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Abstract

In online advertising, display ads are increasingly being placed based on real-
time auctions where the advertiser who wins gets to serve thead. This is called
real-time bidding (RTB). In RTB, auctions have very tight time constraints on the
order of 100ms. Therefore mechanisms for bidding intelligently such as click-
through rate prediction need to be sufficiently fast. In thiswork, we propose to use
dimensionality reduction of the user-website interactiongraph in order to produce
simplified features of users and websites that can be used as predictors of click-
through rate. We demonstrate that the Infinite Relational Model (IRM) as a di-
mensionality reduction offers comparable predictive performance to conventional
dimensionality reduction schemes, while achieving the most economical usage of
features and fastest computations at run-time. For applications such as real-time
bidding, where fast database I/O and few computations are key to success, we thus
recommend using IRM based features as predictors to exploitthe recommender
effects from bipartite graphs.
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1 Introduction

In advertising, one is interested in segmenting people and targeting ads based on seg-
ments [1]. With the rapid growth of the Web as a publishing platform, new advertising
technologies have evolved, offering greater reach and new possibilities for targeted ad-
vertising. One such innovation is real-time bidding (RTB),where upon a user’s request
for a specific URL, an online real-time auction is started amongst numerous partici-
pants, competing to serve their advertisement. The participants are allotted a limited
time on the order of 100ms to query their data sources and comeup with a bid, and the
winner gets to display their advertisement. Thus if the computational complexity can
be reduced, more complex decision processes can be invoked.In this work, we eval-
uate how dimensionality reduction can be used to simplify predictors of click-through
rate.

We focus on three techniques for dimensionality reduction of the large bipartite
graph of user-website interactions, namely Singular ValueDecomposition (SVD) [2],
Non-negative Matrix Factorization (NMF) [3], and the Infinite Relational Model (IRM)
[4]. We are interested in how the different levels of sparsity of the output features im-
posed by each of the models affect the performance in a click-through rate prediction
task. In the RTB setup, where low latency and high throughputare both of crucial
importance, database queries need to require as little I/O as possible, and computing
model predictions need to involve as few operations as possible. Therefore a good idea
is to “compress” very high-cardinality features using dimensionality reduction tech-
niques and at the same time potentially benefit from recommender effects [5]. This
presents a trade-off between how much to compress in order tospeed up I/O and cal-
culations versus retaining, or exceeding, the performanceof a high cardinality feature.

By investigating the SVD, NMF, and the IRM, we essentially vary the compression
of a high-cardinality feature (user-website engagements). The SVD produces dense
singular vectors, thus requiring the most I/O as well as computation. The NMF is
known to produce sparse components [3], meaning that zeros need not be stored, re-
trieved nor used in computations, and thus requires less I/Oand computation. The
IRM offers the most sparse representation, in that it produces hard cluster assignments,
hence I/O and computation are reduced to a single weight per mode.

We present results that use either of the dimensionality reduction techniques’ out-
puts as predictors for a click-through rate prediction task. Our experiments show that
a compact representation based on the NMF outperforms the other two options. If one
however wants to use as little I/O and as simple computationsas possible, the very
compact representation from the IRM model offers an interesting alternative. While
incurring a limited loss of lift relative to the NMF, the IRM based predictors yield the
fastest training speed of the downstream logistic regression classifier and also results in
the most economical usage of features and fastest possible computations at run-time.
The IRM further has the advantage that it alleviates the needfor model order selection,
which is required in NMF. While the dense features produced by SVD also find usage
in terms of predictive performance, the dense features inhibit the logistic regression
training time, and if low database I/O as well as fast computation of predictions is a
priority, the SVD will not be of great use.

A key enabling factor in running the IRM with the data we present in this work,
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is a sampler written for the graphics processing unit (GPU) [6], without which learn-
ing of the IRM model would not be feasible, at least not on a day-by-day schedule.
To demonstrate the feasibility of the IRM as a large-scale sparse dimensionality re-
duction, we run final tests on a full-scale click-through rate data set and compare the
performances with not using any dimensionality reductions.

