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PREFACE i

Preface
In 2007, the Center for Disease Systems Biology (CDSB) was founded by
the Villum Kann Rasmussen foundation, involving two research groups;
the Center for Biological Sequence Analysis at the Technical University of
Denmark, a center specializing in bioinformatics and systems biology, and
the Department for Growth and Reproduction, Rigshospitalet, University
of Copenhagen, a world known group studying infertility and pubertal dis-
orders including testicular cancer. The ambition was to apply Systems
Biology for solving a difficult biological problem; finding the cause for the
rapid rise of male reproductive disorders in the western world, particularly
Denmark.

The work within my PhD is part of the larger group effort at the CDSB,
and has been carried out under the main supervision of Professor Søren
Brunak and Thomas Skøt Jensen at the Center for Biological Sequence
Analysis, DTU, as well as in close collaboration with Professor Niels Erik
Skakkebœk and Katharina Maria Main at the Department of Growth and
Reproduction, Rigshospitalet.
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ABSTRACT v

Abstract
During the past four decades, the incidence rates of testicular cancer and
other male reproductive disorders have been increasing at a rapid rate,
predominantly in developed and industrialized countries. This increase is
considered too great to be explained by genetic factors alone, and thus
environmental factors have strongly been suspected to play a major role.
There is a large amount of clinical research which has tried to pinpoint the
mechanism of action for this trend.

Although the exact mechanism of action has not been elucidated, a
number of genetic factors as well as environmental chemicals have been
found, mostly in animal studies, to act as risk factors for the disorders. The
common consensus today is that there exists a common causal mechanism
for a number of different male reproductive disorders which takes place
before birth, during fetal development, and is termed Testicular Dysgenesis
Syndrome (TDS). TDS occurs when certain critical developmental events
are disturbed, and has a profound effect that propagates into adulthood,
which may lead to lower sperm concentration, cryptorchidism and testicular
cancer.

The work within this PhD thesis has primarily focused on the environ-
mental aspects of TDS, generating further support for the hypothesis that
environmental factors may play a critical role in the observed trends.

This thesis is divided into four parts. In the first part I introduce male
reproductive disorders and the current state of affairs. In the second part,
I focus on studies of environmental chemicals and their possible impact
on reproductive health. In the third part, I discuss network biology as a
powerful tool for the study of gene-gene and chemical-gene interactions. In
the fourth part, I discuss association mining of clinical data as a means to
find interesting and unexpected associations between life style factors and
disease. The thesis ends with concluding remarks.
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Dansk resumé
I løbet af de seneste fire årtier er forekomsten af testikelkræft og andre man-
dlige reproduktionsforstyrrelser steget kraftigt. Denne stigning ses overve-
jende i udviklede og industrialiserede lande og betragtes for stor til at kunne
forklares af genetiske faktorer alene. Miljømæssige faktorer er derfor mis-
tænkt for at spille en vigtig rolle for denne trend, og klinisk forskning
forsøger ihærdigt at identificere virkningsmekanismerne bag. Disse er endnu
ukendt, men en række genetiske faktorer og miljømæssige kemikalier er
identificeret til at være risikofaktorer for mandlige reproduktionsforstyrrelser
- de fleste fundet ved dyreforsøg.

En general hypotese for årsagen til en række mandlige reproduktions-
forstyrrelse kaldes testikulært dysgenese syndrom (TDS), hvor forstyrrelserne
finder sted allerede under fosterudviklingen. Forstyrrelserne har en dybt-
gående indvirkning, og konsekvenserne forplanter sig ind i voksenlivet I
form af dårlig sædkvalitet, kryptorkisme og testikelkræft.

Arbejdet i denne ph.d.-afhandling har primært fokuseret på de miljømæs-
sige aspekter af TDS. Det er forsøgt yderligere at underbygge hypotesen
om, at miljøfaktorer kan spille en afgørende rolle i den øgede hyppighed af
mandlige reproduktionsforstyrrelser.

Denne afhandling er inddelt i fire dele. I den første del giver jeg en in-
troduktion til mandlige reproduktionsforstyrrelser og den aktuelle situation
på området. I den anden del fokuserer jeg på undersøgelser af kemikalier
i miljøet og deres mulige indvirkning på reproduktiv sundhed. I tredje
del diskuterer jeg netværksbiologi som et stærkt værktøj til undersøgelse
af gen-gen og kemikalie-gen interaktioner. I den fjerde del diskuterer jeg
"association mining" af kliniske data som et middel til at finde interessante
og uventede sammenhænge mellem livsstilsfaktorer og sygdom.
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Chapter 1

Systems Biology

From the year 2000 and onward, the term "Systems Biology" was steadily
gaining momentum into becoming the new buzz word in the life sciences.
It was a term signifying the importance to treat living organisms, their in-
ternal systems as well as external environment, in their entirety as opposed
to the reductionist view which had been more prevalent earlier. The re-
ductionist approach would typically concern itself with studying one small
biological subsystem at a time, such as the possible biochemical function of
one enzyme. Although this type of approach is useful, and often necessary,
it became a common consensus that this was not enough to understand the
behavior of complex biological organisms.

On a biochemical level, biological organisms consist of vast and com-
plex networks (divided into regulatory and metabolic pathways) consisting
of hundreds of thousands of biochemical compounds, known and unknown,
which interact in specific ways at different time points and different loca-
tions, be it intracellular or extracellular. It is known that relatively simple
networks may (sometimes unexpectedly so) give rise to emergent properties,
e.g. exhibiting periodic oscillations over time or spontaneously giving rise
to spatial patterns of different kinds. A well known biological example of
periodic oscillation is the circadian rhythm (which governs our daily sleep
pattern). Spatial patterns are well known to occur during fetal develop-
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ment, as the embryo forms from a single zygote which gradually grows into
a multi cellular organism, exhibiting body segmentations in the early stages
and gradually growing more complex. It has been shown that other types of
patterns, such as the color patterns on some animal furs [1], can be roughly
reproduced by computationally simulating relatively simple biochemical re-
actions. Thus, there is strong indication that many morphological features
of biological organisms may spontaneously arise from the mathematical
properties of biochemical networks; a phenomenon which cannot be ob-
served from a strictly reductionist framework.

Additional layers of complexity are added when considering other forces
of nature in the behavior of biological systems such as that of electromag-
netic fields. This area has been of particular interest during recent years
due to the heavily discussed association between cancer and mobile phone
use. However, the study of the effects of external electromagnetic fields on
biological systems dates back far earlier into the 1950’s, particularly thanks
to the fascinating research done by Robert O. Becker [2], who is known for
studying the effects of electromagnetic fields on bone regeneration and other
aspects of wound healing.

It is thus evident that knowing the basic building blocks is not enough
to understand the behavior of biological systems, but a holistic approach
is indeed needed; an idea which was well summarized by Aristotle roughly
2300 years ago saying: “the whole is greater than the sum of its parts”.

It is likely that the holistic ideology of Systems Biology came about as
a result of the increased use of new high throughput techniques in the bio-
sciences, which were able to measure the activities and levels of thousands
of genes or proteins simultaneously. In particular, the Human Genome
Project may be considered a catalyst for this trend, as it provided scien-
tists with easy access to the human genome, along with new possibilities
to unlock its secrets. In general, Systems Biology is nowadays a scientific
field which involves often heavy, computational analyses of biological data
from many levels, including the chemical environment, genome, proteome
and metabolome.



Chapter 2

Emergence of Male
Reproductive Disorders

There are a number of disorders that concern the male reproductive organs
which affect the sexual function. Within the framework of my PhD, my
work has primarily concerned itself with four disorders; Cryptorchidism,
Hypospadias, Oligospermia and Testicular Cancer. This chapter briefly
describes the clinical manifestation and prevalence of these disorders, and
explains the concept which ties them together into a common syndrome;
Testicular Dysgenesis Syndrome.

Cryptorchidism

Cryptorchidism, also called Undescended Testis, is a congenital malforma-
tion which is characterized by the absence of one or both testes from the
scrotum. The prevalence of this disorder varies considerably between ge-
ographical regions. In most countries, it has been reported to occur in
roughly 3-5% newborn boys born on term, although it may be as high
as 9% in Denmark. It is considered to be the most common congenital
malformation which affects male reproductive organs [3].

During fetal development, the gonad (testis) is first formed in the ab-
domen and subsequently migrates down into the scrotum. This migrations

5
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is proposed to occur in two phases; the transabdominal phase, and the
inguinoscrotal phase. In the transabdominal phase, the developing gonad
travels through the abdomen to the pelvic cavity as a result of the swelling
of the gubernaculum. It is believed that this phase is largely androgen-
independent, and influenced by hormones such as Anti-Mullerian Hormone
(AMH) and Insulin-like 3 (INSL3). In the second phase, the gonad en-
ters the inguinal canal where it migrates into the scrotum, to a large part
assisted by contractions of the cremaster muscle, and is thought to be an-
drogen dependent [4].

Cryptorchidism may manifest in various forms of severity, ranging from
mild forms where a testis is located in close proximity to the scrotum, to
severe forms where the testis may be completely absent or located further
up the abdomen. There are also cases of so called reascensus testis, where
the testis is located in the scrotum at birth but later reascends into the
abdomen. Boys born prematurely are more likely to have cryptorchidism
at birth.

Hypospadias

Hypospadias is a penile malformation where the urethral opening (urinary
meatus) is not located on the tip of the glans, but instead located anywhere
along the midline on the underside of the penis. Hypospadias is categorized
in the three degrees of severity. In the first degree, the urethral opening
is located on the glans, and covers about 75% of cases [5]. Second degree
cases have the urethral opening on the underside of the shaft, and the third
degree, which is the most severe form, is characterized by a urethral opening
that is located on the perineum.

The incidence rate of hypospadias varies between countries, but has
been reported to be occuring in 0.3-0.8% of newborn boys [6], and is less
common than cryptorchidism.
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Oligospermia

Oligospermia is characterized by semen with a low concentration of sperm.
According to a recent study by the World Health Organization (WHO),
sperm concentration among fertile men (Time to Pregnancy < 12 months)
has a median of 73 million/mL, with the first and third quartile having
41 and 116 million/mL, respectively [7]. According to the same study, the
criteria for setting the diagnosis of oligospermia is a concentration of less
than 15 million/mL which corresponds to the fifth centile of the distribution
of healthy fertile men. However, it has been shown that fertillity starts
to be reduced already at 40 million/mL, and reduces linearly below this
point while concentrations above this value do not exhibit any concentration
dependent increase [8]. Besides concentration, other factors relating to
sperm also play a role in the reproductive health such as sperm morphology
and motility.

Testicular Cancer

In many western countries, testicular cancer is the most common cancer
among men aged between 20 and 35 years, with a substantially lower risk
of acquiring this disease before puberty and after the age of 40. The peak
incidence at a relatively young age makes this cancer quite unusual, as it
does not follow the expected pattern of risk increase with age (presum-
ably due to accumulated genetic damage) as is common with other types of
cancer. The vast majority of testicular cancers (more than 95%) are germ
cell tumors, which can be divided into two main classes; seminomas and
non-seminomas. These two classes exhibit clinical differences, with semi-
nomas being less aggressive and associated with a higher 5-year survival
rate among cases. Non-seminomas are characterized by a more aggressive
growth and undifferentiated cellular histology, and may be composed of
teratomas, choriocarcinomas, poly-embryomas and yolk-sac tumors.

It is believed that the vast majority of testicular tumors originate from
carcinoma in situ (CIS) cells which are likely gonocotyes or primordial germ
cells that have retained their stem cell-like qualities, without fully differenti-
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ating and adopting their proper cellular role. This view is supported by the
fact that CIS and testicular tumors express a number of biomarkers which
are characteristic of stem cells or certain cells in early fetal development,
such as the expression of c-KIT [9], OCT-4 [10, 11, 12] and placental-like
alkaline phosphatase (PLAP) [13]:

• The c-KIT gene encodes a cell membrane cytokine receptor which
binds to a cytokine called stem cell factor (which can exist both as a
soluble protein and transmembrane protein) and plays an important
role in hematopoesis as well as early germ cell survival. It has been
shown to be crucial for germ cell survival in early development [14, 15].

• The OCT-4 encodes a transcription factor which is crucial for cells
to retain the pluripotency. Too low, and also too high, levels of this
factor promotes cellular differentiation [16].

• PLAP is a membrane bound glycosylated enzyme and is one of the
most commonly used markers for CIS. Although it was identified as
a marker for primordial germ cells in mice relatively early [17] its
function is still largely unknown.

The stem cell-like qualities of germ cells are also further demonstrated by
the very unique feature of testicular tumors of being able to mimic any
other tissue in the body [18], which is a sign of pluripotency.

On a global level, the rate of incidence of testicular cancer varies greatly
between countries, with Scandinavian men in Denmark and Norway ex-
hibiting rates as high as roughly 9.5 cases per 100,000 man years, while
the incidence in Setif, Algeria is as low as 0.2 cases per 100,000 man years
(see Figure 2.2) [19]. Interestingly, different ethnicities within the same
geographic region exhibit significant differences, with caucasian men having
a 4-fold higher rate of incidence than black men in USA [20]. This obser-
vation does suggest there is a genetic component which strongly affects the
predisposition for this disease.
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Figure 2.1: Illustrating a model for the pathogenesis of CIS in the testis.
Abbreviations: EC, embryonal carcinoma; TER, teratoma; YST, yolk sac
tumour; CHC, choriocarcinoma. Figure reproduced with permission from
Ewa Reypert-De Meyts [18].

Numerous studies have reported a steady increase in testicular cancer
from 1940’s and onward in different geographic regions [20, 21, 22]. Us-
ing available cancer regisitries, Adami and collegues estimated the average
annual increase in age-standardized incidence to be 2-5% (depending on
geographic region), with Denmark having the highest rates of incidence
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throughout the time period covered in their study. In 1940, the estimated
incidence in Denmark was 2.55, and by the end of 1988 it was estimated
to be 7.70; corresponding to a 300% increase. Such a rapid increase can
hardly be explained by genetic factors alone, but strongly suggests that
environmental factors, introduced into our modernized western society, are
involved.

©2010 by American Association for Cancer Research

Figure 2.2: Incidence rates of testicular cancer (per 100,000 man-years) age-
standardized to the world population (1998-2002). Incidences are compared
between between different geographical regions. Figure reproduced with
permission by Katherine McGlynn [19]
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2.1 Testicular Dysgenesis Syndrome

In the clinical sciences, the collection of data on cancers in general, in-
cluding testicular cancer, has traditionally been comprehensive. However,
data on the incidence of other reproductive disorders, such as congenital
cryptorchidism (absence of one or both testes from the scrotum), hypospa-
dias (abnormal placement of urethral opening) and bad sperm quality, have
generally been more sparse and less reliable than data on testis cancer, par-
ticularly during the 20th century. For this reason, comprehensive studies
on yearly changes in the incidence rates of these disorders over longer pe-
riods of time are lacking, although analysis of available data does suggest
increased incidence rates for these disorders as well [23, 24, 25]. Interest-
ingly, evidence has suggested that the different male reproductive disorders
and testicular cancer may be interrelated [26], with men born with cryp-
torchidism, and other reproductive disorders, having a significantly higher
risk for developing testicular cancer later in life [27, 18]. Moreover, there
is evidence that testicular cancer and reproductive disorders are geograph-
ically linked [28, 5].

The apparent association between the various reproductive disorders
and testicular cancer gives a strong indication that the incidence of cryp-
torchidism, hypospadias and lower sperm counts have, like testicular can-
cer, also been increasing during the past 4-5 decades [29]. Moreover, the
observed association has also given rise to the hypothesis that testicular
cancer and other male reproductive disorders in fact share a common eti-
ology, termed Testicular Dysgenesis Syndrome (TDS) [30]. As some of the
reproductive disorders are manifest already at birth, it also indicates that
the underlying cause for TDS is to be found in utero, during fetal devel-
opment. Many animal studies have successfully demonstrated that male
reproductive disorders can be induced through exposure of chemicals dur-
ing fetal development, but that the timing of the exposure may be crucial
for an effect to be observed [31].
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Biology of TDS

The development of sperm cells is a process involving many stages of cell
differentiation (top of Figure 2.1). Starting during fetal development, em-
bryonic stem cells (ESC) differentiate into primordial germ cells (PGC).
These cells subsequently become enclosed into the inner walls of seminifer-
ous tubules in the testis as gonocytes. Inside these tubules the gonocytes
continue to develop from pre-spermatogonium into immature spermatids
over several stages. Importantly, at the stage of primary spermatocyte, the
cells undergo meiosis I and meiosis II to produce haploid spermatids. Dur-
ing this whole process, the cells continuously stay in close contact with Ser-
toli cells which make up the epithelium of the seminiferous tubules and are
thought to provide metabolic support to the germ cells. At the end of the
process, the immature spermatids detach from the sertoli cells and travel
along the seminiferous tubules into the epididimus. Here, the final stages of
maturation occur which involves the growth of a tail, the formation of an
axoneme with an accumulation of mitochondria and tight packaging of the
DNA. The formation of a mature spermatid, from a pre-spermatogonium
has been estimated to last about 64 days [32]. As the gonocytes retain
their ability to divide indefinitely, the production of sperm cells in males is
a life-long continuous process.

The underlying reason for the perturbation in normal germ cell de-
velopment in TDS is unknown, but is hypothesized to be mediated by a
dysfunction in both Sertoli cells and Leydig cells (Figure 2.3), which may
in turn explain the observed associations between the different types of
male reproductive disorders. Sertoli cells are activated by follicle stimu-
lating hormone (FSH), which causes them to produce androgen binding
protein (ABP), which raises the testosterone concentration in the semi-
niferous tubules and in turn stimulates spermatogenesis. The presence of
FSH is therefore critical for the initiation of spermatogenesis. As the main
function of Sertoli cells is to nurture the developing sperm cells, a dysfunc-
tion in these cells may lead to abnormal germ cell differentiation, which
can cause low levels of sperm production or testicular cancer. Leydig cells
are located between the seminiferous tubules and are known to produce
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androgens (such as testosterone) and insulin-like factor 3 (INSL3) when
stimulated by luteinizing hormone (LH). INSL3 stimulates the develop-
ment of the gubernaculum, which is a structure that guides the testis down
the inguinal canal during fetal development in the early phases. In the later
phases, testosterone stimulates the passage of the testis from the inguinal
canal down into the scrotum. A dysfunction in leydig cells may therefore
cause abnormal testicular descent, leading to congenital cryptorchidism.
The production of testosterone in adequate amounts during fetal develop-
ment is necessary in order for skin fibroblasts to migrate and enclose the
urethral groove. Thus, impaired Leydig cell function may increase the risk
of hypospadias via androgen insufficiency.

Environmnetal 
Factors

Genetic 
Factors

Testicular
Dysgenesis

?

Decreased 
Leydig Cell
Function

Decreased 
Sertoli Cell
Function

Androgen
Insufficiency

Disturbed 
Differentiation of 

Germ Cells

Hypospadias

Cryptorchidism

Reduced 
Sperm Count

CIS 
Testis Cancer

Figure 2.3: Flow chart illustrating events leading to male reproductive
disorders.
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The hormone producing cells in the gonads are part of a larger hormonal
system called the hypothalamic-pituitary-gonadal axis. As the name im-
plies, this system involves the hypothalamus, the pituitary gland and the
gonads, and the various hormones secreted by these glands. The hypotha-
lamus produces a hormone called gonadotropin releasing hormone (GnRH),
which has the effect of stimulating the pituitary gland to produce LH and
FSH. FSH stimulates the Sertoli cells in the gonads to produce inhibin,
while LH stimulates the leydig cells in the gonads to produce testosterone.
Both inhibin and testosterone inhibit the production of GnRH by the hy-
pothalamus, thus creating a feedback loop within the system.



