

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Applied Bounded Model Checking for Interlocking System Designs

Haxthausen, Anne Elisabeth; Peleska, Jan; Pinger, Ralf

Published in:
Towards a Formal Methods Body of Knowledge for Railway Control and Safety Systems

Publication date:
2013

Link back to DTU Orbit

Citation (APA):
Haxthausen, A. E., Peleska, J., & Pinger, R. (2013). Applied Bounded Model Checking for Interlocking System
Designs. In S. Gruner, A. E. Haxthausen, T. Maibaum, & M. Roggenbach (Eds.), Towards a Formal Methods
Body of Knowledge for Railway Control and Safety Systems: FM-RAIL-BOK Workshop 2013 (pp. 21-26). Kgs.
Lyngby: Technical University of Denmark (DTU).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/18600587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/applied-bounded-model-checking-for-interlocking-system-designs(d243cdf0-b650-49b6-83c6-8018947e6535).html

Applied Bounded Model Checking for Interlocking
System Designs

Anne E. Haxthausen
DTU Compute

Technical University of Denmark
Email: aeha@dtu.dk

Jan Peleska
Department of Mathematics and Computer Science

Universität Bremen, Germany
Email:jp@informatik.uni-bremen.de

Ralf Pinger
Siemens AG, Braunschweig, Germany

Email:Ralf.pinger@siemens.com

Abstract—In this article the verification and validation of
interlocking systems is investigated. Reviewing both geographical
and route-related interlocking, the verification objectives can
be structured from a perspective of computer science into (1)
verification of static semantics, and (2) verification of behavioural
(operational) semantics. The former checks that the plant model
– that is, the software components reflecting the physical compo-
nents of the interlocking system – has been set up in an adequate
way. The latter investigates trains moving through the network,
with the objective to uncover potential safety violations. From
a formal methods perspective, these verification objectives can
be approached by theorem proving, global, or bounded model
checking. This article explains the techniques for application
of bounded model checking techniques, and discusses their
advantages in comparison to the alternative approaches.

Index Terms—railway control systems, interlocking systems,
formal methods, bounded model checking, temporal logic

I. INTRODUCTION

Formal methods have been applied for years in the railway
domain and reached a level that enables the compilation of the
body of knowledge in the form of an engineering handbook (in
the style of [1]), recording case-based “best practices”. To this
end, this paper contributes knowledge concerning verification
and validation (V&V) of interlocking system designs. First we
outline the state-of-the-art of V&V tasks and formal methods
for performing them. Then techniques for applying one of
these methods (bounded model checking) are explained in
more detail.

A. Interlocking V&V – State-of-the-art

Software controlling interlocking systems has to be verified
on two levels. The first level focuses on the correctness
of configuration data specifying how the topology of the
railway network controlled by the interlocking system is
reflected by re-usable software objects, their interfaces, and
their instantiation data. Correctness of the configuration data
ensures that the software has adequate control over the electro-
mechanical components of the physical interlocking system. In
terms of computer science, this is a check of static semantics.
The second verification level investigates the safety of trains
passing through the controlled network area. The verification
objective is to prove the absence of hazardous situations in
the network, provided that all trains follow the restrictions

(signals, speed limitations) imposed by the interlocking sys-
tem. This corresponds to a property check of the interlocking
systems’ behavioural semantics.

