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Summary 

Colloid flow, filtration, and migration in porous media are widely observed in important 

natural and industrial processes, such as pathogen (bacteria) spreading in aquifers, 

colloid-facilitated migration of heavy metal in soils, mud filtration during drilling wells, 

injectivity decline during water injection, and deep bed filtration during waste water 

treatment. The current thesis aims at better understanding the transport and fate of 

colloids in porous media. A number of methodologies have been applied in this study, 

such as developing new mathematical models for colloid filtration, comparing the 

modeling results to experimental observations, uncertainty and sensitivity analysis of the 

new models, and realizing the pore-scale physics in network models.  

This thesis has been compiled in such a way that each chapter arises from a self-

contained study targeting a particular problem of colloid filtration: (1) Recent advances in 

colloids filtration theory; (2) Non-Fickian Transport and heterogeneous attachment of 

colloids; (3) Uncertainty and sensitivity analysis of models for non-Fickian transport and 

heterogeneous attachment; (4)Prediction of injectivity decline during waterflooding; 

(5)Colloid migration and recapture; (6) Induced colloid migration for enhanced oil 

recovery; (7) Estimating filtration coefficients for straining.  

These studies have been spearately published as journal papers, conference papers and 

book chapters. Nevertheless, they are not independent of one another but logically 

connected. The connections and main findings can be summarized as follows:  

1. The discrepancies between the classical colloid filtration theory and experimental 

observations have been overviewed in Chapter 1. Many of them are observed under 

unfavorable attachment conditions, such as hyperexponential and non-monotonic 

deposition profiles. Such behavior of colloids is attributed to the heterogeneous 

attachment (Chapters 2 and 3) and the migration of colloids (Chapter 5), respectively. 

2. A second reason for the deposition hyperexponentiality is the non-Fickian transport 

due to the heterogeneity of porous media. It also explains the dispersed and 

asymmetrical breakthrough curves of tracers in natural porous media (Chapters 2 and 

3). Chapter 2 shows that the elliptic equation can be applied to capture the non-
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Fickian behaviors of colloids and tracers in porous media. It is closely followed by 

Chapter 3, the uncertainty and sensitivity analysis of the model predictions and the 

parameter estimation. Suggestions for experimental design for accurate determination 

of the model parameters are also provided. 

3. Chapters 2 and 3 form a thorough study of the integral model for colloid filtration 

with non-Fickian transport and heterogeneous attachment. They are followed by the 

study of applying of such a model in the petroleum industry to predict injectivity 

decline during waterflooding in Chapter 4. However, the non-Fickian behavior of 

particles around the injection well is shown not to be significant. The reasons are that 

the temporal dispersion term is inverse proportional to the particle velocity and that 

the particle velocity is higher close to the well than that far away from the well. 

4. The criterion of an attached colloid particle to be re-entrained by the hydrodynamic 

drag into the bulk fluid is the torques of detachment exceeding those of attachment. 

Bearing such a criterion in mind, the erosion of external cake, the migration of 

surface-associated colloids during one phase flow, and the migration of reservoir 

fines during two-phase flow are studied in similar fashions (Chapters 4, 5, 6). The 

erosion of external cakes in the injection wells gives rise to the steady stage of the 

injectivity and filling rat holes in the well (Chapter 4). The migration of surface-

associated colloids gives rise to non-monotonic deposition profiles (Chapter 5). 

Migration and straining of reservoir fines may enhance oil receovery by increasing 

the sweep efficiency (Chapter 6). 

5. Another important mechanism for particle capture is straining or size exclusion of 

colloids. Such phenomena are closely tied to the migration of colloids under 

unfavorable attachment conditions: surface-associated colloids rolling to straining 

sites (grain-grain contacts, pore throats) in Chapter 5, and the straining of released 

reservoir fines at pore throats in Chapter 6. However, the straining mechanism is 

described by nothing more than a straining rate coefficient in these studies. Finally in 

Chapter 7, a much better understanding of straining is achieved by the study of pore 

scale physics in a network model. The filtration coefficient for straining is estimated 

from the particle size and the pore size distributions. A new capture scheme of 

straining (minimum capture) is proposed to explain the large penentration depths of 
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colloids in porous media and the power law dependencies of filtration coefficients in 

the experiments. 
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Resumé (in Danish) 

Kolloid flow, filtrering og migration i porøse medier er almindeligt observeret i både 

naturlige og industrielle vigtige processer, såsom patogen (bakterier) spredning i 

grundvandsmagasiner, kolloid-faciliteret migration af tungmetaller i jord, mudder 

filtrering under bore brønde, injicerbarhed tilbagegang i løbet af vandindsprøjtning, og 

dyb seng filtrering ved spildevandsbehandling. Denne afhandling sigter mod en bedre 

forståelse af transport og skæbne af kolloider i porøse medier. Vi bruger mange metoder 

her, såsom at udvikle nye matematiske modeller for kolloid filtrering, sammenligne 

modelresultater til eksperimenter, usikkerheds-og følsomhedsanalyse af de nye modeller, 

og simulere de pore-skala fysik i netværksmodeller. 

Denne afhandling er skrevet på en sådan måde, at hvert kapitel er fra en individuel 

forskning af kolloid filtrering: (1) Nylige fremskridt inden for kolloider filtrering teori, (2) 

Ikke-Fickian Transport og heterogen fastgørelse af kolloider, (3) Usikkerhed og 

følsomhedsanalyse af modeller for ikke-Fickian transport og heterogene fastgørelse, (4) 

Forudsigelse af injicerbarhed tilbagegang i løbet af waterflooding, (5) Colloid migration 

og recapture (6) Induced kolloid migration for øget olieudvinding, (7) Estimering 

filtrering koefficienter for størrelse udelukkelse. 

Disse undersøgelser er blevet spearately offentliggjort som tidsskriftsartikler, 

konferencebidrag og bogkapitler. Men de er ikke uafhængige af hinanden, men logisk 

forbundet. Tilslutninger og hovedkonklusioner kan sammenfattes som følger: 

1. Vi overblik forskellene mellem den klassiske kolloid filtrering teori og 

eksperimenter i kapitel 1. Mange af dem er observeret under ugunstige fastgøring 

betingelser, såsom hyperexponential og ikke-monoton deposition profiler. De er 

på grund af den heterogene fastgørelse (Kapitler 2 og 3) og migration af 

tilfangetagne kolloider (Kapitel 5), henholdsvis. 

2. En anden grund til udfældning hyperexponentiality er den ikke-Fickian transport 

på grund af heterogeniteten af de porøse medier. Det forklarer også de 

dispergerede og asymmetrisk gennembrud kurver af sporstoffer i naturlige porøse 

medier (Kapiteler 2 og 3). Kapitel 2 viser, at den elliptiske ligning kan anvendes 
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til at indfange ikke-Fickian adfærd kolloider og sporstoffer i de porøse medier. 

Det er tæt fulgt af kapitel 3, usikkerheds-og følsomhedsanalyse af modellen 

forudsigelser og parameter estimering. Tips af forsøgsplaner til nøjagtig 

bestemmelse af parametrene er også tilvejebragt. 

3. Kapiteler 2 og 3 indeholder en detaljeret analyse af den integrerede model for 

kolloid filtrering med ikke-Fickian transport og heterogen vedhæftet fil. Det 

efterfølges af en undersøgelse af anvendelsen af en sådan model i olieindustrien 

til at forudsige injicerbarhed fald under waterflooding i kapitel 4, men den ikke-

Fickian opførsel af partiklerne i injektionsbrønden er ikke signifikant. Dette 

skyldes, at den tidsmæssige dispersion sigt er omvendt proportional med 

partiklens hastighed og at partikelhastigheden er højere tæt på det godt end det er 

langt væk fra brønden. 

4. Kriteriet om en vedhæftet kolloid partikel, der skal re-medrevet af den 

hydrodynamiske kraft er, at momenter af separation overstiger momenter af 

fastgørelse. Udhulingen af ekstern kage, migreringen af overflade-associerede 

kolloider i løbet af en-fase flow, og migrationen af reservoiret bøder i løbet af 

tofasestrømning studeres i lignende mode (Kapiteler 4, 5, 6). Erosionen af 

eksterne kager i injektionsbrønde giver anledning til den konstante fase af 

injicerbarhed og påfyldning rotte huller i brønden (Kapitel 4). Migrationen af 

overflade-associerede kolloider giver anledning til ikke-monotone deposition 

profiler (Kapitel 5). Migration og størrelse udelukkelse af reservoir bøder kan øge 

olie receovery ved at øge sweep effektivitet (Kapitel 6). 

5. En anden vigtig mekanisme til partikel capture er størrelse udelukkelse af 

kolloider. Sådanne fænomener er tæt knyttet til migration af kolloider under 

ugunstige vedhæftede betingelser: overflade-associerede kolloider rullende at 

belaste steder (korn-korn kontakter, pore halsen) i Kapitel 5, og den belastende af 

frigivne reservoir bøder på pore struber i Kapitel 6. Imidlertid er mekanismen kun 

beskrevet af en størrelse eksklusion koefficient. Endelig i Kapitel 7, har vi en 

meget bedre forståelse af størrelse eksklusion med studiet af pore skala fysik i et 

netværk model. Filtreringen koefficient for størrelse eksklusion skønnes ud fra 

den partikelstørrelse og porestørrelse fordelinger. En ny mekanisme 
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størrelseseksklusion (minimum capture) foreslås. Den forklarer de store 

penentration dybder af kolloider i porøse medier og power lov afhængigheder af 

filtrering koefficienter i eksperimenterne. 
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1 Recent advances in colloids filtration theory 

There is a fast growing body of research on the transport and fate of colloids in porous 

media in the past decades. The reason for colloid filtration attracting so much attention 

and interest is mainly attributed to the following points: (1) the phenomenon is widely 

observed in both natural and industrial processes; (2) these processes are of great 

importance due to high risk or high impact; (3) understanding the transport and fate of 

colloids is paramount in predicting, controlling, or preventing these processes.  

This chapter presents an overview of the recent advances in the colloid filtration theory. 

It reviews the new approaches that overcome the difficulties to incorporate surface charge 

heterogeneity, straining effects, non-Fickian transport, and migration of deposited 

particles. The current understanding of the mechanisms, factors, and mathematical 

models at different scales are reviewed. Remedies for reducing the discrepancies between 

model predictions and experimental observations are recommended.  

 

1.1 Introduction 

Colloids are the particles dispersed in liquids (in most applications, water or water 

solutions) with the sizes in between dissolved macromolecules and suspended particles 

that resist rapid sedimentation. The typical size of colloid particles usually ranges from 

10 nm to 10 μm [1-3]. Colloids in nature include mineral fragments, microbes, and plant 

decay debris. The mineral fragments, such as silicate clay, are mainly derived from soil 

and formation rocks [4-7]. These particles can be released into or from soil, ground water 

and oil reservoirs via a variety of processes. 

There is a considerable and ongoing effort aimed at understanding and predicting the 

transport, the deposition and the release of colloids in both synthetic (model) and natural 

porous media [8-13]. The fate and transport of colloids in porous media is of a great 

concern for the following reasons, among other: (i) The migration of colloids may 

facilitate the transport of low-solubility contaminants [14-21]; (ii) The spread of 

pathogenic microbes during waste water reclamation and aquifer recharge poses a risk to 
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public health [22-31]; (iii) Deposition and migration of colloids cause permeability 

damage, which subsequently leads to injectivity decline and productivity decline [32-39]; 

(iv) Injection of the microbes producing surfactants may enhance oil recovery [40-42].  

The fundamental filtration theory has been focused on the transport and fate of colloid at 

different scales: the interface scale, the collector (median grain) scale, and the pore scale. 

At the interface scale, the interfacial energy of a particle at the solid-water interface 

(SWI), the air-water interface (AWI), and the colloid-colloid interface can be quantified.  

Such a technique is used to predict attachment conditions and colloid stability [43-48]. At 

the collector scale, the flow field of water around a collector or an air bubble can be 

calculated. The probability of flowing particles being in contact with the collector can be 

quantified [49-52]. At the pore scale, the fate of colloids is studied in the presence of 

multiple grains and pores (grain-grain contacts) or solid-water-air triple points [53-55]. 

The favorable sites of attachment, straining and size exclusion can be identified in 

different pore geometries. 

At the interface scale, the conditions for attachment and the colloid stability are primarily 

determined by the interaction energies [1, 38, 44]. The interactions can be classified into 

two main categories: the DLVO, and the non-DLVO interactions. In the classical DLVO 

theory, the total interaction energy is composed of electrostatic and van der Waals 

energies [43, 48, 56]. The available expressions for the electrostatic energy are derived 

from the Poisson-Boltzmann equation for surface-charged bodies of various geometries 

on the basis of the electrical double layer theory. The classical DLVO theory has been 

widely accepted as a powerful tool to predict attachment conditions and colloid stability. 

Nevertheless, it fails to describe biotic and abiotic colloidal behavior in some cases. The 

discrepancies are attributed to the so-called non-DLVO interactions. Such interactions 

may include hydrogen bonding, hydrophobic interaction, capillary forces, Lewis acid 

base interactions, and steric interactions [1, 3, 46, 57].   

At the collector scale, the study of deposition rates takes into account the transport of 

particles from the bulk fluid to the collector surface and the capture via surface 

attachment. The approaches to simulating the colloid transport can be classified into two 

types, Lagrangian and Eulerian. The Lagrangian approach focuses on the motion of a 
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single particle that is governed by Newton‟s second law. The particle trajectory in a 

flowing fluid is tracked [58-60]. The Eulerian approach accounts for evolution of the 

concentration or of the probability density of particles [61-63]. The Lagrangian approach 

has been extensively applied to describe the capture of non-Brownian particles, the 

trajectories of which are deterministic and can be solved analytically. Incorporation of 

Brownian motion into the Lagrangian approach, however, entails tedious and time-

consuming step-by-step integration of the stochastic equation. Such an approach is 

essential for applications like industrial filtration, where the filter efficiency is determined 

by mesoscale particle behavior in a filter, which structure is presumably known [51, 64-

67]. In contrast, the Eulerian approach is more attractive and widely applied for 

description of filtration in natural porous media and other media of stochastic structures, 

since it can describe more easily collective particle behavior and takes into account their 

Brownian motion. The implementation of Eulerian approach requires much less 

computational effort compared to the Lagrangian approach with Brownian motion, which 

may require multiscale treatment[68-70] . 

In the Eulerian approach, the motion of particles is characterized by the advection flux, 

the diffusive flux and the external-forced flux, caused by such forces as gravity, the 

DLVO forces, and the non-DLVO forces [1, 3, 13]. The convective-diffusion equation is 

usually solved in an ideal representation for the porous medium, such as Happel‟s sphere-

in-cell model [71]. It assumes that identical sphere collectors enveloped in fluid shells are 

packed densely. The boundary conditions on the collector surface reflect the attachment 

conditions for the colloids. The most common boundary condition is the perfect-sink 

model which assumes the disappearance of particles at the collector surface, namely 

irreversible capture of particles on the surface [63, 72, 73]. Such a boundary condition 

completely neglects the accumulation and the release of immobilized particles. A more 

realistic boundary condition is the non-penetration model, which overcomes the above 

limitations [74-78].  

At the pore scale, the convection-diffusion equation is also solved in between packed 

collectors or in the pores with different shapes. The study of colloid retention, in contrast 

to that at the collector scale, takes into account both straining and size exclusion at grain-
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grain contacts or constrictions.  It is suited for examining different colloid capture 

mechanisms in a variety of pore geometries [79-82]. Such a technique can also be applied 

to study unsaturated systems, such as the retention at triple contact points (solid-water-air) 

[53, 83, 84]. 

The goal of the fundamental filtration theory at the interface, the collector and the pore 

scales is to arrive at an analytical deposition model which can predict the single collector 

removal efficiency. It is a parameter reflecting the colloid removal efficiency by a single 

collector under known physical and chemical conditions [1, 13, 49]. Under favorable 

attachment conditions, the single collector removal efficiency can be approximated by the 

single collector contact efficiency since the physical contact can lead to direct chemical 

capture. Under unfavorable attachment conditions the efficiency must be derived from 

the product of the single collector contact efficiency and the colloid collision efficiency 

[1, 45, 85, 86].  The colloid collision efficiency is a parameter reflecting the probability 

of effective collisions that overcome the energy barrier and lead to attachment.  

There have been several theoretical approaches to expressing these efficiencies 

analytically. The Smoluchowski-Levich approximations [87, 88] and the interaction-

force-boundary-layer (IFBL) approximations [89, 90] were used to calculate the single 

collector removal efficiency under favorable attachment and unfavorable attachment 

conditions respectively. The Rajagopalan and Tien correlation equation was extensively 

used for calculating the single collector contact efficiency.  Recently, Tufenkji and 

Elimelech [91] improved this correlation equation by considering the hydrodynamic and 

van der Waals effects on the deposition of particles by Brownian diffusion. Two types of 

collision efficiency were proposed to account for the attachment via the primary energy 

minimum (IFBL) [89, 90] and the attachment via the secondary energy minimum [92-94]. 

The derived deposition models (single collector removal efficiency) are commonly used 

to complete the system of equations for the mass balance of colloids at the macro-scale [1, 

38, 95-97]. In this approach, the mass balance of suspended colloids is characterized by 

the advection- dispersion transport and the deposition while the release of retained 

colloids is neglected. The advection-dispersion equation (ADE) with a single sink term is 

also referred to as the classical filtration theory approach (CFT) or the perfect sink model 
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[1, 13]. It can be solved either numerically or, in many cases, analytically [98-100]. The 

classical CFT, however, is derived under a number of over-simplified assumptions: (i) 

irreversible deposition, (ii) uniform flow field at the pore scale, (iii) uniform surface 

charges of colloids and porous media, (iv) straining or size exclusion is not considered. It 

should be noted that the classical CFT may be based on the classical DLVO theory for 

the description of interface interactions, but this is not always the case. The Non-DLVO 

interface interactions may also be incorporated into the classical CFT [1, 3, 13, 46, 47]. 

There is a growing body of studies suggesting that the classical CFT fails to fully 

describe a number of practically important processes or phenomena, such as filtration 

under unfavorable attachment conditions and filtration in stochastically (physically or 

geochemically) heterogeneous porous media [12, 101-105]. The discrepancies between 

the model predictions and experimental observations are as follows. Under unfavorable 

attachment conditions, the classical CFT and the DLVO theory predict the collision 

efficiencies several orders of magnitude smaller than those observed experimentally. 

Experimental collision efficiencies and critical deposition are insensitive to particle sizes 

[1, 86, 106-109]. Hyperexponential or non-monotonic deposition profiles are observed 

rather than the exponential deposition decay predicted by the classical CFT [101, 102, 

110-113]. Long tails are observed in the breakthrough curves [111, 112]. In the porous 

media with irregular-shaped median grains, hyperexponential deposition is also often 

observed [79-81, 114, 115]. In heterogeneous porous media, both early arrival and delay 

of particles are observed in the breakthrough curves [10, 11, 104, 116-118]. 

Large research efforts were devoted to explaining the above observed discrepancies. 

Under unfavorable attachment conditions, underestimation of the collision efficiency, 

insensitivity to particle sizes, and hyperexponential deposition were mainly attributed to 

the deposition via the secondary energy minimum [92, 93, 101, 103, 119, 120] and 

heterogeneity of the surface charges [13, 73, 101-103, 110, 113]. Apart from the surface 

charge heterogeneity, the deposition hyperexponentiality has also been attributed to the 

effects of straining [79, 121, 122] and non-Fickian transport due to physical heterogeneity 

of porous media  [104, 105, 123].  The non-Fickian transport was also claimed to be 

responsible for the early arrival and delay of particles [10, 11, 104, 105, 117, 124, 125]. 
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The algebraic-decaying long tails in the breakthrough curves after the end of injection 

were either attributed to the migration of captured particles [80, 126-133] or to the 

physical non-equilibrium between the mobile and the immobile regions [134]. Rarely 

observed non-monotonic deposition profiles were either attributed to the migration of 

surface-attached particles via weak association or to the detachment of large aggregates 

[111, 135, 136].   

 

1.2 Traditional theories 

This section reviews the traditional theories of colloid filtration, including the DLVO 

theory for surface interactions, the Eulerian approach for colloid transport and retention 

at the collector scale, and the macroscopic approach for modeling colloid filtration in 

porous media. These studies related to the three different scales have been the theoretical 

foundations of many further developments and consistency examinations for the colloid 

filtration theory. 

 

1.2.1 DLVO surface interactions 

The traditional theory for the colloid surface interactions is the Derjaguin-Landau-

Verwey-Overbeek (DLVO) theory. The interaction energy between the two surfaces is 

calculated as the sum of the electrical double-layer interaction and the van der Waals 

interaction energies:  

 ,total dl vdW    (1.1) 

where total  dl  and vdW are the total, the double-layer, and the van der Waals 

interaction energies respectively. The expressions for the electrical double-layer 

interaction energy are available for varying geometries and different assumptions [1, 44]. 

These expressions were derived on the basis of the Poisson equation for the charge 

density potential and the Boltzmann equation for the ion concentration dependency on the 
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potential. The commonly applied expression for dl  is based on the sphere-sphere 

interactions [1]: 

  1 2 1 2

1 2

64 tanh tanh exp ,dl

a a ze zekT
h

a a ze kT kT

 
 

    
       

      
 (1.2) 

where k  is the Boltzmann constant, T is the temperature, a  is the colloid radius, z is the 

valence of the ions, e  is the elementary charge, h is the separation distance between two 

surfaces, and the subscripts „1‟ and „2‟ represent the two surfaces. The Debye reciprocal 

length  is calculated by: 

 

2

0

2 Ae N I

kT



  (1.3) 

where   is the dielectric constant, 0  is the vacuum permittivity, and I is the ionic 

strength. For the colloid-collector system, the radius of the collector is assumed to be far 

larger than that of the colloid particle, leading to  1 2 1 2 1/a a a a a  . The zeta potentials 

measured by electrophoresis are usually applied as substitutions for the surface potentials. 

The classical approach to evaluate the van der Waals interaction between two bodies is 

derived by Hamaker [137] from the pairwise summation of all the relevant interaction 

energies. The expressions stemming from this approach can be split into the product of a 

purely geometric multiplier and of the so-called Hamaker constant. The total Hamaker 

constant of the different bodies is typically estimated by the geometrical mean value of 

the individual Hamaker constants [138]: 

 

12 11 22 ;A A A  

  123 11 33 22 33A A A A A    

(1.4) 

where 11A and 22A are the Hamaker constants for the two solid bodies, 33A is the 

Hamaker constant for the aqueous solution, 12A 123A  are the resulted mean Hamaker 

constants for multi-body system. The approximate Hamaker constant for a material can 
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be expressed in terms of the limiting refractive index and characteristic dispersion 

frequency [137].  The geometrical mean assumption is only valid if the dispersion 

frequencies of the particle and the medium are not very different. For sphere-sphere 

interactions, vdW can be calculated by [56]:  

 

1

123 1 2

1 2

14
1

6
vdW

A a a h

h a a 



 
   

  
 (1.5) 

where λ is the characteristic wavelength, usually 100 nm [56]. It should be noted that the 

van der Waals forces may be retarded, since electrodynamic interactions leading to 

dispersion forces are propagated at the finite speed of electromagnetic radiation. 

Retardation effects have been revealed experimentally by Israelachvili and his coauthors 

[139]. The last term on the right hand side of Equation (1.5) results from this retardation 

effect, which is implicitly included in the full Lifshitz treatment [140]. The van der Waals 

interaction is attractive in the systems of polystyrene-water-glass and polystyrene-water-

quartz, while it is repulsive in the system of polystyrene-water-air [138]. 

The DLVO theory has been widely applied as a tool to explore the influence of the 

solution chemistry and the particle size on the attachment conditions. Figure 1.1 presents 

the comparison of colloid radii and ionic strengths for the polystyrene-quartz-water 

system. The DLVO calculations exhibit significant energy barrier to attachment via the 

primary energy minimum. Under such unfavorable conditions the effect of colloid 

interactions is often expressed in terms of the collision efficiency, which is the ratio 

between the number of effective collisions leading to the attachment (via the primary 

energy or the secondary energy minima) and the total number of collisions.  

In many cases, the attachment condition and colloid stability can be successfully 

predicted by such calculations as shown in Figure 1.1. For example, the larger the energy 

barriers are as in Figure 1.1, the more stable the colloidal system is. Nevertheless, the 

analytical expressions for interface interaction energies are based on the two strong 

assumptions: (i) the colloids and the collectors possess uniform and regular shapes; (ii) 

the surface charges of colloids and collectors are homogeneous. 
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Figure 1.1 Particle size and ionic strength effects on the interaction energy, colloid surface potential is -77mV, 

collector surface potential is -35mV, polystyrene-quartz-water system 

 

1.2.2 Colloid transport  

At the interface scale, the attachment condition is primarily determined by the surface 

interaction energies between the collectors and the colloids in their close proximity. The 

deposition rate, however, is dependent on both the collector-colloid surface interactions 

and the rate with which the particles are transported toward the collector walls. There are 

two approaches for calculating the deposition rate on a stationary collector surface, the 

Lagrangian and the Eulerian approaches. As mentioned above, the Lagrangian approach 

tracks the trajectory of each single colloid governed by Newton‟s second law, leading to 

the Langevin-Ito stochastic differential equations for the particles in the flow [141-143],  

while the Eulerian approach (the Fokker-Planck-Kolmogorov-Feller partial differential 

equation for the particle distribution) treats the particles as an ensemble [144-146]. 

Introduction of the Brownian motion into the Lagrangian approach leads to a series of 

step-by-step integration of the stochastic equation which requires intensive computation. 

In contrast, the Brownian motion can be easily taken into account by the diffusion term in 

the convective-diffusion equation within the Eulerian method. Extensive discussions on 
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the two approaches are available in the literature [50, 63, 147, 148], while only the 

Eulerian method is discussed in details here. 

The convective diffusion equation describing the concentration or the probability density 

of colloid particles is usually given by [13, 62, 63, 85]:  

 
c

Q
t


 


J  (1.6) 

where c is the particle concentration with regard to pore volume, Q is the source term, 

and J is the flux which can be decomposed into the advection flux, the diffusive flux, 

and the external-forced flux: 

 c c c
kT


   

D F
J u D  (1.7) 

Here D is the diffusion tensor, u is the fluid velocity field which can be found by solving 

the Navier-Stokes equation in the corresponding geometry, and F is the external force 

vector determined by the total colloid interaction energy: 

 total F  (1.8) 

The non-DLVO forces can also contribute to Equation (1.8), if the non-DLVO interaction 

energies are added in Equation (1.1). 

Equation (1.6) can be solved numerically and provide insight into the deposition rate 

when proper boundary conditions at the collector surface are given. Due to insufficient 

knowledge of the physical and chemical conditions at the surfaces, only simplified forms 

of the boundary conditions have been studied. Two types of the boundary conditions are 

commonly adopted: the perfect sink model and the non-penetration model. 

The most commonly used boundary condition is the perfect sink model. This approach 

assumes the suspended concentration to be zero or constant convective flux at the surface 

or close proximity of a collector, corresponding to irreversible capture of colloid at the 

collector surface [74, 149-151]. Mathematically, the boundary condition can be expressed 

by: 
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 

0, 0;
h

h

uc
c or

h




 


 (1.9) 

The first boundary condition and the second boundary condition in Equation (1.9) were 

proved to  produce the same results by Song and Elimelech [73]. The second boundary 

condition is the constant convective flux condition, namely that the radial flux at the 

collector surface equals to that at the fluid shell (forward difference regime), and that the 

particles may flow through the collector surface and disappear. The value of   was 

assumed to be either zero or an arbitrary separation distance beyond the surface 

interaction energy barrier. Equation (1.9) and non-zero values of  reflect the physics 

that after overcoming the energy barrier the particle will effectively captured and that the 

convective flux will be zero. The particles at this point will be “penetrate” in the collector 

body and “disappear” due to the external forces. 

Based on the perfect sink assumption, many expressions for the deposition rate have been 

established, such as the Smoluchowski-Levich and the interaction force boundary layer 

(IFBL) approximations of the single collector removal efficiency. Nevertheless, one 

major disadvantage of this approach is the neglect of the accumulation of retained 

particles on the collector surface. On the contrary, the next boundary condition, the non-

penetration model, takes into account the deposition concentration at the collector surface 

[63, 74]. 

In the non-penetration model, flowing particles are prohibited to penetrate the collector 

surface or disappear. Mass balance is formulated for two particle populations, the mobile 

and the immobile species.  Mathematically the boundary condition takes the following 

form: 

 
0

0;
h

J 
  (1.10) 

J is the total flux perpendicular to the collector surface. Equation (1.10) neglects the 

growth of the deposition thickness on the collector surface. The source term Q in Equation  

(1.6) may also be used to account the non-DLVO interactions. 
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1.2.3 Porous medium model 

One of the simplest and widely applied porous medium models for colloid filtration is 

Happel‟s sphere-in-cell representation [1, 13, 51, 71, 85, 152-154] . In the Happel model, 

the packed bed is composed of identical spherical grains enveloped by fluid shells, as 

seen in Figure 1.2.  The thickness of a fluid shell b is selected so that the overall porosity 

of the medium is maintained for each single collector: 

  
1

31cb r 


   (1.11) 

where cr is the radius of the collector (median grain) and  is the overall medium 

porosity. The convection-diffusion equation can be solved numerically in the Happel 

porous medium model, with the flow field derived from the Navier-Stokes equation.  

 

Figure 1.2 Happel’s representation of granular porous media 

Many theoretical studies were performed with other porous medium models, such as 

parallel capillaries, capillary networks, and fibers [106, 155-161]. A 2D network of 

capillaries with the nodes representing pore bodies amd the bonds for pore throats will be 

discussed in details in Chapter 7 . 

collector

fluid shell



13 
 

These models were suited for the filtration in some specific natural and engineering 

processes, such as the fines in petroleum reservoirs, the industrial filtration with filter 

presses, and the membrane filtration. Generally, selection of a model depends on 

particular tasks of a researcher and his ideas about the structure of the porous medium 

under study. In this chapter we will refer to the Happel model as a specific example. 

 

1.2.4 Single collector removal efficiency 

A useful concept for studying the deposition rates is the single collector removal 

efficiency, a dimensionless parameter as defined in Equation (1.12). This parameter is 

convenient to incorporate into the classical CFT of colloid transport and retention, which 

will be discussed later.  

 
rate of particle capture on a collector surface

particle flux toward the projected area of the collector
   (1.12) 

The removal efficiency can be found from the numerical solution of the convective-

diffusion equation or the trajectory equation in any given geometry of collectors.  The 

main disadvantage of this approach is the lack of exact analytical solutions. Thus, an 

approximate expression for the efficiency is desirable.  

Ruckenstein and Prieve [89] and Spielman and Friedlander [90] derived an approximate 

analytical solution for the deposition rate for Brownian particles under the condition of 

repulsive double-layer interactions. This approach, as the most classical theory for the 

removal efficiency under unfavorable attachment conditions, is often referred to as the 

interaction force boundary layer (IFBL) approximation.  The interaction force boundary 

layer represents the transport in the close proximity of a surface, where the surface 

interactions dominate and the convective transport is negligible. The thickness of the 

layer is usually deemed to be in the same order of magnitude as the Debye length. The 

interaction forces are neglected outside this layer, where the convective transport 

dominates. 

As derived in [89, 90], the single collector removal efficiency may be approximated by: 
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where sA is a porosity-dependent parameter of Happel‟s model ( 38sA   for porosity of 

0.4), D is the bulk diffusion coefficient,U is the fluid approach velocity, and  S  is a 

slowly varying function of  with tabulated numerical values [90].  Fk is the pseudo-first-

order rate constant given by [90, 162]: 

  

1
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, exp 1total
F sk D f h r dh
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
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    
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   
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where  , sf h r is a hydrodynamic function which accounts for the reduced mobility of 

the colloids in close proximity of collectors. An approximation for this function is 

suggested by Dahneke [162]: 

  , 1 s
s

r
f h r

h
   (1.16) 

It is worth mentioning that Equation (1.13) in the absence of all the parts depending on   

is reduced to the Smoluchowski-Levich approximation for the single collector removal 

efficiency for Brownian particles under favorable attachment conditions. The efficiency 

reflects how fast the Brownian motion can bring particles to the collector surface. It is 

regarded as the single collector contact efficiency in the IFBL approximation:  
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The parts depending on   in Equation (1.13) are responsible for the interactions between 

the hydrodynamic forces and the colloidal forces. They are usually referred to as the 
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collision efficiency: the probability of the fact that a collision results in attachment. Here 

in IFBL approximation, these terms reflect the effective collisions that overcome the 

repulsive double-layer force and drag the colloids into the primary energy minimum: 

    
1

S


 


 
  

 
 (1.18) 

Typical values of the collision efficiency vary from 10
-3

 to 1 [1, 85, 86, 163-165]. A more 

general form of the single collector removal efficiency can be inferred by substituting 

Equations (1.17) and (1.18)  into Equation (1.13). The single collector removal efficiency 

becomes the product of the single collector contact efficiency and the collision efficiency: 

   0    (1.19) 

The IFBL approximation takes into account only the colloid transport by Brownian 

motion to the collector surface for the single collector contact efficiency (see Equation 

(1.17)).  This assumption makes it impossible to apply the IFBL approximation to the 

capture of larger particles, where the effects of interception and gravity are not negligible. 

Limitations and further developments of the single collector contact efficiency will be 

discussed in the following sections. 

 

1.2.5 Classical CFT approach 

The goal of introducing the single collector removal efficiency is to express the 

deposition rate explicitly, and to further apply this expression in the macroscopic 

approach for modeling colloid transport and retention. At the macroscopic scale, the 

transport and retention of colloid particles is usually described by an advection-dispersion 

equation (ADE) with a first-order kinetic sink term representing the deposition rate of 

colloid. Such an approach is also referred to as the classical colloid filtration theory (CFT) 

approach. For a simple 1-D problem, it is written as [1, 95]: 
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where c is the bulk concentration of colloid with regard to pore volume, s is the 

deposited concentration with regard to unit mass of the porous medium, b is the bulk 

density of the dry porous medium, v and D are the particle velocity and dispersion 

coefficient. The accumulation of deposition is calculated by: 
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 (1.21) 

where dk is usually referred to as the deposition rate constant, related to the filtration 

coefficient in a deep-bed filtration process: /dk v  . The deposition rate constant is 

calculated on the basis of the single collector removal efficiency: 
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 (1.22) 

It can be seen from the above expression that the deposition rate constant is a parameter 

depending on the fluid velocity, while the filtration coefficient is not. The multiplier in 

square parentheses in Equation (1.22) represents the particle flux towards the projected 

area of a single collector. This multiplier may vary depending on the particular flow 

model on micro-level. For example, for the sphere-in-cell envelope (Happel) model of the 

porous space, multiplier  1  in Equation (1.22) should be replaced by  
1/3

1  [1, 13, 

166]. 

The analytical solutions to Equation (1.20) with various boundary conditions have been 

studied in the literature [98-100]. For the steady state flow problem (although with non-

steady deposition), the temporal derivative in Equation (1.20) is zero. The analytical 

solutions for clean bed filtration in such cases can be expressed in terms of the logarithm 

of attenuation. Neglecting dispersion, the solutions are given by: 



17 
 

   
 

0

ln
c x

x
c


 

  
 

 (1.23) 

   
 

0

, /
ln

b

d

s x t
x

c k t

 


 
  

 
 (1.24) 

Such solutions are commonly applied for examining the agreement between the 

experimental collision efficiency and the model predictions. The collision efficiency 

determined from a column experiment can be calculated by: 
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where L is the column length, and Lc is the effluent concentration at x L . It should be 

noted that an accurate determination of the collision efficiency from experiments is 

essentially dependent on the accuracy of the single collector constant efficiency. More 

accurate expressions of the single collector constant efficiency will be discussed later. 

   

1.2.6 Equilibrium and non-equilibrium attachment 

Beside the permanent deposition via the primary energy minimum, the Langmuir and 

Freundlich isotherms were applied to describe the equilibrium “adsorption” of colloids 

[132, 167-175].  Such theories have been widely applied to describe the equilibrium 

“adsorption” of multi-components in the flowing fluid, such as solutes, onto solid 

surfaces [99, 100, 176-179]. The simplest form of isotherm is the linear dependency

eqs K c , where eqK is the equilibrium attachment constant. The mass balance equation 

for the CFT taking into account the equilibrium “adsorption” can be rewritten as: 

   
2

2

c c c
R v D

t x x

  
 

  
 (1.26) 

where R is the retardation factor calculated as 1 /b eqR K   . It can be seen from the 

above equation that the equilibrium “adsorption” mechanism does not result in actual 



18 
 

retention of colloid particles, but only slowing down the colloid transport. In more 

complex models, like the Langmuir model for adsorption, the retardation coefficient 

becomes dependent on the concentration (see more detailed discussion in Section 3.4). 