1.1 Related work

Within the area of online advertising, computational targeting techniques are often
faced with the challenge of very few observations per feature, particularly of the posi-
tive label (i.e., click, action, buy). A common approach to alleviate such label sparsity
is to use collaborative filtering type algorithms, where oneallow similar objects to
“borrow” training data and thus constrain the related objects to have similar predicted
behaviour. Studies hereof are common for sponsored search advertising where the
objects of interest are query-ad pairs [5, 7], but the problem is similar to that of user-
website pairs that we study. To our knowledge we are the first to report on the usage
of the IRM co-clustering of user-website pairs and the results should be applicable for
query-add click-through rate prediction as well.

By representing users in a compressed or latent space based on the user-website
graph, we are essentially building profiles of users based ontheir behaviour and using
those profiles for targeted advertising. This approach is well studied with many other
types of profiles based on various types of information: For using explicit features
available for predicting click-through rates, [8] is a goodresource: Latent factor models
have been proposed to model click-through rates in online advertising, see e.g. [9]: For
examples of using dimensionality reduction techniques in the construction of click-
through rate models, such as the NMF, see [10]. We believe ourcontribution to have
applications in many such setups, either as an additional predictor or for incorporation
asa priori information (priors, constraints, etc.) which can help with identifiability of
the models.

We regard the problem of predicting click-through rates as asupervised learning
task, i.e., given historical observations with features (or predictors) available about the
user, webpage, and ad, along with the labels of actions (in our case click (1) or not-
click (0)), the task is to learn a classifier for predicting unseen observations, given the
features. This is the approach taken also by e.g., [8]. As in [8], we build a probabilistic
model based on logistic regression for predicting click-through rates. What we add, is
additional features based on dimensionality reduction, aswell as a sparsity inducing
constraint based on theL1-norm.

2 Methods

We are interested in estimation of features which can improve click-through rate pre-
dictions. In this work, we focus on introducing features from different dimensionality
reduction techniques based on a bipartite graph of users andwebsites (URLs), and
using them in a simple probabilistic model for click-through rate prediction, namely
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logistic regression. In the following, we introduce the dimensionality reduction tech-
niques which we evaluate.

2.1 Dimensionality reduction techniques

2.1.1 Singular value decomposition

The singular value decomposition (SVD) of a rankR matrix X is given as the fac-
torizationX = UΣV ⊤ =

∑R

i=1 σiuiv
⊤

i , whereU andV are unitary matrices
U⊤U = V ⊤V = I and hold the left and right singular vectors ofX, respectively.
The diagonal matrixΣ contains the singular values ofX. By selecting only theK
largest singular values ofΣ, i.e., truncating all other singular values to zero, one ob-
tains the approximatioñX = UΣ̃V ⊤ =

∑K

i=1 σiuiv
⊤
i , which is the rankK optimal

solution to argmin ||X−X̃||22. This truncation corresponds to disregarding theR−K
dimensions with the least variances of the basesU andV ⊤ as noise.

2.1.2 Non-negative matrix factorization

Non-negative matrix factorization (NMF) received its nameas well as its popular-
ity in [3]. NMF is a matrix factorization comparable to SVD, the crucial difference
being that NMF decomposes into non-negative factors and impose no orthogonality
constraints. Given a non-negative input matrixX with dimensionsM × N , NMF
approximates the decompositionX ≈ WH , whereW is anM × K non-negative
matrix,H a K × N non-negative matrix, andK is the number of components. By
selectingK << min(M,N) one approximates the decomposition ofX(M×N) =
W (M×K)H(K×N) + E(M×N), thereby disregarding some residual (unconstrained)
matrixE as noise.

NMF has achieved good empirical results as an unsupervised learning technique
within many applications, e.g., for document clustering [11, 12, 13], visual coding [3],
and bioinformatics [14]. For NMF applications for computational advertising, see also
[10].