Interlocking systems are designed according to different
paradigms [2, Chapter 4]. Two of the most widely used ones
are (a) geographical interlocking systems and (b) route-based
interlocking systems using interlocking tables. For design type
(a), routes through the railway network can be allocated
dynamically by indicating the starting and destination points
of trains intending to traverse the railway network portion
controlled by the interlocking system under consideration. In
the original technology, electrical relay-based circuits were
applied, whose elements and interconnections where designed
in one-to-one correspondence with those of the physical track
layout. The electric circuit design ensured dynamic identifi-
cation of free routes from starting point to destination, the
locking of points and setting of signals along the route, as well
as on neighbouring track segments for the purpose of flank
protection. In today’s software-controlled electronic interlock-
ing systems, instances of software components “mimic” the
elements of the electric circuit. Typically following the object-
oriented paradigm, different components are developed, each
corresponding to a specific type of physical track element,
such as points, track sections associated with signals, and
others with axle counters or similar devices detecting trains
passing along the track. Similar to connections between elec-
tric circuit elements, instances of these software components
are connected by communication channels reflecting the track
network. The messages passed along these channels carry
requests for route allocation, point switching and locking,
signal settings, and the associated responses acknowledging
or rejecting these requests. The software components are de-
veloped for re-use, so that novel interlocking software designs
can be realised by means of configuration data, specifying
which instances of software components are required, their at-
tribute values, and how their communication channels shall be
connected. The geographical approach to interlocking system
design induces a separate verification and validation (V&V)
step which is called data validation. Its objective is to check
whether the instantiation of software components is complete,
each component is equipped with the correct attribute values,
and whether the channel interconnections are adequate. The
data validation objectives are specified by means of rules,

and the rules collection is usually quite extensive (several
hundred), so that manual data validation is a cumbersome,
costly, and error-prone task. Moreover, the addition of new
rules often required expensive extensions of manually pro-
grammed checking software. Data validation investigates only
the static semantics of the network of software components.
A second V&V step is required to check whether the design
will ensure the safety properties required, so that – at least
under certain boundary conditions stating that train engine
drivers have to respect signals and speed restrictions, as far
as not automatically enforced by the underlying technology –
trains moving concurrently through the railway network are
protected against derailing and collisions.

Route-based interlocking (system type (b)) is less flexible
than geographical interlocking, since it fixes all train routes
through the railway network a priori, using route tables
specifying the sequences of track segments to be allocated
for each route. This loss of flexibility is compensated by the
advantage that configuration data is considerably simpler. The
route table is complemented by interlocking tables specifying
the point positions and signal states to be enforced when
allocating routes. The interlocking tables fix these positions
both for the track elements which are part of the actual route,
and the elements which are outside the route, but contribute
to its safety by guaranteeing flank protection. Finally, a route
conflict table identifies the routes which may never be simul-
taneously allocated, due to utilisation of common track ele-
ments [3]. Route-related interlocking offers simpler means for
data validation, since the control software does not need to to
be based on communicating software instances related to each
track element. Instead, a control algorithm monitors a dynamic
plant model (each track element with its free/occupied status,
and the locked/unlocked states of points). Route allocation
decisions can made by means of these element states and
their compatibility with the interlocking table restrictions. Data
validation is only concerned with choosing the proper software
components (e.g., the correct types of signals and points),
and their consistency with the physical network. V&V of the
dynamic behaviour now has the objective to verify both the
correctness of the control algorithm and the correctness of the
interlocking tables. Even in presence of a completely correct
algorithm, a safety violation may occur if these tables are not
adequately specified; e.g., if a conflict between two routes has
not been properly documented in the tables. As a consequence,
the data validation activities concerning static semantics of the
software components is simpler and less critical than in the
case of geographical interlocking systems, but only V&V of
the dynamic behaviour can verify the crucial safety properties
of the interlocking tables.

B. State-of-the-art Formal Methods for Interlocking V&V

The European CENELEC standards applicable for the de-
velopment of software in railway control systems require
the application of formal specification and design models
and formalised, justified V&V activities to be performed for
software of the highest criticality, as applicable for interlocking

systems [4]. The objective of such formalizations is to ensure
that potential safety breaches caused by invalid configuration
data or erroneous control algorithms can be identified in a
systematic way. If formal methods application can also be
“mechanised” by means of suitable tools, it contributes to
the efficiency of V&V for interlocking system designs in a
considerable way. As of today, three methods are applied for
formal interlocking V&V: formal verification by theorem prov-
ing, by global model checking, or by bounded model checking
(BMC). Each of these methods depends on the existence of
models describing the static semantics of the interlocking
systems, and their dynamic behaviour in combination with
trains traversing the railway network.