A more general model describes reversible attachment of the particles, with the 

possibility of detachment. This model is also referred to as the two-site non-equilibrium 

model [99, 100, 134]: 

    
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K c c c
f v D k f K c s

t x x





    
              

(1.27) 
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 (1.28) 

where f is the fraction of surface sites for equilibrium attachment, and  1 f is the 

fraction of those for non-equilibrium attachment; k is the kinetic constant for the non-

equilibrium processes, or the release rate constant. In the absence of equilibrium sorption, 

the deposition rate constant is reduced into d eqk kK . 

 

1.3 Limitations and extensions of the CFT 

The classical CFT has been widely applied to simulate colloid transport and retention in 

both the engineered and the natural porous media. The model predictions were tested 

with both laboratory and field data. The traditional approach seems to be successful only 

within certain limitations: under favorable attachment conditions, for small particles, 

whose transport can well be described as the Brownian motion, for physically and 

chemically homogeneous porous media, for uniform particle populations, and under the 

absence of the developed collective behavior (like bridging etc.).  

Large ongoing efforts aimed at understanding the transport and deposition of colloids in 

porous media beyond these limitations. The deviations from the classical CFT were 

attributed to non-DLVO interactions, blocking of collector surfaces, unfavorable 

attachment conditions, chemical and physical heterogeneity of porous media, population 
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heterogeneity of colloids, and migration of deposited colloids. In this section, the 

limitations and advances in the colloid filtration theory are discussed in details. 

 

1.4 Non-DLVO interactions 

The DLVO theory has been widely applied to predict colloid-collector interactions and 

colloidal stability for the last decades. Nevertheless, it failed to match the experimental 

observations in many cases [46, 180, 181]. The deviations, often referred to as the non-

DLVO effects, were attributed to the following reasons: hydrogen bonding and 

hydrophobic effects, hydration pressure, non-charge transfer Lewis acid base interactions, 

and steric forces. 

 

Figure 1.3 Illustration of hydration shells 

Most of the colloidal interactions in the nature take place under the presence of water 

molecules, which exhibit hydrogen bonding between each other. Hydrophobic colloids 

tend to aggregate in the aqueous phase. The water molecules are ordered around them 

[182-184]. The ordered water molecules can be regarded as hydration shells radially 

propagating and decaying from the particle surface. Similar effects can be found on polar 

surfaces. It has been suggested in the literature that ordering of the water molecules 

results in “hydration pressure” or “structural forces”.  

Colloid

Water molecule

Hydration shell
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The interactions of hydration shells contribute to the total interaction energy. It has been 

suggested by a number of authors [13, 57, 185-187] that non-DLVO interactions can be 

incorporated as additives to the right hand side of Equation (1.1). Many of these non-

DLVO interactions are still incompletely understood. Only few empirical expressions for 

the non-DLVO interactions are available in the literature.  Some of them are based on the 

assumption about the exponentially decaying hydration pressure [188, 189], while other 

are based on the short range Lewis acid base interactions [47, 57]. Additivity of the 

DLVO and non-DLVO interactions, assumed in the literature, may also be questioned. 

Further study is required to provide more insight to the extensions of DLVO theory. 

 

1.5 Single collector contact efficiency 

In the IFBL and Smoluchowski-Levich approximations, calculation of the single 

collector contact efficiency takes into account only the Brownian motion, while other 

mechanisms of particle transport to the collector surfaces, such as interception and 

gravity of large non-Brownian particles, are neglected. Inaccurate calculation of the 

single collector contact efficiency leads directly to inaccurate determination of the 

collision efficiency from experiments (see Equation (1.25)). Subsequently, examination 

of the consistency between the model predictions and the experimental observations is 

compromised. Hence, a more comprehensive model for the contact efficiency is desirable, 

to consider as many transport mechanisms as possible. 

It has been suggested on empirical grounds [51, 89-91, 107] that the single collector 

contact efficiency may be calculated by summing individual contributions from the 

different transport mechanisms. The total efficiency can be expressed as the sum of the 

diffusion, the interception, and the gravity contributions to colloid transport toward the 

collector: 

   0 D I G       (1.29) 
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where D is the contribution from diffusion, I is the contribution from interception, and 

G is the contribution from gravity.  

The regression analysis of the rigorous numerical solution to the transport equation 

(either the stochastic differential or the convective diffusion equations) leads to semi-

empirical expressions for the different efficiencies. Each contribution is expressed in 

terms of the power functions of some dimensionless numbers. The most commonly 

applied dimensionless numbers are listed in Table 1.1. 

Table 1.1 Dimensionless numbers for single collector contact efficiency 

Number Definition Physical interpretation 

RN  /s cr r  Aspect ratio 

PeN  2 /cUr D  
Ratio of convection transport to diffusion transport 

vdWN  123 /A kT  
Ratio of van der  Waals interaction energy to 

thermal energy 

GN     22 / 9s sgr U    
Ratio of Stokes particle settling velocity to fluid 

approach velocity 

AN   2

123 / 12 sA r U  
Combined influence of van der Waals and viscous 

interactions on particle capture via interception 

 

Apart from the IFBL or Smoluchowski-Levich approximations, there are two approaches 

for calculating the single collector contact efficiency, the RT correlation (after 

Rajagopalan and Tien [51]) and the TE correlation (after Tufenkji and Elimelech [91]). A 

summary of these expressions is useful for selecting the proper expressions for different 

conditions, as seen in Table 1.2. 

The RT correlation was derived in [51] to account for gravity and the combined influence 

of van der Waals and the viscous interactions on the particle capture via interception. 

Neither of the RT and the IFBL correlations takes into account the effects of the van der 

Waals and the viscous interactions on the particle capture. 

Unlike the RT correlation, the TE correlation incorporates the effects of the van der 

Waals and the viscous interactions on the particle capture. The other distinction between 

the TE correlation and the RT correlation lies in the expression for the gravity 

contribution. This contribution is independent of the medium porosity in the TE 
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correlation (absence of sA ), while this parameter is present in the RT correlation. Lastly, 

in the TE correlation the effect of the van der Waals interactions is incorporated in all the 

three transport mechanisms, namely the three expressions include either vdWN or AN . It 

has been shown by Tufenkji and Elimelech [91] that the TE correlation matches the 

numerical solution for the particle transport at the collector scale better than the RT 

correlation. 

Table 1.2 Expressions of the contributions from diffusion, interception and gravity 

 

It is worth mentioning that the above expressions of the single collector contact 

efficiency are derived from the deposition rate normalized by the flux toward the 

projected area of a single collector. The expressions for the efficiency with regard to the 

projected area of the sphere-in-cell envelope (Happel‟s model) can also be found in the 

literature [1, 13, 166]. In such cases, a factor of  
2/3

1  is introduced into the right hand 

side of (1.29). 

 

1.6 Collision efficiency 

The collision efficiency determined by Equation (1.18) only accounts for the effective 

collisions that overcome the repulsive double-layer force and drag the colloid particles 

into the primary energy minimum. It does not take into account the particles captured via 

the secondary energy minimum, as seen in Figure 1.4. This expression for the efficiency 

has been widely applied to predict the collision efficiency and to compare with 

experiments [1, 12, 45, 73, 85].  Despite the widespread use of the expression, a growing 
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body of evidence suggests that the predicted collision efficiency is several orders of 

magnitude smaller than the experimentally observed one [85, 86, 106, 107, 190]. Several 

explanations were proposed to account for the reported derivations, including the 

heterogeneity of surface charges and the deposition via secondary energy minima [13, 73, 

92, 93, 101-103, 110, 113, 119, 120].   

 

Figure 1.4 Particle capture via the primary and the secondary energy minima 

A simple model for calculating the collision efficiency, which takes into account the 

deposition via the secondary energy minimum, was proposed by Hahn [92-94, 120]. In 

this model, the value of  in Equation (1.18) is derived from the Maxwell distribution of 

kinetic energies: 
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 (1.30) 

where 2min is the total interaction energy at the secondary energy minimum,  f  is the 

Maxwell distribution of interaction energies. The calculation of the collision efficiency 

accounts for the particles with insufficient energy to escape from the secondary energy 

well. The collision efficiency may be also expressed in terms of the particle velocity 

rather than the interaction energy. In such cases,  in Equation (1.30) is substituted by 
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20.5 s sm v  where sm and sv are the colloid mass and the colloid velocity in the close 

proximity of the collector. 

The effects of deposition via the secondary energy minimum were demonstrated by the 

complimentary experiments in a packed bed filter and radial stagnation point flow (RSPF) 

system [119, 191-193]. In the RSPF system, the microorganisms (interpreted as “colloid 

particles”) captured via the secondary energy minimum are swept away by the radial flow 

component. The microorganisms captured via the primary energy minimum are left in the 

filter. There are mounting experimental evidences showing that the calculation of 

based on the deposition via the secondary energy minimum improves the accuracy of 

model predictions [92-94, 101, 103, 120]. The resulted collision efficiency from (1.30) is 

larger than that from (1.18) since (1.30) takes into account for both the particles captured 

via the primary minimum and those via the second energy minimum. 

 

1.7 Blocking dynamics 

In the classical CFT, the deposition of colloids is described as a kinetic process, reflecting 

the fact that for the most colloid particles their attachment to the surface is irreversible [1, 

12, 13, 186]. As a consequence, the kinetic equation of deposition (1.21) can also be 

written in terms of the fractional surface coverage : 

   
2

s dr k c
t








 (1.31) 

The accumulation of particles on the surface has its limits. In most cases, the rate of 

deposition declines as the retained particles block subsequent attachment. Due to the 

blocking effects, the kinetic equation of deposition rate is usually modified into: 

    2

s dr k cB
t
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 





 (1.32) 

where  B  is the blocking function describing the probability of a particle contacting 

the unoccupied collector surface. It is a correction factor that accounts for the effects of 
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blocking. The expressions of the blocking function may be of the two types: the 

Langmuir and the random sequential adsorption (RSA).  

The simplest Langmuir blocking function was produced by analogy with the Langmuir 

expression for molecular adsorption [194-197]: 

     1B     (1.33) 

where  is the normalized collector surface area which is blocked by an attached particle, 

namely the ratio of the average excluded area to the projected particle area
2

sr . 

Parameter   is also referred to as the parameter of excluded area. It can be inferred from 

the limit of   0B   that   equals to the reciprocal of the maximum surface coverage 

max or the jamming limit. 

The Langmuir blocking function is usually applied for description of adsorption of the 

point-sized molecules, such as solute ions. Such a function may be insufficient to 

describe deposition of the finite-sized colloidal particles [195, 197]. A more advanced 

blocking function accounting for the areal dimension and interaction of the attached 

particles is desirable for colloid filtration processes. Schaaf and Tabot proposed an 

expression of the blocking function based on the random sequential adsorption 

mechanism [197]. Their blocking function is based on a viral expansion of the surface 

exclusion to third order in density and may be applied to “hard” spheres attached to flat 

surfaces. This expression was generalized onto the double-layer interactions (“soft”) 

between colloids and onto more complex collector geometry [195, 198]: 

          
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 
 (1.34) 

where  is the jamming limit for hard spheres. This extended blocking function applies 

to only surface coverage below 80%  of max . For the coverage above this value separate 

expression is applied [195, 198]: 
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where m is the jamming limit slope which can be determined from the experimental 

breakthrough curves [195]. 

 

1.8 Surface charge heterogeneity 

Most natural and engineered porous media exhibit surface charges when immersed in 

water or water solutions of the different salts  [199]. The origins of the surface charges 

include the ionic substitution within the crystal lattice of minerals, complexation or 

ionization of surface functional groups, or specific adsorption of ions onto solid surfaces 

[1, 200]. The internal surfaces of the porous media are inherently heterogeneous due to 

physical and chemical imperfections, such as cracks, edges, lattice defects, and chemical 

impurities [12, 13, 201]. The natural porous media may also possess a composite 

structure consisting of different minerals [202]. The second type of surface charge 

heterogeneity stems from colloid surface roughness and colloid size distribution. 

 

1.8.1 Geochemical heterogeneity 

The effects of surface charge heterogeneity in porous media have been introduced into 

the classical CFT via nominal surface potential [1, 12, 73, 203, 204]. The nominal 

potential is a homogeneous analog of the heterogeneously charged surface. It is equal to 

the potential of a homogeneous surface which exhibits the same double-layer interactions 

as the heterogeneous surface considered. The nominal potential is determined by the 

distribution of the surface potentials at different sites of the surface. There are two 

approaches to characterize the surface charge distribution: patchwise heterogeneity and 

random heterogeneity [73]. 

In the patchwise heterogeneity approach, the surface sites in the porous medium are 

grouped into macroscopic patches, each of which can be deemed to a homogeneous 
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surface [73, 203]. It is assumed that the patches are isolated homogeneous surfaces in 

contact with the bulk solution. Interactions at the patch boundaries are neglected. 

In the random heterogeneity approach, the equipotential sites are assumed to be 

distributed randomly over the entire surface [73, 203]. A random distribution can be 

applied to the collectors that do not possess obvious large patches, such as glass beads 

and other amorphous materials. A truncated normal distribution of the surface potentials 

(without unphysical negative “tail”) is most often used in this approach.   

The nominal surface potential is calculated as the mean surface potential of the 

heterogeneous surface. The resulted nominal surface potential can be used for calculating 

the overall single collector removal efficiency. The single collector removal efficiency 

for the geochemically heterogeneous medium can be calculated by:   

 i i

i

  , for the patchwise heterogeneity, or (1.36) 

    p d     , for the random heterogeneity (1.37) 

where i is the surface fraction of ith patch for the patchwise heterogeneity, and  p  is 

the distribution of surface potentials for the random heterogeneity. The calculation of 

single collector removal efficiency can be coupled with the blocking dynamics, where a 

blocking function is assigned to each patch [12, 204]. It is worth mentioning that 

geochemical heterogeneity does not give rise to non-exponential deposition with 

monodisperse suspension, since only one filtration coefficient enters the mass balance 

equation. 

It was shown by Elimelech and his coauthors [204] that the most sensitive factor that 

controls the deposition behavior is the geochemical heterogeneity determined by 

parameters i  in Equation (1.36)and distribution  p  in Equation (1.37).  The 

deposition behavior is relatively insensitive to the ionic strength and the mineral grain 

surface potentials [204]. 
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1.8.2 Particle population heterogeneity  

As discussed above, particles may be captured via the secondary energy minimum under 

unfavorable attachment conditions. The resulted collision efficiency is several orders of 

magnitude larger than that predicted from accounting only for the primary energy 

minimum and matches the experimental observation better [92-94, 101, 103, 120]. A 

nominal potential as a homogeneous analogue can be applied to incorporate the 

geochemical heterogeneity effects. In spite of this improvement, the predicted deposition 

decays are still exponential. Meanwhile, hyperexponential deposition profiles are 

observed in in the presence of repulsive double-layer interactions [101, 103, 110, 205, 

206]. The exponential deposition is revealed as a straight line in the logarithmic plot, 

while hyperexponential deposition is depicted by a concave line, as illustrated in Figure 

1.5. Exponential decay of deposition is the standard solution to the advection-dispersion 

equation with a single sink term for the deposition, as seen in Equation (1.24). 

 
Figure 1.5 Simulated exponential and hyperexponential deposition [104] and experimental deposition [103]. 

It was demonstrated by a number of authors that hyperexponentiality of the deposition 

profiles can be explained by the surface charge heterogeneity of particles [101, 103-105, 

207, 208]. A more general approach to the deposition rates accounts for the particle 

capture via heterogeneous energy minima. The particle population should be represented 

by at least two kinds of particles, one of which is subject to faster deposition (e.g. via the 

secondary energy minimum) and the other deposits slower (e.g. via the primary energy 

minimum). A bimodal distribution of the filtration coefficients is typically applied to 
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describe this type of heterogeneity. Other distributions, such as log-normal in (1.38) and 

power-law in (1.39), can also produce similar hyperexponential deposition profiles:  

 
 
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( ) exp

22
p

 
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 (1.38) 

 ( ) bp    (1.39) 

Here ( )p  is the probability density function (PDF),  and  are the mean and the 

standard deviation for the log-normal distribution. b is the power in the power-law 

distribution controlling the shape of the PDF curve. 

Instead of a single deposition rate for the whole particle population, a separate transport 

equation for each kind of particles (corresponding to each separate value of the filtration 

coefficient). 

Many authors [101, 103-105, 186, 207, 208] conclude that the distribution of filtration 

coefficients is sufficient and necessary to produce the hyperexponential deposition decay 

caused by the surface and the surface charge heterogeneity. Apart from the colloid 

deposition in geochemically heterogeneous porous media, the particle population 

heterogeneity approach can be also applied to describe particles with a wide size 

distribution and particle surface roughness. The particle population approach can express 

the heterogeneity effects directly while the nominal potential approach can only resemble 

the heterogeneous population with a homogeneous analogue. 

 

1.9 Physical heterogeneity 

1.9.1 Straining 

Another explanation for the deposition hyperexponentiality is the straining of the 

particles due to the physical heterogeneity at the pore scale [79, 81, 109, 115, 118, 121, 

209]. Straining is the physical screening of particles by the porous medium, such as 
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particle retention at the collector-collector contacts/constrictions. The retention of 

particles is enhanced in the low-velocity or stagnant zones. 

Straining is often accompanied by the size exclusion, where the particles of the different 

sizes retain or deposit with the different rates. These phenomena are often treated as 

connected and even identical, although, strictly speaking, this is not always the case. 

Straining and size exclusion are neglected in many traditional studies of colloid filtration 

at the collector scale, since they require analysis of the heterogeneous particle population. 

Pore scale observations, on the other hand, show that straining plays a significant role in 

the porous media with irregular-shaped pores or under unfavorable attachment conditions 

[55, 84, 109, 135, 210, 211].  Torque analysis at the pore scale can identify regions 

favorable for straining. Constrictions and grain-grain contacts, where flow may be slow 

or stagnant, are observed to be such regions.  As a consequence, pore geometry and 

collector surface roughness determine the degree of straining. 

Classical filtration theories treated the straining of particles as a pure physical 

phenomenon [95, 96, 212, 213]. A number of authors focused on the effects of colloid 

sizes, pore sizes, and pore geometry on the straining phenomena [95, 109, 118, 126, 212-

214]. Geometrical models were developed to describe straining as a physical process [95, 

212, 213]. The predicted straining threshold ratio /s cr r  ranged from 0.05 to 0.154. 

However, it was found in the experiments that the straining effects could be significant 

even when the ratio /s cr r  is as small as 0.002~0.008 [109, 118, 126, 214].  

On the macro-level, colloid filtration with straining may be modeled by a dual-

permeability model [122] or a physical non-equilibrium model [134], which accounts for 

the particles flowing in the high-velocity and the low-velocity regions, respectively. In 

the works [155-157] size exclusion is described as a random process involving interacting 

distributed populations of particles and pores. The simplest approach to account for 

straining in colloid filtration is based on the consideration of the accessibility of pore 

networks. Bradford and his coauthors [121] expressed the straining rate as a function of 

the penetration depth: 
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where att is a dimensionless parameter accounting for attachment ripening, blocking 

(such as the blocking function  B  ), and others. attk  and strk are attachment and 

straining  rate constants. str is a parameter of straining depending on the depth: 
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where  is a fitting parameter that controls the shape of the spatial distribution of 

deposition. The depth dependency is explained in the following way: Straining of 

particles causes the blocking of the thin pores close to the inlet. It re-directs the colloid 

flow to a network of larger pores, resulting in bypassing thin pores at the downstream. As 

a consequence, the straining effect is strongest at the inlet  0, 1strx   , and it 

decreases with depth. It was suggested in [118, 121, 215] that an integral model involving 

both straining and attachment is more realistic, especially in the system with intermediate 

particle and collector sizes.  

As discussed above, the geometrical models based on the physical description of 

straining failed to predict the straining threshold ratio. On the other hand, a number of 

authors [79, 115, 135, 216] noticed that straining was also influenced by the chemical 

conditions, along with physical. In [136] we proposed an approach to colloid migration 

based on both the attachment conditions and hydrodynamics. Under unfavorable 

attachment conditions, the attached particles via weak association (secondary energy 

minimum) are subject to hydrodynamic drag from the fluid and migrate to the region that 

is chemically (attachment via the primary minimum) and physically (straining) favorable 

for deposition [3, 112, 135, 136]. The approach for incorporating straining effects into the 

CFT should take into account both the physical and the chemical factors influencing the 

process, such as the pore and particle size distributions, hydrodynamics, and solution 

chemistry. 
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1.9.2 Non-Fickian transport 

The third explanation for the deposition hyperexponentiality is distribution of the particle 

times of flight and residence times, resulting in the non-Fickian character of particle 

dispersion in porous media [11, 104, 105, 125, 217-222]. This mechanism is to some 

extent similar to the physical straining, since they both consider longer residence times 

for the particles in low-velocity regions. However, the non-Fickian transfer mechanism 

describes also particles that travel faster than the average particle velocity, as seen in 

Figure 1.6. As a result, the non-Fickian transport gives rise to more dispersed 

breakthrough curves for pulse injection and hyperexponential deposition profiles [104, 

105, 123, 217, 218]. 

 
Figure 1.6 Concentration distribution of a pulse injection 

Two approaches have been commonly applied for modeling the non-Fickian transport of 

colloids in porous media: the continuous time random walk (CTRW) approach and the 

elliptic equation approach as an important reduction of the CTRW [104, 105, 217-219, 

223]. The CTRW approach, as many other developments in stochastic processes, has 

started from the famous works of Einstein, Langevin and Smoluchowski about Brownian 

motion of the particles [224-227] (see extensive discussion in Ref. [228]). In terms of 

physical effects, a major difference between the CTRW and the previously considered 

approaches is consideration of the particle residence time distribution accounting for the 

small-scale heterogeneity effects on the transport.  

The CTRW theory has been extensively applied to describe the non-Fickian transport of 

tracers in porous media [10, 11, 117, 124, 125, 221]. Colloid transport and particle 
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deposition were considered in several CTRW works, mainly, based on the elliptic 

equation approach [104, 105, 123, 217, 218, 220]. The CTRW approach was capable of 

describing some phenomena that were previously interpreted as the action of the different 

other physical mechanisms.  In particular, the long tails in the breakthrough curves were 

usually interpreted as a result of reversible deposition [111, 112]. The deposition 

hyperexponentiality could also be interpreted as a result of straining [79-81, 114, 115]. 

Effect of non-Fickian transport provides alternative or additional explanation for these 

experimental observations. 

Until now, the physical picture of particle deposition adopted within stochastic 

approaches was rather incomplete. Such phenomena as migration of deposited particles 

or distinction between strained and attached particles have not been considered. A more 

comprehensive stochastic model that can incorporate the migration of deposition, the 

straining, and the non-Fickian transport effects is desirable. 

It has been shown that the CTRW description of tracer and particle flow may be reduced 

into an elliptic partial differential equation in the limit of infinitely many infinitesimal 

step lengths and residence times [217].  Unlike the full CTRW approach, such an 

equation needs only characteristic information from the residence time distribution, the 

variance and the mean value. As a result, the elliptic equation can be solved numerically 

and even analytically for some 1-D flow problems [123, 218]. The elliptic equation for 

transport is given by [217, 218]: 

   
2 2

2 2

b
t

c c c c s
v D D

t x x t t





    
   

    
 (1.42) 

where tD is called the temporal dispersion coefficient, which is defined as the ratio 

between the variance and the mean of the particle residence time distribution. 

Furthermore, the elliptic equation was coupled with the distribution of filtration 

coefficients representing the particle population heterogeneity [104, 105]. 

Experimental verifications of the stochastic approach were extensively discussed in Refs 

[10, 11, 104, 105, 124, 125, 220-223], although most of the CTRW applications were to 
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the tracer flows. A growing body of evidence shows that the CTRW is able to catch the 

three important effects that were observed in experiments [10, 11, 223] and in the nature 

[124, 220, 221], but cannot be adequately described by the ADE: 1) Under pulse injection, 

the maximum of concentration moves slower than the flow rate of the carrying fluid; 2) 

The concentration distribution around the maximum is asymmetric, and 3) The forward 

“tail” of the concentration distribution contains much more particles and decreases much 

slower than predicted by the traditional approach. The authors showed that the elliptic 

equation approach excels the Fickian approach in matching both the breakthrough curves 

and deposition profiles for highly heterogeneous porous media. For nearly homogeneous 

or slightly heterogeneous porous media the elliptic or CTRW formalism is not necessary, 

but the particle distribution should sometimes be introduced for modelling the deposition 

curves. This requires the application of the population balance approach [104, 105]. 

 

1.10 Straining of particles with distributed sizes 

In many natural and industrial processes both the colloid particles and pores are 

distributed by their sizes. Straining and size exclusion may occur at various rates for 

different-sized particles. Since the capture criterion for straining depends on the 

relationship between the particle and pore throat sizes, adequate mathematical models 

should involve pore and particle size distributions. A number of studies on the population 

balance approach for straining of colloids in porous media have emerged in the past 

decade [123, 156, 158, 229]. 

The population balance approach originates in the works of Boltzmann on the gas kinetic 

theory and the subsequent work of Smolukhowski, who applied a similar formalism to 

the problem of particle coagulation [225]. In the approach to deep bed filtration 

developed in papers [155-158, 229] the particles and the pores are described as the two 

populations (ensembles) distributed by the particle sizes sr  and pore sizes pr  (it should be 

remarked that by “sizes” one may understand not only geometrical sizes, but also other 

physical parameters or even their sets). “Collisions” between particles and pores may 

result in passing through or entrapping a particle. 
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Probably, the first population balance model for deep bed filtration was suggested in 

work [230]. In our discussion, we mainly follow the study [158], where, to the best of our 

knowledge the formalism was, apparently, first described in its present form. Several 

modifications and extensions of the formalism were suggested in paper [229]. 

 

1.10.1 Particle flow characteristics 

The assumption taken in this section is that the particle sizes are much smaller than the 

pore sizes. These conditions are characteristic of many experimental works [101, 103, 

111, 135, 205, 206, 231, 232]. This eliminates the volumetric and velocity corrections to 

the particle flow, which become important for the particles, whose sizes are comparable 

to the pore sizes and may result in the fractional-flow filtration theories of the different 

kinds [157, 158, 229]. An opposite case, where the particle sizes are comparable to the 

pore sizes, and when the deposition is caused by the size exclusion mechanism, may also 

be considered in the framework of the described formalism [155-157]. 

Any model of deep bed filtration involves the two types of characteristics. The a priori 

characteristics (the constituting dependences and parameters) are assumed to be known in 

advance and invariable in the course of the filtration. The variable characteristics obey a 

system of kinetic balance equations to be derived. 

Under assumption above, the main a priori characteristic in the proposed model is the 

particle-pore interaction probability  ',s p p pp r r r dr : a probability of the event that a 

particle of the size sr  is captured in a pore of the size pr , as a result of which the pore 

size changes to pr . Such a probability takes into account a possibility of incomplete 

plugging a pore after particle capture. The distribution function  ',s p pp r r r  possesses 

the following properties: 

 
 , 0 : ;s p p p pp r r r r r   

(1.43) 
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   
0

, ,s p p p s pp r r r dr p r r


    

where ( , )s pp r r  is a probability of capturing a particle sr  at a pore pr , which will also be 

used in the following. 

Another a priori characteristics is the reference (correlation) length of the porous medium 

l . This is, essentially, an adjustment parameter determining the spatial frequency of 

particle-pore “collisions”. In Ref. [229] a model porous medium have been described as a 

system of “paths” and “chambers”. The particles move along the paths and mix in the 

chambers. The value of L  is defined as a characteristic distance between the two 

chambers. 

Let us define now the variable functions to be determined. The classical filtration theory 

[95, 233] describes the transport of suspended particles in terms of the averaged 

concentration per unit pore volume, c(x,t). It does not distinguish between the particles of 

the different sizes. The population balance approach [123, 156-158, 229] adopts more 

detailed characteristics, e.g. the particle size distribution C(rs,x,t) by the values of rs: 

 
( , , )

( , ) ( , , ) ; ( , , )
( , )

s
s s s

C r x t
c x t C r x t dr f r x t

c x t
   (1.44) 

where f(rs,x,t) is the distribution density of the suspended particles. The ensemble of 

pores is characterized by their distribution by sizes rp: 

    
 , ,

( , ) , , ; , ,
( , )

p

p p p

H r x t
h x t H r x t dr f r x t

h x t
   (1.45) 

where h(x,t) is the number of pores per unit cross-section of porous media, H(rp,x,t) and 

f(rp,x,t) are the pore size distribution by rp and the corresponding distribution density. The 

two distributions, ( , , )sC r x t  and ( , , )pH r x t , vary with time due to flow and deposition of 

the different particles. The balance equations for these ensembles are further derived. 
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1.10.2 Particle flow kinetics 

The mass balance equation for the particles of a given size in one dimension can be 

written as [156-158]: 

 
       , , , , , , ,s s sx t C r x t Q r x t r x t

t x t

  
  

  
 (1.46) 

where  ,x t is the porosity,  , ,sQ r x t is the flux of particles,  and  , ,sr x t is the 

concentration of deposited particles of sr . For particles much smaller than pores we do not 

have to introduce the porosity  , ,sr x t accessible for particles of sr , as done, for example, 

in [158]. The flux of particles may be expressed as the total flow of particles through all 

the pores at a unit surface [158]:  

      , , , , , , ( , , )s s p p pQ r x t C r x t q r x t H r x t dr   (1.47) 

Here  , ,pq r x t is the average flow rate through a pore of the size pr . In assumption that 

the particles are much smaller than pores the flux expression may be simplified to: 

    , , , ,s sQ r x t UC r x t  (1.48) 

where U is the average fluid velocity. More sophisticated expressions accounting for 

incomplete accessibility of the pore space and the velocity corrections for the particles of 

the different sizes are discussed in [156-158, 229]. 

 

1.10.3 Particle capture kinetics 

The particle capture rate is usually assumed to be proportional to the frequency of 

collisions between particles and pores [123, 156-158].  Providing that the capture 

probability of a particle sr in the pore pr is  ,s pp r r , the kinetic equation for the particle 

capture can be expressed by [158]: 
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 

       
0

, , 1
, , , , , , ,

s

s s p p p p

r x t
C r x t p r r q r x t H r x t dr

t l




   (1.49) 

Equation (1.49) is based on the assumption that particles coming to the pores are 

distributed independently of the pore sizes. It is similar to the Boltzmann assumption 

about “molecular chaos” [234].  

1/ l  in Equation (1.49) is the frequency of particles “forgetting” their past and being 

distributed independently of the pore sizes in a unit length. A simple example of the 

assumption is the porous medium of parallel tubes intercalated by mixing chambers, as 

seen in Figure 1.7. The distance between two neighboring chambers is l , while particles 

are completely mixed in the chambers. 

 

Figure 1.7 Schematic of parallel tubes intercalated by mixing chambers 

The equation above requires an expression for the flow rate ( , , )pq r x t  in a single pore. In 

the simplest case of the parallel flows in the different flows in a cross-section, this 

expression is given by [158]: 

 
   

1 1

1

0

( ) ( )
( , , )

( , )
, ,

p p

p

p p p

k r k r U
q r x t U

K x t
k r H r x t dr


 



 
(1.50) 

Here ( , )K x t  is the total permeability of the porous medium, which generally may vary 

due to the particle deposition. The value of 1( )pk r  is a conductivity of a single pore 
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(capillary) with regard to the flow. For example, for the Hagen-Poiseuille flow in a 

cylindrical capillary
4

1( ) /8p pk r r . More complicated effective medium-based or 

percolation-based schemes of permeability may also be suggested [230, 235]. 

A special role of the characteristic distance L  in integral (1.49) should be discussed. The 

value of L  arises from the fact that the deposition (1.49) (and the balance equation (1.46)) 

is written for the unit of volume, while the pore concentration ( , , )pH r x t  is the amount of 

pores per unit cross-section. In principle, the value of l  should be distributed. However, 

this is difficult to introduce in the framework of the “pure” population balances. The 

distribution of l  is partly reflected by the distribution of the particle flights introduced in 

the framework of the CTRW approach. 

 

1.10.4 Pore plugging kinetics 

Generally, variation of the number of pores of a given size in a cross-section may be 

represented as a difference between the increase and decrease terms [158]:  

 
 

   
, ,

, , , ,
p

p p

H r x t
I r x t D r x t

t


 


 (1.51) 

 The value of ( , , )pH r x t increases if a larger pore captures a particle and acquires size pr . 

( , , )pH r x t decreases if a pore of the size pr  captures a particle and becomes smaller. In 

the assumption about independence of the particle and the pore characteristics prior to 

collision, the increase term  , ,pI r x t and the decrease term  , ,pD r x t can be expressed in 

the form  

           ' '

0
, , , , , , , , ,

p
p p s s p p p p s

r
I r x t dr dr p r r r q r x t H r x t C r x t

 

    (1.52) 

           ' '

0 0
, , , , , , , , ,

pr

p s p s p p p p sD r x t dr dr p r r r q r x t H r x t C r x t


    
(1.53) 
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By integration over 
´

pr  Equation (1.53) can then be reduced to (cf. Equation(1.43)): 

           
0

, , , , , , , , ,p p p s s p sD r x t q r x t H r x t dr p r r C r x t


   (1.54) 

In these equations the value of ( , , )pq r x t  is expressed by Equation (1.50). Thus, the 

integral terms(1.52), (1.53) are nonlinear with regard to ( , , )pH r x t . Presence of the flux is 

important: it expresses the fact that the number of collisions between particles and pores 

is proportional to the particle flux. 

 

1.10.5 Coupled particle and pore kinetics 

The resulting system of equations is obtained by exclusion of the fine deposition / t   

from the balance equation (1.46) with its substitution from Equation (1.49). It is also 

demonstrated in [123, 158] by volume balance considerations that the porosity and 

velocity may simultaneously be taken out of differentiation. The resulting system of 

equations for suspended particles and for pores assumes the form 

 

   

       
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, , , ,
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, , , , , , , ;
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s s p p p p

C r x t C r x t
U

t x

C r x t p r r q r x t H r x t dr
l





 
 

 

 
 (1.55) 

  

        

        

' '

0

0

, ,

, , , , , , ,

, , , , , , ,

p

p

p s s p p p p s
r

p p s s p s

H r x t

t

dr dr p r r r q r x t H r x t C r x t

q r x t H r x t dr p r r C r x t

 












 



 (1.56) 

where ( , , )pq r x t  is given by (1.50). 
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Figure 1.8 Sample calculation: Pore size distribution variation from the population balance approach for 

straining 

Equations (1.55) and (1.56) form a system of nonlinear integral-differential equations for 

the two functions: ( , , )sC r x t  and ( , , )pH r x t . Other values in this system are either known 

a priori or may be computed in terms of C and H . For example, in Equation (1.55) 

velocity U  may be treated either as constant or as a known function of time, due to 

incompressibility of the carrying liquid [229]. Porosity   may be set constant for dilute 

suspensions. Otherwise, it may be computed in terms of ( , , )pH r x t . Considering porosity 

to be a free area per unit cross-section, we obtain: 

 ( , ) ( ) ( , , )p p px t s r H r x t dr    (1.57) 

where ( )ps r  is the cross-section of one capillary (for example, 
2

pr  for cylindrical 

capillaries). System (1.55) and (1.56) requires one initial condition 0 ( , )pH r x  for the pore 

concentration and one initial and one boundary condition for the particle concentration. 
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Figure 1.9 Sample calculation: Breakthrough curve from the population balance approach for straining 

Sample calculations shown in Figure 1.8 and Figure 1.9 are carried out under the 

assumption of complete pore plugging, namely that the increasing term in (1.52) 

contributes completely to zero pore size. It can be seen from Figure 1.8 that the pore 

plugging kinetics exhibits faster reduction of larger pores than that of the smaller pores. It 

is explained by the proportionality of the particle capture rate to the fractional flow 

through pores of different sizes. On the other hand, the total particle capture rate 

decreases due to the reduction of smaller pores. An increasing outlet concentration is 

observed with time, which is a typical behavior for straining of colloids in porous media. 

 

1.11 Migration of deposited particles 

Release and migration of deposited colloids, such as microorganisms in aquifers and clay 

fines in oil reservoirs, is of considerable importance in some environmental and 

engineering applications. For example, detachment of pathogenic microbes can pose 

great risk to public health [22-31]. Migration of reservoir fines during waterflooding can 

cause severe permeability damage, which subsequently reduces injectivity and 

productivity of the injection and production wells, correspondingly [34-38, 236, 237]. 
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1.11.1 Mechanisms of colloid release  

Colloid release in environmental systems has been attributed to physical, chemical, or 

biological processes. Particles may also be produced from the erosion of porous media, 

such as acid treatment for well stimulation in oil reservoirs [238-241]. Specifically, 

physical perturbations of the rock in the course of reservoir development include drilling 

wells, sampling, rapid infiltration, waterflooding, water production, and others [242-244]. 

Chemical perturbations include increase of pH, decrease of salinity, generation of 

surfactants, and others [34-37, 40, 236, 245-250]. Generation of surfactants is also 

regarded as a biological perturbation since surfactants may be produced by microbes [40, 

250]. Bacteria forming large aggregates at grain-grain contacts which are re-entrained by 

flowing fluid is another example of biological perturbation [80]. 

