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Abstract

In online advertising, display ads are increasingly beitag@d based on real-
time auctions where the advertiser who wins gets to servadheThis is called
real-time bidding (RTB). In RTB, auctions have very tighé constraints on the
order of 100ms. Therefore mechanisms for bidding intefityesuch as click-
through rate prediction need to be sufficiently fast. In thigk, we propose to use
dimensionality reduction of the user-website interacticeph in order to produce
simplified features of users and websites that can be userkditors of click-
through rate. We demonstrate that the Infinite Relationatl®¢IRM) as a di-
mensionality reduction offers comparable predictive peniance to conventional
dimensionality reduction schemes, while achieving thetraosnomical usage of
features and fastest computations at run-time. For agjgitasuch as real-time
bidding, where fast database 1/0 and few computations aréoksuccess, we thus
recommend using IRM based features as predictors to expitecommender
effects from bipartite graphs.


http://arxiv.org/abs/1311.6976v1

1 Introduction

In advertising, one is interested in segmenting people amykting ads based on seg-
ments|[[1]. With the rapid growth of the Web as a publishindfplan, new advertising
technologies have evolved, offering greater reach and rasilpilities for targeted ad-
vertising. One such innovation is real-time bidding (RTBhere upon a user’s request
for a specific URL, an online real-time auction is started agsh numerous partici-
pants, competing to serve their advertisement. The ppatits are allotted a limited
time on the order of 100ms to query their data sources and cpméth a bid, and the
winner gets to display their advertisement. Thus if the cotaional complexity can
be reduced, more complex decision processes can be invokéus work, we eval-
uate how dimensionality reduction can be used to simpligdators of click-through
rate.

We focus on three techniques for dimensionality reductibthe large bipartite
graph of user-website interactions, namely Singular V@laeomposition (SVD)/[2],
Non-negative Matrix Factorization (NMR)I[3], and the InfmRelational Model (IRM)
[4]. We are interested in how the different levels of spgrsitthe output features im-
posed by each of the models affect the performance in a thickigh rate prediction
task. In the RTB setup, where low latency and high througlapetboth of crucial
importance, database queries need to require as littled/@oasible, and computing
model predictions need to involve as few operations as plesstherefore a good idea
is to “compress” very high-cardinality features using divsienality reduction tech-
niques and at the same time potentially benefit from recondereeffects([5]. This
presents a trade-off between how much to compress in ordgreied up 1/0 and cal-
culations versus retaining, or exceeding, the performahaéhigh cardinality feature.

By investigating the SVD, NMF, and the IRM, we essentiallyywtne compression
of a high-cardinality feature (user-website engagementse SVD produces dense
singular vectors, thus requiring the most 1/0O as well as agatpon. The NMF is
known to produce sparse componeils [3], meaning that zexd mot be stored, re-
trieved nor used in computations, and thus requires lesam@computation. The
IRM offers the most sparse representation, in that it predinard cluster assignments,
hence 1/0O and computation are reduced to a single weight pdem

We present results that use either of the dimensionalityatioh techniques’ out-
puts as predictors for a click-through rate prediction ta8kr experiments show that
a compact representation based on the NMF outperforms iee o options. If one
however wants to use as little I/O and as simple computat@igngossible, the very
compact representation from the IRM model offers an intergsalternative. While
incurring a limited loss of lift relative to the NMF, the IRMaled predictors yield the
fastest training speed of the downstream logistic regrasdassifier and also results in
the most economical usage of features and fastest possitriputations at run-time.
The IRM further has the advantage that it alleviates the fizemiodel order selection,
which is required in NMF. While the dense features produge8WD also find usage
in terms of predictive performance, the dense featuredbinttie logistic regression
training time, and if low database 1/0 as well as fast comgmneof predictions is a
priority, the SVD will not be of great use.

A key enabling factor in running the IRM with the data we présie this work,



is a sampler written for the graphics processing unit (GH8J)Without which learn-
ing of the IRM model would not be feasible, at least not on a-bigyday schedule.
To demonstrate the feasibility of the IRM as a large-scabrsp dimensionality re-
duction, we run final tests on a full-scale click-througherdata set and compare the
performances with not using any dimensionality reductions

1.1 Related work

Within the area of online advertising, computational tairge techniques are often
faced with the challenge of very few observations per fegtparticularly of the posi-
tive label (i.e., click, action, buy). A common approach llexdaate such label sparsity
is to use collaborative filtering type algorithms, where atflew similar objects to
“borrow” training data and thus constrain the related ofsjéc have similar predicted
behaviour. Studies hereof are common for sponsored sedrartising where the
objects of interest are query-ad palrs[[5, 7], but the prolkesimilar to that of user-
website pairs that we study. To our knowledge we are the ére¢port on the usage
of the IRM co-clustering of user-website pairs and the tesshould be applicable for
query-add click-through rate prediction as well.

