-deoxy-1-thio-2-trichloroacetamido-ββββ-D-

glucopyranoside (38) 

Chemical formula: C76H74Cl9N3O30S 

 

Molecular weight: 1860.54 g/mol 

Melting point: 158-160 ºC 

Optical rotation [α]D = -6.2 (c = 0.8, CHCl3) 

1H NMR (CDCl3): δ 1.75-1.98 (m, 18H, 6 x CCH3), 3.33-4.26 (m, 18H), 4.48 (d, 1H, J = 7.5 

Hz, H-1b), 4.74 (d, 1H, J = 10.5 Hz, H-1a), 4.88-4.95 (m, 2H, H-4c, H-4d), 5.08 (d, 1H, J = 7.8 

Hz, H-1c or H-1d), 5.28 (m, 1H, H-2b), 5.46-5.69 (m, 4H, H-3a, H-3c, H-3d, H-1c or H-1d) 

7.10-7.97 (m, 15H, aromatic). 
13C NMR (CDCl3): δ 20.2, 20.3, 20.4, 2 x 20.5, 20.6 (6 x CCH3), 54.0, 54.1, 54.3 (C-2a, C-2c, 

C-2d), 56.4, 57.1, 61.4, 61.9 (C-6a, C-6b, C-6c, C-6d), 68.7, 68.8, 70.0, 70.6, 70.7, 71.1, 71.2, 

72.2, 72.4, 73.6, 74.5, 74.7, 76.2 78.7, 84.5 (C-1a), 91.5, 92.1, 92.7 (3 x CCl3), 97.8, 100.7 (C-

1c, C-1d), 102.2 (C-1b), 128.2, 128.4, 128.8, 128.9, 129.1, 129.2, 129.3, 129.5, 129.6, 129.7, 

130.0, 133.2, 133.5, 133.6, 134.2 (aromatic), 161.6, 161.7, 161.9 (3 x C(O)CCl3), 164.9, 

165.1, 165.9, 166.8, 169.4, 169.5, 169.9, 170.1, 170.2, 170.5 (10 x C=O). 

MS: m/z 1883 [M + Na] 
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Phenyl 2-acetamido-2-deoxy-ββββ-D-glucopyranosyl-(1→3)-ββββ-D-galactopyranosyl-(1→4)-2-

acetamido-2-deoxy-1-thio-ββββ-D-glucopyranoside (39) 

The protected trisaccharide 23 (600 mg, 0.4 mmol) was dissolved in 20 % aqueous methanol 

(6 mL), NaOH (150 mg) was added and the mixture was stirred until the compound was 

completely dissolved. The reaction mixture was stirred at 40 ºC for 8 hours and for 14 hours 

at room temperature. The mixture was cooled to 0 ºC and Ac2O was added dropwise to pH 6 

(against the universal pH indicator, Merck). The mixture was deionized by the treatment with 

the cation-exchange resin KU-2 [H+]. The resin was filtered off and washed with methanol. 

The filtrate was concentrated in vacuo and the residue was purified by column 

chromatography to afford 39 (206 mg) as a white amorphous powder.  

Chemical formula: C28H42N2O15S 

Molecular weight: 678.7 g/mol 

Yield: 76 % 

Optical rotation [α]D = -24 (c = 0.4, H2O) 

 

1H NMR (D2O): δ 1.94 (s, 3H, CH3CO), 1.96 (s, 3H, CH3CO), 3.37-3.39 (m, 2H, H-4, H-4’’), 

3.43-3.54 (m, 3H, H-2’, H-5’, H-3’’), 3.58-3.76 (m, 10H, H-2, H-3, H-5, H-6a, H-6b, H-3’, 

H-6b’, H-2’’, H-5’’, H-6b’’), 3.78-3.94 (m, 2H, H-6a’, H-6a’’), 4.07 (d, 1H, J = 3Hz, H-4’), 

4.37 (m, 2H, H-1, H-1’), 4.60 (d, 1H, J 1’’,2’’ = 8 Hz, H-1’’) 7.20-7.22 m (3H, aromatic), 7.38-

7.42 (m, 2H, aromatic). 
13C NMR (D2O): δ 22.2 (CH3CO), 22.3 (CH3CO), 54.9 (C-2), 55.7 (C-2’’), 60.1, 60.5, 60.9 

(C-6, C-6’, C-6’’), 68.3 (C-4’), 69.7 (C-4’’), 70.0 (C-5), 72.5 (C-5’), 73.6 (C-2’), 74.8, 74.9 

(C-3’’, C-5’’), 75.4 (C-4), 78.5 (C-3), 82.0 (C-3’), 101.9 (C-1), 102.8, 102.9 (C-1’, C-1’’), 

127.7, 128.8, 132.0, 132.9 (aromatic), 174.7 (CH3CO), 175.0 (CH3CO). 

 

O-(2-Acetamido-2-deoxy-ββββ-D-glucopyranosyl)-(1→3)-O-ββββ-galactopyranosyl-(1→4)-2-

acetamido-2-deoxy-D-glucopyranose (18) 

N-Bromosuccinimide (106 mg, 0.6 mmol) was added at room temperature to the stirred 

solution of the phenyl thioglycoside 39 (200 mg, 0.3 mmol) in 4:1 acetone-water (3 mL). The 

reaction mixture was stirred for 2 hours at room temperature. Then, the solvent was 

evaporated in vacuo, the residue was purified by column chromatography to give 18 (111 mg) 

as a white solid.  
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Chemical formula: C22H38N2O16 

Molecular weight: 586.54 g/mol 

Yield: 63 %  

1H NMR (D2O): δ 1.96 (s, 3H, CH3), 1.97 (s, 3H, CH3), 3.45-4.11 (m, 18H), 4.39 (d, 1H, 

J1’’,2’’ = 7.8 Hz, H-1’’), 4.51 (d, 1H, J1’, 2’ = 8.6 Hz, H-1’), 4.53 (d, 0.48H, J1, 2 = 8.5 Hz, H-

1β), 5.12 (d, 0.52H, J1, 2 = 3.6 Hz, H-1α). 
13C NMR (D2O): δ 22.5, 22.9 (2 x CH3CO), 53.7 (C-2), 55.4 (C-2’’), 60.1, 60.3, 60.7 (C-6, C-

6’, C-6’’), 67.0, 68.3, 69.5, 69.6, 70.3, 74.2, 75.1, 76.7, 81.4, 81.6, 90.2 (C-1α), 92.7 (C-1β), 

101.9 (C-1’’), 103.5 (C-1’), 175.3, 175.6 (2 x COCH3). 

MS: m/z 587 [M+H] 

 

Ethyl 2,3,4,6-tetra-O-acetyl-1-thio-ββββ-D-glucopyranoside (44)  

Ethyl mercaptan (3.3 mL) was added to a stirred solution of 1,2,3,4,6-penta-O-acetyl-β-D-

glucopyranose (43) (14 g, 35.8 mmol) in CH2Cl2 (100 mL) with freshly activated 4Å 

molecular sieves. The mixture was cooled at 0 ºC and BF3·Et2O (12.9 mL) was added. The 

reaction mixture was stirred at room temperature under argon. After 4 hours the mixture was 

filtered through Celite. The filtrate was diluted with CH2Cl2, neutralized with sat. NaHCO3, 

washed with water, dried over MgSO4, filtered and evaporated in vacuo. The residue was 

crystallized from EtOAc/hexane to afford 44 (10.3 g) as a white solid. 

Chemical formula: C16H24O9S 

Molecular weight: 392.42 g/mol 

Yield: 76 % 

Melting point: 78-80 °C 

Literature melting point209: 82-83 °C 

Optical rotation [α]D = -18.7 (c = 0.64, CHCl3)  

 

 

Literature optical rotation209[α]D = -25.6 (c = 1.0, CHCl3) 
1H NMR (CDCl3): δ 1.25 (t, 3H, J = 7.5 Hz, SCH2CH3), 1.98 (s, 3H, C(O)CH3), 2.00 (s, 3H, 

C(O)CH3), 2.04 (s, 3H, C(O)CH3), 2.05 (s, 3H, C(O)CH3), 2.62-2.75 (m, 2H, SCH2CH3), 3.69 

(m, 1H, H-5), 4.11 (dd, 1H, J5,6a =2.4 Hz, J6a,6b = 12.3 Hz, H-6b), 4.22 (dd, 1H, J5,6b =  5.1 Hz, 

J6a,6b = 12.3 Hz, H-6a), 4.47 (d, 1H, H-1, J1,2 =  9.9 Hz), 4.98-5.10 (m, 2H, H-2, H-3), 5.20 (t, 

1H, J = 9.3 Hz, H-4). 
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13C NMR (CDCl3): δ 14.6 (SCH2CH3) 20.0, 20.1, 20.2, 20.3 (4 x CH3), 23.6 (SCH2CH3), 61.8 

(C-6), 68.1, 69.3, 73.5, 75.4 (C-2, C-3, C-4, C-5), 83.1 (C-1), 168.9, 169.1, 169.8, 170.2 (4 x 

C(O)CH3). NMR data NMR data are in accordance with literature values.209 

 

Ethyl 1-thio-ββββ-D-glucopyranoside (45) 

Solid NaOMe was added to the ethyl 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside (44) 

(9.3 g, 23.7 mmol) in MeOH (100 mL) until the pH became around 9. The reaction mixture 

was stirred at room temperature for 18 hours. Then the mixture was neutralized by treatment 

with Amberlite IR 120 [H+] ion-exchange resin, the resin was filtered off and washed with 

methanol. The filtrate was combined and concentrated in vacuo. The residue was crystallized 

from EtOH to give 45 (5.4 g) as a white solid. 

Chemical formula: C8H16O5S 

Molecular weight: 224.27 g/mol 

Yield: quantitative 

Melting point: 93-95 ºC 

Literature melting point210: 99.5-100.5 °C 

Optical rotation [α]D = -52.3 (c = 1, H2O) 

 

 

Literature optical rotation210 [α]D = -57 (c = 1.0, H2O) 
1H NMR (CDCl3): δ 1.26 (t, 3H, J = 7.5 Hz, SCH2CH3), 2.73 (m, 2H, SCH2CH3), 3.26-3.52 

(m, 4H, H-2, H-3, H-4, H-5), 3. 68 (dd, 1H, J5,6a = 4.9 Hz, J6a,6b = 10.4 Hz, H-6a), 4.92 (dd, 

1H, J5,6b = 2.2 Hz, J6a,6b = 10.4 Hz, H-6b), 4.48 (d, 1H, J1,2 =  9.3 Hz, H-1). 
13C NMR (CDCl3): δ 15.3 (SCH2CH3), 24.6 (SCH2CH3), 61.7 (C-6), 70.8, 73.1, 78.3, 80.7 

(C-2, C-3, C-4, C-5), 86.6 (C-1). NMR data are in accordance with literature values.211 

 

Ethyl 2,3,4,6-tetra-O-trimethylsilyl-1-thio-ββββ-D-glucopyranoside (46) 

Trimethylsilyl chloride (TMSCl) (20 mL) was added to a 1 M solution of ethyl 1-thio-β-D-

glucopyranoside (45) (5.4 g, 24 mmol) in dry pyridine (50 mL). The reaction mixture was 

stirred for 24 hours at room temperature, then water was added to decompose the unreacted 

TMSCl. The mixture was diluted with CH2Cl2, the organic layer was washed twice with H2O, 

dried over MgSO4, filtered and evaporated in vacuo. The pydidine was removed by 
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coevaporation twice with toluene to give 9.83 g of the expected persilylated glycoside 46 as 

yellow syrup.  