At the collector scale, a study of colloid release usually focuses on the torques exerted on 

the attached particles [9, 35, 216, 248, 251, 252]. It has been demonstrated that the 

balance of the hydrodynamic torque, the lifting torque, the resisting adhesive torque and 

the torque of the gravity force determines whether the particles attached to the pore walls 

will be immobilized and re-entrained into the carrying fluid, as seen in Figure 1.10 . The 

erosion number, a dimensionless parameter indicating the ratio between the torques for 

the detachment and the attachment of particles, can be expressed in the following way: 

    
l n d d

e g n

Fl F l

F F l






 (1.58) 

where , , ,l d eF F F and gF are respectively the lifting force, the hydrodynamic drag, the 

electrostatic force, and the gravity exerting on the particles attached to the pore walls. dl

and nl are respectively the levers of drag and normal forces.  

A mechanistic model has been proposed by Bedrikovetsky and his co-workers [248, 252] 

to express the maximum deposition concentration as a function of the particle size, the 

pore size, the ionic strength, the fluid velocity and a number of other factors. The model 

assumes that the attached particles will release if the detachment toques are larger than 
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the adhesive torques ( 1  ). A good agreement has been observed between the model 

prediction and the experimental injectivity decline [252].  

 

Figure 1.10 Forces exerted on the attached particles 

 

1.11.2 Effects of colloid migration 

At the pore scale, the migration of colloids is often coupled with other processes, such as 

re-entraining back into fluid and straining at throats and constrictions, as seen in Figure 

1.11. As a result, the released particles may be re-entrained by the bulk fluid and migrate 

further to the downstream or subsequently strained at thin pore throats. The release of 

attached particles may give rise to permeability increase to a small degree, while the 

subsequent straining usually causes severe permeability damage [34, 37, 236, 247, 253]. 

It has been shown by Bedrikovetsky and his coauthors [247] and Yuan and Shapiro [236] 

that the effects of fines migration induced by low salinity waterflooding may be used as a 

mobility control technique to alter the flow field in layer-cake petroleum reservoirs. Such 

effects will be discussed in details in Chapter 6. In the cases where deposited colloids are 

associated with low-solubility contaminants in water and straining is insignificant, the re-

entrainment of deposited colloids is a major reason for the long distance migration of the 

contaminant, such as the migration of plutonium associated particles observed in [16].  
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It can be inferred from the torque balance analysis (1.58) that the larger particles attached 

to the collector surface are more subject to release and migration under unfavorable 

attachment conditions. In such cases, long tails of the breakthrough curves after the end 

of particle injection are usually observed, while the deposition concentration may be non-

monotonously distributed along the column [80, 111, 135, 136]. In the cited works 

migration of released colloids is described as a third particle population migrating with a 

different rate and probably re-entrapped. Such a model captures non-monotonous particle 

deposition profiles. Bradford and his coworkers [80] found that the colloid release is not 

limited to the attached particles (in their study, bacteria E. coli), but may also stem from 

large E. coli aggregates at straining sites. 

 

Figure 1.11 Migration of deposition coupled with other processes 
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1.12 Nomenclature of Chapter 1 

c Number of suspended particles per unit pore volume (m
-3

) 

C Particle size distribution in suspension (m
-4

) 
   Particle size distribution in deposition (m

-4
) 

s Number of retained particles per unit volume of porous media (m
-3

) 

h Number of pores per unit cross-section of porous media(m
-2

) 

H Pore size distribution (m-4) 

t Time (s) 

T temperature (K) 

x x coordinate in space 

Φ interaction energy (J) 

a radius of a sphere 

k Boltzmann constant 

z valence of ions 

e elementary charge 

h separation distance between two surfaces 

ε dielectric constant 

ε0 vacuum permittivity 

I ionic strength (mM) 

A Hamaker constant 

λ characteristic wavelength(m) or filtration coefficient(m
-1

) 

dl Electrical double layer 

vdW van der Waals 

str straining 

att attachment 

NA  Advogadro number 

J Total flux of particles (advection and diffusion at pore scale) 

Q Source term at pore scale(number of particles per unit time) 

Q Darcy flux of particles (s-1m-2) 

q  Flow rate (m3/s) 

D Diffusion coefficient (m2/s) 

u fluid velocity (m/s) 

v particle velocity(m/s) 

U fluid approach velocity(m/s) 

F External force (N) 

h separation distance (m) 

b thickness of a fluid shell in Happel’s sphere-in-cell representation(m) or exponent 

in power laws 
  porosity 

cr  radius of the collector(m) 

rs sphere particle radius(m) 

rp pore radius(m) 

  single collector removal efficiency 

  collision efficiency 
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dk  deposition rate constant(s
-1

) 

R  retardation factor due to equilibrium adsorption 

B  surface blocking function 

  surface coverage 

p probability 

K permeability of the porous medium 

k1 permeability of a capillary 
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2 Non-Fickian Transport and heterogeneous attachment of 

colloids 

In this chapter, an integral model is developed to capture the non-Fickian transport and 

heterogeneous attachment of colloids in porous media. It incorporates both the 

distribution of the filtration coefficients (as in Refs[207, 208]) and the distributed particle 

flight time (as in Refs[123, 217, 218]). The factors controlling the deposition profiles and 

the shape of breakthrough curves are systematically studied. A large set of data obtained 

in the experiments with homogeneous and heterogeneous porous media is compared with 

the results from the numerical modeling. Apart from the data on deep bed filtration 

experiments, data on tracer injection have been used, since tracers may be considered as 

“suspensions with a zero-filtration coefficient”. The goal of the comparison is to find out 

which mechanisms incorporated in the model are necessary in order to reproduce the 

experimental results successfully: either temporal dispersion of particle flights or 

distribution of filtration coefficients, or both of them. 

 

2.1 Introduction 

Non-Fickian behavior of the suspensions in porous media may be caused by the physical 

heterogeneity of porous media [10, 11, 104, 117, 123, 220, 222, 254, 255]. It has been 

indicated by a number of works [10, 11, 104, 123, 217, 218, 220, 254] that non-Fickian 

transport of a solute or a suspension may be modeled more accurately by approaches 

based on the continuous time random walk (CTRW) theory compared to the classical 

advection dispersion equation (ADE). The first CTRW model for colloidal transport in 

porous media was studied in Ref.[220].  

A macroscopic elliptic equation for non-Fickian transport in porous media in the 

framework of CTRW [123, 217, 218] was developed by A. Shapiro and P. Bedrikovetsky. 

The equation can be applied to describe either the transport of macroscopic particles or 

that of the solute in porous media. The elliptic equation and the distribution of filtration 
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coefficients can be integrated as an integral model to describe non-Fickian transport of 

polydisperse suspension in heterogeneous porous media [104, 123].  

The commonly reported hyperexponential deposition has been attributed to the 

heterogeneity of the surface charge and energy minima (see Chapters 2 and 3 and Refs.  

[101, 110, 207, 208]) or to the enhanced retention at low-velocity zones of pore space 

(physical straining) [79, 121, 122]. Based on the described mechanisms, the authors 

developed various models which produce hyperexponential deposition. In Chapters 2 and 

3  and [101, 104, 207, 208], distributions of filtration coefficients were applied to reflect 

the heterogeneity of particle population and particle-pore interactions. In Refs. [122, 134], 

dual-permeability models were developed to take into account the high-velocity zones 

and low-velocity zones of pore space. 

The conventional methodology, ADE with a single filtration coefficient, merely predicts 

exponentially decreasing deposition profiles (see Chapter 2 and [103]). Many of the 

experimental results, on the other hand, show hyperexponential deposition profiles or 

even non-monotonic deposition profiles under some specific conditions [80, 103, 111].  

It is believed that the heterogeneity of the particle population or the heterogeneity of 

particle-medium-interaction is the main reason for hyperexponential deposition profiles 

in homogeneous porous media [102, 103].  The heterogeneity of the particle population 

encompasses the physical heterogeneity (size and shape) and the physiochemical 

heterogeneity (surface charge and multiple energy minima). For instance, in a deep bed 

filtration system which the size exclusion mechanism dominates, the larger particles 

deposits faster and correspond to larger filtration coefficients. The distribution of 

filtration coefficients is most likely dependent on the particle size distribution [123].  

Even flow of a monodisperse suspension (uniform shape and size) in a homogeneous 

porous medium under unfavorable attachment conditions is observed to result sometimes 

in a hyperexponential deposition profile, due to the heterogeneity of particle surface 

charge and second energy minimum[101, 103, 205, 206]. Mathematically, the 

heterogeneity of the particle population is described by the distribution of the filtration 

coefficients. The deposition patterns may be interpreted by application of various 
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distribution types: the log-normal distribution, the power law distribution, the bimodal 

distribution and others [207, 208]. 

In order to study how the heterogeneity of the particle population leads to 

hyperexponential deposition profiles, it is important to separate its influence from the 

effect of heterogeneity of porous media. Lots of the relevant studies focus on the 

physically homogeneous porous media, e.g. packed glass beads in the column [108, 132, 

256]. Some experiments have been carried out in micro-heterogeneous porous media, e.g. 

packs of natural quartz sand [115, 205, 206]. Other experiments adopt specially 

constructed porous media with heterogeneity on a mesoscale [10, 257]. The data from 

pilot experiments of mainly tracers in natural/highly heterogeneous porous media and 

porous rocks is also available [116]. 

 

2.2 Modeling methodology 

2.2.1 Elliptic Equation 

It has been suggested in Refs. [123, 217, 218] that transport of a dilute monodisperse 

suspension in a porous medium may be described by an elliptic equation accounting for 

particle advection, spatial dispersion, temporal dispersion, mixed dispersion, and 

deposition. The temporal dispersion represents the effects of the distributed residence 

time of the particles in various pores. This is a simple way to formalize the Continuous 

Time Random Walk (CTRW) approach, where dispersion of a time step is usually 

expressed by means of a distribution kernel [10, 11, 220]. It has been shown [217, 218] 

that in the limit of infinitely many infinitely small time steps and a finite variance of a 

single step, the distribution may be represented by the two coefficients Dt, Dxt (for 

temporal and mixed dispersion), and instead of the convolution with the distribution 

kernel, it is enough to consider the terms with the second time derivative and with the 

mixed derivative, making the transport equation elliptic.  

In this work we study the application of the elliptic formalism to filtration of the diluted 

suspensions of particles, which are normally applied in the experiments. Since the 
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suspended concentrations in the reported experiments are fairly low to influence the pore 

structure, this influence is neglected. The mixed dispersion is also neglected, since it has 

no qualitative influence on the profiles. In order to reveal the heterogeneity of the particle 

population the particles are split into portions, i.e. there are multiple equations 

representing different particle species with various filtration coefficients. Under these 

conditions, the suspended concentration ci(x,t) and the deposited concentration si(x,t) of 

the ith component of the suspension at column depth x and time t are modeled by the 

elliptic equation with a sink term representing the deposition of the particles: 

 
2 2

2 2

i i i i
i x t i i

c c c c
v D D c

t x x t


   
   

   
 (2.1) 

After this equation has been solved the deposition of the particles of the ith type may be 

found by integrating 
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s
c

t
 


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
 (2.2) 

Summation of si gives the total deposition at a given time. 

In Equation (2.1) vi is the interstitial particle velocity, Dx is the spatial dispersion 

coefficient, Dt is the temporal dispersion coefficient, which by definition is the second 

moment of the particle residence time divided by the first moment of the particle 

residence time to zero, λi is the filtration coefficient of the ith species of the particles, and 

φ is the bed porosity. The suspended concentration has the dimension of the number of 

particles per pore volume and the retention concentration of the number of particles per 

unit volume of the porous medium. For convenience of comparison to the experiments, 

the following practical quantities are often adopted: Nc 
is the number of the retained 

particles per gram of dry porous media, and Nt the total number of injected particles [103, 

115, 118].  
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where ρb is the bulk density of the dry porous media, t0 is the particle injection duration, 

and c0 is the influent concentration. In dimensionless coordinates the elliptic equation for 

the ith particle species takes the form [123]: 
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where the following substitutions are introduced to the system: 

0 0 0

0
0
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xi ti i
xi ti i

x LX t L v T c C c s S c

D D v L
v uv R R

v L L v


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Here Rxi is the dimensionless longitudinal dispersivity and Rti is the dimensionless 

temporal dispersivity of the ith component. The value of L is the reference length (m), v0 

is the average pore water velocity (m/s), and c0 is the reference concentration. The 

inverse Peclet number Rxi describes the magnitude of the spatial dispersion compared to 

the product of the reference velocity and the reference length, while the similar parameter 

Rti describes the magnitude of the temporal dispersion compared to the reference time.  

 

2.2.2 Distributed Filtration Coefficients 

The log-normal distribution, the power law distribution and the bimodal distribution are 

commonly adopted to reflect the particle population heterogeneity [113, 207, 208, 258, 

259]. The probability density function (PDF) for the log-normal distributed filtration 

coefficients is of the following form: 
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where μ and ζ are the mean and the standard deviation of the natural logarithm of the 

filtration coefficients. The power law distribution takes the form: 

    min max( ) , ,
b

i i ip a


        (2.6) 

where a and b are two positive constants controlling the shape of the distribution. The 

larger b the more asymmetric PDF curve. Constant a is selected so that the sum of the 

probabilities of appearance of the different values of Λ is equal to unity (the value of 

∆Λ=Λi- Λi-1 is selected to be constant): 
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(2.7) 

The limitation [Λmin, Λmax] is necessary, since otherwise the integral of the distribution is 

divergent on [0,∞]. In accordance with previous works, the distribution is selected so that 

the integral is divergent at infinity, and so that dependence on the upper limit of 

integration becomes important. 

Discrete binary filtration coefficients reflecting heterogeneity of a particle population are 

proposed in several studies [113, 258, 259].This type of distribution is adopted to model 

the following case scenarios. Under unfavorable surface conditions, the colloid 

deposition can be classified into two categories: the unhindered particle deposition into a 

relatively deep secondary energy well (fast) and the particle deposition overcoming an 

energy barrier to reach the primary energy minimum [101, 103, 260]. Here a bimodal 

distribution consisting of two normal subdistributions is adopted and takes the following 

form: 
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where Λlow 
and Λhigh are the mean filtration coefficients of the two normal 

subdistributions,ζlow 
and ζlow are the corresponding standard deviations, and flow

 
and fhigh 

are the fractions of the total population associated with each subdistribution. 

In the following computations, it is assumed that the interstitial velocities of the particles 

of various sizes are the same. They may either be approximated by the average pore 

velocity, or need to be fitted to the experimental results. On the contrary, the filtration 

coefficients may be different. To approximate the continuous distribution of them, the 

particle population is simply discretized into 1000 representative species, each of which 

is assigned a single filtration coefficient. The proportion of each species is calculated in 

accordance with the continuous expression. However, the sum of the proportions is not 

unity, due to a local truncation error and a truncation of  close to infinity. It is then 

normalized by dividing the sum by itself. The procedure needs two artificial values: the 

minimum and the maximum of the filtration coefficients. This is especially related to the 

power distribution, as discussed above. 

 

2.2.3 Boundary conditions 

The adopted boundary conditions here are ad hoc for the system of elliptic equations. 

There are four boundary conditions in the space-time plane: the initial condition (2.9) the 

terminal condition (2.10) the inlet condition (2.11) (2.12) and the outlet condition (2.13):  
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This is rather different from the boundary conditions for the parabolic ADE, in that the 

second derivative in the temporal dispersion term here requires an additional temporal 

boundary condition. The details are discussed in Ref. [123].  

The four boundary conditions are selected to model column experiments in most labs. 

Before the injection the column is often flooded with pure water to make the bed clean. 

Thus, condition (2.9) reflects absence of suspended particles in the bed prior to flooding. 

The influent concentration is set to be constant during the particle injection time T0 

(boundary condition (2.11)). Pure water is injected after the suspension injection, so that 

all the suspended particles are flushed out of the system (boundary condition (2.12)). The 

value ξ is selected so that after ξT0 the suspended concentration is effectively zero, hence, 

the final condition (2.10). Our computations show that any value of ξ≥5 provides the same 

shape of solutions. 

 

2.2.4 Degree of hyperexponentiality 

In order to quantitatively describe the degree of hyperexponentiality in the deposition 

profiles, the following definitions are introduced. Providing that the dimensionless 

retained particle concentration is a function in terms of dimensionless X, S(X) and the 

deposition is monotonically decaying with X, S’(X)≤0, the degree of the 

hyperexponentiality is:
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The values of DH are listed in the tables reflecting the results of the computations. 
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2.2.5 Implementation 

Direct discretization of Equation (2.3) and Equation (2.4) by a finite difference method 

results in a system of linear algebraic equations for each point on a rectangular grid. A 

center difference regime is adopted to achieve accuracy of second order, O(∆X
2
) and 

O(∆T
2
). The computation is implemented in MATLAB, utilizing its fast implementation 

of the matrix operations [261]. To achieve higher accuracy the mesh grid is set to be 

1000×1000. In the calculations sparse matrices are adopted for the purpose of memory 

optimization and fast computation [262]. In order to demonstrate the reliability of the 

program, a calculation is performed with the same configurations as those in Refs. [207, 

218]. Especially, Dt is set to be zero and for the distribution the number of particle 

species is 1000 to achieve high accuracy. The numerical solution highly agrees with the 

analytical solution for the unsteady state in Ref. [207], with an average difference of 

0.1%. In order to fit the experimental breakthrough curves, the dispersion coefficients 

and the filtration coefficients are modified manually. Predicted deposition profiles can 

then be compared to the experimental observations. Especially for the distributed 

filtration coefficients further adjustments are needed to fit the hyperexponential 

deposition profiles. 

 

2.3 Results of Numerical Modeling 

The goal of this section is to find out which parameters have most influence on the shapes 

of the deposition profiles and breakthrough curves. First, a number of computations have 

been performed with the ADE and the different distributions for Λ. Next, the results of 

the elliptic modeling have been obtained and the effects of the temporal dispersion on the 

breakthrough curves and deposition profiles have been studied. Finally, the combined 

influences of both the temporal dispersion and the distribution of Λ have been studied. 
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2.3.1 ADE with distributed filtration coefficients 

Calculations are first performed without the temporal dispersion but only with the 

distributed filtration coefficients. The log-normal distribution, the power law distribution 

and the bimodal distribution are the adopted three types of distributions. Results under 

the condition of both large and small spatial dispersion are compared for the calculations 

with the log-normal distribution and the power law distribution. 

 

Figure 2.1 Breakthrough curves and deposition profiles with log-normal distribution of filtration coefficients, (a) 

(b): large spatial dispersion, (c) (d): small spatial dispersion. 

For the log-normal distribution the mean value of the filtration coefficients is kept 

constant, while the standard deviations vary. Other invariable parameters are:μ=1.97, 

T0=1.25PV, u=1, Rt=0, Rx=1/30, Λmin=2×10
-3

, Λmax=394. The rest of the parameters 

adopted in the calculations are shown in Table 2.1. As seen in Figure 2.1, the results 

show that the log-normal distribution of Λ gives rise to hyperexponential deposition 

profiles, but only has a minor influence on the breakthrough curves. The degree of 

hyperexponentiality is limited. Even extremely large standard deviations do not produce 

extremely hyperexponential profiles.  
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Table 2.1 Parameters adopted for calculations with the log-normal distribution of filtration coefficients and 

resulting degrees of hyperexponentiality. 

σ/μ
 

σ 

(10
3
)
 

Rx

 

DH 

1219 2.4 3-1/30-1 69.03/45.41 

2032 4.0 3-1/30-1 193.23/724.23 

2845 5.6 3-1/30-1 362.54/1076.01 

3658 7.2 3-1/30-1 488.91/1088.23 

 

For the power law distribution, different values of power b (see Equation (2.6)) are 

chosen to vary the distribution. The maximum and the minimum of the distribution are 

kept constant. For different calculations: T0=1.25PV, u=1, Rt=0, Rx=1/30, Λmin=2×10
-3

, 

Λmax=1968. 
 
The rest of the parameters adopted for the calculations are shown in Table 

2.2.  

Table 2.2 Parameters adopted for calculations with the power law distribution of filtration coefficients and 

resulting degrees of hyperexponentiality. Results are shown in Figure 2.2. 

σ/Λmin

 
σ (10

3
)
 

Rx b DH 

26754 574821 3-1/300-1 0.80 136320/200920 

1871 3682 3-1/300-1 1.20 26824/1420 

133 263 3-1/300-1 1.60 19969/28.35 

9 20 3-1/300-1 2.00 1.03/1.08 

 

As seen in Figure 2.2, the results are similar to the log-normal distribution: the power law 

distribution of Λ results in hyperexponential deposition profiles, but only has a minor 

influence on the breakthrough curves. The distributions with the larger standard 

deviations yield higher hyperexponentiality. A larger standard deviation reflects a higher 

heterogeneity of the particle population. This confirms that one of the reasons for 

hyperexponential deposition profiles may be heterogeneity of the particle population [101, 

103]. The degree of hyperexponentiality with the power law distribution of Λ is generally 

higher than with the log-normal distribution of Λ.  
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Figure 2.2 Breakthrough curves and deposition profiles with power law distribution of filtration coefficients, (a) 

(b): large spatial dispersion, (c) (d): small spatial dispersion. 

Calculations with the different maxima and minima of the power distribution Λmin, Λmax 

have also been carried out. Results (not given here) show that the minimum of the 

distribution does not affect much the degree of hyperexponentiality, but still may slightly 

change the shape of a deposition profile. Increasing the maximum of the distribution 

mainly increases the retained concentration close to the inlet; therefore the degree of the 

hyperexponentiality also increases.  

Table 2.3 Parameters adopted for calculations with bimodal distribution of filtration coefficients and resulting 

degrees of hyperexponentiality. Results are shown in (a) and (b) of Figure 2.3. 

Λhigh/Λlow Λhigh Λlow DH 

1.00 1.20 1.20 0 

67.33 80.80 1.20 35.35 

133.67 164.40 1.20 54.71 

200.00 240.00 1.20 69.36 

 

For the bimodal distribution, the fractions and the standard deviations of the two groups 

are set to be equal at first. For different calculations: T0=1.25PV, u=1, Rt=0, Rx=1/30, 

Λmin=2×10
-3

, Λmax=1968, ζhigh=1.2, ζlow=1.2, fhigh=0.5.The rest of the parameters are 
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shown in Table 2.3. First, Λlow is kept constant and various Λhigh is selected. The 

influence of the difference between Λhigh and Λlow is seen in Figure 2.3 (a) and (b). The 

profile may be split roughly into two almost “exponential” parts, with the different 

inclinations of the decay. With increasing difference between Λhigh and Λlow, the 

deposition profile becomes more hyperexponential.  

 
Figure 2.3 Breakthrough curves and deposition profiles with bimodal distribution of filtration coefficients. (a) 

(b): Keeping the fractions, standard deviations and Λlow, change of Λhigh. (c) (d): Keeping Λlow, Λhigh and the 

standard deviations, change of flow, fhigh. 

 

Then Λhigh and Λlow are kept constant, and various fractions of the two species are selected. 

The selected parameters for the calculations are: Λhigh=24, Λlow =1.2, T0=1.25PV, u=1, 

Rt=0, Rx=1/30, Λmin=2×10
-3

, Λmax=1968, ζhigh=1.2, ζlow=1.2. and the rest of the 

parameters are given in Table 2.4. When the fractions of the different particles vary from 

fhigh=0, flow=1 to fhigh=1, flow=0, i.e. from the single component with low Λ to the single 

component with high Λ, the deposition decay changes from exponentiality to 

hyperexponentiality, and then to exponentiality again, as seen in Figure 2.3 (d). Thus, 
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hyperexponentiality is observed in the systems with significant amounts of particles of 

different sizes, as in Refs.[101, 208]. 

Table 2.4 Parameters adopted for calculations with bimodal distribution of filtration coefficients and resulting 

degrees of hyperexponentiality. Results are shown in (c) and (d) of Figure 2.3. 

fhigh/flow fhigh flow DH 

0 0 1.00 0 

1/3 0.25 0.75 13.92 

1 0.50 0.50 14.69 

3 0.75 0.25 14.94 

Inf 1.00 0 0 

 

As seen in Figure 2.3 (d), the part of the deposition profile close to the inlet is formed by 

the particles with high Λ. The rest of the profile by the particles with low Λ. The regions 

of dominance of the two species depend on the ratio fhigh/ flow. For high values of fhigh/ flow 

the particles with high values of Λ remain close to the inlet, while the particles with low 

Λ travel further, close to the outlet. The resulting deposition profiles look like a 

combination of the two straight-linear intervals, respectively, corresponding to the high 

and the low values of Λ. 

Unlike the log-normal distribution and the power law distribution, the bimodal 

distribution of filtration coefficients highly influences the breakthrough curves, as seen in 

Figure 2.3 (a). 

In summary of the above results, the distribution of Λ can give rise to highly 

hyperexponential deposition profiles if the standard deviations are very large. Similar 

phenomena have been observed in Refs. [101, 207, 208]. Such a wide distribution of 

filtration coefficients may be doubted for the systems of similar particles. Therefore, the 

question arises, whether the temporal dispersion, in combination with somehow narrower 

distributions of the filtration coefficients (or, even, with a single filtration coefficient), 

may also result in a hyperexponential deposition profile.  
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2.3.2 Elliptic equation with a single filtration coefficient 

Let us now present the results with Dt>0. The calculations are performed for a suspension 

characterized by a single filtration coefficient. The values used for the calculations are 

T0=5PV, u=1, Λ =0.49 and the rest of the values are shown in Table 2.5. The effects of 

the temporal dispersion both on the breakthrough curves and the deposition profiles are 

illustrated in Figure 2.4.  

 

Figure 2.4 Breakthrough curves and deposition profiles with a single filtration coefficient, (a) (b): large spatial 

dispersion, (c) (d): small spatial dispersion. 

As seen from the figure, temporal dispersion not only leads to hyperexponentiality of the 

deposition but also has a clear influence on the breakthrough curves. The delayed peaks 

and large ending tails are characteristic of the elliptic dispersivity. Similar effects have 

been observed in nature and in the experiments with stochastically heterogeneous porous 

media [10, 11, 123, 217, 218, 263]. The degree of hyperexponentiality caused by 

temporal dispersion, on the other hand, is relatively limited. 
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Table 2.5 Parameters adopted for calculations with elliptic equation and a single filtration coefficient and 

resulting degrees of hyperexponentiality. Results are shown in Figure 2.4. 

Rx

 
Rt DH 

3/300-1 0 0/0 

3/300-1 22.00 155.56/6.17 

3/300-1 44.00 153.27/6.95 

3/300-1 66.00 154.39/6.71 

 

The temporal dispersion works in combination with the spatial distribution. As seen in 

Figure 2.4 (a), (c), large spatial dispersion may partly compensate for some influence of 

the temporal dispersion on the breakthrough curve. This unusual phenomenon is opposite 

to the effect of the spatial dispersion in absence of the temporal dispersion. On the other 

hand, it enhances the hyperexponentiality caused by the temporal dispersion in the 

deposition profiles. 

 

2.3.3 Elliptic equation with distributed filtration coefficients  

As seen from the results above, both the temporal dispersion and the distribution of the 

filtration coefficients give rise to the deposition hyperexponentiality. This section focuses 

on how the two factors in combination affect the breakthrough curves and the deposition 

profiles, and whether their effects can be complemented or compensated for by each 

other. 

Table 2.6 Parameters adopted for illustration of the distribution of filtration coefficients, compensated for by 

temporal dispersion. Results are shown in Figure 2.5. 

ζ/Λmin

 
Rt

 
b 

171 8.9286 1.1 

93 8.9286 1.3 

14 8.9286 10 

171 4.4643 1.1 

93 9.8214 1.3 

14 11.1607 10 

 

As an example, a system with power law distributed filtration coefficients has been 

studied. In the calculations: T0=2.17PV, u=1, Rx=1.79, Λmin=0.896, Λmax=1344, and the 

rest of the parameters are shown in Table 2.6. In the first series of computations, power b 

in the distribution is increased to reduce the standard deviation, and the minimum and 
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maximum of the filtration coefficients are kept constant. It causes the deviations both in 

the breakthrough curves and the deposition profile, as seen in Figure 2.5 (a), (b). Then the 

temporal dispersion is increased to compensate for loss of the distribution width. The 

breakthrough curves are recovered, but the deposition profiles still deviate, as seen in 

Figure 2.5 (c),(d). Thus, the influence of the distribution of   on the breakthrough 

curves can be well compensated for by temporal dispersion, but that on the deposition 

profiles cannot.  

 

Figure 2.5 Illustration of the distribution of filtration coefficients compensated for by the temporal dispersion. (a) 

(b): Decrease of the standard deviation of the distribution with constant temporal dispersion. (c) (d): Decrease of 

the standard deviation of the distribution with increasing temporal dispersion. 
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BTC was recovered, but the deposition profiles still deviated (Figure 2.6 (c), (d)). This 

indicates that the influence of the temporal dispersion can be compensated for by the 

distribution of the filtration coefficients to some extent, but not entirely.  

Table 2.7 Parameters adopted for illustration of temporal dispersion, compensated for by the distribution of 

filtration coefficients. Results are shown in Figure 2.6. 

ζ/Λmin

 
Rt

 
b 

291 4.4643 0.89 

291 6.6964 0.89 

291 8.9286 0.89 

291 4.4643 0.89 

171 6.6964 1.1 

43 8.9286 10 

 

Selection of more flexible distributions and fitting multiple parameters might, of course, 

lead to complete compensation for the effect of temporal dispersion. However, these 

calculations show that, at least, the three distributions considered above provide 

breakthrough curves and deposition profiles possessing individual features, which may be 

different from the features of the profiles produced by non-zero temporal dispersion. 

They are clearly distinguishable, and interaction between them may contribute to better 

reproduction of the results. Especially breakthrough curves are affected. The cases of 

clearly dispersed breakthrough curves require introduction of temporal dispersion for 

fitting, while the cases where the breakthrough curves are not dispersed, but the 

deposition profiles are hyperexponential, require fitting with the distributed filtration 

coefficients alone.  
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Figure 2.6 Illustration of the temporal dispersion compensated for by the distribution of filtration coefficients. (a) 

(b): Increase of the temporal dispersion and keeping the standard deviation of the distribution.  (c) (d): Increase 

of the temporal dispersion with decreasing standard deviations of the distribution. 
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packed glass beads, to the most heterogeneous porous media, e.g. natural aquifer material. 

Since tracers may be considered as suspensions not exhibiting deposition, the 

experiments with them are also considered. 
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2.4.1 Colloid in uniformly packed glass beads 

In this subsection the results of numerical modeling are compared with the experiments 

carried out with artificial homogeneous porous media. N. Tufenkji and M. Elimelech 

[103] conducted column experiments on filtration of uniform polystyrene latex colloid 

suspension in packed soda-lime glass beads. The particles forming glass beads were of a 

uniform size and much larger than the colloid particles. A low influent concentration was 

adopted in order not to influence the pore structure. The solution chemistry was strictly 

controlled.  

Calculations with the integral model are performed so as to reproduce the experimental 

results. The breakthrough curves predicted by the ADE and the experimental 

breakthrough curves highly agree with each other. Their shapes are almost not “washed-

out” by dispersion. Therefore, it is reasonable to try modeling the experimental results by 

introducing the distribution of the filtration coefficients. Selection of the Λ distribution 

types for fitting the experiments follows a practical principle: few parameters to tune the 

shape of the distribution. Since the log-normal distribution cannot, apparently, provide 

significant deviations from the exponentiality of the deposition profiles observed in the 

experiments, it is not used for fitting. The bimodal distribution may seem to be physically 

reasonable for some cases [103], but there are as many as five parameters to be modified. 

The power law distribution with only three parameters to be modified is chosen due to its 

practical convenience in the computations. A similar choice was made in Ref. [207].  

Because most of the power law distribution concentrates close to the minimum of the 

filtration coefficient, it is an important parameter as well as power b in Equation (2.6). 



69 
 

 
Figure 2.7 Numerical modeling results compared with the experimental data of N. Tufenkji and M. Elimelech 

[103]. (a) (b): ADE modeling, (c) (d): elliptic modeling. The power law distribution is adopted. 
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breakthrough curves and the hyperexponential deposition profiles. The fitted temporal 
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modification of the breakthrough curve. The fact that the dispersion is not large is 

probably attributed to a high degree of homogeneity of the porous medium used for the 

experiment.  

Table 2.8 Parameters adopted for calculations in comparison with the experiments of N. Tufenkji and M. 

Elimelech[103], corresponding to ionic strengths of 200mM/100mM respectively. Results are shown in Figure 2.7. 

Methodology Rx(10-3) Rt(10-3) Λmin(10-2) Λmax(10-2) b 

ADE+single Λ 4.17/4.17 0 47.20/8.74 47.20/8.74 -/- 

ADE+distributed Λ 4.17/7.93 0 33.00/2.04 9102/955.71 1.90/1.50 

Elliptic+single Λ 1.59/1.59 5.15 45.50/8.74 45.5/8.74 -/- 

Elliptic+distributed Λ 1.59/1.59 3.43 34.97/2.04 9557.10/955.71 1.90/1.50 

 

It should be remarked that the distribution of the filtration coefficients turns out to be 

rather wide, in spite of the apparent homogeneity of the particle population, as was also 

observed in Ref. [103]. The reason for the hyperexponentiality in this case is explained 

by the authors to be the presence of repulsive DLVO interactions. Under the unfavorable 

surface attachment conditions, the particles overcoming energy barriers to reach the 

primary energy minimum deposit slower, while others deposit faster. Such heterogeneity 

of interactions between the particles and the porous medium is the direct cause of the 

hyperexponential deposition profile. The same authors also managed to apply the ADE 

with a bimodal distribution of filtration coefficients to fit the experiments under similar 

conditions in Ref. [101].  

 

2.4.2  Colloid in uniformly packed sand 

The next experimental study considers suspension flow in a, apparently, more 

heterogeneous porous medium. Bradford et al. [115] adopted yellow-green fluorescent 

latex microspheres as colloid particles and packed Ottawa sand (99.8% quartz) as porous 

media for the column experiments. The sand particles were randomly shaped but 

uniformly sized and much larger than the colloid particles. As in the previous 

experiments, a low influent concentration was adopted in order not to influence the pore 

structure, and the solution chemistry was strictly controlled.   
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A number of calculations are carried out, trying to reproduce the results of Bradford et al. 

with the complete model involving the filtration coefficients distribution and the temporal 

dispersion. The common parameters in the calculations were u=1, Λmax=1400. The rest of 

the parameters are given in Table 2.9. As seen in Figure 2.8, for these monodisperse 

colloid suspensions the experimental deposition profiles are hyperexponential. Although 

the breakthrough curves are more dispersed than in the previous set of the experiments, 

the dispersion is still relatively mild. 

Table 2.9 Parameters adopted for modeling in comparison with experiments of S. Bradford et al. [115], in 

sequence: dc/d50= 0.008/0.013/0.020. Results are shown in Figure 2.8 and Figure 2.9. 

Methodology Rx(10-3) Rt(10-3) Λmin(10-2) Λmax(10-2) b 

ADE+single Λ 6.98/4.07/0.78 0/0/0 0.42/1.70/2.52 0/0/0 - 

ADE+distributed Λ 7.75/8.13/7.03 0/0/0 0.31/1.36/2.24 137.54/203.14/268.80 1 

Elliptic+single Λ 4.98/4.07/0.78 1.80/4.40/7.10 0.42/1.70/2.52 0/0/0 - 

Elliptic+distributed Λ 7.75/8.13/7.03 0.35/0.44/0.36 0.31/1.36/2.24 137.54/203.14/268.80 1 

 

 

Figure 2.8 ADE modeling results compared with S. Bradford’s experimental data [115] with homogeneous 

porous media. The power law distribution is adopted. 
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The distribution of Λ gives rise to hyperexponential deposition decay in compliance with 

the experimental observations. It should be noted, however, that the applied distribution 

is rather wide, which does not look fully realistic for a monodisperse suspension.  

The experiment has also been simulated with a monodisperse suspension (a single value 

of Λ), but with a non-zero temporal dispersion. As seen in Figure 2.9 (a) and (c), the 

temporal dispersion fitted to match the observed breakthrough curves is still not large 

enough to predict clearly hyperexponential deposition profiles. The homogeneity of the 

porous media used in the experiments is likely to lead to Fickian transport with moderate 

temporal dispersion coefficients. The experimental results with homogeneous porous 

media can neither confirm the existence of nor the influence of temporal dispersion. On 

the contrary, the ADE with distributed filtration coefficients suffices to predict both the 

breakthrough curves and the deposition profiles. The best-fit parameters for the different 

ways of modeling are summarized in Table 2.9. 

 

Figure 2.9 Elliptic modeling results compared with S. Bradford’s experimental data [115] with homogeneous 

porous media. The power law distribution is adopted. 
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The DLVO calculations and the torque analysis by the authors of Ref. [115] show that the 

experimental conditions are also unfavorable for the surface attachment. The main 

mechanism of particle deposition is straining by design. Effects of straining are observed 

to be influenced by the grain sizes, grain shapes, hydrodynamics and solution chemistry.  