2.1.3 Infinite relational model

The Infinite Relational Model (IRM) has been proposed as a Bayesian generative model
for graphs. Generative models can provide accurate predictions and through inference
of relevant latent variables they can inform the user about mesoscale structure. The
IRM model can be cast as co-clustering approach for bipartite networks where the
nodes of each mode are grouped simultaneously. A benefit of the IRM model over ex-
isting co-clustering approaches is that the model explicitly exploit the statistical proper-
ties of binary graphs and allows the number of components of each mode to be inferred
from the data.

The generative process for the the Relational Model [4, 15, 16] is given by:
⋄ Sample the row cluster probabilities, i.e.,µ(1) ∼ Dirichlet(α(1)/K(1)e(1)).

⋄ Sample row cluster assignments, i.e.,m = 1, . . . ,M z
(1)
m ∼ Discrete(µ(1)).

⋄ Sample the column cluster probabilities, i.e.,µ(2) ∼ Dirichlet(α(2)/K(2)e(2)).
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⋄ Sample column cluster assignments, i.e.,n = 1, . . . , N z
(2)
n ∼ Discrete(µ(2)).

⋄Sample between cluster relations, i.e.,i = 1, . . . , I andj = 1, . . . , J ηij ∼ Beta(β+, β−).

⋄Generate links, i.e.,m = 1, . . . ,M andn = 1, . . . , N Xnm ∼ Bernoulli(z
(1)⊤
n ηz

(2)
m ).

WhereK(1) andK(2) denote the number of row and column clusters respectively
wherease(1) ande(2) are vectors of ones with sizeK(1) andK(2). The limitsK(1) →
∞ andK(2) → ∞ lead to the Infinite Relational Model (IRM) which has an analytic
solution given by the Chinese Restaurant Process (CRP) [15,4, 17].

Rather than collapsing the parameters of the model, we applyblocked sampling
that allows for parallel GPU computation [6]. Moreover, theCRP is approximated
by the truncated stick breaking construction (TSB), and thetruncation error becomes
insignificant when the model is estimated for large values ofK(1) andK(2), see also
[18].

2.2 Supervised learning using logistic regression

For learning a model capable of predicting click-through rates trained on historical
data, we employ logistic regression with sparsity constraints; for further details see
for instance [19, 20]. Given data consisting ofn = 1, . . . , N observations withp-
dimensional feature vectorsx⊤

n and binary labelsyn ∈ 0, 1, the probability of a positive
event can be modeled with thelogistic functionand a single weightω per feature.
I.e., p(Yn = 1|xn,ω) = σ(x⊤

nω) = 1/(1 + exp(−x⊤
nω)), referred to aspn in the

following. The optimization problem for learning the weightsω becomes

min
ω

ΩL1
(ω)−

N∑

n=1

yd log(pn) + (1 − yd) log(1 − pn), (1)

whereΩL1
= λ⊤|ω|1 =

∑p

i=1 λi|ωi| is added to control overfitting and produce
sparse solutions. For skewed target distributions, an intercept termω0 may be included
in the model by appending an all-one feature to all observations. The corresponding
regularization termλ0 then needs to be fixed to zero.

For training the logistic regression model, one can use gradient-descent type op-
timizers and quasi-Newton based algorithms are a popular choice. WithL1-penalty,
however, a little care must be taken since off-the-shelf Newton-based solvers require
the objective function to be differentiable, which (1) is not due to the penalty function
which is not differentiable in zero. In this work we base our logistic regression train-
ing on OWL-QN [20] for batch learning. For online learning using stochastic gradient
descent withL1-penalization, see [21].

Performing predictions with a logistic regression model isas simple as computing
the logistic function on the features of a test observation,x̃. In terms of speed, however,
it matters how the features of̃x are represented. In particular for a binary feature vector
x

σ(x⊤ω) =
exp(x⊤ω)

1 + exp(x⊤ω)
=

∏p

i=1 exp(xiωi)

1 +
∏p

i=1 exp(xiωi)

x binary
=

∏
i′:x

i′=1 exp(ωi′)

1 +
∏

i′:x
i′=1 exp(ωi′)

(2)
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I.e., predicting for binary feature vectors scales in the number of non-zero elements of
the feature vector, which makes computations considerablyfaster. Additionally, using
the right-hand side of (2),exp(·) can be performed when storing the weights in memory
or a database, hences saves further processing power. This has two consequences: 1)
Binary features are more desirable for making real-time predictions and 2) the sparser
the features, the less computation time and I/O from databases is required.