Part II

The Hunt for Environmental
Factors

15





Chapter 3

Background: Environmental
Chemicals

Envrionmental chemicals are present everywhere and affect us all the time.
From the things we use in everyday life to the food we eat, we are con-
stantly exposed to low levels of harmful chemicals; the plastic wrappers
around our sandwhiches contain phthalates, the chair, sofa and computer
contains flame retardants to prevent fire while the fish cought in the Baltic
contains high levels of fat soluble PCBs. As humans are continuously ex-
posed to a vast number of chemical pollutants produced by the industry, it
is possible that a large number of chemicals are simultaneously responsible
for the negative trends in reproductive health. Even at low levels, mixtures
of chemicals can have more adverse effects than individual chemicals alone.
Animal studies have demonstrated synergistic effects for mixtures of chem-
icals, inducing stronger and sometimes new symptoms that are not present
in the case of exposure to any individual chemical [33, 34, 35]. Thus the
effect of a cocktail of chemicals cannot be extrapolated from toxicological
studies on individual chemicals alone. In order to assess the correlation
between the chemical exposure and a given outcome, analyzing one indi-
vidual chemical at a time to a disease may not be optimal. Instead, an
approach which takes into account a large number of chemicals simulta-
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neously is needed, and is common and well researched within the area of
chemometrics.

3.1 Chemometrics

Chemometrics is a scientific area which concerns itself with applying data-
driven approaches to extract relevant information from chemical systems
and measurement data. The term was originally coined in 1974 by Svante
Wold, the son of the late Herman Wold who is credited for having intro-
duced Partial Least Squares (PLS) [36] regression (one of the most widely
used methods in chemometrics). As chemometrics is heavily dominated by
multivariate analyses on potentially large data sets, the increased use of
computers in scientific research in the 70’s was crucial for the development
of the field at that time.

Since its introduction, chemometrics has evolved and is nowadays ap-
plied in a number of different areas. One very important area is classifica-
tion and pattern recognition. This area of chemometrics is concerned with
predicting or estimating certain features of interest, such as analyte con-
centration, based on a set of measured descriptors, e.g. readings from NIR
spectra. A real-world example is the non-invasive estimation of crude lipid
content in the muscle of rainbow trout from readings of short-wavelength
near-infrared (SW-NIR) spectroscopy [37]. Fish are irradiated with light
from the near-infrared region of the electromagnetic spectrum, while the
back-scattered light is detected and measured to generate a spectrum. Such
a spectrum amounts to creation of a data set containing a large number of
descriptors (often in the thousands). By measuring the crude lipid content
with a traditional chemical approach, such as with acid hydrolysis, a math-
ematical model can be trained to correlate the NIR spectra to the lipid
content. This model can subsequently be used to estimate the lipid content
of new fish samples without resorting to the traditional chemical analysis,
thus making the process much faster and cheaper. Examples of other types
of descriptors, besides NIR, is Nuclear Magnetic Resonance (NMR) spectra,
Raman spectra, liquid chromatography (LC) and mass spectrometry (MS).
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In particular, the combined use of LC-MS has the advantage of enabling
the analyst to both quantify the levels and possibly identify the atomic
composition and structure of the analyte.

3.2 Geographical Differences in Enviornmental
Factors

As the increase in TDS-related phenotypes is likely to be caused by envi-
ronmental factors, a natural approach to explore the validity of this hy-
pothesis is to compare the levels of environmental chemicals in different
geographical regions. When I started my phd, Niels Erik Skakkebæk and
his colleagues had been working along this line for many years already,
mainly making comparisons between Denmark and Finland. While Den-
mark seems to have one of the highest incidences of male reproductive
disorders in the world, Finland on the contrary has a very low incidence.
To look for relevant environmental differences between these two nations
was therefore a reasonable approach. One major challenge with such an
endeavor is the sheer number of environmental chemicals that exist. Mea-
suring them all would be impossible, both practically as well as financially.
Thus a narrowing down of the number of chemicals to measure is crucial.
In the case of my project, a decision had been made to focus on endocrine
disrupting chemicals (EDCs), i.e. chemicals which are known to affect the
internal hormone levels. The chemicals which were measured included poly-
chlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs),
dioxins, pesticides and phthalates. Furthermore, as TDS was believed to
originate before birth, the chemicals were measured in human breast milk.
Due to the high fat content of breast milk, this matrix is considered a good
proxy for estimating the exposure levels of fat soluble persistent organic
pollutants (POPs) to a developing fetus.

I analyzed this data using traditional statistical techniques as well as
multivariate approaches commonly used in chemometrics. The results of
the analysis yielded very strong support for the hypothesis that there ex-
isted a difference in levels of environmental chemicals between countries
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[see Manuscript I]. As the chemical profiles between the two countries were
distinct, and the vast majority of chemicals tended to be higher in Danish
samples than in Finnish, our publication yielded a lot of attention in the
scientific media.

3.3 Contacting the Environment Agencies

The distinct country difference came as a surprise to me and my colleagues.
I was curious about what was causing the environmental difference we ob-
served. For a period of time, I decided to do detective work to find out;
something which was more difficult than I anticipated. I contacted both
the Danish and the Finnish Ministries of the Environment, as well as vis-
iting the European Environment Agency (EEA), which has its office in
Copenhagen, Denmark. I was keen on being able to compare the release
of chemicals into air and water between Denmark and Finland. The data
I obtained by the ministries contained estimates of the release of various
types of chemicals into the air, water or sediment. However, it was not well
suited to be used for comparing the two nations, as some estimates were
too imprecise to be useful and some measurements were lacking. I was also
unable to obtain data on the rate of industrial production of the chemicals
of interest, as the industry rarely reveals all chemicals in their products
(according to my contact at the EEA). Thus, in my endeavor as a detective
I was unable to confirm our observed country difference in other sources of
data.

3.4 Enviornmental Factors related to
Cryptorchidism

Having observed the distinct chemical profiles between two Nordic coun-
tries, I wanted to know if a more direct connection could be made between
chemicals and male reproductive disorders [see Manuscript II]. The data
from the Finnish and Danish cohort included both healthy children and
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children born with congenital cryptorchidism. My analysis on the asso-
ciation between endocrine disrupting chemicals and the outcome of cryp-
torchidism indicates that there is a stronger correlation in Danish samples
than in Finnish samples (i.e. a clearer association of the chemical profile to
the outcome of cryptorchidism could be observed in the Danish samples).
This observation fits well with the hypothesis that the adverse trend in Den-
mark is tied to environmental chemicals, whereas in Finland it is expected
that the genetic component plays a bigger role. To my surprise, our analysis
also indicated that PCBs tended to be higher among controls in the Dan-
ish samples, indicating a possible protective effect against cryptorchidism.
The finding of a protective effect by PCBs may seem counter-intuitive due
to their well known toxicity, but this observation is supported by previous
studies [38, 39].
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Introduction

A considerable increase in testicular cancer incidence

among young men during the last century has taken

place worldwide and large scale geographical differences

in the incidence of this disease exist (Bray et al., 2006).

There is a remarkable three to fourfold higher inci-

dence of testicular cancer in Denmark in comparison

with the nearby country Finland. We previously tested

the hypothesis that testicular cancer incidence may be a

‘whistleblower’ for occurrence of other reproductive

health problems in a population by carrying out large,

coordinated, prospective studies of cohorts of newborn

boys and their mothers in Denmark and Finland. These

showed that the incidence of cryptorchidism and hypo-

spadias was also three to fourfold higher in Denmark

than in Finland (Boisen et al., 2004, 2005). Even among

healthy newborn boys, there were significant differences
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Summary

Recent reports have confirmed a worldwide increasing trend of testicular cancer

incidence, and a conspicuously high prevalence of this disease and other male

reproductive disorders, including cryptorchidism and hypospadias, in

Denmark. In contrast, Finland, a similarly industrialized Nordic country,

exhibits much lower incidences of these disorders. The reasons behind the

observed trends are unexplained, but environmental endocrine disrupting

chemicals (EDCs) that affect foetal testis development are probably involved.

Levels of persistent chemicals in breast milk can be considered a proxy for

exposure of the foetus to such agents. Therefore, we undertook a comprehen-

sive ecological study of 121 EDCs, including the persistent compounds dioxins,

polychlorinated biphenyls (PCBs), pesticides and flame retardants, and non-

persistent phthalates, in 68 breast milk samples from Denmark and Finland to

compare exposure of mothers to this environmental mixture of EDCs. Using

sophisticated, bioinformatic tools in our analysis, we reveal, for the first time,

distinct country-specific chemical signatures of EDCs with Danes having gener-

ally higher exposure than Finns to persistent bioaccumulative chemicals,

whereas there was no country-specific pattern with regard to the non-persistent

phthalates. Importantly, EDC levels, including some dioxins, PCBs and some

pesticides (hexachlorobenzene and dieldrin) were significantly higher in

Denmark than in Finland. As these classes of EDCs have been implicated in

testicular cancer or in adversely affecting development of the foetal testis in

humans and animals, our findings reinforce the view that environmental expo-

sure to EDCs may explain some of the temporal and between-country differ-

ences in incidence of male reproductive disorders.
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as Finnish boys had larger testes than Danish and

higher levels of inhibin B, a marker of testicular Sertoli

cells (Main et al., 2006b). Prospective studies of the

general adult populations have also revealed higher

sperm counts in Finnish than in Danish men (Jørgen-

sen et al., 2002).

A crucial question is to what extent these conspicuous

differences in occurrence of reproductive problems

between two Nordic countries are because of environ-

mental factors. Studies of immigrants’ testicular cancer

risk have shown that second generation immigrants have

similar risk of cancer to that of the host country popula-

tion (Hemminki & Li, 2002; Myrup et al., 2008). This,

together with the increasing trends of male reproductive

health problems, strongly suggests that environmental

rather than genetic factors play a major role. As humans

have been widely exposed over the same time period to

man-made persistent EDCs, their aetiological involvement

has been suspected. In reality, humans are exposed not to

single EDCs, but to complex mixtures and the latest evi-

dence from animal studies shows that such mixtures can

have profound effects on male reproductive development

at concentrations at which the individual EDCs have no

effect (Christiansen et al., 2008; Kortenkamp, 2008; Rider

et al., 2009).

Therefore, we have undertaken an ecological study to

examine whether exposures to EDC pollutants is higher

in Denmark than in Finland. We measured 121 chemicals

(listed in Tables S1 and S2) in 68 breast milk samples

from 36 Danish and 32 Finnish women who gave birth to

healthy boys. Chemicals studied included flame retar-

dants, such as polybrominated diphenyl ethers (PBDE)

and biphenyls (PBB), organochlorine pesticides (OC),

polychlorinated dibenzo-p-dioxins (PCDD ⁄ F dioxins) and

biphenyls (PCB), and phthalates, all known for their

potential as endocrine disruptors. Breast milk was chosen

because concentrations of pollutants in milk fat are con-

sidered to represent human exposures (Smith, 1999;

Wang & Needham, 2007).

Materials and methods

The data set for this analysis was obtained from a joint

prospective bi-national study of pregnant women and

their offspring between 1997 and 2001. This study aimed

at assessing the current prevalence of congenital cryptor-

chidism and hypospadias in Denmark and Finland as well

as identifying environmental and lifestyle factors possibly

associated with testis development and function. Ques-

tionnaires and breast milk samples were obtained. The

design of the study was previously described, as well as

details on breast milk sample collection and selection for

chemical analysis; some of the data were included in

other investigations (Main et al., 2006a; Shen et al., 2006,

2007).

The original data set consisted of 130 breast milk sam-

ples from mothers of newborn children. Sixty-eight of the

newborns (36 Danish and 32 Finnish) were healthy and

without signs of reproductive malformations and 62 were

born cryptorchid. As breast milk from women who deliv-

ered a boy with cryptorchidism may be a major con-

founder in an analysis of the general exposure levels to

EDCs in a population, we only included breast milk of

the 68 mothers who gave birth to healthy boys. A total of

121 chemicals were analysed; however, 12 chemicals with

non-detectable levels in all samples were excluded from

the final statistical analysis (Tables S1 and S2).

During all chemical analyses, the laboratories and tech-

nicians were blinded for country of origin. All laborato-

ries participated in external quality control programmes.

Pesticides including enantiomeric compounds and poly-

brominated biphenyls were analysed at the Institute of

Ecological Chemistry, Neuherberg, Germany (Damgaard

et al., 2006) and polybrominated diphenyl ethers, dioxins,

PCB’s and furans at the Department of Environmental

Health, National Public Health Institute, Kuopio, Finland

(Main et al., 2007). All phthalate analyses were performed

at chemical laboratory at the Department of Growth and

Reproduction, Copenhagen, Denmark (Mortensen et al.,

2005; Main et al., 2006a).

The Danish mothers were slightly younger than the

Finnish and more of them participated with their first

child in the study. Moreover, Danish samples were col-

lected on average 1.8 years later than Finnish samples.

These potential confounders, and others, were adjusted

for in the analysis.

To assess the extent of differences in exposure to indi-

vidual chemicals between Denmark and Finland, chemical

concentrations in breast milk samples were analysed using

linear multiple regression. The p-values were corrected for

multiple testing by the method of Bonferroni. Potential

confounders, known to affect the level of chemicals in

breast milk samples, were added as covariates in the anal-

ysis, including maternal age, maternal body mass index

(BMI), year of milk sampling, maternal smoking

(yes ⁄ no), maternal diabetes (yes ⁄ no) and parity.

We investigated the differences in combined chemical

exposures between the two countries using machine-

learning classifiers, which simultaneously take all chemical

concentrations into account. These classifiers can detect

any combination or pattern of chemicals which discrimi-

nates between Danish and Finnish samples. Such patterns

may describe for example if the sum of two or more

chemicals must be above a certain level, or the level of

one chemical is high whilst the level of another chemical

is low. Three Machine Learning Classifiers were applied

Chemicals in breast milk K. Krysiak-Baltyn et al.
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for comparison, two of which were linear methods [Par-

tial Least Squares (PLS) (Wold, 1966) and Sequential

Minimal Optimization (SMO) with 1st order polynomial

kernel], and one was a non-linear method (Multilayer

Perceptron with one hidden layer of 5 nodes).

For the machine learning classifiers, analysis was per-

formed both with and without adjusting for confounders.

Confounders were adjusted for by interpolating the data

using regression coefficients. In addition, confounders

were adjusted for in the analysis with PLS by adding the

confounding factors, along with country, as response-

variables.

Two different software programs were used; Simca-P

10.5 (by Umetrics Inc., Umeå, Sweden) was used for per-

forming PLS, and Weka 3.5.3 (Witten & Frank, 2005)

was used for performing analysis with the other classifiers.

One fourth of the samples (17 samples) in the original

data were randomly removed and used as a test set for

external validation. A balanced number of samples from

each country were included in the test set.

Non-detectable sample measurements were treated in

three separate ways: they were either set to 0, to half the

Limit of Quantification (LOQ), or to LOQ. All analyses

presented were repeated for each case. In addition to the

measured values of the chemicals, we analysed sums and

toxic equivalencies (TEQs) of PCBs, PBDEs and PBBs.

Finally, as phthalates differ in their chemical properties

and exposure routes compared with all the other com-

pounds in our data set, they were analysed together in a

separate model.

Results

After correcting for multiple testing, six chemicals exhib-

ited significant differences between the two countries and

all were higher in Danes than in Finns (Table 1, Fig. 1).

Without statistical correction for multiple testing, higher

concentrations in Danish samples were observed for the

vast majority (54 out of 58) of chemicals that exhibited a

significant between-country difference (Tables 2A and

2B). Chemicals which did not differ significantly are listed

in Table 2C (resulting p-values for all chemicals, includ-

ing TEQs, can be found in Tables S3 and S4).

Analyses with the machine-learning classifiers showed

that the chemical exposures in the two countries were so

distinct that perfect, or near perfect, separation of samples

with respect to country of origin was possible (Fig. 2).

Obviously, not all chemicals contribute equally to this

difference. To examine the importance of each chemical,

we examined the weights of each chemical in the models

and performed feature selection by training the different

machine-learning methods using only a subset of chemi-

cals (Tables S5–S8 for performance of the machine learn-

ing analysis for various models). Each of the methods

achieved perfect separation of Danish and Finnish

samples using a slightly different set of chemicals

(Tables S9–S11). Several of the chemicals were used by

two machine-learning methods, and two chemicals,

1,2,3,4,7,8-HCDD and 1,2,3,6,7,8-HCDD, were consis-

tently selected by all three methods. Indeed, the combina-

tion of these two chemicals alone perfectly separated the

Danish and Finnish samples (Fig. 3). Moreover, the clear

between-country difference was robust and did not disap-

pear if either of these two chemicals was left out of the

analyses. These results did not change when the chemical

levels below the limit of quantification were assigned to 0,

one half of LOQ or LOQ.

As phthalates differ from the persistent compounds in

their chemical properties, exposure routes and persistence,

they were also analysed in a separate model. The phtha-

late levels alone did not exhibit any strong separation

between the two nations.

Discussion

Our comprehensive analysis of more than one-hundred

environmental chemicals in contemporary breast milk

from Finland and Denmark revealed conspicuous

Table 1 Chemicals with significantly higher concentrations in Danish than in Finnish breast milk samples in a linear multiple regression analysis

after correction for multiple testing. Percentiles show unadjusted concentrations

Chemical

Percentile, Denmark Percentile, Finland

p-value Higher in25th 50th 75th 25th 50th 75th

1,2,3,4,7,8-HCDD 2.39e-3 3.32e-3 4.76e-3 0.78e-3 1.06e-3 1.28e-3 2.18e-4 Denmark

PCB 209 0.088 0.11 0.16 0.045 0.061 0.092 3.27e-5 Denmark

PCB 156 4.21 5.66 8.62 2.83 3.59 4.83 1.07e-2 Denmark

PCB 157 0.70 0.86 1.27 0.44 0.60 0.80 2.25e-2 Denmark

Dieldrin 3.06 4.66 5.98 1.86 2.21 3.10 2.30e-4 Denmark

Hexachlorobenzene 8.80 11.78 14.16 6.87 7.60 8.55 1.32e-4 Denmark

Levels below LOQ were assigned the value 0. Data are given as mean ± SD. LOQ, Limit of Quantification.

K. Krysiak-Baltyn et al. Chemicals in breast milk
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differences, particularly with regard to concentrations of

persistent organic pollutants (POPs). In fact, an analysis

of only two dioxins could totally separate the Danish

breast milk from the Finnish breast milk. Another impor-

tant finding was that the levels of chemicals were generally

higher in the Danish samples, where the concentration

range of POPs was also much broader and included some

quite high values. Thus, taken together, the exposure levels

of the examined chemicals and their mixture pattern

seemed quite different in Denmark and Finland.

Three classes of chemicals were represented by the

compounds that were found in significantly higher con-

centrations and with broader distribution spectrums in

Danish samples; PCBs, organochlorine pesticides and

PCDDs. Several of these have been implicated in impair-

ment of foetal testis development or testis cancer
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Figure 1 Plots show the distribution of concentrations of chemicals which exhibited significant differences between Denmark (red) and Finland

(blue) in a linear multiple regression. Chemicals were measured in breast milk samples from Danish and Finnish mothers of healthy boys.

Table 2A Chemicals that had significantly higher concentrations in Danish than in Finnish breast milk samples in a linear multiple regression ana-

lysis before correction for multiple testing (p < 0.05). Chemicals that still differed significantly after correction are shown in bold (see supplemen-

tary Tables S3 and S4 for details)

Class of chemicals Congeners

PBDE BDE-153

PBB 2-BB, 4-BB, 22¢-BB, 344¢-BB, 33¢44¢-BB, 22¢45¢6-BB, 33¢44¢5-BB, 33¢44¢55¢-BB

Organochlorine

pesticides

Hexachlorocyclohexanes [(+)-a-HCH, ())-a-HCH, a-HCH (sum of enantiomers), b-HCH, e-HCH]

o,p¢-DDT, 1,1,1-trichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl)ethane

p,p¢-DDT, 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane

o,p¢-DDE, 1,1-dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl)ethene

p,p¢-DDE, 1,1-dichloro-2,2-bis(4-chlorophenyl)ethene

Dieldrin, Hexachlorobenzene (HCB), Aldrin, Trans-chlordane, Heptachlor, (+)-Oxychlordane (OXC), ())-Oxychlordane,

(OXC), Oxychlordane (Sum of enantiomers), (+)-Cis-heptachlor epoxide (HE), ())-Cis-heptachlor epoxide (HE),

Trans-heptachlor epoxide, Endosulfan-I, Pentachlorobenzene

PCB PCB-28 ⁄ 31, -49, -60, -66, -74, -77, -81, -99, -110, -114, -128, -138, -153, -156, -157, -167, -169, -170, -180, -183,

-187, -189, -194, -206, -209, Sum of PCBs, WHO-TEQ

PCDD ⁄ PCDF’s 2378-TCDD, 12378-PD, 123478-HF, 123678-HF, 123478-HD, 123789-HD

PBDE, polybrominated diphenyl ethers; PBB, polybrominated biphenyls; PCDD ⁄ F dioxins, polychlorinated dibenzo-p-dioxins; PCB, polychlorinated

biphenyls.
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(Toppari et al., 1996; Hardell et al., 2003; Main et al.,

2006a; Fowler et al., 2007; Andersen et al., 2008; Damg-

aard et al., 2008; McGlynn et al., 2008).