Chemical formula: C20H48O5SSi4 

Molecular weight: 513.0 g/mol 

Yield: 80 % 

Optical rotation [α]D = +80.2 (c = 1, CHCl3)  

 

1H NMR (CDCl3): δ 0.10 (s, 9H, Si(CH3)3), 0.14 (s, 9H, Si(CH3)3), 0.16 (s, 9H, Si(CH3)3), 

0.20 (s, 9H, Si(CH3)3), 1.27 (t, 3H, J = 7.5 Hz, SCH2CH3,), 2.70 (q, 2H, SCH2CH3), 3.23-3.42 

(m, 4H, H-2, H-3, H-4, H-5), 3.62 (dd, 1H, J5,6a = 6.0 Hz, J6a,6b = 11.1 Hz, H-6a), 3.77 (dd, 

1H, J5,6b =  3.3 Hz, J6a,6b = 11.1 Hz, H-6b), 4.41 (d, 1H, H-1, J1,2 =  8.8 Hz). 
13C NMR (CDCl3): δ 0.3, 0.7, 1.0, 1.4 (4x Si(CH3)3), 15.1 (SCH2CH3), 24.7 (SCH2CH3), 62.9 

(C-6), 73.1, 75.7, 78.9, 81.7 (C-2, C-3, C-4, C-5), 87.3 (C-1). NMR data are in accordance 

with literature values.156 

 

Ethyl 2-O-benzoyl-3-O-benzyl-4,6-O-benzylidene-1-thio-ββββ-D-glucopyranoside (47) 

A 23 mM solution of freshly dried copper(II) trifluoromethanesulfonate in acetonitrile (7 mL) 

was added to an ice-cold solution of the persilylated thioglycoside 46 (8.18 g, 16 mmol) and 

benzaldehyde (4.8 mL) in CH2Cl2 (25 mL) at 0 ºC. Then, triethylsilylane (2.81 mL, 17.6 

mmol) was added and the reaction mixture was stirred for 3 hours at 0 ºC. The mixture was 

concentrated in vacuo. The resulting solid was diluted with CH2Cl2 and benzoic anhydride (9 

mL, 48 mmol) was added. The solution was stirred for 24 hours at 40 ºC. The mixture was 

neutralized with a saturated NaHCO3 solution. Aqueous layer was exctracted twice with 

CH2Cl2. The combined organic layers were washed with water, dried over MgSO4, filtered 

and evaporated in vacuo. Crystallization from EtOAc/hexane gave 47 (5 g) as white crystals. 

Chemical formula: C29H30O6S 

Molecular weight: 506.62 g/mol 

Yield: 62 %  

Melting point: 113-115°C 

Literature melting point154: 124-125 oC 

 

 

Optical rotation [α]D = +13.2 (c = 0.52, CHCl3) 

Literature optical rotation154 [α]D = +26 (c = 0.63, CHCl3) 
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1H NMR (CDCl3): δ 1.22 (t, 3H, J = 7.2 Hz, SCH2CH3), 2.74 (q, 2H, SCH2CH3), 3.58 (ddd, 

1H, H-5), 3.72-3.90 (m, 3H, H-3, H-4, H-6b), 4.38 (dd, 1H, J5,6a = 4.9 Hz, J6a,6b = 10.2 Hz, H-

6a), 4.64 (d, 1H, J1,2 = 11.1 Hz, H-1), 4.71 (d, 1H, J = 12.0 Hz, ½ PhCH2), 4.84 (d, 1H, J = 

12.0 Hz, ½ PhCH2), 5.35 (dd, 1H, J1,2 = 11.1 Hz, J2,3 = 8.7 Hz, H-2,), 5.62 (s, 1H, PhCH), 

7.10-8.00 (m, 15H, aromatic). 
13C NMR (CDCl3): δ 14.8 (SCH2CH3), 24.0 (SCH2CH3), 68.5 (C-6), 70.7 (C-5) 71.8 (C-2) 

79.0, 81.6 (C-3, C-4), 74.2 (PhCH2), 84.3 (C-1), 101.2 (PhCH), 126.0, 127.6, 128.0, 128.1, 

128.3, 128.4, 129.3, 129.8, 129.9, 133.2, 137.1, 137.7 (aromatic), 165.2 (PhCO). NMR data 

are in accordance with literature values.154 

 

Ethyl 2-O-benzoyl-3,4-di-O-benzyl-1-thio-ββββ-D-glucopyranoside (48) 

1 M BH3·THF solution (15 mL) and TMSOTf (0.16 mL) were added to the solution of 47 (3 

g, 5.9 mmol) in anhydrous CH2Cl2 (50 mL). The reaction mixture was stirred at room 

temperature under an argon atmosphere. After 2 hours triethylamine (1 mL) was added and 

the solution was concentrated in vacuo. Three times methanol (50 mL) was added to the 

solution and evaporated in vacuo. The residue was crystallized from EtOAc/hexane to give 48 

as a white solid. 

Chemical formula: C29H32O6S 

Molecular weight: 508.64 g/mol 

Yield: 89 %  

Melting point: 90-91 °C  

Literature melting point154: 91-92 oC 

 

 

Optical rotation [α]D = +54.8 (c = 0.5, CHCl3) 

Literature optical rotation154 [α]D = +33.5 (c = 0.26, CHCl3) 
1H NMR (CDCl3): δ 1.21 (t, 3H, J = 7.5 Hz, SCH2CH3), 2.02 (s, 1H, OH), 2.74 (q, 1H, 

SCH2CH3), 3.62 (ddd, 1H, J5,6b = 2.8 Hz, J5,6a = 4.6 Hz, J4,5 = 9.3 Hz, H-5,), 3.67-3.95 (m, 

4H, H-3, H-4, H-6a, H-6b), 4.60 (d, 1H, J1,2 = 10.1 Hz, H-1), 4.64-4.90 (m, 4H, 2 x PhCH2), 

5.31 (dd, 1H, J2,3 = 8.9 Hz, H-2), 7.12-8.08 (m, 15H, aromatic). 
13C NMR (CDCl3): δ 14.8 (SCH2CH3), 24.0 (SCH2CH3), 62.0 (C-6), 72.2 (C-2), 75.2 and 

75.3 (2 x PhCH2), 77.6, 79.6 (C-4, C-5), 83.6 (C-3), 84.2 (C-1), 127.6, 127.9, 128.0, 128.2, 
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128.3, 128.4, 129.7, 133.2, 137.2, 137.7 (aromatic), 165.4 (PhC(O)). NMR data are in 

accordance with literature values.154 

 

tert-Butyl (ethyl 2-O-benzoyl-3,4-di-O-benzyl-1-thio-ββββ-D-glucopyranoside)-uronate (40) 

To the solution of 48 (2.8 g, 5.5 mmol) in anhydrous CH2Cl2 (40 mL) tert-butanol (10 mL), 

acetic anhydride (5 mL) and pyridinium dichromate (4 g, 10 mmol) were added. The reaction 

mixture was stirred at room temperature under an argon atmosphere. After 2 hours the CH2Cl2 

was removed by vacuo and the mixture was transferred onto a column in EtOAc (there was 10 

cm EtOAc layer on the top of the silica). After half an hour the mixture was eluted with 

EtOAc and the fractions were concentrated in vacuo. Purification of the residue by column 

chromatography afforded 40 (2.2 g) as a white solid.   

Chemical formula: C33H38O7S 

Molecular weight: 578.73 g/mol 

Yield: 70 % 

Melting point: 107-108 °C 

Literature melting point154: 109-110 oC 

 

 

Optical rotation [α]D = +7.6 (c = 0.5, CHCl3) 

Literature optical rotation154 [α]D = +6.3 (c = 0.41, CHCl3) 
1H NMR (CDCl3): δ 1.22 (t, 3H, J = 7.5 Hz, SCH2CH3,), 1.48 (s, 9H, C(CH3)3), 2.70 (m, 2H, 

SCH2CH3), 3.82-4.04 (m, 3H, H-3, H-4, H-5), 4.58 (d, 1H, J1,2 = 10.1 Hz, H-1,), 4.62-4.86 

(m, 4H, 2 x PhCH2), 5.35 (dd, 1H, J2,3 = 8.5 Hz, J1,2 = 10.1 Hz, H-2), 7.12-8.08 (m, 15H, 

aromatic). 
13C NMR (CDCl3): δ 14.8 (SCH2CH3), 23.9 (SCH2CH3), 28.0 (C(CH3)3), 72.1 (C-2), 75.0 and 

75.1 (2 x PhCH2), 79.3, 79.5 (C-4 and C-5), 82.5 (CMe3), 83.6 (C-3), 84.6 (C-1), 127.6, 

127.7, 127.8, 127.9, 128.1, 128.2, 128.4, 129.9, 133.1, 137.3, 137.7 (aromatic), 165.7 

(PhC(O)), 167.0 (C-6). NMR data are in accordance with literature values.154 
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6.4. Glycosylation with unprotected acceptors 

 

General experimental methods 

All reactions were preformed in oven dried glassware under an argon atmosphere. Solvents 

and chemicals used were purchased from commercial suppliers. All materials were employed 

without further purification. Thin layer chromatography (TLC) was carried out on silica gel 

plates (Silica gel 60, F254, Merck) with detection by UV and visualized by dipping in a 20% 

solution of sulfuric acid in ethanol followed by heating. Purification by column 

chromatography was performed using normal-phase silica gel (Silica gel, 230-240 mesh, 

Merck). 1H NMR and 13C NMR were recorded on a Varian Mercury 300 spectrometer 

instrument, and the spectra are referenced to solvent residual signals according to literature 

values.181 Chemical shifts are reported as δ values (ppm) and the coupling constants (J) are 

given in Hz. Assignments of 1H and 13C resonances were based on COSY, HSQC, HMBC 

experiments. Melting point was measured on a Stuart SMP30 apparatus, optical rotation was 

measured on a Perkin-Elmer 241 polarimeter. Mass spectrometry was performed on a Waters 

Aquity UPLC System equipped with PDA and SQD electrospray MS detector. 

 

1,2,3,4,6-Penta-O-benzoyl-αααα,ββββ-D-glucopyranoside (49) 

Benzoyl chloride (116 mL, 1 mol) was added dropwise to the mixture of D-(+)-glucose 

monohydrate (20 g, 0.1 mol) in pyridine (200 mL) at 0 ºC. The reaction mixture was stirred 

overnight at room temperature. Water (70 mL) was added and the mixture was stirred for an 

additional 30 minutes then evaporated in vacuo. The residue was dissolved in CH2Cl2 and 

washed with 2 M HCl, with saturated NaHCO3 solution and with water. The organic phase 

was dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by 

recrystallization from EtOAc/hexane to afford 49 (66.5 g) as a white solid. 

Chemical formula: C41H32O11 

Molecular weight: 700.69 g/mol 

Yield: 95 %  

Melting point: 122-124 °C 

Literature melting point212: 172-174 °C 

 

 

Optical rotation [α]D = +83.84 (c = 1, CHCl3) 



127 

Literature optical rotation of α-anomer213 [α]D = +138.4 (c = 1, CHCl3) 

Literature optical rotation of β-anomer214 [α]D = +23.8 (c = 1, CHCl3) 
1H NMR (CDCl3): δ 4.42-4.71 (m, 6H), 5.73 (dd, 1H, J5,6a = 3.6 Hz, J6a,6b = 10.2 Hz, H-6aα), 

5.90 (m, 4H, H-2α/β, H-4 α/β), 6.09 (t, 2H, J = 9.6 Hz, H-3 α/β), 6.35 (d, 1Η, J1,2 = 9.6 Hz, 

H-1β), 6.87 (d, 1Η, J1,2 = 3.6 Hz, H-1α), 7.26-7.58 (m, 30H, aromatic), 7.87-8.21 (m, 20 H, 

aromatic). 
13C NMR (CDCl3): δ 62.4, 62.6 (C-6α, C-6β), 68.7, 68.9 (C-4α, C-4β), 70.3, 70.4, 70.5, 70.7 

(C-2α, C-2β, C-3α, C-3β), 72.8, 73.1 (C-5α, C-5β), 90.0 (C-1α), 92.7 (C-1β), 128.3, 128.4, 

128.5, 128.6, 128.7, 128.8, 129.5, 129.7, 129.8, 130.0, 130.1, 130.5, 133.0, 133.1, 133.3, 

133.4, 133.5, 133.6, 133.8, 133.9 (aromatic), 164.4, 164.5, 165.1, 165.2, 165.3, 165.6, 165.9, 

166.1 (PhCO). NMR data are in accordance with literature values.215 

 

2,3,4,6-Tetra-O-benzoyl-αααα-D-glucopyranosyl bromide (50) 

To the solution of 49 (20 g, 28.5 mmol) in CH2Cl2 (200 mL) 33% HBr in AcOH solution (50 

mL) was added. The reaction mixture was stirred at room temperature under argon for 3 

hours. Then ice cold water was added. The organic phase was washed with sat. NaHCO3 

solution twice and with water twice, dried over MgSO4, filtered and evaporated in vacuo. The 

residue was crystallized from Et2O to give 50 (16.72 g) as a white solid. 