By representing users in a compressed or latent space bagbe aser-website
graph, we are essentially building profiles of users basetiein behaviour and using
those profiles for targeted advertising. This approach i stedied with many other
types of profiles based on various types of information: Feing explicit features
available for predicting click-through rates| [8] is a goedource: Latent factor models
have been proposed to model click-through rates in onlinerdiging, see e.g. [9]: For
examples of using dimensionality reduction techniquesha donstruction of click-
through rate models, such as the NMF, see [10]. We believeantribution to have
applications in many such setups, either as an additioediqor or for incorporation
asa priori information (priors, constraints, etc.) which can helphaitentifiability of
the models.

We regard the problem of predicting click-through rates asigervised learning
task, i.e., given historical observations with featurepfedictors) available about the
user, webpage, and ad, along with the labels of actions (ircase click (1) or not-
click (0)), the task is to learn a classifier for predictingsaan observations, given the
features. This is the approach taken also by €.9., [8]. A8Jimfe build a probabilistic
model based on logistic regression for predicting clictetigh rates. What we add, is
additional features based on dimensionality reductionyels as a sparsity inducing
constraint based on thig -norm.

2 Methods

We are interested in estimation of features which can impadick-through rate pre-
dictions. In this work, we focus on introducing featuresiirdifferent dimensionality
reduction techniques based on a bipartite graph of usersvabdites (URLs), and
using them in a simple probabilistic model for click-thréugate prediction, namely



logistic regression. In the following, we introduce the dimsionality reduction tech-
niques which we evaluate.

2.1 Dimensionality reduction techniques
2.1.1 Singular value decomposition

The singular value decomposition (SVD) of a raRkmatrix X is given as the fac-
torizaton X = UXV'T = Zf:l o;u;v;, whereU and V' are unitary matrices
U'U = VTV = I and hold the left and right singular vectors &f, respectively.
The diagonal matriX2 contains the singular values &. By selecting only thei’
largest singular values &, i.e., truncating all other singular values to zero, one ob-
tains the approximatioX = ULV = Y% | o,u;v;, which is the rankk optimal
solution to argnin || X — X ||3. This truncation corresponds to disregardingfhe K
dimensions with the least variances of the bd$eandV " as noise.

2.1.2 Non-negative matrix factorization

Non-negative matrix factorization (NMF) received its naam well as its popular-
ity in [8]. NMF is a matrix factorization comparable to SVIhet crucial difference
being that NMF decomposes into hon-negative factors andseamo orthogonality
constraints. Given a non-negative input matXx with dimensionsM x N, NMF
approximates the decompositidd ~ W H, whereW is anM x K non-negative
matrix, H a K x N non-negative matrix, an& is the number of components. By
selectingk’ << min(M, N) one approximates the decompositionXf**N) —
W (MxE) r(KxN) o p(MxN) “thereby disregarding some residual (unconstrained)
matrix E as noise.

NMF has achieved good empirical results as an unsupervsedihg technique
within many applications, e.g., for document cluster(ng, [12, 13], visual codind ]3],
and bioinformatics [14]. For NMF applications for compidatl advertising, see also
[1Q].

2.1.3 Infinite relational model

The Infinite Relational Model (IRM) has been proposed as &Bay generative model
for graphs. Generative models can provide accurate predscand through inference
of relevant latent variables they can inform the user aboegancale structure. The
IRM model can be cast as co-clustering approach for bipani@tworks where the
nodes of each mode are grouped simultaneously. A benefiedRiil model over ex-
isting co-clustering approaches is that the model explieiploit the statistical proper-
ties of binary graphs and allows the number of componentadf enode to be inferred
from the data.