An important question is whether the apparent differ-

ent exposure levels can explain the marked differences in

male reproductive health problems between the two

countries. Most previous studies examining links between

exposures and reproductive health problems, including

our own previous investigations, have focused on possible

effects of single agents or a group of related agents at a

time (Main et al., 2007; Kortenkamp, 2008). However, it

seems important that evaluations of effects of chemicals

on human health should include as many as possible of

the agents constituting the ‘total pollution cocktail’ to

estimate the combined effect (Christiansen et al., 2008).

Recent animal studies have, in fact, shown that combined

exposures to multiple chemicals had significant adverse

effects, although previous dose–response studies had

shown no effects when the chemicals were administered

one at the time at low concentrations (Christiansen et al.,

2008; Rider et al., 2008). In the present study, we there-

fore made use of advanced bioinformatics software

programs to extract the total information of all analysed

chemicals in all breast milk samples.

Why more POPs in Danish milk?

We were unable to find data which could explain the gen-

erally higher levels of EDCs in Danish samples. The major

source of human exposure to POPs is from fatty foods

(Wang & Needham, 2007). According to the National

Danish Implementation Plan of the Stockholm Conven-

tion, Miljøstyrelsen (Danish Ministry of the Environment)

(2006), the levels of POPs in Danish foodstuff should not

raise cause for concern. Furthermore, regulation of the

most significant chemicals in Table 1 show no striking

differences between Finland and Denmark. Differences in

regulatory practices may therefore not account for the

specific chemical signatures of the two populations.

Polychlorinated biphenyls have been produced since

1929 and used in many applications such as in paints,

plastizisers and dielectric fluids in capacitors and trans-

formers. The sale of PCBs and PCB containing products

was banned in Denmark in 1986. In Finland, the manu-

facture and use of PCB containing products was banned

in the early 1990’s [Finnish Environment Institute, 2006;

Miljøstyrelsen (Danish Ministry of the Environment),

2006].

Polychlorinated dibenzo-p-dioxins are unintentionally

produced as byproducts in many industrial processes (e.g.

paper bleaching), traffic and waste combustion. In

Denmark, the total emission of chlorinated dioxins into

air (including PCDD and PCDF) in 2000–2002 was

estimated to be 11–162 g I-TEQ ⁄ year (Hansen & Hansen,

2003). In Finland, the corresponding number was

Table 2C Chemicals that did not differ significantly (p > 0.05) between Danish and Finnish breast milk samples in a linear multiple regression

analysis of their concentrations (see supplementary Tables S3 and S4 for details)

Class of chemicals Congeners

PBDE BDE-28, -47, -66, -75, -77, -85, -99, -100, -119, -138, -154, -183, Sum of PBDEs

PBB 2-BB, 4-BB, 22¢-BB, 24¢5-BB, 344¢-BB, 22¢55¢-BB, 22¢45¢-BB, 33¢55¢-BB, 22¢45¢6-BB, 22¢455¢-BB, 33¢44¢5-BB,

22¢44¢66¢-BB, 22¢44¢55¢-BB, 33¢44¢55¢-BB, Pentabromobenzene (PeBB), Hexabromobenzene (HeBB)

Phthalate monoesters Mono-methylphthalate, mono-ethylphthalate, mono-2-ethylhexylphthalate, mono-isononylphthalate

Organochlorine pesticides Hexachlorocyclohexanes (c-HCH, d-HCH, e-HCH)

o,p¢-DDD, 1,1-dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl)ethane

p,p¢-DDD, 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane

Octachlorostyrene (OCS), Pentachloroanisole (PCA), Aldrin, Cis-chlordane, Heptachlor, Trans-heptachlor epoxide,

Mirex, Endosulfan-II

PCB PCB-18, -33, -47, -52, -101, -105, -118, -122, -123, -126, -141

PCDD ⁄ PCDF’s 2378-TCDF, 12378-PF, 23478-PF, 1234678-F, 1234789-F, 234678-HF, 123789-HF, 123678-HD, 1234678-D,

OCDF, OCDD, WHO-TEQ, Sum PCDD ⁄ F

PBDE, polybrominated diphenyl ethers; PBB, polybrominated biphenyls; PCDD ⁄ F dioxins, polychlorinated dibenzo-p-dioxins; PCB, polychlorinated

biphenyls.

Table 2B Chemicals that had significantly higher concentrations in

Finnish than in Danish breast milk samples in a linear multiple regres-

sion analysis before correction for multiple testing (p < 0.05). No

chemical was significantly higher in Finland after correction for multi-

ple testing (see supplementary Tables S3 and S4 for details)

Class of chemicals Congeners

Phthalate Monoesters Mono-butylphthalate,

mono-benzylphthalate

Organochlorine pesticides Methoxychlor

PCB PCB-51

PCB, polychlorinated biphenyls.
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estimated to be 32.24 g I-TEQ ⁄ year in 2002 (Finnish

Ministry of the Environment, 2006). As the Danish esti-

mate is imprecise, we are unable to assess in which coun-

try the emission is higher. In our dataset, seven different

PCDD congeners were present including 2,3,7,8-TCDD,

which has the highest TEQ factor of all PCDDs and

therefore considered the most toxic PCDD. Among the

PCDDs measured, only 1,2,3,4,7,8-HCDD differed signifi-

cantly between the nations and the levels of this com-

pound was somewhat higher than the similar 2,3,7,8-

TCDD. However, different PCDD-congeners vary in their

biological effects (Niittynen et al., 2007) and therefore the

TEQ factors for the compounds do not necessarily reflect

their endocrine disrupting potential and their effect on

male reproductive health.

Hexachlorobenzene and dieldrin are both organochlo-

rine pesticides that were introduced at about the same

time in the 1940s. In Denmark and Finland, this hexa-

chlorobenzene was banned from use as a pesticide in

1993 and 1996 respectively and was totally banned in

2003 and 2002, indicating that the regulation has been

similar in both countries [Finnish Environment Institute,

2006; Miljøstyrelsen (Danish Ministry of the Environ-

ment), 2006]. Dieldrin, which recently has been shown to

be toxic to foetal Leydig cells at low concentrations (Fow-

ler et al., 2007) has been used in Denmark in small

amounts between 1956 and 1988 [Miljøstyrelsen (Danish

Ministry of the Environment), 2006]. In Finland, dieldrin

was stopped being used as a pesticide in 1970, but it was

still manufactured for treatment of plywood for export

PC 1

P
C

 2
 

Danish
Finnish Figure 2 Scatter plot generated from the

Partial Least Squares (PLS) model. Each point

represents one milk sample, blue: Finnish,

red: Danish. The location of each point is a

reflection of the chemical concentration pro-

file in the breast milk. The y- and x-axis are

the first and second principal components,

respectively, which are linear combinations of

the concentration of the chemicals. The top

10 most important chemicals in each of the

two principal components are listed as fol-

lows: PCI: 1,2,3,4,7,8-HCDD, PCB 209, PCB

156, PCB 189, PCB 170, PCB 157, PCB 194,

PCB 180, o.p’-DDE, PCB 81. PC2: 1,2,3,6,7,8-

HCDD, 1,2,3,4,6,7,8-HepCDD, Mirex,

1,2,3,4,6,7,8-HepCDF, OCDD, PeBB, BDe

154,1,2,3,4,7,8-HCDD, PCB 49, Octachloros-

tyrene.
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Figure 3 Two-dimensional scatter plot shows

the concentration of the two chemicals

1,2,3,4,7,8-HCDD (x-axis) and 1,2,3,6,7,8-

HCDD (y-axis) in each breast milk sample. The

Danish (red) and Finnish (blue) samples are

completely separated into two distinct groups.

In each country, the two chemicals show clear

linear correlations but with different slopes.
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until 2002. An extensive study of possibly contaminated

sites in Finland in the early 1990s indicated that levels of

dieldrin were very low (Finnish Ministry of the Environ-

ment, 2006).

Limitations and strengths

The participating lactating women had a narrow age dis-

tribution and were mainly from higher social classes in

both countries. Therefore, they may not represent the

populations in general. However, as most of the EDCs

that we have measured are widely distributed in the envi-

ronment and ⁄ or tend to accumulate in fat and in the

food chain, it is likely that our findings in general are

applicable to the wider population. Danish samples were

on average collected 1.8 years later than Finnish samples,

which is a confounder as environmental concentrations of

the measured POPs have generally been declining during

the past decade (Zietz et al., 2008). However, as we

detected higher levels of POPs in Danish samples, the

true differences in exposures between Danes and Finns

are likely to be even greater than we observed.

In addition, although our study included more than a

hundred reproductive toxicants, it should be remembered

that current environmental exposures involve many thou-

sand chemicals which were not included in our study, but

could still be part of the problem. These include perfluo-

rinated compounds and several non-persistent chemicals

for example currently used pesticides and industrial

chemicals like bisphenol A, several phthalates and phtha-

late metabolites not included in our study, certain sun

blockers, phytoestrogens and mycotoxins. Furthermore,

we know little about the genetic variations in the metabo-

lism of, and susceptibility to, these drugs. Therefore,

although our study was extensive, future studies relating

chemical exposures to diseases should aim at including an

even larger list of these ubiquitous chemicals along with

genotype data. Thus, exposure to the chemicals we analy-

sed here may not alone explain the difference in incidence

of male reproductive problems between the two nations.

Implications

Persistent chemicals obviously give rise to exposure of

newborn babies through breastfeeding after birth. How-

ever, the levels of chemicals in breast milk can also be

considered a proxy for exposure of the foetus during

pregnancy by transfer across the placenta, as these persis-

tent chemicals with very long metabolic half lives in the

body show strong correlations between levels in breast

milk and concentrations in maternal and foetal serum

(Wang & Needham, 2007). Although little is known

about the possible reproductive effects in the foetus of

most of the measured chemicals, a number of them have

already been implicated in such effects in animal and

human studies. Additionally, more and more data suggest

that the foetal testis is inherently more susceptible to

endocrine-disrupting effects than the adult gonad (Ander-

sen et al., 2008; Welsh et al., 2008). Our findings of dis-

tinctly different chemical exposure patterns and

significantly higher levels of persistent compounds in

samples from Denmark than from Finland could there-

fore play a causal role in the (yet unexplained) higher

Danish incidence of male reproductive disorders.

Our data reinforce current thinking of the need to

minimize human exposure to EDCs on precautionary

grounds. In this regard, it should be noted that some

such compounds (e.g. dioxins and flame retardants) are

still being unintentionally or intentionally produced and

released. Although human exposure to most POPs has

decreased, this may not yet be discernible in incidence

rates of testis cancer or other male reproductive disorders.

For reasons of the persistent nature of these compounds,

exposure will be passed on to the next one or even two

generations and there is a long latency between perinatal

exposure and (adult) manifestations of many reproductive

disorders.

Conclusion

This comprehensive study on endocrine disrupting chem-

icals in Danish and Finnish breast milk samples revealed

conspicuous differences: specific chemical signatures were

found in the two countries. In addition, the levels of per-

sistent compounds were significantly higher in samples

from Denmark, where higher incidences of testis cancer,

cryptorchidism, hypospadias and poor semen quality are

present. Our findings are important, as these compounds

are known for their endocrine disrupting abilities.

Furthermore, animal studies, as well as recent human

studies, have shown associations between some of the

same agents and male reproductive problems.
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ABSTRACT 

During the past four decades, there has been an increase in the incidence rate of male 

reproductive disorders in the west, with some countries having notably higher rates than 

others, such as Denmark, whereas Finland has much lower levels. The observed trend is 

strongly suspected to be due to environmental factors, as the increase has been too rapid to be 

explained by genetic factors alone. Moreover, it has further been hypothesized that the 

environmental factors primarily exert there negative effect on the testis at specific time 

windows during fetal development. 

In order to study a possible correlation between chemical exposure and the outcome of 

cryptorchidism, the most common congenital malformation of male genitalia, we undertook 

an ecological study of 121 endocrine disrupting chemicals (EDCs), measured in 130 breast 

milk samples from Danish and Finnish mothers of newborn boys. Half of the newborns were 

healthy controls, while the other half were boys born with cryptorchidism. 

We demonstrate that Danish samples exhibit a stronger correlation between chemical patterns 

in breast milk with the outcome of cryptorchidism than Finnish samples. As Finland has 

much lower incidence rates of male reproductive disorders, and therefore likely not affected 

by environmental factors to the same extent as Denmark, our results lend further support to 



the current belief that environmental factors may be behind the observed trends in Denmark 

and other industrialized countries. 

 

INTRODUCTION 

Cryptorchidism, occurring in 2-9% of newborns, is one of the most common malformations 

among boys and is associated with decreased semen quality and a higher risk of testis cancer. 

Some cases are familiar and mutations leading to cryptorchidism have been described, such 

as loss of function of INSL3. However, in most cases no obvious genetic aberration can be 

revealed. Recent findings of increased frequency in certain geographical areas over a 

relatively short period of time suggest that environmental factors are important, as genetic 

factors alone cannot explain the sudden and rapid increase. In particular, Denmark and 

Norway both exhibit the highest incidence rates of testicular cancer in the world, whereas 

Sweden and Finland have markedly lower incidence rates. In relation to these temporal and 

geographical trends, there has been much speculation that exposures to endocrine disrupting 

chemicals during fetal development may play a major role, as animal studies have 

conclusively demonstrated a link between the outcome of cryptorchidism in male offspring 

and the mother’s exposure to such chemicals.  

However, in reality, people are not exposed to only a few chemicals, but rather to a large 

amount of different environmental chemicals that are present in our environment as a 

consequence of the modernized lifestyle in the west. It is therefore unlikely that any single 

chemical can be strongly correlated to phenotypic outcomes in the general population (with 

the exception of special cases such as environmental disasters), but rather the combined 

exposure may be more informative. Investigation of the simultaneous exposures of hundreds 

of chemicals in minute amounts is extremely complex as, in theory, they may have additive, 

synergistic or antagonistic actions and effects may not be linear. Exposure levels are also 

difficult and often expensive to establish.  

 

In order to investigate the possible correlation between fetal exposure of environmental 

chemicals with the outcome of congenital cryptorchidism, we performed an ecological study 

of 130 Danish and Finnish mothers and their newborn boys. In order to estimate the chemical 

exposure burden of the fetus during pregnancy, breast milk samples were obtained from the 

mothers, and analyzed for more than hundred persistent organic pollutants. These chemicals 

were chosen as they are known to have endocrine disrupting effects, and are thus linked to 



reproductive disorders. The presence or absence of cryptorchidism in the newborns had been 

established by careful clinical examination. 

 

To assess any possible correlation between exposure patterns from a large number of 

chemicals with cryptorchidism, we performed computational analysis with a number of 

different machine learning classifiers. These classifiers are able to simultaneously take into 

account all chemicals in order to find optimal exposure patterns that are able to separate the 

case group from the control group.  

 

MATERIALS AND METHODS 

The data was acquired from a previous study on pregnant women and their newborn boys 

from two Nordic countries; Denmark and Finland. Breast milk samples, clinical examinations 

and questionnaire data was collected between 1997-2001, with the purpose of examining any 

possible influence of environmental and lifestyle factors on the prevalence of cryptorchidism 

and hypospadias.  

The original data set consisted of 130 breast milk samples from mothers of newborn children 

from Denmark (65 sampels) and Finland (65 samples). 68 of the newborns (36 Danish and 32 

Finnish) were healthy and without signs of reproductive malformations and 62 were born 

cryptorchid. Presence or absence of cryptorchidism was established by careful clinical 

examination [1]. The details of the design of the study and analytical methods of chemical 

measurements have been described previously [2,3,4]. 

Measurements from 121 chemicals were present in the data, but 15 were removed due to low 

or non-detectable levels in all samples (all chemicals are listed in supplementary tables S1 

and S2). 

Three versions of the data set were created, in each case treating non-detectable levels 

differently. The non-detecable levels were either set to 0, to one half of Limit of Detection 

(LOD) or to LOD. The same analyses were performed for each of the three data sets. 

 

To asses the association between individual chemical levels and the outcome of 

cryptorchidism, we analyzed the breast milk samples with logistic regression on log-

transformed values. The p-values were corrected for multiple testing by the method of Holm 

[5]. Potential confounders, known to be risk factors for cryptorchidism, were added as 

covariates in the analysis, including maternal age, maternal body mass index (BMI), parity, 

weight for gestational age and gestational age at birth. 



 

To investigate the possible influence of combined chemical exposures on the outcome of 

cryptorchidism, we analyzed the data using machine learning classifiers. These classifiers can 

find patterns of chemical levels which may correlate with any given phenotype. Three 

machine learning classifiers were applied, the linear PLS (Partial Least Squares) and SVM 

(Support Vector Machine) and a non linear feed forward neural network with one hidden 

layer of 2-5 nodes. The analysis was performed in the R-statistical language (version 2.12.0), 

using package “plspm” to perform PLS, package “svmpath” for SVM, and package “nnet” 

for the neural network classifier. 

The performance of the classifiers, on correctly predicting the case/control status of the 

samples, was estimated using 10-fold cross validation. The data was first divided into 10 

stratified folds, creating ten sets of training and validation samples. The analysis was then 

performed in ten iterations, once for each fold. Within the training samples, 10-fold cross 

validation was performed in order to estimate the optimal number of components (in the case 

of PLS) or the optimal number of hidden nodes (in the case of neural network). The obtained 

model was subsequently used to predict the case/control status on the validation samples. 

Four measures of performance were obtained from the classifiers: Matthew Correlation 

Coefficient (MCC) [6], Accuracy (fraction of correctly predicted samples), Sensitivity 

(fraction of correctly predicted cases) and Specificity (fraction of correctly predicted 

controls). To asses the statistical significance of the obtained MCC, we applied Fisher’s 

Exact Test on the confusion matrixes. The statistical significance of the remaining three 

performance measures were assessed using binomial tests. 

In the analysis with PLS,. In addition, analyses without 

Analysis with PLS was done both with and without adjusting for confounders. Adjustment 

for confounders was done by adding the confounding factors, along with case/control status, 

as response-variables. For the other two classifiers, no adjustment was done. 

 

RESULTS 

The results differed somewhat for the three ways that non-detectable levels were handled. 

After correction for multiple testing of the logistic regression analyses, one three and five 

chemicals were significantly different between cases and controls in the Danish cohort, 

respectively (Table 1 and supplementary Table S3a). Before correction for multiple testing, 

25, 30 and 30 chemicals were significant, for each data set respectively (supplementary table 

S3b). These chemicals also included the sum and toxic equivalence of dioxins. The 



statistically most significant chemicals mainly included BDEs, PCBs and dioxins. 

Interestingly, among all the nominally significant chemicals (p-value less than 0.05), all 

PCBs tended to be higher in controls (healthy), whereas BDEs and dioxins tended to be 

higher in cases. 

In the Finnish cohort, after correction for multiple testing, no chemicals exhibited a 

statistically significant difference between cases and controls. Before multiple testing 

correction, five chemicals were significant in all data sets, and included mainly PCBs that 

tended to be higher in cases than controls (supplementary table S4). 

 

 

 

Table 1)  

 Percentile    

Chemical 25th 50th 75th  P-val Higher in 

BDE85 5.00E-4 4.70E-3 2.09E-2  7.98E-3 Cases 

PCB18 2.10E-3 1.36E-2 5.75E-2  1.01E-2 Controls 

PCB33 1.30E-3 4.40E-3 3.36E-2  1.62E-2 Controls 

Chemicals exhibiting statistically significant differences between cases and controls in the 

Danish cohort, after multiple testing correction with Holm’s method. Here results are shown 

from the data set with non-detectables set to LOD / 2.Units are in ng/g lipid. 
 