The heterogeneity of these factors is likely to cause the deposition hyperexponentiality. 

Compared to the experiment by N. Tufenkji and M. Elimelech [103], the authors adopted 

a more heterogeneous porous medium which gives rise to higher heterogeneity of 

particle-medium interactions.  It may also explain why the degree of the deposition 

hyperexponentiality in this case is clearly higher. In Ref. [208], one of the same authors 

proposed a stochastic model for deep bed filtration also applying the distribution of 

filtration coefficients (log-normal and bimodal). 

 

2.4.3 Colloid in non-uniformly packed sand 

Since in relatively homogenous porous media temporal dispersion is not large enough to 

yield a hyperexponential deposition profile, comparison between the modeling and the 

experiments with highly heterogeneous porous media is of significance for the present 

study. 

Bradford et al. [118] adopted carboxyl latex microspheres as colloid particles and Ottawa 

sand (99.8% quartz) as porous media for the column experiments. The heterogeneous 

system consisted of two types of soil, a soil cylinder lens (2.6cm diameter, 6cm long) 

embedded in the center of a second soil referred to as the matrix (5cm diameter, 10cm 

long), as shown in Figure 2.10. Median particle sizes of the lens and the matrix were 

different. The chosen experiment adopted sand consisting of particles of 710μm as the 

lens inside and sand of 360μm as the matrix outside. A characteristic size of a colloid 

particle was 3.2μm.  
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Figure 2.10 Schematic illustration of the experiment conducted by S. Bradford [118] . the sand lens of 710μm is 

in the center, and the sand matrix of 360μm is outside. 

The deposition profile in this experiment is hyperexponential. Whether the 

hyperexponentiality is caused by temporal dispersion or by the spatial distribution of the 

filtration coefficients, is to be figured out.  

Table 2.10 Parameters adopted for ADE/elliptic modeling in comparison with the experiments of S. Bradford et 

al. [118]. Results are shown in Figure 2.11 and Figure 2.12. 

Upscaling regime  Rx

 
Rt

 
Λ 

Three blocks 
Block 1 0.0033/1.00 0/22.27 1.33/0.85 

Block 2 0.3333/13.33 0/0.05 0.61/0.57 

Block 3 0.0033/13.33 0/22.27 0.61/0.85 

Single block  0.10/4.00 0/25.03 1.80/2.94 

 

In this experiment, the heterogeneity of the porous medium is known in advance, and it is 

essentially two-dimensional. Meanwhile, only a single-dimensional simulator has been 

prepared in this study. Therefore, two simplified representations of the porous column 

have been adopted. The first representation approximates the column as three blocks in 

line, as seen in Figure 2.10. The side blocks are “pure”, while the central block is 

“mixed”. The second approach is, simply, to represent the column as a single block. In 

the latter regime, the effect of the heterogeneity is only encoded in the temporal 

dispersion term from the elliptic equation. The parameters for the calculations are shown 

in Table 2.10. 
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Figure 2.11 Numerical modeling result compared with experimental observations, with the porous media 

approximated by three blocks in line. 

As seen in Figure 2.11, both the ADE modeling and the elliptic modeling with the porous 

media approximated by three blocks are able to produce hyperexponential deposition 

profiles. Hyperexponentiality of the deposition is caused by spatial distribution of the 

filtration coefficients. Unlike the ADE, the elliptic equation can better describe the BTC, 

“catching” early arrival of the suspension and the large ending tail in the breakthrough 

curve. The deposition profile predicted by the ADE is composed of the three exponential 

decays. Transitions between them are abrupt (especially, between the first two cuts).  The 

deposition profile predicted by the elliptic equation also consists of the three parts, the 

first of which is smoother and is clearly hyperexponential. The transition between the 

first two phases is much smoother. 

 
Figure 2.12 Numerical modeling result compared with experimental observations, with the porous media 

approximated by a single block. 

The second approach, where the porous medium is considered as a single block, is 

represented in Figure 2.12. For this approach, the elliptic model is able to produce a 

hyperexponential deposition profile, while the ADE is not. Only the elliptic equation can 
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catch the early arrival and the large ending tail on the breakthrough curve. The degree of 

hyperexponentiality caused by the temporal dispersion alone is not as high as the degree 

of hyperexponentiality observed in experiments or that obtained by the model of three 

blocks described above.  

It can be deduced from the results above that, in this case, the deposition 

hyperexponentiality is caused both by the spatial distribution of the filtration coefficients 

and by the temporal dispersion. It has not been possible to match the experimental results 

for this case as precisely as for previous cases, probably due to roughness of the one-

dimensional representation. 

 

2.4.4 Tracer injection in natural porous media 

In order to confirm the ability of the elliptic equation to model non-Fickian transport in 

heterogeneous porous media, the modeling results are compared with tracer injection 

experiments. The physics of tracer injection is similar to that of the monodisperse 

suspension flow in porous media with a zero filtration coefficient. The experiments 

described by Boggs et al. have been carried out with natural aquifer material from a field 

site located at Columbus Air Force base in northeastern Mississippi [116]. They adopted 

a column with a diameter of 5.2cm and lengths of 100cm. Tracers with tritium and 

calcium bromide were injected at a flow rate of 4.8cm/day. 

 
Figure 2.13 Tracer injection in natural porous media. Numerical modeling results compared with the 

experimental observations by J. M. Boggs et al. [116]. 
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The breakthrough curves from the ADE and elliptic models are compared with the 

experimental observations, as seen in Figure 2.13. The modeling parameters are 

summarized in Table 2.11. Compared to the result of the ADE, the experimental 

breakthrough curve is characterized by the delayed peak and the large ending tail. These 

are the two distinguishing features of non-Fickian transport in heterogeneous porous 

media. Unlike the ADE, the elliptic equation succeeds in modeling the highly asymmetric 

breakthrough curve. Nonetheless, the elliptic equation slightly overestimates the early 

arrival of the tracer around the breakthrough. In addition, the tracer velocity needs to be 

different from the average pore water velocity in order to fit the breakthrough curve 

successfully, as seen in Table 2.11. 

Table 2.11 Parameters adopted for ADE/elliptic modeling in comparison with the experiments of J. M. Boggs et 

al. [116]. Results are shown in Figure 2.13. 

Tracer Rx

 
Rt

 
u

 

Bromide 0.09/0.10 0/0.0518 0.90/0.7

3 Tritium 0.18/0.06 0/0.0544 0.80/1.0

0  

It is also worth mentioning that, the parameters (velocity and dispersion coefficients) 

used for fitting the two breakthrough curves in the same porous medium are rather 

different in this case, while the parameters for fitting the experiments above and below 

are similar. It indicates that, for not-so-strongly heterogeneous porous media the 

parameters fitted to one experiment may be used for simulating another experiment, 

while for highly heterogeneous porous media they may not. It may be due to 

underestimating the really complicated physics in the natural porous media. Detailed 

study of this question is beyond the scope of the present work. 

 

2.4.5 Tracer injection in porous media with uniform heterogeneity 

Another experiment with heterogeneous media is carried out by Silliman and Simpson 

[257]. The experiment adopts an artificially heterogeneous porous medium with a coarse 

sand matrix and a number of small boxes of fine sand inside. The sand boxes are placed 

uniformly. The degree of heterogeneity is probably lower than in the experiments [116, 

118] modeled above. 
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Figure 2.14 Tracer injection in porous media with uniform heterogeneity. Numerical modeling results compared 

with the experimental observations by Silliman and Simpson [257]. 

The breakthrough curves from ADE modeling and elliptic modeling are compared with 

experimental observations, as seen in Figure 2.14. The modeling parameters are 

presented in Table 2.12. ADE modeling is carried out with the best estimated parameters 

from Berkowitz et al. [222]. Low temporal dispersion coefficients are adopted in the 

elliptic equation. Unlike the ADE, the elliptic equation can model the long “tails” of the 

integral breakthrough curves. However, it overestimates early arrival of the tracer. 

Table 2.12 Parameters adopted for ADE/elliptic modeling in comparison with the experiments of Silliman and 

Simpson [257]. Results are shown in Figure 2.14. 

Position from source Rx Rt 

0.91m 0.0879/0.0879 0/0.029

1 1.37m 0.0547/0.0547 0/0.021

2  

Summarizing the comparisons between the modeling and the experiments, a method for 

estimating the parameters in the model may be described as follows. Ellipticity of the 

model may be ruled out in the first place if the effluent concentration profile is clearly 

stepwise. On the contrary, if this profile is smoothed, one may expect non-zero elliptic 

dispersion. The distribution of the filtration coefficients may be ruled out if the deposition 

is exponentially decreasing. For the case with a stepwise breakthrough curve and 

hyperexponential deposition, the ADE with distributed filtration coefficients is adequate. 

If ellipticity is nonzero, it may be sufficient to predict moderate hyperexponentiality 

without introducing distribution of filtration coefficients. The parameters for transport 

can be fitted to the breakthrough curve alone and the distribution of filtration coefficients 
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(power law) can be fitted to the deposition profile alone. On the other hand, for the 

experiment with a widely dispersed breakthrough curve (early arrival, large tail) and 

hyperexponential deposition, the temporal dispersion coefficient needs to be fitted to the 

breakthrough curve first, and then the distribution is fitted to the deposition. After 

separate fitting of the dispersion coefficient and the distribution to match different curves, 

some “fine tuning” is required, to better match both curves. It is because the deposition 

hyperexponentiality may be attributed to both the temporal dispersion and the distribution 

of filtration coefficients. 
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2.5 Summary of Chapter 2 

In this chapter, an integral model of the deep bed filtration process has been developed. It 

incorporates pore and particle population heterogeneity (surface charges or sizes), as well 

as the particle residence time distribution in the framework of the continuous time 

random walk theory. Numerical modeling is carried out to study the factors influencing 

breakthrough curves and deposition profiles for the deep bed filtration systems. 

The experimental data and our computations indicate that hyperexponentiality of the 

deposition can be caused by the following three mechanisms: particle population 

heterogeneity in connection with the distribution of the filtration coefficients, midscale 

heterogeneity in connection with non-Fickian transport, and macroscale heterogeneity in 

connection with spatial distribution of the filtration coefficients. The degree of “wash-out” 

of a breakthrough curve indicates whether the elliptic formalism is necessary. In cases 

where a breakthrough curve is (almost) stepwise (which is commonly observed for 

artificial uniform porous media), application of the elliptic formalism seems to be 

inadequate, and hyperexponentiality of the deposition profiles, if observed, should be 

caused by the explicit or implicit distribution of the parameters of the particles in the 

suspension. In non-uniform porous media the breakthrough curves may be more 

dispersed. For such cases the elliptic transport equation, probably, coupled with the 

particle distribution, seems to be more adequate. 

The effects of the temporal dispersion and the distribution of filtration coefficients can be 

compensated for by each other, but not entirely. It implies that attributing the deposition 

hyperexponentiality to particle population heterogeneity alone or non-Fickian transport 

alone may be to overestimate this factor.  
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2.6 Nomenclature of Chapter 2 

ci Number of suspended particles per unit pore volume(m
-3

) 

Ci Dimensionless suspended particle concentration 

si Number of retained particles per unit volume of porous media 

Si Dimensionless retained particle concentration 

t Time(s) 

T Dimensionless time(pore volume) 

x x coordinate in space 

X Dimensionless x 

Nc Number of retained particles per gram of porous media 

Nt Number of total injected particles 

v Interstitial velocity of particles 

u Dimensionless interstitial velocity of particles 

Dx Coefficient of spatial dispersion(m
2
/s) 

Dt Coefficient of temporal dispersion(s) 

Rx Dimensionless longitudinal dispersivity 

Rt Dimensionless temporal dispersivity 

p Probability density function 

a Coefficient in power law distribution 

b Power in the power law distribution 

flow Fraction of the component with low Λ in the bimodal distribution 

fhigh Fraction of the component with high Λ in the bimodal distribution 

t0 Particle injection duration(s) 

T0 Particle injection duration (pore volume) 

c0 Influent concentration 

µ Mean value 

ζ Standard deviation  

λ  Filtration coefficient(s
-1

) 

Λ Dimensionless filtration coefficient 

ξ Total injection time is ξ times the particle injection duration 

φ Porosity of the porous media 

ρb Bulk density of the dry porous media 
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3 Uncertainty and sensitivity analysis of models for non-

Fickian transport and heterogeneous attachment 

In this chapter, uncertainty and sensitivity analyses are carried out to investigate the 

predictive accuracy of the filtration models for non-Fickian transport and heterogensou 

attachment (mainly arising from Chapter 2). Five different modeling approaches, 

involving the elliptic equation with different types of distributed filtration coefficients 

and the CTRW equation expressed in Laplace space, are selected to simulate a number of 

experiments. These experiments involve both porous media and colloid-medium 

interactions of different degrees of heterogeneity. Experiments with tracers injected to 

heterogeneous porous media are also studied. 

 

3.1 Introduction 

The temporal dispersion term and the distribution of filtration coefficients introduced in 

chapter 2 are two advances compared to the traditional approach. To the best of our 

knowledge, their properties can only be estimated by fitting breakthrough curves and 

deposition profiles to the experimental data [101, 104, 207]. Whether the additional 

parameters can be uniquely identified or how large is the uncertainty of parameter 

estimation remains unknown.   

Generally, there are various sources of uncertainty of the model outputs, such as the input 

uncertainty reflecting the lack of knowledge or accuracy of the model inputs, and the 

structural uncertainty related to the mathematical interpretation of the model [264].  From 

the uncertainty analysis, a probability distribution of model outputs can be obtained, 

including the mean value, the variances and the quantiles [265-267]. 

The uncertainties of the integral elliptic model may come from the following sources. (i) 

The approximation of particle velocity by the average pore water velocity; It has been 

observed that the particles of different sizes may travel faster or slower that the carrying 

fluid in porous media [268]. (ii) Estimation of dispersion coefficients by fitting to 
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experiments; For highly heterogeneous porous media the observed breakthrough curves 

are more dispersed and contain more scattered points [104, 118]. (iii) Lack of 

understanding heterogeneity of particle population. The heterogeneity of particle 

population may be reflected by distributions of particle properties [104, 207, 208]. The 

relation between the distribution types and the heterogeneity has not been fully 

understood, yet.  

On the other hand, the sensitivity analysis aims at quantifying the individual contribution 

from each parameter‟s uncertainty to the uncertainty of outputs. Correlations between 

parameters may also be inferred from sensitivity analysis. It is a frequent routine and 

recommended to perform the uncertainty and sensitivity analysis in tandem [265, 269-

272]. 

 

3.2 CTRW equation expressed in Laplace space 

Beside the elliptic equation (see Section 2.2), it has been shown in a number of Refs [10, 

11, 124, 220, 222, 254, 255] that the CTRW transport equation can be formulated in 

Laplace space, to represent the time derivative in an algebraic expression [11, 124, 220, 

222, 254]. In one dimension, the concentration of the solute/particles in Laplace space is 

( , )c x u and can be calculated by the following equation. 

 

2

0 2

( , ) ( , )
( , ) ( ) ( )

c x u c x u
uc x u c x M u v D

x x
 

  
    

  
 (3.1) 

 
( )

( )
1 ( )

u
M u tu

u







 

(3.2) 

where ( )M u is a memory function which accounts for the median heterogeneity (small 

scale), u is the Laplace variable with the dimension of s
-1

. Here c0(x) is the initial 

concentration of the solute/particles. t is a characteristic time. vψ and Dψ are the transport 

velocity and the dispersion coefficient from CTRW interpretations.  is the core of the 
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CTRW formations and characterizes the motion of solute in porous media. In this work, 

the truncated power law is adopted for the expression of  : 

    
 
 

 
1

2 1

2 1 1 1

2

,
( ) 1 exp ; 0,2

,

t u
u ut t u

  
  

 





  
  

 
 (3.3) 

where Γ is the incomplete gamma function. Substitution of Equation (3.3) back into 

Equation (3.2) with 1t t give rise to the full expression of the memory function. t1 is the 

approximate median transition time and the lower bound of the power law behavior. t2 is 

the upper bound of the power law behavior and also has the dimension of time. Larger 

values of t2 lead to better representation of the pure power law model. The CTRW 

formulations can be reduced to the parabolic advection dispersion equation with

 
1

( ) 1u tu


  .  

 

3.3 Analysis methods 

3.3.1 Linear error propagation 

The model parameters are estimated by fitting experimental data with the least squares 

method. The confidence intervals of parameter estimators and the correlation matrix were determined 

using the inverse of the Fisher information matrix (FIM) [273]. The uncertainties from 

experimental measurements are mapped as the errors of parameter estimators. Details of 

this method can be found in Refs. [273-276].  

 

3.3.2 Monte Carlo procedure 

Monte Carlo procedure involves a number of simulations with randomly sampled 

parameters and the statistical analysis of these results. The parameter space is sampled 

with the Latin hypercube sampling (LHS) method. LHS as an n-dimensional randomized 

generalization of Latin square sampling  is an extension of quota sampling method [277].  
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It can provide effective coverage of the full parameter space and take into account the 

correlations between parameters with the correlation matrix [264, 278-280]. The 

sampling size is selected to be 500. It results in a sampling matrix with a dimension of 

500×n, rows of which correspond the LHS samples, and columns of which correspond to 

the n parameters. 

For LHS two pieces of information need to be specified: the valid range of parameters 

and the correlation of them. Parameter estimators plus/minus their 95% confidence 

intervals from the linear error propagation analysis are selected as the upper/lower 

bounds of the valid range. The physical meaning of parameters should also be taken into 

account, e.g. the dispersion coefficients cannot be negative. The parameters are sampled 

following Latin hypercube sampling scheme from their corresponding probability 

distribution functions (in this case assumed uniform distribution) [265, 270, 271]. After 

sampling, a correlation control is induced using Iman and Conover method [280]. The 

correlation between the parameters were obtained from the parameter estimation routine, 

that is the from the covariance matrix of parameter estimators. More details of the 

method can be found in Refs. [266, 267, 280].  These LHS samples are both outputs from 

linear error propagation analysis and the inputs for Monte Carlo simulations. 

 

3.3.3 Differential analysis 

First order derivatives of model outputs to different parameters are calculated at their 

estimators. Such derivatives only represent the local sensitivity of model predictions 

around the parameter estimators.  In order to rank the local sensitivity of different 

parameters, the following definition of sensitivity measure is adopted [281-283].  

  
2

, ,

1

1
; ;

yi

N
j msqri

nd ij j nd ij

ij

y
S S

N




  


 


  (3.4) 

where Snd,ij is the non-dimensional sensitivity of jth parameter at ith data point, yi is the 

ith model output, θj is the jth parameter estimator, µyi is the mean of ith model outputs. N 
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is the number of calculated data points (different T points or X point in this case). δj
msqr

 is 

the local sensitivity measure. 

3.3.4 Linear regression of Monte Carlo simulations 

After Monte Carlo simulations, linear regression of the results is performed for a quasi-

global sensitivity analysis. Outputs of the original models and their representative linear 

models are usually scaled with respect of the statistics of simulation results, as follows: 

 
2 2

; ;s si C i S
i i

C S

C S
C S

 

 

 
   (3.5) 

where i is the Monte Carlo simulation index,  superscripts „s‟ represent the scaled outputs. 

µC and µS are respectively the mean values of model outputs C and S while 2C
 and 2S



are the mean values of C
2
 and S

2
.  

Such an analysis is only proper for the models that can be linearized to a certain degree 

(R
2
>0.7) [265, 271, 272]. The linearity of the elliptic model is checked in the first place. 

If the model can be highly linearized, the quasi-global sensitivities are reflected by the 

absolute values of standardized regression coefficients of model parameters. 

 

3.3.5 Implementation 

CTRW calculations are implemented with the help of CTRW tool box v3.1 developed by 

Brian Berkowitz et al. [10, 11, 124, 222, 255]. A numerical inversion algorithm [284] for 

the Laplace transform of the solution is used to obtain a time-domain solution. Such an 

algorithm requires careful tuning of the tolerance for convergence. 

For local absolute sensitivity analysis, central, backward and forward difference regimes 

are applied to approximate the first order derivative of different parameters. The value of 

perturbation is modified until the three regimes give the same result. This ensures the 

accuracy of the finite difference approximation for the local sensitivity. 
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3.4 Selected experiments and modeling approaches 

In this section, eight experiments are selected for case study, as listed in Table 1.  They 

are conducted with different types of porous media, from highly heterogeneous porous 

media to highly homogeneous porous media. Either colloids or tracers are injected to 

different porous media. Heterogeneous colloid-medium interactions are observed, 

including physical straining and/or surface attachment (heterogeneous surface charge) of 

colloids in porous media. Five different modeling approaches for non-Fickian transport in 

porous media are adopted to simulate these experiments: the CTRW equation expressed 

in Laplace space, the elliptic equation with a single non-zero filtration coefficient, 

normal-distributed filtration coefficients, power-law-distributed filtration coefficients, 

and a zero filtration coefficient. The purpose of such a selection is to ensure the analysis 

covers a wide range of experiments under different conditions and test the performances 

of different modeling approaches for non-Fickian transport. 

 

3.4.1 Colloids in heterogeneously packed sand 

S. Bradford et al. [118] adopted carboxyl latex microspheres as colloid particles and 

Ottawa sand (99.8% quartz) as porous media for the column experiments. Details can be 

found in Section 2.4.3. In this case the known median heterogeneous structure is upscaled 

into a single block in one dimension. The elliptic equation only with a single filtration 

coefficient is adopted to fit the experimental data.  This experiment will be referred to as 

Experiment No.1 as in Table 3.1 in the further contexts. 
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Table 3.1 Summary of selected experiments and modeling approaches. 

 Median Heterogeneity Injected materials Heterogeneity of colloid-medium 

interactions 

Modeling approaches Refs. 

(1) Large scale colloids Physical straining + surface attachment Elliptic equation + single non-zero Λ [118] 

(2) pore scale colloids Physical straining + surface attachment Elliptic equation + truncated normal distribution of Λ [115] 

(3) pore scale colloids Physical straining + surface attachment Elliptic equation + truncated normal distribution of Λ [115] 

(4) pore scale colloids Physical straining + surface attachment Elliptic equation + truncated normal distribution of Λ [115] 

(5) Minimal colloids Heterogeneous surface charge and energy 

minima 

Elliptic equation + truncated power law distribution of Λ [103] 

(6) Minimal colloids Heterogeneous surface charge and energy 

minima 

Elliptic equation + truncated power law distribution of Λ [103] 

(7) Mediate tracer none Elliptic equation+ zero Λ and CTRW expressed in Laplace space [10] 

(8) Mediate tracer none Elliptic equation+ zero Λ and CTRW expressed in Laplace space [10] 
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3.4.2 Colloids in uniformly packed sand 

The next experimental study considers suspension flow in a, apparently, less 

heterogeneous porous medium. S. Bradford et al. [115] adopted yellow-green fluorescent 

latex microspheres as colloid particles and packed Ottawa sand (99.8% quartz) as porous 

media for the column experiments. Details can be found in Section 2.4.2. Three sets of 

experimental data from the literature are selected for study. Here the elliptic equation and 

the normal distribution of filtration coefficients are applied to describe the heterogeneity 

of the particle-pore interactions. These experiments will be referred to as Experiments 

No.2 No.3 and No.4 as in Table 3.1 in the further contexts. 

 

3.4.3 Colloids in uniformly packed glass beads 

N. Tufenkji and M. Elimelech [103] conducted column experiments on filtration of 

uniform polystyrene latex colloid suspension in packed soda-lime glass beads.  Details 

can be found in 2.4.1. Two sets of experimental data are selected for study from the 

literature. It is assumed that the particle velocity can be approximated by the average pore 

water velocity due to low median heterogeneity .Here the elliptic equation with power-

law-distributed filtration coefficients is adopted to reproduce the results. These 

experiments will be referred to as Experiments No.5 and No.6 as in Table 3.1 in the 

further contexts. 

 

3.4.4 Tracer in heterogeneously packed sand 

M. Levy and B. Berkowitz [10]conducted tracer injection experiments in heterogeneously 

packed sands. These sands are well-rounded quartz sands with minimal surface coatings 

(99.8% pure SiO2). Two types of median heterogeneity were established in the 

experiments. One is “uniform heterogeneity” as in Ref. [257], i.e. a number of sand boxes 

uniformly embedded in the matrix the sand of which is different from the embedded 

boxes. The other type of medium is randomly packed sand with exponentially correlated 

structure.  
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Two sets of the experimental data with different types of media are selected for study. It 

has been shown in Ref. [10] that the ADE fails to describe the breakthrough curves 

accurately, while the CTRW approach does. Here both the elliptic equation with a zero 

filtration coefficient and the CTRW equation expressed in Laplace space are applied to 

reproduce the experimental results. 

 

3.5 Results of numerical modeling  

3.5.1 Non-Fickianity from two CTRW approaches 

Preliminary modeling results are first obtained from both CTRW approaches for non-

Fickian transport in porous media: the elliptic equation of CTRW and the CTRW 

equation expressed in Laplace space. A 1-D tracer injection in porous media (without 

adsorption or desorption) for 5 pore volumes is simulated. After the tracer injection, pure 

water is injected to flush away the rest of the tracer in porous media. For the CTRW 

equation expressed in Laplace space, t1=10
-1

, t2=10
5 

and β is modified to obtain multiple 

breakthrough curves, as seen in Figure 3.1 (a). For the CTRW elliptic equation the 

temporal dispersion coefficient is modified, as seen in Figure 3.1 (b).  

 
Figure 3.1 Comparison of breakthrough curves: (a). Modeling with the CTRW equation in Laplace space (b). 

Modeling with the elliptic equation 

It can be seen that β and the temporal dispersion coefficient are two key parameters in the 

two approaches to tune the shape of the breakthrough curves. The smaller β and the larger 

temporal dispersion coefficients lead to higher non-Fickian deviations from the ADE 

solution. It agrees with the conclusions in Ref. [124] that the solution is more Fickian 
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with the value of β approaching 2, and the conclusions in Refs. [104, 218] that the 

equation is reduced to be parabolic Fickian ADE with the temporal dispersion coefficient 

approaching zero. 

Such a comparison shows that the two models are both able to reveal the early arrivals 

before breakthrough and the late tails after injection in breakthrough curves. High non-

Fickianity in both models leads to compressed and delayed peaks. The CTRW equation 

expressed in Laplace space presents an algebraic decaying tail after the peak, while the 

tail from the elliptic equation ends much earlier. The resulting peak is highly compressed 

when the elliptic equation produces a long delayed tail. 

 
Figure 3.2 Elliptic equation with a single filtration coefficient modeling and Experiment No.1 [118], (a). 

Breakthrough curves (b). Deposition profiles 

 
Figure 3.3 Elliptic equation with normal-distributed filtration coefficients modeling and Experiment No.2~ No.4 

[115], (a). Breakthrough curves (b). Deposition profiles 
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Figure 3.4 Elliptic equation with power-law-distributed filtration coefficients modeling and Experiment No.5and 

No.6 [103], (a). Breakthrough curves (b). Deposition profiles 

 

 
Figure 3.5 (a): Elliptic equation and CTRW equation expressed in Laplace space modeling Experiment No.7. (b): 

those to Experiment No.8 [10]. 
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predicting deposition profiles. The predicted and the experimental deposition profiles not 

are highly coincident. It is then decided that the parameters are estimated by fitting both 

the breakthrough curves and deposition profiles. Comparisons between the model outputs 

and the experimental data are shown in Figure 3.2 to Figure 3.5. It can be seen that the 

experiments can be well matched by the selected modeling approaches.  

Table 3.2 Parameter estimators and 95% confidence intervals (CI) of different models estimated by fitting 

experiments. 

 No.(1) No.(2) No.(3) No.(4) No.(5) 

Estimator 

± 

95%CI 

 

Rx=1.71±0.22 Rx/10-2=1.12±1.29 Rx/10-2=0.99±0.32 Rx/10-2=0. 79±1.81 Rx/10-3=1.00±0.01 

Rt=10.0±1.37 Rt/10-2=0.44±1.31 Rt/10-2=0. 82±0. 50 Rt/10-2=1.29±2.56 Rt/10-3=5.69±0.05 

Λ=2.46±0.25 ζ/10-4=0.92±6.69 ζ/10-4=4.03±1.15 ζ/10-4=0.22±0.58 Λmin/10=2.98±0.01 

V=1.20±0.18 μ/10-2=0.10±0.37 μ/10-2=0. 67±0.13 μ/10-2=0. 52±0. 57 b=2.02±0.01 

 

 No.(6) No.(7) No.(8) No.(7) No.(8) 

Estimator 

± 

95%CI 

 

Rx/10-3=1.00±0.02 Dψ/10-6= 

9.12 ±10-4 (m2/s) 

Dψ/10-6=1.92±0.29(m2/s) Rx/10-2=1.86±0.01 Rx/10-

2=2.27±0.01 

Rt/10-2=9.44±0.01 vψ/10-4= 

1.34±0.02 (m/s) 

vψ/10-4= 2.33±0.03(m/s) Rt/10-3=0.53±0.13 Rt/10-

3=1.00±0.03 

Λmin/10-2= 

3.32±0.17 

β=1.70±0.06 β=1.32±0.04 V=0.96±0.45E-3 V=0.93±0.23E-

3 

b=1.29±0.02     

 

The estimated parameters and their 95% confidence intervals (CI) are listed in Table 3.2. 

Compared to the parameter estimators the CIs from the experiments with porous media of 

higher physical heterogeneity and more heterogeneous colloid-medium interaction are 

higher, e.g. Experiments No. 1~No. 4. On the other hand, the CIs from the experiments 

with more homogeneous porous media or tracer (no colloid-medium interaction) are 

lower, e.g. Experiments No. 5~No. 8. It is worth mentioning that Experiments No. 5 and 

No.6 are conducted with heterogeneous colloid-medium interactions but in highly 

homogenous porous media. The lower uncertainty from these experiments may be 

attributed to the median homogeneity or that the heterogeneity of surface attachment 

(surface charge/energy minima) is lower than the heterogeneity of both physical straining 

and surface attachment in Experiments No. 2 ~ No. 4.  
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Correlations between parameters are inferred from the resulting correlation matrices (not 

shown here). Strong correlations between the Rx, Rt and Λ are observed for modeling 

Experiment No.1, while no correlations are observed for modeling Experiment No. 7 and 

No. 8. Strong correlations between the parameters of the distributions of Λ are observed 

for Experiments No. 2~No. 6 (correlations between μ and ζ; correlations between Λmin 

and b).  Strong correlations are observed for CTRW modeling Experiments No. 7 and No. 

8. Strong correlations between parameters indicate that the parameters may not be 

uniquely identified. In such cases, parameters estimated by one set of experiment may not 

be able to predict another experiment.  

By comparing the correlation matrices for Experiment No. 1 and Experiments No. 7& No. 

8, it can be seen that the parameter correlations in the elliptic equation may depend on the 

available data sets. The major differences between them are the degrees of physical 

median-heterogeneity and the degrees of colloid-medium interaction heterogeneity. The 

median heterogeneity in Experiment No. 1 is macroscopic and higher while the latter is 

mediate.  The heterogeneity of colloid-medium interactions in the first experiment 

involves both physical straining and surface attachment of colloids in porous media while 

the latter is none (no colloids but solute injected). It may be speculated that parameter 

correlations are connected to these heterogeneities. Little can be concluded further until 

more analyses of more experiments with heterogeneous porous media are performed, 

which are beyond the scope of current study. 

Correlations between the parameters of the distributions of Λ may be explained by the 

either of the two reasons: Deposition hyperexponentiality may be interpreted by different 

types of distribution of filtration coefficients mathematically [104, 207, 208]. 

Nevertheless, the physics behind them has not been thoroughly understood. Deposition 

hyperexponentiality may also be attributed to other mechanisms, such as the enhanced 

retention at low-velocity zones of pore space [79, 121, 122]. The other reason may be the 

non-uniqueness of the discrete form of distribution. Similar distributions may be 

represented by different types of distribution or distribution properties. The parameters 

for the distribution of Λ may not be uniquely identified either due to the inconsistency 
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between the real physics and its mathematical interpretation or due to the non-uniqueness 

of its mathematical interpretation.  

 

3.5.3 Uncertainty Analysis 

The LHS sampling procedures are performed for all the cases. The correlation matrices 

from linear error propagation analysis are adopted for correlation control in the sampling 

procedure. The correlations between parameters can be visualized by such sampling 

results, as shown in Figure 3.6 ~ Figure 3.9.  

  
Figure 3.6 LHS sampling of model parameters for Experiment No.1 [118]. 
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Figure 3.7 LHS sampling of model parameters for Experiment No.3 [115]. 

  
Figure 3.8 LHS sampling of model parameters for Experiment No.5 [103]. 
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Figure 3.9 (a): LHS sampling of CTRW model parameters (b): LHS sampling of elliptic equation parameters for 

Experiment No.8 [10]. 
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Figure 3.10 Representation of model prediction uncertainty by mean, 10th and 90th percentile values of Monte 

Carlo simulations. (a) and (b) for Experiment No. 1 [118]; (c) and (d) for Experiment No. 2; (e)and (f) for 

Experiment No. 3; (g) and (h) for Experiment No. 4 [115]. 

0 5 10
0

0.1

0.2
C

T

0 0.5 1
10

-2.9

10
-2.4

N
c
/
N
t
(
g
-
1
)

X

0 2 4
0

0.2

0.4

0.6

0.8

C

T

0 0.5 1
10

-4

10
-3

10
-2

N
c
/
N
t
(
g
-
1
)

X

 

 

90th percentile

mean

10th percentile

0 2 4
0

0.1

0.2

C

T

0 0.5 1
10

-4

10
-2

10
0

N
c
/
N
t
(
g
-
1
)

X

0 2 4
0

0.1

0.2

C

T

0 0.5 1
10

-5

10
0

N
c
/
N
t
(
g
-
1
)

X



100 
 

The results of Monte Carlo simulations are analyzed statistically. The mean, the 10
th

 

percentile, and the 90
th

 percentile of Mote Carlo simulations are plotted in Figure 3.10 to 

reveal the uncertainty of modeling Experiments No. 1~No. 4. For modeling Experiments 

No. 5~No. 8 the uncertainty is minimal and not shown here. The uncertainty of model 

outputs are larger in Experiments No. 1~No. 4. It agrees with the observations of 

confidence intervals where uncertainty is larger in the experiments with porous media of 

higher physical heterogeneity and more heterogeneous colloid-medium interactions. The 

uncertainty of elliptic equation predictions with distributed filtration coefficients is larger 

than that with a single filtration coefficient. The uncertainty of both the elliptic equation 

and CTRW equation predictions are minimal for tracer transport in heterogeneous porous 

media.  

 

3.5.4 Sensitivity Analysis 

Differential Analysis 

Differential analysis is then performed to quantify the local sensitivity of model outputs 

to different parameters and examine the correlations. The results for modeling 

Experiments No. 1, No. 5 and No. 8 are selected to be shown in Figure 3.11 ~Figure 3.13 

respectively.  

For Experiment No. 1, as seen in Figure 3.11, the spatial dispersion coefficient 

contributes positively to the early arrival of particles, while the temporal dispersion 

coefficient contributes negatively. The spatial dispersion coefficient does not give rise to 

the late arrival of particles at all, while the temporal dispersion coefficient contributes 

positively. For Experiment No. 5, as seen in Figure 3.11, the spatial dispersion coefficient 

seems to move the entire stepwise breakthrough curve earlier (to the left). The temporal 

dispersion coefficient, on the other hand, seems to suppress the breakthrough curve and 

contribute positively to both the early and late arrival of particles. These results highly 

agrees with previous observations [104].  It is worth mentioning that both the effluent 

concentration and deposition are insensitive to the temporal dispersion coefficient for 

Experiment No. 1.  It may be explained by the fact that the temporal dispersion 
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coefficient Rt is much larger in cases where non-Fickian transport is observed in highly 

heterogeneous porous media [104]. The significance of the temporal dispersion may not 

be negated in this case. 

In logarithm scales, the deposition hyperexponentiality is represented by the linearity of 

the deposition profile. If the deposition‟s derivative to the parameter is not linear in 

logarithm scales but hyperexponential, the parameter contributes to the deposition 

hyperexponentiality. Figure 3.11 and Figure 3.12 both show that the sensitivity of 

deposition to the temporal dispersion coefficient is hyper-exponential. It confirms 

temporal dispersion‟s positive contribution to the deposition hyperexponentiality reported 

in Refs. [104, 123].  
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Figure 3.11 Differential analysis for the elliptic equation modeling Experiment No. 1[118]. 
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Figure 3.12 Differential analysis for the elliptic equation with power-law-distributed filtration coefficients 

modeling Experiment No. 5 [103]. 
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Both Figure 3.11 and Figure 3.12 show that the sensitivities of deposition to all 

parameters are monotonous, and the sensitivities of effluent concentration contain either 

peaks or stepwise curves. More measurements of effluent concentration around the 

dramatic variations are preferable to determine parameters more accurately. The 

measurement of deposition is less important. 

 

 
Figure 3.13 Differential analysis for CTRW equation in Laplace space modeling Experiment No. 8 [103]. 