Chemical formula: C34H27BrO9 

Molecular weight: 659.48 g/mol 

Yield: 89 %  

Melting point: 118-120 °C 

Literature melting point216: 128-130 °C 

 

 

Optical rotation [α]D = +114.9 (c = 1.5, CHCl3) 

Literature optical rotation216 [α]D = +119.6 (c = 2.5, CHCl3) 
1H NMR (CDCl3): δ 4.52 (dd, 1H, J5,6a = 4.5 Hz, J6a,6b = 12.6 Hz, H-6a), 4.70 (dd, 1H, J5,6b = 

2.4 Hz, J6a,6b = 12.6 Hz, H-6b), 4.76 (m, 1H, H-5), 5.35 (dd, 1H, J1,2 = 3.9 Hz, J2,3 = 9.9 Hz, H-

2), 5.85 (t, 1H, J = 9.9 Hz, H-4), 6.29 (t, 1H, J = 9.9 Hz, H-3), 6.88 (d, 1H, J1,2 = 3.9 Hz, H-1), 

7.26-7.58 (m, 12H, aromatic), 7.87-8.10 (m, 8H, aromatic). 



128 

13C NMR (CDCl3): δ 61.9 (C-6), 67.9 (C-4), 70.6 (C-3), 71.4 (C-2), 72.7 (C-5), 86.9 (C-1), 

128.3, 128.4, 128.5, 128.7, 129.7, 129.8, 129.9, 130.0, 133.2, 133.3, 133.6, 133.8 (aromatic), 

165.0, 165.2, 165.5, 166.0 (4 x PhCO). 

 

General procedure for diphenylborinic acid catalyzed glycosylation using 

perbenzoylated glucosyl bromide donor 

The mixture of unprotected acceptor (200 mg), 2,3,4,6-tetra-O-benzoyl-α-D-glucopyranosyl 

bromide (50) (1.5 equiv. acceptor), 2-aminoethyl diphenylborinate (10 mol% according to the 

acceptor), in anhydrous CH2Cl2 / CH3CN (4:1) (10 mL) was stirred under argon at -30 ºC for 

30 minutes. Then AgOTf (1.5 equiv. donor) was added and the reaction mixture was stirred 

under argon at -30 ºC for 3 hours. Then the mixture was filtered through Celite, diluted with 

CH2Cl2, washed with saturated NaHCO3 solution and with water, dried over MgSO4, filtered 

and evaporated in vacuo. The residue was purified by column chromatography. 

 

Methyl 2,3,4,6-tetra-O-benzoyl-ββββ-D-glucopyranosyl-(1→3)-αααα-L-rhamnopyranoside (53) 

Chemical formula: C41H40O14 

Molecular weight: 756.75 g/mol 

Yield: 42 %  

Melting point: - (white foam) 

Optical rotation [α]D = -32.6 (c = 0.34, CHCl3) 

 

 

1H NMR (CDCl3): δ 1.25 (d, 3H, J = 5.7 Hz, H-6), 2.22 (s, 1H, OH), 2.84 (s, 1H, OH), 3.24 

(s, 3H, OCH3), 3.55-3.65 (m, 2H, H-4, H-5), 3.74 (dd, 1H, J2,3 = 3 Hz, J3,4 = 8.7 Hz, H-3), 

4.00 (m, 1H, H-2), 4.21 (m, 1H, H-5’), 4.47 (d, 1H, J1,2 = 1.5 Hz, H-1), 4.51 (dd, 1H, J5’,6a’ = 

6.9 Hz, J6a’,6b’ = 12.3 Hz, H-6a’), 4.72 (dd, 1H, J5’,6a’ = 2.7 Hz, J6a’,6b’ = 12.3 Hz, H-6b’), 5.01 

(d, 1H, J1’,2’ = 7.8 Hz, H-1’), 5.55 (dd, 1H, J1’,2’ = 7.8 Hz, J2’,3’ = 9.9 Hz, H-2’), 5.64 (t, 1H, J = 

9.6 Hz, H-4’), 5.97 (t, 1H, J = 9.9 Hz, H-3’), 7.19-7.59 (m, 12H, aromatic), 7.83-8.09 (m, 8H, 

aromatic). 
13C NMR (CDCl3): δ 17.5 (C-6), 54.6 (OCH3), 62.6 (C-6’), 67.3 (C-5), 69.3, 69.4 (C-2, C-4’), 

70.6 (C-4), 72.3, 72.4 (C-2’, C-3’), 72.6 (C-5’), 83.4 (C-3), 100.2 (C-1), 101.7 (C-1’), 128.2, 

128.3, 128.3, 128.4, 128.5, 129.0, 129.3, 129.7, 129.8, 129.9, 133.2, 133.3, 133.5, 133.6 

(aromatic), 165.2, 165.5, 165.6, 166.1 (4 x PhCO). 
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MS: m/z 779 [M + Na] 

 

Phenyl 2,3,4,6-tetra-O-benzoyl-ββββ-D-glucopyranosyl-(1→3)-1-thio-ββββ-L-fucopyranoside 

(55) 

Chemical formula: C46H42O13S 

Molecular weight: 834.88 g/mol 

Yield: 46 %  

Melting point: - (white foam) 

Optical rotation [α]D = -15.5 (c = 0.26, CHCl3) 

O SPh
OH

HO O

O
OBz

BzO
BzO OBz  

1H NMR (CDCl3): δ 1.15 (d, 3H, J = 6.3 Hz, H-6), 2.15 (s, 1H, OH), 3.40-3.54 (m, 4H, H-3, 

H-4, H-5, OH), 3.74 (t, 1H, J = 9.3 Hz, H-2), 4.15 (m, 1H, H-5’), 4.33 (dd, 1H, J5’,6a’ = 6 Hz, 

J6a’,6b’ = 12.3 Hz, H-6a’), 4.38 (d, 1H, J1,2 = 9.6 Hz, H-1), 4.66 (dd, 1H, J5’,6b’ = 2.7 Hz, J6a’,6b’ 

= 12.3 Hz, H-6b’), 4.94 (d, 1H, J1’,2’ = 10.5 Hz, H-1’), 5.47 (dd, 1H, J2’,3’ = 7.8 Hz, J1’,2’ = 

10.0 Hz, H-2’), 5.58 (t, 1H, J = 9.6 Hz, H-4’), 5.88 (t, 1H, J = 9.9 Hz, H-3’), 7.10-7.45 (m, 

15H, aromatic), 7.73-8.03 (m, 10H, aromatic). 
13C NMR (CDCl3): δ 16.4 (C-6), 62.8 (C-6’), 67.5 (C-2), 69.2 (C-4’), 70.4 (C-4), 72.2, 72.3 

(C-2’, C-3’), 72.8 (C-5’), 74.2 (C-5), 86.5 (C-3), 87.5 (C-1), 101.4 (C-1’), 127.6, 128.3, 

128.4, 128.5, 128.7, 129.7, 129.8, 129.9, 132.5, 133.0, 133.3, 133.4, 133.6 (aromatic), 165.1, 

165.4, 165.7, 166.1 (4 x PhCO). 

MS: m/z 857 [M + Na] 

 

1,3,4,6-Tetra-O-benzoyl-αααα-D-glucopyranose (56) 

Chemical formula: C34H28O10 

Molecular weight: 596.58 g/mol 

Yield: 45 %  

Melting point: - (syrup) 

Optical rotation [α]D = +149 (c = 1, CHCl3) 

 

1H NMR (CDCl3): δ 3.13 (s, 1H, OH), 4.29 (m, 1H, H-2), 4.43-4.55 (m, 2H, H-5, H-6a), 4.61 

(dd, 1H, J5,6b = 2.4 Hz, J6a,6b = 11.7 Hz, H-6b), 5.78 (m, 1H, H-4), 5.94 (t, 1H, J = 9.9 Hz, H-

3), 6.65 (d, 1H, J1,2 = 3.9 Hz, H-1), 7.25-7.56 (m, 12H, aromatic), 7.94-8.19 (m, 8H, 

aromatic). 1H-NMR data are in accordance with literature values.217 
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13C NMR (CDCl3): δ 61.6 (C-6), 67.5 (C-4), 69.8 (C-2), 70.7 (C-5), 73.2 (C-3), 91.3 (C-1), 

128.4, 128.5, 128.6, 128.7, 129.7, 129.8, 133.2, 133.3, 133.6, 133.9 (aromatic), 165.2, 165.4, 

165.7, 166.0 (4 x PhCO). 

 

Genaral procedure for diphenylborinic acid catalyzed glycosylation using glycosyl 

acetate as a donor 

The mixture of methyl α-L-rhamnopyranoside (52) (100 mg, 0.56 mmol), the glycosyl acetate 

(1.5 equiv. acceptor), 2-aminoethyl diphenylborinate (12.6 mg, 0.056 mmol) in anhydrous 

CH2Cl2 / CH3CN (4:1) (10 mL) was stirred under argon at room temperature for 30 minutes. 

Then BF3·Et2O (1.5 equiv. donor) was added and the reaction mixture was stirred under argon 

at room temperature for 3 hours. Then the mixture was filtered through Celite, diluted with 

CH2Cl2, washed with saturated NaHCO3 solution and with water, dried over MgSO4, filtered 

and evaporated in vacuo. The residue was purified by column chromatography. 

 

Methyl 3,4-di-O-(3,4,6-tri-O-acetyl-2-deoxy-2-trichloroacetamido-ββββ-D-glucopyranosyl)-

αααα-L-rhamnopyranoside (57) 

Chemical formula: C35H46Cl6O21N2 

Molecular weight: 1043.46 g/mol 

Yield: 34 %  

Melting point: 85-87 ºC 

Optical rotation [α]D = +4.5 (c = 0.2, CHCl3) 
 

1H NMR (CDCl3): δ 1.22 (d, 3H, J = 4.8 Hz, H-6a), 1.99, 2.00, 2.02, 2.03, 2.05, 2.10 (6 x 

CH3CO), 2.61 (s, 1H, OH), 3.29 (s, 3H, OCH3), 3.49 (m, 2H, H-5a, H-3a), 3.71 (m, 2H, H-4a, 

H-5c), 3.82 (m, 1H, H-5b), 4.01-4.16 (m, 5H, H-2a, H-2b, H-6bb, H-2c, H-6bc), 4.23 (dd, 1H, 

J5
c
,6a

c
 = 3.8 Hz, J6a

c
,6b

c
 = 12.3 Hz, H-6ac), 4.41 (dd, 1H, J5

b
,6a

b
 = 5.4 Hz, J6a

b
,6b

b
 = 12.6 Hz, H-

6ab), 4.64 (d, 1H, J1
a
,2

a
 = 1.5 Hz, H-1a), 4.83 (d, 1H, J1

b
,2

b
 = 8.4 Hz, H-1b), 5.02-5.14 (m, 3H, 

H-4b, H-1c, H-4c), 5.30-5.37 (m, 2H, H-3b, H-3c).  
13C NMR (CDCl3): δ 17.5 (C-6a), 20.4, 2 x 20.5, 2 x 20.6, 20.7 (6 x CH3CO), 54.4 (OCH3), 

55.5, 56.0 (C-2b, C-2c), 61.8, 62.0 (C-6b, C-6c), 68.0, 68.1 (C-4b, C-4c), 68.6 (C-5a), 70.8 (C-

2a), 71.6, 71.7 (C-5b, C-5c), 71.8, 72.2 (C-3b, C-3c), 76.0 (C-3a), 83.2 (C-4a), 92.1, 92.3 (2 x 
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CCl3), 99.9 (C-1a), 100.2 (C-1c), 102.8 (C-1b), 162.2, 162.6 (2 x NHCO), 168.3, 170.6, 170.8 

(6 x CH3CO). 