Analysis by the machine learning classifiers indicated that the correlation between 

case/control status and chemical profile is stronger in Danish samples than in Finnish 

samples. This is illustrated by the score scatter plots from the PLS model, shown in figure 1. 

Table 2 lists four different measures of performance of the PLS classifier, with confounders 

included as response variables, in predicting the case/control status for each sample. It is 

noticeable that the p-values in the Finnish cohort are much less significant than in the Danish 

cohort. In the Danish cohort, all measures showed very significant p-values. The obtained 

sensitivity was somewhat worse than the specificity, which indicates that the classifier had 

greater difficulty in correctly predicting cases than controls. 

The analyses of PLS without accounting for confounders showed the same pattern 

(supplementary Tables S6a and S6b).  

 



The performance of the SVM classifier was comparable to that of PLS, but tended to have a 

more balanced success rate in predicting cases and controls, with sensitivity and specificity 

being more equal in magnitude (supplementary Tables S7a and S7b). The neural network 

classifier nnet was unable to find any patterns in both the Danish and the Finnish data set 

(supplementary Tables S8a and S8b). This is likely due to the fact that the neural network 

searches for non-linear patterns on data with a relatively small number of samples and large 

number of variables, which may make it more prone to overfitting. 

 

From the PLS model, with confounders included as response, on Danish samples we 

extracted the coefficients in order to examine the variable importance. As in the case for 

linear regression, the PLS model indicated that the most important variables correlating with 

case/control status are PCBs, BDEs and dioxins, with PCBs tending to be higher in controls 

than cases (supplementary table S9). 

 

 

a) 

 

b) 

 
Figure 1) Scatter plots from the PLS models, illustrating the separation between cases and controls. 

Red triangles represent controls, blue circles represent cases. a) Danish samples. b) Finnish samples. 

 
 
 
 
 
 
 
 
 
 
 



Table 2) Performance of PLS on Danish Samples 

 Danish  Finnish 
 Value P-val  Value P-val 
MMC 0.60 1.56E-6  0.17 1.26E-1 
Accuracy 0.80 5.84E-7  0.58 1.07E-1 
Sensitivity 0.69 3.07E-2  0.52 5.00E-1 
Specificity 0.89 9.71E-7  0.66 5.51E-2 
Performance of the PLS models with confounding factors added as response variables. Results are 

shown from data set with non-detectables set to LOD / 2. The four different performance measures 

given are; the Matthews Correlation Coefficient (MCC), Accuracy (fraction of correctly predicted 

samples), Sensitivity (TP / (TP+FN)), and Specificity (TN / (TN+FP)). P-values were obtained by 

applying Fisher’s Exact Test for the MCC, while binomial tests were performed to assess significance 

for Accuracy, Sensitivity and Specificity. 

 
 

 

DISCUSSION 

Our results indicate that within Danish samples there seems to be a clearer correlation 

between chemical exposures and outcome of Cryptorchidism than in Finnish samples.  

This observation is what we would expect, based on current knowledge about the time trends 

and geographical differences in incidence rates of male reproductive disorders. The rise in 

reproductive disorders in the west during the past four decades has been too rapid to be 

explained by genetic factors alone, which suggests that environmental factors are involved. 

However, certain countries, such as Finland, have had a markedly lower incidence rate of 

these disorders, which may indicate that the environment in Finland is not yet as detrimental 

for male reproductive health as in e.g. Denmark. 

Although the machine learning classifiers are not able to perfectly predict case/control status  

in the Danish samples, the correlation is nevertheless statistically significant. It is our belief 

that a major reason for the non-perfect performance in the Danish samples is likely due to the 

fact that a number of boys in the cohort acquired Cryptorchidism due to a strong genetic 

component. Thus the chemical profile of their mother’s breast milk would not have any 

causal link to the disease. This, of course, introduces some noise into the data which will 

cause the machine learning classifiers to have more difficulty in correctly classifying the 

samples. 

 



Interestingly, a number of PCBs seem to be correlated with healthy samples in the Danish 

cohort, indicating that they may have a protective effect. This observation may seem counter 

intuitive, as PCBs are known for their toxic effects. However, some previous studies have 

made similar observations. A similarly protective effect in relation to testis cancer, which is 

associated with cryptorchidism, was recently found in a study on a large number of military 

personel [7]. Moreover, a study in rats showed an increase in testis size and sperm production 

in PCB exposed cases, suggesting a masculinizing effect by PCBs [8]. However, not all 

studies indicate that PCBs have a strictly masculinizing effect. It has been shown that PCBs 

may have a femininizing effect in males and a masculinizing effect in females [9], while 

some studies show no clear effects at all [10]. 

 

To investigate the ´protective effect´ hypothesis at a molecular level, a systems biology 

approach was used. All six relevant PCB congeners, which were significant before multiple 

testing, were PCB 51, PCB 81, PCB 52, PCB 49, PCB 47 and PCB 77 were computationally 

screened against ChemProt [11]. ChemProt is a newly established chemical biology database 

allowing identification of chemical-gene/protein associations. We found gene and protein 

data for PCB 52 and PCB 77, although data for the other congeners was lacking. Using all 

species information, 12 proteins are know to be connected to PCB 52, only one for human, 

which is a phospholipase A2 (PLA2G4A). Regarding PCB 77, 31 proteins were extracted 

from ChemProt. Among them seven are linked to human. All PCB 52, PCB 77 and protein 

connections are shown on Figure 2. We went one step further and performed pathway 

analysis independently for both gene lists using KEGG pathway  (version 2010 )[12]. The 

results show two interesting pathways which are common to PCB 52 and PCB 77; the 

gonadotropin releasing hormone pathway (GnRH) and the arachidonic acid metabolism 

pathway. GnRH is known to be implicated in reproductive health, as this hormone affects the 

production of Luteinizing Hormone (LH) in the pituitary gland, which in turn stimulates 

production of testosterone in the leydig cells located in the testis. 

The connection between the arachidonic acid pathway and reproductive health may be 

mediated through prostaglandins (one of the major downstream metabolites of arachidonic 

acid) as some studies have reported differences in prostaglandin levels in relation to fertility 

[13], including masculinization in animal models [14]. 

 

  



 
Figure 2: Chemical-protein association network. Proteins are represented as green circles, 
and PCB congeners as red squares. Edges represent at least one know association between 
a PCB and a protein, extracted from the ChemProt database. For example, PCB 77 is 
known to bind to the aryl hydrocarbon receptor (AHR) in human. 
 

 

We did observe that in the Finnish cohort, among all chemicals significant before correction 

for multiple testing, PCBs were higher in case samples, which is contrary to what we found in 

the Danish cohort. We are not able to explain this discrepancy, although this may be a chance 

observation as the general chemical exposure patterns related to disease outcome is much 

weaker in the Finnish than in Danish samples. Another explanation may be that the effects of 

PCBs are context dependent, depending both on the genetic and environmental factors 

present at any given time. As the Finnish population has a different genetic and 

environmental background than the Danish population, we speculate that the effect of PCBs 

on the outcome of cryptorchidism may differ between the two nations. 

. 
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Chapter 6

Background: Network
Biology

Much of systems biology today concerns itself with analysis and use of avail-
able data on protein-protein and chemical-protein interaction networks, of-
ten as a tool to find new candidate disease genes, find new potential drugs
for the treatment of disease or to elucidate the function of genes with un-
known function. As proteins rarely perform their function alone, but rather
interact with other proteins in a larger system, interaction data is a power-
ful tool in the study of biological systems. Protein-protein interactions are
separated into two major classes: stable and transient. Stable interactions
involve proteins involved in the formation of stable “long-term” complexes
such as that of hemoglobin which consists of four globular protein subunits.
Transient interactions are “short-term” interactions, such as those observed
in signalling cascades where the physical interactions are very brief.

6.1 Availability of Data

Today, a large amount of interaction data is available in the form of data
bases (both free and commercial) whose purpose is to collect and curate
data from various heterogeneous sources. Examples of such data bases are
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DrugBank [40] (includes mostly data on drugs and their genetic interac-
tion partners), Comparative Toxicogenomics Database [41] (contains text
mined and manually curated gene-gene, gene-protein and gene-disease as-
sociations) and STITCH [42]. The data provided by these databases is
primarily collected from text mining and from high throughput experimen-
tal methods. Text mining methods screen the body of scientific literature in
order to automatically extract relevant information, which can subsequently
be curated manually. High throughput experimental methods screen large
numbers of proteins for interactions to other proteins simultaneously.

There exists two types of experimental high throughput techniques that
are used to detect protein-protein interactions: yeast-two-hybrid screening
and complex affinity purification. The yeast-two-hybrid system was in-
vented by Fields and Song in 1989 [43], and has been shown to be more
suitable for detecting transient than stable interactions. This system makes
use of the functional domains of transcription factors in order to detect
the interactions between two proteins, say protein A and B. Protein A
is hybridized to the DNA-binding domain of a transcription factor, while
protein B is hybridized to an activating domain. An interaction taking
place between A and B will lead to assembly of a functional transcription
factor, which in turn causes transcription of a reporter gene. In the com-
plex affinity purification approach, a protein of interest (bait) is fused to
an organic molecule, such as glutathione S-transferase (GST). The bait is
then immobilized on a solid support which has a high affinity to the fused
molecule. Any new protein (prey) interacting with the bait will bind and
likewise be immobilized, while non-binding proteins will be washed away.
The prey proteins can be seperated by 2d-gele electrophoresis and iden-
tified with mass-spectrometry [44]. This approach is generally better at
detecting stable interactions. High throughput gene-chemical interaction
data is typically generated using gene expression analysis of micro arrays.
Such experiements may indicate if genes are up- or down regulated in the
presence of various chemicals.
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6.2 Dealing with Noise
A major problem with large scale protein-protein interaction data is that
it contains a large number of false positives. Some strategies for dealing
with high levels of noise exist and often exploit the fact that protein net-
works are highly modular, i.e. groups of proteins tend to work together
[45, 46, 47]. Proteins within the network are expected to have high local
cluster coefficients, and two proteins that interact should have many com-
mon interaction partners [48]. A scoring scheme assigning higher scores
to interactions within modules can then be used to filter out false posi-
tives which are expected to occur more often in the less dense areas of the
network between modules.

6.3 Increasing Coverage
The various databases use different approaches for collection and curation of
interaction data, and as a conseuqnce do not have complete overlap between
each other. In order to increase the coverage of interaction data, one can
integrate several such databases into one. Such integration may also involve
interaction data obtained from different species, which requires mapping of
the homologous proteins between species. Integrating data from different
species is a reasonable and sound strategy, considering the fact that some
species are more common and easier to work with than others. Yeast and
Rat are for example much easier to study than humans, and may thus
provide a large amount of data where human data is unavailable.

The next chapter (Manuscript III) describes a nove approach to in-
crease the coverage of protein-protein interaction data. The idea is that
if two genes are known to be affected by the same (or similar) chemical
compounds, there is a high probability that these genes interact in some
way. Utilizing such protein-chemical interaction data, one can then gener-
ate protein-protein associations (PPAs). This approach may likely predict
new and unknown candidate genes and chemicals involved in disease, as
new and previously unknown protein-protein associations are formed.
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Abstract

Exposure to environmental chemicals and drugs may have a negative effect on human health. A better understanding of
the molecular mechanism of such compounds is needed to determine the risk. We present a high confidence human
protein-protein association network built upon the integration of chemical toxicology and systems biology. This
computational systems chemical biology model reveals uncharacterized connections between compounds and diseases,
thus predicting which compounds may be risk factors for human health. Additionally, the network can be used to identify
unexpected potential associations between chemicals and proteins. Examples are shown for chemicals associated with
breast cancer, lung cancer and necrosis, and potential protein targets for di-ethylhexyl-phthalate, 2,3,7,8-tetrachlorodiben-
zo-p-dioxin, pirinixic acid and permethrine. The chemical-protein associations are supported through recent published
studies, which illustrate the power of our approach that integrates toxicogenomics data with other data types.
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Introduction

Humans are daily exposed to diverse hazardous chemicals via

skincare products, plastic cups, computers and pesticides to

mention but a few sources. The potential effect of these

environmental compounds on human health is a major concern

[1–2]. For example chemicals such as phthalate plasticizers have

been widely linked to allergies, reproductive disorders and

neurological defects. Humans are intentionally exposed to drugs

used for treatment and cure of diseases. Many drugs affect multiple

targets and may interact or affect the same proteins as

environmental chemicals [3–5]. The mechanism of action of

these small molecules is often not completely understood and can

be associated to adverse and toxic effects through for example

drug-drug interactions [6]. There is thus a need to improve our

understanding of the underlying mechanism of action of chemicals

and the biological pathways they perturb to fully evaluate the

impact of small molecules on human health.

An essential step towards deciphering the effect of chemicals on

human health is to identify all possible molecular targets of a given

chemical. Various network-oriented chemical pharmacology

approaches have been published recently to identify novel protein

candidates for drugs, using structural chemical similarity [7–10].

For example Keiser et al. [8] applied network analysis to drugs and

their targets. The authors identified unexpected molecular targets

such as muscarinic acetylcholine receptor M3, alpha-2 adrenergic

receptor and neurokinin NK2 receptor for methadone, emetine

and loperamide, respectively. Additionally, recent studies have

demonstrated that chemicals could be classified based upon their

effect on mRNA expression detected by microarrays [11–12].

Lamb et al. showed that genomic signatures could be used to

recognize drugs with common mechanism of action allowing

discovery of unknown modes of action. Despite the explosion of

chemical-biological networks, the chemical toxicity remains a

major issue in human health. Analysis of environmental chemicals

with similar gene expression profiles is still lacking. With the recent

advances in toxicogenomics, information on gene/protein activity

in response to small molecule exposures becomes more available.

This provide necessary data to develop computational systems

biology models to predict both high level associations (linking

chemical exposures to diseases) and more detailed associations

(linking chemicals to proteins)

In this paper we present a method that can associate chemicals

to disease and identify potential molecular targets based on the

integration of toxicogenomics data, chemical structures, protein-

protein interaction data, disease information and functional

annotation. The core of our procedure is derived from the ‘‘target

hopping’’ concept defined previously [3]. But instead of consid-

ering only binding activity, we extended the concept to gene

expression. If two proteins are affected with two chemicals, then

both proteins are deemed associating in chemical space. Our

approach is not only a statistical model but mimics the true

biological system by constructing a network of associations

between human proteins defined as Protein-Protein Association
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Network (P-PAN). We have validated our network by comparison

with two high confidence protein-protein interaction (PPI)

networks, and by assessing the functional enrichment of clusters

in the network generated. The P-PAN revealed both known as

well as many novel surprising connections between chemicals and

diseases or proteins. We provide literature support for some of the

unexpected associations, such as the connection between diethyl-

hexylphthalate (DEHP) and gamma-aminobutyric acid A receptor

beta target [13], as well as between apocarotenal, a chemical

found in spinach, and necrosis. This illustrates the usefulness of an

approach that integrates toxicogenomics data with other diverse

data types.

Results

Based on the Comparative Toxicogenomics Database (CTD)

[14], we constructed a human P-PAN. A workflow of the strategy

is shown on Figure 1. We extracted 42,194 associations between

2,490 chemicals and 6,060 human proteins from the CTD. We

mapped compounds to chemical structures from PubChem and

extracted their indication of use from Medical Subject Headings

(MeSH, http://www.nlm.nih.gov/mesh/MBrowser.html) to clas-

sify them as either drugs (MeSH: ‘‘Pharmaceutical Actions’’) or

environmental chemicals (MeSH: ‘‘Toxic Actions’’ and ‘‘Specialty

Uses of Chemicals’’).

In the CTD, drugs and environmental compounds are claimed

to be associated with toxicologically important proteins. To

estimate how much the information from the CTD differs from

available data on pharmacological action of drugs, we compared

the data shared between CTD and DrugBank, as of May 2009

[15]. DrugBank is a repository of pharmacological action for

‘Food and Drug Administration’ approved drugs. From the 1358

drugs gathered in DrugBank, 420 drugs matched in CTD.

Interestingly, whereas 1403 proteins are associated to these drugs

in DrugBank, only 194 proteins are found in both databases. For

example, according to Drug Bank celecoxib, a known non-

steroidal anti-inflammatory drug, is associated to two metabolizing

enzymes: the Cytochrome P450 2C9 (CYP2C9) and the

Cytochrome P450 2D6 (CYP2D6) and to two drug targets: the

Prostaglandin G/H synthase 2 (COX-2) and the 3-phosphoino-

sitide-dependent protein kinase 1 (PDPK1). In the CTD, celecoxib

is linked to 33 human proteins including CYP2C9 and COX-2.

The toxicity information extracted from CTD is relatively

different to the known pharmacological action of drugs and

should be considered as a complementary source of information.

Structure-target relationship
To investigate the assumption that two compounds sharing similar

structure can potentially affect the same molecular targets, we

compared chemical properties of the compounds collected from the

CTD. The chemicals were characterized by 50 properties calculated

from the structure, including the molecular mass and affinity for a

lipid environment. The distribution of properties, as it appears in a

multi-dimensional properties space, was projected and visualized in

two dimensions using principal component analysis (PCA) (shown in

Figure 1). There is substantial overlap in the PCA projections

between environmental chemicals and drugs indicating that they can

potentially affect the same protein targets. We also compared the oral

bioavailability profiles of compounds based on standard Lipinski [16]

and Veber [17] rules. Again, overlaps were observed, indicating that

environmental chemicals mimic drug properties (see Figure S1).

These results confirm that it is reasonable to generate a network by

integrating toxicogenomics knowledge from both drugs and

environmental compounds, as they share many properties.

Generating a high confidence human Protein-Protein
Association Network

The human P-PAN was generated based on the assumption that

if two proteins are biologically affected with the same chemicals

(defined as shared chemicals), they are likely to be involved in a

common mechanism of action of the chemicals. Then, two

proteins are connected to each other if they are linked to the same

chemical in the CTD. The resulting P-PAN consists of 2.44

million associations. To reduce noise and select the most

significant associations, we assigned two reliability scores to each

protein-protein association: a score based on hypergeometric

calculation and a weighted score. The weighted score was

calculated as the sum of weights for shared chemicals, where

weights were inversely proportional to the number of associated

proteins for a given compound.

We went one-step further and compared the P-PAN with two

human PPI databases: (1) a high confidence set of experimental

PPIs extracted from a compilation of diverse data sources [18] and

(2) PPIs based on an internal consistent single data source [19].

Our P-PAN performed well compared to both PPIs. Based on the

calibration curves (Figure S2), we considered a threshold that

capture good overlaps between our P-PAN and the PPI networks

for different reliability scores thus reducing our P-PAN to

,200,000 reliable associations. Using this approach, the molec-

ular target predictions are limited to the 3,528 proteins present in

the P-PAN. To confirm that biological information is not lost

when selecting only 8% of the entire P-PAN, we compared

functional enrichment for the complete network (6,060 proteins)

and for the high confidence sub-network (3,528 proteins) using

Gene Ontology (GO) [20]. For example cell proliferation (p-values

of 3.22e-36 and 1.46e-27 for the large network and the sub-

network, respectively) and protein binding (p-values of 1.2e-72 and

4.13e-47 for the large network and the sub-network, respectively)

were the most overrepresented terms.

Since proteins tend to function in groups, or complexes, an

important step has been to verify that our high confidence network

mimics true biological organization. This task is commonly

Author Summary

Exposure to environmental chemicals and drugs may have
a negative effect on human health. An essential step
towards understanding the effect of chemicals on human
health is to identify all possible molecular targets of a
given chemical. Recently, various network-oriented chem-
ical pharmacology approaches have been published.
However, these methods limit the protein prediction to
already known molecular drug targets. New findings can
for example be made by using high-confidence protein-
protein association databases. Here, we describe a generic,
computational systems biology model with the aim of
understanding the underlying molecular mechanisms of
chemicals and the biological pathways they perturb. We
present a novel and complementary approach to existing
models by integrating toxicogenomics data, chemical
structures, protein-protein interaction data, disease infor-
mation and functional annotation of proteins. The high
confidence protein-protein association network proposed
reveals unexpected connections between chemicals and
diseases or human proteins. We provide literature support
to demonstrate the validity of some predictions, and
thereby illustrate the power of an approach that integrates
toxicogenomics data with other data types.