As seen in Figure 3.13, the sensitivities of the effluent concentration around breakthrough 

to the velocity and dispersion coefficients from CTRW interpretations are similar to the 

velocity and the spatial dispersion coefficient in the elliptic equation as in Figure 3.13, 

while the β behaves oppositely to the temporal dispersion in the elliptic equation. It 

agrees the observation in Figure 3.1 that the smaller β and the larger temporal dispersion 

coefficients lead to higher non-Fickian deviations from the ADE solution. 

Correlations between parameters can also be inferred from the analysis. Figure 3.11 

shows that the spatial and the temporal dispersion coefficients seem to cancel each 

other‟s effects. The filtration coefficient and the velocity behave similarly. Figure 3.12 

shows similar correlations but different shapes. Figure 3.13 shows the correlation 

between the velocity and β in a way that they may be compensated by each other.  
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Local sensitivities of parameters are ranked according to their values of sensitivity 

measure δ
msqr

 , as seen in Table 3.3. It shows that the effluent concentration profiles in 

most cases are the most sensitive to the dispersion coefficients except for Experiments 

No. 2~No. 4. The deposition profiles are more sensitive to the filtration coefficients than 

the dispersion coefficients. In the case of high median heterogeneity (Experiment No. 1), 

model outputs are lowly sensitive to temporal dispersion coefficients, while the opposite 

is observed in other cases (Experiments No. 5 and No. 6).  

Table 3.3 Parameter sensitivity ranking based on values of δmsqr in descending order. 
Model outputs No.1 

2 

3 

4 

No2~No.4 No.5 & No.6 

 

No.7 & No.8 

 

No.7 & No.8 

 
C Rx Λ V Rt μ ζ Rx Rt Rx Rt Λmin b Rt Rx V Dψ β vψ 

S V Λ Rx Rt μ ζ Rx Rt Λmin Rx b Rt - - - - - - 

 

3.5.4.1 Standardized regression coefficients 

Linear models are established based on the regression of Monte Carlo simulation results.  

The effluent concentrations around the breakthrough, at the steady stage, and around the 

end of colloid injection are selected for linear regression.  The deposition at X=0.3 is also 

selected for linear regression.  

In most of the cases the resulting coefficients of determination R
2
 are around 0.80~0.99 

except for Experiments No. 7 and No. 8 modeled by the CTRW equation expressed in 

Laplace space, where R
2
 are around 0.2. The high coefficients of determination indicate 

that the linear models can be representative for the original models, and that the variances 

of the linear models can explain 80%~99% of the variances of the original models.  

By sorting the absolute values of standardized regression coefficients (SRC), the 

sensitivity of the model parameters can be ranked, as seen in Table 3.4. In the case of low 

median heterogeneity (Experiments No. 2 ~ No. 6), the effluent concentrations around 

the breakthrough and the end of colloid injection are more sensitive to the dispersion 

coefficients than the filtration coefficients. The steady-state effluent concentration and 

the deposition are more sensitive to the filtration coefficients.  
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Table 3.4 Parameter sensitivity ranking based on values of standardized regression coefficients in descending 

order. 

Model outputs No.1 

2 

3 

4 

No2~No.4 No.5 & No.6 

 

No.7 & No.8 

 
C(around breakthrough) Rx Rt Λ V Rx μ Rt ζ Rx Rt Λmin b Rx V Rt 

C(steady state) Rx Rt Λ V μ ζ Rx Rt Λmin b Rt Rx - - - 

C(around end of colloid injection) Rx Rt Λ V Rx μ Rt ζ Rx Rt Λmin b - - - 

S(X=0.3) V Λ Rt Rx μ Rt  Rx ζ Λmin b Rt Rx - - - 

 

For Experiments No. 1, the effluent concentrations around the breakthrough and the end 

of colloid injection are also more sensitive to the dispersion coefficients. The deposition 

is also more sensitive to the filtration coefficient. However, the steady-state effluent 

concentration is more sensitive to dispersion coefficients. Such a result is different from 

that of the classical filtration theory, where the steady-state effluent concentration 

depends on the filtration coefficient alone. It agrees with the previous observations that 

the steady-state effluent concentration from the elliptic equation depends on both the 

filtration coefficient and the dispersion coefficients [104]. 

 

3.5.5 Suggestions for experimental design 

In this section, suggestions of optimizing experimental designs for more accurate 

parameter estimation are provided largely referring to the sensitivity analysis above.  

Linear error propagation analysis, local sensitivity results (differential analysis) and 

global sensitivity results (ranking of SCR) from previous sections are all taken into 

account.  

More experimental measurements of the effluent concentrations around the breakthrough 

and the end of colloid injection are suggested to determine dispersion coefficients more 

accurately. In the case of high median heterogeneity, non-Fickian transport may be 

represented by the early arrival of particles and the large tail after the end of colloid 

injection. More measurements of the steady-state effluent concentration or the deposition 

are suggested to determine filtration coefficients more accurately. Similar suggestions 
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may also be found in the classical filtration theory, where the filtration coefficient is 

calculated by the minus logarithm of the steady-state effluent concentration [1, 95].  

In the cases of heterogeneous colloid-medium interactions where hyperexponential 

deposition is observed, the distribution of filtration coefficients could not be accurately 

determined by the effluent concentration profile alone. Measurements of deposition are 

necessary.   
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3.6 Summary of Chapter 3 

In this chapter, uncertainty and sensitivity analyses are carried out to investigate the 

predictive accuracy of the filtration models for describing non-Fickian transport and 

heterogeneous attachment. Five different modeling approaches, involving the elliptic 

equation with different types of distributed filtration coefficients and the CTRW equation 

expressed in Laplace space, are selected to simulate eight experiments. These 

experiments involve both porous media and colloid-medium interactions of different 

heterogeneity degrees.   

Both the elliptic equation and the CTRW equation expressed in Laplace space are able to 

model the non-Fickian transport in heterogeneous porous media. The described non-

Fickian behaviors by both models are similar. The latter model can predict an algebraic 

decaying tail at the end of particle injection while the elliptic equation presents a more 

compressed peak and a shorter tail. 

The uncertainty of the elliptic equation predictions with distributed filtration coefficients 

is larger than that with a single filtration coefficient. The uncertainty of both the elliptic 

equation and CTRW equation predictions are minimal for tracer transport in 

heterogeneous porous media. Higher uncertainties of parameter estimation and model 

outputs are observed in the cases with the porous media and the colloid-medium 

interactions of higher heterogeneity. Lower uncertainties are observed in the cases with 

homogeneous porous media and lowly heterogeneous colloid-medium interaction. 

Dispersion coefficients in the elliptic equation can be uniquely identified in the cases of 

low median heterogeneity. In the case of high median heterogeneity, model parameters of 

the elliptic equation are strongly correlated and may not be uniquely identified. The 

parameters for the distribution of filtration coefficients (normal distribution and power-

law distribution) may not be uniquely identified due to the correlation between them. In 

the cases of heterogeneous colloid-medium interactions where hyper-exponential 

deposition is observed, the distribution of filtration coefficients may not be accurately 

determined by the effluent concentration profile alone. Measurements of deposition are 

necessary. 
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The effluent concentrations around the breakthrough and around the end of colloid 

injection are more sensitive to dispersion coefficients than filtration coefficients, while 

deposition is more sensitive to filtration coefficients.  In the case of low median 

heterogeneity, the steady-state effluent concentration state is more sensitive to filtration 

coefficients while it is more sensitive to dispersion coefficients in the other case.   

More experimental measurements of the effluent concentrations around the breakthrough 

and the end of colloid injection are suggested to determine dispersion coefficients more 

accurately.  In the case of low median heterogeneity, more measurements of the steady-

state effluent concentration or deposition are suggested to determine filtration coefficients 

more accurately.  
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3.7 Nomenclature of Chapter 3 

ci Number of suspended particles per unit pore volume(m
-3

) 

Ci Dimensionless suspended particle concentration 

si Number of retained particles per unit volume of porous media(m
-3

) 

Si Dimensionless retained particle concentration 

t Time(s) 

T Dimensionless time(pore volume) 

x x coordinate in space 

X Dimensionless x 

Nc Number of retained particles per gram of porous media 

Nt Number of total injected particles 

v Interstitial velocity of particles(m/s) 

V Dimensionless interstitial velocity of particles 

vψ Velocity of CTRW interpretations 

Dψ Dispersion coefficient of CTRW interpretations(m
2
/s) 

Dx Coefficient of spatial dispersion(m2/s) 

Dt Coefficient of temporal dispersion(s) 

Rx Dimensionless longitudinal dispersivity 

Rt Dimensionless temporal dispersivity 

M Memory function in CTRW theory 

  Core expression in the memory function of CTRW 

β Parameter of the truncated power law model for CTRW 

t  Characteristic time of porous media(s) 

t1 Lower limit of the truncated power law model for CTRW(s) 

t2 Upper limit of the truncated power law model for CTRW(s) 

u Laplace variable 

p Probability density function 

t0 Particle injection duration(s) 

T0 Particle injection duration(pore volume) 

c0 Influent concentration 

µ Mean value 

ζ Standard deviation  

λ  Filtration coefficient(s
-1

) 

Λ Dimensionless filtration coefficient 

Λmin Lower limit of the distribution of filtration coefficients 

Λmax Upper limit of the distribution of filtration coefficients 

ξ Total injection time is ξ times the particle injection duration 

n Number of parameters for estimation 

φ Porosity of the porous media 

ρb Bulk density of the dry porous media 

δmsqr Sensitivity measure 

Cs Scaled concentration with respect to Monte Carlo simulations 

Ss Scaled deposition with respect to Monte Carlo simulations 

Snd,ij Non-dimensional sensitivity of jth parameter at ith data point 

θ Any parameter 
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y Any model output 

N Number of experimental data/calculation points 

SRC Standardized regression coefficients 
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4 Prediction of injectivity decline during waterflooding 

In this chapter, a new comprehensive approach for predicting injectivity decline during 

waterflooding is proposed to incorporate the deep bed filtration, the fluid displacement, 

the external cake formation, and the cake erosion processes. The model takes into 

account the median heterogeneity by including dispersions and the particle population 

heterogeneity by applying distributed filtration coefficients. The methods arise from 

Chapters 2 and 3. A piece of software (SNY 2.0) based on optimized numerical 

implementations is developed from the model.  

 

4.1 Introduction 

Injectivity decline due to the formation damage around injectors is a widely observed 

disaster in offshore and onshore waterflood projects, such as produced water re-injection 

(PWRI) [285, 286]. Prediction and simulation of the processes are of great importance for 

the water management and the well stimulation strategies [287-290]. There is a 

considerable and ongoing effort aimed at understanding the complicated mechanisms 

causing the formation damage and the measures to minimize it. 

One of the main reasons for the formation damage around injectors is the deep bed 

filtration of suspended solid particles in the injected water [39, 289, 291]. The solid 

content of the water and the particle sizes may be controlled and reduced to a certain 

level before injection. It is practically impossible to process the water for injection to 

such a high hygienity degree that it is free of colloidal-sized particles, such as bacteria or 

clay fines [292, 293].The accumulation of the deposited particles reduces the pore sizes, 

blocks thin pore throats, and leads to permeability damage.  

Another reason for the injectivity decline is the formation of external filter cakes in the 

well bores [294, 295]. After the porosity of the rock being reduced to a certain level 

(percolation threshold), the accessibility of the inflow particles drops drastically to zero. 

The average pore size of the external cake is far smaller than that of the reservoir rocks. 

The permeability of the external cake is far lower. After the transition from deep bed 
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filtration to the external cake formation the injectivity is usually reduced much faster 

[294-296].  

Some of the injection wells exhibit temporary steady states of injectivity after the 

transition to external cake formation [291, 297]. This effect is attributed to the erosion of 

the cake by the cross-flow fluid [295]. At the equilibrium state, the forces maintaining the 

external cake are balanced by the erosion forces. As a result, the external cake thickness 

may be limited to a value smaller than the well bore radius. During the period of external 

cake erosion, the inflow particles neither deposit on the cake surface nor penetrate 

through it. The particles are carried to the rat holes and fill the volume. After the rat holes 

are filled, the particles will accumulate in the well column and gradually close the well. 

In the model for the deep bed filtration we have applied the non-Fickian transport model, 

involving abnormal dispersion of the particles. The conventional method for modeling 

deep bed filtration, the advection-dispersion equation (ADE) with a single filtration 

coefficient, merely predicts step-wise breakthrough curves and exponentially decreasing 

deposition profiles in the linear injection schemes [1, 95, 298]. Many of the core flooding 

experiments with tracers or suspensions, on the other hand, show widely dispersed 

breakthrough curves, hyperexponential or even non-monotonic deposition profiles [80, 

103, 111, 116, 135, 185, 207, 231, 299]. The anomaly transport of the tracers or 

suspensions is usually referred to as the non-Fickian transport. 

The median heterogeneity (small scale) is believed to be the main reason for the non-

Fickian transport of tracers in porous media [10, 11]. On the other hand, the non-

exponential deposition profiles are mainly attributed to the heterogeneities of both the 

particle population and the porous medium (see Chapters 2 and 3) [104, 105, 123, 218]. 

Especially the particle population heterogeneity may lead to strongly hyperexponential or 

even non-monotonic deposition profiles under unfavorable attachment conditions (see 

Chapter 5 for details). The particle population heterogeneity encompasses the physical 

heterogeneity (size and shape) and the physiochemical heterogeneity (surface charge and 

multiple energy minima) [80, 101, 103, 136]. For homogeneous particle population, the 

model for deep bed filtration in micro heterogeneous media is equivalent to the classical 

ADE [229]. 
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The particle population heterogeneity may be significant while applying some enhanced 

oil recovery (EOR) methods, such as low salinity water injection, fines-assisted 

waterflooding, and microbial enhanced oil recovery (MEOR) [36, 250, 300-303]. Low 

salinity of water is unfavorable for particle attachment [236, 304]. It may be required to 

maintain the bacterial growth for EOR.  Under such unfavorable attachment conditions, 

the particles may be captured via both the primary and the secondary energy minimum 

[101, 103, 305]. The deposition profiles under such conditions are highly 

hyperexponential and cannot be captured by the ADE with a single filtration coefficient.  

One of the novel approaches for modeling the non-Fickian transport in porous media is 

the elliptic equation approach in the framework of continuous time random walk (CTRW) 

theories. It has been demonstrated in Chapters 2 and 3 that the elliptic equation for deep 

bed filtration excels the ADE in matching both the breakthrough curves and the 

deposition profiles [104, 105].  

Distributed filtration coefficients, such as log-normal distribution or power-law 

distribution, can be applied to reflect the particle population heterogeneity [104, 207, 

208]. It has been demonstrated that the application of such a distribution with the ADE is 

sufficient to capture the hyperexponential deposition in homogeneous porous media, such 

as uniformly packed glass beads and sands in the previous chapters. 

An integral model was proposed to account for both the non-Fickian transport caused by 

the median heterogeneity and the particle population heterogeneity. The model applied 

the elliptic equation for the particle transport and the distribution of filtration coefficients 

for particle deposition. It was shown that the integral model could match both the 

dispersed breakthrough curves due to the non-Fickian transport and the hyperexponential 

deposition caused by the particle population heterogeneity. The model was only 

developed for linear injection scheme, such as core flooding experiments.  

A comprehensive approach for the prediction of injectivity decline during PWRI was 

proposed by Paiva et al. [291, 297]. The model took into account the deep bed filtration, 

the external cake formation, the cake erosion, and the rat hole filling by erosion products. 

Analytical formulae for the radial injection scheme were adopted to enable fast 
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calculation. The adopted model for deep bed filtration neglects the median heterogeneity 

around the injectors (no dispersions) and the heterogeneity of the particle population 

(single filtration coefficient).  

 

4.2 Multiphysics and model integration 

The comprehensive approach describes four physical processes in four modules: 1) deep 

bed filtration; 2) fluid displacement; 3) external cake formation; 4) external cake erosion. 

Among the four processes only the fluid displacement occurs during the entire process. 

At the transition time for external cake formation, the deep filtration process is terminated, 

while the external cake formation commences. The external cake erosion limits the 

growth of the cake thickness. 

The mass transport in the system involves a number of phases: the suspended solid phase, 

the water phase as the carrying fluid, the displaced oil phase, the external cake phase in 

the well bore, and the internal cake phase in the damaged zone. The relatively small 

penetration depth of the suspended particles (several meters from the injector) makes it 

possible to approximate the deep bed filtration as a single phase flow problem. It also 

allows us to approximate the fluid displacement as a particle-free process.  

For the momentum analysis, the external cake, the damaged zone, and the particle-free 

reservoir bulk are regarded as a sequence of conductors forming a pie shape with the well 

bore at the center. The impedances along them are calculated separately. The total 

impedance change is the sum of the individual impedance changes. 

 

4.2.1 Deep bed filtration 

It has been suggested in Chapters 1 and 2 that the transport of a dilute monodisperse 

suspension in a porous medium may be described by an elliptic equation accounting for 

particle advection, spatial dispersion, temporal dispersion, mixed dispersion, and 

deposition. The temporal dispersion represents the effects of the distributed residence 

time of the particles in various pores. This is a simple way to formalize the Continuous 
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Time Random Walk (CTRW) approach, where dispersion of a time step is usually 

expressed by means of a distribution kernel[104, 105, 217, 218]. It has been shown that 

in the limit of infinitely many and infinitely small time steps and a finite variance of a 

single step, the distribution may be represented by the two coefficients Dt, Dxt (for 

temporal and mixed dispersion), and instead of the convolution with the distribution 

kernel, it is enough to consider the terms with the second time derivative and with the 

mixed derivative, making the transport equation elliptic. 

In order to simulate the flow pattern in a vertical injection well, we apply the elliptic 

equation in the polar (radial) coordinates. The mixed dispersion is neglected, since it has 

no qualitative influence on the profiles. In order to reveal the heterogeneity of the particle 

population the particles are split into portions, i.e. there are multiple equations 

representing different particle species with various filtration coefficients. Under these 

conditions, the suspended concentration ci(r,t) (suspended volume per unit pore fluid) and 

the deposited concentration si(r,t) (deposited volume per unit volume of porous media) of 

the ith component of the suspension at distance r  from the injector and time t are 

described by the elliptic equation with a sink term representing the deposition of the 

particles: 
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(4.2) 

where vi(r), Dxi(r), Dti(r), and λi are respectively the particle velocity (m/s), the spatial 

(normal or Fickian) dispersion coefficient (m
2
/s), the temporal dispersion coefficient (s), 

and the filtration coefficient (m
-1

) at the distance r from the injection well. Here subscript 

„i‟ is for the ith particle species. And ϕa is the accessible porosity.  

The dependency of the dispersion coefficients on r is due to the assumptions that the 

spatial dispersion coefficient and the filtration coefficient are proportional to the local 

velocity vi(r), and that the temporal dispersion coefficient is inverse proportional to the 
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local velocity. Here particle velocity is approximated by the average pore water velocity. 

The log-normal distribution, the power law distribution and the normal distribution of λ 

are adopted to reflect the particle population heterogeneity. Any of the continuous 

distributions of the filtration coefficients is approximated by a discrete distribution with 

upper and lower bounds. The bounds are necessary to maintain the convergence of the 

distributions at [0, ∞]. 

The interactions between the residual oil and the particles are neglected, i.e. for the deep 

bed filtration the pore volume saturated by the residual oil is dead volume. The porosity 

accessible to the particles ϕa is calculated by: 

  1a ors    (4.3) 

The following assumptions are made: the particle velocity is equal to the pore water 

velocity; the spatial dispersion and the filtration rate are both proportional to the particle 

velocity; the temporal dispersion is inversely proportional to the particle velocity; the 

mixed dispersion is negligible. 
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Substitution of these equations to (4.1) and (4.2) leads to: 
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Here Ui is the radial Darcy‟s velocity and given by: 
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where q(t)is the permeate flow per unit length of well bore in the dimension of m
2
/s. Now 

let us introduce the following dimensionless variables: 
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Substitution of the variables into the equations leads to: 
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 (4.8) 

The porosity change can be estimated by: 
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Neglecting the velocity difference among particle species, for constant flow rate injection 

ui=1, while for constant pressure drop injection it can be calculated by 1/J, where J is the 

dimensionless impedance. 

Following previous studies [290, 306, 307], it is assumed that the inverse to normalized 

permeability k/k0 is a linear function of retained particle concentration.  
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where k0 is the initial permeability, k(r,t) is the permeability of the reservoir rock, and β is 

the formation damage coefficient. The impedance change due to deep bed filtration ∆Jd(t) 

can be calculated by: 
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where re and rw are the effective reservoir radius and the well bore radius. More detailed 

derivations for the impedance calculation are shown in Appendices. In this work, the 

filtration coefficient is assumed to be a constant depending only on the particle type, 

while the formation damage coefficient is assumed to be a constant for all particles types. 

More sophisticated forms of the coefficients may also be incorporated, such as distributed 

formation damage coefficients with the particle types, and their dependencies on the 

retained particle concentrations [308]. 

 

4.2.2 External cake formation 

The impedance change due to the external cake formation is calculated based on the 

following assumptions. The instantaneous transition from deep bed filtration stage to the 

external cake build-up takes place after the porosity of the reservoir rock in contact with 

the injector is reduced to a certain value. The ratio of the porosity reduction to the initial 

porosity is referred to as the critical porosity ratio for external cake formation. The 

heterogeneity (layer structure) and the compressibility of the filter cake are neglected. 

The consideration of these factors requires a more sophisticated model for the external 

cake [287]. It is beyond the scope of the current work.  

It is usually observed that after the deposited solids exceed a critical amount, the external 

filter cake starts to form inside the well bore. The transition time for external cake 

formation is calculated as below: 

  0 ,a i w trs r t   (4.12) 

where α is the critical ratio of deposition to porosity over which the external cake 

formation starts. ttr is the dimensional transition time. Since at the injector the suspension 

concentration is assumed to be constant c0, the deposition can be substituted by: 

    
max

min

0 0

0

trt

a wc p U r dt d





   
 

  
  

   (4.13) 

Rearranging of the equation leads to: 
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The impedance change caused by external cake in the axis-symmetrical injection case can 

be calculated by [291, 297]: 
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where kc and ϕc are the permeability and the porosity of the external cake, the factor mc is 

given by:  
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(4.16) 

 

4.2.3 External cake erosion 

The erosion of the external cake can be described by the torque balance or the force 

balance on the particles at the surface of the external cake. The force balance criterion has 

the same form as the torque balance criterion but only differences on coefficient 

meanings. The particles at the surface of the external cake are subject to the 

hydrodynamic drag from the cross-flow, the gravity/buoyancy, the lifting force, the 

hydrodynamic drag from the permeate flow, and the electrostatic forces [295, 309]The 

forces on the particles in a vertical injection well are depicted in Figure 4.1, while in the 

case of horizontal wells the gravity is perpendicular to the cross-flow instead. 
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Figure 4.1 Illustration of forces on the particles at the surface of external cake in a vertical well 

 

The cross-flow drag exerting on the particles at the surface of the external cake can be 

expressed as below[295, 310]: 
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where ω is a proportionality factor in the range  [10, 60], μw is the water viscosity; rs is 

the particle radius  Q is the flow rate of the cross-flow, and hc is the thickness of the 

external cake. The permeate drag force is given by [295]: 
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where AH is the hydrodynamic correction factor, which is applicable when the 

concentration of the suspension above the cake is high; i.e. above 250ppm [311, 312]. It 

can be estimated by [313]: 

crossflow drag

lifting

gravity

crossflow 

DLVO force

permeate drag
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reservoir external cake
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The total cross flow Q can be calculated from the leak-off flow q: 
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where z is the distance from the wellbore top. The gravity difference of the particles and 

the carrying fluid is calculated as: 
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The net normal force of the particles at the surface of the external cake is expressed as: 

 N p e LF F F F    (4.22) 

The resistance of the particles from the surface is calculated by: 

 f NF fF  (4.23) 

where f is the resistance coefficient in the force balance.  

Monte-Carlo simulations under common conditions of water injection have shown that 

the forces ranges are: DLVO  activation  barrier  between  primary  and  secondary  

energy  minima 
910eF N , permeate  force  

1110pF N   cross-flow  force 

1310cfF N ;  gravity force 
1410gF N   ; and lift force  

1910LF N [296]. Since the 

activation energy required for the particles to move from the secondary minimum to the 

primary minimum is by far larger than any opposing force, it can be concluded that all 

particles reside in the vicinity of the secondary minimum. If the particles are assumed to 

lie in the secondary energy minimum then the net electrostatic force reduces to zero. 

Furthermore, the lift force is negligible and will be neglected in the forthcoming analysis: 
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At constant pressure drop, according to Darcy‟s law, the permeate flow (leak-off) can be 

calculated by: 
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where k0 is the initial permeability of the reservoir, J is the dimensionless impedance. The 

system of equations (4.24) (4.25) can be solved for the cross flow and the thickness of the 

external cake, which are both depend on the distance from the top of the bottom hole. For 

the constant pressure drop case, the equation of force balance can be written as: 
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In the case of horizontal wells, the gravity term on the left hand side can be neglected. 

The maximum impedance change caused external cake is calculated by: 
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After solving the system of equations, the average maximum impedance change caused 

by the external cake can be calculated by: 
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The distribution of the maximum external cake thickness can be obtained by solving the 

equation of flow in the cannonade with the equation of the force balance. 
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4.2.4 Fluid displacement 

The impedance change due to fluid displacement is described by the classical Buckley-

Leverett equation. It is assumed that the injection well is placed at the center of a 

homogeneous pie-shaped reservoir. The application of such a simple model is only 

indicative for fluid displacement effects, while a more sophisticated reservoir model can 

be incorporated, such as a stratified reservoir [314, 315]. This is outside the scope of the 

present work. During   the   particle-free   water   injection   into   a   reservoir saturated  

by  oil  that  is  less  mobile  than  water,  the  total local mobility  ratio  increases, 

roughly,  M times (end-point mobility ratio of water to oil)  due  to  displacement  of  less 

mobile fluid by more mobile one[316]: 

 ,rwor o

w rowi

k
M

k




  (4.29) 

where krwor and krowi 
are the relative permeabilities of water and oil at the residual oil 

saturations sor and the irreducible water saturation swi respectively . The asymptotical 

value of the impedance JBL due to the fluid displacement can be calculated by:  

 
1

BLJ
M

  (4.30) 

In the radial injection schemes the impedance at the close proximity of the injector 

contributes most significantly to the total impedance. The fluid displacement close to the 

injector is completed during a short period. As a result, the impedance JBL drops 

dramatically at the initial stage of waterflooding, and approaches the limit 1/M 

asymptotically, as seen in Figure 4.3.  

 

4.3 Model integration and GUI 

The well injectivity varies during water injection due to above mentioned processes: 

formation damage by deep bed filtration, mobility change due to fluid displacement, 

external cake build-up in the cannonade, and external cake erosion. The assumption of 

the external cake, the damaged zone, and the intact zone as conductors in series 
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connections allow the summation of the individual impedance changes as the total 

impedance change: 

        
1 1

BL d cJ T J T J T J T
M M

      (4.31) 

The four modules are integrated and implemented in FORTRAN.  With the finite 

difference method, the elliptic equations are converted into a series of algebraic equation 

and solved with the linear equation solvers for sparse matrices. The Adams method 

(predictor-corrector) is used to solve the flow equation in the wellbore with the force 

balance equation for the external cake erosion. A Windows graphical user interface (GUI) 

is developed with the Microsoft Visual Basic .Net, as seen in Figure 4.2.   

 
Figure 4.2 Graphical user interface of SNY simulator for injectivity decline during waterflooding 

 

4.4 Impedance change interpretation 

Sample calculations are first carried out to reveal the impedance change due to different 

mechanisms during waterflooding. The parameters used for the simulation are listed in 

Table 4.1. As seen in Figure 4.3, the impedance decreases monotonously during the 
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damage-free waterflooding. It is attributed to the displacement of the less mobile fluid 

(oil) with the more mobile fluid (water). The major impedance change happens at the 

very beginning of the water injection. The impedance approaches the limit 1/M 

asymptotically.  

 
Figure 4.3 Total impedance, impedance during damage free waterflooding, and impedance in a single phase flow 

case 

 

The impedance change in the single phase injection case can be divided into three phases. 

The initial phase of linear increase of impedance is attributed to the deep bed filtration. 

The later and faster increase of the impedance is due to the build-up of the external cake. 

The steady stage of the impedance is due to the equilibrium between the external cake 

erosion and the external cake build-up.  

The total impedance, as a result, decreases dramatically at the start of waterflooding due 

to fluid displacement. The rest of it resembles the shape of the impedance curve in the 

single phase injection case. After the initial stage of waterflooding, the fluid displacement 

has little effect on the entire impedance change curve and the calculation of formation 

damage or skin factors. It indicates that the comprehensive approach can provide reliable 

skin information regardless of what waterflooding model is applied. 
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Table 4.1 List of parameter values used for the sample calculations 

Meanings Values 

Wellbore radius (m) 0.1 

Effective reservoir radius (m) 500 

Reservoir thickness/length of wellbore (m) 30 

Critical porosity ratio for external cake 0.1 

Filtration coefficient (m-1) 2 

Spatial dispersion length (m) 30 

temporal dispersion length (m) 30 

Mean of lognormal distribution (ln(m-1)) 1.1 

Standard deviation of lognormal distribution
 v

(ln(m-1)) 1.1 

Injection concentration 10-6 

Formation damage coefficient 300 

Initial permeability (D) 4 

Initial porosity 0.2 

External cake permeability (mD)
 
 0.5 

External cake porosity 0.6 

Relative permeability of water at residual oil saturation 0.2 

Relative permeability of oil at irreducible water saturation 0.7 

Irreducible water saturation 0.2 

Residual oil saturation 0.25 

Water viscosity (cP) 1.23 

Oil viscosity (cP) 7.2 

Hydrodynamic factor 60 

Particle radius (µm)
 
 2 

Particle density (kg/m3) 2600 

Water density(kg/m3) 1030 

Friction coefficient 0.5 

Initial pressure drop(bar) 20 

  

4.5 Effects of median heterogeneity 

Sample calculations are carried out to investigate the effects of the normal dispersion and 

the temporal dispersion (non-Fickian transport) due to median heterogeneity on the deep 

bed filtration process. The elliptic equation with a single filtration coefficient is applied to 

model the deep bed filtration around the injector. As seen in Figure 4.4, the increase of 

normal dispersion lengths leads to deeper penetration of the deposited particles and 

slower increase of the impedance. It can be explained by the competition between the 
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dispersion and the particle capture processes. The larger the normal dispersion is, the 

faster particles travel. In other words, the particles with stronger dispersion can travel 

further before they are captured by the pores. The impedance change, on the other hand, 

is relatively insensitive to the normal dispersion.  It may be attributed to the relatively fast 

particle capture that shadows the effects of normal dispersion under such conditions. 

Modeling results with different values of temporal dispersion lengths (not shown here) 

indicate that the increase of the temporal dispersion coefficient leads to little deviation of 

the deposition profile and the impedance. It can be attributed to the assumption that the 

temporal dispersion coefficient is inversely proportional to the local particle velocity. In 

the radial injection scheme, the particle velocity is much higher at the close proximity of 

the injector than far away from it. On the other hand, the deposition rate is proportional to 

the particle velocity. The average penetration depth of particles is usually within one 

meter around the injector.  

 

Figure 4.4 Effects of spatial dispersion on deep bed filtration, Rx is the normal dispersion length 

 

4.6 Effects of particle population heterogeneity 

Calculations are then carried out to investigate the effects of the particle population 

heterogeneity on the impedance change in a vertical well. The lognormal distribution of 

filtration coefficients is adopted to reflect the particle population heterogeneity. The 

effects of fluid displacement are neglected. The mean values of the logarithm of the 

filtration coefficients are kept constant. The rest of parameters used for the simulation are 
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listed in Table 4.1. As seen in Figure 4.5, the increase of the standard deviation has little 

influence on the impedance increase rate during the deep bed filtration phase. On the 

other hand, it decreases significantly the transition time for the external cake formation. 

This indicates that the distribution of filtration coefficients may be better determined 

from the data on the transition times for external cake than from the core flooding 

experiments alone.  Neglecting the particle population heterogeneity may lead to 

underestimation of the formation damage and predict late transition to external cake 

formation. 

 
Figure 4.5 Effects of particle population heterogeneity; σ is the standard deviation of the logarithm of filtration 

coefficients 

 

4.7 External cake distribution 

Sample calculations are performed to investigate the external cake thickness in a vertical 

well at the equilibrium state. The effects of fluid displacement are neglected. The 

parameters used for the simulation are listed in Table 4.1. It can be seen in Figure 4.6 that 

the thickness of the external cake increases in the cross-flow direction. This can be 

attributed to the following reasons: a.) downward drag from cross-flow and the gravity; b.) 

decreasing cross-flow along the depth leading to decreasing drag and lifting forces. 

Comparative calculations show that larger particles are more affected by the 

hydrodynamic drag and gravity. As a result, the distribution of the external cake is more 

concentrated in the downstream. The external cake in the upstream may be entirely 

eroded. It can be seen that the impedance at the steady state and the starting time are 

highly influenced by the cake properties and therefore by the water quality.  
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Figure 4.6 Effects of the particle size on the external cake thickness distribution and impedance in a vertical well 

The calculation for a horizontal well with the same parameters is performed to investigate 

the effects of well orientation. The torque balance on the cake particles in a horizontal 

well is slightly different from that in a vertical well, as seen in Figure 4.7. Gravity is not 

in line with the cross-flow drag but perpendicular to it. It may contribute positively to or 

negatively to cake erosion, depending on the location of the cake (top or bottom of the 

cylinder). Nevertheless, gravity is negligible compared to the permeate drag. As a result, 

the thickness of the cake is independent of it location. 

 
Figure 4.7 Illustration of forces on the particles at the surface of external cake in a horizontal well 
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As seen in Figure 4.8, the external cake thickness is larger in the horizontal well than that 

in the vertical well. It is because gravity contributes positively to the erosion of the 

external cake in the vertical well while it perpendicular to the cross-flow in the horizontal 

well. As a result, the impedance at the steady state is higher in the horizontal well. 

 

Figure 4.8 Comparison of the external cakes and impedances in horizontal and vertical injection wells 

 

4.8 Verification with the field data 

The integral model is then applied to simulate the injectivity decline during waterflooding 

of the two horizontal injectors (deep-water offshore field X in Campos Basin, Brazil)  

reported in [291, 297] . The parameters used for the simulation are taken from the 

literature. It can be seen in Figure 4.9 and Figure 4.10 that the modeling results can match 

the filed data on the injectivity decline. The comprehensive approach can capture the 

initial injectivity decline due to the deep bed filtration, the faster decline due to the 

external cake formation, and the equilibrium stage due to the external cake erosion and 

the rat hole filling. Most of the model parameters are taken from experimental 

measurements, while others can be from the empirical correlations, such as the 

correlation between the critical ratio for external cake formation and the formation 

damage coefficient [317], and the estimation of hydrodynamic corrector from cake 

properties[313].  Few parameters that are not easily available can be estimated by fitting 

the field data, such as the friction coefficient depending on the lever ratio and the erosion 

factor for the non-ideality of the erosion process. 
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Figure 4.9 Comparison between modeling results and injector data 

 

 
Figure 4.10 Comparison between modeling results and injector data 

  



134 
 

4.9 Summary of Chapter 4 

In this chapter, a new comprehensive approach for predicting injectivity decline during 

water flooding is proposed. The deep bed filtration is described by novel stochastic 

random walk equations studied in Chapters 2 and 3. The injectivity decline model takes 

into account the reservoir heterogeneity and the distribution of solid particles by sizes. It 

accounts also for the later formation of the external filter cake and its erosion.  