While – just like theorem proving – global model checking
may result in complete correctness proofs of data correctness
and safety properties, experience (see for instance [5]) has
shown that complex interlocking systems cannot be verified
by means of global model checking, since this would lead to
state explosions for all but the simplest interlocking systems.
In contrast to this, bounded model checking investigates model
properties in the vicinity of a given state only, and can
therefore be applied to models of considerable size. In this
contribution we describe first how BMC is applied to data
validation. This is performed by checking the compliance of
the data with correctness rules that may be expressed formally
by some temporal logic. Next, for the verification of safety
properties, BMC can be combined with inductive reasoning,
and again, this results in a global proof of the desired safety
properties. The bounded model checking techniques to be
applied are sufficiently mature today to be applied in an
industrial context.

C. BMC as Best Practice for Interlocking V&V

The bounded model checking solution to data validation is
explained for geographical interlocking systems, since there
the requirements for this validation are far more complex than
for route-related interlocking. We describe how the software
components instantiated according to the given configuration
data can be formalised by means of a Kripke Structure whose
state space is given by the software component instances,
where the transition relation is induced by the communication
channels connecting neighbouring objects, and the labelling
function specifies the attributes associated with each instance.
It is explained how typical pattern of data validation rules
can be expressed by means of Linear Temporal Logic (LTL)
including existential quantification of specific variable values.
A trace of states fulfilling such a formula identifies a witness
for a violation of the validation rule. Application of LTL model
checking allows for easy extendability of the rule base, by
simply adding new LTL formulas representing violations of
the new rules. No further software extensions are required,
as long as a sufficiently powerful bounded model checker
for LTL exists. We further describe how the BMC approach
can be rightfully applied, because each data validation rule
only applies to a finite trace through the Kripke structure
(while LTL property checking in general refers to infinite

computations). A bounded LTL property checking algorithm
is sketched which can be efficiently applied for performing the
data validation activities.

In [6] we have described a formal, model-driven method for
efficient development and verification of product lines of re-
configurable route-related interlocking systems. This method
is based on many years of research of which the most recent
publications include [3] and [7], [8]. According to this method
the development and verification of an interlocking system
should be made in a number of steps including the following
ones: (1) Specify application-specific parameters in a domain-
specific railway language, and (2) from the domain-specific
specification, generate a formal, behavioural model of the
interlocking system and formal specification of the required
safety properties. This generation should be fully automated
by tools developed for the purpose. For this setting we describe
how BMC may be applied in combination with inductive
reasoning, in order to verify global safety properties of the
interlocking system software and configuration data generated
from these models. This combination of BMC and induction
is well-established today in many domains, and it is known to
scale up for complex “real-world” applications.

D. Related Work

An overview of trends in formal methods applications to
railway signalling can be found in [9], [10]. Many other
research groups have been using model-checking for the ver-
ification of interlocking systems. In [5] a systematic study of
applicability bounds of the symbolic model-checker NuSMV
and the explicit model checker SPIN showed that these popular
model checkers could only verify small railway yards. Several
domain-specific techniques to push the applicability bounds
for model checking interlocking systems have been suggested.
Here we will just mention some of the most recent ones. In
[11] Winter pushes the applicability bounds of symbolic model
checking (NUSMV) by optimizing the ordering strategies for
variables and transitions using domain knowledge about the
track layout. Fantechi suggests in [12] to exploit a distributed
modelling of geographical interlocking systems and break the
verification task into smaller tasks that can be distributed
to multiple processors such that they can be verified in
parallel. In [13], it is suggested to reduce the state space using
abstraction techniques reducing the number of track sections
and the number of trains.

For the alternative approach to interlocking V&V based on
theorem proving, the B-Method and its variants, such as Event-
B, seem to be the formal methods most strongly favoured for
railway control applications in Europe. The formal verifica-
tion of behavioural properties is described, and the methods’
applicability on an industrial scale has been established, for
example, in [14]. In [15], [16], the application of Event-B
to data validation is described. Further verification approaches
using theorem proving have been based on the RAISE method,
as described in [17].