PPA Network using Toxicogenomics Data
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executed using graph clustering procedures, which aim at

detecting densely connected regions within the interaction graph.

Two clustering methods have been applied to our network. The

molecular complex detection (MCODE) approach [21] that allows

multiple clusters assignation for a protein, mimicking the reality as

a protein can participate in several complexes simultaneously. On

the other hand, the markov cluster algorithm (MCL) [22] which

assign one protein to a unique cluster has been shown to be

superior to other graph clustering methods in recent studies [23–

24]. Applied on our network, MCODE extracted few large core

clusters and several tiny clusters (possibly singleton clusters). The

MCODE approach results in a clustering arrangement with a

weak cluster-wise separation. Compared to MCL, MCODE

yielded a lower number of clusters, with a higher number of

proteins per cluster. Only 35 clusters varying in size from five to

845 proteins were extracted. Using the MCL algorithm we

obtained a more heterogeneous separation with 58 clusters varying

in size from five to 462 proteins. Therefore, to identify the

Figure 1. Workflow of the strategy for generating a human P-PAN and predicting novel associations. DATA: Extraction and filtering of
human protein-chemical associations from CTD. The visualization of the chemical space by Principal Component Analysis projection confirms that
drugs (D) and environmental chemicals (E) shared structural properties, and then may affect similar protein targets. The two first principal
components, which explained about 44% of the variance on the calculated properties are shown (green: pharmaceutical actions, red: toxic actions
and blue: specialty uses of chemical). All proteins (P) were mapped to Ensembl gene identifiers to facilitate further data integration. MODEL
GENERATION: Construction of the P-PAN. The P-PAN was created from associations present in the CTD (dashed edge lines) between chemicals and
proteins. In the P-PAN, two proteins are connected to each other (edge lines) if they share a common chemical. A weighted score, represented by the
width of the black edges, was assigned to each protein-protein association. It represents the strength of the network between two proteins as
defined by the number of shared compounds for both molecular targets. Selection of a scoring function and a high confidence P-PAN after overlaps
comparison with two human interactomes (PPIs) based on experimental evidences. Clustering of the P-PAN and evaluation of the biological
meaningful of the clusters using Gene Ontology annotations. PREDICTION: (1) Prediction of novel molecular targets for chemical using a neighbor
protein procedure. DEHP (orange) is known to be connected with blue proteins and is predicted to be associated with green proteins. A confidence
score was calculated for each protein, represented by the width of the edges; thick edge for high score to thin edge for low score. (2) Prediction of
disease associated with chemical after integration of protein-disease information using GeneCards in clusters. As example, apocarotenal, a compound
found in spinach is predicted to be link to necrosis.
doi:10.1371/journal.pcbi.1000788.g001
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biologically meaningfulness of our network, we used complexes

extracted using the MCL method. Each cluster was then

investigated for functional enrichment based on GO terms. To

ensure the high quality of functional annotations we used only

annotations experimentally supported or with traceable references.

Hypergeometric testing was used to determine GO functional

annotation overrepresented amongst each cluster. The two top

scoring molecular functions found were heme binding (p-value of

6.60e-25, cluster 4) and glucuronosyl transferase activity (p-value

of 2.34e-21, cluster 12). Regulation of apoptosis (p-value of

1.67e.17, cluster 2) and oxidation reduction (p-value of 6.67e-14,

cluster 4) were the most highly enriched categories in the biological

process branch of the GO. This analysis thus confirms that clusters

in the network, and therefore the proteins associated with each

other, are functionally coherent. This was further evidence that the

organization of the network is meaningful.

Diseases associated to clusters
In the clusters of the P-PAN, proteins are more connected with

other proteins within the cluster than with the other targets in the

network. As proteins are associated based on their shared

relationship with chemicals, proteins within a given cluster tend to

be more linked to specific compounds. It is thus possible to find

associations between diseases and the chemicals that underlie the

protein-protein associations within the cluster using protein-specific

disease annotations. For each cluster, we investigated if specific

disease annotation was found more frequently than expected by

using protein-disease information [25]. We identified several

diseases associated with specific clusters. These included the two

most common types of cancer, breast cancer (cluster 1, p-value of

9.67e-18) and lung cancer (cluster 12, p-value of 4.84e-12), as well as

necrosis (cluster 2, p-value of 2.26e-12), ichthyosis (a skin disorder

associated to cluster 4, p-value of 1.41e-5), retinoblastoma (cluster 7,

p-value of 9.46e-8) and inflammation (cluster 8, p-value of 1.55e-5).

Mining the network for chemicals associated with
disease

To predict which chemicals may affect human health, we then

analyzed selected clusters to identify new chemical-disease

associations (see Table 1). When linking diseases to compounds,

it is important to keep in mind that there is no direction in the

association, i.e. it is not possible from the network to separate

positive from negative associations between a chemical and a

disease. Discriminating between whether a compound prevents or

causes disease requires manual interpretation of the association.

One of the clusters showed high enrichment for breast cancer.

The most significantly associated chemicals are already known

from the literature to be related to cancer, thus supporting the

clustering quality of the P-PAN. Among the most significantly

associated chemicals are the well-known polychlorinated biphenyls

(PCBs). PCBs are used for a variety of applications i.e. flame

retardants, paints and plasticizers. After being banned due to their

toxicity, they still persist in the environment. Previous results

suggest that specific PCBs may indeed be associated with breast

cancer [26]. Several organizations (EPA, IARC) have classified

PCBs as probable human carcinogens. When we inspected

another cluster highly connected to lung cancer using our P-

PAN method, thimerosal, dinitrochlorobenzene (DNCB) and

styrene were significantly associated with this cluster. Thimerosal

and DNCB are not known lung cancer-causing chemicals, while

the last compound, styrene has been classified as a possible

carcinogen. Thimerosal is an organomercury chemical widely

used as preservative in health care products and in vaccines. It

may have possible adverse health effects such as a role in autism

and in nervous system disorders [27] as well as possible gene-toxic

effects to human lymphocytes [28]. No study has previously

related it to lung cancer. The second chemical DNCB is known to

be a skin allergen that may cause dermatitis. Genes associated with

allergies were shown to be up regulated in rat lung tissue after

DNCB exposure [29], but no direct link to lung cancer has been

demonstrated so far. Another interesting finding is the association

between apocarotenal and necrosis. Apocarotenal, a natural

carotenoid found in spinach and citrus, is used as a red-orange

coloring agent (E160E) in foods, pharmaceuticals and cosmetics

products. No direct evidence has been found that links

apocarotenal to necrosis. However, in vitro and in vivo studies

[30] have suggested that spinach may be a good anti-cancer agent.

This is in line with epidemiologic studies that have shown that

those who consume higher dietary levels of fruits and vegetables

have a lower risk of certain types of cancer [31] due to the

presence of carotenoids. Furthermore, carotenoids have been

defined as chemopreventive agents [32]. Studies have established

associations between carotene and beta-carotene with reduced risk

of prostate cancer [33] or breast cancer [34]. The prediction that

apocarotenal is positively associated to necrosis and could prevent

certain types of cancer is thus indirectly supported by other studies.

The other chemicals significantly associated to disease (Table 1)

are discussed in the supplementary text (see Text S1).

Predicting novel molecular targets for chemicals
Besides revealing disease-chemical associations, the network can

be used to predict novel targets for chemicals. It has been shown

that many small molecules affect multiple proteins rather than a

single target, and that proteins sharing an interaction with a

Table 1. Mining the P-PAN for chemicals associated with
breast cancer, lung cancer and necrosis, using a clustering
procedure.

Cluster ID Disease Chemical name p-Value

1
(462 proteins)

Breast cancer
(128 proteins)

estradiol 7.68e-134

bisphenol A 4.46e-92

PCBs 1,15e-88

genistein 2.20e-78

fulvestrant 7.05e-63

12
(59 proteins)

Lung cancer
(29 proteins)

thimerosal 1.57e-26

(10 proteins)

DNCB 3.29e-22

(12 proteins)

styrene 7.78e-06

2
(433 proteins)

Necrosis
(122 proteins)

arsenic disulfide 4.76e-35

apocarotenal 1.63e-29

(8 proteins)

doxorubicin 2.66e-26

Chemicals already known from the literature to be associated to disease are
shown in italic. In bold are the chemicals significantly associated to disease,
which are unknown to be disease-causing chemical from the literature. The
number of proteins is shown in brackets for each cluster, disease and novel
association. As example, among the 433 proteins associated to cluster 2, 122
are known to be linked to necrosis. Among these 122, 8 are connected to
apocarotenal in CTD.
doi:10.1371/journal.pcbi.1000788.t001
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chemical are targeted by the same chemicals [8]. Based on the

CTD data available, strong promiscuities between some proteins

exist. For example, more of 25% of chemicals annotated to

estrogen receptor 1 (ESR1) affects also progesterone receptor

(PGR). In the same order, cytochrome p450 2D6 (CYP2D6) and

cytochrome p450 2C9 (CYP2C9) shared one-third of their

respective associated compounds. By the term ‘‘affected’’, we

consider effects such as up regulated, down regulated, agonist,

antagonist and inhibitor. Then, our network can not be used to

identify chemical synergies or opposite effect on proteins. Thus, if

two proteins are affected by two chemicals and one of the proteins

is further deregulated by an additional chemical, then it might be

that both proteins are in fact deregulated with the same three

chemicals. Based on this assumption and in order to suggest novel

associations between chemicals and proteins, a neighbor protein

procedure was used which scored the association between each

protein and each chemical (see Materials and Methods). Molecular

targets known to be associated with a chemical were extracted

from the CTD, and the P-PAN was scanned for proteins

associated with a high score. The significance of enrichment was

calculated by random testing (for the confidence scores see Text

S2), and sub-networks were subsequently ordered according to

their significance. Four examples of various chemicals are

presented in Table 2 (other case stories are shown in Table S1).

To estimate the performance of our approach for approved drugs,

we analyzed the level of recall and precision obtained for the 420

common drugs between DrugBank and CTD. We obtained a

recall and a precision of 5.91% and 3.77% respectively,

corresponding to the percentage of interactions in DrugBank

retrieved and percentage of interactions in DrugBank from all

interactions predicted obtained from CTD data and from the

neighbor protein procedure. These values illustrate that informa-

tion between the two data sources are relatively different.

Examples of proteins associated to chemicals
Phthalates, mainly used as plasticizers, have received a lot of

attention as environmental compounds because they are potential

human carcinogens. As there are many phthalates, we focused on

Di-EthylHexyl Phthalate (DEHP) that has been associated with

more proteins compared to other phthalates such as additional

information on kinases (e.g. mitogen-activated protein kinase 1, and

mitogen-activated protein kinase 3) [35]. DEHP is widely used due

to its suitable properties and low cost, and is present in the general

environment at high levels. Exposure to DEHP is of particular

concern with regard to developing fetuses where it is believed to

cause malformation of reproductive organs and neurological defects

[36]. Using our approach, several proteins were identified as being

associated with DEHP (Table 2). Cysteine dioxygenase type I

(CD01) and peroxisome proliferator-activated receptor alpha

(PPARA), the two top scoring proteins, are already known in the

CTD and from the literature [37–38] as molecular targets for

DEHP. Six other high ranking proteins are new potential DEHP

molecular targets which are not recorded in the CTD (thus not input

data). Among them, four gamma-aminobutyric acid A (GABA)

receptors were predicted as potential DEHP molecular targets.

These associations are supported by a recent study showing that

DEHP can modulate the function of ion channels as GABA

receptors in a manner similar to volatile anesthetics in experiments

on expressed receptors [13]. This makes sense because the GABA

neurotransmitter system has been implicated in the pathogenesis of

bipolar disorders (neurological disorders) via gamma-aminobutyric

acid receptor subunit alpha-1 (GABAa1) [39], and DEHP is also

associated with neurological defects [36]. In addition to GABA

receptors, we identified several other candidates including proopio-

melanocortin (POMC) and a cytochrome P450 (CYP3A11)

(discussed in the Text S2). We looked at another environmental

chemical, the 2,3,7,8-TetraChloroDibenzo-p-Dioxin (TCDD),

which originates from burning or incineration of chlorinated

industrial compounds. TCDD is believed to cause a wide variety

of pathological alterations, with the most severe being progressive

anorexia and body weight loss [40]. TCDD is also known to be a

neurotoxin leading to neurodevelopmental and neurobehavioral

deficits [41–42], and accumulating in the brain as well as other

organs [43]. We identified six proteins associated with TCDD that

are not recorded in the CTD for human (Table 2). Among them five

are supported by literature (see Text S2). This included protein

kinase C elipson (PRKCE), known to be involved in brain tumors

Table 2. Predicting novel molecular targets for chemicals.

Chemical
Known
protein Cpscore*

Novel
protein Cpscore*

Liter-
ature

DEHP CDO1 13.23 GABAß1 5.46 Yes

PPARA 9.48 POMC 5.44 Yes

SUOX 4.35 CYP3A11 5.40 Yes

(15 proteins) GABAß2 4.32 Yes

GABAc2 4.32 Yes

GABAa1 4.26 Yes

TCDD HSPA9B 82.69 PRKCE 10.17 Yes

SLC2A4 82.69 POMC 8.97 Yes

TRIP11 82.69 CPT1A 6.96 Yes

TSP1 82.69 HSD11B1 6.39 Yes

EPHX2 75.77 MVP 6.77 No

MT2A 10.85 APOB 5.61 Yes

(90 proteins)

PA CYP4X1 5.67 CHST1 5.19 No

PPARA 2.53 CHST4 5.19 No

CES1 1.45 CST 3.19 Yes

SULT2A1 0.87 ABCG5 2.61 No

CYP1A1 0.37 C3 2.80 Yes

ADRA2A 1.34 Yes

CYB5A 1.21 No

ADRA1A 1.08 Yes

CRHR2 1.04 No

CYP2A13 0.93 No

ALDH3 0.91 Yes

(5 proteins)

Permethrin AR 4.67 CYP2B1 4.43 Yes

WNT10B 4.12 SHBG 3.51 Yes

PGR 3.75 CYP2B6 2.89 No

ESR1 3.31 NR1I3 2.64 Yes

TFF1 3.15

NR1I2 2.94

(17 proteins)

*Proteins known to be associated to a compound were extracted from the CTD.
In brackets is the total number of known proteins used to query the P-PAN. To
find novel protein targets (in bold) associated to a chemical, a neighbor
proteins procedure was used which scored the association between proteins
and chemicals (cpscore). Among the novel predicted proteins (thus not input
data), some are supported by literature, highlighting the usefulness of the P-
PAN to identify new chemical-protein associations.
doi:10.1371/journal.pcbi.1000788.t002
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[44], carnitine palmitoyltransferase I (CPT1A), 11b-hydroxysteroid

dehydrogenase type 1 (HSD11B1) and apolipoprotein B (APOB)

which are all linked to obesity [45–47]. Furthermore, we investigated

in detail the drug pirinixic acid (PA) (also named WY14,643), which

is a peroxisome proliferator-activated receptor (PPAR) agonist with

strong hypolipidemic effects. PA was never approved for clinical use

due to hepatocarcinogenesis adverse effect shown in animal studies

[48]. To date there is no evidence that PA promotes carcinogenesis

in humans [49], and this has spurred new studies for identifying

cellular processes that are capable of responding to PA. Among 11

molecular targets identified and not recorded in the CTD (Table 2),

only five are supported by the literature (see Text S2). For example

the expression of the C3 protein, an acylation stimulating protein

involved in necrosis and afibrinogenemia (blood disorders), has been

shown to be affected by PA in rats [50]. Finally we studied proteins

associated with permethrin in more detail. Permethrin is a widely

used insecticide, acaricide and insect repellent, classified by the US

EPA as a likely human carcinogen, but still used in healthcare for the

treatment of lice infestations and scabies. Four proteins not recorded

in the CTD were identified as associated with permethrin. Three of

them are supported by literature (see Text S2 for details) including a

cytochrome P450 (CYP2B1) [51–52] and sex hormone-binding

globulin (SHBG) [53], which are proteins linked to the endocrine

system. These findings suggest a mechanism by which chronic

exposure of humans to pesticides containing this compound may

result in disturbances in endocrine effects related to androgen action.

The examples we provide include both known and new protein

associations with a given chemical, and many of the novel

associations are supported by the literature. We compared our

approach with STRING (version STRING 1) [54] a high-

confidence protein-protein association network, to see if the

findings generated by the current approach are also found by

other existing methods. The STRING network includes direct

(physical) and indirect (functional) associations derived from

diverse sources as genomic context, high throughput experiments,

co-expression and literature. As a test example, we used the 15

proteins associated with DEHP in the CTD to query the P-PAN

by a neighbor protein procedure. The same 15 proteins were also

used to query the STRING network. Subsequently we compared

the predicted molecular targets between the two networks (P-PAN

and STRING). In the resulting STRING network none of the

GABA receptors were found (see Figure S3). The STRING

network showed a clear tendency to associate phthalates with

kinases and nuclear receptors. This example demonstrated that

our approach was complementary to other association approach-

es. This highlights the value of integrating various sources of data

to understand potential toxic effects on human health caused by

chemical exposure.

Discussion

We propose an approach different from existing computational

chemical biology networks, which primarily integrate drugs

information, to identify new molecular targets for chemicals and

to link them to diseases. In our approach we have integrated

toxicogenomics data for drugs and environmental compounds.

The ability to make new findings using a different network is

illustrated by a comparison with a similar method, showing the

capacity of our P-PAN to identify novel chemical-protein

associations. Using phthalate as an example, our model suggests

potential associations between DEHP and GABA receptors, which

have not been predicted previously.

An extension of this network by integrating more data, for

example other chemical-protein associations or dose levels for

which a compound may affect human health, would be beneficial

to the proposed approach. Paracelsus (1493–1541) is often cited

for his quote, ‘‘all things are poisons and nothing is without poison,

only the dose permits something not to be poisonous’’. This

emphasize that the dose of a chemical is an issue to consider in the

deregulation of systems biology. Nevertheless, a global mapping

could allow a better understanding of adverse effects of drugs and

toxic effects of environmental compounds. This could be used as a

new approach for risk assessment and regulatory decision-making

for human health.

Among the examples presented, some predictions are support-

ed by literature for other organisms. Regarding toxicogenomics,

the available human data are generally sparse compared to

rodents. Data on toxicity - adverse effects of chemicals on

humans – can be acquired through epidemiologic studies and

from occupational, accident-related exposures as intentional

human testing of environmental compounds remains limited.

However, differences exist between model animal and human

responses to chemicals, including differences in the type of

adverse effects experienced and the dosages at which they occur.

The differences may reflect variations in the underlying

biochemical mechanisms, in metabolism, or in the distribution

of the chemicals. As an example, bisphenol A (BPA) does not

affect proteins in a similar way across species (Figure 2). In the

human systems studied to date, BPA does not affect the proto-

oncogene c-FOS (FOS) and the mitogen-activated protein kinase

8 (MAKP8) but seems to modify their expression in rodent

species. BPA binds and modifies the activity of the estrogen

receptor alpha (ESR1) in a very conservative way across

organisms [14]. BPA has an ability to function as an estrogen

like receptor (ER) agonist, and thus has the potential to disrupt

normal endocrine signaling through regulation of ER target genes

e.g. androgen receptors, estrogen receptor, progesterone recep-

tors. There is a need to integrate data with cross-species

extrapolation in order to have a more accurate understanding

of the human risk from chemical exposure.

The major limitation of our integrative systems biology

approach is that the molecular target predictions are limited to

the 3,528 proteins present in our P-PAN, which represent only

15% of the estimated human proteome [55]. Hence, the current

lack of high quality data is the limiting factor in approaches such as

the one described here. Today high throughput methodologies

result in available large scale data in both chemical biology and

systems biology, but these data are discipline specific [56]. There is

an evident need for the development of databases [57] to integrate

disparate datasets such as toxicogenomics data in order progress in

systems biology research. In addition, the results of the disease-

compound association analysis will improve in the future as newer,

more complete and curated data will become available.

Materials and Methods

Data set
We downloaded the publicly available Comparative Toxicoge-

nomics Database (CTD) as of June 26, 2008 [14]. The CTD

contains curated information combining drug and environmental

chemical data associated with proteins. We selected 42,194

associations between 2,490 unique compounds and 6,060

molecular targets known to be involved in human disease.