3 Experiments

The data we use for our experiments originate from Adform’s ad transaction logs. In
each transaction, e.g., when an ad is served, the URL where the ad is being displayed
and a unique identifier of the users web browser is stored along with an identifier of
the ad. Likewise, a transaction is logged when a user clicks an ad. From these logs, we
prepare a data set over a period of time and use the final day fortesting and use the rest
for training.

As a pre-processing step, all URLs in the transaction log arestripped of any query-
string that might be trailing the URL1, however the log data are otherwise unprocessed.

3.1 Dimensionality reduction

From the training set transactions, we produce a binary bipartite graph of users in the
first mode and URLs in the second mode. This is an unweighted, undirected graph
where edges represent which URLs a user has seen, i.e., we do not use the number of
times the user has engaged each URL. The graph we obtain hasM=9,304,402 unique
users andN=7,056,152 unique URLs. We denote this graphUL.

As we will be repeating numerous supervised learning experiments, that each can
be quite time consuming for the entire training set, we do ourmain analysis based
on experiments from a subset of transactions. As an inclusion criteria, we select the
topMsmall =99,854 users based on the number of URLs they have seen and URLs with
visits from at least 100 unique users, resulting inNsmall =70,436 URLs being included.
Based on those subsets of users and URLs, we produce a smallertransaction log, from
which we also construct a bipartite graph denotedULsmall.

3.1.1 Method details

For the sampled data for unsupervised learning,ULsmall, we use the different dimen-
sionality reduction techniques presented in Section 2 to obtain new per-user and per-
URL features.

For obtaining the SVD-based dense left and right singular vectors, we useSVDS
included with Matlab to compute the 500 largest eigenvalueswith their corresponding
eigenvectors. In the supervised learning, by joining our data by user and URL with the
left and right singular vectors, respectively, we can use anything from 1 to 500 of the
largest eigenvectors for each modality as features.

1Query-string: Anything trailing an “?” in a URL, including the “?”.
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We use the NMF Matlab Toolbox from [22] to decomposeULsmall into non-negative
factors. We use the original algorithm introduced in [3] with the least-squares objec-
tive and multiplicative updates (nmfrule option in the NMF Toolbox). With NMF
we need to decide the model order, i.e., number of componentsto fit in each of the
non-negative factors. Hence, to investigate the influence of NMF model order, we train
NMF using various model orders of 100, 300, and 500 number of components. We run
the toolbox with the default configurations for convergencetolerance and maximum
number of iterations.

As detailed in Section 2.1.3, we use the GPU sampling scheme from [6] for mas-
sively speeding up the computation of the IRM model. The IRM estimation infers the
number of components (i.e., clusters) separately for each modality, however, it does
require we input a maximum number of components for users andURLs. ForULsmall,
we run withKmax=500 for both modalities and terminate the estimation after500 it-
erations. The IRM infers 216 user clusters and 175 URL cluster for ULsmall, i.e., well
below theKmax we specify.

For the full datasetUL, we have only completed the dimensionality reduction using
IRM, which is thanks to our access to the aforementioned GPU sampling code. Again
we run the IRM for 500 iterations, and with 500 asKmax for each modality. The IRM
infers 408 user clusters and 380 URL clusters forUL; again well belowKmax.

Running the SVD and NMF for a data set the size ofUL within acceptable times
(i.e., within a day or less), is in it self a challenge and requires specialized software,
either utilizing GPUs or distributed computation (or both). As we have not had immedi-
ate access to any implementations capable hereof, the SVD and NMF decompositions
of UL remain as future work. Hence, for click-through rate prediction on the full data
set, we demonstrate only the benefit of using the IRM cluster features over not using
any dimensionality reduction.