The generative process for the the Relational Mddel [4, &bislgiven by:
o Sample the row cluster probabilities, i.a) ~ Dirichlet(a™ /KMeM).
o Sample row cluster assignments, ie.= 1, ..., M 2% ~ Discrete(u™®).
o Sample the column cluster probabilities, i@(?) ~ Dirichlet(a? /K e(2)),



o Sample column cluster assignments, i 1, ..., N 22 ~ Discrete(u®).

o Sample between cluster relations, iie< 1,...,Tandj = 1,...,J n;; ~ Beta(8",57).
oGeneratelinks,i.em=1,...,Mandn=1,..., N X,m ~ Bemoullz( Wz,
Where K1) and K(? denote the number of row and column clusters respectively
whereas:(!) ande(®) are vectors of ones with siz€") and K (®). The limits K (V) —

oo and K ® — oo lead to the Infinite Relational Model (IRM) which has an anialy
solution given by the Chinese Restaurant Process (CRPY[1].

Rather than collapsing the parameters of the model, we dgpbked sampling
that allows for parallel GPU computation| [6]. Moreover, B8RP is approximated
by the truncated stick breaking construction (TSB), andtthecation error becomes
insignificant when the model is estimated for large value&6f and K (?), see also
[18].

2.2 Supervised learning using logistic regression

For learning a model capable of predicting click-througtesatrained on historical
data, we employ logistic regression with sparsity constsaifor further details see
for instance[[19] 20]. Given data consistingrof= 1,..., N observations withp-
dimensional feature vectoss! and binary labelg,, € 0, 1, the probability of a positive
event can be modeled with thHegistic functionand a single weight per feature.
Le,p(Y, = llz,,w) = o(zw) = 1/(1 + exp(—z, w)), referred to ap,, in the
following. The optimization problem for learning the wetghy becomes

N
HED QL1 Z leg pn 1 - yd) 1Og(1 _pn)a (1)
whereQr, = AT|w|s = Y7_, \|w;| is added to control overfitting and produce

sparse solutions. For skewed target distributions, andepd termwy may be included
in the model by appending an all-one feature to all obseymati The corresponding
regularization termk, then needs to be fixed to zero.

For training the logistic regression model, one can useignadiescent type op-
timizers and quasi-Newton based algorithms are a populgiceh With L -penalty,
however, a little care must be taken since off-the-shelf tdavbased solvers require
the objective function to be differentiable, whic¢h (1) istdoe to the penalty function
which is not differentiable in zero. In this work we base cogitic regression train-
ing on OWL-QN [20] for batch learning. For online learningngsstochastic gradient
descent withL; -penalization, see [21].

Performing predictions with a logistic regression modelsssimple as computing
the logistic function on the features of a test observatiorn terms of speed, however,
it matters how the features @&fare represented. In particular for a binary feature vector

exp(z’w) Y exp(ziw;)  binary Hi’:zilzl exp(wir)
l+exp(x’w) 1+ Hle exp(ziw;) 1+l exp(wi)
)

o(x'w) =



I.e., predicting for binary feature vectors scales in thehar of non-zero elements of
the feature vector, which makes computations consideffabtgr. Additionally, using
the right-hand side of{2yxp(-) can be performed when storing the weights in memory
or a database, hences saves further processing power. &hta/b consequences: 1)
Binary features are more desirable for making real-timeligt®ons and 2) the sparser
the features, the less computation time and 1/O from datsbiasequired.

3 Experiments

The data we use for our experiments originate from Adformd’sransaction logs. In
each transaction, e.g., when an ad is served, the URL wheradtlis being displayed
and a unique identifier of the users web browser is storechaldgth an identifier of
the ad. Likewise, a transaction is logged when a user cliokeda From these logs, we
prepare a data set over a period of time and use the final dégsiimg and use the rest
for training.

As a pre-processing step, all URLs in the transaction logtigped of any query-
string that might be trailing the URI_however the log data are otherwise unprocessed.

3.1 Dimensionality reduction

From the training set transactions, we produce a binaryrtiipgraph of users in the
first mode and URLs in the second mode. This is an unweightedirected graph
where edges represent which URLs a user has seen, i.e., wa deethe number of
times the user has engaged each URL. The graph we obtaitV k8s304,402 unique
users andvV=7,056,152 unique URLs. We denote this graph

As we will be repeating numerous supervised learning erpants, that each can
be quite time consuming for the entire training set, we doram analysis based
on experiments from a subset of transactions. As an inclusiteria, we select the
top Mgman =99,854 users based on the number of URLSs they have seen drsidR
visits from at least 100 unique users, resultingvi,.;1 =70,436 URLSs being included.
Based on those subsets of users and URLS, we produce a straiiaction log, from
which we also construct a bipartite graph dendtiegd,, ;-

3.1.1 Method details

For the sampled data for unsupervised learniig,,.;;, we use the different dimen-
sionality reduction techniques presented in Sedfion 2 tainmew per-user and per-
URL features.