MS: m/z 1043 [M] 

 

Methyl 3,4-di-O-(2,3,4,6-tetra-O-acetyl-ββββ-D-glucopyranosyl)-αααα-L-rhamnopyranoside (58) 

Chemical formula: C30H50O23 

Molecular weight: 838.76 g/mol 

Yield: 29 %  

Optical rotation [α]D = -38.7 (c = 0.9, CHCl3) 
 

1H NMR (CDCl3): δ 1.26 (d, 3H, J = 6.0 Hz, H-6a), 1.99, 2.00, 2.01, 2.02, 2.03, 2.04, 2.06, 

2.07 (8 x CH3CO), 2.34 (s, 1H, OH), 3.32 (s, 3H, OCH3), 3.53 (m, 1H, H-5a), 3.63-3.75 (m, 

4H, H-2a, H-4a, H-5b, H-5c), 3.86 (dd, 1H, J2
a
,3

a
 = 1.8 Hz, J3

a
,4

a
 = 3.0 Hz, H-3a), 4.15-4.33 (m, 

4H, H-6ab, H-6bb, H-6ac, H-6bc), 4.61 (d, 1H, J1
b

,2
b

 = 8.1 Hz, H-1b), 4.68 (d, 1H, J1
a
,2

a
 = 1.8 

Hz, H-1a), 4.71 (d, 1H, J1
c
,2

c
 = 8.4 Hz, H-1c), 4.92-5.28 (m, 6H, H-2b, H-2c, H-3b, H-3c, H-4b, 

H-4c). 
13C NMR (CDCl3): δ 17.5 (C-6a), 2 x 20.5, 3 x 20.6, 2 x 20.7, 20.8 (8 x CH3CO), 54.7 

(OCH3), 61.2, 61.8 (C-6b, C-6c), 68.0, 68.7 (C-4b, C-4c), 70.8, 71.1, 71.2, 71.7, 72.0, 72.4, 

72.5, 72.6 (C-2a, C-2b, C-2c, C-3b, C-3c, C-5a, C-5b, C-5c), 78.3 (C-3a), 82.8 (C-4a), 100.2 (C-

1a), 101.7 (C-1c), 103.0 (C-1b), 169.3, 169.4, 169.6, 169.7, 170.1, 170.2, 170.3, 170.6 (8 x 

CH3CO). 

MS: m/z 861 [M + Na] 

 

General procedure for boronate-mediated glycosylation using perbenzoylated glucosyl 

bromide donor 

A mixture of unprotected phenyl 1-thio-hexopyranoside (acceptor, 200 mg), phenylboronic 

acid (1.2 equiv. acceptor) and 4 Å freshly activated molecular sieves in anhydrous CH2Cl2 (3 

mL) was stirred at room temperature for 8 h. 2,3,4,6-Tetra-O-benzoyl-α-D-glucopyranosyl 

bromide (50) (1.5 equiv. acceptor) in CH2Cl2 (7 mL) was added and the mixture was stirred 

for 30 minutes, cooled to -30 ºC, then silver triflate (1.5 eq. donor) and sym-collidine (1.5 eq. 

donor) were added. The reaction mixture was stirred under an argon atmosphere for 3 h at -30 

ºC, then slowly warmed to room temperature. The mixture was filtered through Celite, diluted 
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with CH2Cl2, washed with 2 M HCl, saturated NaHCO3 solution and water, dried over 

MgSO4, filtered and evaporated in vacuo. The residue was purified by column 

chromatography. 

 

Phenyl 2,3,4,6-tetra-O-benzoyl-ββββ-D-glucopyranosyl-(1→2)-1-thio-ββββ-L-fucopyranoside 

(59) 

Chemical formula: C46H42O13S 

Molecular weight: 834.88 g/mol 

Yield: 66%  

Melting point: - (white foam) 

Optical rotation [α]D = -26.9 (c = 0.8, CHCl3) 

 

1H NMR (CDCl3): δ 1.13 (d, 3H, J = 6.6 Hz, H-6), 2.23 (s, 1H, OH), 3.36-3.54 (m, 4H, H-3, 

H-4, H-5, OH), 3.74 (m, 1H, H-2), 4.16 (m, 1H, H-5’), 4.33 (dd, 1H, J5’,6a’ = 6 Hz, J6a’,6b’ = 

12.3 Hz, H-6a’), 4.38 (d, 1H, J1,2 = 9.6 Hz, H-1), 4.66 (dd, 1H, J5’,6b’ = 3.0 Hz, J6a’,6b’ = 12.3 

Hz, H-6b’), 4.94 (d, 1H, J1’,2’ = 7.8 Hz, H-1’), 5.47 (dd, 1H, J1’,2’ = 7.8 Hz, J2’,3’ = 9.6 Hz, H-

2’), 5.58 (t, 1H, J = 9.9 Hz, H-4’), 5.88 (t, 1H, J = 9.6 Hz, H-3’), 7.08-7.47 (m, 15H, 

aromatic), 7.73-8.02 (m, 10H, aromatic) 
13C NMR (CDCl3): δ 16.4 (C-6), 62.8 (C-6’), 67.5 (C-5), 69.2 (C-3), 70.3 (C-4’), 71.2 (C-4), 

72.3 (C-2’), 72.7 (C-3’), 74.1 (C-5’), 86.4 (C-2), 94.7 (C-1), 101.3 (C-1’), 127.5, 128.1, 

128.2, 128.4, 128.7, 128.9, 129.2, 129.6, 129.7, 129.8, 132.3, 133.0, 133.2, 133.3, 133.5 

(aromatic), 165.0, 165.4, 165.6, 166.0 (4 x PhCO) 

MS: m/z 857 [M + Na] 

 

Phenyl 2,3,4,6-tetra-O-benzoyl-ββββ-D-glucopyranosyl-(1→3)-1-thio-ββββ-D-galactopyranoside 

(61) 

Chemical formula: C46H42O14S 

Molecular weight: 850.88 g/mol 

Yield: 74%  

Melting point: 86-88 °C 

Optical rotation [α]D = +13 (c = 1, CHCl3) 
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1H NMR (CDCl3): δ 2.27 (s, 1H, OH), 2.37 (s, 1H, OH), 2.70 (s, 1H, OH), 3.37 (m, 1H, H-5), 

3.49-3.58 (m, 2H, H-3, H-6a), 3.64-.79 (m, 2H, H-2, H-6b), 3.98 (d, 1H, J = 2.4 Hz, H-4), 

4.10 (m, 1H, H-5’), 4.37 (d, 1H, J1,2 = 9.6 Hz, H-1), 4.41 (dd, 1H, J5’,6a’ = 6.0 Hz, J6a’,6b’ = 

12.0 Hz, H-6a’), 4.60 (dd, 1H, J5’,6b’ = 2.7 Hz, J6a’,6b’ = 12.0 Hz, H-6b’), 5.06 (d, 1H, J1’,2’ = 

7.8 Hz, H-1), 5.43 (dd, 1H, J1’,2b’ = 7.8 Hz, J2’,3’ = 9.9 Hz, H-2’), 5.56 (t, 1H, J = 9.9 Hz, H-

4’), 5.87 (t, 1H, J = 9.9 Hz, H-3’), 7.08-7.48 (m, 15H, aromatic), 7.74-7.97 (m, 10H, 

aromatic).  
13C NMR (CDCl3): δ 62.3 (C-6), 62.7 (C-6’), 68.2 (C-2), 68.5 (C-4), 69.3 (C-4’), 72.1 (C-2’), 

72.3 (C-3’), 72.5 (C-5’), 78.0 (C-5), 83.6 (C-3), 88.1 (C-1), 101.5 (C-1’), 127.8, 128.2, 128.3, 

128.4, 128.5, 128.6, 128.9, 129.0, 129.2, 129.7, 129.8, 132.1, 132.3, 133.4, 133.6 (aromatic), 

165.2, 165.5, 165.7, 166.1 (4 x PhCO). 

MS: m/z 873 [M + Na] 

 

Phenyl 2,3,4,6-tetra-O-benzoyl-ββββ-D-glucopyranosyl-(1→6)-1-thio-ββββ-D-galactopyranoside 

(62) 

The mixture of phenyl 1-thio-β-D-galactopyranoside (51) (1 g, 3.67 mmol), dibutyltin oxide 

(0.92 g, 3.67 mmol) in methanol (20 mL) was refluxed for 3 hours under an argon 

atmosphere. The mixture was evaporated in vacuo and the residue was dissolved in dry 

CH2Cl2 (40 mL) and 2,3,4,6-tetra-O-benzoyl-α-D-glucopyranosyl bromide (50) (3.63 g, 5.5 

mmol) was added. The mixture was stirred at -30 ºC for 30 minutes under an argon 

atmosphere, and then AgOTf (2.12 g, 8.25 mmol) was added. The reaction mixture was 

stirred at -30 ºC for overnight. The mixture was filtered through Celite, diluted with CH2Cl2, 

washed with 2 M HCl, saturated NaHCO3 solution and water, dried over MgSO4, filtered and 

concentrated in vacuo. The residue was purified by column chromatography to afford 62 as a 

white solid. 

Chemical formula: C46H42O14S 

Molecular weight: 850.88 g/mol 

Yield: 75%  

Melting point: 94-96 °C 

Optical rotation [α]D = +8.9 (c = 1, CHCl3) 

 

O OH

OH
HO

SPh

O
O

BzO
BzO

BzO

OBz
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1H NMR (CDCl3): δ 2.09 (s, 1H, OH), 3.12 (s, 1H, OH), 2.70 (s, 1H, OH), 3.23 (m, 1H, H-

6b), 3.38 (d, 1H, J = 5.7 Hz, H-3), 3.50 (t, 1H, J = 6.3 Hz, H-5), 3.60 (t, 1H, J = 9 Hz, H-2), 

3.85-3.97 (m, 2H, H-4, H-6a), 3.99-4.04 (m, 1H, H-5’), 4.30 (dd, 1H, J5’,6a’ = 4.5 Hz, J6a’,6b’ = 

12.0 Hz, H-6a’), 4.35 (d, 1H, J1,2 = 9.9 Hz, H-1), 4.41 (dd, 1H, J5’,6b’ = 2.7 Hz, J6a’,6b’ = 12.0 

Hz, H-6b’), 4.85 (d, 1H, J1’,2’ = 8.1 Hz, H-1’), 5.42 (dd, 1H, J1’,2b’ = 8.1 Hz, J2’,3’ = 9.3 Hz, H-

2’), 5.61 (t, 1H, J = 9.6 Hz, H-4’), 5.79 (t, 1H, J = 9.6 Hz, H-3’), 7.16-7.45 (m, 15H, 

aromatic), 7.73-7.98 (m, 10H, aromatic)  
13C NMR (CDCl3): δ 62.5 (C-6), 68.0 (C-6’), 68.2 (C-4), 69.3 (C-2), 69.9 (C-4’), 71.7 (C-2’), 

72.3 (C-5’), 72.7 (C-3’), 74.3 (C-3), 77.3 (C-5), 88.5 (C-1), 101.0 (C-1’), 127.8, 128.2, 128.3, 

128.4, 128.5, 128.6, 129.0, 129.2, 129.7, 129.8, 132.0, 133.2, 133.3, 133.4 (aromatic), 165.1, 

165.2, 165.7, 166.3 (4 x PhCO) 

MS: m/z 873 [M + Na] 
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The addition of allylmagnesium bromide and benzylmagne-
sium chloride to carbonyl compounds was investigated in the
presence of protic reagents such as water and the rate of
carbonyl addition was found to be comparable to the rate
of protonation by the reagent.

The Grignard addition reaction is one of the most important
organometallic transformations for forming a carbon–carbon
bond.1 The reaction between an organomagnesium halide and
a carbonyl compound is performed under strictly anhydrous
conditions in an ethereal solution (usually diethyl ether or THF).
The exclusion of water is crucial since the protonation of the
Grignard reagent is believed to be almost instantaneous. Therefore
it is surprising that quantum mechanics calculations for the
reaction of allylmagnesium bromide with water and acetone have
suggested similar activation energies towards protonation and
addition.2 In these calculations, however, the addition is based
on a polar mechanism and allyl Grignard is believed to add by a
single electron transfer mechanism.3 One of us have measured the
rate for the reaction between allylmagnesium bromide and acetone
by competition kinetics and found that allyl Grignard adds 1.5 ¥
105 times faster than the corresponding butyl reagent.4 In fact,
allylmagnesium bromide reacts with acetone at a rate which is near
the diffusion controlled maximum. Since the addition reaction is
extremely fast it may be able to compete with the protonation by
a protic (co)solvent such as water. It should also be noted that
the one-pot reaction between allyl bromide, magnesium metal
and benzaldehyde in aqueous media gives rise to the addition
product in moderate to good yields (Barbier conditions).5 The
mechanism is believed to involve a rate-determining single electron
transfer reaction to the aldehyde,5,6 but it is not known whether an
allylmagnesium halide is actually formed under these conditions.
Based on these observations we decided to compare the rate of
addition to the rate of protonation by several Grignard reagents
especially allyl Grignard.