An introduction into LTL can be found in [18]. The exis-
tential quantification operator for LTL, which plays a crucial

role in our concept of automated data validation, has been
originally introduced in [19]. Its adaptation to finite trace
semantics has been performed by the authors. The original
semantics and algorithms for verifying LTL formulas against
finite trace segments have been devised in [20], [21]. On these
finite segments only a subclass of LTL formulas can be veri-
fied, this class has been identified in [22]. Fairness properties,
for example, which can be expressed in the complete LTL
with infinite computations as models, are not part of this
class. Our data validation properties, however, as well as the
safety properties to be fulfilled by the behavioural interlocking
system semantics, are all part of the so-called Safety LTL
subset which is expressible on finite trace segments.

E. Paper Overview

Sections II and III describe our methods for data validation
and for verifying system safety, respectively. In Section IV,
the presented methods are discussed.

II. DATA VALIDATION

A. Kripke Structure Encodings of Static Plant Model

As sketched above, the software controlling geographical
interlocking systems consists of instances communicating over
channels, each instance representing a physical track element
in the plant model. A subset of these channels – called primary
channels in the following – reflect the physical interconnec-
tion between neighbouring track elements which are part of
possible routes, to be dynamically allocated when a request
for traversal from some starting point to a destination is given
(Fig. 1). Other channels – called secondary channels – connect
certain elements s1 to others s2, such that s1 and s2 are never
neighbouring elements on a route, but s2 may offer flank
protection to s1, when some route including s1 should be
allocated. Since geographical interlocking is based on request
and response messages, each channel for sending request
messages from some instance s1 connected to an instance
s2 is associated with a “response channel” from s2 to s1.
Main channels are subsequently denoted by variable symbols
a, b, c, d, while auxiliary channels are denoted by e, f, g, h.

All software instances are associated with a unique id.
Depending on the track element type they are representing
in the plant model, software instances carry an element type
t. Depending on the type, a list of further attributes a1, . . . , ak
may be defined for each software instance. By using a default
value 0 for attributes that are not used for a certain component
type, each element can be associated with the same complete
list of attributes, where the ones which are not applicable are
set to 0. Each valuation of a channel variable contains either a
default value 0, meaning “no connection on this channel”, or
the instance identification id > 0 of the destination instance
of the channel.

We will now formalise the static design of geograph-
ical interlocking systems as a Kripke Structure K =
(S, S0, R, L,AP), with state space S, set of initial states
S0 ⊆ S, transition relation R ⊆ S × S and labelling
function L : S → 2AP , where AP is a set of atomic

1

2

3

11

21
12

22

32

3

2

1

32

22

12

21

11

1

2

13

23

24

13

23

24

a a

c

b

a

b a

b

a

b

a

e

a

b

b b

a

a

a

a

b

b

d

Fig. 1. Physical layout, associated software instances and channel connec-
tions.

propositions and 2AP denotes its power set [18]. To this
end, define a set V of variable names as introduced above,
V = {id, t, a, b, c, d, e, f, g, h, a1, . . . , ak}. The state space S
consists of one valuation function s : V → N0 for each
software component. Each function maps the variables to
integers identifying the associated software component (id is
mapped to its unique id, t to its type, etc.). The set of initial
states S0 is defined to be the set of all states S. This allows
us to start data validations at arbitrary track elements. The
transition relation R defines each instance s2 reachable from
some instance s1 via any of the channels a, . . . , h to be a
possible post-state of s1.

R = {(s1, s2) | s1(v) = s2(id) ∧ v ∈ {a, . . . , h}}

The set of atomic propositions AP is defined as the col-
lection of all propositions stating equality of some attribute
v ∈ V to one of its possible values, AP = {v = ξ | v ∈
V ∧ ξ ∈ N0}. The labelling function L maps each state s
to the set L(s) of propositions which hold true in s, that is,
∀s ∈ S : L(s) = {v = s(v) | v ∈ V }.

Now the violation of any data validation rule may be defined
as a LTL formula specifying witnesses of such an unwanted
sequence of neighbouring elements. This will be illustrated in
the following by a collection of validation examples.