Different associations are presented in the CTD such as ‘‘chemical

x results in increased expression of protein z’’ or ‘‘compound x

binds to protein z’’. Gene expression data are essentially present in

the CTD such as a chemical can increase, decrease or affect a gene

expression. However, only few binding data are present in CTD

PPA Network using Toxicogenomics Data
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and therefore integrated in our network: 3189 in total among the

42,194 associations. Scripts were used to remove associations with

negation such as ‘‘chemical x does not affect protein z’’.

Quality of chemical and protein annotations
To verify the uniqueness of chemicals, chemical names

extracted from the CTD were checked using PubChem (http://

Figure 2. Cross-species comparative toxicogenomics for bisphenol A (BPA). Molecular targets are represented as nodes, and colored by
gene family. Nodes presence represent available information extracted from the CTD and node absence are the unknown information. Colored nodes
defined that BPA affect the protein, while nodes are not colored when BPA does not affect the protein. This figure highlights similarities and
differences existing between animal model and human responses to chemical exposure.
doi:10.1371/journal.pcbi.1000788.g002
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pubchem.ncbi.nlm.nih.gov/) as of June 26, 2008 to avoid

synonymous names for the same compound. The few chemical

names not retrieved via the database were manually verified. To

determine overlaps with protein-protein interaction databases and

facilitate further data integration, the CTD protein names were

mapped to the corresponding Ensembl IDs [58] as of June 26,

2008. Only 1.5% of the 42,194 chemical-protein associations

could not be clearly identified.

Structure-target relationship
To investigate chemical space of drugs and environmental

compounds, 50 two-dimensional properties were calculated for

each structure extracted from PubChem. To visualize them,

principal component analysis (PCA) was performed. All necessary

data were calculated using the MOE software (Chemical

Computing Group version 2007.09)

Generating a high confidence human Protein-Protein
Associations Network

Relevant human chemical-protein associations collected from

the CTD were used to create a P-PAN. The maximum number of

molecular targets assigned to one compound ‘tert-Butylhydroper-

oxide’ was 1,189 and the maximum of chemicals assigned to one

protein, the cytochrome P450 3A4 (CYP3A4), was 276. The P-

PAN was generated by instantiating a node for each protein, and

linking by an edge any protein-protein pair where at least one

overlapping chemical was identified. Scripts were used to convert

the protein-protein associations into a non-redundant list of

associations. If proteins A and B are associated, the network may

have two associations, A–B and B-A. Only one of these

associations was retained in the P-PAN. We assigned two

reliability scores to each protein-protein association: a score based

on hypergeometric calculation and a weighted score. The

weighted score was calculated as the sum of weights for

overlapping compounds, where weights were inversely propor-

tional to the number of assigned proteins. The resulting P-PAN is

a complex structure containing a total of 2.44 million unique

associations between 6,060 human proteins.

Validating the protein-protein association score
The reliability of the weighted score was confirmed by fitting a

calibration curve of different scores against Lage’s PPIs18 (version

2.9) and Vidal’s PPIs19. Only 35,000 high confidence experimental

interactions were extracted from Lage’s PPI, which contains

interactions present in the largest databases (Reactome, KEGG…)

and data inferred from model organisms. Vidal’s PPIs are based

on an internal consistent single data source defined using yeast

two-hybrid system and contains 3111 interactions.The overlaps of

our P-PAN scores and Lage/Vidal PPIs are shown in Figure S2.

The benchmark revealed that the weighted score is superior to a

score calculated as the negative logarithm of p-values from a test in

hypergeometric distribution and a simple overlap count. To

estimate the robustness of the model, four thresholds selected from

the ‘weighted score’ curves (5%, 8%, 12.5% and 17%) of the

complete P-PAN were used to perform prediction for DEHP. At

5%, 73,000 associations between 2105 proteins were extracted.

The number of proteins is relatively stable at 8% and 12.5%.

However, the number of associations increased significantly from

200,080 to 306,000 including lower score associations in the

output file of prediction. The threshold of 17% corresponds to

415,000 associations between 3894 proteins. All thresholds showed

a good prediction with the GABA receptors for DEHP. As the

12% threshold already added some more noise in the prediction,

we decided to not include more proteins, in order to keep the most

significant associations. We then considered a threshold of 8%,

represented by the vertical line in Figure S2, which captured a

good overlap between our P-PAN and the PPI networks. This

selection represents 200,080 associations of the complete P-PAN.

Among the ,200,000 high confidence associations selected,

3,528 proteins were identified, and these were significantly

enriched among the high scoring protein-protein associations as

shown in Figure S2 (861 Lage’s PPI interactions corresponding to

24.4% were found among the top 5% of the high scoring protein-

protein associations). By comparison, only 1,852 of the high

confident interactions from Lage were identified in a random P-

PAN created by node permutation, and no enrichment was seen

for the random network. As example, the selection of high

confidence associations allowed to conserve only 803 proteins from

the 1189 proteins assigned to the ‘tert-Butylhydroperoxide’.

P-PAN clustering
A high confidence sub-network of ,200,000 protein-protein

associations was selected which contained 3,528 proteins. This

sub-network was highly interconnected, with the majority of

proteins belonging to a single large cluster. In order to increase the

resolution and facilitate biological interpretation, two clustering

methods were applied to the sub-network, MCODE [21] and

MCL [22]. We used the default settings for MCODE (fluff option

set to 0.1, mode score cutoff set to 0.2, degree cutoff set to 2), and

obtained 35 clusters. One major drawback of this algorithm is that

not all the proteins in the network were clustered. We used the

MCL algorithm with scheme and granularity parameters set to 7

for highest performance and granularity. With the MCL approach

we identified a total of 58 clusters as strongly interconnected, with

a minimum size of 5 proteins. These clusters were linked together

into a new network consisting of a scored cluster-cluster

association network. The association score between each cluster

pair was calculated from the mean of the P-PAN between each

pair of clusters. Each cluster was investigated for functional

analysis based on the three Gene Ontology categories (a)

molecular function, (b) biological processes, and (c) cellular

components as of January 2009. To reduce the noise and improve

the quality of the functional annotation, we only used the

functional annotation if it was experimentally supported or had

traceable references. The following GO evidence codes were

allowed: IMP (Inferred from Mutant Phenotype), IGI (Interfered

from Genetic Interaction), IPI (Inferred from Physical Interac-

tions) and IDA (Inferred from Direct Assay) and TAS (Traceable

Author Statement). At time of use the molecular function category

contained 5,981 proteins, the biological processes category 5,196

proteins, and the cellular components 5,151 proteins. We

compared human proteins present in GO categories with proteins

extracted from the CTD; 14.3% of the CTD proteins could not be

annotated for the molecular function, 16.6% for biological

processes and 14.9% for cellular components.

To identify chemicals associated with disease, protein-specific

information such as involvement in disease was integrated in each

cluster. The Online Mendelian Inheritance in Man database

(OMIM) [59] (July, 2009) and the GeneCards database [25]

(February, 2008) were considered as sources of protein-disease

connections. Various clusters were investigated. For example, cluster

1 contained 462 proteins. Using GeneCards, 269 proteins were

retrieved with disease annotations. Amongst these 269 proteins, 128

were associated to breast cancer (with give a p-value of 9.67e-18 for

breast cancer to cluster 1). Using OMIM, only 90 proteins among the

462 were retrieved with disease annotations. Looking at the cluster

enrichment with OMIM, we obtained at the top a non significant p-

PPA Network using Toxicogenomics Data
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value of 0.0048 (corresponding to two proteins for paget disease of

bone). As another example, we analyzed the second cluster. Cluster 2

contained 433 proteins. 281 proteins were annotated to diseases in

Genecards, for only 78 proteins in OMIM. Additionally, cluster 2 has

a significant p-value of 2.26e-12 using GeneCards information for

necrosis. According to these results we decided to use GeneCards as a

source of protein-disease relationships. To avoid too many false

positive from Genecards, we set a significance cut-off value of the

GeneCards-AKS2 score based on a comparison with OMIM. This

was done by overlapping common protein-disease associations from

Genecards against OMIM (see Figure S4). The protein-disease

connections were kept with a minimum AKS2 score of 60 and p-

values were calculated for each disease present in clusters. Then,

chemical information from the CTD was integrated with each cluster

and p-values were assigned to each chemical. All p-values obtained

were calculated using hypergeometric testing, and were corrected for

multiple testing with Bonferroni correction [60]. The significance

cutoff for the corrected p-values was set to 0.05.

Neighbor protein procedure
To predict molecular targets for a chemical, a network-neighbor’s

pull down was done in a three steps procedure: (1) Selection of the

input protein(s): Extraction of the protein(s) known to be associated

with the selected chemical from the CTD. (2) Identification of

network(s) surrounding the input proteins by a neighbor proteins

procedure. In this procedure, our P-PAN was queried for the input

proteins, and associations between these were added. Next, the first

order interactors of all the input proteins were queried and added.

For each neighbor, a score was calculated taking into account the

topology of the surrounding network, based on the ratio between total

associations and associations with input proteins. Molecular targets

with a score higher than the threshold (0.1) were kept in the final sub-

network(s). This node inclusion parameter is in the conservative end

of the optimal range for protein-protein interaction networks18. As a

final step all proteins in the complex were checked for associations

among them and the missing one were added. (3) Establishment of a

confidence score for the surrounding network (cscore) and of a score

for each protein (cpscore): Each of the pulled down complexes was

tested for enrichment on our input set by comparing them against

1.0e4 random complexes for the protein-protein association set to

establish a cscore for each sub-network and a cpscore for each

connected proteins. The cpscore was used to rank proteins to select

potential molecular targets for chemicals. An illustration of cpscore is

available on Table S2 for approved drugs.

Postscript
All the CTD human protein-chemical associations were

extracted from the CTD on June 26, 2008. Subsequent updates

of CTD, as of June 25, 2009, did not change the overall trends or

conclusions of the present study.

Supporting Information

Figure S1 Structure-target relationship: Oral bioavailability

profiles.For drugs, permeability and absorption are properties

considered to be important for effective delivery systems, and they

receive special attention in pharmaceutical research. We chose to

focus on the oral bioavailability properties based on standard

Lipinski and Veber rules. It is important to keep in mind that the

rules serve as guidelines only - some classes of chemicals, like

antibiotics, do not respect the rules. The selected properties are the

molecular weight, the octanol/water partition coefficient (an

indication of the ability of a molecule to cross biological

membranes), the number of hydrogen bond-donor, the number

of hydrogen bond-acceptor and the number of rotatable bond.

The distributions of the different molecular properties have partial

overlaps indicating that small environmental molecules could

mimic drug properties. As an example, the distribution of the

molecular weight shows a similar profile for each of the three

MeSH categories, with a light tendency for ‘Toxic Actions’

chemicals to have a smaller molecular weight (MW). The mean of

MW for ‘Toxic Actions’ is 264 daltons whereas the mean of MW

for ‘Pharmaceutical Actions’ chemicals is 386 daltons.

Found at: doi:10.1371/journal.pcbi.1000788.s001 (0.06 MB

DOC)

Figure S2 Comparing overlaps between protein-protein associ-

ations and protein-protein interactions. To assess the reliability of

our protein-protein association scores, we fitted a calibration curve

of the different PPA scores against overlaps with two PPI

databases: the Vidal’s interactome and a highly confident set

from Lage et al. Vidal’s PPIs are based on an internal consistent

single data source defined using yeast two-hybrid system. Lage’s

PPIs contain interactions present in the largest databases and data

inferred from model organisms. All the interactions used from

Lage et al for the calibration curve are experimental (extracted

from Reactome, KEGG and experimental data from small scale

experiments). In both comparison, the weighted score (wscore, in

red) appears to be superior compared to the score derivates from a

hypergeometric test (hscore, in green) and to the random scores.

The vertical line represent the threshold selected, which

correspond to 8% of the complete P-PAN i.e. 200,080 proteins.

Found at: doi:10.1371/journal.pcbi.1000788.s002 (0.07 MB

DOC)

Figure S3 Molecular target predictions for DEHP: novelty of

the P-PAN. The novelty of our P-PAN is supported by comparing

the predicted proteins associated to DEHP using our approach

and an existing method String [1]. Blue nodes are the 15 input

proteins known to be associated to this chemical in CTD, green

nodes are the predicted proteins from String. Purple nodes are the

proteins predicted for DEHP using our P-PAN (dark purple are

the proteins with a high confidence score). Green edges are the

protein-protein interactions predicted from the String database

and purple edges are the protein-protein associations suggested by

P-PAN. In the String output network none of the GABA receptors

were found, which were identified as potential molecular targets

for DEHP using our P-PAN. Considering high confidence score

for both methods (String score.0.98), no overlaps between

predicted proteins were found. The interactions between predicted

proteins were removed for more clarity.

Found at: doi:10.1371/journal.pcbi.1000788.s003 (0.26 MB

DOC)

Figure S4 Distributions of the gene- disease scores from

GeneCards-AKS2 and OMIN. To integrate disease information

to the clusters, GeneCards was used as a source of disease-protein

connections. In order to limit the use of false positives present in

GeneCards, we mapped shared protein-disease association from

OMIN and GeneCards. According to the overlap curves, we set a

significant cut-off value of the GeneCards-AKS2 score (in red) of

60.

Found at: doi:10.1371/journal.pcbi.1000788.s004 (0.28 MB

DOC)

Text S1 Mining the P-PAN for chemicals associated with

diseases.

Found at: doi:10.1371/journal.pcbi.1000788.s005 (0.06 MB

DOC)

Text S2 Molecular targets predictions for chemicals.
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Found at: doi:10.1371/journal.pcbi.1000788.s006 (0.07 MB

DOC)

Table S1 Example of molecular target predictions for chemicals.

References: 1. Mahgoub AA, El-Medany AH (2001) Evaluation of

chronic exposure of the male rat reproductive system to the

insecticide methomyl. Pharmacol. Res. 44:73–80. 2. Bernard L,

Martinat N, Lécureuil C, Crépieux P, Reiter E, Tilloy-Ellul A,

Chevalier S, Guillou F (2007) Dichlorodiphenyltrichloroethane

impairs follicle-stimulating hormone receptor-mediated signaling

in rat Sertoli cells. Reprod. Toxicol. 23:158–164. 3. Saqib TA,

Naqvi SN, Siddiqui PA, Azmi MA (2005) Detection of pesticide

residues in muscles liver and fat of 3 species of Labeo found in

Kalri and Haleji lakes. J. Environ. Biol. 26:433–438. 4. Flodström

S, Hemming H, Warngard L, Ahlborg UG (1990) Promotion of

altered hepatic foci development in rat liver cytochrome P450

enzyme induction and inhibition of cell-cell communication by

DDT and some structurally related organohalogen pesticides.

Carcinogenesis 11:1413–1417. 5. Sakai H, Iwata H, Kim EY,

Tsydenova O, Miyazaki N, Petrov EA, Batoev VB, Tanabe S

(2006) Constitutive androstane receptor (CAR) as a potential

sensing biomarker of persistent organic pollutants (POPs) in

aquatic mammal: molecular characterization expression level and

ligand profiling in Baikal seal (Pusa sibirica). Toxicol. Sci. 94:57–

70 6. Ding X, Staudinger JL (2005) Repression of PXR-mediated

induction of hepatic CYP3A gene expression by protein kinase C.

Biochem. Pharmacol. 69:867–873. 7. Matsuura I, Saitoh T, Tani

E, Wako Y, Iwata H, Toyota N, Ishizuka Y, Namiki M, Hoshino

N, Tsuchitani M, Ikeda Y (2005) Evaluation of a two-generation

reproduction toxicity study adding endpoints to detect endocrine

disrupting activity using lindane. J. Toxicol. Sci. Spec No 135–

161.

Found at: doi:10.1371/journal.pcbi.1000788.s007 (0.04 MB

DOC)

Table S2 Illustration of cpscore for approved drugs.

Found at: doi:10.1371/journal.pcbi.1000788.s008 (0.09 MB

DOC)
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Chapter 8

Background: Data Mining

Within epidemiology and clinical sciences there is a large body of data
which has been collected over periods of time spanning years, with the
aim of testing hypothesis relating various clinical outcomes to life style
factors, environmental exposures or bioligcal features. Although such data
is likely generated with the goal of testing certain specific hypotheses, it
may potentially contain patterns yet undiscovered, things not yet thought
of, by a human mind. In order to extract new and unexpected information
from large data sets, it is not feasible to manually test associations between
the variables, in particular if interactive effects between variables are taken
into account. The number of possible combinations of variables to test
simply grows too large. Therefore automated methods are used to mine
a given data set for associations. A scientific area which concerns itself
specifically with such data mining is Association Mining (AM).

8.1 Association Mining

Association Mining (AM) is a type of unsupervised learning technique that
has successfully been employed for market basket analysis. The term AM
applies to a number of different algorithms and techniques which concern
themselves with generating association rules. Association rules were first
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popularized by Agrawal [33], usually taking the form “A→ B” (read “if A
then B”). An example of an association rule generated from market basket
data could thus be {carrots} → {cabbage}, which would imply that cus-
tomers who buy carrots also buy cabbage. The term on the left hand side
of the implication arrow is called the antecedent, and the right hand side
is called the consequent. Higher order associations, involving more than
one variable on either side, may also be generated such as {carrots + beef}
→ {potatoes}, which is read as “if carrots and beef then potatoes”. A
famous example of an interesting association rule is {diapers} → {beer},
indicating that many customers who buy diapers also buy beer, and has
been attributed to young fathers going shopping.

One of the central challenges in AM is the sheer number of possible
associations that can be generated. In a market basket data set, the number
of association rules Atot is given by the formula:

Atot =
N∑

k=n

(
V

k

)
·
(
2k − 2

)
(8.1)

Where N is the maximum number of variables in each rule which are
mined for, n is the minimum number of variables in each rule and V is the
number of variables in the data set. Thus, for a reasonable small data set
containing 200 variables, and limiting the number of variables in each rule
to between two and six, the total number of association rules that can be
generated becomes Atot = 5.19 · 1012.

In many cases, mining through all possible associations is not feasible.
To reduce the search space in a sensible way is therefore crucial. Perhaps
the most well known strategy to limit the search space is with the Apriori-
algorithm [49]. In order to explain this algorithm, a few definitions need to
be introduced.
Item set, is simply a group of variables such as {carrots, cabbage}, or
{smoking, drinking, dancing}.
Support is a measure of defined as the proportion of samples which contain
an item set. For example, the support for {carrots, cabbage} would be
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calculated by counting how many transactions included both carrots and
cabbage, divided by the total number of transactions in the data set.
Confidence is a measure that pertains to association rules, and is defined
as the proportion of samples satisfying the antecedent that also satisfy the
consequent, and is given by the formula:

Confidence = support(antecedent + consequent)
support(antecedent) (8.2)

The Apriori-algorithm uses a minimum support constraing in order to
limit the search space. First a minimum support cutoff Csupp is defined.
The Method then generates all possible item sets containing a single variable
and calculates the support for each of them. If a variable, say {carrots}, has
a support lower than Csupp, all supersets (e.g. {carrots,potatoes}) will also
have a support smaller than Csupp. This way, the Apriori-algorithm will
filter out all itemsets that contain the variable carrots, , thereby pruning
the search space of item sets. After filtering out all item sets that don’t fulfill
the minimum support criteria, association rules are generated and filtered
out based on a minimum confidence constraint. As an example, for the
item set {potatoes, cabbage}, there are two rules which can be generated:
{potatoes} → {cabbage} and {cabbage} → {potatoes}. These two rules,
although being mirror opposites of each other, do not necessarily have the
same confidence, and the rule with the highest confidence would usually
be considered. Although the support and confidence measures are not
directly related to the strength of a rule, i.e. its statistical significance, the
approach is nevertheless useful as it will naturally filter out combinations
of variables which have zero, or close to zero, support and thus would very
likely generate rules with a high p-value.

Although AM has traditionally been used in analysis of market basket
data, it can also be applied on other types of data, such as clinical data. In
the context of mining clinical data, the goals may be slightly different than
for mining market basket data:

• In order for a clinical association to be interesting it has to be sta-
tistically significant. In other words, there needs to be a correlation
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between the antecedent and consequent that is significantly stronger
than anticipated by chance.