3.2 Supervised learning

For testing the various dimensionality reductions, we construct several training and
testing data sets from RTB logs with observations labeled asclick (1) or non-click (0).
The features we use are summarized in table 1.

Based on the full set of users and URLs as well as the sub-sampled sets, detailed
in Section 3.1, we prepare training and testing data sets based on the features of Table
1 for our logistic regression classifier. We denote the full datasetSL and the sampled
SLsmall. The data are represented asN × p matrices, i.e., with columns being features
and rows being observations.

3.2.1 Method details

From the predictors of Table 1, we train a number of logistic regression classifiers,
usingL1-penalization for sparsity, see also Section 2.2. For the stopping criteria, we
run until the change of the objective value between iterations falls below 1e-6. As the
classes (clicks vs. non-clicks) are highly unbalanced, we also learn an unpenalized
intercept term. In order not to introduce any advantages (ordisadvantages) to some
predictors over others, we do not normalize the input features for any of the predictors
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Table 1: Names and descriptions of the predictors used to predict click-through rates.

Ref Feature(s) Description

f1 (BannerId, Url) A one-of-K encoding of the cross-features between
BannerId andUrl, which indicates where a request has
been made. This serves as a baseline predictor in all of our
experiments.

f2 UrlsVisited A vector representation (zeros and ones) of URLs that a spe-
cific user has visited in the past.

f3 UserCluster A one-of-K encoding of which IRM cluster a specific user
belongs to.

f4 UrlCluster A one-of-K encoding of which IRM cluster a specific URL
belongs to.

f
(n)
5 UserSVDnLoading The continous-valuedn-dimension left singular vector of a

specific user from the SVD.
f
(n)
6 UrlSVDnLoading The continous-valuedn-dimension right singular vector of a

specific URL from the SVD.
f
(n)
7 UserNMFnLoading The continous-valued cluster assignment vector ofa specific

user according to the NMF-n decomposition.
f
(n)
8 UrlNMFnLoading The continous-valued cluster assignment vector ofa specific

URL according to the NMF-n decomposition.

in any way. Rather, we first select one regularization strength, λf1 , for the baseline
predictor only,f1, and fix that through all other trials. In each experiment, wethen
use other predictorsf3-f8 in addition tof1 and select another regularization strength,
λf≥3

, jointly regularizing those predictors, but withλf1 still fixed for f1. We compare
to usingf2 regularized byλf2 in addition tof1 and henceforth refer to this model as
NODR, short for no dimensionality reduction.

For each trained model, we measure the performance in terms of the negative
Bernoulli log-likelihood (LL), which measures the mismatch between the observations
and the predictions of the model, i.e., the lower, the better. The likelihoods we report
are normalized with respect to the baseline likelihood of the click-through rate eval-
uated on the test set, such that in order to outperform the baseline, they should fall
between 0 and 1.

3.3 Results onSLsmall

For the sampled data the number of observations are as follows: Ntrain=138,847 and
Ntest=4,273. In order to give the reader an idea about the dimensionalities of the fea-
tures as well as their sparsity, in Table 2 we summarize some numbers on the predictors
on the sampled data set. For featuresf1,f3, andf4, the number of non-zeros (nnz)
and sparsities are somewhat trivial, since these are categorical features represented as
one-of-K binary vectors. For the SVD features,f5 andf6, we see that the feature vec-
tors become completely dense. For the NMF features, however, we can confirm the
methods’ ability to produce sparse components, i.e., only between 20-33% of the com-
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ponents turn up as non-zeros, yet they are far from the sparsities of the IRM cluster
features,f3 andf4.