B. LTL Syntax

The LTL formulas specifying witnesses for rule violations
use symbols from V as free variables. The atomic propositions
involved may consist of arithmetic expressions and compari-
son operators =, <,>,≤,≥, 6=. The valid LTL formulas are
constructed according to the following rules.
• Every atomic proposition is a LTL formula.
• If ϕ,ψ are LTL formulas, then1 ¬ϕ, φ∧ψ, φ∨ψ, (∃b :
ϕ), Fϕ, Gϕ, Xϕ, (ϕUψ) are LTL formulas. It is
assumed that bound variable symbol b is not contained
in V .

1We do not need to consider the weak until operator W, and the release
operator R.

C. Bounded Trace Semantics for LTL

The semantic rules for evaluating LTL formulas on finite
trace segments si.si+1 . . . sk are specified using notation 〈ϕ〉ki .
The recursive rules for evaluating the truth value of 〈ϕ〉ki
can be directly transformed into an algorithm unrolling 〈ϕ〉ki
into a proposition no longer involving any temporal operators
(F,G,X,U), but referring to variable valuations in states
si, si+1 . . . , sk and Boolean operators ¬,∧,∨ only. Observe
that we omit the semantics for G here, because our witnesses
violating data rules are always represented by finite trace
segments si.si+1 . . . sk without loops, whereas Gϕ only holds
true if the trace segment has a lasso shape, where previous
state on the segment is re-visited, thereby creating a cycle.
The BMC semantics of G is discussed in detail in [20], [21].

The remaining transformation rules applicable for data
validation are (symbols p denote atomic propositions)

〈ϕ〉ki = false iff i > k
〈p〉ki iff p[si(v)/v | v ∈ free(p)] Note that bound(p) = ∅
〈¬ϕ〉ki iff 〈ϕ〉ki is false
〈ϕ ∧ ψ〉ki iff 〈ϕ〉ki and 〈ψ〉ki are true
〈ϕ ∨ ψ〉ki iff 〈ϕ〉ki or 〈ψ〉ki are true
〈(∃b : ϕ)〉ki ≡ 〈ϕ〉ki ∧

∧k−1
j=i (sj(b) = sj+1(b))

Note that b occurs free in RHS formula
and extends domain of sj , sj+1, . . . , sk by b

〈ϕUψ〉ki ≡ 〈ψ〉ki ∨ (〈ϕ〉ki ∧ 〈ϕ[b′/b | b ∈ bound(ϕ)]Uψ〉ki+1)
〈Xϕ〉ki ≡ 〈ϕ〉ki+1

〈Fϕ〉ki ≡
∨k

j=i〈ϕ〉kj

a) Example: Consider the BMC evaluation of property
(∃b : y = b ∧ X(y = b + 1))U(x > 10) on trace segment
s0.s1.s2, that is 〈(∃b : y = b ∧X(y = b + 1))U(x > 10)〉20.
Applying the rules above, this is unrolled to

〈(∃b : y = b ∧X(y = b+ 1))U(x > 10)〉20 ≡
〈(x > 10)〉20 ∨
(〈(∃b : y = b ∧X(y = b+ 1))〉20 ∧
〈(∃b′ : y = b′ ∧X(y = b′ + 1))U(x > 10)〉21) ≡
(s0(x) > 10) ∨
(〈(y = b) ∧X(y = b+ 1))〉20 ∧∧1

j=0 (sj(b) = sj+1(b)) ∧
〈(∃b′ : y = b′ ∧X(y = b′ + 1))U(x > 10)〉21) ≡
(s0(x) > 10) ∨
((s0(y) = s0(b)) ∧ (s1(y) = s1(b) + 1)) ∧∧1

j=0 (sj(b) = sj+1(b)) ∧
((s1(x) > 10) ∨
(s1(y) = s1(b′) ∧ s2(y) = s2(b′) + 1) ∧ (s1(b′) = s2(b′)) ∧
〈(∃b′′ : y = b′′ ∧X(y = b′′ + 1))U(x > 10)〉22) ≡
(s0(x) > 10) ∨
((s0(y) = s0(b)) ∧ (s1(y) = s1(b) + 1)) ∧∧1

j=0 (sj(b) = sj+1(b)) ∧
((s1(x) > 10) ∨
((s1(y) = s1(b′)) ∧ (s2(y) = s2(b′) + 1) ∧ (s1(b′) = s2(b′)) ∧
((s2(x) > 10) ∨ ((s2(y) = s2(b′′)) ∧ false)))