For obtaining the SVD-based dense left and right singulators, we useSVDS
included with Matlab to compute the 500 largest eigenvalit@stheir corresponding
eigenvectors. In the supervised learning, by joining otia thg user and URL with the
left and right singular vectors, respectively, we can usghang from 1 to 500 of the
largest eigenvectors for each modality as features.

1Query-string: Anything trailing an “?” in a URL, includingé “?”.



We use the NMF Matlab Toolbox frorn [22] to decompake,,, .;; into non-negative
factors. We use the original algorithm introduced[ih [3]wibhe least-squares objec-
tive and multiplicative updatesif r ul e option in the NMF Toolbox). With NMF
we need to decide the model order, i.e., number of componeriisin each of the
non-negative factors. Hence, to investigate the influefib8MF model order, we train
NMF using various model orders of 100, 300, and 500 numbeowifponents. We run
the toolbox with the default configurations for convergetalerance and maximum
number of iterations.

As detailed in Sectioh 2.7.3, we use the GPU sampling schemne [6] for mas-
sively speeding up the computation of the IRM model. The IRdineation infers the
number of components (i.e., clusters) separately for eamthality, however, it does
require we input a maximum number of components for userddics. ForUL .11,
we run with K,,,,,.=500 for both modalities and terminate the estimation a5t it-
erations. The IRM infers 216 user clusters and 175 URL cideteUL ¢,,a1, i.€., well
below theK . we specify.

For the full datasetlL, we have only completed the dimensionality reduction using
IRM, which is thanks to our access to the aforementioned Gitpting code. Again
we run the IRM for 500 iterations, and with 500 A%, ., for each modality. The IRM
infers 408 user clusters and 380 URL clustersibr again well belowkK,, ..

Running the SVD and NMF for a data set the sizéJhfwithin acceptable times
(i.e., within a day or less), is in it self a challenge and iszgispecialized software,
either utilizing GPUs or distributed computation (or botA} we have not had immedi-
ate access to any implementations capable hereof, the S¥ D& decompositions
of UL remain as future work. Hence, for click-through rate prédicon the full data
set, we demonstrate only the benefit of using the IRM clugtatufes over not using
any dimensionality reduction.

3.2 Supervised learning

For testing the various dimensionality reductions, we trmigs several training and
testing data sets from RTB logs with observations labelediels (1) or non-click (0).
The features we use are summarized in table 1.

Based on the full set of users and URLs as well as the sub-gadnsplts, detailed
in Sectior 3.1, we prepare training and testing data setduas the features of Table
[ for our logistic regression classifier. We denote the falbdetSL and the sampled
SLsman- The data are representedis< p matrices, i.e., with columns being features
and rows being observations.

3.2.1 Method details

From the predictors of Tablg 1, we train a number of logistigression classifiers,
using L -penalization for sparsity, see also Secfiod 2.2. For thpphg criteria, we

run until the change of the objective value between itenatialls below 1e-6. As the
classes (clicks vs. non-clicks) are highly unbalanced, lse Earn an unpenalized
intercept term. In order not to introduce any advantagesli@advantages) to some
predictors over others, we do not normalize the input festéor any of the predictors



Table 1: Names and descriptions of the predictors used thqirdick-through rates.

Ref  Feature(s) Description

f (Bannerld, Url) A one-of-K encoding of the cross-featuregtween
BannerId and Url, which indicates where a request has
been made. This serves as a baseline predictor in all of our
experiments.

f2 UrlsVisited A vector representation (zeros and ones) of BRlat a spe-
cific user has visited in the past.

f3 UserCluster A one-of-K encoding of which IRM cluster a sfieaiiser
belongs to.

fa UrlCluster A one-of-K encoding of which IRM cluster a speciiRL
belongs to.

fé”) UserSVDnLoading  The continous-valued-dimension left singular vector of a

specific user from the SVD.

é”) UrlSVDnlLoading The continous-valued-dimension right singular vector of a
specific URL from the SVD.

;”) UserNMFLoading  The continous-valued cluster assignment vectarsgfecific
user according to the NMR-decomposition.

é”) UrINMFnLoading The continous-valued cluster assignment vectarsgfecific
URL according to the NMF: decomposition.

in any way. Rather, we first select one regularization sttenyy, , for the baseline
predictor only, f1, and fix that through all other trials. In each experiment,tien
use other predictorg;- fs in addition to f; and select another regularization strength,
Afs5 jointly regularizing those predictors, but wilty, still fixed for f;. We compare
to using f> regularized by\;, in addition to f; and henceforth refer to this model as
NODR, short for no dimensionality reduction.