In Table 3, we report the normalized likelihoods, lifts and test-set optimal regular-
ization strengthsλf1 andλf≥3

, with varying features used for training. The lifts are
all relative to modelf1. The penalization strengthλf1 = 0.8 is selected as the one
maximizing the performance of the classifier using onlyf1, and is kept fixed for all the
other classifiers. Note, that generalization of the penalization terms is an issue we do
not currently address. The time reported in the table are theseconds it takes to train the
logistic regression classifier. nnzall and nnzf2 are the respective number of non-zero
weights of the resulting classifier for all the features and thef2 feature only

In order to be able to further elaborate on the pros and cons ofusing the vari-
ous dimensionality reduction techniques as features in thelogistic regression classifier,
we carry out another set of experiments for the models highlighted (bold and marked
▽▽▽,⋄,◦) in Table 3. We fix the values ofλf1 andλf≥3

to the values from▽▽▽,⋄, and
◦, respectively, and appendf2 as an additional feature with each model and then tune
the regularization strengthλf2 . The results are shown in the rows of Table 3 with the
symbols▽▽▽+ f2,⋄+ f2, and◦+ f2 under “Model”.

The final experiment we run is with the full data set where we only evaluate the
IRM based features and compare those to not using any dimensionality reduction. The
number of observations for train and test areNtrain=5,460,229 andNtest=188,867.
The selection of regularization terms we do as in the previous experiments. The results
are reported in Table 4.

4 Discussion

From Table 3 we first concentrate on the best models from each dimensionality reduc-
tion, i.e., the results highlighted in bold. Comparing the lifts, we see that the NMF-300
features perform roughly one %-point better than the SVD-300 features, which then in
turn perform roughly another %-point better than the IRM cluster features. Compar-
ing to the classifier using justf1 andf2, i.e., no dimensionality reduction, we see that
only the NMF-based classifier achieves slightly higher lift. Hence, using SVD or IRM
based features asa replacementfor thef2 feature would result in worse predictions.
Seeing the number of non-zero weights dropping from 3943 using f2 to 3468 using

Table 2: Statistics of the various predictors on the sampleddata set.

Feature p nnz sparsity

f1 44086 143120 1 - 2.3e-5
f2 42910 8824491 1 - 1.4e-3
f3 216 143120 1 - 4.6e-3
f4 175 143120 1 - 5.7e-3
f5,f6 100 / 300 / 500 dense 0
f7 100 / 300 / 500 4745568 / 9780078 / 13993847 0.67 / 0.77 / 0.80
f8 100 / 300 / 500 4174552 / 14363612 / 23712222 0.71 / 0.67 / 0.67

9



Table 3: Results for the sub-sampled data set.

Model (λf1 , λf2 , λf≥3
) Time (s) nnzall nnzf2 LL ·100 % Lift

f1 ( 0.8 , - , - ) 9 3612 - 93.83 0.00

N
O

D
R

f1, f2 ( 0.8 , 10.6, - ) 91 3943 760 88.15 6.05

IR
M

f1, f3 ( 0.8 , - , 6.0e-4) 13 3653 - 90.19 3.88
f1, f3, f4 ( 0.8 , - , 7.0e-4) 16 3674 - 89.84 4.25▽▽▽

▽▽▽+ f2 ( 0.8 , 15.4, 7.0e-4) 76 3861 366 87.78 6.45

S
V

D

f1, f(100)
5 ( 0.8 , - , 0.1 ) 19 3479 - 89.87 4.22

f1, f(300)
5 ( 0.8 , - , 0.3 ) 29 3502 - 89.73 4.37

f1, f(500)
5 ( 0.8 , - , 0.3 ) 56 3552 - 89.73 4.37

f1, f(100)
5 , f(100)

6 ( 0.8 , - , 7.0e-4) 649 3409 - 89.15 4.99

f1, f(300)
5 , f(300)

6 ( 0.8 , - , 7.0e-4) 2487 3702 - 88.92 5.23⋄

f1, f(500)
5 , f(500)

6 ( 0.8 , - , 1.2e-3) 4082 4027 - 89.55 4.56

⋄+ f2 ( 0.8 , 10.8, 7.0e-4) 3291 4063 484 87.90 6.32

N
M

F

f1, f(100)
7 ( 0.8 , - , 6.0e-3) 30 3453 - 89.38 4.74

f1, f(300)
7 ( 0.8 , - , 3.0e-3) 40 3467 - 89.15 4.99

f1, f(500)
7 ( 0.8 , - , 2.0e-3) 45 3521 - 88.68 5.49

f1, f(100)
7 , f(100)