D. Applications
We will now describe several examples illustrating the

expressiveness of LTL for the verification of data validation
rules.

b) Example: The simplest validation rules state that
instances representing elements of a certain type t = τ must
have certain attributes with values in a specific range, such as
ai ∈ [x0, x1]. A violation of this property is readily expressed
by LTL formula F(t = τ ∧ (ai < x0 ∨ x1 < ai)).

c) Example: The following rule checks the correctness
of channel connections. “If there exists a channel from s1 to
s2, there must exist a channel in the reversed direction”. A
violation of this rule can be specified in natural language as
“There exists an instance s1 which is not the auxiliary initial
state, so that s1 is connected to some instance s2, but all
channels emanating from s2 lead to instances different from
s1”. In LTL this is expressed as

F(∃i : id = i ∧ id > 0 ∧X(a 6= i ∧ b 6= i ∧ . . . ∧ h 6= i))

A witness for such a rule violation reaches an element s
with positive id (so it does not equal s0) and at least one
of its reachable neighbours (which, by definition of R, are
only reachable if there is a connecting channel from s to this
neighbour) has no channel with destination s.

d) Example: The following rule pattern frequently occurs
when checking configuration data with respect to software
component instances representing illegal sequences of track
elements along a route. “Following a track element of type
τ1 along its a-channel, and only regarding primary channel
connections, an element of type τ2 must occur, before an
element of type τ3 is found”. The violation of this rule is
specified by “Find a track element of type τ1 and follow it
along its a-channel, so that only elements of type t 6= τ2 may
be found along its primary channel directions, until an element
of type τ3 is encountered”.

F(t = τ1 ∧ ∃x : (a = x ∧X(id = x ∧ ((t 6= τ2 ∧
∃y : ((a = y ∨ b = y ∨ c = y ∨ d = y) ∧X(id = y)))

U(t = τ3)))))

III. VERIFICATION OF SYSTEM SAFETY

This section describes our method for formally verifying
safety of an interlocking system.

A. Formalization of the Verification Task
According to our method, the input of this verification step

should consist of:
• a formal, state-based, behavioural model M of the inter-

locking system and its physical environment and
• safety conditions Φ expressed as a conjunction of propo-

sitions over the state variables in M.
The verification goal is then to verify that the safety conditions
Φ hold for any reachable state in M.

As will be explained below, a model checker tool should
be used for automated verification of such a goal. Therefore,
the model M and the formula Φ should be expressed in the
input language of the chosen model checker.

B. Verification Strategy

There is an established approach to apply bounded model
checking in combination with inductive reasoning, in order
to prove global system properties; this approach is called k-
induction. For proving that safety condition Φ holds for all
reachable states of M, this method proceeds as follows.

1) First prove that Φ∧Ψ holds for the k > 0 first execution
cycles after initialisation, i.e. Φ ∧ Ψ holds for k > 0
successive2 states σ0, . . . , σk−1 of which σ0 is the initial
state of M.

2) Next prove the following for an arbitrary execution
sequence of k+1 successive states σt, . . . , σt+k of which
the first σt is an arbitrary state (reachable or not from
the initial state σ0): if Φ ∧Ψ holds in the k first states
σt, . . . , σt+k−1, then Φ∧Ψ must also hold for the k+1st

state σt+k.
Here Ψ is an auxiliary property that holds for reachable states.
(Note that Ψ is simultaneously proven by the given induction
principle.) The proofs of the base case and the induction
step should be performed by a bounded model checker tool.
An example of such a tool is described in [23]. This tool
treats the two proof obligations by exploring corresponding
propositional satisfiable problems and solving these by a SAT
solver. Note that the induction steps argue over an execution
sequence of k+1 states of which the first state, σt, may be
unreachable, although it would have been sufficient only to
consider sequences for which σt is reachable. For sequences
starting at an unreachable state, the induction step may fail and
the property checker produces a false negative. To avoid this,
the desired property Φ is strengthened with auxiliary property
Ψ that is false for those unreachable states, σt, for which the
induction step would otherwise fail.