The first experiments were carried out with allylmagnesium bro-
mide in diethyl ether (containing octane as an internal standard)
which was mixed with an equimolar mixture of acetone and water
in diethyl ether.† Remarkably, the yield of the addition product was
found to be around 90% (Table 1, entry 1 and 2) indicating that
the addition reaction should be much faster than the protonation
of the reagent. Since the result was unexpected the investigation
was widened to include a number of Grignard reagents reacting
with a number of protic reagents.

When allylmagnesium bromide was reacted with acetone in
the presence of alcohols or benzoic acid yields of the addition

Department of Chemistry, Building 201, Technical University of Den-
mark, DK-2800 Kgs. Lyngby, Denmark. E-mail: th@kemi.dtu.dk: rm@
kemi.dtu.dk; Fax: (+45) 4593 3968

products were in the 52–63% range indicating a higher degree
of protonation (entries 3–5). Similar results were obtained when
benzaldehyde was used as the carbonyl compound. The best
result was obtained with water as the proton source giving
75% yield of the addition product (entry 6) while methanol,
phenol and benzoic acid gave yields around 42–63% (entries 7–
10). Methyl benzoate, acetophenone and p-methoxybenzaldehyde
furnished moderate yield of the addition product in competition
with water, methanol and phenol (entries 11–15). With methyl
benzoate only double addition to afford the tertiary alcohol was
observed and the intermediate ketone was not detected. Besides
allylmagnesium bromide, benzylmagnesium chloride also reacted
sufficiently fast with acetone and benzaldehyde to compete to
a certain degree with protonation by water and alcohols (entries
16–22). Butylmagnesium bromide, on the other hand, yielded only
trace amounts of the addition products in similar reactions (entry
23 and 24).

From these experiments it is clear that for allylmagnesium
bromide the addition to acetone is faster than the protonation
by water. The addition to other types of carbonyl compounds
such as benzaldehyde, methyl benzoate and acetophenone seem
to be slower. Surprisingly, a reversal in reactivity is observed with
benzylmagnesium chloride which adds effectively to benzaldehyde
in competition with protonation by water while the reaction
with acetone is slower. Butylmagnesium bromide, as anticipated,
undergoes complete protonation in competition with carbonyl
addition.

The reactivities in acetone–water mixtures can be rationalized
by the different reactivities of the three Grignard reagents. For
allylmagnesium bromide the halftime for addition to acetone has
been established to be around one ms.4 There is no similar value
available for benzylmagnesium chloride, but from the known rate
constant for benzylmagnesium bromide7 and an estimated 10 fold
increase on going from the bromide to the chloride8 it must be
assumed that the halftime for the addition is about one ms. For
butylmagnesium bromide the halftime for addition to acetone
is almost one s.7 Thus for the extremely reactive allyl Grignard
reagent addition competes effectively with protonation while with
the less reactive reagents protonation becomes the predominant
reaction. However, there are still some inconsistencies in Table 1
which needs to be further addressed particularly why alcohols are
better proton sources than water and why protonation seems to
be more favoured at higher dilution.

In this regard, it has been shown that in the case of Grignard
reagents, competition kinetics do not always give the correct ratio
between two reacting reagents competing for a single substrate
or when two substrates compete for a single reagent.4 When
a highly reactive reagent is tested in competition with a less
reactive reagent the ratios found tend to be statistically controlled
(by the relative concentrations) rather than kinetically controlled
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Table 1 Yield of addition product in the reaction of Grignard reagents with carbonyl compounds in the competition with protic compounds†

Entry Grignard Reagent (0.1 M) Carbonyl Compd (0.6 M) Protic Compd (0.6 M) Yield a(%)

1 CH2=CHCH2MgBr CH3COCH3 H2O 91
2 CH2=CHCH2MgBrb CH3COCH3 H2O 90
3 CH2=CHCH2MgBr CH3COCH3 CH3OH 56
4 CH2=CHCH2MgBr CH3COCH3 C2H5OH 63
5 CH2=CHCH2MgBr CH3COCH3

c C6H5COOHc 52
6 CH2=CHCH2MgBr C6H5CHO H2O 75
7 CH2=CHCH2MgBrd C6H5CHO CH3OH 53
8 CH2=CHCH2MgBr C6H5CHOe CH3OHe 42
9 CH2=CHCH2MgBrf C6H5CHOg C6H5OHg 43
10 CH2=CHCH2MgBr C6H5CHO C6H5COOH 63
11 CH2=CHCH2MgBrf C6H5COOCH3 H2O 56
12 CH2=CHCH2MgBrf C6H5COOCH3 CH3OHh 40
13 CH2=CHCH2MgBrf C6H5COOCH3 C6H5OH 47
14 CH2=CHCH2MgBrf C6H5COCH3 C6H5OH 31
15 CH2=CHCH2MgBr p-CH3OC6H4CHO C6H5OH 35
16 C6H5CH2MgCl CH3COCH3 H2O 30
17 C6H5CH2MgClb CH3COCH3 H2O 14
18 C6H5CH2MgCl C6H5CHO H2O 89
19 C6H5CH2MgCl C6H5CHO CH3OH 63
20 C6H5CH2MgCl C6H5CHO C2H5OH 46
21 C6H5CH2MgCl C6H5CHO C6H5OH 29
22 C6H5CH2MgCl p-CH3OC6H4CHOi C6H5OHi 18
23 CH3(CH2)3MgBr CH3COCH3 H2O 2
24 CH3(CH2)3MgBr C6H5CHO CH3OH 0

a GC yield. b 0.01 M. c 0.34 M. d 0.25 M. e 0.5 M. f 0.16 M. g 0.3 M. h 1.2 M. i 0.2 M.

(by the reactivities). As originally explained by Francis9 the cause
is that in “the meeting zone” when the solutions get in contact,
the highly reactive reagent gets depleted locally. This gives the
less reactive reagent a chance to get more than its fair share of
the substrate. In the case of a water–acetone mixture meeting a
Grignard reagent the possibility exists of water being removed by
the Grignard reagent leaving acetone in dry diethyl ether ready
to be attacked by unreacted Grignard reagent. It is impossible to
predict the importance of this “depletion” or “scavenging” effect
since it depends both on the concentrations used, on the method
of mixing, and on the nature of reaction products. The effect tends
to be smaller with higher dilution and could explain the higher
degree of protonation in more dilute mixtures.

It should also be noted that a Grignard reagent is a combination
of alkylmagnesium halide and dialkylmagnesium (and more
complex oligomeric species) in a Lewis donor solvent. The ligands
around magnesium exchange rapidly and the Schlenk equilibrium
(Scheme 1) is positioned differently in weakly or strongly donating
solvents, e.g. it is shifted from left to right by adding THF to an
ethereal solution of an alkylmagnesium halide.1a The shift in the
position of the Schlenk equilibrium is a result of small differences
in the Lewis acidity of the various components which decrease
in the order: MgBr2 > RMgBr � R2Mg. The complexation
energy of one water molecule to allylmagnesium bromide has
been calculated to -23.1 kcal mol-1 which reflects the strong
Lewis acidity of the metal in the Grignard reagent.2 While the
overall Schlenk equilibrium is fast but measurable, the rate of

Scheme 1 The Schlenk equilibrium.

ligand exchange around the individual magnesium atoms must be
assumed to be diffusion controlled.

In all the experiments reported in this work the Grignard
reagents are added to an excess of the two competing substrates
(inverse addition). When the competition is between a carbonyl
compound and water, it seems indicated that water will coordi-
nate to magnesium. If coordinated water is less reactive in the
protonation reaction, addition to the carbonyl group will be more
favoured. Since alcohols coordinate less effectively to magnesium
it will also explain the higher degree of protonation when Grignard
reagents are competing with alcohols than with water.

The deactivation should be caused by coordination of water
to any electrophilic magnesium compound, magnesium bromide
inclusive. It was therefore decided to repeat the addition to acetone
with extra magnesium bromide added. In fact, when allylmag-
nesium bromide was mixed with one equivalent of magnesium
bromide and then added to an equimolar mixture of acetone and
water, the yield of the addition product was quantitative. This is a
pronounced increase compared to the 91% yield in Table 1, entry
1 and confirms that magnesium compounds may serve as water
scavengers to some extent in fast Grignard addition reactions.
The same was observed when allylmagnesium bromide with one
equivalent of magnesium bromide was added to an equimolar
mixture of benzaldehyde and water. In this case, 85% yield of the
addition product was obtained which should be compared to 75%
in the absence of added magnesium bromide (Table 1, entry 6)

A method to avoid the scavenging effect is to include the two
competing groups in the same molecule giving them identical
chances for meeting a reactive R–Mg entity in an intramolecular
competition. We therefore made a series of experiments in
which we reacted a Grignard reagent with bifunctional substrates
containing both a hydroxy group and a carbonyl group. The results
are shown in Table 2.

This journal is © The Royal Society of Chemistry 2010 Org. Biomol. Chem., 2010, 8, 3402–3404 | 3403
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Table 2 Yield of addition product in the reaction of Grignard reagents
with carbonyl compounds containing a hydroxyl group†

Entry Grignard Reagent Bifunctional Compd
Yielda-
(%)

1 0.16 M CH2=CHCH2MgBr 0.3 M p-HOC6H4CHO 5
2 0.16 M CH2=CHCH2MgBr 0.3 M m-HOC6H4CHO 30
3 0.16 M CH2=CHCH2MgBr 0.3 M o-HOC6H4CHO 0
4 0.16 M CH2=CHCH2MgBr 0.3 M p-HOC6H4COCH3 13
5 0.16 M CH2=CHCH2MgBr 0.3 M p-HOC6H4COOCH3 2
6 0.1 M C6H5CH2MgCl 0.4 M p-HOC6H4CHO 0
7 0.1 M C6H5CH2MgCl 0.4 M m-HOC6H4CHO 0
8 0.1 M C6H5CH2MgCl 0.4 M p-HOC6H4COCH3 0
9 0.2 M CH2=CHCH2MgBr 0.4 M C6H5COOH 18
10 0.1 M CH2=CHCH2MgBr 0.25 M CH3(CH2)6COOH 9
11 0.1 M C6H5CH2MgCl 0.2 M C6H5COOH 0

a GC yield.

From the table it is clear that the intramolecular competition
gives results that are different from the results in the intermolecular
competition. With both allylmagnesium bromide and benzylmag-
nesium chloride a higher degree of protonation is observed in the
intramolecular competition. When allylmagnesium bromide was
reacted with a mixture of p-methoxybenzaldehyde and phenol, the
addition/protonation ratio was 35 : 65 (Table 1, entry 15). How-
ever, when the same reagent was added to p-hydroxybenzaldehyde
the ratio was 5 : 95 (Table 2, entry 1). Similar allyl Grignard
reactions with other hydroxy carbonyl compounds (entries 2–5)
also gave lower yields of the addition product than in Table 1.
When benzylmagnesium chloride was reacted with a mixture of
p-methoxybenzaldehyde and phenol, the addition/protonation
ratio was 18 : 82 (Table 1, entry 22). With p-hydroxybenzaldehyde
as the substrate the ratio was zero (Table 2, entry 6) indicating
that the rate of protonation of benzylmagnesium chloride by
the hydroxy group is more than hundred times faster than the
addition to the aldehyde. The higher degree of protonation in
these intramolecular competition experiments confirm that the
protic reagent in the intermolecular competition experiments is
scavenged to some degree by the magnesium salts.

Similar results are obtained with benzoic acid and octanoic
acid, which can also be considered as bifunctional substrates
with both a hydroxy group and a carbonyl group (entries 9–11).
With allylmagnesium bromide only double addition was observed
to afford the tertiary alcohol and the intermediate ketone was
not detected. Since the oxygen–hydrogen bond is broken in the
protonation reaction a primary deuterium isotope effect might be
expected. Experiments with the reaction between allylmagnesium
bromide and deuterated benzoic and octanoic acid, however,
showed no significant changes in the product distributions from

those obtained with the non-deuterated acids. The ultrafast
reactions most likely have early transition states in which case
the kH/kD will be close to 1.0.