The model is able to capture the behaviors of the injectors in the field: the initial slow 

injectivity decline due to the deep bed filtration of suspended particles, the later faster 

decline due to the build-up of the external cake, and the steady state due to the cake 

erosion. Stronger normal dispersion or median heterogeneity close to the injector leads to 

farther penetration of the particles and slower impedance increase. Neglecting the particle 

population heterogeneity may lead to underestimation of the formation damage and 

predict late transition to external cake formation. The impedance at the steady state and 

the starting time are highly influenced by the cake properties. The impedance and the 

external cake thickness at the steady state are likely to be higher in horizontal wells than 

those in vertical wells. 
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4.10 Nomenclature of Chapter4 

AH   hydrodynamic corrector for dense suspensions 

c    suspended concentration 

c0    injected concentration 

Dx    spatial dispersion coefficient (m
2
/s) 

Dt    temporal dispersion coefficient (s) 

Dxt    mixed dispersion coefficient (m/s) 

f    friction coefficient 

F    forces on the particles (N) 

g    gravity acceleration (m/s
2
) 

hc    external cake thickness 

J    dimensionless impedance 

k    reservoir permeability (m
2
)  

kc    external cake permeability (m
2
) 

krwor    relative permeability of water at residual oil saturation 

krowi    relative permeability of oil at irreducible water saturation 

m    impedance increase slope 

M    end-point mobility ratio of water to oil 

∆p    pressure drop (Pa) 

p    probability distribution 

q    permeate flow (m
2
/s) 

Q    injection rate, cross-flow rate (m
3
/s) 

r    distance from injector (m) 

rw    wellbore radius (m)                      

re    effective reservoir radius (m) 

rs    particle radius (m) 

rx    spatial dispersivity  

rt    temporal dispersivity 

R    dimensionless distance from injector 

Rx    spatial dispersion length (m) 

Rt    temporal dispersion length (m) 

swi    irreducible water saturation 

sor    residual oil saturation 

s    deposition concentration 

S    deposition concentration 

t    time (s) 

T    time (p.v.i.) 

u    dimensionless velocity  

U    Darcy‟s velocity (m/s) 

v    particle velocity (m/s) 

z   distance from well bore inlet (m) 

α    critical porosity ratio for external cake 

λ    filtration coefficient   (m
-1

) 

Λ    dimensionless filtration coefficient    

ϕ    reservoir porosity 
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ϕa    accessible reservoir porosity 

ϕc    external cake porosity 

µw    water viscosity (Pa∙s) 

µo     oil viscosity (Pa∙s) 

ω    hydrodynamic factor 

ρ    density (kg/m
3
) 

µ    mean of lognormal distribution (ln(m
-1

)) 

ζ    standard deviation of lognormal distribution (ln(m
-1

)) 

β    formation damage coefficient 

Φ    dimensionless porosity with regard to initial porosity 

Subscripts 

a    accessible 

BL   Buckley Leverett  

c    external cake 

d   deep bed filtration 

e    effective or electrostatic 

cf   cross-flow 

F    friction 

G    gravity 

L    lifting 

i    ith particle type 

min    minimum 

max    maximum 

N    normal 

o    oil 

p    permeate 

s    spheres or particles 

tr   transition to external cake 

w    water or well 

0    initial or boundary condition 
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5 Colloid migration and recapture  

The purpose of this chapter is to establish a model for deep bed filtration considering  the 

migration of the surface associated phase under unfavorable attachment conditions [135]. 

The effects of the different migration properties (migration velocity, deposition rates, etc.) 

are studied. The modeling results are also compared to the experiments where non-

monotonic deposition profiles are observed. To investigate the mathematical condition 

for deposition non-monotonicity, the proposed model is compared to the BSW (S. 

Bradford, J. Simunek, and S. Walker) model [80] for the migration of large aggregates 

 

5.1 Introduction 

The conventional methodology, ADE with a single filtration coefficient, only predicts 

exponentially decreasing deposition profiles [95]. Many of the experimental results, on 

the other hand, show hyperexponential deposition profiles or even non-monotonic 

deposition profiles under some specific conditions [101, 118, 119, 206, 207]. Most of 

these experiments are carried out in the presence of an energy barrier, for example 

similarly charged colloid particles and median particles. The deposition of colloids is 

theoretically hindered by the repulsion between the colloid and porous media. The 

mechanisms of the deposition in such cases are likely to encompass enhanced retention at 

low-velocity zones of pore space, staining at grain-grain contacts, surface charge 

heterogeneity, deposition in the second energy minimum, and surface roughness [55, 80, 

101, 103, 111, 112, 122, 135, 248]. Both pore structure and velocity are observed to have 

impacts on the deposition profiles [80, 115]. 

Colloids carried by the flowing fluid may be captured at single-contacts of porous media 

via the second energy minimum or the primary energy minimum [45, 101, 103, 119]. 

Deposition of colloids may also occur at grain-grain contacts (pore constrictions, stagnant 

zones) via straining [79, 80, 114, 115, 118, 121]. The balance between the hydrodynamic 

torque from the flowing fluid and the resisting adhesive torque determines whether the 
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colloids adjacent/attached to the pore walls will be immobilized or re-entrained into the 

carrying fluid [9, 112, 209, 216, 232, 248, 318].  

Under unfavorable attachment conditions where the DLVO calculations can preclude 

most of single-contact deposition via the primary energy minimum, the captured particles 

via the second energy minimum are subject to the hydrodynamic drag and down-gradient 

translation [112, 119, 135, 191, 248, 319, 320]. Close to the grain-grain contacts some of 

the surface-associated particles may be immobilized in the stagnant zones. Others are 

entrained by the flowing fluid and may either rejoin the bulk phase or jump to the next 

grain[79, 80, 114, 115, 135, 209, 321].  

The commonly reported hyperexponential deposition has been attributed to the 

heterogeneity of the surface charge and energy minima ([101, 110, 207, 208]) or to the 

enhanced retention at low-velocity zones of pore space [79, 121, 122]. Based on the 

described mechanisms, the hyperexponentiality of deposition is captured and discussed in 

Chapters 2 and 3. 

On the other hand, the observed non-monotonic deposition has been attributed to the 

lagged release of aggregates at straining sites [80], or to the migration of surface 

associated colloids via the second energy minimum [135]. In the same respective works 

the authors developed conceptual models based on the mechanisms. Both models 

considered a third phase flowing in porous media. In Ref. [80], S. Bradford, J. Simunek, 

and S. Walker described the released aggregates transporting and depositing at different 

rates from the monodisperse colloids. This model will further be referred to as the BSW 

model. In Ref. [135] the authors proposed that migration of the surface associated phase 

should accompany the bulk flow.  

The model parameters in Ref. [80] were estimated by fitting the model to experiments. 

This model was shown to be able to simulate non-monotonic deposition profiles. On the 

contrary, the model in Ref. [135] was proposed only on the conceptual level. Transport 

and interactions of the migratory surface phase and the bulk aqueous phase were not 

assigned with detailed physical and mathematical descriptions. Whether the model 
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considering the surface flow can be used to simulate deep bed filtration processes 

remained unknown.  

 

5.2 New Model Establishment 

5.2.1 Basic Assumptions 

Under unfavorable attachment conditions, the DLVO calculations may preclude most of 

single-contact deposition via the primary energy minimum. The torque balance 

calculations may indicate that the captured particles via the second energy minimum are 

subject to the hydrodynamic drag and down-gradient translation [112, 119, 135, 191, 248, 

319, 320]. Under such specific conditions, we may follow Xiqing Li et al. [135] to 

assume that the particles captured by porous media can be classified into two phases, the 

migratory surface associated phase (weak association via second energy minima at 

single-contacts) and the immobilized phase (retention via straining at grain-grain 

contacts), as seen in Figure 5.1.  

 
Figure 5.1 Illustration of the surface associated phase and the bulk aqueous phase at pore scale 

It is assumed that the transport of the monodisperse particles in the bulk aqueous phase 

can be characterized by an advection-dispersion equation with a single sink term and a 

source term. The sink term represents the transport of particles from the bulk phase to the 
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migratory SA phase and to the immobilized phase while the source term represents the 

mass transfer from the SA phase and the immobilized phase to the bulk phase.  

It is assumed that the migration of the SA phase can be described by the common 

advection-diffusion formalism. The column inlet is usually connected to an open source 

of colloids without porous media, hence the zero SA phase is set as the inlet boundary 

condition. The SA phase may migrate from one grain to another in the following sense: 

Some of the colloids close to grain-grain contacts are entrained by the flowing fluid and 

may either rejoin the bulk phase or jump to the next grain. Others may be immobilized in 

the stagnant zone around grain-grain contacts. 

A convective diffusion mechanism of the SA phase may be assumed. A dispersion length 

is usually interpreted as a characteristic scale of heterogeneity of the porous medium. The 

dispersion lengths in the bulk phase and the SA phase may, generally speaking, be 

different, since the surface may be more tortuous than the pore space. However, the 

orders of magnitude of these parameters in the not-so-highly heterogeneous porous media 

may be the same. For simplicity of the model and minimization of the number of 

adjustment parameters, we assume the two dispersion lengths to be equal. This 

assumption will be validated by comparison with experimental data. 

The case of a dilute suspension is considered. The volume of the SA phase and that of the 

retained particles are assumed to be minimal compared to the bulk aqueous phase, so that 

their existence does not affect the pore structure significantly. The porosity is assumed to 

be constant during the entire filtration process. The particle concentration in the SA phase, 

on the other hand, may be comparable to that in the bulk aqueous phase. 

One-dimensional flow is considered, since it is common to most of the experiments and 

for many applications. The theory is readily generalized onto multiple dimensions.  

 

 



141 
 

5.2.2 System of Equations 

The system of equations following from the above assumptions has the form of: 
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(5.3) 

Here c is the number of particles in the bulk aqueous phase per unit pore volume, v is the 

velocity of the particles in the bulk aqueous phase, and D is the dispersion coefficient in 

the bulk aqueous phase. Subscript „m‟ represents the „migratory surface associated phase‟ 

and sm is the number of particles in the SA phase per unit pore volume. Correspondingly, 

vm is the advection velocity of the particles in the SA phase and Dm is the diffusion 

coefficient in the SA phase. Finally, s is the concentration of the immobilized particles. 

λsc in Equations (5.1) and (5.2)represents the particle transport from the bulk aqueous 

phase to the SA phase, λdc in Equation (5.1) is the transport directly from the bulk 

aqueous phase to the immobilized deposition, and  λmc in Equation (5.2) represents the 

conversion from SA phase into the immobilized deposition. λrs represents the release of 

immobilized particles while λmrsm represents the release of SA phase back to the bulk 

phase. In order to connect the motion of the particles in the SA phase to that in the bulk 

aqueous phase, the following relation is adopted: 

 m mv f v  (5.4) 

where fm is the ratio of the particle velocity in the SA phase to that in the bulk aqueous 

phase. The estimation of the fraction will be discussed in detail later. Convective 

dispersion/diffusion both in the bulk aqueous phase and the surface associated phase is 

also assumed: 

 ; ;m mD v D f D   (5.5) 
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where α is the longitudinal dispersivity/diffusivity possessing the dimension of length, 

the same both in the bulk aqueous phase and in the SA phase.  

Unlike most common formulations, system (5.1) to (5.3) does not involve porosity of the 

medium, and the deposition and release rates are not proportional to the particle velocity. 

This is a possible formulation for the case of constant porosity (dilute suspension), if we 

assume that v and vm are constant and interstitial, but not superficial, flow velocities and 

give corresponding re-definitions of the filtration coefficients λs, λd, λm, λr, λmr. These re-

definitions should be taken into account when actual values of the coefficients are 

computed. 

Similar to [104, 123], the system of equations (5.1) ~ (5.3) can be reformulated in terms of 

dimensionless variables: 
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Here: 
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where R is the dimensionless longitudinal dispersivity in the bulk aqueous phase and Rm 

is the dimensionless longitudinal diffusivity in the SA phase. The value of L is the 

reference length (m), v0 is the reference velocity (m/s), and c0 is the reference 

concentration. The inverse Peclet number R describes the magnitude of the spatial 

dispersion compared to the product of the reference velocity and the reference length, 



143 
 

while Rm is a similar value for the surface phase. Provided that v0 is the particle velocity 

in the bulk phase (v=v0) and that the longitudinal dispersivities/diffusivities in the bulk 

phase and in the SA phase are equal, the dimensionless parameters can be expressed as: 

 1; ; ;m m mu u f R R    (5.9) 

Equations (5.6) ~ (5.8) represent mass balances of the particles in the bulk, surface, and 

immobile phase, correspondingly. With given velocities and dispersion/diffusion 

coefficients, the three equations form a closed system for the entire mass balance among 

the bulk aqueous phase, the SA phase and the immobilized deposition phase.  

A simpler formulation has also been tested: a system where deposition from the bulk to 

the immobile phase is prohibited, Λd=0. Sample calculations (not shown here) indicated 

that with such a formulation the deposition at the inlet is zero because the SA phase 

concentration is assumed to be zero at the inlet. Indeed, all the particles deposited at the 

inlet belong to the SA phase and immediately start moving forward along the sample. 

This is in contradiction with the observed deposition profiles [80, 111, 135] with non-

zero deposition near the entrance. Therefore, deposition from the bulk directly to the 

immobile phase should be introduced to avoid discrepancy with the observed 

experimental data. 

Summing Equations (5.6) ~ (5.8) together leads to the mass conservation law: 

  
0

m
m m m m

m

SC
C R f S f R

C S S X X
u

T X

 
          

 
 

(5.10) 

 

Equation (5.10) indicates that the boundary conditions at the inlet X=0 should take into 

account both the advection flux and the dispersion/diffusion flux of the particles. 
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5.2.3 Boundary Conditions 

Clean bed filtration is assumed as the initial condition for the convenience of comparing 

modeling results with the column experiments in most labs. The initial conditions can be 

formulated as: 

 ;( , 0) 0; ( , 0) 0; ( , 0) 0mC X T S X T S X T       (5.11) 

Since Equations (5.6) and (5.7) are both parabolic, it is commonly accepted to apply 

Neumann boundary conditions at the outlet and two Robin boundary conditions at the 

inlet for the mobile phases [98]: 
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 (5.14) 

 0m

X L

S

X 





 (5.15) 

Boundary condition (5.12) represents the common injection procedure: before T0, inject 

particles, and after T0, inject pure water. The ad hoc boundary condition (5.14) is based on 

the assumption that inlet of the porous medium is usually connected with a source 

domain without porous media. Thus, no surface associated phase is formed directly at the 

inlet. Formation of the surface phase does not begin until at the inlet, and any such phase 

moves further by the surface flux. Of course, in case of an immobile surface phase alone, 

Equation (5.14) is violated. Neumann boundary conditions (5.13) and (5.15) represent the 

no-flux setting at the outlet of an experimental column. 

Addition of Equations (5.12) to (5.14) lead to the total boundary conditions for both 

mobile phases indicated by Equation (5.16). 
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 0m

X L

SC
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 
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 (5.17) 

 

5.2.4 Implementation 

It is assumed that the velocities, dispersivity and diffusivity, as well as the coefficients of 

particle transport to different phases are all constant and known. The closed system of 

Equations (5.6) to (5.8), with boundary conditions (5.11) to (5.15), can easily be solved by 

a finite difference technique and the method of lines. The calculation is implemented in 

MATLAB with the intrinsic function „ode45‟ for solving ordinary differential equations. 

The numerical solution with Λs=0 (no SA phase) is also compared with the analytical 

solution in Ref. [98]. The error of the numerical solution can be reduced to 0.01% with a 

properly selected mesh. An approximate analytical solution for the model can also be 

found in Ref. [98]. A good agreement between the analytical solution and numerical 

solution is observed (not shown here). This validates the selected numerical method. 

In order to reveal the modeling results in the same way as those from the laboratory 

experiments, the total effluent concentration and the total deposition need to be calculated. 

The bulk aqueous phase and the SA phase move at two different velocities in parallel. 

Since the experimentally monitored effluent concentration counts both the number of 

particles in the bulk aqueous phase and that in the SA phase per unit time, the total 

effluent concentration can be calculated by: 

 
(1, ) (1, )

( ) (1, ) (1, )m m
effluent m m

uC T u S T
C T C T f S T

u


    (5.18) 

At the end of a column experiment (T=Tmax), the flow in the core is zero and the SA 

phase remains immobile. The final deposition is then the sum of remaining SA phase and 

the immobilized phase: 
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 max max( ) ( , ) ( , )final mS X S X T S X T   (5.19) 

The model parameters may be estimated by fitting the modeling results to the 

experimental data. The MATLAB intrinsic function „lsqnonlin‟ for non-linear least 

square problems is applied for curve fitting. Confidence intervals (CI) and correlation 

matrices of the model parameters are calculated. Details of the procedure can found in 

Refs. [274, 275]. 

5.2.5 Estimation of migration velocity 

The section presents a rough estimation method for the magnitude of fm. Since packed 

beds of granular media are commonly adopted in filtration experiments, they are also 

selected for the study here. The type of media can be represented by various geometrical 

models [67, 153, 322-324]. The constricted tube model [9, 324] is applied in this work. 

The grains of the porous medium and the colloid particles are assumed to be spherical. It 

may also be assumed that the velocity of a particle adjacent to the pore wall via the 

second energy minimum may be approximated by the fluid velocity at its center. In Ref. 

[9] the diameter of the pore in a different position z can be expressed as: 

 

2

max max2 4 0.5
2 2 2

c
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d d d z
d

h

     
       

      

 (5.20) 

where dmax is the maximum diameter of the pore, dc is the constriction diameter, h is the 

pore length. In Ref. [324] dc and the effective pore diameter deffecdtive are calculated by:  

 

 
2.5658

media
c

d
d   (5.21) 

 
0.47

c
effective

d
d   (5.22) 

where dmedia is the diameter of the bed median particle, and in Ref. [322] dmax is 

calculated by:  
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 max 2.141 cd d  (5.23) 

In Ref. [9] the fluid velocity is then calculated by: 
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2 1
( 4)
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z z

Q N d d
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d d
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 
 (5.24) 

where dcolloid is the diameter of the colloid particle, Q is the volumetric flow rate, dz is the 

pore diameter in the position z, and Npore is the number of pores in a cross-section of the 

column, which can be expressed as:  

 2( 4)
pore

effective

A
N

d




  (5.25) 

where A is the cross-section area of the column, φ is the porosity of the column. The 

fraction fm can be approximated by the velocity across the center of the associated particle 

divided by the average pore velocity: 
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With given media particle size and the suspended or colloid particle size, the fraction fm 

is a function of z/h. Sample calculations are performed for the experimental setting in 

[111], plots of fm to z/h are shown in Figure 5.2 (a). It is seen that the fraction 

approaches its maximum at the inlet and the outlet of the pore. The average of the 

fraction fm can be calculated by: 
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(5.27) 
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 5.7396 colloid
m

media

d
f

d
  (5.28) 

The plot of average fm versus typical suspended/colloid particle sizes and typical median 

particle sizes is shown in Figure 5.2 (b). It is seen that the typical value of fm varies 

approximately from 1×10
-2

 to 5×10
-2

. 

 
Figure 5.2 (a). fm at different pore positions (b). Average fm for different diameters of colloids and those of 

median particles. 

 

5.3 Results of Modeling 

This section aims at studying the basic properties of the proposed model and the effects 

resulting from changing the properties of the SA phase migration, such as the advection 

velocity, the diffusivity and the deposition rate of the SA phase.
 

 

5.3.1 Numerical Solutions 

Numerical solutions are first obtained with all the parameters assumed to be constant and 

known. Particles are injected in the first five pore volumes, and then water alone is 

injected to wash away the remaining mobile particles until fifteen pore volumes are 

injected. For the calculations we use: R=6.67×10
-3

; u=1.0; Λs=0.03; Λd=0.012; fm=0.01; 

Λm=0.15; Λmr=0.15×10
-3

; Λr=0. The calculated profiles are shown in Figures 2 to 4. 

As seen in Figure 5.3 (a), the particle concentration in the SA phase at the outlet is 

comparable to that in the bulk aqueous phase. However, the major contribution to the 
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monitored effluent concentration is from the bulk aqueous phase alone. It is explained by 

the far slower motion of the SA phase than that of the bulk aqueous phase. Figure 5.3 (b) 

reveals the non-monotonic spatial distribution of the immobilized particles and that of the 

final deposition. The difference between them indicates that the immobilization of the SA 

phase due to ceased flooding contributes to the final deposition. It proves that the 

mechanism of migratory surface phase alone can give rise to a non-monotonic deposition 

profile. 

 
Figure 5.3 (a). Concentrations at the outlet (d). Final deposition and immobilized phase at the end of flooding. 

Figure 5.4 (a) and (b) show the displacement fronts of the bulk phase and the SA phase 

respectively at different time moments before breakthrough. It can be seen that the front 

of the SA phase lags behind that of the bulk phase. The distribution of the SA phase is 

strongly non-monotonic and possesses a peak moving towards the outlet. Figure 5.5 

shows the evolution of immobilized particles with the SA phase and the resulting total 

deposition. Before the end of injection (T<5) the SA phase accumulates and is non-

monotonic along X, while the peak of the SA phase is flushed to the outlet during water 

flooding (T>5). The resulting immobilized phase is distributed non-monotonically over 

the entire process, and its peak moves towards the outlet.  It can be inferred from the 

results that the final deposition is still non-monotonic in the case of no immobilized phase, 

because the SA phase itself is non-monotonically distributed along X. 
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Figure 5.4 Displacement profiles: (a) .Bulk aqueous phase (b). Surface associated phase 

 

 
Figure 5.5 (a). Surface associated phase (b). Immobilized phase (c). Total deposition. 

 

5.3.2 Migration of Surface Associated Phase                   

Calculations are then carried out with different values of fm. The rest of the parameters are 

set to the same as in Section 5.3.1. As seen in Figure 5.6 (b), the larger fm leads to 

maximum final deposition closer to the inlet. The faster the SA phase migrates the closer 

the maximum of deposition is to the outlet. On the other hand, since the effluent SA 

phase contributes little to the total effluent concentration, the breakthrough curve is not 

much influenced by this factor. 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

C

 

 

T=0.33333

T=0.5

T=1

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

X

S
m

 

 

T=0.33333

T=0.5

T=1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

C

 

 

T=0.33333

T=0.5

T=1

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

X

S
m

 

 

T=0.33333

T=0.5

T=1

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

X

S
m

 

 

T=5

T=11.25

T=15

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

X

S

 

 T=5

T=11.25

T=15

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

X

S
m

+
S

 

 

T=5

T=11.25

T=15

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

X

S
m

 

 

T=5

T=11.25

T=15

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

X

S

 

 T=5

T=11.25

T=15

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

X

S
m

+
S

 

 

T=5

T=11.25

T=15

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

X

S
m

 

 

T=5

T=11.25

T=15

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

X

S

 

 T=5

T=11.25

T=15

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

X

S
m

+
S

 

 

T=5

T=11.25

T=15



151 
 

The modeling results may also enlighten some aspects in the experimental design for 

observing non-monotonic deposition. Since larger values of fm help non-monotonicity of 

deposition, larger colloids and smaller median particles are preferable for such 

experiments. Other aspects, such as the optimal solution chemistry and particle materials, 

are beyond the scope this work. 

 
Figure 5.6 Comparison of different values of fm. 

5.3.3 Dispersivity 

Calculations are carried out with varying dispersivity R. The chosen value for fm is 0.01, 

and the rest of the parameters are the same as in Section 5.3.1. It is shown in Figure 5.7 

(b) that larger values of R also lead to the peak of final deposition closer to the outlet. 

This behavior, however, is also connected with transport of the bulk aqueous phase, as 

seen in Figure 5.7 (a). As expected, larger values of dispersivity result in a larger wash-

out of the breakthrough curve. 

 
Figure 5.7 Comparison of different values of R. 
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5.3.4 Production of migratory phase 

Calculations are carried out with various SA phase generation rate coefficients Λ s. The 

rest of the parameters are the same as in Section 5.3.1. Since at the end of flooding the 

remaining SA phase in the system also stops flowing, it contributes to the final deposition. 

The expected effect is confirmed in Figure 5.8 (b). It also shows that the large value of Λs 

leads to maximum deposition slightly closer to the outlet. This can be explained by the 

fact that the faster SA phase generation gives rise to more SA phase available for 

migration per unit time. Compared to the classical filtration theory, Λs is a part of the 

total filtration coefficient. Hence, the larger value to Λs leads to the lower effluent 

concentration at the steady stage, as seen in Figure 5.8 (a). 

 
Figure 5.8 Comparison of different values of Λs. 

 

5.3.5 Immobilization of SA Phase 

Calculations are carried out with various SA phase immobilization rate coefficients Λm. 

The rest of the parameters are the same as in Section 5.3.1. Figure 5.9 (b) shows that the 

faster deposition of SA phase leads to maximum deposition closer to the inlet. The result 

corresponds to that in Figure 5.8 (b). In a similar sense, the faster deposition of the SA 

phase gives rise to less SA phase available for migration in a unit time. In other words, a 

particle in the SA phase may not have enough time to migrate farther before it is 

deposited. Again the factor has little influence on the breakthrough curve, as seen in 

Figure 5.9 (a). 
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Figure 5.9 Comparison of different values of Λm. 

 

5.4 Comparisons with Experiments 

In this section, the modeling results are compared to the experimental observations. 

Model parameters are estimated either by fitting the model to experimental data or by a 

proposed estimation method. The purpose is to find a fast method for estimating the 

parameters of the model, and to match the modeling and the experimental results, by 

applying the knowledge obtained from the numerical modeling above. 

Xiqing Li et al. adopted the fluorescent carboxylate-modified polystyrene latex 

microspheres (diameter 1.1µm) as colloid particles and packed quartz sand (diameter 

417~600µm) as porous media for the column experiments [111]. Non-monotonic 

deposition profiles were observed in the experiments.   

Table 5.1 Parameter estimators and their confidence intervals (CI) from the proposed model fitting to 

experiments in Ref.[111] 

Experiments 

 

Λd Λr fm Λs Λm Λmr 

IS=3mM 

Estimator 6.17×10-3 3.74×10-4 0.009993 1.13×10-1 1.32×10-1 2.49×10-2 

CI 2.28×10-5 1.77×10-6 2.33×10-5 1.01×10-4 4.58×10-4 6.24×10-5 

IS=6mM 

Estimator 3.51×10-2 2.71×10-4 0.009999 4.05×10-1 1.35×10-1 2.71×10-3 

CI 1.88×10-4 1.62×10-6 1.16×10-4 2.91×10-4 2.18×10-3 2.61×10-3 

 

First, the parameters are estimated by fitting the model to the breakthrough curves and 

the deposition profiles from Ref. [111]. The parameter estimators and their confidence 

intervals are listed in Table 5.1. Small dispersion length is assumed: R=10
-4

. The 

resulting correlation matrix (not shown here) indicates that there is no strong correlation 
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among the model parameters. The modeling results and experimental data are compared 

in Figure 5.10.  

 

Figure 5.10 Results of the proposed model with the parameters estimated by fitting the model to the experiments 

in Ref. [111]. 

 

Parameters may also be estimated by the following analysis.  fm be estimated by Equation  

(5.28),with the available information about the colloids and the porous medium. The next 

parameter to be estimated is the longitudinal dispersivity/ diffusivity. The parameter is 

relatively low in a homogeneous porous medium, and can be easily fitted to the 

breakthrough curve.  

The estimations of Λd and Λs are relatively nontrivial. In the case of minimal particle 

release it is assumed that Λr≈0 and Λmr≈0. The average effluent concentration at the 

steady state is approximately dependent on Λd + Λs alone, since other parameters have 

little influence on it (see Figure 5.6 (a), Figure 5.7(a) and Figure 5.9 (a)). The sum of the 

two coefficients can approximately be estimated by the logarithm of the average effluent 

concentration at the steady stage:
 
 

 ln( )d s sC     (5.29) 

where Cs is the average effluent concentration at the steady stage from the experiment. 

Since the direct deposition from the bulk aqueous phase alone forms the deposited 

concentration at the inlet, the value of Λd can be estimated by fitting the deposition at the 

inlet. At last, Λs is obtained from the estimated value of Λd.  
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Figure 5.11 Results of the proposed model with the parameters estimated by the proposed method and the 

experimental results in Ref. [111]. 

The particle velocity is approximated by the average pore water velocity (superficial 

velocity divided by porosity). The only remaining parameter for estimation is the SA 

phase deposition rate coefficient Λm. It is tuned at last to match the observed position of 

the deposition maximum. 

Table 5.2 Parameters of the proposed model estimated by the proposed method 

Experiments fm Λs Λd Λm Λr Λmr 

IS=3mM 0.01 0.108 0.0027 0.135 0 0 

IS=6mM 0.01 0.405 0.0351 0.135 0 0 

 

All the parameters for the calculations are estimated by the above method and shown in 

Table 5.2. It can be seen that the estimators by fitting the experiments and those by the 

analysis are close to each other. The modeling results based on the parameters estimated 

by the above analysis and the experimental data are compared and shown in Figure 5.11. 

In the case of IS=6mM the slight overestimation of the deposition can be attributed to 

neglecting the release of the SA phase and immobilized phase. Both the modeled non-

monotonic deposition profile and the breakthrough curve agree with the experimental 

data. It confirms the ability of the proposed model to simulate a non-monotonic 

deposition profile in practice and the feasibility of the method for parameter estimation in 

the case of minimal particle release. 
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5.5 Comparison with BSW model 

In this section, the proposed model is compared to BSW model from Ref. [80] which can 

also produce non-monotonic deposition.  The purpose is to understand the underlying 

mechanisms and essence of deposition non-monotonicity by investigating the similarities 

and differences between the two models. 

In Ref. [80], the authors (S. Bradford, J. Simunek, and S. Walker) take into account the 

release of bacteria aggregates at straining sites. The released aggregates and suspended 

monodisperse particles are both dispersed in the pore space. The released aggregates are 

transported and recaptured at different rates from the monodisperse particles. The model 

in Ref. [80] can be described by the following equations: 

 
2

2 d

C C C
u uR C

T X X

  
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where the subscripts „a‟ represent the aggregates, Sc is the critical deposition 

concentration above which the aggregates start to be released. ΛdC represents the 

deposition of the suspended monodisperse population at straining sites, ΛadCa is the 

deposition rate of the released aggregates and  ΛarSa represents the re-release of the 

deposited aggregates. fa reflects the different transport behaviour of the aggregates 

compared to the injected monodisperse particles. Similar boundary conditions as (5.14) 
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and (5.15) are applied for Equations (5.31) and (5.32) since there is no aggregate assumed 

to form before the inlet. 

Sample calculations (not shown here) indicate that the transport of aggregates is 

qualitatively similar to that of the SA phase in our model. The aggregates are generated 

inside the column domain and are transported to the outlet. Unlike the SA phase, the 

aggregates may contribute much to the breakthrough curve because the velocity of 

aggregates is comparable to that of the injected monodisperse colloids. The resulting total 

breakthrough curve may contain two peaks for the monodisperse colloids and the 

aggregates respectively. Due to the far slower motion of SA phase, it only has little 

contribution to the total breakthrough curve. 

It can be seen that the two models both consider a third mobile population: surface 

associated phase via second energy minima and released aggregates, correspondingly. 

Both additional populations may be transported and immobilized at different rates from 

the injected population. Neither of them is injected from the inlet. The source of the SA 

phase is the injected population in the bulk phase, and the source of the aggregates is the 

accumulated deposition. Mathematically, the two models both involve additional 

equations for the transport and deposition of the third mobile population. The model 

structures of them are mathematically similar. 

  
Figure 5.12 Results of BSW model [80] with the parameters estimated by fitting the model to the experiments in 

Ref. [111] 

The model in Ref [80] is also applied to reproduce the experimental results in Ref. [111], 

as seen  in Figure 5.12. The modeling results highly agree with the experimental data. 

The estimated parameters and their confidence intervals are listed in Table 5.3. A small 
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dispersion length is also assumed: R=10
-4

. The resulting correlation matrix (not shown 

here) indicates that there is no strong correlation among the model parameters. 

Table 5.3 Parameter estimators and their confidence intervals (CI) from the model in Ref. [80] fitting to 

experiments in Ref.[111] 

Experiments 

 

Λd Λr Λad Sc Λar fa 

IS=3mM 

Estimator 1.19×10-1 3.06×10-1 1.34×101 1.00×10-2 4.00×10-2 9.90×10-1 

CI 8.63×10-5 1.30×10-2 5.81×10-1 2.59×10-3 1.19×10-2 6.59×10-2 

IS=6mM 

Estimator 3.99×10-1 6.95×10-2 5.35 1.00×10-2 1.11×10-10 9.90×10-1 

CI 1.69×10-4 1.64×10-4 1.09×10-1 5.84×10-4 3.57×10-12 1.96×10-2 

 

It should be commented that no observation of aggregates has been reported in Ref. [111]. 

The physics described by the model  in Ref. [80] seems to be different from that in these 

experiments. Nevertheless, the model is still able to reproduce the experimental results.  

This infers that an additional equation describing a mobile population behaving 

differently from the injected population seems to be a sufficient condition for producing 

non-monotonic deposition. The additional equation may reflect different physics in 

different experimental settings. Selection of a physically correct model requires analysis 

of the particle behavior on the microscopic scale. Such analysis is not always available 

and possible. In the last case, in order to match the non-monotonic deposition, the 

simplest possible model involving the second mobile phase should probably be selected.  
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5.6 Summary of Chapter 5 

In this chapter, a mathematical model for suspension/colloid flow in porous media and 

non-monotonic deposition is proposed. It accounts for the migration of particles 

associated with the pore walls via the second energy minimum (surface associated phase). 

The surface associated phase migration is characterized by advection and 

diffusion/dispersion.  

The proposed model for the suspension/colloid flow in porous media, considering the 

migration of the surface associated phase, is able to produce non-monotonic deposition 

profiles. A set of methods for estimating the modeling parameters is provided. The 

estimation can be easily performed with available experimental information. The results 

of numerical modeling highly agree with the experimental observations. It confirms the 

ability of the proposed model to catch a non-monotonic deposition profile in practice and 

the feasibility of the method for parameter estimation in the case of minimal particle 

release. 

The resulting non-monotonic deposition profiles in Ref. [111] are likely to be caused by 

the migration of the surface associated phase. An additional equation describing a mobile 

population behaving differently from the injected population seems to be a sufficient 

condition for producing non-monotonic deposition profiles.  
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5.7 Nomenclature of Chapter 5 

c Number of suspended particles per unit pore volume (m
-3

) 

C Dimensionless suspended particle concentration 

s Number of retained particles per unit pore volume (m
-3

) 

S Dimensionless retained particle concentration 

sm Number of particles in the surface associated phase per unit pore volume (m
-3

) 

Sm Dimensionless particle concentration in the surface associated phase 

t Time(s) 

T Dimensionless time (pore volume) 

t0 Particle injection duration (s) 

T0 Dimensionless particle injection duration (pore volume) 

x x coordinate in space 

X Dimensionless x 

v Advection velocity of particles in the bulk aqueous phase 

vm Advection velocity of particles in the surface associated phase 

u Dimensionless advection velocity of particles in the bulk aqueous phase 

um Dimensionless advection velocity of particles in the surface associated phase 

D Coefficient of dispersion(m
2
/s) in the bulk aqueous phase 

Dm Coefficient of diffusion(m
2
/s) in the surface associated phase 

R Dimensionless longitudinal dispersivity in the bulk aqueous phase 

Rm Dimensionless longitudinal diffusivity in the surface associated phase 

c0 Influent concentration 

fm Ratio of vm to v 

dmax Maximum diameter of a pore 

dmedia Diameter of the median particle 

dcolloid Diameter of the colloid particle 

dc Constriction diameter 

dz Pore diameter in position z 

h Pore length 

vcolloid Fluid velocity at the center of the particle associated with the pore wall 

deffective Effective diameter of pores 

Npore Number of pores in a cross-section of the column 

λs  Coefficient of particle transport from the bulk aqueous phase to the surface 

associated phase (s
-1

) 

Λs  Dimensionless form of λs  

λd  Coefficient of particle transport from the bulk (flowing) phase to the immobilized 

phase (s
-1

) 

Λd  Dimensionless form of λd  

λm  Coefficient of particle transport from the surface associated phase to the 

deposition phase(s
-1

) 

Λm  Dimensionless form of λm  

λmr  Coefficient of particle transport from the surface associated phase to the bulk 

phase(s
-1

) 

Λmr  Dimensionless form of λmr  

λr  Coefficient of particle transport from the immobilized phase to the bulk phase(s
-1

) 
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Λr  Dimensionless form of λr  

λar  Coefficient of particle transport from the deposited aggregates to the flowing 

aggregates(s
-1

) 

Λar Dimensionless form of λar  

λad  Coefficient of particle transport from the flowing aggregates to deposition(s
-1

) 

Λad Dimensionless form of λad 

φ Porosity of the column/porous medium 

Cs Average dimensionless effluent concentration at the steady stage 

  

 

 

 

 

 

  



162 
 

 

  



163 
 

6 Induced colloid migration for enhanced oil recovery 

The study in this chapter proceeds from the previous works on induced migration of 

reservoir fines and investigates these effects during low salinity waterflooding in a 

communicating layer-cake reservoir. First, the maximum retention as a function of both 

the salinity and the velocity of the injected water is introduced [247, 248]. The concepts 

behind the use of induced fines migration for mobility control are explained. Then the 

upscaling model for waterflooding in a communicating layer cake reservoir [314, 325] is 

adapted to incorporate the effects of fines migration. Finally, sample calculations are 

carried out to investigate such effects on the water saturation profiles, the pressure drop, 

the water cut at the production well, and the recovery. 

 

6.1 Introduction 

Migration colloid particles in oil reservoirs (usually referred to as reservoir fines in the 

contexts of petroleum engineering) and subsequent permeability decline has been widely 

observed in core flooding experiments under various conditions [7, 37, 253, 326, 327]. 

There is a considerable and ongoing effort aimed at understanding the release, the 

relocation, and the recapture of reservoir fines. It is usually suggested that such 

phenomena should be avoided due to its detrimental effects on the permeability and 

pressure drop. Nevertheless, it can also be considered as a mobility control method for 

improving waterflooding performance. An induced reduction in the effective mobility of 

water by the migration of reservoir fines in water swept zones may increase the sweep 

efficiency of water. This process is similar to the mechanisms of other EOR mobility 

control techniques, such as polymer flooding.  