S22

G24.2

W118

W100

TRAMWAY MAIN ROUTES:
 1: S20−G21 (NORTH−SOUTH)
 3: S21−G23 (SOUTH−NORTH)

ROUTE 4: S21−G25

ROUTE 5: S22−G23

ROUTE 2:
S20−G25

ROUTE 6:
S22−G21

ROUTE 3
S21−G23

G22.1

G22.0

G22.3

G25.0 G25.1

G23.1

G23.0

G21.1

G21.0

S20

S21

G24.0G24.1

G24.3

G22.2

S20−G21
ROUTE 1:

G20.0

G20.1

G20.2 G20.3

W102

TRAM MAINTENANCE SITE

Fig. 2. A tramway network.

2Two states σi and σi+1 are successive, if there is a transition from σi to
σi+1 according to M.

C. Case Study

A reference publication for this verification technique has
been published in [23]. It describes a real-world route-related
tramway control system. For the network in Figure 2, the
model of the tramway control system was verified to be safe,
using k-induction. The safety conditions Φ was a conjunction
of 15 conditions ensuring no collisions and no derailments
of trams, and the auxiliary condition Ψ was a conjunction of
conditions expressing state relations needed as assumptions
in the induction step, in order to rule out unreachable states
that would have given rise to false negatives otherwise. It
turned out that a value of k = 3 sufficed to carry out the
induction. The proofs of the base case and the induction step
were performed by a bounded model checker, which used 392
seconds to perform the proofs. For more details about the case
study, see e.g. [23], [3].

IV. CONCLUSION

In this article the application of bounded model checking
for verification and validation of interlocking systems has been
described. In contrast to global model checking which usually
leads to state space explosions when applied to complex
interlocking systems, bounded model checking allows for
application in large and complex interlocking system layouts.
It has been shown how the technique can be applied on two
levels. First, in the form of LTL property checking, for the
purpose of configuration data validation. Next, in combination
with inductive reasoning, for the purpose of verifying safety
properties for the dynamic behaviour of trains traversing the
track network. Tool applications and measurements show that
both application scenarios scale up for application in an
industrial context.

Acknowledgments: The first author has been supported by
the RobustRailS project funded by the Danish Council for
Strategic Research. The second and third authors have been
supported by the openETCS project funded by the European
ITEA2 organisation.

REFERENCES

[1] “Guide to the software engineering body of knowledge.” [Online].
Available: http://www.computer.org/portal/web/swebok/home

[2] J. Pachl, Railway Operation and Control. VTD Rail Publishing, January
2002.

[3] A. E. Haxthausen, J. Peleska, and S. Kinder, “A Formal Approach for
the Construction and Verification of Railway Control Systems,” Formal
Aspects of Computing, vol. 23, no. 2, pp. 191–219, 2011, the article is
also available electronically on SpringerLink: http://www.springerlink.
com/openurl.asp?genre=article&id=doi:10.1007/s00165-009-0143-6.

[4] European Committee for Electrotechnical Standardization, EN
50128:2011 – Railway applications – Communications, signalling
and processing systems – Software for railway control and protection
systems. Brussels: CENELEC, 2011.

[5] A. Ferrari, G. Magnani, D. Grasso, and A. Fantechi, “Model Check-
ing Interlocking Control Tables,” in Proceedings of Formal Meth-
ods for Automation and Safety in Railway and Automotive Systems
(FORMS/FORMAT 2010)), Braunschweig, Germany, E. Schnieder and
G. Tarnai, Eds. Springer, 2011.

[6] A. E. Haxthausen and J. Peleska, “Efficient Development and Verifica-
tion of Safe Railway Control Software,” in Railways: Types, Design and
Safety Issues. Nova Science Publishers, Inc., 2013, pp. 127–148.

[7] A. E. Haxthausen, “Towards a Framework for Modelling and Verification
of Relay Interlocking Systems,” in 16th Monterey Workshop: Modelling,
Development and Verification of Adaptive Systems: the Grand Challenge
for Robust Software, ser. Lecture Notes in Computer Science, no. 6662.
Springer, 2011, pp. 176–192.