In conclusion, we have shown that the rate of carbonyl addition
may compare with the rate of protonation for two highly reactive
Grignard reagents. When the Grignard reagents are added to
an excess of two competing substrates of which one has a
carbonyl group and the other a hydroxy group rather high
yields of the addition products may be obtained (intermolecular
competition). This is seen especially with allylmagnesium bromide,
but also to some extent with benzylmagnesium chloride while
butylmagnesium bromide does not undergo carbonyl addition in
the presence of protic reagents. The phenomenon is caused to
some degree by a scavenging effect from electrophilic magnesium
compounds which remove water or other hydroxy compounds
by complexation and leave the carbonyl compound free to react
with the alkylmagnesium reagent. When the competition is carried
out in an intramolecular fashion with substrates containing both a
carbonyl group and a hydroxy group the scavenging effect is absent
and only allylmagnesium bromide is able to form the addition
product in low to moderate yield.

Notes and references

† General procedure for competition experiments: Allylmagnesium bromide
and benzylmagnesium chloride were prepared under argon in diethyl
ether (distilled from benzophenone ketyl) from reagent grade magnesium
by slow addition (6 h) of distilled allyl bromide and benzyl chloride.
Solutions of the Grignard reagent (10 mL) and the substrates (10 mL)
were prepared separately in 20 mL syringes which were connected with
a polyethylene capillary tube. The Grignard solution contained 1 mol of
octane per mol of Grignard reagent as an internal standard. The Grignard
reagent was pressed into the syringe with the substrate solution within
2–3 s. The heterogeneous reaction mixture was shaken with saturated
ammonium chloride solution and the organic layer isolated. The solution
was analysed by quantitative GC and the peaks for the products were
measured relative to the peak for octane. To obtain complete conversion
the Grignard solution was reacted with an excess of the substrate mixture.
Each experiment was repeated twice and the average yield reported in
Tables 1 and 2.

1 (a) Handbook of Grignard Reagents, ed. G. S. Silverman and P. E. Rakita,
Marcel Dekker, New York, 1996; (b) Grignard Reagents – New Develop-
ments, ed. H. G. Richey, Jr., John Wiley & Sons, Chichester, 2000.

2 L. W. Chung, T. H. Chan and Y.-D. Wu, Organometallics, 2005, 24,
1598–1607.

3 J. J. Gajewski, W. Bocian, N. J. Harris, L. P. Olson and J. P. Gajewski,
J. Am. Chem. Soc., 1999, 121, 326–334.

4 T. Holm, J. Org. Chem., 2000, 65, 1188–1192.
5 W.-C. Zhang and C.-J. Li, J. Org. Chem., 1999, 64, 3230–3236.
6 J. H. Dam, P. Fristrup and R. Madsen, J. Org. Chem., 2008, 73, 3228–

3235.
7 T. Holm, Acta Chem. Scand., Ser. B, 1983, 37b, 567–584.
8 T. Holm, Tetrahedron Lett., 1966, 7, 3329–3336.
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Amide Synthesis from Alcohols and Amines Catalyzed by Ruthenium
N-Heterocyclic Carbene Complexes

Johan Hygum Dam, Gyorgyi Osztrovszky, Lars Ulrik Nordstrøm, and Robert Madsen*[a]

Introduction

The amide is one of the most prevalent linkages in organic
chemistry. It is the key functional group in peptides and a
number of polymers and is also found in many pharmaceuti-
cals and natural products.[1] The synthesis of amides has
been the subject of intense studies and numerous methods
have been developed.[2] However, cost effective, high-yield-
ing and waste-free procedures with a broad substrate scope
are still in high demand. The direct synthesis of amides by
thermal dehydration of carboxylic acids and amines has a

large activation energy due to the formation of the corre-
sponding ammonium salt and this method generally requires
a temperature above 160 8C.[2] The temperature can be sig-
nificantly lowered by catalyzing the dehydration with spe-
cially designed areneboronic acids[3] or heterogeneous silica
catalysts[4] if water at the same time is removed irreversibly.
The most common methods for amide synthesis employ acti-
vated derivatives of the carboxylic acid, such as the chloride
and the anhydride.[2] The activated derivatives may also be
generated in situ by employing stoichiometric coupling re-
agents, such as carbodiimides, uronium, and phosphonium
salts,[5] for which the latter two are the methods of choice in
peptide synthesis. Other general procedures for amide syn-
thesis include the Beckman rearrangement,[6] Staudinger li-
gations,[7] oxidative amidation of aldehydes,[8] coupling of a-
ketoacids and hydroxylamines,[9] and amidation of ketones
and thioacids with azides.[10] More recently, a number cata-
lytic procedures have been developed including amidation—
hydrolysis of gem-dihaloolefins,[11] redox rearrangement of
a-functionalized aldehydes,[12] and aminocarbonylation of
aryl halides and terminal alkynes.[13]

Abstract: The direct synthesis of
amides from alcohols and amines is de-
scribed with the simultaneous libera-
tion of dihydrogen. The reaction does
not require any stoichiometric addi-
tives or hydrogen acceptors and is cata-
lyzed by ruthenium N-heterocyclic car-
bene complexes. Three different cata-
lyst systems are presented that all
employ 1,3-diisopropylimidazol-2-yli-
dene (IiPr) as the carbene ligand. In
addition, potassium tert-butoxide and a
tricycloalkylphosphine are required for
the amidation to proceed. In the first
system, the active catalyst is generated
in situ from [RuCl2ACHTUNGTRENNUNG(cod)] (cod =1,5-cy-
clooctadiene), 1,3-diisopropylimidazoli-
um chloride, tricyclopentylphosphoni-

um tetrafluoroborate, and base. The
second system uses the complex
[RuCl2 ACHTUNGTRENNUNG(IiPr) ACHTUNGTRENNUNG(p-cymene)] together with
tricyclohexylphosphine and base,
whereas the third system employs the
Hoveyda–Grubbs 1st-generation meta-
thesis catalyst together with 1,3-diiso-
propylimidazolium chloride and base.
A range of different primary alcohols
and amines have been coupled in the
presence of the three catalyst systems
to afford the corresponding amides in
moderate to excellent yields. The best

results are obtained with sterically un-
hindered alcohols and amines. The
three catalyst systems do not show any
significant differences in reactivity,
which indicates that the same catalyti-
cally active species is operating. The re-
action is believed to proceed by initial
dehydrogenation of the primary alco-
hol to the aldehyde that stays coordi-
nated to ruthenium and is not released
into the reaction mixture. Addition of
the amine forms the hemiaminal that
undergoes dehydrogenation to the
amide. A catalytic cycle is proposed
with the {(IiPr)RuII} species as the cat-
alytically active components.
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Very recently, amide synthesis has become possible by the
direct metal-catalyzed coupling of primary alcohols and
amines with the concomitant extrusion of dihydrogen
(Scheme 1). The reaction presumably occurs by initial dehy-

drogenation of the alcohol to the aldehyde followed by
hemiaminal formation with the amine and subsequent dehy-
drogenation to the amide. The amidation has been achieved
both in the presence[14, 15] and absence[16–18] of hydrogen scav-
engers. The latter protocol is the most attractive in which no
stoichiometric additives are necessary and dihydrogen is
produced as the only byproduct. To date, three different cat-
alyst systems have been reported for this atom-economical
amidation procedure for which two are homogeneous proto-
cols and the latter a heterogeneous method. The first system
was presented by Milstein et al. in 2007 for which a rutheni-
um complex with a PNN-type pincer ligand was shown to be
an effective catalyst for the coupling of primary alcohols
and amines with the liberation of dihydrogen.[16] The follow-
ing year our laboratory showed that the same transforma-
tion could be performed with an in situ generated ruthenium
N-heterocyclic carbene (NHC) catalyst.[17, 19] In 2009, Shimi-
zu et al. achieved the dehydrogenative amide synthesis with
a silver cluster supported on g-alumina as the catalyst.[18] Of
these three systems the in situ generated ruthenium carbene
catalyst is easily modified and can be carried out with com-
mercially available reagents.

Herein, we report a full account on our studies of rutheni-
um N-heterocyclic carbene catalysts in the dehydrogenative
amidation from primary alcohols and amines. We demon-
strate that the reaction can be achieved with three different
(pre)catalysts and provide further support for the catalyti-
cally active species.

Results and Discussion

Catalyst development : 2-Phenylethanol and benzylamine
were selected as test substrates for optimizing the amidation
procedure. Initial experiments revealed that the reaction
could be achieved with a ruthenium(II) precursor in the
presence of an in situ generated N-heterocyclic carbene
(Table 1). To prevent rapid deactivation of the catalyst, it
was also necessary to add an additional ligand. A range of
phosphine ligands and other ligands could be used for this
purpose for which PCy3 gave the best result and was select-

ed for further studies (Table 1, entries 1–8). The influence of
the substitutents on the N-heterocyclic carbene was then in-
vestigated in detail. These substituents had a pronounced
impact on the amidation and the isopropyl group was found
to give the highest yield (entries 9–12). A number of more
substituted imidazolium salts gave less than 25 % yield
under the same conditions.[20] Carbenes with a saturated
backbone, that is, imidazolin-2-ylidenes, gave significantly
lower yields than carbenes with an unsaturated backbone.[17]

Potassium tert-butoxide was selected as the base for generat-
ing the carbene since it is easy to handle. Similar yields were
obtained with potassium hexamethyldisilazide, whereas the
use of cesium carbonate resulted in lower yields. The pur-
pose of the base is not only to deprotonate the imidazolium
salt, but also to promote the amide formation. Various
amounts of base were investigated and the optimum amount
was found to be three times the amount of the imidazolium
salt. With 1,3-diisopropylimidazol-2-ylidene as the carbene
of choice, the phosphine ligand was investigated again. In
this case, tricyclopentylphosphine (PCyp3) gave a slight im-
provement over PCy3. The improvement was not only mea-
sured in the yield at the end of the reaction, but also after
3 h when PCyp3 showed 67 % conversion and PCy3 only
56 % (entries 10 and 13). However, PCyp3 is a liquid and sig-
nificantly less stable than the tricyclohexyl congener. There-
fore, the corresponding crystalline HBF4 salt[21] was em-
ployed at the expense of additional base (entry 14). The iso-
lated yields from the experiments in entries 13 and 14 were
the same and the catalyst system in entry 14 was selected for
general use and denoted catalyst A.

Since the catalytically active species in this reaction may
be a ruthenium(II)chloride N-heterocyclic carbene complex
it would be of interest to study the reaction with a more
well-defined complex. This may lead to a new catalyst
system and a better understanding of the mechanism. At-

Scheme 1. Dehydrogenative amide formation from primary alcohols and
amines.

Table 1. Amidation with catalysts generated in situ.

Entry R X Ligand Yield [%][a]

1 Mes Cl PPh3 21
2 Mes Cl P ACHTUNGTRENNUNG(o-tol)3 26
3 Mes Cl P ACHTUNGTRENNUNG(2-furyl)3 26
4 Mes Cl PtBu3 22
5 Mes Cl PCy3 27
6 Mes Cl O=PPh3 24
7 Mes Cl AsPh3 24
8 Mes Cl pyridine 12
9 Me ACHTUNGTRENNUNG(MeO)2PO2 PCy3 53
10 iPr Cl PCy3 92
11 Cy BF4 PCy3 84
12 tBu BF4 PCy3 68
13 iPr Cl PCyp3 98
14 iPr Cl PCyp3·HBF4 92[b]

[a] GC yield. [b] With 20 % of KOtBu.
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tempts to isolate a carbene complex from the reaction be-
tween 1,3-diisopropylimidazolium chloride, [RuCl2ACHTUNGTRENNUNG(cod)],
phosphine, and base were not successful and the in situ gen-
erated carbene complex appears to be very sensitive. In-
stead, we turned our attention to the known p-cymene com-
plexes of ruthenium(II)chloride and N-heterocyclic car-
benes.[22] These are stable and coordinatively saturated com-
plexes that have been used for hydrogenation and cyclopro-
panation of olefins.[22] It is known that the p-cymene ligand
is released at about 85 8C[23] and with the amidation being
performed in refluxing toluene these complexes appear well
suited as catalyst precursors. Traditionally, the p-cymene
complexes have been prepared by transfer of the free N-het-
erocyclic carbene to [RuCl2ACHTUNGTRENNUNG(p-cymene)]2.