It has been observed in a number of works that the composition of the injected brine 

influences significantly the release and relocation of the reservoir fines [35, 36, 249]. The 

release of fines is affected by salinity, pH, temperature, and velocity of the pore water. 

The effects of water composition on wettability, relative permeability, capillary pressure, 

and residual oil saturation were investigated, along with the migration of reservoir fines 
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[36, 249, 328, 329]. The migration of reservoir fines appears to be a separate 

phenomenon but occurs simultaneously with other effects.  

Injection of low salinity water into a saturated core of high salinity has been observed to 

give rise to significant reduction of permeability owing to the migration and the recapture 

of clay fines [7, 35, 37, 253, 330, 331]. There exists a critical salt concentration (CSC) 

below which the clay particles start to release. The release and relocation of the reservoir 

fines are almost instantaneous. Since water of low salinity is usually readily available, or 

easy to produce, reducing the salinity of the injected water is likely to be the most 

practical method to implement mobility control compared to other alternatives controlling 

the migration of reservoir fines, such as the pH, or the temperature of water. 

Several models for the release of deposited particles in porous media were proposed on 

the basis of detachment kinetics[80, 121, 122, 136, 332, 333], while the maximum 

retention model assumed instantaneous release of particles which are available to detach 

under the given condition [247, 248].  These kinetics-based models exhibited a delayed 

response to an abrupt velocity increase or salinity decrease, which disagreed with the 

almost instantaneous response in the experiments [37, 327, 334]. The maximum retention 

model, on the other hand, exhibited response without delay [237, 248] and was chosen 

for the current study.  

In the work of Zeinijahromi et al. [247]the maximum retention function was incorporated 

into the Dietz model for waterflooding in a non-communicating layer-cake reservoir. 

Initially deposited fines were assumed to be released instantaneously due to the injection 

of low-salinity water.  The released fines might be recaptured via straining at pore throats 

and cause the reduction of permeability in the water swept zones. Introduction of these 

effects allowed for the re-definition of the pseudo fraction flow function and led to lower 

relative mobility of water. The breakthrough time of water was increased while the water 

cut at the production well was decreased. 
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6.2 Induced fines migration by alteration of injected water chemistry 

The balance of the hydrodynamic torque, the lifting torque, the resisting adhesive torque 

and the torque of gravity determines whether the reservoir fines attaching to the pore 

walls will be immobilized and re-entrained into the carrying fluid [9, 35, 216, 248, 251]. 

The erosion number, a dimensionless parameter indicating the ratio between the torques 

for the detachment and the attachment of particles, can be expressed in the following way: 

  
l n d d

e g n

Fl F l

F F l






 (6.1) 

where , , ,l d eF F F and 
gF are respectively the lifting force, the hydrodynamic drag, the 

electrostatic force, and the gravity exerting on the particles attached to the pore walls. dl

and nl are respectively the levers of drag and normal forces. The forces and their moments 

on the particles attached to the internal cake surface are illustrated in Figure 6.1. 

 
Figure 6.1 Forces and torque balance for the particle attached to the internal cake surface 

Particles are released instantly and re-entrained into the carrying fluids if the torque for 

detachment is larger than that for attachment, i.e. the value of the erosion number is 

greater than one. It is shown by Bedrikovetsky et al. [248] that the maximum retention is 

a function of the erosion number: 

Fd

Fl
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Fg
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ln

fluid velocity 
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  cr    (6.2) 

where  is the concentration of retained particles (m
3
/ m

3
). The physical meaning of the 

maximum retention function can be interpreted as follows. Given a certain setting of 

injected water chemistry and velocity there exists a maximum retained amount of the 

particles, above which the excess deposited particles are released. Below the maximum 

retention the torques from the lifting and the hydrodynamic drag are insufficient to 

overcome the torques from the electrostatic force and the gravity. The rise of pore water 

velocity increases the lifting force and the hydrodynamic drag, while the decrease of 

water salinity reduces the adhesive torque. Consequently, water velocity, salinity, pH, 

temperature and other properties of water chemistry may all be influential on the value of 

the maximum retention.  

It may be assumed that the re-entrained particles are recaptured instantly at the 

neighboring pore throats via physical straining. The recaptured particles are assumed not 

to be released due to the change of water chemistry or velocity, since the deposition 

mechanisms are different from the surface attachment. The total amount of the released 

particles equals to the sum of the particles captured at pore throats and the effluent ones. 

In the case of media with thin pore throats, we may assume that all the released particles 

are instantly re-captured via straining: 

  ini cr str      (6.3) 

where the subscripts „ini‟ represents the amount of deposited particles at the initial 

condition, and „str‟ represents straining.  

Following Refs. [290, 306, 307], it is assumed that the inverse to normalized permeability 

k/k0 is a linear function of retained particle concentration. It is also assumed that the 

detachment of a particle attaching to the pore walls causes a negligible increase in 

permeability, while plugging of pore throats via straining causes a significant 

permeability reduction: 
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 0
str

k
1 βσ

k
   (6.4) 

where k is the permeability, β is the formation damage coefficient.  Since the migration 

of reservoir fines may only occur in the water swept zones, the effects of permeability 

damage should only be taken into account for water flow. It is therefore reasonable to 

assume the reduction of the relative permeability of water can be described by a similar 

expression as Equation (6.4). 

The above considerations are sufficient for the inclusion of the induced fines migration 

and subsequent permeability reduction into a reservoir simulation model. Pore plugging 

of the released reservoir fines works as a fluid diversion mechanism. The reduction of the 

permeability in the water swept zones may retard the propagation of water fingers and 

increase the sweep efficiency. Similar mobility control techniques, such as polymer 

injection, may be applied to reduce the mobility ratio and decrease the fraction flow of 

water. 

 

6.3 Upscaling waterflooding in communicating layer-cake reservoirs 

The upscaling method proposed in [314, 325] was applied to investigate influence of 

fines migration on the performance of waterflooding in communicating layer cake 

reservoirs. The main assumption underlying the upscaling theory is that the gradient of 

the pressure drop in vertical direction may be set zero due to high anisotropy aspect ratios. 

As a result, the mass communication between neighboring layers in the vertical direction 

is instantaneous. 

In this work, it is assumed that water is injected into a two dimensional rectangle 

reservoir from one side to the other at a constant flow rate. The top and bottom of the 

reservoir is insulated with impermeable boundaries. It is assumed that a stratified 

reservoir has a span L in the horizontal x direction and a thickness of H in the vertical z 

direction. The reservoir consists of N communicating horizontal layers. Water is injected 
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horizontally to displace oil in place. Provided that the water saturation is s(x,z,t), the mass 

balance equation for water can be written as [316]: 

 
   

0
x zf s U f s Us

t x z


 
  
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 (6.5) 

where φ is the porosity, f  is the fractional flow function of water, Ux is the Darcy‟s 

velocity in x direction and the Uz is the Darcy‟s velocity in z direction. The impacts of 

gravity and capillary forces are neglected. The velocities can be expressed in terms of the 

pressure gradient according to Darcy‟s law: 

 ,x x z z

p p
U U

x z
 

 
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 
 (6.6) 

where the mobilities λx, λz and the fractional flow function are: 
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 (6.7) 

where krw is the relative permeability of water, kro is the relative permeability of oil, μw is 

the water‟s viscosity, and μo is the oil‟s viscosity. Here Corey‟s correlations for relative 

permeabilities are adopted [335]: 
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      

 (6.8) 

where sor and swi are the residual oil saturation and irreducible water saturation, krwor and 

krowi are the relative permeabilities of water and oil at sor and swi, w and o are the so-

called Corey‟s exponents for water and oil respectively.  

The permeability, porosity, the mobility of each layer may be rescaled as follows: 
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The only assumption in the model is that the pressure gradient in vertical direction may 

be negligible compared to the horizontal pressure drop. Asymptotic analysis resulting in 

this assumption is carried out in Refs.[314, 325]. Such an assumption gives rise to

0
p

z x

  
 

  
, which in sequence leads to: 
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   (6.10) 

Substitution of the average mobility in the x direction from Equation (6.9) into Equation 

(6.10) leads to: 
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Due to the assumption of incompressibility of fluids, the mass conservation law for the 

overall fluid velocity has the form of 

 0x z
U U

x z
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 (6.12) 

Substitution of Equation (6.11) into Equation (6.12) leads to the following expression for 

Uz: 
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Finally, substitution of Equations (6.11) and (6.13) back into Equation (6.5) leads to: 
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Equation (6.14) may also take the following dimensionless form: 
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where the dimensionless variables are adopted from (6.14): 
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Equation (6.15) is a two-dimensional partial integro-differential equation involving 

multiple integral operators. Solving such an equation usually requires intensive 

computational efforts.  The 2-D equation can be converted into a series of equations, each 

of which represents the mass balance in a layer. The system of equations takes the 

following form (the details are given in Ref. [314, 315]): 
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where indices i and j represent the ith layer. Bi and Gi are expressed as: 
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 (6.18) 

Here the result of logic operators    is one if expression  is true, and zero if it is false. 

The injection boundary condition is 1-sor corresponding to the maximum water saturation 

while the initial condition is swi. For model calculations below we assume that the 

residual saturations are the same for all the layers. 
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6.4 Maximum attached concentration 

In this section, the expression of the maximum retention (attachment) for a cylinder 

capillary is introduced. The underlying torque balance analysis follows Ref. [248]. 

Similar approach was utilized for estimation of external filter cake thickness in the 

fractured and open-hole wells [295, 336].  The porous space is assumed to be a bunch of 

parallel rectangular pores with the Hele-Shaw flow occurring between the walls [337]. 

Porosity and permeability can be expressed via the pore opening (width) W and pore 

concentration n [338]: 
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   (6.19) 

It allows for the calculation of pore opening and concentration for known porosity and 

permeability: 

 
2

0

0

8
;

8

k
W n

k

 

 
   (6.20) 

Following Ref. [248], the balance between the torques of the hydrodynamic drag, the 

lifting force, gravity/buoyancy and the electrostatic force can be expressed as: 
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where Fe is maximum value of electrostatic DLVO force , rs is the particle radius,  is 

the density difference between the solid particle and water,  is the correction coefficient 

for the lifting force, ch is the height of internal cake,  is the correction coefficient for 

hydrodynamic drag. The lever ratio for the drag force to the normal force 3d nl l  . 

Introducing a new dimensionless variable: 
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leads to the following form of the previous equation: 
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For the rectangular shape of pores, the critical retention concentration is calculated via 

the properties of the internal cake:   

    
22 1cr c cW W h n     

 
 (6.24) 

Substitution of the W
2
 in Equation (6.19) into (6.24) leads to: 
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Let us express the equilibrium cake thickness via y from Equation (6.22): 
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Substitution of Equation (6.26) into Equation (6.25) leads to the final expression of the 

critical retention concentration: 
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 (6.27) 

The root y of cubic equation (6.23) is independent of velocity U. Thus, Equation (6.23) 

provides with quadratic polynomial form of the critical retention function ζcr(U).  

By assuming that the reservoir fines are only released in the water swept zones, and that 

the porous medium is water wetted, the hydrodynamic dragging force on the fines are 

only from the water phase.  Equation (6.27) can be rewritten as: 
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6.5 Adaptation of waterflood model to fines migration 

In this section, the maximum retention model for fines migration is incorporated in the 

upscaling model for waterflooding in communicating layer-cake reservoirs. Both 

reduction of the permeability due to pore plugging and the subsequent diversion of fluids 

flow across different layers are taken into account.  

Migration of fines causing the reduction of the permeability in the vertical direction is 

neglected, since perfect communication between the reservoir layers is assumed in this 

work. The maximum retention model [248] is developed in the framework of single water 

phase flow. The application of such a model for the waterflooding in an oil reservoir 

requires more considerations for the spatial distribution of the two immiscible phases. In 

a water-wet porous medium, due to the capillary pressure and the median wettability, 

water is inclined to flow along the pore walls, around median grain constrictions and in 

the smaller pores [339-342]. Under such assumptions the flow of water causing the 

hydrodynamic drag can be expressed via the fraction of the total flow rate: 

 
 

w

f s U
v

s
  (6.29) 

where wv is the pore velocity of the water phase, U is the total Darcy‟s velocity,  f s is 

the fraction flow of water,  is the porosity, and s is the water saturation. More detailed 

considerations for the particle and pore size distributions are possible, while it is beyond 

the scope of the current work (see Chapters 2 and 3 and Refs. [104, 105, 136, 156, 158] 

for the distributed flow modeling).  Equation (6.29) serves as a simplified assumption. It 

is also assumed that the presence of small amount of residual oil does not change the 

process of particle release significantly and can be neglected. This assumption probably 

needs further refinement in the future work (see experimental evidence from [331]). With 
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this modification, the expression of the erosion number in Equation (6.1) may be 

rewritten as (detailed derivations can be found in Section 6.4):  
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where w is the viscosity of water, sr is the particle radius, and nF is the normal force 

exerting on the particles (lifting force, gravity, and electrostatic force). With the 

consideration of Equation (6.4), the total mobility in the ith layer and the fraction flow of 

water can be written as: 
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where x is the horizontal mobility, rw and ro are the relative mobility of water and oil, 

index „i‟ represents the ith horizontal reservoir layer.  

The adapted waterflooding model assumes that the salt (NaCl) behaves as a neutral 

additive in the reservoir, namely the influence of salt concentration on water viscosity 

and the adsorption/desorption of salt on pore surface are ignored. It is assumed that the 

salt in the connate water before the displacement front is immobile and that the 

dispersion/diffusion of salt is negligible. Such assumptions can ensure that the low-

salinity front travels at the same velocity as the water front [316, 343]. The ratio between 

the tracer and water front velocities usually ranges from 1:1.1 to 1:1.4 in practice which 

justifies the above assumptions  [247, 302]. The model also assumes that the change in 

the composition of the injected water due to mixing with the connate water is negligible. 

As a result, the alteration of salinity and consequent permeability decline occurs instantly 

after the water front passes a given point of the reservoir, leading to Equation (6.31). The 

above assumptions also allow us to reduce the equation for the mass balance of salt. 

Due to the assumption of instant straining of all released particles, the concentration of 

strained particles is equal to the initial deposition minus the maximum retention. The 
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maximum retention is dependent on the local velocity of water, which leads to the 

dependence of strained retention on water velocity: 
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 (6.32) 

With the help of Equation (6.11) and Equation (6.13), the norm of the total velocity can be 

expressed as: 
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The velocity of water in the ith layer can be further transformed by taking into account of 

Equation (6.17):  
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 (6.34) 

Similar to the models for fines migration in non-communicating layer-cake reservoirs 

[247], the model in this work is also indicative only. The model focuses on the effects of 

fines migration in the communicating layer-cake reservoirs specifically. Injection of low 

salinity water is only one example to induce the migration of reservoir fines, while other 

alternatives may also result in fines migration, such as pH. The model does not take into 

account other effects of the injection of low salinity water, such as the alteration of 

capillary pressure, residual oil saturation, and pore size distribution [123, 158, 326, 

327].The proposed model, under the assumption of constant residual oil saturation, may 

underestimate the benefit of low salinity water injection in a communicating layer cake 

reservoir. 

One key assumption of this model is that the hydrodynamic drag from the fluid is 

assumed to be only from the water phase. As a result, the maximum retention function is 

dependent on the water saturation. Such an assumption is reasonable for completely 

water-wetted rocks where water flows along pore surface and around constrictions. For 
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partially wetted or oil-wetted rocks where the wetted pore surface also depends on water 

saturation, the current model can be extended to account for the available fines for release 

depending on water saturation. Such effects are currently beyond the scope of this study. 

 

6.6 Results and discussions 

In this section, sample calculations are carried out to investigate the effects of fines 

migration on the water saturation profiles, the pressure drop, the water cut at the 

production well, and the recovery for a given flow rate. 

It is assumed that a reservoir consisting of 30 horizontal layers is flooded with water of 

low salinity into one side, and oil is produced on the other side. The top and the bottom of 

the reservoir are insulated with impermeable boundaries.  The horizontal permeabilities 

of different layers are assumed to follow a discrete log-normal distribution. The mean 

value and the standard deviation of the logarithm of dimensionless permeability are 1.0 

and 0.1 respectively. The minimum of the dimensionless permeability is set to be 0.5, and 

the maximum is selected in such a way that the mean dimensionless permeability

1.0K  . The following properties of fluids are adopted: swi=0.1, sor=0.3, μw=1cP, 

μo=2cP, αw=2, αo=2, krwor=0.8, krowi=0.4. For the calculations of the maximum retention, 

the properties of sandstones are taken from the laboratory tests of low salinity 

waterflooding [34]: the average porosity φ=0.1, the average permeability 100 Dxk m . 

The initial deposition 0.01ini  (volume fraction). The radius of the deposited particles

1 msr  , the density of the particle material
3 32 10 kg/mp   , the maximum 

electrostatic force 114 10 NeF   , the lifting coefficient 89.5  , the coefficient for 

hydrodynamic drag 60  , the internal cake porosity 0.5c  . Details of the calculation 

for the maximum retention can be found in Section 6.4. 
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6.6.1 Effects of formation damage 

Calculations are carried out with different values of the formation damage coefficient β. 

Previous study on low-salinity waterflooding [34, 247] are taken into account to select 

the values of β. Water saturation profiles at dimensionless time T=0.1 (measured in 

porous volumes injected) are revealed at the top, the horizontal center, and the bottom of 

the reservoir in Figure 6.2.  

(a)  (b)  

(c)  
Figure 6.2 Water saturation profiles at the top of the reservoir (a), in the center of the reservoir (b), and at the 

bottom of the reservoir (c). 

With larger values of the formation damage coefficient, the displacement fronts in the 

more permeable layers are more retarded, as seen in Figure 6.2 (a) and (b). The 

displacement front in the least permeable layer is accelerated, as seen in Figure 6.2 (c).   

The averaged water saturation profiles (ξ=X/T) are revealed in Figure 6.3. It can be seen 

larger formation damage gives rise to more even displacement profiles. The water 
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saturation profiles at T=0.1 in the X-Z plane are revealed in particular for β=0 and β=150 

in Figure 6.4. The displacement fronts are clearly retarded in the more permeable layers 

(close to top), and accelerated in the less permeable layers (close to bottom).  

Such phenomena are resulted from the fluid diversion mechanism in connection with the 

migration of reservoir fines. In water swept zones the reservoir fines in place are released 

due to the change of water chemistry. The released fines are instantly captured at the 

neighboring pore throats and reduce the relative permeability of water subsequently. As a 

result, water flow is diverted from more permeable layers to the less permeable layers. 

Water cut at the producer and the recovery factor are then calculated and plotted in 

Figure 6.5. It can be seen that the breakthrough of water is delayed with larger values of 

the formation damage coefficient. After the first breakthrough of water in the most 

permeable layers, the breakthrough in the less permeable layers occurs and corresponds 

to the transition points (“corner points” in Figure 6.5 (a)). The breakthrough in the less 

permeable layers is earlier with larger values of β. As a result, the current recovery is 

increased due to less water flow at the production site.  

 
Figure 6.3 Averaged water saturation profiles (ξ=X/T) resulted from different values of M 
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Figure 6.4 Water saturation profiles in the X-Z plane: (a). β=0; (b). β=150; 

The pressure drop between the injector and the producer, corresponding to a constant 

overall flow rate, is calculated and revealed in Figure 6.6. It can be seen that the pressure 

drop decreases more slowly with more formation damage caused by the migration of 

reservoir fines. After β exceeds a certain value (approximately β =120), the pressure drop 

becomes a non-monotonous function of time. It indicates that more energy is required 

due to the formation damage to maintain a constant flow rate. 

 
Figure 6.5 Compare formation damage coefficients: (a). Water cut at the production site; (b). Recovery factor 

The water saturation profiles indicate that the induced migration of reservoir fines is in 

favor of increasing water sweep efficiency. The resulting water cut and the recovery 

show that such phenomena may improve the waterflooding performance for oil 

production. Nevertheless, more energy is required to increase the pressure drop and 

maintain a constant flow rate.  
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Figure 6.6 Pressure drop between the injector and the producer 

 

6.6.2 Effects of mobility ratios and crossflow 

Calculations are carried out with different values of the end-point mobility ratio

   /rwor o rowi wM k k  . For the calculations of normal waterflooding β=0, for the 

calculations of low salinity waterflooding β=50. The viscosity ratio of water and oil is 

modified to obtain the different values of the mobility ratio M.   

 
Figure 6.7 Compare mobility ratios: (a). Water cut at the production site; (b). Recovery factor 
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Figure 6.7 shows that low salinity waterflooding delays the breakthrough of water and 

increases the oil recovery for all the values of M. Larger mobility ratios, on the other 

hand, result in earlier breakthrough and lower oil recovery. The increased oil recovery 

due to migration of reservoir fines is larger with larger values of M, as seen in Figure 6.8 

(a). In the range of high mobility ratios, the increased oil recovery is much less sensitive 

to the mobility ratio, as seen in Figure 6.8 (b). It seems that the positive contribution from 

the mobility ratio to the increased oil recovery due to fines migration is limited. Such 

phenomena may be explained by the enhanced effects of corssflow due to larger water-oil 

mobility ratios.  

 
Figure 6.8 Increased recovery due to migration of fines (low salinity waterflooding) with different mobility ratios 

A theoretical study of cross-flow in communicating layer cake reservoirs has been carried 

out in Ref.[315]. Since no fines migration is considered in this theoretical study, details 

are not presented in this thesis. The essential explanation of the effect of the mobility 

ratio M on the crossflow are drawn from the study [315]:  Equation (6.13) indicates that 

the driving force of crossflow is the difference of the horizontal gradients of accumulated 

mobility in different layers. The horizontal mobility gradient can be rewritten as a 

function of the mobility derivative with regard to water saturation, as seen below.  
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The values of Xd ds are larger with larger values of M. X X  is more sensitive to 

s X  with larger M. As a result, the crossflow between layers is enhanced with larger 
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values of the mobility ratio. It may facilitate the fluid diversion between layers caused by 

fines migration. 
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6.7 Summary of Chapter 6 

In this chapter, the effect of fines migration induced by injection of low salinity water has 

been incorporated into the upscaling model for waterflooding in a communicating layer 

cake reservoir. The torque balance on the deposited reservoir fines via attachment, the 

straining of released fines, the consequent permeability damage, and the cross-flow 

between layers have been taken into account.  

Particle release and re-deposition give rise to the reduction of the permeability in water 

swept zones, which subsequently leads to the diversion of water flow from the more 

permeable layers to the less permeable ones. As a result, the water cut at the producer is 

decreased, and the oil recovery is increased. However, more energy for the pressure drop 

is required to maintain a constant flow rate. Modeling results have shown that higher 

formation damage coefficients (more permeability damage) give rise to later 

breakthrough of water, lower water cut, higher oil recovery, and higher pressure drop to 

maintain a constant flow rate. 

In a communicating layer cake reservoir, higher end-point mobility ratio M (water to oil) 

leads to more crossflow and lowers the water sweep efficiency. However, the effect of 

fluids diversion caused by fines migration is stronger in this case. The increased oil 

recovery due to fines migration increases with the mobility ratio in the range of low 

mobility ratios (2~4), while it is insensitive to the mobility ratio in the range of high 

mobility ratios (>50). The positive contribution from the mobility ratio to the increased 

oil recovery due to fines migration seems to be limited. Thus, the enhanced oil recovery 

method, low salinity water flooding causing the migration of fines, is more efficient with 

larger mobility ratio in communicating layer-cake reservoirs. 
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6.8 Nomenclature of Chapter 6 

F       Forces exerting on fines attached to pore surface 

H       Height of reservoir 

L        Length of reservoir 

k        Absolute permeability 

M      End-point mobility ratio of water to oil 

N       Number of layers 

s         Water saturation 

t          Time 

T         Dimensionless time/ pore volume injected 

U        Darcy‟s velocity 

x        Coordinate in the horizontal direction 

X       Dimensionless x 

z          Coordinate in the vertical direction 

Z         Dimensionless z 

f Fractional flow of water 

r radius 

W pore opening width 

h height 

n pore concentration 

l lever 

g gravity acceleration 

φ Porosity 

Φ Dimensionless porosity 

α Corey‟s exponent  

β Formation damage coefficient 

  Correction coefficient for the lifting force 

  Correction coefficient for hydrodynamic drag 

σ Retention/concentration of deposited particles 

ε Erosion number 

ξ X/T 

 

Subscripts  

i           ith layer of reservoir 

o          Oil 

or         Residual oil 

w          Water 

wi         Irreducible Water 

r relative 

x   Direction along a reservoir 

z      Direction orthogonal to a reservoir  

0          Reference variables 

s particles/fines 

p pores 
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c internal cake 

d hydrodynamic drag 

n normal 

l lifting 

e electrostatic 

g gravity 

cr critical 

str  straining 

ini  initial 
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7 Estimating filtration coefficients for straining 

7.1 Introduction 

The fundamental filtration theory has been focused on the transport of colloids at 

different scales: the interface scale, the collector (median grain) scale, and the pore scale. 

A number of mathematical models for the attachment rate of colloidal particles have been 

reviewed and discussed in Chapters 1 and 2. On the other hand, the rate of size exclusion 

and straining of particles was mainly studied at pore scale in the traditional size exclusion 

theory [81, 82, 114, 121, 344]. The particles could be captured wherever they meet the 

smaller pores. The random walk of particles was assumed to follow flow-biased 

probabilities.  Such a theory was realized in the network model with random walking 

particles and used to match the permeability damage data over hundreds of pore volume 

injected [345]. Nevertheless, little attention was paid to the capture rate during short term 

injections (negligible formation damage). 

 aU c
t








 (7.1) 

The filtration coefficient is usually defined as the proportionality coefficient between the 

particle capture rate and the particle flux [95], as in Equation (1). Here ζ is the number of 

retained particles in unit volume of porous media, Ua is the Darcy‟s velocity through 

accessible pores, and c is the number of suspended particles per unit pore volume. For 

size exclusion and straining the filtration coefficient may vary with time and space due to 

the change of pore size distributions. The coefficient can be treated as a constant under 

the assumptions of dilute suspension and short time injection. 

Given the pore size and the particle size distributions, the average exclusion rate was 

estimated from population balance approaches [156, 158, 229] . It has been proven in 

[229] that the population balance approach for monodisperse suspension flows in porous 

media with distributed pore sizes is mathematically equivalent to the classical deep bed 

filtration model. This treatment of the size exclusion experiments was successfully 

applied to fit the challenge testing data from dilute suspension flows in randomly packed 

glass beads with little permeability damage. The population balance approach involved 
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the characteristic distance l , treated as an adjustable parameter of the model. This 

distance was interpreted as a distance between “mixing chambers” connected by a system 

of parallel capillaries [346]. This visualization was shown to be equivalent to the 

population balance model.  

An assumption about constancy of l  and its independence of the particle size may be 

valid for narrow particle size distributions far above the percolation threshold. However, 

in many natural and industrial processes the particle size distributions may be rather wide 

[1, 114, 347]. Also, for accurate reconstruction of the pore size distribution on the basis 

of the particle injection experiments it is required to inject particles of the largely 

different sizes  [348]. For particle sizes close to and below the percolation threshold, the 

model may overestimate the penetration depths of particles. A puzzling observation of 

these experiments was that the effective value of l  fitted to the experimental data was 

much larger than the characteristic pore sizes [346]. This indicated the presence of a 

specific correlation length in a porous medium, which much exceeded the pore sizes. A 

new stochastic approach to size exclusion filtration, explaining all the observations above, 

is desirable. In this Chapter, we apply percolation theory and the network modeling in 

order to analyze the penetration depths of the particles. 

Percolation theory is a branch of probability theory for predicting the properties of 

random media [349, 350]. It is closely tied to the network modeling of transport in porous 

media and often used to predict medium properties [235, 316, 350-354]. A network 

model describes a detailed geometry structure of porous media and the physics of pore-

scale events. The percolation theory and network models are usually complimentary. The 

network models yield insight into the effects of pore scale physics while the percolation 

theory sheds light on effects of randomness on macroscopic properties [351]. 

Network models have been applied to describe suspension flow in porous media with size 

exclusion [160, 345]. The random walk theory was used to determine the paths of 

particles in the network.  The authors mainly focused on the permeability damage of the 

medium and the percolation behavior of the conductivity.  
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In the study of this chapter, laboratory challenge tests are carried out under unfavorable 

attachment conditions, so that size exclusion or straining is the only particle capture 

mechanism. The experimental results show that far above the percolation threshold the 

filtration coefficients are not proportional to the average flux through the pores smaller 

than the particles but power functions of them. The experimental penetration depths of 

particles can be over thousands of pores even if the particle size is larger the average pore 

size. This cannot be explained by the traditional size exclusion theory or the model of 

parallel tubes with mixing chambers. A special capture mechanism has been proposed, 

which makes it possible to explain the experimentally observed power law dependencies 

of filtration coefficients and large penetration depths of particles. Such a capture 

mechanism is realized in a 2D pore network model with periodical boundaries and the 

random walk of particles on the percolation lattice. Geometries of infinite and finite 

clusters formed by pores of the sizes exceeding the particle size are analyzed with regard 

to the possibility for particle capture. Two power laws are proposed to describe the 

filtration coefficients from the network model and one of them is used to match 

experimental challenge data. 

 

7.2  Challenge testing experiments 

In this section, the unfavorable attachment experimental conditions and the subsequent 

absence of particle retention due to attachment are established by tests in a simplified 

one-grain-layer engineered porous media. Then the laboratory tests for the flow of 

colloidal suspensions through glass-bead-packed porous media with size exclusion are 

carried out. The characteristic particle sizes are smaller than the pore sizes, so that the 

experiments are carried out away from the percolation threshold. 

 

7.3 Unfavorable attachment conditions  

Unfavorable attachment experimental conditions are crucial to ensure straining or size 

exclusion thin pores to be the only particle capture mechanism. Such experimental 
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conditions are determined both theoretically and experimentally in a preliminary study [1, 

298, 346].  The theoretical study serves as a guideline for the subsequent experimental 

confirmation of the unfavorable attachment conditions. In the preliminary experimental 

study, a micro model unit that provides the visual observation of colloidal suspension 

flow through porous media is designed and constructed. It allows determination and 

confirmation of such solution compositions that the DLVO forces between the colloids 

and the medium are repulsive. 

 

7.3.1 DLVO study on unfavorable attachment conditions 

In the theoretical study, the interaction energy between the two surfaces is calculated as 

the sum of the electrical double-layer interaction and the van der Waals interaction 

energies [1, 298]:  

 ,total dl vdW    (7.2) 

where total  dl  and vdW are the total, the double-layer, and the van der Waals 

interaction energies respectively. The expressions for the electrical double-layer 

interaction energy are available for varying geometries and different assumptions [1, 44]. 

The widely adopted expression for dl  is based on the sphere-sphere interactions [1]: 

 
1 264 tanh tanh exp ,B

dl s

D

k T ze ze h
r

ze kT kT L

 


      
        

       
 (7.3) 

where Bk  is the Boltzmann constant, T is the temperature, z is the valence of the ions, 

e  is the elementary charge, h  is the separation distance between two surfaces,  is the 

surface potential, and the subscripts „1‟ and „2‟ represent the surfaces of colloid and 

median grains, respectively. The Debye length DL  is calculated by: 

 
0

22

B
D

A

k T
L

e N I


  (7.4) 

where  is the dielectric constant, 0  is the vacuum permittivity, and I is the ionic strength.  
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The classical approach to evaluate the van der Waals interaction between two bodies is 

derived by Hamaker [137] from the pairwise summation of all the relevant interaction 

energies. The expressions stemming from this approach can be split into the product of a 

purely geometric multiplier and of the so-called Hamaker constant. The total Hamaker 

constant of the different bodies is typically estimated by the geometrical mean value of 

the individual Hamaker constants [138].  For colloid-water-glass interactions, vdW can 

be calculated by [56]: 

 

1

123 14
1

6
vdW s

w

A h
r

h 



 
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 
 (7.5) 

where w is the characteristic wavelength, usually 100 nm [56].  

 

Figure 7.1 Sample calculations of DLVO interactions for colloid-glass-bead 

Sample calculations are carried out with different ionic strengths, particle sizes, and zeta 

potentials. In the following experimental study, packed glass beads are adopted as the 

porous medium and fluorescent carboxyl latex microspheres are used in preparing the 

colloidal suspensions. Typical values of the Hamaker constants and surface potentials for 

such a system are adopted in the sample calculation: 20
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78.4  , 298T K . It can be seen in Figure 7.1 that lower salinity (ionic strengths), 

larger particle sizes, and a more negatively charged surface lead to more repulsion 

between colloids and collectors. From these conclusions, lower salinity and higher pH are 

suggested to achieve a more unfavorable attachment condition. Attachment via secondary 

energy minimum should be also avoided, even though the attached particles may migrate 

to the straining-favored sites due to hydrodynamic drag [112, 135, 136].  

 

7.3.2 Experimental study on unfavorable attachment conditions 

In the preliminary experimental study, a colloidal suspension of spherical, fluorescent 

carboxyl latex microspheres is forced to flow through an engineered porous medium. The 

yellow-green ( 4.5sr m ) fluorescent latex microspheres (Polysciences Inc., Warrington, 

PA) are selected as the colloidal particles held in suspensions. The surfaces of these 

colloids are grafted with carboxyl functionalized groups by the manufacturer. It creates a 

negatively charged hydrophilic colloidal surface possessing a net negative charge in an 

alkaline solution. The net charge of the surface prevents agglomeration of colloids and 

reduces electrostatic attraction to the median grains. The colloid concentration is kept 

constant at 20 ppm in all the preliminary tests, while the injection volume is 3mL. 

A single layer of sieved and cleaned spherical glass beads (Ballotini Bead, Potters 

Industries Pty. Ltd., Australia) is adopted as a 2D porous medium (thickness 600 µm). 

The main component of the porous medium, silica (SiO2), has a net negative surface 

charge in alkaline solutions (SiO4
4-

). The glass beads possess the following compositions: 

72.0% SiO2, 15.0% Na2O, 7.0% CaO, 4.2% MgO, 0.4% Fe2O3 and 0.3% Al2O3.These 

glass beads (radius: 300 m ) are packed homogeneously with an estimated porosity of 

39.6%.  

In order to examine the attachment and straining of colloids in the medium, the micro 

model housings are designed to support the observation under an optical microscope. The 

housings are milled out of polyvinyl chloride (PVC) plastic and are designed in such a 

way that two glass slides are held in place to contain the medium in a single layer. The 
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deionised ultrapure MilliQ water (resistivity of 18.2 MOhmcm at 25 C) after degassing 

in vacuum at pressure  10
-2

 Pa is used for the preparation of a colloidal suspension. The 

salinity, and the pH of the suspensions are adjusted with the addition of NaCl(aq), HCl(aq) 

and NaOH(aq), respectively. The retained concentration is calculated by counting the 

number of glowing particles per unit area with the optical microscope. The attachment 

and straining of particles are distinguished by visual observation. Lower salinities and 

higher pH values are observed to create more repulsive conditions.  

 

Figure 7.2 Images of particles strained in porous media [346]: (a) different salinities and (b) different pH levels  

The surface impurities will also carry a negative charge at pH=10.4, since it is near or 

above the isoelectric point of any metal oxides found on the glass bead surface. At such a 

high pH, both the carboxyl latex and the glass bead surfaces are completely deprotonated.  

Such unfavorable attachment conditions can be confirmed in Figure 7.2. In order to 

minimize the colloid attachment in further tests, the solutions with high pH and zero 

salinity are employed so that the physical straining would dominate. Long time of 

washing is carried out to avoid attached particles via secondary energy minima.  

Under such unfavorable attachment conditions (high pH and low salinity), according to 

Figure 7.1 and Figure 7.2, there is net repulsion between the colloid and collector 
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surfaces. Similar repulsive conditions have been visually confirmed  under  microscopes 

in [346]. 

 

7.4 Challenge testing procedures 

Under the unfavorable attachment conditions determined by the preliminary study, a 3D 

column of porous medium is set up for challenge tests (diameter: 47mm, length: 50mm). 

Before the inlet of the column an additional homogenized section is installed to ensure a 

uniform boundary condition and a plug flow. A 30 µm sized stainless steel mesh and 

distribution plates are utilized to support the medium within the column.  

Table 7.1 Particle sizes used for challenge tests 

Type 1 2 3 4 5 6 7 

<rs>, µm 0.89 1.03 1.57 2.18 2.84 3.17 4.54 

 

Mono-disperse suspensions of yellow-green fluorescent polystyrene latex microspheres 

of different sizes are applied in the following experiments, as seen in Table 7.1. The glass 

beads are sieved twice to constrain the grain sizes within the pore sizes of two sieves. The 

medium is numbered by its two grain size thresholds as: lower threshold/ upper threshold. 

For example, Medium 40/63 has a lower grain size threshold of 40 µm and an upper 

threshold of 63 µm. Sonic baths are applied to achieve dense packing. The grain size 

distribution is measured by a Malvern Mastersizer.  