• The interestingness of a clinical associationstrongly depends upon the
type of variables involved in the antecedent and consequent. For
example, in a data set containing information about smoking and
drinking habits in relation to different diseases, the association rule
{smoking} → {drinking} is most likely not interesting, whereas the
rule {smoking} → {cancer} may be considered interesting.

These criteria do not necessarily apply to market basket data, as a store
manager is likely more interested in knowing which goods are bought to-
gether, so they can conveniently be placed together, potentially stimulating
sales. In this case, a high support, and confidence, may be enough to make
a rule interesting.

8.2 Rule Filtering
In a typical Association Mining experiment, the data set analyzed may gen-
erate anywhere between tens of thousands to millions of rules. Reduction
in the number of rules is therefore desirable. Perhaps the most common
strategy for this task is the application of rule filters, which filter out rules
that are known to be uninteresting due to some special qualities. A simple
example is rule filtering based on prior knowledge. Let’s consider a data set
containing chemical measurements as well different clinical symptoms that
are potentially associated. A clinician will be much more interested to find
out which chemicals confer risk for aquiring some of the clinical symptoms,
rather than identifying correlations between different chemicals. Therefire
it would be reasonable to filter out all rules which only contain chemicals.

Another very useful rule filter is the application of a minimum im-
provement constraint, originally suggested by Bayardo et al [34]. Sup-
pose we have a rule antecedent which includes a number of elements A =
A1 + A2 + ... + An, and likewise a rule consequent B = B1 + B2 + ... + Bm.
The improvement of the rule A → B is then defined as:
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improvement(A→ B) = (8.3)
confidence(A→ B)−max(confidence(Z → B))

where Z ∈ A, that is Z can be any subset of A. This rule filter dis-
cards uninteresting rules, consisting of more than two variables, which are
either redundant or if they contain any element in the antecedent that is
independent of the consequent, given the other elements in the antecedent.
A redundant rule is a rule where elements in the antecedent are entailed
by each other. An example of a redundant rule is {father + man} →
{married}, where father entails man (although not all men are fathers).

8.3 The Compass

Although traditional AM-approaches may be used for mining clinical data
and succesfully generate association rules, I was looking for a different ap-
proach that could be more suitable in the context of mining clinical data.
In particular, I was looking for a way to avoid binning of numerical vari-
ables before analysis (i.e. grouping a numerical variable into several discrete
classes), and I also wanted an approach that could generate an output that
could be manually screened by a clinician in order to find interesting asso-
ciations.

As the interestingness of any newfound clinical association depends on
the variables involved, it can only be assessed by a human scientist and
is thus a subjective measure. However, as a typical clinical data set may
generate anywhere between tens of thousands to millions of rules, it is also
not feasible for a clinician to simply browse through such a huge list.

For a period of time, I had a constructive collaboration with a group of
people at the Department of Informatics and Mathematical Modeling at the
Technical University of Denmark, who were testing a new method suitable
for my purposes. Our strategy involved the application of Non-negative
Matrix Factorization (NMF) with consensus clustering of the output to
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find clusters of variables which were associated. Unfortunately, after sev-
eral months of hard work, we discovered that the method was, in fact,
not working as expected. As a consequence, I decided to terminate the
collaboration and find another strategy.

Seeing that a large amount of my own work and time was spent in vain,
I felt somewhat discouraged to continue this particular project. However,
I was later able to find a another strategy on my own which was suitable
for mining clinical data [manuscript IV]. The method uses Self-Organizing
Maps (SOM) to generate groups of highly associated variables, and then
performs mining of Association Rules on these groups. The application
of SOM is a means for handling numerical variables without binning a
priori, and it naturally produces Associative Variable Groups (AVGs) i.e.
groups of variables which are highly assocaited. The AVGs allows for the
generation of a condensed output, such that a large number of rules can be
manually screened for interestingness and unexpectedness.
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Abstract 
We describe a new method for identification of  confident associations within large clinical data 
sets. The method is a hybrid of two existing methods; Self-Organizing Maps and Association 
Mining. We utilize Self-Organizing Maps as the initial step to reduce the search space, and then 
apply Association Mining in order to find association rules. We demonstrate that this procedure has 
a number of advantages compared to traditional Association Mining; it allows for handling 
numerical variables without a priori binning and is able to generate variable groups which act as 
“hotspots” for statistically significant associations. We showcase the method on infertility-related 
data from Danish military conscripts. The clinical data we analyzed contained both categorical type 
questionnaire data and continuous variables generated from biological measurements, including 
missing values. From this data set, we successfully generated a number of interesting association 
rules, which relate an observation with a specific consequence and the p-value for that finding.  
Additionally, we demonstrate that the method can be used on non-clinical data containing chemical-
disease associations in order to find associations between different phenotypes, such as prostate 
cancer and breast cancer.  
 
1. Introduction 
Due to the existence of a vast amount of data, such as biobank data, collected by a large number of 
scientific groups over the years, there is a growing interest in mining such data for the purpose of 
new knowledge discovery [Nat. Gen., Editorial. vol 42, p. 467]. Traditional hypotheses testing 
approaches are typically not ideal in more comprehensive data mining aiming for new and 
unexpected patterns due to the immensely large search space, particularly in high-volume data sets.  
 
Methods for unsupervised data mining have commonly been employed in market basket analysis 
and fall under the category of Association Mining (AM). The main goal of AM in market basket 
analyses is to find interesting associations of the form “{chips} → {beer}” which would indicate 
that people who buy chips are likely to also buy beer. More complex rules involving more items 
may also be formed such as “{ham+cheese}  {milk+bread}, i.e. those who buy ham and cheese 
are likely simultaneously to also buy milk and bread. In these rules items appearing on the left side 
of the arrow are called antecedent, while items on the right side are called consequent. As market 
basket data sets tend to be large, and the number of possible combinations between items may be 
extremely big, the central effort in this type of mining has been to restrict the search space in a 
sensible way. 
 
The concept of association rules was popularized by Agrawal et al [Agrawal R., Imielinski T., 
Swami A. Mining Association Rules Between Sets of Items in Large Databases, SIGMOD 
Conference 1993: 207-216] in 1993, although the concept may have already been created as far 
back as 1966 [1]. AM has traditionally consisted of two steps: first to find frequent itemsets, and 



second to generate rules by calculating the confidence, which may give an estimate of the 
interestingness of the rule. Frequent itemsets are collections of items, such as “{bread,milk,butter}”, 
which appear together (customers often buy these together) more often than a specified threshold 
called support. The confidence indicates the probability of the consequent given the antecedent in a 
given rule, say “{bread} → {milk,butter}”,   and is often  used to restrict which rules are retained. 
There are other measures of interestingness besides confidence, such as lift, leverage and 
conviction, which we will not discuss here. 
 
The various types of existing AM methods typically address relatively simple dichotomous data sets 
containing only 1s and 0s. Applying AM to mine other types of data, such as clinical data, has been 
done in several, previous studies [2], [Siri K et al. An Efficient Interestingness based Algorithm for 
Mining Association Rules in Medical Databases. K. Elleithy (ed.), Advances and Innovations in 
Systems, Computing Sciences and Software Engineering, 167–172]. These approaches utilized the 
support measure to control the size and shape of the search space of associations. However, 
restricting the search space by applying one strict minimum support threshold, thus generating 
frequent itemsets, as has traditionally been done in AM, is not necessarily an optimal strategy when 
analyzing clinical data.  
 
The reason is primarily due to the nature of such data, where some features and associations, may 
only be present in a subset of samples e.g. certain types of tests that only apply to certain diseases. 
When generating frequent itemsets, if setting the support threshold too high, there is a risk that one 
will not find associations which contain these non-frequent, but interesting, features. However, if 
setting the threshold low enough to detect these associations, the combinatorial explosion of the 
number of rules generated may prevent detailed manual inspection.  
 
In this paper we present Compass, a new hybrid approach using a combination of Self-Organizing 
Maps (SOM) and AM, which is suitable for mining unexpected patterns in clinical data and other 
similar types of data. In this approach, SOM is applied as a first step before the application of AM. 
The reason for applying SOM is that it acts as a navigating pointer to areas in the search space 
where one is more likely to find statistically significant association rules, hence acting as a compass 
to reduce the search space. 
 
SOM, also known as Kohonen neural networks, is an unsupervised neural-network method which 
clusters the data into a set of interconnected nodes [3,4]. These nodes are typically arranged in two-
dimensional maps with rectangular or hexagonal grids, but may also be arranged in multi-
dimensional maps with other types of grids. The training process is started by randomly assigning to 
each node a model vector, which has the same dimensionality as the data samples. All samples are 
then iteratively assigned to the nodes whose’ model vector is most similar (often measured with 
Euclidian distance), and gradually regressing the model vectors towards each sample that is 
assigned. After the training process is finished, the patterns of interest are extracted from the model 
vectors. 
 
Since the time of the introduction of SOM in 1982, different variants of this method have found 
their way into many practical application in different scientific fields including biology, economics 
and physics [Pöllä M et al. Bibliography of Self-Organizing Map (SOM) Papers: 2002-2005 
Addendum. 2009. TKK Reports in Information and Computer Science, Helsinki University of 
Technology, Report TKK-ICS-R24. http://www.cis.hut.fi/research/som-bibl/]. 
 
The idea of combining SOM with association rule mining is not new [Shangming Y, Yi Z (2004). 
Advances in Neural Networks. Berlin: Springer.; Tangsripairoj S (2004) A growing hierarchical 
self-organizing map with mining association rules for software repository organization and 
visualization: Oklahoma State University]. However, previous studies did not fully explore the 



potential of this approach on complex medical data. In particular, they did not explore the ability of 
SOM to address two important challenges in the context of association mining; handling numerical 
variables and dealing with a large output of association rules to find the most interesting and 
unexpected ones. 
 
Our method can handle numerical variables without resorting to a priori binning, i.e. grouping 
numerical variables into classes before the analysis. Such grouping is common when studying e.g. 
income, wherein people are assigned to a number of arbitrary and discrete classes depending on 
their level of income. While previous studies have explored novel ways to deal with numerical 
variables without binning, to our knowledge these approaches rely on setting a strict support cutoff  
to find frequent itemsets. [Calders T et al. Mining rank-correlated sets of numerical attributes; 2006; 
Philadelphia, PA] 
 
Our approach makes it also much easier by manual inspection to identify new, interesting and 
unexpected patterns by introducing the concept of Associative Variable Groups (AVGs). AVGs are 
simply groups of variables which are much more likely to contain statistically significant 
association rules than any variables randomly chosen from the data, and which arise naturally using 
SOM as the initial step. Instead of generating a long list of possibly thousands of association rules 
as the output, our method generates a list of AVGs, which drastically reduces the size of the output 
and makes it much more comprehensible for subsequent manual inspection. 
 
2. Data 
 
Clinical data from military conscripts 
For the analysis, we obtained two, independent medium sized clinical data sets from the Jørgensen 
group  [5], containing questionnaire data as well as biological measurements, such as sperm 
concentration, from Danish military conscripts. We used one data set for training, and the other as a 
test set to validate associations that were found on the training data. The original training set 
included 1,444 samples, and 163 variables. The original test set included 2,532 samples and 377 
variables, but only the 163 variables also present in the training set were included in the analysis. 
The raw data was subjected to an extensive cleaning process.  
 
Variables removed 
Variables with more than 90% missing values were removed. Moreover, variables that were deemed 
either irrelevant or highly unreliable by the clinicians who generated the data were also removed.  
 
Variables modified 
Variables representing times and dates were converted into scalars, reflecting time in years from a 
reference time point. Geographical data was provided in the form of zip codes, which was 
subsequently converted into latitudes and longitudes (http://geonames.org). 
 

Variables added 
New variables were added from performing operations on other existing variables e.g. the age of 
each military conscript was calculated by taking the difference between “date of questionnaire fill-
in” and “birth date”.  
 
Variable encoding 
Numerical values were scaled to a mean value of zero and standard deviation of one, while 
categorical variables were converted into binary form with 1s and 0s. As the majority of the 
categorical variables contained more than one attribute value, each categorical variable had to be 
“expanded” such that each attribute value was represented by one new variable. As an example, 



consider the variable “Smoking” with the possible attribute values “Yes” and “No”. From this 
variable, two new variables are generated; “Smoking-Yes” and “Smoking-No”. Thus, 67 categorical 
variables were converted into a total of 184  attribute variables. Categorical variables with non-
informative attribute values, with less than 20 samples coded as 1’s, or more than 90% samples 
coded as 1’s, were removed. Moreover, we merged the binary categorical variables that were 
identical above a cutoff of 95% identity. In our case, we found for example that a low disposition in 
one testis strongly implied a low disposition in the other testis, thus making one of these variables 
redundant. Nearly identical variables like these are bound to end up together in many association 
rules, but do not confer any new or interesting information. The cleaned data set included 95 
categorical variables encoded in binary form. 
 
Some contradictions and errors in the data were discovered and removed. Examples included people 
who claim to be non-smokers but then subsequently specify that they smoke more than 0 cigarettes 
per day. The resulting cleaned data had 145 variables. No samples were removed from either the 
training or test sets. 
 
Table 1. Data cleaning summary 
Description of cleaning process Count 
Variables in raw training set 163 
Variables in raw test set 377 
Variables removed, missingness 15 
Variables removed, unsuitable or irrelevant 40 
Variables modified 13 
Variables added 7 
Attribute-value variables generated 184 
Attribute-value variables removed 88 
Variables in cleaned data 145 

The table shows the number of variables removed, modified or added during the extensive cleaning 
process of the raw data.  
 
Chemical-disease associations from CTD 
We extracted chemical-disease annotations from the Comparative Toxicogenomics Database (CTD) 
[6]. The CTD contains direct and inferred chemical–disease associations. Direct chemical–disease 
associations are curated from the published literature. These associations are either demonstrated 
experimentally in model physiological systems or through epidemiological studies. Inferred 
relationships are established via CTD–curated chemical–gene interactions (e.g., chemical A is 
associated with disease B because chemical A has a curated interaction with gene C, and gene C has 
a direct relationship with disease B). 
 
The data was downloaded from CTD on September 28 2010, and contained 424,266 chemical-
disease relationships, consisting of 5,915 unique chemicals and 3,436 diseases (annotated by unique 
MeSH terms). 
 
We excluded all inferred chemical-disease associations. Furthermore, we only kept diseases which 
were directly associated to at least 20 chemicals. We converted the data into a binary matrix, 
representing existing associations as 1, and non-reported associations as 0. The resulting cleaned 
data set contained 2,057 chemicals and 65 diseases. 
 
 
 
 



3. Method 
 
The Compass workflow is divided into four steps, where SOM and AM form the backbone. The 
main idea is that the SOM is employed as a first step to find “hotspots”, i.e. areas in the multi-
dimensional search space where we are more likely to find strong associations. AM is then 
subsequently applied to extract the association rules from the hotspots.  
 
The four steps of the Compass are the following: SOM, Associative Variable Group extraction, AM 
and post-processing. Theworkflow of the method is shown in Figure 1 (a more detailed description 
of each step in the method is included in the supplementary material): 
 
Step1. SOM 
SOM is performed on the training set. To perform SOM, we used a variant available in the R-
package (ver. 2.11.0) "kohonen" [7]. It can handle missing values and has the built-in feature where 
the user may assign arbitrary weights to different variables in the data, thus controlling the degree 
of influence these variables have on the training process. This feature turns out to be extremely 
useful, as it affects what area of the search space is covered, thus granting the user some degree of 
control over which associations are found. We explored maps of size 3x3, 5x5 and 7x7 nodes. 
 
The clusters generated from the SOM may not necessarily be optimal, i.e. some clusters may be 
sufficiently similar to be merged. For this reason, it is common to perform clustering on the model 
vectors. To perform the clustering we applied a neural gas algorithm available in the “cclust” 
package [Edvenia, 2009] in R. 
 
Step 2. Associative Variable Group Extraction 
From the clusters Associative Variable Groups (AVGs) were extracted, as well as the estimated 
numeric intervals of any corresponding variables that were involved in the cluster and its 
associations. This allowed for converting these variables into binary form, which was subsequently 
used to perform AM in step 4. Specifically, the interesting categorical variables were primarily 
those that had high model vector values, above a user specified cutoff, while the interesting 
numerical variables had high and low model vector values, below or above some specified cutoffs, 
respectively. Intermediate ranges for each numerical variable were deemed potentially interesting, 
if the standard deviation of all samples in a cluster was below a cutoff.  
 
The boundaries for the numerical ranges were obtained from the 1st and 3rd quartiles of the sample 
values in each cluster. 
 
Step 3. Association Mining (AM) 
Each AVG was subjected to a thorough search for association rules, iterating through all 
combinations of the variables in the group. Within each combination of variables, all possible 
association rules were in turn generated and subjected to Fisher’s Exact Test [8] to obtain a p-value. 
The confidence measure was used to assess the direction of the rule. We limited the number of 
variables in each AVG to a maximum of 20, and limited the number of variables in each itemset to 
5. This decreased the computational load, as well as filtered out more complex association rules 
with 6 or more variables. 
 
To reduce the number of rules generated, we implemented two types of rule filters in the AM step, 
which can filter out certain types of rules based on prior knowledge; the notopp (not opposite) and 
notdom (not dominant) filter. The notopp filter removes all rules, where certain variables occur on 
opposite sides of the implication arrow. E.g. if we know that the sizes of the left and right testis 
correlate, we also know that whenever these two variables occur on the opposite sides, along with 



any other variables on either side, we can be confident that the rule will be uninteresting. The 
notdom filter removes all rules where certain variables are dominant, i.e. rules which only contain a 
specified group of variables, but not others. In our data set, there were a number of variables related 
to smoking and drinking habits. As these are associated, they are likely to be grouped into the same 
AVGs. However, as our main interest is the effects of smoking or drinking on clinical outcomes, 
association rules which only contain drinking or smoking are not of primary interest. 
 
Step 4. Post-processing 
The AVGs obtained in step 3 and their corresponding association rules obtained in step 4 were 
processed into a human readable output. To reduce the output size, the AVGs were clustered into 
groups based on similarity, i.e. the proportion of variables in common. For each such AVG cluster, 
their corresponding AVGs and association rules were made easily accessible. As the output is 
structured around the AVGs, the amount of information a human scientist has to inspect is vastly 
reduced, compared to an exhaustive list of all association rules. 
 
To further reduce the amount of information in the output, we opted to present the association rules 
as fuzzy rules, i.e. any numeric ranges in the association rules were coded as either ‘H’ (high), ‘L’ 
(low) or ‘I’ (intermediate). When presented with a list of many associations at once, it may be less 
important to specifically know exactly the size and endpoints of any intervals involved in each rule. 
However, if the association is deemed interesting, the relevant intervals can be easily extracted from 
the output. 
 
 
 

 
Fig 1) Workflow of the Compass method. 
The four steps of the Compass. 1) SOM (Self Organising Map) produces model vectors 
representing each node (cluster). 2) AVG (Associative Variable Group) extraction produces groups 
of variables which are hotspots for associations. 3) AM (Association Mining) mines for association 
rules in the given AVGs, iterating through possible combinations of itemsets and rules. The rules 
found in the training set are then validated on the test set. 4) Post-processing clusters similar 
AVGs and produces a human readable output of the AVGs and their corresponding association 
rules. 

 
 
Reliability of associations 
In the type of unsupervised data mining we present here, there is an extreme risk of finding false 
positives due to the large number of associations tested. Strategies to deal with this problem have 
been discussed in literature, such as directly adjusting for multiple testing, validating the 



associations on a test set [9], and data randomization [10]. In this study, we explored the use of the 
direct adjustment approach and validation on test set, in order to limit the first type of error. We 
briefly comment on these approaches in the discussion section. 
 
In the analysis of the military conscript’s data, we used the strategy of validating the newfound 
associations on a test set. From the results on the training set, we generated 81 hypotheses of 
interest that we subsequently tested in the test set. The p-values obtained from the test set were 
corrected for multiple testing using the Holms method [11]. 
 
In the analysis of the data from the Comparative Toxicogenomics Database, we applied the direct 
adjustment approach. To correct for multiple testing, Holms test was used, setting the number of 
hypotheses tested to the size of the total search space, which was equal to  associations. 
 