For each trained model, we measure the performance in tefrtteeanegative
Bernoulli log-likelihood (LL), which measures the mismliateetween the observations
and the predictions of the model, i.e., the lower, the beftae likelihoods we report
are normalized with respect to the baseline likelihood ef ¢hick-through rate eval-
uated on the test set, such that in order to outperform thelihas they should fall
between 0 and 1.

3.3 Results orSL.,.1

For the sampled data the number of observations are as ®ll¥yy,;,=138,847 and
Niest=4,273. In order to give the reader an idea about the dimeaki®s of the fea-
tures as well as their sparsity, in Table 2 we summarize sambers on the predictors
on the sampled data set. For featufesfs, and f4, the number of non-zeros (nnz)
and sparsities are somewhat trivial, since these are aatafjfeatures represented as
one-of-K binary vectors. For the SVD featurgs,and fs, we see that the feature vec-
tors become completely dense. For the NMF features, howesecan confirm the
methods’ ability to produce sparse components, i.e., ogtywéen 20-33% of the com-



ponents turn up as non-zeros, yet they are far from the s$igarsif the IRM cluster
features,f3 and fy.

In Table[3, we report the normalized likelihoods, lifts aedttset optimal regular-
ization strengths\y, and Ay, ,, with varying features used for training. The lifts are
all relative to modelf;. The penalization strength;, = 0.8 is selected as the one
maximizing the performance of the classifier using ofilyand is kept fixed for all the
other classifiers. Note, that generalization of the peatin terms is an issue we do
not currently address. The time reported in the table areg¢hends it takes to train the
logistic regression classifier. npzand nnz, are the respective number of non-zero
weights of the resulting classifier for all the features arelft, feature only

In order to be able to further elaborate on the pros and consiofy the vari-
ous dimensionality reduction techniques as features itotfistic regression classifier,
we carry out another set of experiments for the models haptdid (bold and marked
V,©,0) in Table[3. We fix the values of;, and\y., to the values fron¥, ¢, and
o, respectively, and appernfd as an additional feature with each model and then tune
the regularization strengthy,. The results are shown in the rows of Table 3 with the
symbolsv + f5,¢ + f2, ando + f under “Model”.

The final experiment we run is with the full data set where wiy evaluate the
IRM based features and compare those to not using any dioreaigy reduction. The
number of observations for train and test &g,;,=5,460,229 andV;..;=188,867.
The selection of regularization terms we do as in the pres/@qoeriments. The results
are reported in Tab[ég 4.

4 Discussion

From TabléB we first concentrate on the best models from eawbndionality reduc-
tion, i.e., the results highlighted in bold. Comparing tifts| we see that the NMF-300
features perform roughly one %-point better than the SVD+&atures, which then in
turn perform roughly another %-point better than the IRMstdu features. Compar-
ing to the classifier using jughy andfs, i.e., no dimensionality reduction, we see that
only the NMF-based classifier achieves slightly higher kfence, using SVD or IRM
based features asreplacemenfor the f, feature would result in worse predictions.
Seeing the number of non-zero weights dropping from 3948qufj to 3468 using

Table 2: Statistics of the various predictors on the samgéed set.

Feature P nnz sparsity

fi 44086 143120 1-2.3e-5

f2 42910 8824491 1-1.4e-3

fs 216 143120 1-4.6e-3

fa 175 143120 1-5.7e-3

f5.f6 100/ 300 /500 dense 0

fr 100/300/500 4745568 /9780078 /13993847 0.67/0.77/0.80
fs 100/300/500 4174552 /14363612 /23712222 0.71/0.67/0.67




Table 3: Results for the sub-sampled data set.