[24] More recently,
the carbene transfer has become possible by reaction of 1,3-
dialkylimidazolium chlorides with silver oxide in dichloro-
methane.[25] By this method the corresponding silver carbene
is generated and transmetallated in situ with [RuCl2 ACHTUNGTRENNUNG(p-
cymene)]2, which makes it unnecessary to isolate the free
carbene. In this way, complexes 1 and 2 were generated in
excellent yield and isolated by flash chromatography
(Scheme 2). The structure of 2 has previously been con-
firmed by X-ray crystallography.[24c] Except for the two dif-
ferent alkyl groups, the 1H and 13C NMR spectroscopic data
for 1 and 2 are very similar with the carbene carbon atom in
both cases located at d=171 ppm in the 13C NMR spectrum.
To probe the influence of the halide on ruthenium, the cor-
responding diiodide complex 3 was also prepared. In this
case, only a 56 % yield of 3 was obtained since the carbene
transfer between 1,3-dicyclohexylimidazolium chloride and
[RuI2 ACHTUNGTRENNUNG(p-cymene)]2 gave a mixture of dichloride 2 and diio-
dide 3 that were separated by preparative TLC.

Complexes 1–3 were tested in the amidation with 2-phe-
nylethanol and benzylamine, and the yield was measured
after both 3 and 24 h (Table 2). Again, the reaction required
a base for the amidation to proceed. A phosphine was also
required to obtain a high yield of the amide. Without phos-
phine, less than 70 % of the amide was observed after 24 h.
The phosphine salt PCyp3·HBF4

[21] was less effective with
complexes 1 and 2 and afforded below 70 % yield of the
amide after 24 h. However, with added PCy3 and PCyp3

complexes 1 and 2 performed very well in the amidation
(Table 2, entries 3–6) and gave results after 3 and 24 h which
were very similar to the yields from the in situ generated
catalyst (entries 1 and 2). This confirms that an N-heterocy-

clic carbene ruthenium(II)chloride species is produced
under the in situ conditions. Diiodide complex 3, on the
other hand, was less reactive than dichlorides 1 and 2 and
more byproducts were formed with this complex (entries 7
and 8). The results with diiodide 3 did not improve by
adding 10 % of lithium chloride or tetraethylammonium
chloride to the reaction. However, when the amidation was
performed with an in situ generated catalyst from [RuI2ACHTUNGTRENNUNG(p-
cymene)]2, 1,3-dicyclohexylimidazolium chloride, phosphine,
and base almost the same yields were observed as with
[RuCl2ACHTUNGTRENNUNG(cod)] as the ruthenium precursor (entries 9 and 10).
We believe the catalytically active complex in this case is
mainly a ruthenium(II)chloride species and not the corre-
sponding iodide complex. No reaction occurred when the
amidation was attempted with 5 % of 1 and 10 % of silver
triflate in the presence of phosphine and base. Based on
these studies we selected complex 1 together with PCy3 for
general use and denoted this system catalyst B.

In 2001 Grubbs et al. showed that the Grubbs 2nd-genera-
tion metathesis catalyst reacts with dihydrogen to remove
the benzylidene ligand, but not the N-heterocyclic carbene
ligand.[26] This observation prompted us to investigate olefin
metathesis catalysts[27] since the liberated dihydrogen in the
amidation may serve to activate the metathesis catalysts for
this transformation. Indeed, reaction of 2-phenylethanol and
benzylamine with Grubbs 2nd-generation catalyst and base
produced the amide in 49 % yield after 24 h (Table 3,
entry 1). This is a lower yield than that achieved in TaACHTUNGTRENNUNGbles 1
and 2, but the saturated N-heterocyclic carbene in Grubbs
2nd-generation catalyst is not the optimum ligand for the
amidation. A higher yield was obtained with Hoveyda–
Grubbs 2nd-generation catalyst and this did not change by
adding PCy3 to the reaction (Table 3, entry 2). Interestingly,
the Grubbs catalyst with the less sterically demanding o-
tolyl group[28] gave a good yield of the amide (entry 3).

To illustrate the influence of the N-heterocyclic carbene
Grubbs 1st-generation and Hoveyda–Grubbs 1st-generation
catalysts were also investigated. These two complexes do

Scheme 2. Synthesis of NHC ruthenium cymene complexes.

Table 2. Amidation with [RuACHTUNGTRENNUNG(NHC) ACHTUNGTRENNUNG(p-cymene)] complexes.

Entry Complex Phosphine Yield [%] (3 h)[a] Yield [%] (24 h)[a]

1 –[b] PCy3 56 92
2 –[b] PCyp3 67 98
3 1 PCy3 65 95
4 1 PCyp3 53 100
5 2 PCy3 61 97
6 2 PCyp3 56 91
7 3 PCy3 22 50
8 3 PCyp3 29 44
9 –[c] PCy3 56 90
10 –[c] PCyp3 63 87

[a] GC yield. [b] Generated in situ from [RuCl2ACHTUNGTRENNUNG(cod)]2 and 1,3-diisopro-
pylimidazolium chloride (catalyst A). [c] Generated in situ from [RuI2 ACHTUNGTRENNUNG(p-
cymene)]2 and 1,3-dicyclohexylimidazolium chloride.
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not contain an N-heterocyclic carbene and when applied di-
rectly in the amidation moderate yields of the product were
obtained (Table 3, entries 4 and 7). However, when 1,3-di-
isopropyl- or 1,3-dicyclohexylimidazol-2-ylidene were gener-
ated together with these complexes the yield of the amide
increased considerably (entries 5, 6, 8, and 9) and was com-
parable to the best results in Tables 1 and 2. The modified
Grubbs catalyst with the phenyl indenylidene ligand[29]

showed the same results (entries 10 and 11), which under-
lines the assumption that the benzylidene group in the meta-
thesis catalyst did not take part in the amidation, but was re-
duced off by the liberated dihydrogen. A number of other
N-heterocyclic carbenes were also generated together with
Grubbs 1st-generation catalyst,[30] but in all cases lower
yields of the amide was obtained. This confirms the results
in Table 1 that the imidazol-2-ylidine with 1,3-diisopropyl or
1,3-dicyclohexyl groups are the optimum N-heterocyclic car-
benes for the amidation. The in situ formation of the ruthe-
nium N-heterocyclic carbene complex was confirmed by pre-
paring the known cyclohexyl complex in Table 3, entry 12
from Grubbs 1st-generation catalyst.[31] When this well-de-
fined complex was applied in the amidation essentially the
same yield was obtained as when the complex was generat-

ed in situ (entries 6 and 12). Based on the results in Table 3,
Hoveyda–Grubbs 1st-generation catalyst was selected as the
metathesis catalyst for the amidation in the presence of 1,3-
diisopropylimidazolium chloride and base (catalyst C).

Substrate scope : With three optimized catalysts in hand, the
substrate scope and limitations could now be more thor-
oughly explored. Equimolar amounts of various primary al-
cohols and amines were reacted with catalysts A, B, and C
to afford the corresponding amides (Table 4). Sterically un-
hindered alcohols reacted with primary amines to give the
secondary amide in high yields (Table 4, entries 1–3). Benzyl
alcohol furnished the corresponding benzamide (entry 4),
whereas the aryl chloride in entry 5 afforded the amide
without concomitant dechlorination. Hex-5-en-1-ol, on the
other hand, gave exclusively the hexanamide with all three
catalysts in which the olefin had been reduced with the li-
berated dihydrogen (entry 6). N-benzylethanolamine under-
went coupling with benzylamine in high yield, which illus-
trates that the amidation is selective for a primary amine
over a secondary amine. Optically pure 1-phenylethylamine
participated in the amidation without any sign of epimeriza-
tion (entry 8). The same was observed with optically pure
N-benzyl-l-prolinol (entry 9), which is noteworthy since the
reaction goes through the corresponding aldehyde. Prolinol
gave a lower yield than the other primary alcohols and was
not completely consumed in the amidation, which may re-
flect the slightly higher steric demand around this alcohol.
The reaction could also be performed in an intramolecular
fashion to afford both five- and seven-membered lactams
(entries 10 and 11). On the contrary, aniline and secondary
amines did not react with 2-phenylethanol in refluxing tolu-
ene. In these cases, the amidation was carried out in reflux-
ing mesitylene, which gave a moderate yield with aniline
(entry 12) and a good yield with the secondary amine
(entry 13). In the last two cases, self-condensation of the al-
cohol into the corresponding ester was observed as a by-
product, whereas the other examples in Table 4 did not
reveal any single compound as a major byproduct. Several
other alcohols and amines reacted very poorly or not at all
in refluxing mesitylene. N-Boc-protected ethanolamine, 1-
phenylethane-1,2-diol, 2-pyridineethanol, and 2-(4-bromo-
phenyl)ethanol only gave trace amounts of the amide in the
reaction with benzylamine. Several derivatives of glycine[32]

also failed to give more than trace amounts of the amide in
the reaction with 2-phenylethanol. Compared with the re-
sults in Table 4, these examples illustrate that the amidation

Table 3. Amidation with metathesis catalysts.

Entry Metathesis catalyst Yield [%] (3 h)[a] Yield [%] (24 h)[a]

1 29 49

2 48 65

3 63 92

4 48 71
5 76[b] 100[b]

6 76[c] 96[c]

7 41 60
8 72[b] 97[b]

9 76[c] 100[c]

10 25 42
11 67[c] 100[c]

12 74 97

[a] GC yield. [b] With 5 % of 1,3-diisopropylimidazolium chloride and
15% of KOtBu. [c] With 5% of 1,3-dicyclohexylimidazolium chloride
and 15 % of KOtBu.
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shows some sensitivity towards the steric demand around
the alcohol and the amine as well as additional coordinating
groups in the substrates. Attempts to use ammonia or am-
monia equivalents, such as LiNH2, NH4HCO3, Cu-ACHTUNGTRENNUNG(NH3)4SO4·H2O, and Mg ACHTUNGTRENNUNG(NH3)6Cl2, to afford a primary
amide failed completely and only gave the ester in various
amounts.

In most cases, the three different catalysts did not show
any major differences in yield and reactivity in Table 4. This
indicates that the catalytically active species is the same in
all three cases. For practical application, however, the most
convenient procedure is to generate the active catalyst in
situ. The evolution of dihydrogen was confirmed by repeat-
ing the experiment in entry 1 with 2 mmol of alcohol and
amine. The reaction flask was connected to a burette with a

water reservoir and 70 mL was
collected after 20 h. This corre-
sponds to 3 mmol and the gas
was shown to be dihydrogen by
GC analysis.

Mechanism : The amidation is
believed to proceed by forma-
tion of the aldehyde and the
hemiaminal as depicted in
Scheme 1. Esters are not inter-
mediates in the reaction, which
was confirmed by treating 2-
phenylethyl 2-phenylacetate
with benzylamine and cata-ACHTUNGTRENNUNGlyst A in refluxing toluene.
Under these conditions, the
ester was stable and none of
the amide in Tables 1–3 was ob-
served. Imines are also highly
stable under the reaction condi-
tions, which was confirmed by
the reaction of N-benzylidene
benzylamine with catalyst A in
refluxing toluene. No conver-
sion of the imine occurred and
this did not change by adding
water or by conducting the re-
action under a dihydrogen at-
mosphere.

Imines or reduction products
of imines have not been ob-
served as byproducts in any of
the experiments in Table 4 re-
gardless of the catalyst being
used. This may indicate that the
intermediate aldehyde stays co-
ordinated to the ruthenium cat-
alyst and is not released into
the reaction mixture. If this is
true, an externally added alde-
hyde may not be able to enter

the catalytic cycle and form the amide. To probe this ques-
tion a crossover experiment was carried out with p-methyl-
benzyl alcohol (1 equiv) and benzaldehyde (1 equiv), which
were reacted with n-hexylamine (2 equiv) in the presence of
complex 1 (5%) and potassium tert-butoxide (10%). Under
these conditions, the aldehyde was immediately converted
into the imine, whereas the alcohol reacted slowly to form
the corresponding imine (and not the amide) with about
50 % conversion after 24 h. It appears that the imine from
the aldehyde inhibits formation of the amide from the alco-
hol causing the reaction to slow down and to stop at the
imine stage. A new experiment was therefore performed in
which benzaldehyde (1 equiv) was added over 3 h to a reac-
tion mixture with p-methylbenzyl alcohol (1 equiv), n-hexyl-
amine (2 equiv), complex 1 (5 %), and potassium tert-butox-

Table 4. Amidation of amines with primary alcohols.