[8] ——, “Automated Generation of Safety Requirements from Railway
Interlocking Tables,” in 5th International Symposium On Leveraging Ap-
plications of Formal Methods, Verification and Validation (ISOLA’2012),
Part II, ser. Lecture Notes in Computer Science, no. 7610. Springer,
2012, pp. 261–275.

[9] D. Bjørner, “New Results and Current Trends in Formal Techniques
for the Development of Software for Transportation Systems,” in Pro-
ceedings of the Symposium on Formal Methods for Railway Operation
and Control Systems (FORMS’2003), Budapest/Hungary. L’Harmattan
Hongrie, May 15-16 2003.

[10] A. Fantechi, W. Fokkink, and A. Morzenti, “Some Trends in Formal
Methods Applications to Railway Signaling,” in Formal Methods for
Industrial Critical Systems. John Wiley & Sons, Inc., 2012, pp. 61–84.
[Online]. Available: http://dx.doi.org/10.1002/9781118459898.ch4

[11] K. Winter, “Optimising ordering strategies for symbolic model checking
of railway interlockings,” in 5th International Symposium On Lever-
aging Applications of Formal Methods, Verification and Validation
(ISOLA’2012), Part II, ser. Lecture Notes in Computer Science, no.
7610. Springer, 2012, pp. 246–260.

[12] A. Fantechi, “Distributing the Challenge of Model Checking Interlocking
Control Tables,” in Leveraging Applications of Formal Methods,
Verification and Validation. Applications and Case Studies, ser. Lecture
Notes in Computer Science, T. Margaria and B. Steffen, Eds. Springer
Berlin Heidelberg, 2012, vol. 7610, pp. 276–289. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-34032-1 26

[13] F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider, and H. Treharne,
“Defining and Model Checking Abstractions of Complex Railway Mod-
els using CSP‖B,” in The 8th Haifa Verification Conference, November,
2012, November to appear.

[14] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier, “Météor: A
successful application of b in a large project,” in FM’99 – Formal
Methods, ser. Lecture Notes in Computer Science, J. Wing, J. Woodcock,
and J. Davies, Eds., vol. 1708. Berlin Heidelberg: Springer, 1999, pp.
369–387.

[15] M. Clabaut, C. Metayer, and E. Morand, “4B-2 formal data
validation – formal techniques applied to verification of data
properties,” in Embedded Real Time Software and Systems ERTS, 2010.
[Online]. Available: http://web1.see.asso.fr/erts2010/Site/0ANDGY78/
Fichier/PAPIERS%20ERTS%202010%202/ERTS2010 0158 final.pdf

[16] T. Lecomte, L. Burdy, and M. Leuschel, “Formally checking large data
sets in the railways,” CoRR, vol. abs/1210.6815, 2012.

[17] A. E. Haxthausen and J. Peleska, “Formal Development and Verifica-
tion of a Distributed Railway Control System,” IEEE Transaction on
Software Engineering, vol. 26, no. 8, pp. 687–701, 2000.

[18] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. Cam-
bridge, Massachusetts: The MIT Press, 1999.

[19] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-
rent Systems. Springer-Verlag, 1992.

[20] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without bdds,” in Proceedings of the 5th International
Conference on Tools and Algorithms for Construction and Analysis
of Systems, ser. TACAS ’99. London, UK, UK: Springer-Verlag,
1999, pp. 193–207. [Online]. Available: http://dl.acm.org/citation.cfm?
id=646483.691738

[21] A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan, “Linear
encodings of bounded ltl model checking,” Logical Methods in Com-
puter Science, vol. 2, no. 5, pp. 1–64, 2006.

[22] A. P. Sistla, “Liveness and fairness in temporal logic,” Formal Aspects
of Computing, vol. 6, no. 5, pp. 495–512, 1994.

[23] R. Drechsler and D. Große, “System level validation using formal
techniques,” IEE Proc.-Comput. Digit. Tech., vol. 152, no. 3, pp. 393–
406, May 2005.