A complete washing procedure is then performed to remove residual organic impurities 

with acetone, hexane, and hydrochloric acid. Suspension solutions are prepared with 0.1 

M sodium hydroxide and degassed ultrapure MilliQ water to achieve a pH of 10.4. The 

column is placed vertically and connected to a syringe piston pump (New Era-1000) to 

force a steady state bottom-up flow at the velocity of 10
-5

 m/s. Before colloid injection, 5 

pore volumes of solution are injected to ensure a clean initial condition.  

Low colloidal concentrations (8 ppm) and low colloid injection time (5-10 p.v.i.) are 

employed to ensure negligible variation of pore size distributions. It can be validated by 
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comparing the maximum retained concentration to the pore concentration [346]. The 

effluence is sent through the PAMAS S4031 GO portable particle counter to determine 

the effluent particle concentration. The effluent concentration is monitored until it 

reaches the steady state. Multiple times of measurements are carried out to examine the 

experimental uncertainties. 

 

7.5 Experimental results and discussions 

7.5.1 Treatment of experimental data 

The normalized effluent concentrations at the steady state eC from above tests are listed 

in Table 7.2. The decrease of effluent concentrations with the increase of particle sizes is 

observed. The filtration coefficient can be calculated by   0ln /eC L   , where 0L is the 

column length. The average penetration depth of particles is calculated as 1/L  . 

It is worth mentioning that the effluent concentration from large particles is close to zero. 

Due to the noise from the solution some measurements may even be below zero. The 

value listed in the table is an average value of a number of measurements over a long 

period. Short columns may be applied to achieve a higher effluence, while it may also 

introduce uncertainties from low randomness. 

Table 7.2 Normalized effluent concentrations from challenge tests, ‘-’ for not tested 

<rs> (µm) Medium 

30/125 

Medium 

63/90 

Medium 

40/63 

0.89 - - 0.9930 

1.03 - 0.9910 0.9880 

1.57 0.9680 - 0.9690 

2.18 0.7990 0.9060 0.7190 

2.84 0.5810 0.5200 0.6823 

3.17 0.1221 0.1970 0.0700 

4.54 0.0003 0.0030 0.00007 
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The breakthrough time of particles of different sizes is listed in Table 7.3. It can be seen 

that the breakthrough time decreases with particle sizes in all tests. It can be explained by 

the by-passing of larger particles in accessible larger pores. The average velocity in the 

accessible pores is larger for larger particles. 

Table 7.3 Breakthrough time (pore volume injected) of particles in challenge tests, ‘-’ for not tested 

<rs> (µm) Medium 

30/125 

Medium 

63/90 

Medium 

40/63 

0.89 - - 0.75 

1.03 - 0.61 0.62 

1.57 0.70 - 0.52 

2.18 0.62 0.54 0.48 

2.84 0.46 0.54 0.45 

3.17 0.53 0.41 0.41 

4.54 0.11 0.11 0.25 

 

A Monte Carlo procedure with Latin-Hypercube Sampling (LHS) method is applied to 

determine the pore size distribution from the measured grain size distribution. Compact 

packing of grains (three interconnected grains form one pore throat) is assumed in the 

procedure. The cross-sections of pore throats are assumed to be triangular to determine 

the pore size from grain sizes more accurately [355, 356]. Details of the procedure can be 

found in Ref [346]. Such a procedure is able to take into account the uncertainties of 

experimental packing with a large population of grains. The mean values and standard 

deviations of the pore size are estimated by fitting the continuous lognormal PSD to the 

discrete PSD resulted from the Monte-Carlo simulations. They can be found in Table 7.4.  

High degree of matching is observed. Such a method for evaluating PSD has been 

validated with literature data in Ref [346]. 

Table 7.4 Pore size distributions evaluated from grain size distributions with Monte-Carlo simulations 

PSD properties Medium 

30/125 

Medium 

63/90 

Medium 

40/63 

Mean (µm) 5.30 5.78 4.27 

Standard deviation (µm) 0.81 0.88 0.67 

Mean/ Standard deviation 6.54 6.57 6.37 
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7.5.2 Fundamental statistical parameters  

In the filtration processes with size exclusion as the particle capture mechanism, only the 

larger pores can let through the injected particles.  The first key parameter to be 

introduced here is the fraction of larger pores 
lf  , the size of which is larger than the 

injected particles. In terms of the pore size distribution ( )pf r : 

    
s

l s p p
r

f r f r dr


   (7.6) 

The passing probability for the particles is dependent on the conductivities of the pores. If 

the Poiseuille law for flow resistance in a single capillary is assumed, the average 

probability of particle random walk through larger pores as the probability of conducting 

particle flow is: 
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The distribution of pores of different sizes is usually assumed to be random. The particle 

conductivity is effectively zero below the percolation threshold  [350, 357]. For the bond 

percolation, the values of these parameters at the percolation threshold can be calculated 

as [316, 350]: 
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where cf is the percolation threshold in the conventional percolation theory, 
*

cf is the 

flow biased percolation threshold,  scr is the particle radius at the threshold, D is the 

lattice dimension, and cN  is the coordination number of the lattice.  For 2D lattice pore 

network, the percolation threshold cf is 0.5. 
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Figure 7.3 Experimental filtration coefficients and correlation lengths from laboratory challenge testing data; 

(a): Medium 30/125; (b): Medium 63/90; (c): Medium 40/63; 

 

 

7.5.3 Contradiction with traditional theories 

The filtration coefficients and the fraction of flux through smaller pores
*(1 )lf  from 

experiments are plotted in logarithm scales, as seen in Figure 7.3.  Each point in the plot 

corresponds to the filtration coefficient with the given porous medium and a particle size. 

The data of particle sizes, pore size distributions, and filtration coefficients can be found 

in Table 7.1, Table 7.2, and Table 7.4. Clear straight lines in the figures imply power law 

relations between the filtration coefficients and the average capture probability. The 

estimated slopes and intercepts are listed in Table 7.5. Hence, an empirical relation 

between the filtration coefficient and the fraction of flux through the pores smaller than 

the particles can be drawn: 

  *1 lf


    (7.10) 
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Table 7.5 Exponents (slopes) estimated from the experimental filtration coefficients in logarithm scales 

 
Medium 

30/125 

Medium 

63/90 

Medium 

40/63 

(experiments) 0.18 0.18 0.21 

intercepts 4.69 4.73 3.95 

 

None of the estimated slopes is equal to one  1  . This indicates that the filtration 

coefficients are not proportional to the fraction of flux through the pores exceeding the 

particle size, but power-law functions of it. Such an observation contradicts the 

traditional size exclusion theory which will be explained in the next section. It also 

contradicts the size exclusion model of parallel tubes with mixing chambers[156, 158]. In 

both models, the filtration coefficient becomes proportional to the fraction of flux 

through the pores smaller than the particles far above the percolation threshold.  

The average fractions of flux through the pores smaller than the particles are calculated 

with the given pore size distributions for the three sets of experiments, as seen in Figure 

7.4. It can be seen that these fractions for the largest particles in the experiments are very 

close to one. On the other hand the experimental penetration depths of the largest 

particles can still be over thousands of pores, as seen in Figure 7.5. Under the assumption 

that the particles can probably be captured wherever they meet the smaller pores, the 

probability of such large particles traveling over such a large number of pores is minimal. 

These observations contradict the traditional size exclusion theories [344, 345, 358], 

which are developed under  an assumption that a particle may be captured at each step 

with a certain probability, and the step size is comparable to the characteristic pore size. 

 


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Figure 7.4 Fraction of flux through the pores smaller than the particles and pore size distributions in the 

experiments 
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Figure 7.5 Average penetration depths and pore size distributions in the experiment with Medium 40/63 

This contradiction is studied below, in the framework of the network modeling with the 

different particle capture strategies. 

 

7.6 Random walk and network modeling 

In this section, a 2D network model for a random porous medium is described. The 

random paths of injected particles in the network are determined by the random walks. 

The trial particles are injected into the network to determine the effluence probability and 

the filtration coefficient. A special capture mechanism is proposed to predict the 

minimum particle capture probability. It aims at explaining the power law dependency of 

filtration coefficients on the particle sizes, and the large penetration depths of particles. 

 

7.6.1 Pore network model  

A two-dimensional network model with interconnected capillaries is adopted to represent 

a random porous medium. Periodic boundary conditions are applied to avoid surface 

effects. The minimum distance between the inlet and the outlet of the medium is 0L . The 
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radii of capillaries follow a lognormal distribution while the lengths of capillaries are 

constant. The capillaries are randomly placed in the plane and form a square lattice 

system with the coordination number z=4. The number of nodes in the 2D network varies 

from 100×100 to 500×500. 

The conductivity of each capillary is determined by its radius. Ignoring the effects of 

capillary intersections, the flow in each capillary is calculated from the Poiseuille law: 

 
4

1
8

pr
k


  (7.11) 

 
1 1

1

k p
q

l




 

(7.12) 

where 
1k is the permeability of a capillary, 

pr is its radius, 
1q is the flow in the capillary, 

1p
 
is the applied pressure difference, and l  is the length of the capillary. According to 

mass conservation, the flows through the four capillaries attached to a vertex follow the 

Kirchhoff rule: 

 1 2 3 4   q q q q 0  (7.13) 

Constant pressures are applied at the inlet and the outlet vertices of the network. The 

pressures at the inner vertices can be found by solving system of equations (13) for each 

vertex and applying the boundary conditions for pressure. With the solution for pressures, 

the detailed flow field in the network is determined by Equation (12). 

 

7.6.2 Random walks 

A number of trial spherical particles of the same radius rs are sent into the pore network 

and randomly walk until being captured or arriving at the outlet. In our simulations the 

particles walk independently and the collective behavior like bridging is not considered. 

This assumption is valid for dilute suspensions, at short injection times and interactions 

between particles and walls excluding the attachment. Such conditions are adopted in the 

experiment described above. At each site a particle “selects” one of the bonds (capillaries) 

to be passed next. A particle may either pass through a bond or be captured in it. The 
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passing time is not counted, only the capture probability.  Two capture schemes are 

adopted in the simulations, referred to as the maximum and the minimum capture scheme. 

            
                    (A)                                (B) 
Figure 7.6 (A) Maximum capture scheme (B) Minimum capture scheme (captured particles are marked with ‘X’) 

 

7.6.2.1 Maximum capture scheme 

In the maximum capture scheme, a particle walks randomly on the lattice and can be 

captured whenever it walks through a smaller pore. It is the same assumption as in the 

traditional size exclusion theory [345]. The walking direction of the particles is flow-

biased. The particle cannot jump against the flow direction, as seen in Figure 7.6 (A). 

When a particle arrives at node i, the rules of the random walk along the neighboring 

capillaries are as follows: 

1) A neighboring capillary is not viable, if the flow in it is toward node i.  

2) The probability of choosing a jump direction from viable capillaries is distributed 

in accordance to the flows in them.   

3) If the particle selects a capillary with a smaller radius, it is captured. 

 

7.6.2.2 Minimum capture scheme 

In the minimum capture scheme, a particle cannot be captured as long as there is a 

capillary with a larger radius and exiting flow, as seen in Figure 7.6. When a particle 

arrives at node i, the rules of selecting the next step are as follows: 

pore 
space

pore 
space

X

X

crossflow drag

lifting

gravity

resistance

permeate drag

crossflow 
pore 
space

pore 
space

X

X

crossflow drag

lifting

gravity

resistance

permeate drag

crossflow 



204 
 

1) A neighboring capillary is not viable, if the flow in it is toward node i.  

2) A neighboring capillary is not viable, if its size is smaller than the particle. 

3) The probability of choosing a jump direction from viable capillaries is distributed 

in accordance to the flows in them.   

4) If a particle does not have a viable capillary to jump through, it is captured at 

node i. 

In both capture schemes, the probability of a particle leaving a node via the viable 

capillary j is calculated as: 

 ,/j j k viablep q q   (7.14) 

Particles are injected to the network one by one, while the dynamic effects of pore 

plugging are neglected for different injected particles. In other words, if a particle plugs a 

capillary the flow field remains the same and the pore is viable for the next particle test. 

Such a setting aims at obtaining the statistically reliable results from the identical 

independent particle random walk. The dynamic effects of pore plugging are beyond the 

scope of this study. 

 

7.7 Numerical modeling implementation 

The system of algebraic equations (11) to (13) was solved numerically. Since most 

elements of the coefficient matrix are zero, a linear solver for sparse systems was applied 

for fast solution of the system in MATLAB. Mass conservation was checked by 

calculating the gradient of the total flux along the injection direction. In other words, flow 

through each cross-section along the injection direction must be constant. 

Since the pore plugging and subsequent permeability damage are neglected, the random 

walks of particles were treated as identical independent events. Only one particle 

randomly walks on the lattice each time. Such configurations aim at the statistical 

estimation of the capture probability of size exclusion for dilute suspensions. Two 

particles may plug the same node in two separate random walks. Also independent walks 

of the different particles make it possible to apply the parallel computation for the 
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simulation. For our computations 12 CPUs were applied in parallel. In order to increase 

the accuracy of the statistical analysis, the number of injected particles was 10
5
. Hence 

the accuracy for the computation of the normalized effluence concentration may be down 

to 10
-4

. 

 

7.8 Network filtration coefficients 

In the numerical experiments, the pore size distributions are the same as in the challenge 

test above (Medium 40/63). The size of the network is 500×500 nodes. The positions of 

the captured particles are recorded. Statistical analysis is carried out to reveal the 

deposition profiles of different particle sizes, as seen in Figure 7.7 (A). Exponential 

deposition profiles are observed. A filtration coefficient is therefore suitable to 

characterize the particle capture rate and the average penetration depth.  

The relation between the filtration coefficient  and the normalized effluent concentration 

eC

 

at steady state can be found from the analytical solution of the advection dispersion 

equation for filtration [98, 298]:   0ln /eC L   .  
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(B)       
Figure 7.7 (A) Effluence probability in networks of various sizes (B) Deposition profiles of different particle sizes 

A more related property to the pore network is the average capture probability per pore 

l : 

 
 ln e

l

l

C
l

N
     (7.15) 

where 0 /lN L l  is the minimum number of pores connecting the inlet and the outlet. 

We refer to l  as the network filtration coefficient. In the case of undetectable effluent 

concentrations (extremely large particles), the deposition profiles can be an alternative for 

estimating the filtration coefficients.  In the classical filtration theory the average 

penetration depth of particles is found as 
1L  . Similar to (7.15), a scale-independent 

property, the average number of pores penetrated by the particles, is 

 
1

l

l

L
L

l 
   (7.16) 

We may refer to lL as the average network penetration depth.  
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7.9 Modeling results and discussion 

7.9.1 Preliminary study 

With the same pore size distribution, particles of different sizes (different lf  values) are 

adopted in the maximum and minimum capture schemes. The effluent probability in the 

networks of different sizes can be plotted against the fraction of larger pores. For 

example, Figure 7.7 (B) exhibits the effluent concentrations with lf  corresponding to the 

minimum capture scheme. 

 Below the percolation threshold (equal to 0.5 for the square lattice) the larger pores form 

only finite clusters. The probability of the penetration depth to be larger than the medium 

length is effectively zero.  

 
 

 

1

1

0,

0,

l l c

l l c

f f

f f









  


 

 (7.17) 

Since the effluent concentration is an exponential function of the product of the filtration 

coefficient and the medium length (Equation (15)), in order to have a detectable effluence 

(both experimentally and numerically) this product needs to be small enough. Close to 

the percolation threshold, the filtration coefficient is extremely large. Hence, the medium 

length or network size needs to be small to produce detectable effluence. As seen in 

Figure 7.7 (B), the effluent concentrations in larger network systems may rapidly 

approach zero even above the percolation threshold.  

 

7.9.2 Penetration depths and power law dependencies 

The resulting penetration depths (in numbers of pores) from the two capture schemes are 

calculated with the pore size distribution of Medium 40/63, as seen in Figure 7.8 (A). It 

can be seen that the minimum capture scheme predicts the penetration depths that are 

several orders of magnitude larger than those computed for the maximum capture scheme.  
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(A)  

(B)  
Figure 7.8 (A) Penetration depths from two capture schemes (B) Filtration coefficients in logarithm scales from 

two capture schemes 

The predicted penetration depths from the network model are not comparable with the 

experimental results. The difference between the exponents from the network model and 

from the experiments can be mainly attributed to the difference in the number of 

dimensions.  It has been widely observed that the exponents characterizing the cluster 

properties in the percolation theory are far different in 2D and 3D structures [235, 350]. 

The other reason for the difference may be due to the different coordination numbers in 

experiments and the network. As a consequence of the low number of dimensions and the 

low coordination number, the network model underestimates the connectivity of large 

pores and penetration depths compared to the 3D experiments (see the experimental data 

in Figure 7.5 and network results in Figure 7.8 (A)). Nevertheless, the large difference 

between the predictions for the two capture schemes indicates that the large penetration 
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depths in the experiments may be explained by the minimum capture scheme, or, at least, 

by a combination of the two schemes.   

The filtration coefficients for the two capture schemes are plotted against the fraction of 

flux through the pores smaller than the particles 
*(1 )lf on the logarithmic scale, as seen 

in Figure 7.8 (B). The straight lines indicate that far above the percolation threshold 

(
*ln(1 )lf  ), the filtration coefficients are power law functions of the fraction of 

flux through smaller pores. It should be noted that the range for 
*ln(1 )lf  from -6 to -2 

covers most of the pore radii above the percolation threshold, since 
* 4~l pf r . The 

corresponding probability 
lf  varies from 0.65 to 0.97. 

Table 7.6 Exponents (slopes) estimated from the network filtration coefficients in logarithm scales 

 
Medium 

30/125 

Medium 

63/90 

Medium 

40/63 

(maximum capture scheme) 0.9907 0.9898 0.9945 

(minimum capture scheme) 1.9986 1.9735 1.9808 

 

The exponents of the power laws, listed in Table 7.6, are estimated from the slopes of the 

dependences. All the exponents for the maximum capture scheme are very close to unity. 

This indicates that in the maximum capture scheme the filtration coefficient is 

proportional to the fraction of flux through smaller pores. On the other hand, the 

minimum capture scheme results in exponents other than one. For this scheme the 

filtration coefficient is a nontrivial function of 
*

lf .  

In the traditional size exclusion theory (based on the maximum capture scheme) the 

filtration coefficients are proportional to the flux through the pores smaller than the 

particles. The proportionality of filtration coefficients to the flux is also an intrinsic 

assumption in the model of parallel tubes with mixing chambers regardless of the 

percolation behavior. While the first approach cannot predict deep penetration of the 

particles, as shown above, the second approach uses a characteristic correlation length l  

(distance between the chambers) as an adjustable parameter. Hence, neither the 

traditional size exclusion theory nor the model of parallel tubes with mixing chambers 




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can explain the experimentally observed power law dependencies of the filtration 

coefficients. Out of the approaches considered in this study, only the minimum capture 

scheme may be applied to predict such type of dependences. The reasons for that are 

analyzed below.  

 

7.9.3 Percolation analysis 

In the bond percolation theory, capillaries with the radii larger than those of the injected 

particles are deemed as active bonds. The connected active bonds form clusters. If the 

injected particles are larger than all the capillaries, all the bonds are inactive. With the 

decrease of particle size, more and more bonds become active and form finite clusters. In 

accordance with the percolation theory, only after the fraction of active bonds exceeds the 

percolation threshold form the infinite clusters, namely the viable pathways for particles 

to pass through the entire medium. The infinite clusters comprise of the long “backbones” 

connecting the inlet and the outlet and short “whiskers” with dangling ends surrounded 

by the inactive bonds [235, 350].  

 

Figure 7.9 Illustrations of the dangling ends and the distance between the whiskers with exiting flow in the 

infinite cluster. Arrows indicate flux directions, red represents whiskers, and black represents backbones of the 

infinite cluster. 

In the minimum capture scheme, only the particles flowing through the backbones of 

infinite clusters can pass through the medium, while those through the whiskers are to be 

captured at the dangling ends. Unlike the common percolation theory, we count the flows 



211 
 

with the directions. Thus, a particle cannot be captured in all the whiskers, but only in 

those where the flow exits from the infinite cluster, as seen in Figure 7.9. 

The particle flow can be assumed to be proportional to the fraction of fluid flow only 

through backbones (particles flowing through whiskers are to be captured eventually). 

This fraction may be estimated by [358, 359]: 

  * * * * *

inf inf2 2l l lB f f f f f     (7.18) 

where *

inff is the fraction of flow through infinite clusters, and B  is the fraction of flow 

through the backbones of the infinite clusters. Close to the percolation threshold the flux 

through finite clusters and whiskers can be expressed as [358, 359]: 

  * * * *1 ,l c l cB f f f f


     (7.19) 

where  is some exponent . With the increasing fraction of active bonds, whiskers tend 

to be absorbed by the backbones (dangling ends reach neighboring backbones). The 

backbones form interconnected large bundles. Close to the percolation threshold, the 

distance between two neighboring whiskers may vary by a power law similar to the 

power law in (7.19):  

  * * * *,w l c l cl f f f f


    (7.20) 

Far above the percolation threshold, the whiskers are marginal and the backbones 

dominate the main body of the pore network: * *

inf lf f . Equation (7.18) can be reduced 

into: 

 
* * *1 1 ,l l cB f f f     (7.21) 

The density of whiskers decreases with decreasing particle sizes. The distance between 

two neighboring whiskers may also be assumed to vary by a power law similar to the 

power law in (7.21):  
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  * * *1 ,w l l cl f f f


    (7.22) 

where  is some exponent.  These exponents may be determined by the shape of the pore 

size distribution, the pore structure, and the coordination number. The filtration 

coefficients defined as the capture probability per unit length of porous medium can be 

calculated as: 

 
1

w

B

l



  (7.23) 

Substitution of equations (7.19), (7.20), (7.21), and (7.22) into (7.23) results in: 

 
 

 

* * * *

* * *

,

1 ,

l c l c

l l c

f f f f

f f f









  

  
 (7.24) 

where  and  are some exponents determined by the shape of the pore size distribution, 

the pore structure, the coordination number, and the number of dimensions. It is outside 

the scope of the present work to analyze such dependences. It can be seen, however, that 

the power law for the filtration coefficients far above the percolation threshold is the 

same as in Equation (10) describing the experimental observations. 

 

Figure 7.10 Power law dependencies of the filtration coefficients on the fraction of flux through smaller pores 

(Pore size distribution: Medium 30/125) 

In order to validate these power law dependencies, the filtration coefficients from the 

network model with minimum capture scheme (Medium 30/125) are plotted against 
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* *( )l cf f and 
*(1 )lf separately in logarithmic scales, as seen in Figure 7.10 (a) and (b). 

Exponents and  are estimated as the slopes from the two straight line in the logarithm 

plots. It can be seen that the filtration coefficients can be well matched by the two power 

laws. The exponents in the scaling laws are usually smaller in 3D than those in 2D [350, 

360]. The exponents estimated by the 3D experiments are also smaller than those by the 

2D network model. 

In the network model, the power law far above the percolation threshold underestimates 

the filtration coefficient close to the threshold, while the other power law overestimates 

the filtration coefficient far above the threshold. Such a behavior is not yet confirmed by 

the laboratory challenge tests due to lack of experimental results close to the percolation 

threshold. The effluent concentration close to the threshold is extremely low and 

undetectable under our laboratory conditions. Challenge tests with shorter column lengths 

may overcome this difficulty and produce detectable effluence. Measurements of the 

deposition profiles may be an alternative for estimating the filtration coefficients close to 

the percolation threshold.  
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7.10 Summary of Chapter 7 

Laboratory challenge tests are carried out under unfavorable attachment conditions, so 

that size exclusion or straining is the only particle capture mechanism. The experimental 

results show that far above the percolation threshold the filtration coefficients are not 

proportional to the average flux through the pores smaller than the particles, are but 

power-law functions of them. The experimental penetration depths of particles can be 

over thousands of pores even if the particle sizes are larger the average pore size.  

In the traditional size exclusion theory (maximum capture scheme) the filtration 

coefficients are proportional to the flux through the pores smaller than the particles away 

from the percolation threshold. The particles can be captured wherever they meet smaller 

pores and such high experimental penetration depths cannot be predicted. The 

proportionality of filtration coefficients to the flux is also an intrinsic assumption in the 

model of parallel tubes with mixing chambers. Hence, neither the traditional size 

exclusion theory nor the model of parallel tubes with mixing chambers can explain the 

experimental power law dependencies of the filtration coefficients. 

 A special capture mechanism (the minimum capture scheme) has been proposed. This 

mechanism makes it possible to explain the experimentally observed power-law 

dependencies of filtration coefficients and large penetration depths of particles. Such 

capture mechanism is realized in a 2D pore network model with periodical boundaries 

and the random walk of particles on the percolation lattice. Geometries of infinite and 

finite clusters formed by pores of the sizes exceeding the particle size are analyzed with 

regard to the possibility for particle capture. Two power laws are proposed to describe the 

filtration coefficients. They can well match the filtration coefficients from the network 

model while one of them can match the experimental data far above the percolation 

threshold. The application of such models may lead to more accurate inverse 

determination of the pore size distributions from the challenge tests. 
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7.11 Nomenclature of Chapter 7 

 

123A  Hamaker constant ( )J  
B  Fraction of particle flow through the backbones of the infinite clusters 

eC
 

Normalized effluent concentration 

D  Number of dimensions of pore network 

e  Elementary charge ( )C  

f  Pore size distribution density 

h  Separation distance between two surfaces ( )m  
I  Ionic strength ( )M  

k  Permeability 
2( )m

 

Bk
 

Boltzmann constant ( / )J K  
l  Length of a capillary ( )m  

wl  
Average distance between two neighboring whiskers leading to dangling ends 

L  Average penetration depth of particles ( )m  

lL
 

Average network penetration depth of particles (number of pores)  
 

0L   Medium or network length ( )m
 

DL   Debye length ( )m
 

cN   Coordination number
 

lN   Minimum number of capillaries connecting the inlet and the outlet
 

AN   Avogadro constant
 

p   Pressure drop ( )Pa  
p   Probability of flow through a capillary 

q  Flow rate in a single capillary 
3( / )m s

 

pr   Capillary radius ( )m
 

sr   Spherical particle radius ( )m
 

lf  
Probability of a pore being larger than the injected particle 

*

lf  
Average probability of particle flow through larger pores 

cf  
Conventional percolation threshold 

*

cf  
Flow-biased percolation threshold 

*

inff
 

Fraction of particle flow through infinite clusters 

T  temperature ( )K  

aU
 

Darcy‟s velocity through accessible pores ( / )m s  

x  Coordinate along the injection direction ( )m  

z  Valence of ions 
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  Exponent of power-law 

  Exponent of power-law 

  Dielectric constant 

0  
Vacuum permittivity  /F m  

  Exponent of power-law 

  Exponent of power-law 

  Exponent of power-law 

  Number of deposited particles per unit volume of porous media
3( )m

 

  Filtration coefficient, capture probability per unit length
1( )m

 

l  
Network filtration coefficient, capture probability per pore 

w  
Characteristic wave length ( )m  

  Viscosity ( )Pa s  

  Interaction energy ( )J  

  Zeta potential or surface potential ( )V  
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8 Conclusions  

Chapter 1 of this thesis presents an overview of the recent advances in the colloid 

filtration theory and the discrepancies between the classical colloid filtration theory and 

experimental observations. Many of the discrepancies are observed under unfavorable 

attachment conditions, such as hyperexponential and non-monotonic deposition profiles. 

Such behavior of colloids is attributed to the heterogeneous attachment (Chapters 2 and 3) 

and the migration of captured colloids, respectively (Chapter 5). Chapter 1 also reviews 

the new approaches that overcome the difficulties to incorporate surface charge 

heterogeneity, particle and pore size distributions, straining effects, non-Fickian transport, 

and migration of deposited particles. The current understanding of the mechanisms, 

factors, and mathematical models at different scales are reviewed. Remedies for reducing 

the discrepancies between model predictions and experimental observations are 

recommended. 

In Chapter 2 an integral model for non-Fickian transport and heterogeneous attachment is 

developed. It shows that the deposition hyperexponentiality can be attributed to the 

following three mechanisms: particle population heterogeneity in connection with the 

distribution of the filtration coefficients, midscale heterogeneity in connection with non-

Fickian transport (the elliptic formalism), and macroscale heterogeneity in connection 

with spatial distribution of the filtration coefficients. The degree of “wash-out” of a 

breakthrough curve indicates whether the elliptic formalism is necessary. In the case of 

stepwise breakthrough curves the advection-dispersion equation seems to be adequate. In 

non-uniform porous media the breakthrough curves may be more dispersed. For such 

cases, the elliptic equation seems to be more adequate. The development of such an 

integral model in Chapter 2 is closely followed by the uncertainty and sensitivity analysis 

of the model predictions and the parameter estimation in Chapter 3.  

Chapter 3 shows that both the elliptic equation and the CTRW equation expressed in 

Laplace space are able to model the non-Fickian transport in heterogeneous porous media. 

The latter model can predict an algebraic decaying tail at the end of particle injection 

while the elliptic equation presents a more compressed peak and a shorter tail. The 
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uncertainty of the elliptic equation predictions with distributed filtration coefficients is 

larger than that with a single filtration coefficient. The uncertainty of both CTRW models 

is minimal for tracer transport in heterogeneous porous media. Higher uncertainties are 

observed in the cases with more heterogeneous the colloid-medium interactions. 

Dispersion coefficients in the elliptic equation can be uniquely identified in the cases of 

low median heterogeneity. The parameters for the distribution of filtration coefficients 

are correlated. In the cases where hyper-exponential deposition is observed, the 

distribution may not be accurately determined by the effluent concentration profile alone. 

Measurements of deposition are necessary. More measurements of the effluent 

concentrations around the breakthrough and the end of colloid injection are suggested to 

determine dispersion coefficients more accurately.  In the case of low median 

heterogeneity, more measurements of the steady-state effluent concentration and 

deposition are suggested to better determine filtration coefficients.  

Chapters 2 and 3 form a thorough study of the integral model for colloid filtration with 

non-Fickian transport and heterogeneous attachment. They are followed by the study of 

applying of such a model to simulate the deep bed filtration around injection wells during 

waterflooding in Chapter 4.  

In Chapter 4, a comprehensive model is developed to predict injectivity decline during 

waterflooding. It applies the elliptic equation for deep bed filtration and takes into 

account the reservoir heterogeneity, two-phase flow (injected water and displaced oil) 

and the distribution of solid particles by sizes. It accounts also for the later formation of 

the external filter cake and its erosion. The model is able to capture the behavior of the 

injectors in the field: the initial slow injectivity decline due to the deep bed filtration of 

suspended particles, the later faster decline due to the build-up of the external cake, and 

the steady state due to the cake erosion. However, the non-Fickian behavior of particles 

around the injection well is shown not to be significant. It is because of that the temporal 

dispersion term is inverse proportional to the particle velocity and that the particle 

velocity is higher close to the well than that far away from the well. A piece of software 

“SNY” with a user-friendly interface is produced for the new model. 
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In Chapter 5, a new mathematical model for colloid flow in porous media and non-

monotonic deposition is proposed. It accounts for the migration of particles associated 

with the pore walls via the second energy minimum (surface associated phase). A set of 

methods for estimating the modeling parameters is provided. It is shown that the non-

monotonic deposition profiles in Ref. [111] are likely to be caused by the migration of the 

surface associated phase. An additional equation describing a mobile population 

behaving differently from the injected population seems to be a sufficient condition for 

producing non-monotonic deposition profiles.  

Chapter 6 presents the study of fines migration induced by injection of low salinity water 

in a communicating layer cake reservoir. The torque balance on the deposited reservoir 

fines via attachment, straining of the released fines, the consequent permeability damage, 

and the cross-flow between layers are taken into account. Particle release and re-

deposition give rise to the reduction of the permeability in water swept zones, which 

subsequently leads to the diversion of water flow from the more permeable layers to the 

less permeable ones. As a result, the water cut at the producer is decreased, and the oil 

recovery is increased. The increased oil recovery due to fines migration increases with 

the mobility ratio in the range of low mobility ratios (2~4), while it is insensitive to the 

mobility ratio in the range of high mobility ratios (>50).  

In Chapters 4, 5, and 6, a common criterion for an attached colloid particle to be re-

entrained by the hydrodynamic drag into the bulk fluid is applied, namely that the torques 

of detachment exceed those of attachment. In Chapter 4, the main attachment torque on 

the colloids at the surface of external cakes comes from the drag of the permeate flow, 

while that on the colloids at the pore surface in Chapters 5 and 6 is from the electrostatic 

force. In Chapter 4, the main detachment torque is from the cross-flow drag in the well, 

while that in Chapters 5 and 6 is from the hydrodynamic drag in pores. 

Another important mechanism for particle capture is straining or size exclusion of 

colloids. Such phenomena are closely tied to the migration of colloids under unfavorable 

attachment conditions: surface-associated colloids rolling to straining sites (grain-grain 

contacts, pore throats) in Chapter 5, and the straining of released reservoir fines at pore 
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throats in Chapter 6. However, the straining mechanism is described by nothing more 

than a straining rate coefficient in these studies.  

Finally in Chapter 7, a much better understanding of straining is achieved by the study of 

pore scale physics in a 2D network model and the qualative comparison to experiments. 

The filtration coefficient for straining is estimated from the particle size and the pore size 

distributions. A new capture scheme of straining (minimum capture) is proposed to 

explain the large penentration depths of colloids in porous media and the power law 

dependencies of filtration coefficients in the experiments. In the new capture scheme, 

particles can only be captured when they enter the whiskers of the infinite cluster with 

exiting flow. Geometries of infinite and finite clusters formed by pores of the sizes 

exceeding the particle size are analyzed with regard to the possibility for particle capture. 

Two power laws are proposed to describe the filtration coefficients. They can well match 

the filtration coefficients from the network model while one of them can match the 

experimental data far above the percolation threshold.  

To sum up, this thesis is compiled in such a way that each chapter arises from a self-

contained study/publication. On the other hand, these chapters are closely connected in 

both logical and methodological senses. Chapter 1 points out that the discrepancies 

between the classical colloid filtration theory and experimental observations are mainly 

attributed to the non-Fickian transport of colloids, the heterogeneous attachment of 

colloids, the migration of colloids, and the straining of colloids in porous media. Chapters 

2, 3, and 4 conclude that the application of the elliptic equation for non-Fickian transport 

is desirable when the dispersed breakthough curves are observed. The hyperexponential 

deposition due to heterogeneous attachment of colloids can be captured by the 

distribution of filtration coefficients. Chapter 5 suggests that the non-monotonic 

deposition caused by the migration of colloids can be produced by adding a transport 

equation for the migratory pupolation into the system of equations. Chapter 6 investigates 

the effects of the migration and the straining of reservoir fines. They contribute to better 

water sweep efficiencies and increased oil recovery. The torque-balance criterion of 

colloid migration is adopted in all three chapters (4, 5, and 6). A part of the “puzzle” of 

colloid straining is then solved in Chapter 7. Particle capture at the whiskers of the 
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infinite cluter of larger pores is proposed to explain the large penentration depths and the 

power-law dependencies of filtration coefficients. 
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9 Future Work 

In this thesis, studies of the non-Fickian transport, the heterogeneous attachment, the 

migration, and the straining of colloids have been studied extensively. Incorporation of 

these effects into the models of industrial processes and applications of the proposed 

mathematical models are also investigated. Nevertheless, a number of “puzzles” are yet 

to be solved in the future. 

Chapter 5 considers the migration of the colloids at the pore surface and assumes that 

these colloids form a single layer internal cake. This assumption is valid in the cases of 

dilute suspensions and short-term injections. A new population balance approach for the 

migration of multi-layered internal cake is desirable in the framework of [248, 252]. 

Chapter 7 applies a 2D network to study the filtration coefficient for the straining of 

different-sized particles. However, the coordination number in the 2D network is low and 

half of the capillaries are perpendicular to the main injection direction. The nature of such 

a network constrains the fractional flow in the perpendicular direction. As a result, the 

particles move much more slowly in the perpendicular direction than in the main stream 

direction. It causes a significant delay of the breakthrough of particles compared to the 

breakthrough of water. Such effects have been observed but not studied in any literature.  

On the other hand, the accessible fractional flows of different-sized particles are different 

because the accessible sub-networks are different.  The expression of such a fraction flow 

is yet to be found. A good start of the study would be from the effective medium theory. 

Similarly, the dispersion caused by the heterogeneity of the flow field can also be studied 

in the future. 

The concepts of the maximum capture scheme and the minimum capture scheme are first 

proposed in [361] and Chapter 7 of this thesis. The filtration coefficients in the two 

schemes are only estimated from the network models. The analytical prediction of the 

filtration coefficients from the fractional flow to whiskers and smaller pores is yet to be 

studied. 
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In addition, both two schemes can probably be observed in size-exclusion experiments 

simultaneously. The filtration coefficients in the two schemes are merely the boundary 

values in real experiments. The quantitative analysis of the two processes is yet to be 

performed. It may be studied in a 3D CFD simulation in COMSOL multiphysics. 

Whether a particle can be captured at the small pores around the backbones of the infinite 

cluster is determined by the balance between attachment torque (permeate flow drag) and 

the detachment torque (cross-flow drag). 
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