Entry Alcohol Amine Amide Yield [%][a]

cat. A
Yield [%][a]

cat. B
Yield [%][a]

cat. C

1 93[b] 95 92

2 100[b] 90 95

3 79 94 86

4 78 78 80

5 83[b] 71 73

6 60 82 78

7 90 93 87

8 70 85 78

9 60 53 44

10 65 68 60

11 49 53 48

12 21[c] 35[c] 33[c]

13 70[c] 65[c] 70[c]

[a] Isolated yield. [b] With 2% of [RuCl2ACHTUNGTRENNUNG(cod)], 2% of ligands and 8 % of KOtBu. [c] In mesitylene at 163 8C.
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ide (10%). Although the amidation was slow in this case it
did not stop and the alcohol was converted into a 6:1 mix-
ture of the amide and the imine with almost complete con-
version after 30 h and with 50 % conversion after 4 h. Again,
the aldehyde reacted immediately to produce the corre-
sponding imine, but in this case, a small amount of N-benzyl
benzamide was also observed as a byproduct. The ratio be-
tween the amide from the alcohol and the aldehyde was
10:1 after both 4 and 30 h. This does not indicate that a
crossover takes place to a significant degree and we, there-
fore, believe the intermediate aldehyde in the amidation
stays coordinated to the ruthenium catalyst.

In a previous study, ruthenium 1,3-diisopropylimidazol-2-
ylidene complex 4 was converted into the five-membered
ruthenacycle 5 by C�H activation of the isopropyl methyl
group[33,34] (Scheme 3). The reaction was facilitated by hy-

drogen acceptors, such as olefins and could be reversed by
hydrogen donors, such as dihydrogen or alcohols.[33] It could
not be completely excluded that a similar C�H activation
would take place with our 1,3-diisopropylimidazol-2-ylidene
ligand and thereby explain the high reactivity of this ligand
in the amidation. To probe this question experimentally, we
prepared deuterated complex 6. If C�H activation of the
isopropyl methyl groups is a major reaction pathway we
would expect a significant amount of deuterium in the hy-
drogen gas from the reaction. However, when equimolar
amounts of 2-phenylethanol and benzylamine were treated
with 6 (10%), PCy3 (10%), and KHMDS (15 %) in reflux-
ing toluene for 1 h, only a 51:1 ratio of H2 and H�D was
measured by selected ion monitoring. This low amount of
H�D does not indicate that a rapid exchange reaction is
taking place and, therefore, we do not believe that a C�H
oxidative addition reaction is involved in the catalytic cycle.
The high reactivity of the 1,3-diisopropyl- and 1,3-dicyclo-
hexylimidazol-2-ylidene ligands is probably a result of the
relatively low steric demand of these ligands relative to
other N-heterocyclic carbene ligands.[35] Furthermore, in
ruthenium(II) complexes with these ligands agostic interac-
tions have been observed between ruthenium and the CH2/
CH3 hydrogen atoms on the ligand that may serve to further
stabilize coordinatively unsaturated species in the catalytic
cycle.[36]

Based on these studies, we propose the reaction mecha-
nism in Scheme 4. The transformation is initiated by loss of
the p-cymene ligand upon heating. Reaction with an alkox-
ide followed by b-hydride elimination affords aldehyde com-

plex 7. This part is similar to what has been established for
ruthenium transfer hydrogenation catalysts.[37,38] It should,
however, be noted that [RuCl2ACHTUNGTRENNUNG(PPh3)3] is known to react
with alcohols under basic conditions to form the dihydride
complex [RuH2ACHTUNGTRENNUNG(PPh3)3].[38] Whether complex 1 also reacts
twice with the alkoxide is not known at this point. In fact,
the remaining ligand(s) on ruthenium in 7 could be chloride,
hydride, or an amine and is, therefore, denoted Ln in
Scheme 4. A more thorough mechanistic study will have to
be carried out to differentiate between these scenarios. With
formation of the aldehyde complex 7 a catalytic cycle can be
proposed for which the amine adds to the aldehyde to form
the hemiaminal, which stays coordinated to the metal. Re-
lease of hydrogen can take place by hydrogen transfer to hy-
dride as previously established.[39] This gives rise to complex
8, which upon b-hydride elimination releases the amide. Co-
ordination of the alcohol and a second hydrogen transfer to
hydride affords the alkoxide complex 9, which is ready to
re-enter the catalytic cycle. It should be noted that all the
ruthenium species in the catalytic cycle remain in the same
oxidation state as the starting complex. The added phos-
phine presumably stabilizes catalyst resting states and is not
believed to be involved in the catalytic cycle since the ami-
dation can be performed with a variety of phosphines and
other ligands.[19]

Conclusion

In summary, we have presented an atom-economical proce-
dure for the direct synthesis of amides from alcohols and
amines in which dihydrogen is formed as the only byprod-
uct. The reaction is catalyzed by ruthenium N-heterocyclic
carbene complexes that are easy to handle and straightfor-

Scheme 3. Interconversion between 4 and 5[33] and the structure of 6.

Scheme 4. Proposed mechanism for amide formation.
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ward to modify. Three different catalyst systems have been
developed that show similar reactivity and yields in the ami-
dation with a wide variety of substrates. A mechanism is
proposed with ruthenium(II) N-heterocyclic carbene species
as the catalytically active components and for which the in-
termediate aldehyde and hemiaminal remain coordinated to
ruthenium in the catalytic cycle. The reaction presents a
new direction in the synthesis of one of the most important
linkages in organic chemistry.

Experimental Section

General : Toluene was destilled from sodium and benzophenone under a
nitrogen atmosphere. NMR spectra were recorded on a Varian Mercury
300 Bruker AC 200 spectrometer while IR spectra were obtained on a
Bruker alpha-P spectrometer. Mass spectrometry was performed by
direct inlet on a Shimadzu-GCMS-QP5000 instrument of for hydrogen
analysis on a Pfeiffer OmniStar GSD 301. GC yields were obtained with
dodecane as internal standard on a Shimadzu GC-2010 instrument
equipped with a Supelco Equity-1 capillary column (15 mm � 0.10 mm,
0.10 mm film). Microanalyses were obtained at the Microanalytical Labo-
ratory, University of Vienna.

General procedure for amidation with an in situ catalyst (catalyst A):
[RuCl2 ACHTUNGTRENNUNG(cod)] (7.0 mg, 0.025 mmol), PCyp3·HBF4

[21] (8.2 mg, 0.025 mmol),
1,3-diisopropylimidazolium chloride (4.7 mg, 0.025 mmol), and KOtBu
(11.2 mg, 0.10 mmol) were placed in an oven-dried Schlenk tube.
Vacuum was applied and the tube was then filled with argon (repeated
twice). Freshly distilled toluene (1 mL) was added and the mixture was
heated to reflux under an argon atmosphere for 20 min. The alcohol
(0.5 mmol) and the amine (0.5 mmol) were added and the mixture was
heated to reflux under an argon atmosphere for 24 h. The reaction mix-
ture was cooled to room temperature and the solvent removed in vacuo.
The residue was purified by silica-gel column chromatography (pentane/
EtOAc 4:1!1:1) to afford the amide.ACHTUNGTRENNUNG[RuCl2ACHTUNGTRENNUNG(IiPr) ACHTUNGTRENNUNG(p-cymene)] (1): 1,3-Diisopropylimidazolium chloride
(124.1 mg, 0.77 mmol) and Ag2O (75.3 mg, 0.33 mmol) were suspended in
anhydrous, degassed CH2Cl2 (7 mL) under argon and refluxed for 1 h in
a Schlenk flask with a reflux condenser. [RuCl2ACHTUNGTRENNUNG(p-cymene)]2 (201.0 mg,
0.33 mmol) in anhydrous, degassed CH2Cl2 (3 mL) was then added and
the solution was refluxed for 2 h and concentrated in vacuo. The residue
was purified on a short silica-gel column (CH2Cl2/iPrOH 9:1) to give
295.0 mg (98 %) of a red/orange solid. Rf =0.64 (CH2Cl2/iPrOH 9:1); IR
(neat): ñ =3152, 3099, 3077, 2958, 2930, 2870, 1473, 1412, 1391, 1369,
1297, 1265, 1213, 1133, 856, 770, 700 cm�1; 1H NMR (300 MHz, CDCl3):
d=1.31 (d, J= 6.9 Hz, 6H), 1.44 (br d, J =6.2 Hz, 12H), 2.08 (s, 3 H), 2.92
(m, 1H), 5.15 (d, J=6.0 Hz, 2 H), 5.31 (m, 2 H), 5.47 (d, J= 6.0 Hz, 2H),
7.07 ppm (s, 2 H); 13C NMR (75 MHz, CDCl3): d=18.6, 22.8, 25.0, 30.8,
52.0, 83.4, 85.1, 97.1, 106.4, 118.9, 171.1 ppm; MS: m/z : calcd: 423.11
[M�Cl]+ ; found: 423.07; elemental analysis calcd (%) for
C19H30Cl2N2Ru: C 49.78, H 6.60, N 6.11; found: C 49.84, H 6.44, N 6.05.ACHTUNGTRENNUNG[RuCl2ACHTUNGTRENNUNG(ICy) ACHTUNGTRENNUNG(p-cymene)] (2): 1,3-Dicyclohexylimidazolium chloride
(200.2 mg, 0.75 mmol) and Ag2O (86.1 mg, 0.37 mmol) were suspended in
anhydrous, degassed CH2Cl2 (8 mL) under argon and refluxed for 1 h in
a Schlenk flask with a reflux condenser. [RuCl2ACHTUNGTRENNUNG(p-cymene)]2 (226.0 mg,
0.37 mmol) in anhydrous, degassed CH2Cl2 (3 mL) was then added and
the solution was refluxed for 1 h and concentrated in vacuo. The residue
was purified on a short silica-gel column (CH2Cl2/iPrOH 9:1) to give
368.4 mg (93 %) of a red/orange solid. Rf =0.64 (CH2Cl2/iPrOH 9:1); IR
(neat): ñ =3091, 2957, 2921, 2848, 1466, 1455, 1446, 1418, 1380, 1290,
1276, 1232, 1190, 897, 747, 697 cm�1; 1H NMR (300 MHz, CDCl3): d=

1.14–2.44 (m, 20 H), 1.36 (d, J =6.9 Hz, 6 H), 2.13 (s, 3H), 2.84 (m, 1H),
4.84 (m, 2 H), 5.14 (d, J =6.0 Hz, 2H), 5.46 (d, J =6.0 Hz, 2 H), 7.04 ppm
(s, 2H); 13C NMR (50 MHz, CDCl3): d =18.8, 23.1, 25.3, 25.4, 26.0, 31.2,
35.4, 35.8, 59.3, 83.6, 85.3, 97.3, 105.1, 119.3, 171.4 ppm; MS: m/z : calcd:
503.18 [M�Cl]+; found: 503.15; elemental analysis calcd (%) for

C25H38Cl2N2Ru: C 55.75, H 7.11, N 5.20; found: C 55.14, H 6.84, N 5.16;
1H NMR spectroscopic data are in accordance with literature values.[24c]

General procedure for amidation with complex 1 (catalyst B): [RuCl2-ACHTUNGTRENNUNG(IiPr) ACHTUNGTRENNUNG(p-cymene)] (1) (11.5 mg, 0.025 mmol), PCy3 (7.0 mg, 0.025 mmol),
and KOtBu (5.6 mg, 0.05 mmol) were placed in an oven-dried Schlenk
tube. Vacuum was applied and the tube was then filled with argon (re-
peated twice). Freshly distilled toluene (1 mL) was added and the mix-
ture was heated to reflux under an argon atmosphere for 20 min. The al-
cohol (0.5 mmol) and the amine (0.5 mmol) were added and the mixture
was heated to reflux under an argon atmosphere for 24 h and then
worked up as described above.

General procedure for amidation with metathesis catalyst (catalyst C):
Hoveyda–Grubbs 1st-generation catalyst (15 mg, 0.025 mmol), 1,3-diiso-
propylimidazolium chloride (4.7 mg, 0.025 mmol), and KOtBu (8.4 mg,
0.075 mmol) were placed in an oven-dried Schlenk tube. Vacuum was ap-
plied and the tube was then filled with argon (repeated twice). Freshly
distilled toluene (1 mL) was added and the mixture was heated to reflux
under an argon atmosphere for 20 min. The alcohol (0.5 mmol) and the
amine (0.5 mmol) were added and the mixture was heated to reflux
under an argon atmosphere for 24 h and then worked up as described
above.
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