8 ( 0.8 , - , 5.0e-3) 151 3389 - 89.05 5.09

f1, f(300)
7 , f(300)

8 ( 0.8 , - , 6.0e-3) 392 3468 - 87.89 6.33◦

f1, f(500)
7 , f(500)

8 ( 0.8 , - , 4.0e-3) 740 3635 - 93.59 0.26

◦+ f2 ( 0.8 , 11.2, 6.0e-3) 641 3973 680 86.91 7.38

both NMF-300 features, indicates that the NMF offers a more economical represen-
tation which can replacef2 while not sacrificing performance. The performance gain
of NMF-300 we expect is achieved by the implicit data grouping effects of NMF, i.e.,
recommender effects.

In terms of training speed, we see that while the IRM based features fare worst
in terms of lift, the fact that each mode is a categorical value represented in a one-of-

Table 4: Results for the full data set.

Model (λf1 , λf2 , λf≥3
) Time (s) nnzall nnzf2 LL ·100 % Lift

f1 (0.7 , - , - ) 34 14152 - 91.76 0.00

N
O

D
R

f1, f2 (0.7 , 10.2, - ) 195 15673 3010 88.71 3.32

IR
M f1, f3, f4 (0.7 , - , 1.2e-3) 51 13604 - 89.35 2.63▽▽▽

▽▽▽+ f2 (0.7 , 10.2, 1.2e-3) 293 16018 2939 88.19 3.89

10



K binary vector makes the input matrix very sparse, which speeds up the training of
our classifier significantly and the model trains at least an order of magnitude faster
than the other dimensionality reduction techniques and even significantly faster than
training the NODR model. Hence, if fast training is a priority, either no dimensionality
reduction should be used or the IRM based features can be used, but at the cost of
slightly lower lift.

We now turn to the results for the models▽▽▽ + f2,⋄ + f2, and◦ + f2 in Table 3.
Here we investigate how the learning of weights for the high-cardinality featuref2 is
affected when combined with each of the optimal settings from the reduced dimension
experiments. Again, observing the lifts, the NMF-300 basedfeatures combined with
f2 obtains the highest lift. However, the IRM based features now outperform the SVD
ones and using either of the techniques in combination withf2, we are able to obtain
higher lifts than using onlyf2.

For the training speed, we again see that the training using IRM features is by
far the fastest amongst SVD and NMF and it is still faster thanusingf2 only. What is
more interesting, is the resulting number of non-zero weights, both in total and in thef2
feature alone. Of all the different dimensionality reductions as well as NODR, using the
IRM based representation requires the fewest non-zero weights at its optimal settings.
Additionally, recalling from Section 2.2, that predictions can be made computationally
very efficient, when the input features are binary indicatorvectors, the IRM becomes all
the more tractable. By combining the IRM based features withthe explicit predictorsf1
andf2, our classifier is able to improve the lift over not using dimensionality reduction
while reducing the need for fetching many weights for predictions and with only a small
reduction in lift, compared to the more computationally expensive classifiers based on
NMF and SVD.

Finally, in Table 4 we have run experiments using just the IRMbased predictors
with the full data set. The results confirm our findings from Table 3 and at the same
time demonstrates both the feasibility of processing very large bipartite graphs using
IRM as well as the application of the user and URL clusters as predictors of click-
through rates.

5 Conclusion

We have presented results that demonstrate the use of three bimodal dimensionality
reduction techniques, SVD, NMF, and IRM, and their applications as predictors in a
click-through rate data set. We show that the compact representation based on the
NMF is, in terms of predictive performance, the best option.For applications where
fast predictions are required, however, we show that the binary representation from
the IRM model is a viable alternative. The IRM based predictors yield the fastest
training speed in the supervised learning stage, produces the most sparse model and
offers the fastest computations at run-time, while incurring only a limited loss of lift
relative to the NMF. In applications such as real-time bidding, where fast database I/O
and few computations are key to success, we recommend using IRM based features as
predictors.
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