Model Qfys Apys Apsy) Time(s) nnzy  nnzg,  LL-100 % Lift
f1 (08, -, - ) 9 3612 - 93.83  0.00
hd
S fif (0.8,106, - ) 91 3943 760 8815  6.05
=z
f1, f3 (0.8, - ,6.0e4) 13 3653 - 90.19  3.88
Z  ffafa (0.8, - ,7.0e4) 16 3674 - 89.84  4.25v
Y+ fo (0.8, 15.4, 7.0e-4) 76 3861 366  87.78  6.45
1, 15100 (08, -, 01) 19 3479 - 89.87  4.22
1, 300 (0.8, -, 03) 29 3502 - 89.73  4.37
) , 200 (08, -, 03) 56 3552 - 89.73  4.37
D, 00 f809 (08, -, 7.0e-4) 649 3409 - 89.15  4.99
fi, ;509 g3 (08, -, 7.0e4) 2487 3702 - 8892 523
f1, 19200 f 5000 08, -, 1.2e-3) 4082 4027 - 89.55  4.56
o+ fo (0.8, 10.8, 7.0e-4) 3291 4063 484  87.90  6.32
f1, £4100) (0.8, - ,6.0e3) 30 3453 - 89.38  4.74
1, 1300 (0.8, - ,3.0e3) 40 3467 - 89.15  4.99
L 11200 (0.8, - ,20e3) 45 3521 - 88.68  5.49
Z o, 009,509 (08, - ,5.0e3) 151 3389 - 89.05  5.09
fi, f300) f 8000 (08, - 6.0e-3) 392 3468 - 8789  6.330
f1, fP00 f500) (08, -, 40e3) 740 3635 - 9359  0.26
o+ f2 (0.8, 11.2, 6.0e-3) 641 3973 680 8691  7.38

both NMF-300 features, indicates that the NMF offers a ma@@nemical represen-
tation which can replacg, while not sacrificing performance. The performance gain
of NMF-300 we expect is achieved by the implicit data grogpeéffects of NMF, i.e.,
recommender effects.

In terms of training speed, we see that while the IRM basetlifea fare worst
in terms of lift, the fact that each mode is a categorical #akpresented in a one-of-

Table 4: Results for the full data set.

Model Afr Aoy Apey) Time(s) nnzy  nnz, LL-100 % Lift

fi (07, -, - ) 34 14152 - 9176  0.00
©
S f.fe (07,102, - ) 195 15673 3010 8871  3.32
Pz
s fufsfs (07, - ,12e3) 51 13604 - 8935  2.68
@

v+ f2 (0.7, 10.2, 1.2e-3) 293 16018 2939 88.19 3.89

10



K binary vector makes the input matrix very sparse, whicheggeaup the training of
our classifier significantly and the model trains at least @eoof magnitude faster
than the other dimensionality reduction techniques and significantly faster than
training the NODR model. Hence, if fast training is a prigréither no dimensionality
reduction should be used or the IRM based features can be bsedt the cost of
slightly lower lift.

We now turn to the results for the modéis+ f2,¢ + f2, ando + f5 in Table[3.
Here we investigate how the learning of weights for the highdinality featurefs is
affected when combined with each of the optimal settingsftioe reduced dimension
experiments. Again, observing the lifts, the NMF-300 bafsedures combined with
f2 obtains the highest lift. However, the IRM based featureg aotperform the SVD
ones and using either of the techniques in combination yittwe are able to obtain
higher lifts than using only,.

For the training speed, we again see that the training ustig features is by
far the fastest amongst SVD and NMF and it is still faster thsing f> only. What is
more interesting, is the resulting number of non-zero wisigboth in total and in thé,
feature alone. Of all the different dimensionality redans as well as NODR, using the
IRM based representation requires the fewest non-zerchiged its optimal settings.
Additionally, recalling from Section 2.2, that predict®doan be made computationally
very efficient, when the input features are binary indica#mtors, the IRM becomes all
the more tractable. By combining the IRM based featuresthigtexplicit predictorg;
andfs, our classifier is able to improve the lift over not using dimsi@nality reduction
while reducing the need for fetching many weights for prédits and with only a small
reduction in lift, compared to the more computationally exgive classifiers based on
NMF and SVD.

Finally, in Table[4 we have run experiments using just the IBAded predictors
with the full data set. The results confirm our findings fronbl&3 and at the same
time demonstrates both the feasibility of processing varge bipartite graphs using
IRM as well as the application of the user and URL clustersrasliptors of click-
through rates.

5 Conclusion

We have presented results that demonstrate the use of tieeld dimensionality
reduction techniques, SVD, NMF, and IRM, and their appilara as predictors in a
click-through rate data set. We show that the compact reptason based on the
NMF is, in terms of predictive performance, the best optiBor applications where
fast predictions are required, however, we show that tharpinepresentation from
the IRM model is a viable alternative. The IRM based predgtgeld the fastest
training speed in the supervised learning stage, prodieembst sparse model and
offers the fastest computations at run-time, while inagronly a limited loss of lift
relative to the NMF. In applications such as real-time hidgiwhere fast database 1/0
and few computations are key to success, we recommend igMdased features as
predictors.
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