4. Results 
 
Performance 
The primary objective of the Compass is to allow scientists to find new, unexpected and interesting 
associations in clinical data, and as such, its usefulness is ultimately measured in subjective terms. 
However, as a central feature of the Compass is its ability to generate associative variable groups 
(AVGs) which contain statistically significant association rules, a possible approach to assess the 
usefulness is to compare the statistical significance of the rules generated from the AVGs to the 
rules obtained from randomly generated variable groups (RVG). 
 
RVGs are generated by randomly choosing variables from the data to form variable groups, and are 
then subjected to AM. Thus, in this case SOM is not used as an initial step. In the process of 
generating RVGs, care was taken to not include more than one categorical variable from the same 
attribute into each group, as this would artificially cause the RVGs to produce poorer associations. 
We also examined the performance of Compass after the non-missing values in each data variable 
were randomly shuffled. This may give an idea of the tendency of the method to find spurious 
associations given the margins and incompleteness of the data set at hand. 
 
Figure 2 illustrates the performance of the Compass (green lines), the RVGs (blue lines), and on 
randomly shuffled data (red line). The fraction of significant associations is significantly higher for 
the Compass than RVGs, thus justifying the use of SOM as an initial step in the analysis. We noted 
that smaller map sizes in the SOM step give rise to stronger associations. We presume this is due to 
the fact that smaller maps may find associations that are represented by a larger number of samples 
in the data set. The baseline for the Compass performance on randomly shuffled data is shown in 
red. In our case the method was unable to find any spurious associations with a p-value of 1e-6 or 
lower. 
 
 
 
 
 



 
Fig 2. Cumulative distribution plot illustrating the performance of the Compass method.  
a)  Each point on the graph shows the fraction of rules (y-axis) that have a p-value equal to or 
lower than the corresponding point on the x-axis. The green lines represent results from using 
Compass, with different map sizes in the AM-step; solid line=3x3, dashed line=5x5, dotted 
line=7x7. The blue lines represent analysis performed on randomly generated AVGs of various 
sizes, ranging from 2-15 variables each. The red line shows performance of Compass on randomly 
shuffled data.  
 
 
By default, the SOM does not grant the user any control over the area in the search space where 
association rules are mined. However, there may be many circumstances where one would be 
interested in finding associations involving certain specific variables, in this case, such as e.g. birth 
weight. It is possible to obtain some control over this by employing a weighted search, by assigning 
higher weights to certain variables of choice during the SOM-step. Figure 3 illustrates the 
performance of six different analyses, each assigning a higher weight to one variable during the 
SOM. The performance differs considerably, depending on which variable is weighted higher.   
Assigning higher weights to certain variables affects which AVGs are created, and thus which 
associations are found. Our analysis showed that this approach allows for spreading out the search 
into a greater area of the multidimensional space, thus finding a larger number of diverse rules (data 
not shown). 
 
However, assigning a higher weight to a certain variable does not guarantee that all AVGs, and their 
corresponding association rules, will contain that particular variable. This is true especially in cases 
with weakly associated variables, where the Compass method may still generate other highly 
associated variable groups that do not necessarily contain the variable of interest. 
 



 
 Fig 3. Variable dependent performance. 
 Cumulative distribution plot illustrating the performance when assigning higher weights to certain 
variables during the SOM. The weighted variables are: solid blue = “Low testis disposition”, 
dashed blue = “testis size”, dotted blue = “proportion of immotile sperm”, solid cyan = “Absence 
of cicatrices”, dashed cyan = “early post fetal illness”, dotted cyan = “working posture”. All 
analyses were done with SOM of size 3x3. The solid green line represents non-weighted search on 
3x3 map, as shown in figure 2. 
 
 
Clinical findings from the military conscripts data 
The Compass method generated 111 AVG clusters and 373,745  fuzzy association rules from the 
training set with a p-value lower than 0.001. Examples of some of the AVGs found are shown in  
Table S1 in the supplementary material. By browsing the 111 AVG clusters generated from the 
analysis, we found 81 interesting associations, and subsequently evaluated them on the test set. The 
p-values obtained from the test set were corrected for multiple testing using Holms test, taking into 
account that 81 associations were found. Examples of these associations are listed in Table 2. Note, 
the confidence given in the table is defined as the conditional probability of the consequent given 
the antecedent. This definition is commonly employed in Association Mining, and differs from that 
used in traditional statistics. 
 
 
 
 
 
 
 
 
 
 
 



 
Table 2. Examples of associations found in data from military conscripts. 
Association Rule P-value Confidence 
 Training 

Set 
Test  Set Training 

Set 
Test  Set 

1. “Right testis volume high” → “Left testis volume 
high” 

1.07E-169 8.10E-319 0.90 0.91 (597) 

2. “Low level inhibinb” → “High level FSH” 1.34E-31 1.28E-80 0.69 0.58 (914) 
3. “High level FSH” → “Low testis volume” 4.26E-12 5.22E-25 0.88 0.78 (826) 
4. “Right testis consistency soft” → “Right testis 

volume low” 
9.06E-07 1.85E-23 0.68 0.85 (62) 

5. “Smoking many cigarettes” → “Less likely to go 
to school” 

2.36E-21 3.24E-16 0.59 0.47 (265) 

6. “Mother smoking during pregnancy” → “Low 
birth weight of child” 

1.98E-10 8.28E-8 0.60 0.57 (441) 

7. “High alcohol consumption” → “Increased levels 
of free androgen index” 

8.78E-04 1.35E-4 0.58 0.49 (620) 

8. “High testis volume” →  “High inhibinb” 7.61E-25 7.42E-4 0.85 0.90 
9. “Mother smoking during pregnancy” → 

“Conscript is less likely to eat organic food” 
3.00E-05 8.69E-4 0.5 0.24 

10. “Low testosterone level” → “High BMI” 4.75E-11 4.46E-3 0.45 0.39 
 
The table shows ten selected examples of association rules discovered by applying the Compass 
method on the military conscripts data set. Each rule is divided into a left-hand side (antecedent) 
and a right-hand side (consequent) separated by an implication arrow. Each rule should be read “if 
lhs then rhs”. P-values and confidences are provided for both training and test sets. The values in 
the parentheses represent the number of samples that fulfil the criteria of the rule in question. The 
p-values for the test set have been corrected for multiple testing using Holms test, taking into 
account that 81 associations found in the training were subsequently tested. 
 
The statistically most significant association presented in Table 2 demonstrates a correlation in size 
between the right and left testis. However, it is important to point out that the associations with the 
lowest p-values are not necessarily the most interesting; they often tend to be trivial. In fact, in our 
study, we observed that many associations with higher p-values were actually more interesting from 
a biological and scientific point of view, as these patterns are usually less visible to scientists in the 
field and therefore more likely to be unexpected. Association 7 in Table 2, which indicates that there 
is a positive correlation between alcohol intake and free androgen index (levels of free unbound 
testosterone in blood), has a relatively high p-value. However, it is biologically interesting, and has 
been discussed in the literature previously [12]. 
 
Previous studies have indicated that people in their late teens who smoke perform more poorly in 
school than non-smokers [13,14]. We find in association 5 in Table 2, an indication that smokers are 
less likely to go to school, which may be correlated to poor performance. We find this to be true for 
47% of smokers in our test set. 
 
We found the unusual association 9 which indicates that if the mother smoked during pregnancy, the 
military conscript is less likely to eat organic food. The intuitive explanation for this association is 
that most of the conscripts we studied are in their late teens and early 20’s and may still live at 
home. Therefore, they will eat what their parents bring home. A mother who smokes during 
pregnancy is less likely to be as health conscious as a non-smoking mother, and therefore is less 
likely to buy organic food for the household.  To our knowledge, this association has not been 
published previously. 



 
Disease associations found in Comparative Toxicogenomics Database 
On this completely different data set the Compass generated a total of three association rules from 
the Comparative Toxicogenomics Database (CTD) data with a p-value lower than 0.001. To correct 
for multiple testing we applied the direct adjustment approach, using the Holms method [11] and 
taking into account the size of the search space. Table 3 lists the rules, along with their p-value and 
confidence. These rules associate diseases based on the chemical-disease associations present in the 
data. In other words, diseases or symptoms that share a common set of chemicals, larger than 
expected by chance, will form association rules together. As such, these rules may imply that two 
diseases share a common genetic mechanism, or that they may co-occur together in the general 
population more often than expected by chance.  
 
However, care must be taken when interpreting these results, as they are based on chemical-disease 
associations reported in literature. As such, they may be heavily biased towards chemicals and 
diseases that have been studied extensively. Moreover, chemical-disease associations that were not 
present in CTD, and likely not reported extensively in the literature, were assumed to not exist. 
 
Table 3. Associations found  in CTD. 
Association Rule P-value Confidence 
 Unadjusted Adjusted 
1. "Pain" → "Inflammation" 5.61e-18 1.44e-09 0.43 (20) 
2. "Liver Neoplasms" → "Lung Neoplasms" 9.14e-16 2.35e-07 0.35 (38) 
3. “Prostatic Neoplasms” → "Breast Neoplasms" 2.31e-15 5.94e-07 0.33 (22) 

 
The table shows three rules discovered from the chemical-disease relations obtained from CTD. The 
rules in the table associate diseases together based on which chemicals are associated (or not 
associated) with each disease. Adjusted and unadjusted p-values are shown as well as confidences. 
The values in the parentheses represent the number of samples that fulfil the criteria of the rule in 
question (support).Note, the confidence is defined, as used in Association Mining, as the conditional 
probability of the consequent given the antecedent. 
 
The statistically most significant association in Table 3 relates pain to inflammation, indicating that 
43% of chemicals associated with pain are also associated with inflammation. These chemicals 
mostly include known anti-inflammatory painkillers available on the market, but also natural 
substances found in plants such as Capsaicins, Mangifer Indica extract or Desmodium Gangeticum 
extract. This association may reasonably be regarded as a trivial association, as pain is one of five 
cardinal signs in acute inflammation. 
 
Association 2 links lung cancer with prostate cancer via chemicals such as epoxy compounds, 
polyvinyl chlorides, arsenite and butylated hydroxytoluene. We were unable to find any reports in 
the scientific literature linking these two cancers specifically, although it is known that metastatic 
cancers originating from other tissues, not only lung, may spread to the liver. 
 
Association 3 in Table 3 links prostatic cancer with breast cancer; both being gender-specific for 
males and females, respectively. The chemicals in CTD linking these two diseases mainly consist of 
different estrogens and androgens, which are endogenous sex hormones. Familial co-occurrence 
between prostate cancer and breast cancer has been reported previously in a number of different 
studies [15,16]. 
 
 
 



5. Discussion 
 
We have developed the Compass method, an unsupervised approach that can successfully mine data 
for interesting associations in clinical data with missing values and mixed data types. We have also 
demonstrated the use of this approach on non-clinical data containing chemical-disease associations 
based on text mining from CTD, where we successfully generated associations between different 
phenotypes. Our approach can find associations with very low p-values, but is also sufficiently 
sensitive to find interesting associations with relatively high p-values, such as the relation between 
alcohol consumption and levels of free androgen index, which we were able to confirm in the 
literature.  
 
The Compass method is divided into 4 steps, where SOM and AM are the two initial components of 
the pipeline. SOM is applied as a first step in order to reduce the search space covered by AM in a 
later step. Several benefits of this approach has been discussed, including handling of numerical 
variables, the possibility for a weighted search (the ability to control which part of the search space 
is covered), and generation of AVGs which reduces the search space covered to find associations 
with low p-values and also allows for easier handling of a large number of associations in the result 
output.  
 
Handling numerical variables 
We are able to handle numerical variables without a priori binning, and in particular, without using 
the support measure to restrict the search space by applying SOM in the first step. The resulting 
clusters obtained from the SOM output can suggest approximate intervals in the numerical variables 
that are relevant to the associations found in that cluster. Although the method is able to find 
numeric intervals in any intermediate range that may be associated with a group of variables, the 
main driving force in the Compass pipeline are the values in the high or low end of the spectrum, as 
these are more likely to be greater distances apart from other non-similar samples during the 
learning process of the SOM. The values that are to be considered high or low are parameters 
specified by the user before the analysis. In our study, we considered values to be low or high if 
they were below or above the 1st and 3rd quartiles, respectively.  
 
Weighted Search - increasing control and sensitivity 
In the first step of the analysis, SOM is employed in order to point towards hotspots in the search 
space with strong associations. The locations of the hotspots that the SOM will point towards are 
normally outside the control of the user. However, by performing a weighted search, assigning 
higher weights to one or more variables in the SOM, the method may be coerced to find 
associations that include particular variables of interest. This grants the user some control over 
which associations are found, and may also increase sensitivity. The increase in sensitivity arises 
because variables that are involved in patterns represented by very few samples will have a higher 
chance of being found if they are weighted higher. 
 
Our analysis indicated that iterating through all variables in a data set, assigning a higher weight to 
a single variable in each iteration, will essentially “force” the SOM to spread out over a bigger area 
in the search space, thus finding a greater diversity of associations than in the case where a non-
weighted analysis is performed (data not shown).  
 
Dealing with large number of associations 
Typically, one will find thousands of associations, which fulfil certain criteria of reliability, such as 
low p-value and high replicability. However, the p-value and replicability of an association does not 
confer any information about its interestingness. In our study, we found many associations with 
extremely low p-values (some as low as 1e-100) which turned out to be either already known or 
trivial. One such example is the finding that the size of the left testis strongly correlates with the 



size of the right testis (see Table 2). This association makes intuitive sense, but would be considered 
too trivial to be publishable on its own. The only true measure of interestingness for our purposes is 
the subjective opinion given by an expert in the field, who can decide whether an association is new 
and/or interesting. 
 
However, it is nearly impossible for a human brain to browse through all newfound associations, 
and this procedure does not give a good overview of the structure of the data either. It is therefore 
important to reduce the amount of information inspected manually.  For this purpose, we propose 
the approach where a number of AVGs are presented in the result output. Given that the AVGs are 
“hotspots” for statistically significant associations, experts in the field can with a glance easily 
identify if any potential association between the variables occurring together in a group would be 
interesting. Thus the amount of information that a human has to process is vastly reduced, as each 
AVG can, depending on its size, represent hundreds or even thousands of association rules. 
While the approach with AVGs does considerably reduce the amount of information needed to 
manually process, it may in cases of larger data sets even still be too much. We have therefore also 
implemented the additional measures of rule filters and generation of fuzzy rules (described in the 
methods section) and merging nearly identical categorical variables (described in the data section).  
 
Statistically sound associations 
Another challenge with dealing with large number of associations is, of course, the extreme risk of 
finding false positives. We briefly discuss two approaches that deal with this challenge. 
 
Direct adjustment 
In the case of directly adjusting the p-values for multiple testing, the correction factor is dependent 
upon the size of the search space, i.e. the theoretical number of associations that can be tested in any 
given data. As the possible number of rules is large, this strategy has a tendency to filter out many 
true associations. 
 
In simple binary data sets, calculating the size of the theoretical search space is usually 
straightforward. However, the presence of numerical variables may complicate the matter due to the 
fact that any given numeric interval may theoretically be involved in any association. As an 
example, consider two numeric variables N1 and N2 that are linearly correlated. These two 
variables could produce association rules like “N1 High → N2 High”, and “N1 Low → N2 Low”, 
as well as “N1 Intermediate → N2 Intermediate”. Due to the fact that these two numerical variables 
are continuous, there can theoretically be an extremely large number of intermediate intervals in 
which N1 and N2 are associated. If all these intervals are to be taken into account, the theoretical 
search space may easily become astronomical, even for relatively small data sets. Only extremely 
significant associations would then pass as reliable. 
 
Validation on test set 
Validating associations from a training set on a test set is a common strategy to control for false 
discoveries. The correction factor for multiple testing is in this case the number of associations that 
were considered interesting in the training set, and subsequently validated on the test set, and is thus 
much smaller then the correction factor used in the direct adjustment approach. 
 
In many cases, if no test set is available, it is common to divide a given data set into a training and 
test set. A disadvantage with this approach is that the splitting of the data into two smaller sets 
reduces the number of samples, and hence reduces the power to detect new associations. Another 
problem is that the splitting may not be optimal with regards to missingness and skewed 
distributions. By chance, variables may be unevenly divided such that more missing values appear 
in the test set than the train set (and vice versa). Thus, certain associations may fail to be validated, 
not because of being spurious, but rather due to the fact that the degree of missingness is too high 



for the variables involved. These problems are more pronounced for higher order associations, but 
should be less problematic for data sets containing large numbers of samples. Moreover there may 
be a general issue of similarities between training and test sets, which may limit to what degree 
newfound associations can be generalized to e.g. other parts of the population if the data sets are too 
similar. This has not been discussed extensively in the biobank questionnaire analysis field but has 
often been discussed within molecular level bioinformatics, where the performance of prediction 
algorithms depends strongly on the similarity between training and test set examples (e.g. the 
sequence similarity between two proteins) [17,18]. 
 
In general, we would not recommend using the direct adjustment approach, as it is in many cases 
needlessly strict and sets the p-value cutoff extremely low due to the usually large search space. As 
a consequence, only associations with extremely low p-values will be retained, and potentially 
interesting associations with higher p-values will be overlooked. In special cases, it may however be 
used, as in our analysis of the data from CTD, which was a relatively small data set that generated a 
small number of very significant rules. 
 
It is likely that other techniques than SOM may be used in a similar way to restrict the search space 
for association rules. We compared the performance of the Compass workflow, if using k-means 
clustering [19] instead of SOM as the first step of the procedure. K-means clustering is similar to a 
special case of SOM, where the degree of influence on neighbouring nodes is set to 0. We found 
that k-means performs worse than SOM (data not shown). 
 
The interest for the type of unsupervised analysis presented here has been growing in the life 
sciences, particularly due to the large amounts of data available today. It is our opinion that the 
Compass method is well suited for data sets with a much higher number of samples than that used 
in our study (roughly 2,000 samples in the CTD data), as the analysis scales somewhat linearly in 
the SOM step. However, data sets with a much larger number of variables may create a challenge 
when using our approach. The computational time for the SOM step will increase linearly with the 
number of variables, but for the AM step the load may be considerably heavier due to the 
combinatorial explosion.  
 
It is a future prospect of ours to investigate our method on other larger data sets, and how to 
improve its performance. We are currently investigating ideas involving genetic algorithms or a 
direct modification of the SOM algorithm itself.  
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Chapter 10

Concluding Remarks

10.1 Environmental Chemicals

As many of the chemicals I analyzed have been banned for a number of
years, their levels have been decreasing over time. The results produced in
my studies should therefore be regarded as a snapshot at the point in time
when the chemicals were measured. As the data I used for my analyses
was generated roughly 8-10 years ago, the difference between the chemical
environment between Denmark and Finland (reported in Manuscript I) may
not necessarily be the same today.

Eventhough many chemicals have been banned, the industry is often
able to find substitues. These substitutes may be chemically and struc-
turally similar and therefore likely to have similar negative health effects as
the banned chemicals. Despite this, it will take time before the legislature
catches up with the change in order to ban any new chemicals introduced
into the market. Environmental chemicals with negative health effects will
therefore still remain in society for a long time. I am very curious to know
how the chemical exposure patterns look today, which chemicals dominate,
and what their effects are. The type of comprehensive studies required for
such a task would require meausirng over a hundred chemical compounds
in a relatively large number of samples from different geographical regions,
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which unfortunately is very expensive and time consuming with todays
technology.

10.2 Mining for Associations in Clinical Data
During my project I was working with two clinical data sets; one set con-
taining biological and questionnaire data from military conscripts, and the
other containing longitudinal data, including biological and chemical mea-
surements, from newborn boys. I was able to find the greatest number of
interesting associations in the data on military conscripts. However, most
of the associations were already known. Moreover, a number of potentially
very interesting associations turned out to be artifacts of some systematic
errors, such as examiner bias. With an approach that is able to mine clin-
ical data for interesting rules, the philosophical question therefore remains
how useful such a method is for finding new and unexpected associations.
Many data sets are usually created for some specific purposes in mind and
to test certain hypotheses. For that reason, these data sets may be most
suitable for testing a limited number of pre-conceived hypotheses. However,
new and unexpected associations would most likely fall outside such pre-
conceived hypotheses, and as such are not optimally suitable to be tested
and/or discovered in the given data. And even if they are found, they still
need to be evaluated for interestingness and whether they are publishable.
Nevertheless, I feel confident that with more data and given enough time,
there will certainly come a chance to catch that big fish.
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